1 #include "blake3_impl.h"
2 
3 #include <immintrin.h>
4 
5 #define DEGREE 8
6 
7 INLINE __m256i loadu(const uint8_t src[32]) {
8   return _mm256_loadu_si256((const __m256i *)src);
9 }
10 
11 INLINE void storeu(__m256i src, uint8_t dest[16]) {
12   _mm256_storeu_si256((__m256i *)dest, src);
13 }
14 
15 INLINE __m256i addv(__m256i a, __m256i b) { return _mm256_add_epi32(a, b); }
16 
17 // Note that clang-format doesn't like the name "xor" for some reason.
18 INLINE __m256i xorv(__m256i a, __m256i b) { return _mm256_xor_si256(a, b); }
19 
20 INLINE __m256i set1(uint32_t x) { return _mm256_set1_epi32((int32_t)x); }
21 
22 INLINE __m256i rot16(__m256i x) {
23   return _mm256_shuffle_epi8(
24       x, _mm256_set_epi8(13, 12, 15, 14, 9, 8, 11, 10, 5, 4, 7, 6, 1, 0, 3, 2,
25                          13, 12, 15, 14, 9, 8, 11, 10, 5, 4, 7, 6, 1, 0, 3, 2));
26 }
27 
28 INLINE __m256i rot12(__m256i x) {
29   return _mm256_or_si256(_mm256_srli_epi32(x, 12), _mm256_slli_epi32(x, 32 - 12));
30 }
31 
32 INLINE __m256i rot8(__m256i x) {
33   return _mm256_shuffle_epi8(
34       x, _mm256_set_epi8(12, 15, 14, 13, 8, 11, 10, 9, 4, 7, 6, 5, 0, 3, 2, 1,
35                          12, 15, 14, 13, 8, 11, 10, 9, 4, 7, 6, 5, 0, 3, 2, 1));
36 }
37 
38 INLINE __m256i rot7(__m256i x) {
39   return _mm256_or_si256(_mm256_srli_epi32(x, 7), _mm256_slli_epi32(x, 32 - 7));
40 }
41 
42 INLINE void round_fn(__m256i v[16], __m256i m[16], size_t r) {
43   v[0] = addv(v[0], m[(size_t)MSG_SCHEDULE[r][0]]);
44   v[1] = addv(v[1], m[(size_t)MSG_SCHEDULE[r][2]]);
45   v[2] = addv(v[2], m[(size_t)MSG_SCHEDULE[r][4]]);
46   v[3] = addv(v[3], m[(size_t)MSG_SCHEDULE[r][6]]);
47   v[0] = addv(v[0], v[4]);
48   v[1] = addv(v[1], v[5]);
49   v[2] = addv(v[2], v[6]);
50   v[3] = addv(v[3], v[7]);
51   v[12] = xorv(v[12], v[0]);
52   v[13] = xorv(v[13], v[1]);
53   v[14] = xorv(v[14], v[2]);
54   v[15] = xorv(v[15], v[3]);
55   v[12] = rot16(v[12]);
56   v[13] = rot16(v[13]);
57   v[14] = rot16(v[14]);
58   v[15] = rot16(v[15]);
59   v[8] = addv(v[8], v[12]);
60   v[9] = addv(v[9], v[13]);
61   v[10] = addv(v[10], v[14]);
62   v[11] = addv(v[11], v[15]);
63   v[4] = xorv(v[4], v[8]);
64   v[5] = xorv(v[5], v[9]);
65   v[6] = xorv(v[6], v[10]);
66   v[7] = xorv(v[7], v[11]);
67   v[4] = rot12(v[4]);
68   v[5] = rot12(v[5]);
69   v[6] = rot12(v[6]);
70   v[7] = rot12(v[7]);
71   v[0] = addv(v[0], m[(size_t)MSG_SCHEDULE[r][1]]);
72   v[1] = addv(v[1], m[(size_t)MSG_SCHEDULE[r][3]]);
73   v[2] = addv(v[2], m[(size_t)MSG_SCHEDULE[r][5]]);
74   v[3] = addv(v[3], m[(size_t)MSG_SCHEDULE[r][7]]);
75   v[0] = addv(v[0], v[4]);
76   v[1] = addv(v[1], v[5]);
77   v[2] = addv(v[2], v[6]);
