1 #include "blake3_impl.h"
2 
3 #include <immintrin.h>
4 
5 #define DEGREE 4
6 
7 #define _mm_shuffle_ps2(a, b, c)                                               \
8   (_mm_castps_si128(                                                           \
9       _mm_shuffle_ps(_mm_castsi128_ps(a), _mm_castsi128_ps(b), (c))))
10 
11 INLINE __m128i loadu(const uint8_t src[16]) {
12   return _mm_loadu_si128((const __m128i *)src);
13 }
14 
15 INLINE void storeu(__m128i src, uint8_t dest[16]) {
16   _mm_storeu_si128((__m128i *)dest, src);
17 }
18 
19 INLINE __m128i addv(__m128i a, __m128i b) { return _mm_add_epi32(a, b); }
20 
21 // Note that clang-format doesn't like the name "xor" for some reason.
22 INLINE __m128i xorv(__m128i a, __m128i b) { return _mm_xor_si128(a, b); }
23 
24 INLINE __m128i set1(uint32_t x) { return _mm_set1_epi32((int32_t)x); }
25 
26 INLINE __m128i set4(uint32_t a, uint32_t b, uint32_t c, uint32_t d) {
27   return _mm_setr_epi32((int32_t)a, (int32_t)b, (int32_t)c, (int32_t)d);
28 }
29 
30 INLINE __m128i rot16(__m128i x) {
31   return _mm_shuffle_epi8(
32       x, _mm_set_epi8(13, 12, 15, 14, 9, 8, 11, 10, 5, 4, 7, 6, 1, 0, 3, 2));
33 }
34 
35 INLINE __m128i rot12(__m128i x) {
36   return xorv(_mm_srli_epi32(x, 12), _mm_slli_epi32(x, 32 - 12));
37 }
38 
39 INLINE __m128i rot8(__m128i x) {
40   return _mm_shuffle_epi8(
41       x, _mm_set_epi8(12, 15, 14, 13, 8, 11, 10, 9, 4, 7, 6, 5, 0, 3, 2, 1));
42 }
43 
44 INLINE __m128i rot7(__m128i x) {
45   return xorv(_mm_srli_epi32(x, 7), _mm_slli_epi32(x, 32 - 7));
46 }
47 
48 INLINE void g1(__m128i *row0, __m128i *row1, __m128i *row2, __m128i *row3,
49                __m128i m) {
50   *row0 = addv(addv(*row0, m), *row1);
51   *row3 = xorv(*row3, *row0);
52   *row3 = rot16(*row3);
53   *row2 = addv(*row2, *row3);
54   *row1 = xorv(*row1, *row2);
55   *row1 = rot12(*row1);
56 }
57 
58 INLINE void g2(__m128i *row0, __m128i *row1, __m128i *row2, __m128i *row3,
59                __m128i m) {
60   *row0 = addv(addv(*row0, m), *row1);
61   *row3 = xorv(*row3, *row0);
62   *row3 = rot8(*row3);
63   *row2 = addv(*row2, *row3);
64   *row1 = xorv(*row1, *row2);
65   *row1 = rot7(*row1);
66 }
67 
68 // Note the optimization here of leaving row1 as the unrotated row, rather than
69 // row0. All the message loads below are adjusted to compensate for this. See
70 // discussion at https://github.com/sneves/blake2-avx2/pull/4
71 INLINE void diagonalize(__m128i *row0, __m128i *row2, __m128i *row3) {
72   *row0 = _mm_shuffle_epi32(*row0, _MM_SHUFFLE(2, 1, 0, 3));
73   *row3 = _mm_shuffle_epi32(*row3, _MM_SHUFFLE(1, 0, 3, 2));
74   *row2 = _mm_shuffle_epi32(*row2, _MM_SHUFFLE(0, 3, 2, 1));
75 }
76 
77 INLINE void undiagonalize(__m128i *row0, __m128i *row2, __m128i *row3) {
78   *row0 = _mm_shuffle_epi32(*row0, _MM_SHUFFLE(0, 3, 2, 1));
79   *row3 = _mm_shuffle_epi32(*row3, _MM_SHUFFLE(1, 0, 3, 2));
80   *row2 = _mm_shuffle_epi32(*row2, _MM_SHUFFLE(2, 1, 0, 3));
81 }
82 
83 INLINE void compress_pre(__m128i rows[4], const uint32_t cv[8],
84                          const uint8_t block[BLAKE3_BLOCK_LEN],
85                          uint8_t block_len, uint64_t counter, uint8_t flags) {
86   rows[0] = loadu((uint8_t *)&cv[0]);
87   rows[1] = loadu((uint8_t *)&cv[4]);
88   rows[2] = set4(IV[0], IV[1], IV[2], IV[3]);
