1 //===---------- AArch64CollectLOH.cpp - AArch64 collect LOH pass --*- C++ -*-=//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains a pass that collect the Linker Optimization Hint (LOH).
10 // This pass should be run at the very end of the compilation flow, just before
11 // assembly printer.
12 // To be useful for the linker, the LOH must be printed into the assembly file.
13 //
14 // A LOH describes a sequence of instructions that may be optimized by the
15 // linker.
16 // This same sequence cannot be optimized by the compiler because some of
17 // the information will be known at link time.
18 // For instance, consider the following sequence:
19 //     L1: adrp xA, sym@PAGE
20 //     L2: add xB, xA, sym@PAGEOFF
21 //     L3: ldr xC, [xB, #imm]
22 // This sequence can be turned into:
23 // A literal load if sym@PAGE + sym@PAGEOFF + #imm - address(L3) is < 1MB:
24 //     L3: ldr xC, sym+#imm
25 // It may also be turned into either the following more efficient
26 // code sequences:
27 // - If sym@PAGEOFF + #imm fits the encoding space of L3.
28 //     L1: adrp xA, sym@PAGE
29 //     L3: ldr xC, [xB, sym@PAGEOFF + #imm]
30 // - If sym@PAGE + sym@PAGEOFF - address(L1) < 1MB:
31 //     L1: adr xA, sym
32 //     L3: ldr xC, [xB, #imm]
33 //
34 // To be valid a LOH must meet all the requirements needed by all the related
35 // possible linker transformations.
36 // For instance, using the running example, the constraints to emit
37 // ".loh AdrpAddLdr" are:
38 // - L1, L2, and L3 instructions are of the expected type, i.e.,
39 //   respectively ADRP, ADD (immediate), and LD.
40 // - The result of L1 is used only by L2.
41 // - The register argument (xA) used in the ADD instruction is defined
42 //   only by L1.
43 // - The result of L2 is used only by L3.
44 // - The base address (xB) in L3 is defined only L2.
45 // - The ADRP in L1 and the ADD in L2 must reference the same symbol using
46 //   @PAGE/@PAGEOFF with no additional constants
47 //
48 // Currently supported LOHs are:
49 // * So called non-ADRP-related:
50 //   - .loh AdrpAddLdr L1, L2, L3:
51 //     L1: adrp xA, sym@PAGE
52 //     L2: add xB, xA, sym@PAGEOFF
53 //     L3: ldr xC, [xB, #imm]
54 //   - .loh AdrpLdrGotLdr L1, L2, L3:
55 //     L1: adrp xA, sym@GOTPAGE
56 //     L2: ldr xB, [xA, sym@GOTPAGEOFF]
57 //     L3: ldr xC, [xB, #imm]
58 //   - .loh AdrpLdr L1, L3:
59 //     L1: adrp xA, sym@PAGE
60 //     L3: ldr xC, [xA, sym@PAGEOFF]
61 //   - .loh AdrpAddStr L1, L2, L3:
62 //     L1: adrp xA, sym@PAGE
63 //     L2: add xB, xA, sym@PAGEOFF
64 //     L3: str xC, [xB, #imm]
65 //   - .loh AdrpLdrGotStr L1, L2, L3:
66 //     L1: adrp xA, sym@GOTPAGE
67 //     L2: ldr xB, [xA, sym@GOTPAGEOFF]
68 //     L3: str xC, [xB, #imm]
69 //   - .loh AdrpAdd L1, L2:
70 //     L1: adrp xA, sym@PAGE
71 //     L2: add xB, xA, sym@PAGEOFF
72 //   For all these LOHs, L1, L2, L3 form a simple chain:
73 //   L1 result is used only by L2 and L2 result by L3.
74 //   L3 LOH-related argument is defined only by L2 and L2 LOH-related argument
75 //   by L1.
76 // All these LOHs aim at using more efficient load/store patterns by folding
77 // some instructions used to compute the address directly into the load/store.
