1 //===- AArch64FrameLowering.cpp - AArch64 Frame Lowering -------*- C++ -*-====//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the AArch64 implementation of TargetFrameLowering class.
10 //
11 // On AArch64, stack frames are structured as follows:
12 //
13 // The stack grows downward.
14 //
15 // All of the individual frame areas on the frame below are optional, i.e. it's
16 // possible to create a function so that the particular area isn't present
17 // in the frame.
18 //
19 // At function entry, the "frame" looks as follows:
20 //
21 // |                                   | Higher address
22 // |-----------------------------------|
23 // |                                   |
24 // | arguments passed on the stack     |
25 // |                                   |
26 // |-----------------------------------| <- sp
27 // |                                   | Lower address
28 //
29 //
30 // After the prologue has run, the frame has the following general structure.
31 // Note that this doesn't depict the case where a red-zone is used. Also,
32 // technically the last frame area (VLAs) doesn't get created until in the
33 // main function body, after the prologue is run. However, it's depicted here
34 // for completeness.
35 //
36 // |                                   | Higher address
37 // |-----------------------------------|
38 // |                                   |
39 // | arguments passed on the stack     |
40 // |                                   |
41 // |-----------------------------------|
42 // |                                   |
43 // | (Win64 only) varargs from reg     |
44 // |                                   |
45 // |-----------------------------------|
46 // |                                   |
47 // | callee-saved gpr registers        | <--.
48 // |                                   |    | On Darwin platforms these
49 // |- - - - - - - - - - - - - - - - - -|    | callee saves are swapped,
50 // | prev_lr                           |    | (frame record first)
51 // | prev_fp                           | <--'
52 // | async context if needed           |
53 // | (a.k.a. "frame record")           |
54 // |-----------------------------------| <- fp(=x29)
55 // |                                   |
56 // | callee-saved fp/simd/SVE regs     |
57 // |                                   |
58 // |-----------------------------------|
59 // |                                   |
60 // |        SVE stack objects          |
61 // |                                   |
62 // |-----------------------------------|
63 // |.empty.space.to.make.part.below....|
64 // |.aligned.in.case.it.needs.more.than| (size of this area is unknown at
65 // |.the.standard.16-byte.alignment....|  compile time; if present)
66 // |-----------------------------------|
67 // |                                   |
68 // | local variables of fixed size     |
69 // | including spill slots             |
70 // |-----------------------------------| <- bp(not defined by ABI,
71 // |.variable-sized.local.variables....|       LLVM chooses X19)
72 // |.(VLAs)............................| (size of this area is unknown at
73 // |...................................|  compile time)
74 // |-----------------------------------| <- sp
75 // |                                   | Lower address
76 //
77 //
78 // To access the data in a frame, at-compile time, a constant offset must be
79 // computable from one of the pointers (fp, bp, sp) to access it. The size
80 // of the areas with a dotted background cannot be computed at compile-time
81 // if they are present, making it required to have all three of fp, bp and
82 // sp to be set up to be able to access all contents in the frame areas,
83 // assuming all of the frame areas are non-empty.
84 //
85 // For most functions, some of the frame areas are empty. For those functions,
86 // it may not be necessary to set up fp or bp:
87 // * A base pointer is definitely needed when there are both VLAs and local
88 //   variables with more-than-default alignment requirements.
89 // * A frame pointer is definitely needed when there are local variables with
90 //   more-than-default alignment requirements.
91 //
92 // For Darwin platforms the frame-record (fp, lr) is stored at the top of the
93 // callee-saved area, since the unwind encoding does not allow for encoding
94 // this dynamically and existing tools depend on this layout. For other
95 // platforms, the frame-record is stored at the bottom of the (gpr) callee-saved
96 // area to allow SVE stack objects (allocated directly below the callee-saves,
97 // if available) to be accessed directly from the framepointer.
98 // The SVE spill/fill instructions have VL-scaled addressing modes such
99 // as:
100 //    ldr z8, [fp, #-7 mul vl]
101 // For SVE the size of the vector length (VL) is not known at compile-time, so
102 // '#-7 mul vl' is an offset that can only be evaluated at runtime. With this
103 // layout, we don't need to add an unscaled offset to the framepointer before
104 // accessing the SVE object in the frame.
105 //
106 // In some cases when a base pointer is not strictly needed, it is generated
107 // anyway when offsets from the frame pointer to access local variables become
108 // so large that the offset can't be encoded in the immediate fields of loads
109 // or stores.
110 //
111 // Outgoing function arguments must be at the bottom of the stack frame when
112 // calling another function. If we do not have variable-sized stack objects, we
113 // can allocate a "reserved call frame" area at the bottom of the local
114 // variable area, large enough for all outgoing calls. If we do have VLAs, then
115 // the stack pointer must be decremented and incremented around each call to
116 // make space for the arguments below the VLAs.
117 //
118 // FIXME: also explain the redzone concept.
119 //
120 // An example of the prologue:
121 //
122 //     .globl __foo
123 //     .align 2
124 //  __foo:
125 // Ltmp0:
126 //     .cfi_startproc
127 //     .cfi_personality 155, ___gxx_personality_v0
128 // Leh_func_begin:
129 //     .cfi_lsda 16, Lexception33
130 //
131 //     stp  xa,bx, [sp, -#offset]!
132 //     ...