89   rows[3] = set4(counter_low(counter), counter_high(counter),
90                  (uint32_t)block_len, (uint32_t)flags);
91 
92   __m128i m0 = loadu(&block[sizeof(__m128i) * 0]);
93   __m128i m1 = loadu(&block[sizeof(__m128i) * 1]);
94   __m128i m2 = loadu(&block[sizeof(__m128i) * 2]);
95   __m128i m3 = loadu(&block[sizeof(__m128i) * 3]);
96 
97   __m128i t0, t1, t2, t3, tt;
98 
99   // Round 1. The first round permutes the message words from the original
100   // input order, into the groups that get mixed in parallel.
101   t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(2, 0, 2, 0)); //  6  4  2  0
102   g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
103   t1 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 3, 1)); //  7  5  3  1
104   g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
105   diagonalize(&rows[0], &rows[2], &rows[3]);
106   t2 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(2, 0, 2, 0)); // 14 12 10  8
107   t2 = _mm_shuffle_epi32(t2, _MM_SHUFFLE(2, 1, 0, 3));   // 12 10  8 14
108   g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
109   t3 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 1, 3, 1)); // 15 13 11  9
110   t3 = _mm_shuffle_epi32(t3, _MM_SHUFFLE(2, 1, 0, 3));   // 13 11  9 15
111   g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
112   undiagonalize(&rows[0], &rows[2], &rows[3]);
113   m0 = t0;
114   m1 = t1;
115   m2 = t2;
116   m3 = t3;
117 
118   // Round 2. This round and all following rounds apply a fixed permutation
119   // to the message words from the round before.
120   t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2));
121   t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1));
122   g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
123   t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2));
124   tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3));
125   t1 = _mm_blend_epi16(tt, t1, 0xCC);
126   g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
127   diagonalize(&rows[0], &rows[2], &rows[3]);
128   t2 = _mm_unpacklo_epi64(m3, m1);
129   tt = _mm_blend_epi16(t2, m2, 0xC0);
130   t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0));
131   g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
132   t3 = _mm_unpackhi_epi32(m1, m3);
133   tt = _mm_unpacklo_epi32(m2, t3);
134   t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2));
135   g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
136   undiagonalize(&rows[0], &rows[2], &rows[3]);
137   m0 = t0;
138   m1 = t1;
139   m2 = t2;
140   m3 = t3;
141 
142   // Round 3
143   t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2));
144   t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1));
145   g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
146   t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2));
147   tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3));
148   t1 = _mm_blend_epi16(tt, t1, 0xCC);
149   g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
150   diagonalize(&rows[0], &rows[2], &rows[3]);
151   t2 = _mm_unpacklo_epi64(m3, m1);
152   tt = _mm_blend_epi16(t2, m2, 0xC0);
153   t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0));
154   g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