78 //
79 // * So called ADRP-related:
80 //  - .loh AdrpAdrp L2, L1:
81 //    L2: ADRP xA, sym1@PAGE
82 //    L1: ADRP xA, sym2@PAGE
83 //    L2 dominates L1 and xA is not redifined between L2 and L1
84 // This LOH aims at getting rid of redundant ADRP instructions.
85 //
86 // The overall design for emitting the LOHs is:
87 // 1. AArch64CollectLOH (this pass) records the LOHs in the AArch64FunctionInfo.
88 // 2. AArch64AsmPrinter reads the LOHs from AArch64FunctionInfo and it:
89 //     1. Associates them a label.
90 //     2. Emits them in a MCStreamer (EmitLOHDirective).
91 //         - The MCMachOStreamer records them into the MCAssembler.
92 //         - The MCAsmStreamer prints them.
93 //         - Other MCStreamers ignore them.
94 //     3. Closes the MCStreamer:
95 //         - The MachObjectWriter gets them from the MCAssembler and writes
96 //           them in the object file.
97 //         - Other ObjectWriters ignore them.
98 //===----------------------------------------------------------------------===//
99 
100 #include "AArch64.h"
101 #include "AArch64InstrInfo.h"
102 #include "AArch64MachineFunctionInfo.h"
103 #include "llvm/ADT/SmallSet.h"
104 #include "llvm/ADT/Statistic.h"
105 #include "llvm/CodeGen/MachineBasicBlock.h"
106 #include "llvm/CodeGen/MachineFunctionPass.h"
107 #include "llvm/CodeGen/MachineInstr.h"
108 #include "llvm/CodeGen/TargetRegisterInfo.h"
109 #include "llvm/Support/Debug.h"
110 #include "llvm/Support/ErrorHandling.h"
111 #include "llvm/Support/raw_ostream.h"
112 #include "llvm/Target/TargetMachine.h"
113 using namespace llvm;
114 
115 #define DEBUG_TYPE "aarch64-collect-loh"
116 
117 STATISTIC(NumADRPSimpleCandidate,
118           "Number of simplifiable ADRP dominate by another");
119 STATISTIC(NumADDToSTR, "Number of simplifiable STR reachable by ADD");
120 STATISTIC(NumLDRToSTR, "Number of simplifiable STR reachable by LDR");
121 STATISTIC(NumADDToLDR, "Number of simplifiable LDR reachable by ADD");
122 STATISTIC(NumLDRToLDR, "Number of simplifiable LDR reachable by LDR");
123 STATISTIC(NumADRPToLDR, "Number of simplifiable LDR reachable by ADRP");
124 STATISTIC(NumADRSimpleCandidate, "Number of simplifiable ADRP + ADD");
125 
126 #define AARCH64_COLLECT_LOH_NAME "AArch64 Collect Linker Optimization Hint (LOH)"
127 
128 namespace {
129 
130 struct AArch64CollectLOH : public MachineFunctionPass {
131   static char ID;
132   AArch64CollectLOH() : MachineFunctionPass(ID) {}
133 
134   bool runOnMachineFunction(MachineFunction &MF) override;
135 
136   MachineFunctionProperties getRequiredProperties() const override {
137     return MachineFunctionProperties().set(
138         MachineFunctionProperties::Property::NoVRegs);
139   }
140 
141   StringRef getPassName() const override { return AARCH64_COLLECT_LOH_NAME; }
142 
143   void getAnalysisUsage(AnalysisUsage &AU) const override {
144     MachineFunctionPass::getAnalysisUsage(AU);
145     AU.setPreservesAll();
146   }
147 };
148 
149 char AArch64CollectLOH::ID = 0;
150 
151 } // end anonymous namespace.
152 
153 INITIALIZE_PASS(AArch64CollectLOH, "aarch64-collect-loh",
154                 AARCH64_COLLECT_LOH_NAME, false, false)
155 
156 static bool canAddBePartOfLOH(const MachineInstr &MI) {
157   // Check immediate to see if the immediate is an address.