133 //     stp  x28, x27, [sp, #offset-32]
134 //     stp  fp, lr, [sp, #offset-16]
135 //     add  fp, sp, #offset - 16
136 //     sub  sp, sp, #1360
137 //
138 // The Stack:
139 //       +-------------------------------------------+
140 // 10000 | ........ | ........ | ........ | ........ |
141 // 10004 | ........ | ........ | ........ | ........ |
142 //       +-------------------------------------------+
143 // 10008 | ........ | ........ | ........ | ........ |
144 // 1000c | ........ | ........ | ........ | ........ |
145 //       +===========================================+
146 // 10010 |                X28 Register               |
147 // 10014 |                X28 Register               |
148 //       +-------------------------------------------+
149 // 10018 |                X27 Register               |
150 // 1001c |                X27 Register               |
151 //       +===========================================+
152 // 10020 |                Frame Pointer              |
153 // 10024 |                Frame Pointer              |
154 //       +-------------------------------------------+
155 // 10028 |                Link Register              |
156 // 1002c |                Link Register              |
157 //       +===========================================+
158 // 10030 | ........ | ........ | ........ | ........ |
159 // 10034 | ........ | ........ | ........ | ........ |
160 //       +-------------------------------------------+
161 // 10038 | ........ | ........ | ........ | ........ |
162 // 1003c | ........ | ........ | ........ | ........ |
163 //       +-------------------------------------------+
164 //
165 //     [sp] = 10030        ::    >>initial value<<
166 //     sp = 10020          ::  stp fp, lr, [sp, #-16]!
167 //     fp = sp == 10020    ::  mov fp, sp
168 //     [sp] == 10020       ::  stp x28, x27, [sp, #-16]!
169 //     sp == 10010         ::    >>final value<<
170 //
171 // The frame pointer (w29) points to address 10020. If we use an offset of
172 // '16' from 'w29', we get the CFI offsets of -8 for w30, -16 for w29, -24
173 // for w27, and -32 for w28:
174 //
175 //  Ltmp1:
176 //     .cfi_def_cfa w29, 16
177 //  Ltmp2:
178 //     .cfi_offset w30, -8
179 //  Ltmp3:
180 //     .cfi_offset w29, -16
181 //  Ltmp4:
182 //     .cfi_offset w27, -24
183 //  Ltmp5:
184 //     .cfi_offset w28, -32
185 //
186 //===----------------------------------------------------------------------===//
187 
188 #include "AArch64FrameLowering.h"
189 #include "AArch64InstrInfo.h"
190 #include "AArch64MachineFunctionInfo.h"
191 #include "AArch64RegisterInfo.h"
192 #include "AArch64Subtarget.h"
193 #include "AArch64TargetMachine.h"
194 #include "MCTargetDesc/AArch64AddressingModes.h"
195 #include "MCTargetDesc/AArch64MCTargetDesc.h"
196 #include "llvm/ADT/ScopeExit.h"
197 #include "llvm/ADT/SmallVector.h"
198 #include "llvm/ADT/Statistic.h"
199 #include "llvm/CodeGen/LivePhysRegs.h"
200 #include "llvm/CodeGen/MachineBasicBlock.h"
201 #include "llvm/CodeGen/MachineFrameInfo.h"
202 #include "llvm/CodeGen/MachineFunction.h"
203 #include "llvm/CodeGen/MachineInstr.h"
204 #include "llvm/CodeGen/MachineInstrBuilder.h"
205 #include "llvm/CodeGen/MachineMemOperand.h"
206 #include "llvm/CodeGen/MachineModuleInfo.h"
207 #include "llvm/CodeGen/MachineOperand.h"
208 #include "llvm/CodeGen/MachineRegisterInfo.h"
209 #include "llvm/CodeGen/RegisterScavenging.h"
210 #include "llvm/CodeGen/TargetInstrInfo.h"
211 #include "llvm/CodeGen/TargetRegisterInfo.h"
212 #include "llvm/CodeGen/TargetSubtargetInfo.h"
213 #include "llvm/CodeGen/WinEHFuncInfo.h"
214 #include "llvm/IR/Attributes.h"
215 #include "llvm/IR/CallingConv.h"
216 #include "llvm/IR/DataLayout.h"
217 #include "llvm/IR/DebugLoc.h"
218 #include "llvm/IR/Function.h"
219 #include "llvm/MC/MCAsmInfo.h"
220 #include "llvm/MC/MCDwarf.h"
221 #include "llvm/Support/CommandLine.h"
222 #include "llvm/Support/Debug.h"
223 #include "llvm/Support/ErrorHandling.h"
224 #include "llvm/Support/MathExtras.h"
225 #include "llvm/Support/raw_ostream.h"
226 #include "llvm/Target/TargetMachine.h"
227 #include "llvm/Target/TargetOptions.h"
228 #include <cassert>
229 #include <cstdint>
230 #include <iterator>
231 #include <vector>
232 
233 using namespace llvm;
234 
235 #define DEBUG_TYPE "frame-info"
236 
237 static cl::opt<bool> EnableRedZone("aarch64-redzone",
238                                    cl::desc("enable use of redzone on AArch64"),
239                                    cl::init(false), cl::Hidden);
240 
241 static cl::opt<bool>
242     ReverseCSRRestoreSeq("reverse-csr-restore-seq",
243                          cl::desc("reverse the CSR restore sequence"),
244                          cl::init(false), cl::Hidden);
245 
246 static cl::opt<bool> StackTaggingMergeSetTag(
247     "stack-tagging-merge-settag",
248     cl::desc("merge settag instruction in function epilog"), cl::init(true),
249     cl::Hidden);
250 
251 static cl::opt<bool> OrderFrameObjects("aarch64-order-frame-objects",
252                                        cl::desc("sort stack allocations"),
253                                        cl::init(true), cl::Hidden);
254 
255 cl::opt<bool> EnableHomogeneousPrologEpilog(
256     "homogeneous-prolog-epilog", cl::Hidden,
257     cl::desc("Emit homogeneous prologue and epilogue for the size "
258              "optimization (default = off)"));
259 
260 STATISTIC(NumRedZoneFunctions, "Number of functions using red zone");
261 
262 /// Returns how much of the incoming argument stack area (in bytes) we should
263 /// clean up in an epilogue. For the C calling convention this will be 0, for
264 /// guaranteed tail call conventions it can be positive (a normal return or a
265 /// tail call to a function that uses less stack space for arguments) or
266 /// negative (for a tail call to a function that needs more stack space than us
267 /// for arguments).