78   v[3] = addv(v[3], v[7]);
79   v[12] = xorv(v[12], v[0]);
80   v[13] = xorv(v[13], v[1]);
81   v[14] = xorv(v[14], v[2]);
82   v[15] = xorv(v[15], v[3]);
83   v[12] = rot8(v[12]);
84   v[13] = rot8(v[13]);
85   v[14] = rot8(v[14]);
86   v[15] = rot8(v[15]);
87   v[8] = addv(v[8], v[12]);
88   v[9] = addv(v[9], v[13]);
89   v[10] = addv(v[10], v[14]);
90   v[11] = addv(v[11], v[15]);
91   v[4] = xorv(v[4], v[8]);
92   v[5] = xorv(v[5], v[9]);
93   v[6] = xorv(v[6], v[10]);
94   v[7] = xorv(v[7], v[11]);
95   v[4] = rot7(v[4]);
96   v[5] = rot7(v[5]);
97   v[6] = rot7(v[6]);
98   v[7] = rot7(v[7]);
99 
100   v[0] = addv(v[0], m[(size_t)MSG_SCHEDULE[r][8]]);
101   v[1] = addv(v[1], m[(size_t)MSG_SCHEDULE[r][10]]);
102   v[2] = addv(v[2], m[(size_t)MSG_SCHEDULE[r][12]]);
103   v[3] = addv(v[3], m[(size_t)MSG_SCHEDULE[r][14]]);
104   v[0] = addv(v[0], v[5]);
105   v[1] = addv(v[1], v[6]);
106   v[2] = addv(v[2], v[7]);
107   v[3] = addv(v[3], v[4]);
108   v[15] = xorv(v[15], v[0]);
109   v[12] = xorv(v[12], v[1]);
110   v[13] = xorv(v[13], v[2]);
111   v[14] = xorv(v[14], v[3]);
112   v[15] = rot16(v[15]);
113   v[12] = rot16(v[12]);
114   v[13] = rot16(v[13]);
115   v[14] = rot16(v[14]);
116   v[10] = addv(v[10], v[15]);
117   v[11] = addv(v[11], v[12]);
118   v[8] = addv(v[8], v[13]);
119   v[9] = addv(v[9], v[14]);
120   v[5] = xorv(v[5], v[10]);
121   v[6] = xorv(v[6], v[11]);
122   v[7] = xorv(v[7], v[8]);
123   v[4] = xorv(v[4], v[9]);
124   v[5] = rot12(v[5]);
125   v[6] = rot12(v[6]);
126   v[7] = rot12(v[7]);
127   v[4] = rot12(v[4]);
128   v[0] = addv(v[0], m[(size_t)MSG_SCHEDULE[r][9]]);
129   v[1] = addv(v[1], m[(size_t)MSG_SCHEDULE[r][11]]);
130   v[2] = addv(v[2], m[(size_t)MSG_SCHEDULE[r][13]]);
131   v[3] = addv(v[3], m[(size_t)MSG_SCHEDULE[r][15]]);
132   v[0] = addv(v[0], v[5]);
133   v[1] = addv(v[1], v[6]);
134   v[2] = addv(v[2], v[7]);
135   v[3] = addv(v[3], v[4]);
136   v[15] = xorv(v[15], v[0]);
137   v[12] = xorv(v[12], v[1]);
138   v[13] = xorv(v[13], v[2]);
139   v[14] = xorv(v[14], v[3]);
140   v[15] = rot8(v[15]);
141   v[12] = rot8(v[12]);
142   v[13] = rot8(v[13]);
143   v[14] = rot8(v[14]);
144   v[10] = addv(v[10], v[15]);
145   v[11] = addv(v[11], v[12]);
146   v[8] = addv(v[8], v[13]);
147   v[9] = addv(v[9], v[14]);
148   v[5] = xorv(v[5], v[10]);
149   v[6] = xorv(v[6], v[11]);
150   v[7] = xorv(v[7], v[8]);
151   v[4] = xorv(v[4], v[9]);
152   v[5] = rot7(v[5]);
153   v[6] = rot7(v[6]);
154   v[7] = rot7(v[7]);
155   v[4] = rot7(v[4]);
156 }
157 
158 INLINE void transpose_vecs(__m256i vecs[DEGREE]) {
159   // Interleave 32-bit lanes. The low unpack is lanes 00/11/44/55, and the high
160   // is 22/33/66/77.