158   switch (MI.getOperand(2).getType()) {
159   default:
160     return false;
161   case MachineOperand::MO_GlobalAddress:
162   case MachineOperand::MO_JumpTableIndex:
163   case MachineOperand::MO_ConstantPoolIndex:
164   case MachineOperand::MO_BlockAddress:
165     return true;
166   }
167 }
168 
169 /// Answer the following question: Can Def be one of the definition
170 /// involved in a part of a LOH?
171 static bool canDefBePartOfLOH(const MachineInstr &MI) {
172   // Accept ADRP, ADDLow and LOADGot.
173   switch (MI.getOpcode()) {
174   default:
175     return false;
176   case AArch64::ADRP:
177     return true;
178   case AArch64::ADDXri:
179     return canAddBePartOfLOH(MI);
180   case AArch64::LDRXui:
181   case AArch64::LDRWui:
182     // Check immediate to see if the immediate is an address.
183     switch (MI.getOperand(2).getType()) {
184     default:
185       return false;
186     case MachineOperand::MO_GlobalAddress:
187       return MI.getOperand(2).getTargetFlags() & AArch64II::MO_GOT;
188     }
189   }
190 }
191 
192 /// Check whether the given instruction can the end of a LOH chain involving a
193 /// store.
194 static bool isCandidateStore(const MachineInstr &MI, const MachineOperand &MO) {
195   switch (MI.getOpcode()) {
196   default:
197     return false;
198   case AArch64::STRBBui:
199   case AArch64::STRHHui:
200   case AArch64::STRBui:
201   case AArch64::STRHui:
202   case AArch64::STRWui:
203   case AArch64::STRXui:
204   case AArch64::STRSui:
205   case AArch64::STRDui:
206   case AArch64::STRQui:
207     // We can only optimize the index operand.
208     // In case we have str xA, [xA, #imm], this is two different uses
209     // of xA and we cannot fold, otherwise the xA stored may be wrong,
210     // even if #imm == 0.
211     return MO.getOperandNo() == 1 &&
212            MI.getOperand(0).getReg() != MI.getOperand(1).getReg();
213   }
214 }
215 
216 /// Check whether the given instruction can be the end of a LOH chain
217 /// involving a load.
218 static bool isCandidateLoad(const MachineInstr &MI) {
219   switch (MI.getOpcode()) {
220   default:
221     return false;
222   case AArch64::LDRSBWui:
223   case AArch64::LDRSBXui:
224   case AArch64::LDRSHWui:
225   case AArch64::LDRSHXui:
226   case AArch64::LDRSWui:
227   case AArch64::LDRBui:
228   case AArch64::LDRHui:
229   case AArch64::LDRWui:
230   case AArch64::LDRXui:
231   case AArch64::LDRSui:
232   case AArch64::LDRDui:
233   case AArch64::LDRQui:
234     return !(MI.getOperand(2).getTargetFlags() & AArch64II::MO_GOT);
235   }
236 }
237 
238 /// Check whether the given instruction can load a litteral.
239 static bool supportLoadFromLiteral(const MachineInstr &MI) {
240   switch (MI.getOpcode()) {
241   default:
242     return false;
243   case AArch64::LDRSWui:
244   case AArch64::LDRWui:
245   case AArch64::LDRXui:
246   case AArch64::LDRSui:
247   case AArch64::LDRDui:
248   case AArch64::LDRQui:
249     return true;
250   }
251 }
252 
253 /// Number of GPR registers traked by mapRegToGPRIndex()
254 static const unsigned N_GPR_REGS = 31;
255 /// Map register number to index from 0-30.
256 static int mapRegToGPRIndex(MCPhysReg Reg) {
257   static_assert(AArch64::X28 - AArch64::X0 + 3 == N_GPR_REGS, "Number of GPRs");
258   static_assert(AArch64::W30 - AArch64::W0 + 1 == N_GPR_REGS, "Number of GPRs");
259   if (AArch64::X0 <= Reg && Reg <= AArch64::X28)
260     return Reg - AArch64::X0;
261   if (AArch64::W0 <= Reg && Reg <= AArch64::W30)
262     return Reg - AArch64::W0;
263   // TableGen gives "FP" and "LR" an index not adjacent to X28 so we have to
264   // handle them as special cases.