268 static int64_t getArgumentStackToRestore(MachineFunction &MF,
269                                          MachineBasicBlock &MBB) {
270   MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
271   bool IsTailCallReturn = false;
272   if (MBB.end() != MBBI) {
273     unsigned RetOpcode = MBBI->getOpcode();
274     IsTailCallReturn = RetOpcode == AArch64::TCRETURNdi ||
275                        RetOpcode == AArch64::TCRETURNri ||
276                        RetOpcode == AArch64::TCRETURNriBTI;
277   }
278   AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
279 
280   int64_t ArgumentPopSize = 0;
281   if (IsTailCallReturn) {
282     MachineOperand &StackAdjust = MBBI->getOperand(1);
283 
284     // For a tail-call in a callee-pops-arguments environment, some or all of
285     // the stack may actually be in use for the call's arguments, this is
286     // calculated during LowerCall and consumed here...
287     ArgumentPopSize = StackAdjust.getImm();
288   } else {
289     // ... otherwise the amount to pop is *all* of the argument space,
290     // conveniently stored in the MachineFunctionInfo by
291     // LowerFormalArguments. This will, of course, be zero for the C calling
292     // convention.
293     ArgumentPopSize = AFI->getArgumentStackToRestore();
294   }
295 
296   return ArgumentPopSize;
297 }
298 
299 static bool produceCompactUnwindFrame(MachineFunction &MF);
300 static bool needsWinCFI(const MachineFunction &MF);
301 static StackOffset getSVEStackSize(const MachineFunction &MF);
302 static bool needsShadowCallStackPrologueEpilogue(MachineFunction &MF);
303 
304 /// Returns true if a homogeneous prolog or epilog code can be emitted
305 /// for the size optimization. If possible, a frame helper call is injected.
306 /// When Exit block is given, this check is for epilog.
307 bool AArch64FrameLowering::homogeneousPrologEpilog(
308     MachineFunction &MF, MachineBasicBlock *Exit) const {
309   if (!MF.getFunction().hasMinSize())
310     return false;
311   if (!EnableHomogeneousPrologEpilog)
312     return false;
313   if (ReverseCSRRestoreSeq)
314     return false;
315   if (EnableRedZone)
316     return false;
317 
318   // TODO: Window is supported yet.
319   if (needsWinCFI(MF))
320     return false;
321   // TODO: SVE is not supported yet.
322   if (getSVEStackSize(MF))
323     return false;
324 
325   // Bail on stack adjustment needed on return for simplicity.
326   const MachineFrameInfo &MFI = MF.getFrameInfo();
327   const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
328   if (MFI.hasVarSizedObjects() || RegInfo->hasStackRealignment(MF))
329     return false;
330   if (Exit && getArgumentStackToRestore(MF, *Exit))
331     return false;
332 
333   return true;
334 }
335 
336 /// Returns true if CSRs should be paired.
337 bool AArch64FrameLowering::producePairRegisters(MachineFunction &MF) const {
338   return produceCompactUnwindFrame(MF) || homogeneousPrologEpilog(MF);
339 }
340 
341 /// This is the biggest offset to the stack pointer we can encode in aarch64
342 /// instructions (without using a separate calculation and a temp register).
343 /// Note that the exception here are vector stores/loads which cannot encode any
344 /// displacements (see estimateRSStackSizeLimit(), isAArch64FrameOffsetLegal()).
345 static const unsigned DefaultSafeSPDisplacement = 255;
346 
347 /// Look at each instruction that references stack frames and return the stack
348 /// size limit beyond which some of these instructions will require a scratch
349 /// register during their expansion later.
350 static unsigned estimateRSStackSizeLimit(MachineFunction &MF) {
351   // FIXME: For now, just conservatively guestimate based on unscaled indexing
352   // range. We'll end up allocating an unnecessary spill slot a lot, but
353   // realistically that's not a big deal at this stage of the game.
354   for (MachineBasicBlock &MBB : MF) {
355     for (MachineInstr &MI : MBB) {
356       if (MI.isDebugInstr() || MI.isPseudo() ||
357           MI.getOpcode() == AArch64::ADDXri ||
358           MI.getOpcode() == AArch64::ADDSXri)
359         continue;
360 
361       for (const MachineOperand &MO : MI.operands()) {
362         if (!MO.isFI())
363           continue;
364 
365         StackOffset Offset;
366         if (isAArch64FrameOffsetLegal(MI, Offset, nullptr, nullptr, nullptr) ==
367             AArch64FrameOffsetCannotUpdate)
368           return 0;
369       }
370     }
371   }
372   return DefaultSafeSPDisplacement;
373 }
374 
375 TargetStackID::Value
376 AArch64FrameLowering::getStackIDForScalableVectors() const {
377   return TargetStackID::ScalableVector;
378 }
379 
380 /// Returns the size of the fixed object area (allocated next to sp on entry)
381 /// On Win64 this may include a var args area and an UnwindHelp object for EH.