155   t3 = _mm_unpackhi_epi32(m1, m3);
156   tt = _mm_unpacklo_epi32(m2, t3);
157   t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2));
158   g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
159   undiagonalize(&rows[0], &rows[2], &rows[3]);
160   m0 = t0;
161   m1 = t1;
162   m2 = t2;
163   m3 = t3;
164 
165   // Round 4
166   t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2));
167   t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1));
168   g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
169   t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2));
170   tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3));
171   t1 = _mm_blend_epi16(tt, t1, 0xCC);
172   g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
173   diagonalize(&rows[0], &rows[2], &rows[3]);
174   t2 = _mm_unpacklo_epi64(m3, m1);
175   tt = _mm_blend_epi16(t2, m2, 0xC0);
176   t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0));
177   g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
178   t3 = _mm_unpackhi_epi32(m1, m3);
179   tt = _mm_unpacklo_epi32(m2, t3);
180   t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2));
181   g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
182   undiagonalize(&rows[0], &rows[2], &rows[3]);
183   m0 = t0;
184   m1 = t1;
185   m2 = t2;
186   m3 = t3;
187 
188   // Round 5
189   t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2));
190   t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1));
191   g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
192   t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2));
193   tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3));
194   t1 = _mm_blend_epi16(tt, t1, 0xCC);
195   g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
196   diagonalize(&rows[0], &rows[2], &rows[3]);
197   t2 = _mm_unpacklo_epi64(m3, m1);
198   tt = _mm_blend_epi16(t2, m2, 0xC0);
199   t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0));
200   g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
201   t3 = _mm_unpackhi_epi32(m1, m3);
202   tt = _mm_unpacklo_epi32(m2, t3);
203   t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2));
204   g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
205   undiagonalize(&rows[0], &rows[2], &rows[3]);
206   m0 = t0;
207   m1 = t1;
208   m2 = t2;
209   m3 = t3;
210 
211   // Round 6
212   t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2));
213   t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1));
214   g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
215   t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2));
216   tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3));
217   t1 = _mm_blend_epi16(tt, t1, 0xCC);
218   g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
219   diagonalize(&rows[0], &rows[2], &rows[3]);
220   t2 = _mm_unpacklo_epi64(m3, m1);
221   tt = _mm_blend_epi16(t2, m2, 0xC0);
222   t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0));
223   g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
224   t3 = _mm_unpackhi_epi32(m1, m3);
225   tt = _mm_unpacklo_epi32(m2, t3);
226   t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2));
227   g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