265   if (Reg == AArch64::FP)
266     return 29;
267   if (Reg == AArch64::LR)
268     return 30;
269   return -1;
270 }
271 
272 /// State tracked per register.
273 /// The main algorithm walks backwards over a basic block maintaining this
274 /// datastructure for each tracked general purpose register.
275 struct LOHInfo {
276   MCLOHType Type : 8;           ///< "Best" type of LOH possible.
277   bool IsCandidate : 1;         ///< Possible LOH candidate.
278   bool OneUser : 1;             ///< Found exactly one user (yet).
279   bool MultiUsers : 1;          ///< Found multiple users.
280   const MachineInstr *MI0;      ///< First instruction involved in the LOH.
281   const MachineInstr *MI1;      ///< Second instruction involved in the LOH
282                                 ///  (if any).
283   const MachineInstr *LastADRP; ///< Last ADRP in same register.
284 };
285 
286 /// Update state \p Info given \p MI uses the tracked register.
287 static void handleUse(const MachineInstr &MI, const MachineOperand &MO,
288                       LOHInfo &Info) {
289   // We have multiple uses if we already found one before.
290   if (Info.MultiUsers || Info.OneUser) {
291     Info.IsCandidate = false;
292     Info.MultiUsers = true;
293     return;
294   }
295   Info.OneUser = true;
296 
297   // Start new LOHInfo if applicable.
298   if (isCandidateLoad(MI)) {
299     Info.Type = MCLOH_AdrpLdr;
300     Info.IsCandidate = true;
301     Info.MI0 = &MI;
302     // Note that even this is AdrpLdr now, we can switch to a Ldr variant
303     // later.
304   } else if (isCandidateStore(MI, MO)) {
305     Info.Type = MCLOH_AdrpAddStr;
306     Info.IsCandidate = true;
307     Info.MI0 = &MI;
308     Info.MI1 = nullptr;
309   } else if (MI.getOpcode() == AArch64::ADDXri) {
310     Info.Type = MCLOH_AdrpAdd;
311     Info.IsCandidate = true;
312     Info.MI0 = &MI;
313   } else if ((MI.getOpcode() == AArch64::LDRXui ||
314               MI.getOpcode() == AArch64::LDRWui) &&
315              MI.getOperand(2).getTargetFlags() & AArch64II::MO_GOT) {
316     Info.Type = MCLOH_AdrpLdrGot;
317     Info.IsCandidate = true;
318     Info.MI0 = &MI;
319   }
320 }
321 
322 /// Update state \p Info given the tracked register is clobbered.
323 static void handleClobber(LOHInfo &Info) {
324   Info.IsCandidate = false;
325   Info.OneUser = false;
326   Info.MultiUsers = false;
327   Info.LastADRP = nullptr;
328 }
329 
330 /// Update state \p Info given that \p MI is possibly the middle instruction
331 /// of an LOH involving 3 instructions.
332 static bool handleMiddleInst(const MachineInstr &MI, LOHInfo &DefInfo,
333                              LOHInfo &OpInfo) {
334   if (!DefInfo.IsCandidate || (&DefInfo != &OpInfo && OpInfo.OneUser))
335     return false;
336   // Copy LOHInfo for dest register to LOHInfo for source register.
337   if (&DefInfo != &OpInfo) {
338     OpInfo = DefInfo;
339     // Invalidate \p DefInfo because we track it in \p OpInfo now.
340     handleClobber(DefInfo);
341   } else
342     DefInfo.LastADRP = nullptr;
343 
344   // Advance state machine.