382 static unsigned getFixedObjectSize(const MachineFunction &MF,
383                                    const AArch64FunctionInfo *AFI, bool IsWin64,
384                                    bool IsFunclet) {
385   if (!IsWin64 || IsFunclet) {
386     return AFI->getTailCallReservedStack();
387   } else {
388     if (AFI->getTailCallReservedStack() != 0)
389       report_fatal_error("cannot generate ABI-changing tail call for Win64");
390     // Var args are stored here in the primary function.
391     const unsigned VarArgsArea = AFI->getVarArgsGPRSize();
392     // To support EH funclets we allocate an UnwindHelp object
393     const unsigned UnwindHelpObject = (MF.hasEHFunclets() ? 8 : 0);
394     return alignTo(VarArgsArea + UnwindHelpObject, 16);
395   }
396 }
397 
398 /// Returns the size of the entire SVE stackframe (calleesaves + spills).
399 static StackOffset getSVEStackSize(const MachineFunction &MF) {
400   const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
401   return StackOffset::getScalable((int64_t)AFI->getStackSizeSVE());
402 }
403 
404 bool AArch64FrameLowering::canUseRedZone(const MachineFunction &MF) const {
405   if (!EnableRedZone)
406     return false;
407 
408   // Don't use the red zone if the function explicitly asks us not to.
409   // This is typically used for kernel code.
410   const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
411   const unsigned RedZoneSize =
412       Subtarget.getTargetLowering()->getRedZoneSize(MF.getFunction());
413   if (!RedZoneSize)
414     return false;
415 
416   const MachineFrameInfo &MFI = MF.getFrameInfo();
417   const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
418   uint64_t NumBytes = AFI->getLocalStackSize();
419 
420   return !(MFI.hasCalls() || hasFP(MF) || NumBytes > RedZoneSize ||
421            getSVEStackSize(MF));
422 }
423 
424 /// hasFP - Return true if the specified function should have a dedicated frame
425 /// pointer register.
426 bool AArch64FrameLowering::hasFP(const MachineFunction &MF) const {
427   const MachineFrameInfo &MFI = MF.getFrameInfo();
428   const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
429   // Win64 EH requires a frame pointer if funclets are present, as the locals
430   // are accessed off the frame pointer in both the parent function and the
431   // funclets.
432   if (MF.hasEHFunclets())
433     return true;
434   // Retain behavior of always omitting the FP for leaf functions when possible.
435   if (MF.getTarget().Options.DisableFramePointerElim(MF))
436     return true;
437   if (MFI.hasVarSizedObjects() || MFI.isFrameAddressTaken() ||
438       MFI.hasStackMap() || MFI.hasPatchPoint() ||
439       RegInfo->hasStackRealignment(MF))
440     return true;
441   // With large callframes around we may need to use FP to access the scavenging
442   // emergency spillslot.
443   //
444   // Unfortunately some calls to hasFP() like machine verifier ->
445   // getReservedReg() -> hasFP in the middle of global isel are too early
446   // to know the max call frame size. Hopefully conservatively returning "true"
447   // in those cases is fine.
448   // DefaultSafeSPDisplacement is fine as we only emergency spill GP regs.
449   if (!MFI.isMaxCallFrameSizeComputed() ||
450       MFI.getMaxCallFrameSize() > DefaultSafeSPDisplacement)
451     return true;
452 
453   return false;
454 }
455 
456 /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is
457 /// not required, we reserve argument space for call sites in the function
458 /// immediately on entry to the current function.  This eliminates the need for
459 /// add/sub sp brackets around call sites.  Returns true if the call frame is
460 /// included as part of the stack frame.
461 bool
462 AArch64FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
463   return !MF.getFrameInfo().hasVarSizedObjects();
464 }
465 
466 MachineBasicBlock::iterator AArch64FrameLowering::eliminateCallFramePseudoInstr(
467     MachineFunction &MF, MachineBasicBlock &MBB,
468     MachineBasicBlock::iterator I) const {
469   const AArch64InstrInfo *TII =
470       static_cast<const AArch64InstrInfo *>(MF.getSubtarget().getInstrInfo());
471   DebugLoc DL = I->getDebugLoc();
472   unsigned Opc = I->getOpcode();
473   bool IsDestroy = Opc == TII->getCallFrameDestroyOpcode();
474   uint64_t CalleePopAmount = IsDestroy ? I->getOperand(1).getImm() : 0;
475 
476   if (!hasReservedCallFrame(MF)) {
477     int64_t Amount = I->getOperand(0).getImm();
478     Amount = alignTo(Amount, getStackAlign());
479     if (!IsDestroy)
480       Amount = -Amount;
481 
482     // N.b. if CalleePopAmount is valid but zero (i.e. callee would pop, but it
483     // doesn't have to pop anything), then the first operand will be zero too so
484     // this adjustment is a no-op.
485     if (CalleePopAmount == 0) {
486       // FIXME: in-function stack adjustment for calls is limited to 24-bits
487       // because there's no guaranteed temporary register available.
488       //
489       // ADD/SUB (immediate) has only LSL #0 and LSL #12 available.
490       // 1) For offset <= 12-bit, we use LSL #0
491       // 2) For 12-bit <= offset <= 24-bit, we use two instructions. One uses
492       // LSL #0, and the other uses LSL #12.
493       //
494       // Most call frames will be allocated at the start of a function so
495       // this is OK, but it is a limitation that needs dealing with.
496       assert(Amount > -0xffffff && Amount < 0xffffff && "call frame too large");
497       emitFrameOffset(MBB, I, DL, AArch64::SP, AArch64::SP,
498                       StackOffset::getFixed(Amount), TII);
499     }
500   } else if (CalleePopAmount != 0) {
501     // If the calling convention demands that the callee pops arguments from the
502     // stack, we want to add it back if we have a reserved call frame.