228   undiagonalize(&rows[0], &rows[2], &rows[3]);
229   m0 = t0;
230   m1 = t1;
231   m2 = t2;
232   m3 = t3;
233 
234   // Round 7
235   t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2));
236   t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1));
237   g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
238   t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2));
239   tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3));
240   t1 = _mm_blend_epi16(tt, t1, 0xCC);
241   g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
242   diagonalize(&rows[0], &rows[2], &rows[3]);
243   t2 = _mm_unpacklo_epi64(m3, m1);
244   tt = _mm_blend_epi16(t2, m2, 0xC0);
245   t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0));
246   g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
247   t3 = _mm_unpackhi_epi32(m1, m3);
248   tt = _mm_unpacklo_epi32(m2, t3);
249   t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2));
250   g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
251   undiagonalize(&rows[0], &rows[2], &rows[3]);
252 }
253 
254 void blake3_compress_in_place_sse41(uint32_t cv[8],
255                                     const uint8_t block[BLAKE3_BLOCK_LEN],
256                                     uint8_t block_len, uint64_t counter,
257                                     uint8_t flags) {
258   __m128i rows[4];
259   compress_pre(rows, cv, block, block_len, counter, flags);
260   storeu(xorv(rows[0], rows[2]), (uint8_t *)&cv[0]);
261   storeu(xorv(rows[1], rows[3]), (uint8_t *)&cv[4]);
262 }
263 
264 void blake3_compress_xof_sse41(const uint32_t cv[8],
265                                const uint8_t block[BLAKE3_BLOCK_LEN],
266                                uint8_t block_len, uint64_t counter,
267                                uint8_t flags, uint8_t out[64]) {
268   __m128i rows[4];
269   compress_pre(rows, cv, block, block_len, counter, flags);
270   storeu(xorv(rows[0], rows[2]), &out[0]);
271   storeu(xorv(rows[1], rows[3]), &out[16]);
272   storeu(xorv(rows[2], loadu((uint8_t *)&cv[0])), &out[32]);
273   storeu(xorv(rows[3], loadu((uint8_t *)&cv[4])), &out[48]);
274 }
275 
276 INLINE void round_fn(__m128i v[16], __m128i m[16], size_t r) {
277   v[0] = addv(v[0], m[(size_t)MSG_SCHEDULE[r][0]]);
278   v[1] = addv(v[1], m[(size_t)MSG_SCHEDULE[r][2]]);
279   v[2] = addv(v[2], m[(size_t)MSG_SCHEDULE[r][4]]);
280   v[3] = addv(v[3], m[(size_t)MSG_SCHEDULE[r][6]]);
281   v[0] = addv(v[0], v[4]);
282   v[1] = addv(v[1], v[5]);
283   v[2] = addv(v[2], v[6]);
284   v[3] = addv(v[3], v[7]);
285   v[12] = xorv(v[12], v[0]);
286   v[13] = xorv(v[13], v[1]);
287   v[14] = xorv(v[14], v[2]);
288   v[15] = xorv(v[15], v[3]);
289   v[12] = rot16(v[12]);
290   v[13] = rot16(v[13]);
291   v[14] = rot16(v[14]);
292   v[15] = rot16(v[15]);
293   v[8] = addv(v[8], v[12]);
294   v[9] = addv(v[9], v[13]);
295   v[10] = addv(v[10], v[14]);
296   v[11] = addv(v[11], v[15]);
297   v[4] = xorv(v[4], v[8]);
298   v[5] = xorv(v[5], v[9]);
299   v[6] = xorv(v[6], v[10]);
300   v[7] = xorv(v[7], v[11]);
301   v[4] = rot12(v[4]);
302   v[5] = rot12(v[5]);
303   v[6] = rot12(v[6]);
304   v[7] = rot12(v[7]);
305   v[0] = addv(v[0], m[(size_t)MSG_SCHEDULE[r][1]]);
306   v[1] = addv(v[1], m[(size_t)MSG_SCHEDULE[r][3]]);