161   __m256i ab_0145 = _mm256_unpacklo_epi32(vecs[0], vecs[1]);
162   __m256i ab_2367 = _mm256_unpackhi_epi32(vecs[0], vecs[1]);
163   __m256i cd_0145 = _mm256_unpacklo_epi32(vecs[2], vecs[3]);
164   __m256i cd_2367 = _mm256_unpackhi_epi32(vecs[2], vecs[3]);
165   __m256i ef_0145 = _mm256_unpacklo_epi32(vecs[4], vecs[5]);
166   __m256i ef_2367 = _mm256_unpackhi_epi32(vecs[4], vecs[5]);
167   __m256i gh_0145 = _mm256_unpacklo_epi32(vecs[6], vecs[7]);
168   __m256i gh_2367 = _mm256_unpackhi_epi32(vecs[6], vecs[7]);
169 
170   // Interleave 64-bit lates. The low unpack is lanes 00/22 and the high is
171   // 11/33.
172   __m256i abcd_04 = _mm256_unpacklo_epi64(ab_0145, cd_0145);
173   __m256i abcd_15 = _mm256_unpackhi_epi64(ab_0145, cd_0145);
174   __m256i abcd_26 = _mm256_unpacklo_epi64(ab_2367, cd_2367);
175   __m256i abcd_37 = _mm256_unpackhi_epi64(ab_2367, cd_2367);
176   __m256i efgh_04 = _mm256_unpacklo_epi64(ef_0145, gh_0145);
177   __m256i efgh_15 = _mm256_unpackhi_epi64(ef_0145, gh_0145);
178   __m256i efgh_26 = _mm256_unpacklo_epi64(ef_2367, gh_2367);
179   __m256i efgh_37 = _mm256_unpackhi_epi64(ef_2367, gh_2367);
180 
181   // Interleave 128-bit lanes.