345   assert(OpInfo.IsCandidate && "Expect valid state");
346   if (MI.getOpcode() == AArch64::ADDXri && canAddBePartOfLOH(MI)) {
347     if (OpInfo.Type == MCLOH_AdrpLdr) {
348       OpInfo.Type = MCLOH_AdrpAddLdr;
349       OpInfo.IsCandidate = true;
350       OpInfo.MI1 = &MI;
351       return true;
352     } else if (OpInfo.Type == MCLOH_AdrpAddStr && OpInfo.MI1 == nullptr) {
353       OpInfo.Type = MCLOH_AdrpAddStr;
354       OpInfo.IsCandidate = true;
355       OpInfo.MI1 = &MI;
356       return true;
357     }
358   } else {
359     assert((MI.getOpcode() == AArch64::LDRXui ||
360             MI.getOpcode() == AArch64::LDRWui) &&
361            "Expect LDRXui or LDRWui");
362     assert((MI.getOperand(2).getTargetFlags() & AArch64II::MO_GOT) &&
363            "Expected GOT relocation");
364     if (OpInfo.Type == MCLOH_AdrpAddStr && OpInfo.MI1 == nullptr) {
365       OpInfo.Type = MCLOH_AdrpLdrGotStr;
366       OpInfo.IsCandidate = true;
367       OpInfo.MI1 = &MI;
368       return true;
369     } else if (OpInfo.Type == MCLOH_AdrpLdr) {
370       OpInfo.Type = MCLOH_AdrpLdrGotLdr;
371       OpInfo.IsCandidate = true;
372       OpInfo.MI1 = &MI;
373       return true;
374     }
375   }
376   return false;
377 }
378 
379 /// Update state when seeing and ADRP instruction.
380 static void handleADRP(const MachineInstr &MI, AArch64FunctionInfo &AFI,
381                        LOHInfo &Info, LOHInfo *LOHInfos) {
382   if (Info.LastADRP != nullptr) {
383     LLVM_DEBUG(dbgs() << "Adding MCLOH_AdrpAdrp:\n"
384                       << '\t' << MI << '\t' << *Info.LastADRP);
385     AFI.addLOHDirective(MCLOH_AdrpAdrp, {&MI, Info.LastADRP});
386     ++NumADRPSimpleCandidate;
387   }
388 
389   // Produce LOH directive if possible.
390   if (Info.IsCandidate) {
391     switch (Info.Type) {
392     case MCLOH_AdrpAdd: {
393       // ADRPs and ADDs for this candidate may be split apart if using
394       // GlobalISel instead of pseudo-expanded. If that happens, the
395       // def register of the ADD may have a use in between. Adding an LOH in
396       // this case can cause the linker to rewrite the ADRP to write to that
397       // register, clobbering the use.
398       const MachineInstr *AddMI = Info.MI0;
399       int DefIdx = mapRegToGPRIndex(MI.getOperand(0).getReg());
400       int OpIdx = mapRegToGPRIndex(AddMI->getOperand(0).getReg());
401       LOHInfo DefInfo = LOHInfos[OpIdx];
402       if (DefIdx != OpIdx && (DefInfo.OneUser || DefInfo.MultiUsers))
403         break;
404       LLVM_DEBUG(dbgs() << "Adding MCLOH_AdrpAdd:\n"
405                         << '\t' << MI << '\t' << *Info.MI0);
406       AFI.addLOHDirective(MCLOH_AdrpAdd, {&MI, Info.MI0});
407       ++NumADRSimpleCandidate;
408       break;
409     }
410     case MCLOH_AdrpLdr:
411       if (supportLoadFromLiteral(*Info.MI0)) {
412         LLVM_DEBUG(dbgs() << "Adding MCLOH_AdrpLdr:\n"
413                           << '\t' << MI << '\t' << *Info.MI0);
414         AFI.addLOHDirective(MCLOH_AdrpLdr, {&MI, Info.MI0});
415         ++NumADRPToLDR;
416       }
417       break;
418     case MCLOH_AdrpAddLdr: {
419       // There is a possibility that the linker may try to rewrite:
420       // adrp x0, @sym@PAGE
421       // add x1, x0, @sym@PAGEOFF
422       // [x0 = some other def]
423       // ldr x2, [x1]
424       //    ...into...