307   v[2] = addv(v[2], m[(size_t)MSG_SCHEDULE[r][5]]);
308   v[3] = addv(v[3], m[(size_t)MSG_SCHEDULE[r][7]]);
309   v[0] = addv(v[0], v[4]);
310   v[1] = addv(v[1], v[5]);
311   v[2] = addv(v[2], v[6]);
312   v[3] = addv(v[3], v[7]);
313   v[12] = xorv(v[12], v[0]);
314   v[13] = xorv(v[13], v[1]);
315   v[14] = xorv(v[14], v[2]);
316   v[15] = xorv(v[15], v[3]);
317   v[12] = rot8(v[12]);
318   v[13] = rot8(v[13]);
319   v[14] = rot8(v[14]);
320   v[15] = rot8(v[15]);
321   v[8] = addv(v[8], v[12]);
322   v[9] = addv(v[9], v[13]);
323   v[10] = addv(v[10], v[14]);
324   v[11] = addv(v[11], v[15]);
325   v[4] = xorv(v[4], v[8]);
326   v[5] = xorv(v[5], v[9]);
327   v[6] = xorv(v[6], v[10]);
328   v[7] = xorv(v[7], v[11]);
329   v[4] = rot7(v[4]);
330   v[5] = rot7(v[5]);
331   v[6] = rot7(v[6]);
332   v[7] = rot7(v[7]);
333 
334   v[0] = addv(v[0], m[(size_t)MSG_SCHEDULE[r][8]]);
335   v[1] = addv(v[1], m[(size_t)MSG_SCHEDULE[r][10]]);
336   v[2] = addv(v[2], m[(size_t)MSG_SCHEDULE[r][12]]);
337   v[3] = addv(v[3], m[(size_t)MSG_SCHEDULE[r][14]]);
338   v[0] = addv(v[0], v[5]);
339   v[1] = addv(v[1], v[6]);
340   v[2] = addv(v[2], v[7]);
341   v[3] = addv(v[3], v[4]);
342   v[15] = xorv(v[15], v[0]);
343   v[12] = xorv(v[12], v[1]);
344   v[13] = xorv(v[13], v[2]);
345   v[14] = xorv(v[14], v[3]);
346   v[15] = rot16(v[15]);
347   v[12] = rot16(v[12]);
348   v[13] = rot16(v[13]);
349   v[14] = rot16(v[14]);
350   v[10] = addv(v[10], v[15]);
351   v[11] = addv(v[11], v[12]);
352   v[8] = addv(v[8], v[13]);
353   v[9] = addv(v[9], v[14]);
354   v[5] = xorv(v[5], v[10]);
355   v[6] = xorv(v[6], v[11]);
356   v[7] = xorv(v[7], v[8]);
357   v[4] = xorv(v[4], v[9]);
358   v[5] = rot12(v[5]);
359   v[6] = rot12(v[6]);
360   v[7] = rot12(v[7]);
361   v[4] = rot12(v[4]);
362   v[0] = addv(v[0], m[(size_t)MSG_SCHEDULE[r][9]]);
363   v[1] = addv(v[1], m[(size_t)MSG_SCHEDULE[r][11]]);
364   v[2] = addv(v[2], m[(size_t)MSG_SCHEDULE[r][13]]);
365   v[3] = addv(v[3], m[(size_t)MSG_SCHEDULE[r][15]]);
366   v[0] = addv(v[0], v[5]);
367   v[1] = addv(v[1], v[6]);
368   v[2] = addv(v[2], v[7]);
369   v[3] = addv(v[3], v[4]);
370   v[15] = xorv(v[15], v[0]);
371   v[12] = xorv(v[12], v[1]);
372   v[13] = xorv(v[13], v[2]);
373   v[14] = xorv(v[14], v[3]);
374   v[15] = rot8(v[15]);
375   v[12] = rot8(v[12]);
376   v[13] = rot8(v[13]);
377   v[14] = rot8(v[14]);
378   v[10] = addv(v[10], v[15]);
379   v[11] = addv(v[11], v[12]);
380   v[8] = addv(v[8], v[13]);
381   v[9] = addv(v[9], v[14]);
382   v[5] = xorv(v[5], v[10]);
383   v[6] = xorv(v[6], v[11]);
384   v[7] = xorv(v[7], v[8]);
385   v[4] = xorv(v[4], v[9]);
386   v[5] = rot7(v[5]);
387   v[6] = rot7(v[6]);
388   v[7] = rot7(v[7]);
389   v[4] = rot7(v[4]);
390 }
391 
392 INLINE void transpose_vecs(__m128i vecs[DEGREE]) {
393   // Interleave 32-bit lates. The low unpack is lanes 00/11 and the high is
394   // 22/33. Note that this doesn't split the vector into two lanes, as the
395   // AVX2 counterparts do.
396   __m128i ab_01 = _mm_unpacklo_epi32(vecs[0], vecs[1]);
397   __m128i ab_23 = _mm_unpackhi_epi32(vecs[0], vecs[1]);
398   __m128i cd_01 = _mm_unpacklo_epi32(vecs[2], vecs[3]);
399   __m128i cd_23 = _mm_unpackhi_epi32(vecs[2], vecs[3]);
400 
401   // Interleave 64-bit lanes.