503     assert(CalleePopAmount < 0xffffff && "call frame too large");
504     emitFrameOffset(MBB, I, DL, AArch64::SP, AArch64::SP,
505                     StackOffset::getFixed(-(int64_t)CalleePopAmount), TII);
506   }
507   return MBB.erase(I);
508 }
509 
510 void AArch64FrameLowering::emitCalleeSavedGPRLocations(
511     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const {
512   MachineFunction &MF = *MBB.getParent();
513   MachineFrameInfo &MFI = MF.getFrameInfo();
514 
515   const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
516   if (CSI.empty())
517     return;
518 
519   const TargetSubtargetInfo &STI = MF.getSubtarget();
520   const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
521   const TargetInstrInfo &TII = *STI.getInstrInfo();
522   DebugLoc DL = MBB.findDebugLoc(MBBI);
523 
524   for (const auto &Info : CSI) {
525     if (MFI.getStackID(Info.getFrameIdx()) == TargetStackID::ScalableVector)
526       continue;
527 
528     assert(!Info.isSpilledToReg() && "Spilling to registers not implemented");
529     unsigned DwarfReg = TRI.getDwarfRegNum(Info.getReg(), true);
530 
531     int64_t Offset =
532         MFI.getObjectOffset(Info.getFrameIdx()) - getOffsetOfLocalArea();
533     unsigned CFIIndex = MF.addFrameInst(
534         MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
535     BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
536         .addCFIIndex(CFIIndex)
537         .setMIFlags(MachineInstr::FrameSetup);
538   }
539 }
540 
541 void AArch64FrameLowering::emitCalleeSavedSVELocations(
542     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const {
543   MachineFunction &MF = *MBB.getParent();
544   MachineFrameInfo &MFI = MF.getFrameInfo();
545 
546   // Add callee saved registers to move list.
547   const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
548   if (CSI.empty())
549     return;
550 
551   const TargetSubtargetInfo &STI = MF.getSubtarget();
552   const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
553   const TargetInstrInfo &TII = *STI.getInstrInfo();
554   DebugLoc DL = MBB.findDebugLoc(MBBI);
555   AArch64FunctionInfo &AFI = *MF.getInfo<AArch64FunctionInfo>();
556 
557   for (const auto &Info : CSI) {
558     if (!(MFI.getStackID(Info.getFrameIdx()) == TargetStackID::ScalableVector))
559       continue;
560 
561     // Not all unwinders may know about SVE registers, so assume the lowest
562     // common demoninator.
563     assert(!Info.isSpilledToReg() && "Spilling to registers not implemented");
564     unsigned Reg = Info.getReg();
565     if (!static_cast<const AArch64RegisterInfo &>(TRI).regNeedsCFI(Reg, Reg))
566       continue;
567 
568     StackOffset Offset =
569         StackOffset::getScalable(MFI.getObjectOffset(Info.getFrameIdx())) -
570         StackOffset::getFixed(AFI.getCalleeSavedStackSize(MFI));
571 
572     unsigned CFIIndex = MF.addFrameInst(createCFAOffset(TRI, Reg, Offset));
573     BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
574         .addCFIIndex(CFIIndex)
575         .setMIFlags(MachineInstr::FrameSetup);
576   }
577 }
578 
579 void AArch64FrameLowering::emitCalleeSavedFrameMoves(
580     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const {
581   emitCalleeSavedGPRLocations(MBB, MBBI);
582   emitCalleeSavedSVELocations(MBB, MBBI);
583 }
584 
585 static void insertCFISameValue(const MCInstrDesc &Desc, MachineFunction &MF,
586                                MachineBasicBlock &MBB,
587                                MachineBasicBlock::iterator InsertPt,
588                                unsigned DwarfReg) {
589   unsigned CFIIndex =
590       MF.addFrameInst(MCCFIInstruction::createSameValue(nullptr, DwarfReg));
591   BuildMI(MBB, InsertPt, DebugLoc(), Desc).addCFIIndex(CFIIndex);
592 }
593 
594 void AArch64FrameLowering::resetCFIToInitialState(
595     MachineBasicBlock &MBB) const {
596 
597   MachineFunction &MF = *MBB.getParent();
598   const auto &Subtarget = MF.getSubtarget<AArch64Subtarget>();
599   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
600   const auto &TRI =
601       static_cast<const AArch64RegisterInfo &>(*Subtarget.getRegisterInfo());
602   const auto &MFI = *MF.getInfo<AArch64FunctionInfo>();
603 
604   const MCInstrDesc &CFIDesc = TII.get(TargetOpcode::CFI_INSTRUCTION);
605   DebugLoc DL;
606 
607   // Reset the CFA to `SP + 0`.
608   MachineBasicBlock::iterator InsertPt = MBB.begin();
609   unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfa(
610       nullptr, TRI.getDwarfRegNum(AArch64::SP, true), 0));
611   BuildMI(MBB, InsertPt, DL, CFIDesc).addCFIIndex(CFIIndex);
612 
613   // Flip the RA sign state.
614   if (MFI.shouldSignReturnAddress()) {
615     CFIIndex = MF.addFrameInst(MCCFIInstruction::createNegateRAState(nullptr));
616     BuildMI(MBB, InsertPt, DL, CFIDesc).addCFIIndex(CFIIndex);
617   }
618 
619   // Shadow call stack uses X18, reset it.
620   if (needsShadowCallStackPrologueEpilogue(MF))
621     insertCFISameValue(CFIDesc, MF, MBB, InsertPt,
622                        TRI.getDwarfRegNum(AArch64::X18, true));
623 
624   // Emit .cfi_same_value for callee-saved registers.