425       // adrp x0, @sym
426       // nop
427       // [x0 = some other def]
428       // ldr x2, [x0]
429       // ...if the offset to the symbol won't fit within a literal load.
430       // This causes the load to use the result of the adrp, which in this
431       // case has already been clobbered.
432       // FIXME: Implement proper liveness tracking for all registers. For now,
433       // don't emit the LOH if there are any instructions between the add and
434       // the ldr.
435       MachineInstr *AddMI = const_cast<MachineInstr *>(Info.MI1);
436       const MachineInstr *LdrMI = Info.MI0;
437       auto AddIt = MachineBasicBlock::iterator(AddMI);
438       auto EndIt = AddMI->getParent()->end();
439       if (AddMI->getIterator() == EndIt || LdrMI != &*next_nodbg(AddIt, EndIt))
440         break;
441 
442       LLVM_DEBUG(dbgs() << "Adding MCLOH_AdrpAddLdr:\n"
443                         << '\t' << MI << '\t' << *Info.MI1 << '\t'
444                         << *Info.MI0);
445       AFI.addLOHDirective(MCLOH_AdrpAddLdr, {&MI, Info.MI1, Info.MI0});
446       ++NumADDToLDR;
447       break;
448     }
449     case MCLOH_AdrpAddStr:
450       if (Info.MI1 != nullptr) {
451         LLVM_DEBUG(dbgs() << "Adding MCLOH_AdrpAddStr:\n"
452                           << '\t' << MI << '\t' << *Info.MI1 << '\t'
453                           << *Info.MI0);
454         AFI.addLOHDirective(MCLOH_AdrpAddStr, {&MI, Info.MI1, Info.MI0});
455         ++NumADDToSTR;
456       }
457       break;
458     case MCLOH_AdrpLdrGotLdr:
459       LLVM_DEBUG(dbgs() << "Adding MCLOH_AdrpLdrGotLdr:\n"
460                         << '\t' << MI << '\t' << *Info.MI1 << '\t'
461                         << *Info.MI0);
462       AFI.addLOHDirective(MCLOH_AdrpLdrGotLdr, {&MI, Info.MI1, Info.MI0});
463       ++NumLDRToLDR;
464       break;
465     case MCLOH_AdrpLdrGotStr:
466       LLVM_DEBUG(dbgs() << "Adding MCLOH_AdrpLdrGotStr:\n"
467                         << '\t' << MI << '\t' << *Info.MI1 << '\t'
468                         << *Info.MI0);
469       AFI.addLOHDirective(MCLOH_AdrpLdrGotStr, {&MI, Info.MI1, Info.MI0});
470       ++NumLDRToSTR;
471       break;
472     case MCLOH_AdrpLdrGot:
473       LLVM_DEBUG(dbgs() << "Adding MCLOH_AdrpLdrGot:\n"
474                         << '\t' << MI << '\t' << *Info.MI0);
475       AFI.addLOHDirective(MCLOH_AdrpLdrGot, {&MI, Info.MI0});
476       break;
477     case MCLOH_AdrpAdrp:
478       llvm_unreachable("MCLOH_AdrpAdrp not used in state machine");
479     }
480   }
481 
482   handleClobber(Info);
483   Info.LastADRP = &MI;
484 }
485 
486 static void handleRegMaskClobber(const uint32_t *RegMask, MCPhysReg Reg,
487                                  LOHInfo *LOHInfos) {
488   if (!MachineOperand::clobbersPhysReg(RegMask, Reg))
489     return;
490   int Idx = mapRegToGPRIndex(Reg);
491   if (Idx >= 0)
492     handleClobber(LOHInfos[Idx]);
493 }
494 
495 static void handleNormalInst(const MachineInstr &MI, LOHInfo *LOHInfos) {
496   // Handle defs and regmasks.