402   __m128i abcd_0 = _mm_unpacklo_epi64(ab_01, cd_01);
403   __m128i abcd_1 = _mm_unpackhi_epi64(ab_01, cd_01);
404   __m128i abcd_2 = _mm_unpacklo_epi64(ab_23, cd_23);
405   __m128i abcd_3 = _mm_unpackhi_epi64(ab_23, cd_23);
406 
407   vecs[0] = abcd_0;
408   vecs[1] = abcd_1;
409   vecs[2] = abcd_2;
410   vecs[3] = abcd_3;
411 }
412 
413 INLINE void transpose_msg_vecs(const uint8_t *const *inputs,
414                                size_t block_offset, __m128i out[16]) {
415   out[0] = loadu(&inputs[0][block_offset + 0 * sizeof(__m128i)]);
416   out[1] = loadu(&inputs[1][block_offset + 0 * sizeof(__m128i)]);
417   out[2] = loadu(&inputs[2][block_offset + 0 * sizeof(__m128i)]);
418   out[3] = loadu(&inputs[3][block_offset + 0 * sizeof(__m128i)]);
419   out[4] = loadu(&inputs[0][block_offset + 1 * sizeof(__m128i)]);
420   out[5] = loadu(&inputs[1][block_offset + 1 * sizeof(__m128i)]);
421   out[6] = loadu(&inputs[2][block_offset + 1 * sizeof(__m128i)]);
422   out[7] = loadu(&inputs[3][block_offset + 1 * sizeof(__m128i)]);
423   out[8] = loadu(&inputs[0][block_offset + 2 * sizeof(__m128i)]);
424   out[9] = loadu(&inputs[1][block_offset + 2 * sizeof(__m128i)]);
425   out[10] = loadu(&inputs[2][block_offset + 2 * sizeof(__m128i)]);
426   out[11] = loadu(&inputs[3][block_offset + 2 * sizeof(__m128i)]);
427   out[12] = loadu(&inputs[0][block_offset + 3 * sizeof(__m128i)]);
428   out[13] = loadu(&inputs[1][block_offset + 3 * sizeof(__m128i)]);
429   out[14] = loadu(&inputs[2][block_offset + 3 * sizeof(__m128i)]);
430   out[15] = loadu(&inputs[3][block_offset + 3 * sizeof(__m128i)]);
431   for (size_t i = 0; i < 4; ++i) {
432     _mm_prefetch((const void *)&inputs[i][block_offset + 256], _MM_HINT_T0);
433   }
434   transpose_vecs(&out[0]);
435   transpose_vecs(&out[4]);
436   transpose_vecs(&out[8]);
437   transpose_vecs(&out[12]);
438 }
439 
440 INLINE void load_counters(uint64_t counter, bool increment_counter,
441                           __m128i *out_lo, __m128i *out_hi) {
442   const __m128i mask = _mm_set1_epi32(-(int32_t)increment_counter);
443   const __m128i add0 = _mm_set_epi32(3, 2, 1, 0);
444   const __m128i add1 = _mm_and_si128(mask, add0);
445   __m128i l = _mm_add_epi32(_mm_set1_epi32((int32_t)counter), add1);
446   __m128i carry = _mm_cmpgt_epi32(_mm_xor_si128(add1, _mm_set1_epi32(0x80000000)),
447                                   _mm_xor_si128(   l, _mm_set1_epi32(0x80000000)));
448   __m128i h = _mm_sub_epi32(_mm_set1_epi32((int32_t)(counter >> 32)), carry);
449   *out_lo = l;
450   *out_hi = h;
451 }
452 
453 static
454 void blake3_hash4_sse41(const uint8_t *const *inputs, size_t blocks,
455                         const uint32_t key[8], uint64_t counter,
456                         bool increment_counter, uint8_t flags,
457                         uint8_t flags_start, uint8_t flags_end, uint8_t *out) {
458   __m128i h_vecs[8] = {
459       set1(key[0]), set1(key[1]), set1(key[2]), set1(key[3]),
460       set1(key[4]), set1(key[5]), set1(key[6]), set1(key[7]),
461   };
462   __m128i counter_low_vec, counter_high_vec;
463   load_counters(counter, increment_counter, &counter_low_vec,
464                 &counter_high_vec);
465   uint8_t block_flags = flags | flags_start;
466 
467   for (size_t block = 0; block < blocks; block++) {
468     if (block + 1 == blocks) {
469       block_flags |= flags_end;
470     }
471     __m128i block_len_vec = set1(BLAKE3_BLOCK_LEN);
472     __m128i block_flags_vec = set1(block_flags);