625   const std::vector<CalleeSavedInfo> &CSI =
626       MF.getFrameInfo().getCalleeSavedInfo();
627   for (const auto &Info : CSI) {
628     unsigned Reg = Info.getReg();
629     if (!TRI.regNeedsCFI(Reg, Reg))
630       continue;
631     insertCFISameValue(CFIDesc, MF, MBB, InsertPt,
632                        TRI.getDwarfRegNum(Reg, true));
633   }
634 }
635 
636 static void emitCalleeSavedRestores(MachineBasicBlock &MBB,
637                                     MachineBasicBlock::iterator MBBI,
638                                     bool SVE) {
639   MachineFunction &MF = *MBB.getParent();
640   MachineFrameInfo &MFI = MF.getFrameInfo();
641 
642   const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
643   if (CSI.empty())
644     return;
645 
646   const TargetSubtargetInfo &STI = MF.getSubtarget();
647   const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
648   const TargetInstrInfo &TII = *STI.getInstrInfo();
649   DebugLoc DL = MBB.findDebugLoc(MBBI);
650 
651   for (const auto &Info : CSI) {
652     if (SVE !=
653         (MFI.getStackID(Info.getFrameIdx()) == TargetStackID::ScalableVector))
654       continue;
655 
656     unsigned Reg = Info.getReg();
657     if (SVE &&
658         !static_cast<const AArch64RegisterInfo &>(TRI).regNeedsCFI(Reg, Reg))
659       continue;
660 
661     unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestore(
662         nullptr, TRI.getDwarfRegNum(Info.getReg(), true)));
663     BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
664         .addCFIIndex(CFIIndex)
665         .setMIFlags(MachineInstr::FrameDestroy);
666   }
667 }
668 
669 void AArch64FrameLowering::emitCalleeSavedGPRRestores(
670     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const {
671   emitCalleeSavedRestores(MBB, MBBI, false);
672 }
673 
674 void AArch64FrameLowering::emitCalleeSavedSVERestores(
675     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const {
676   emitCalleeSavedRestores(MBB, MBBI, true);
677 }
678 
679 static MCRegister getRegisterOrZero(MCRegister Reg, bool HasSVE) {
680   switch (Reg.id()) {
681   default:
682     // The called routine is expected to preserve r19-r28
683     // r29 and r30 are used as frame pointer and link register resp.
684     return 0;
685 
686     // GPRs
687 #define CASE(n)                                                                \
688   case AArch64::W##n:                                                          \
689   case AArch64::X##n:                                                          \
690     return AArch64::X##n
691   CASE(0);
692   CASE(1);
693   CASE(2);
694   CASE(3);
695   CASE(4);
696   CASE(5);
697   CASE(6);
698   CASE(7);
699   CASE(8);
700   CASE(9);
701   CASE(10);
702   CASE(11);
703   CASE(12);
704   CASE(13);
705   CASE(14);
706   CASE(15);
707   CASE(16);
708   CASE(17);
709   CASE(18);
710 #undef CASE
711 
712     // FPRs
713 #define CASE(n)                                                                \
714   case AArch64::B##n:                                                          \
715   case AArch64::H##n:                                                          \
716   case AArch64::S##n:                                                          \
717   case AArch64::D##n:                                                          \
718   case AArch64::Q##n:                                                          \
719     return HasSVE ? AArch64::Z##n : AArch64::Q##n
720   CASE(0);
721   CASE(1);
722   CASE(2);
723   CASE(3);
724   CASE(4);
725   CASE(5);
726   CASE(6);
727   CASE(7);
728   CASE(8);
729   CASE(9);
730   CASE(10);
731   CASE(11);
732   CASE(12);
733   CASE(13);
734   CASE(14);
735   CASE(15);
736   CASE(16);
737   CASE(17);
738   CASE(18);
739   CASE(19);
740   CASE(20);
741   CASE(21);
742   CASE(22);
743   CASE(23);
744   CASE(24);
745   CASE(25);
746   CASE(26);
747   CASE(27);
748   CASE(28);
749   CASE(29);
750   CASE(30);
751   CASE(31);
752 #undef CASE
753   }
754 }
755 
756 void AArch64FrameLowering::emitZeroCallUsedRegs(BitVector RegsToZero,
757                                                 MachineBasicBlock &MBB) const {
758   // Insertion point.
759   MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
760 
761   // Fake a debug loc.
762   DebugLoc DL;
763   if (MBBI != MBB.end())
764     DL = MBBI->getDebugLoc();
765 
766   const MachineFunction &MF = *MBB.getParent();
767   const AArch64Subtarget &STI = MF.getSubtarget<AArch64Subtarget>();
768   const AArch64RegisterInfo &TRI = *STI.getRegisterInfo();
769 
770   BitVector GPRsToZero(TRI.getNumRegs());
771   BitVector FPRsToZero(TRI.getNumRegs());
772   bool HasSVE = STI.hasSVE();
773   for (MCRegister Reg : RegsToZero.set_bits()) {
774     if (TRI.isGeneralPurposeRegister(MF, Reg)) {
775       // For GPRs, we only care to clear out the 64-bit register.
776       if (MCRegister XReg = getRegisterOrZero(Reg, HasSVE))
777         GPRsToZero.set(XReg);
778     } else if (AArch64::FPR128RegClass.contains(Reg) ||
779                AArch64::FPR64RegClass.contains(Reg) ||
780                AArch64::FPR32RegClass.contains(Reg) ||
781                AArch64::FPR16RegClass.contains(Reg) ||
782                AArch64::FPR8RegClass.contains(Reg)) {
783       // For FPRs,
784       if (MCRegister XReg = getRegisterOrZero(Reg, HasSVE))
785         FPRsToZero.set(XReg);
786     }
787   }
788 
789   const AArch64InstrInfo &TII = *STI.getInstrInfo();
790 
791   // Zero out GPRs.