497   for (const MachineOperand &MO : MI.operands()) {
498     if (MO.isRegMask()) {
499       const uint32_t *RegMask = MO.getRegMask();
500       for (MCPhysReg Reg : AArch64::GPR32RegClass)
501         handleRegMaskClobber(RegMask, Reg, LOHInfos);
502       for (MCPhysReg Reg : AArch64::GPR64RegClass)
503         handleRegMaskClobber(RegMask, Reg, LOHInfos);
504       continue;
505     }
506     if (!MO.isReg() || !MO.isDef())
507       continue;
508     int Idx = mapRegToGPRIndex(MO.getReg());
509     if (Idx < 0)
510       continue;
511     handleClobber(LOHInfos[Idx]);
512   }
513   // Handle uses.
514 
515   SmallSet<int, 4> UsesSeen;
516   for (const MachineOperand &MO : MI.uses()) {
517     if (!MO.isReg() || !MO.readsReg())
518       continue;
519     int Idx = mapRegToGPRIndex(MO.getReg());
520     if (Idx < 0)
521       continue;
522 
523     // Multiple uses of the same register within a single instruction don't
524     // count as MultiUser or block optimization. This is especially important on
525     // arm64_32, where any memory operation is likely to be an explicit use of
526     // xN and an implicit use of wN (the base address register).
527     if (UsesSeen.insert(Idx).second)
528       handleUse(MI, MO, LOHInfos[Idx]);
529   }
530 }
531 
532 bool AArch64CollectLOH::runOnMachineFunction(MachineFunction &MF) {
533   if (skipFunction(MF.getFunction()))
534     return false;
535 
536   LLVM_DEBUG(dbgs() << "********** AArch64 Collect LOH **********\n"
537                     << "Looking in function " << MF.getName() << '\n');
538 
539   LOHInfo LOHInfos[N_GPR_REGS];
540   AArch64FunctionInfo &AFI = *MF.getInfo<AArch64FunctionInfo>();
541   for (const MachineBasicBlock &MBB : MF) {
542     // Reset register tracking state.
543     memset(LOHInfos, 0, sizeof(LOHInfos));
544     // Live-out registers are used.
545     for (const MachineBasicBlock *Succ : MBB.successors()) {
546       for (const auto &LI : Succ->liveins()) {
547         int RegIdx = mapRegToGPRIndex(LI.PhysReg);
548         if (RegIdx >= 0)
549           LOHInfos[RegIdx].OneUser = true;
550       }
551     }
552 
553     // Walk the basic block backwards and update the per register state machine
554     // in the process.
555     for (const MachineInstr &MI :
556          instructionsWithoutDebug(MBB.instr_rbegin(), MBB.instr_rend())) {
557       unsigned Opcode = MI.getOpcode();
558       switch (Opcode) {
559       case AArch64::ADDXri:
560       case AArch64::LDRXui:
561       case AArch64::LDRWui:
562         if (canDefBePartOfLOH(MI)) {
563           const MachineOperand &Def = MI.getOperand(0);
564           const MachineOperand &Op = MI.getOperand(1);
565           assert(Def.isReg() && Def.isDef() && "Expected reg def");
566           assert(Op.isReg() && Op.isUse() && "Expected reg use");
567           int DefIdx = mapRegToGPRIndex(Def.getReg());
568           int OpIdx = mapRegToGPRIndex(Op.getReg());
569           if (DefIdx >= 0 && OpIdx >= 0 &&
570               handleMiddleInst(MI, LOHInfos[DefIdx], LOHInfos[OpIdx]))
571             continue;
572         }
573         break;
574       case AArch64::ADRP:
575         const MachineOperand &Op0 = MI.getOperand(0);
576         int Idx = mapRegToGPRIndex(Op0.getReg());
577         if (Idx >= 0) {
578           handleADRP(MI, AFI, LOHInfos[Idx], LOHInfos);
579           continue;
580         }
581         break;
582       }
583       handleNormalInst(MI, LOHInfos);
584     }
585   }
586 
587   // Return "no change": The pass only collects information.
588   return false;
589 }
590 
591 FunctionPass *llvm::createAArch64CollectLOHPass() {
592   return new AArch64CollectLOH();
593 }
594