182   vecs[0] = _mm256_permute2x128_si256(abcd_04, efgh_04, 0x20);
183   vecs[1] = _mm256_permute2x128_si256(abcd_15, efgh_15, 0x20);
184   vecs[2] = _mm256_permute2x128_si256(abcd_26, efgh_26, 0x20);
185   vecs[3] = _mm256_permute2x128_si256(abcd_37, efgh_37, 0x20);
186   vecs[4] = _mm256_permute2x128_si256(abcd_04, efgh_04, 0x31);
187   vecs[5] = _mm256_permute2x128_si256(abcd_15, efgh_15, 0x31);
188   vecs[6] = _mm256_permute2x128_si256(abcd_26, efgh_26, 0x31);
189   vecs[7] = _mm256_permute2x128_si256(abcd_37, efgh_37, 0x31);
190 }
191 
192 INLINE void transpose_msg_vecs(const uint8_t *const *inputs,
193                                size_t block_offset, __m256i out[16]) {
194   out[0] = loadu(&inputs[0][block_offset + 0 * sizeof(__m256i)]);
195   out[1] = loadu(&inputs[1][block_offset + 0 * sizeof(__m256i)]);
196   out[2] = loadu(&inputs[2][block_offset + 0 * sizeof(__m256i)]);
197   out[3] = loadu(&inputs[3][block_offset + 0 * sizeof(__m256i)]);
198   out[4] = loadu(&inputs[4][block_offset + 0 * sizeof(__m256i)]);
199   out[5] = loadu(&inputs[5][block_offset + 0 * sizeof(__m256i)]);
200   out[6] = loadu(&inputs[6][block_offset + 0 * sizeof(__m256i)]);
201   out[7] = loadu(&inputs[7][block_offset + 0 * sizeof(__m256i)]);
202   out[8] = loadu(&inputs[0][block_offset + 1 * sizeof(__m256i)]);
203   out[9] = loadu(&inputs[1][block_offset + 1 * sizeof(__m256i)]);
204   out[10] = loadu(&inputs[2][block_offset + 1 * sizeof(__m256i)]);
205   out[11] = loadu(&inputs[3][block_offset + 1 * sizeof(__m256i)]);
206   out[12] = loadu(&inputs[4][block_offset + 1 * sizeof(__m256i)]);
207   out[13] = loadu(&inputs[5][block_offset + 1 * sizeof(__m256i)]);
208   out[14] = loadu(&inputs[6][block_offset + 1 * sizeof(__m256i)]);
209   out[15] = loadu(&inputs[7][block_offset + 1 * sizeof(__m256i)]);
210   for (size_t i = 0; i < 8; ++i) {
211     _mm_prefetch((const void *)&inputs[i][block_offset + 256], _MM_HINT_T0);
212   }
213   transpose_vecs(&out[0]);
214   transpose_vecs(&out[8]);
215 }
216 
217 INLINE void load_counters(uint64_t counter, bool increment_counter,
218                           __m256i *out_lo, __m256i *out_hi) {
219   const __m256i mask = _mm256_set1_epi32(-(int32_t)increment_counter);
220   const __m256i add0 = _mm256_set_epi32(7, 6, 5, 4, 3, 2, 1, 0);
221   const __m256i add1 = _mm256_and_si256(mask, add0);
222   __m256i l = _mm256_add_epi32(_mm256_set1_epi32((int32_t)counter), add1);
223   __m256i carry = _mm256_cmpgt_epi32(_mm256_xor_si256(add1, _mm256_set1_epi32(0x80000000)),
224                                      _mm256_xor_si256(   l, _mm256_set1_epi32(0x80000000)));
225   __m256i h = _mm256_sub_epi32(_mm256_set1_epi32((int32_t)(counter >> 32)), carry);
226   *out_lo = l;
227   *out_hi = h;
228 }
229 
230 static
231 void blake3_hash8_avx2(const uint8_t *const *inputs, size_t blocks,
232                        const uint32_t key[8], uint64_t counter,
233                        bool increment_counter, uint8_t flags,
234                        uint8_t flags_start, uint8_t flags_end, uint8_t *out) {
235   __m256i h_vecs[8] = {
236       set1(key[0]), set1(key[1]), set1(key[2]), set1(key[3]),
237       set1(key[4]), set1(key[5]), set1(key[6]), set1(key[7]),
238   };
239   __m256i counter_low_vec, counter_high_vec;
240   load_counters(counter, increment_counter, &counter_low_vec,
241                 &counter_high_vec);
242   uint8_t block_flags = flags | flags_start;
243 
244   for (size_t block = 0; block < blocks; block++) {
245     if (block + 1 == blocks) {
246       block_flags |= flags_end;