792   for (MCRegister Reg : GPRsToZero.set_bits())
793     BuildMI(MBB, MBBI, DL, TII.get(AArch64::MOVi64imm), Reg).addImm(0);
794 
795   // Zero out FP/vector registers.
796   for (MCRegister Reg : FPRsToZero.set_bits())
797     if (HasSVE)
798       BuildMI(MBB, MBBI, DL, TII.get(AArch64::DUP_ZI_D), Reg)
799         .addImm(0)
800         .addImm(0);
801     else
802       BuildMI(MBB, MBBI, DL, TII.get(AArch64::MOVIv2d_ns), Reg).addImm(0);
803 
804   if (HasSVE) {
805     for (MCRegister PReg :
806          {AArch64::P0, AArch64::P1, AArch64::P2, AArch64::P3, AArch64::P4,
807           AArch64::P5, AArch64::P6, AArch64::P7, AArch64::P8, AArch64::P9,
808           AArch64::P10, AArch64::P11, AArch64::P12, AArch64::P13, AArch64::P14,
809           AArch64::P15}) {
810       if (RegsToZero[PReg])
811         BuildMI(MBB, MBBI, DL, TII.get(AArch64::PFALSE), PReg);
812     }
813   }
814 }
815 
816 // Find a scratch register that we can use at the start of the prologue to
817 // re-align the stack pointer.  We avoid using callee-save registers since they
818 // may appear to be free when this is called from canUseAsPrologue (during
819 // shrink wrapping), but then no longer be free when this is called from
820 // emitPrologue.
821 //
822 // FIXME: This is a bit conservative, since in the above case we could use one
823 // of the callee-save registers as a scratch temp to re-align the stack pointer,
824 // but we would then have to make sure that we were in fact saving at least one
825 // callee-save register in the prologue, which is additional complexity that
826 // doesn't seem worth the benefit.
827 static unsigned findScratchNonCalleeSaveRegister(MachineBasicBlock *MBB) {
828   MachineFunction *MF = MBB->getParent();
829 
830   // If MBB is an entry block, use X9 as the scratch register
831   if (&MF->front() == MBB)
832     return AArch64::X9;
833 
834   const AArch64Subtarget &Subtarget = MF->getSubtarget<AArch64Subtarget>();
835   const AArch64RegisterInfo &TRI = *Subtarget.getRegisterInfo();
836   LivePhysRegs LiveRegs(TRI);
837   LiveRegs.addLiveIns(*MBB);
838 
839   // Mark callee saved registers as used so we will not choose them.
840   const MCPhysReg *CSRegs = MF->getRegInfo().getCalleeSavedRegs();
841   for (unsigned i = 0; CSRegs[i]; ++i)
842     LiveRegs.addReg(CSRegs[i]);
843 
844   // Prefer X9 since it was historically used for the prologue scratch reg.
845   const MachineRegisterInfo &MRI = MF->getRegInfo();
846   if (LiveRegs.available(MRI, AArch64::X9))
847     return AArch64::X9;
848 
849   for (unsigned Reg : AArch64::GPR64RegClass) {
850     if (LiveRegs.available(MRI, Reg))
851       return Reg;
852   }
853   return AArch64::NoRegister;
854 }
855 
856 bool AArch64FrameLowering::canUseAsPrologue(
857     const MachineBasicBlock &MBB) const {
858   const MachineFunction *MF = MBB.getParent();
859   MachineBasicBlock *TmpMBB = const_cast<MachineBasicBlock *>(&MBB);
860   const AArch64Subtarget &Subtarget = MF->getSubtarget<AArch64Subtarget>();
861   const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
862 
863   // Don't need a scratch register if we're not going to re-align the stack.
864   if (!RegInfo->hasStackRealignment(*MF))
865     return true;
866   // Otherwise, we can use any block as long as it has a scratch register
867   // available.
868   return findScratchNonCalleeSaveRegister(TmpMBB) != AArch64::NoRegister;
869 }
870 
871 static bool windowsRequiresStackProbe(MachineFunction &MF,
872                                       uint64_t StackSizeInBytes) {
873   const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
874   if (!Subtarget.isTargetWindows())
875     return false;
876   const Function &F = MF.getFunction();
877   // TODO: When implementing stack protectors, take that into account
878   // for the probe threshold.
879   unsigned StackProbeSize = 4096;
880   if (F.hasFnAttribute("stack-probe-size"))
881     F.getFnAttribute("stack-probe-size")
882         .getValueAsString()
883         .getAsInteger(0, StackProbeSize);
884   return (StackSizeInBytes >= StackProbeSize) &&
885          !F.hasFnAttribute("no-stack-arg-probe");
886 }
887 
888 static bool needsWinCFI(const MachineFunction &MF) {
889   const Function &F = MF.getFunction();
890   return MF.getTarget().getMCAsmInfo()->usesWindowsCFI() &&
891          F.needsUnwindTableEntry();
892 }
893 
894 bool AArch64FrameLowering::shouldCombineCSRLocalStackBump(
895     MachineFunction &MF, uint64_t StackBumpBytes) const {
896   AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
897   const MachineFrameInfo &MFI = MF.getFrameInfo();
898   const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
899   const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
900   if (homogeneousPrologEpilog(MF))
901     return false;
902 
903   if (AFI->getLocalStackSize() == 0)
904     return false;
905 
906   // For WinCFI, if optimizing for size, prefer to not combine the stack bump
907   // (to force a stp with predecrement) to match the packed unwind format,
908   // provided that there actually are any callee saved registers to merge the
909   // decrement with.