473     __m128i msg_vecs[16];
474     transpose_msg_vecs(inputs, block * BLAKE3_BLOCK_LEN, msg_vecs);
475 
476     __m128i v[16] = {
477         h_vecs[0],       h_vecs[1],        h_vecs[2],     h_vecs[3],
478         h_vecs[4],       h_vecs[5],        h_vecs[6],     h_vecs[7],
479         set1(IV[0]),     set1(IV[1]),      set1(IV[2]),   set1(IV[3]),
480         counter_low_vec, counter_high_vec, block_len_vec, block_flags_vec,
481     };
482     round_fn(v, msg_vecs, 0);
483     round_fn(v, msg_vecs, 1);
484     round_fn(v, msg_vecs, 2);
485     round_fn(v, msg_vecs, 3);
486     round_fn(v, msg_vecs, 4);
487     round_fn(v, msg_vecs, 5);
488     round_fn(v, msg_vecs, 6);
489     h_vecs[0] = xorv(v[0], v[8]);
490     h_vecs[1] = xorv(v[1], v[9]);
491     h_vecs[2] = xorv(v[2], v[10]);
492     h_vecs[3] = xorv(v[3], v[11]);
493     h_vecs[4] = xorv(v[4], v[12]);
494     h_vecs[5] = xorv(v[5], v[13]);
495     h_vecs[6] = xorv(v[6], v[14]);
496     h_vecs[7] = xorv(v[7], v[15]);
497 
498     block_flags = flags;
499   }
500 
501   transpose_vecs(&h_vecs[0]);
502   transpose_vecs(&h_vecs[4]);
503   // The first four vecs now contain the first half of each output, and the
504   // second four vecs contain the second half of each output.
505   storeu(h_vecs[0], &out[0 * sizeof(__m128i)]);
506   storeu(h_vecs[4], &out[1 * sizeof(__m128i)]);
507   storeu(h_vecs[1], &out[2 * sizeof(__m128i)]);
508   storeu(h_vecs[5], &out[3 * sizeof(__m128i)]);
509   storeu(h_vecs[2], &out[4 * sizeof(__m128i)]);
510   storeu(h_vecs[6], &out[5 * sizeof(__m128i)]);
511   storeu(h_vecs[3], &out[6 * sizeof(__m128i)]);
512   storeu(h_vecs[7], &out[7 * sizeof(__m128i)]);
513 }
514 
515 INLINE void hash_one_sse41(const uint8_t *input, size_t blocks,
516                            const uint32_t key[8], uint64_t counter,
517                            uint8_t flags, uint8_t flags_start,
518                            uint8_t flags_end, uint8_t out[BLAKE3_OUT_LEN]) {
519   uint32_t cv[8];
520   memcpy(cv, key, BLAKE3_KEY_LEN);
521   uint8_t block_flags = flags | flags_start;
522   while (blocks > 0) {
523     if (blocks == 1) {
524       block_flags |= flags_end;
525     }
526     blake3_compress_in_place_sse41(cv, input, BLAKE3_BLOCK_LEN, counter,
527                                    block_flags);
528     input = &input[BLAKE3_BLOCK_LEN];
529     blocks -= 1;
530     block_flags = flags;
531   }
532   memcpy(out, cv, BLAKE3_OUT_LEN);
533 }
534 
535 void blake3_hash_many_sse41(const uint8_t *const *inputs, size_t num_inputs,
536                             size_t blocks, const uint32_t key[8],
537                             uint64_t counter, bool increment_counter,
538                             uint8_t flags, uint8_t flags_start,
539                             uint8_t flags_end, uint8_t *out) {
540   while (num_inputs >= DEGREE) {
541     blake3_hash4_sse41(inputs, blocks, key, counter, increment_counter, flags,
542                        flags_start, flags_end, out);
543     if (increment_counter) {
544       counter += DEGREE;
545     }
546     inputs += DEGREE;
547     num_inputs -= DEGREE;
548     out = &out[DEGREE * BLAKE3_OUT_LEN];
549   }
550   while (num_inputs > 0) {
551     hash_one_sse41(inputs[0], blocks, key, counter, flags, flags_start,
552                    flags_end, out);
553     if (increment_counter) {
554       counter += 1;
555     }
556     inputs += 1;
557     num_inputs -= 1;
558     out = &out[BLAKE3_OUT_LEN];
559   }
560 }
561