247     }
248     __m256i block_len_vec = set1(BLAKE3_BLOCK_LEN);
249     __m256i block_flags_vec = set1(block_flags);
250     __m256i msg_vecs[16];
251     transpose_msg_vecs(inputs, block * BLAKE3_BLOCK_LEN, msg_vecs);
252 
253     __m256i v[16] = {
254         h_vecs[0],       h_vecs[1],        h_vecs[2],     h_vecs[3],
255         h_vecs[4],       h_vecs[5],        h_vecs[6],     h_vecs[7],
256         set1(IV[0]),     set1(IV[1]),      set1(IV[2]),   set1(IV[3]),
257         counter_low_vec, counter_high_vec, block_len_vec, block_flags_vec,
258     };
259     round_fn(v, msg_vecs, 0);
260     round_fn(v, msg_vecs, 1);
261     round_fn(v, msg_vecs, 2);
262     round_fn(v, msg_vecs, 3);
263     round_fn(v, msg_vecs, 4);
264     round_fn(v, msg_vecs, 5);
265     round_fn(v, msg_vecs, 6);
266     h_vecs[0] = xorv(v[0], v[8]);
267     h_vecs[1] = xorv(v[1], v[9]);
268     h_vecs[2] = xorv(v[2], v[10]);
269     h_vecs[3] = xorv(v[3], v[11]);
270     h_vecs[4] = xorv(v[4], v[12]);
271     h_vecs[5] = xorv(v[5], v[13]);
272     h_vecs[6] = xorv(v[6], v[14]);
273     h_vecs[7] = xorv(v[7], v[15]);
274 
275     block_flags = flags;
276   }
277 
278   transpose_vecs(h_vecs);
279   storeu(h_vecs[0], &out[0 * sizeof(__m256i)]);
280   storeu(h_vecs[1], &out[1 * sizeof(__m256i)]);
281   storeu(h_vecs[2], &out[2 * sizeof(__m256i)]);
282   storeu(h_vecs[3], &out[3 * sizeof(__m256i)]);
283   storeu(h_vecs[4], &out[4 * sizeof(__m256i)]);
284   storeu(h_vecs[5], &out[5 * sizeof(__m256i)]);
285   storeu(h_vecs[6], &out[6 * sizeof(__m256i)]);
286   storeu(h_vecs[7], &out[7 * sizeof(__m256i)]);
287 }
288 
289 #if !defined(BLAKE3_NO_SSE41)
290 void blake3_hash_many_sse41(const uint8_t *const *inputs, size_t num_inputs,
291                             size_t blocks, const uint32_t key[8],
292                             uint64_t counter, bool increment_counter,
293                             uint8_t flags, uint8_t flags_start,
294                             uint8_t flags_end, uint8_t *out);
295 #else
296 void blake3_hash_many_portable(const uint8_t *const *inputs, size_t num_inputs,
297                                size_t blocks, const uint32_t key[8],
298                                uint64_t counter, bool increment_counter,
299                                uint8_t flags, uint8_t flags_start,
300                                uint8_t flags_end, uint8_t *out);
301 #endif
302 
303 void blake3_hash_many_avx2(const uint8_t *const *inputs, size_t num_inputs,
304                            size_t blocks, const uint32_t key[8],
305                            uint64_t counter, bool increment_counter,
306                            uint8_t flags, uint8_t flags_start,
307                            uint8_t flags_end, uint8_t *out) {
308   while (num_inputs >= DEGREE) {
309     blake3_hash8_avx2(inputs, blocks, key, counter, increment_counter, flags,
310                       flags_start, flags_end, out);
311     if (increment_counter) {
312       counter += DEGREE;
313     }
314     inputs += DEGREE;
315     num_inputs -= DEGREE;
316     out = &out[DEGREE * BLAKE3_OUT_LEN];
317   }
318 #if !defined(BLAKE3_NO_SSE41)
319   blake3_hash_many_sse41(inputs, num_inputs, blocks, key, counter,
320                          increment_counter, flags, flags_start, flags_end, out);
321 #else
322   blake3_hash_many_portable(inputs, num_inputs, blocks, key, counter,
323                             increment_counter, flags, flags_start, flags_end,
324                             out);
325 #endif
326 }
327