910   // This is potentially marginally slower, but allows using the packed
911   // unwind format for functions that both have a local area and callee saved
912   // registers. Using the packed unwind format notably reduces the size of
913   // the unwind info.
914   if (needsWinCFI(MF) && AFI->getCalleeSavedStackSize() > 0 &&
915       MF.getFunction().hasOptSize())
916     return false;
917 
918   // 512 is the maximum immediate for stp/ldp that will be used for
919   // callee-save save/restores
920   if (StackBumpBytes >= 512 || windowsRequiresStackProbe(MF, StackBumpBytes))
921     return false;
922 
923   if (MFI.hasVarSizedObjects())
924     return false;
925 
926   if (RegInfo->hasStackRealignment(MF))
927     return false;
928 
929   // This isn't strictly necessary, but it simplifies things a bit since the
930   // current RedZone handling code assumes the SP is adjusted by the
931   // callee-save save/restore code.
932   if (canUseRedZone(MF))
933     return false;
934 
935   // When there is an SVE area on the stack, always allocate the
936   // callee-saves and spills/locals separately.
937   if (getSVEStackSize(MF))
938     return false;
939 
940   return true;
941 }
942 
943 bool AArch64FrameLowering::shouldCombineCSRLocalStackBumpInEpilogue(
944     MachineBasicBlock &MBB, unsigned StackBumpBytes) const {
945   if (!shouldCombineCSRLocalStackBump(*MBB.getParent(), StackBumpBytes))
946     return false;
947 
948   if (MBB.empty())
949     return true;
950 
951   // Disable combined SP bump if the last instruction is an MTE tag store. It
952   // is almost always better to merge SP adjustment into those instructions.
953   MachineBasicBlock::iterator LastI = MBB.getFirstTerminator();
954   MachineBasicBlock::iterator Begin = MBB.begin();
955   while (LastI != Begin) {
956     --LastI;
957     if (LastI->isTransient())
958       continue;
959     if (!LastI->getFlag(MachineInstr::FrameDestroy))
960       break;
961   }
962   switch (LastI->getOpcode()) {
963   case AArch64::STGloop:
964   case AArch64::STZGloop:
965   case AArch64::STGOffset:
966   case AArch64::STZGOffset:
967   case AArch64::ST2GOffset:
968   case AArch64::STZ2GOffset:
969     return false;
970   default:
971     return true;
972   }
973   llvm_unreachable("unreachable");
974 }
975 
976 // Given a load or a store instruction, generate an appropriate unwinding SEH
977 // code on Windows.
978 static MachineBasicBlock::iterator InsertSEH(MachineBasicBlock::iterator MBBI,
979                                              const TargetInstrInfo &TII,
980                                              MachineInstr::MIFlag Flag) {
981   unsigned Opc = MBBI->getOpcode();
982   MachineBasicBlock *MBB = MBBI->getParent();
983   MachineFunction &MF = *MBB->getParent();
984   DebugLoc DL = MBBI->getDebugLoc();
985   unsigned ImmIdx = MBBI->getNumOperands() - 1;
986   int Imm = MBBI->getOperand(ImmIdx).getImm();
987   MachineInstrBuilder MIB;
988   const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
989   const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
990 
991   switch (Opc) {
992   default:
993     llvm_unreachable("No SEH Opcode for this instruction");
994   case AArch64::LDPDpost:
995     Imm = -Imm;
996     LLVM_FALLTHROUGH;
997   case AArch64::STPDpre: {
998     unsigned Reg0 = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
999     unsigned Reg1 = RegInfo->getSEHRegNum(MBBI->getOperand(2).getReg());
1000     MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFRegP_X))
1001               .addImm(Reg0)
1002               .addImm(Reg1)
1003               .addImm(Imm * 8)
1004               .setMIFlag(Flag);
1005     break;
1006   }
1007   case AArch64::LDPXpost:
1008     Imm = -Imm;
1009     LLVM_FALLTHROUGH;
1010   case AArch64::STPXpre: {
1011     Register Reg0 = MBBI->getOperand(1).getReg();
1012     Register Reg1 = MBBI->getOperand(2).getReg();
1013     if (Reg0 == AArch64::FP && Reg1 == AArch64::LR)
1014       MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFPLR_X))
1015                 .addImm(Imm * 8)
1016                 .setMIFlag(Flag);
1017     else
1018       MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveRegP_X))
1019                 .addImm(RegInfo->getSEHRegNum(Reg0))
1020                 .addImm(RegInfo->getSEHRegNum(Reg1))
1021                 .addImm(Imm * 8)
1022                 .setMIFlag(Flag);
1023     break;
1024   }
1025   case AArch64::LDRDpost:
1026     Imm = -Imm;
1027     LLVM_FALLTHROUGH;
1028   case AArch64::STRDpre: {
1029     unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
1030     MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFReg_X))
1031               .addImm(Reg)
1032               .addImm(Imm)
1033               .setMIFlag(Flag);
1034     break;
1035   }
1036   case AArch64::LDRXpost:
1037     Imm = -Imm;
1038     LLVM_FALLTHROUGH;
1039   case AArch64::STRXpre: {
1040     unsigned Reg =  RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
1041     MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveReg_X))
1042               .addImm(Reg)
1043               .addImm(Imm)
1044               .setMIFlag(Flag);
1045     break;
1046   }
1047   case AArch64::STPDi:
1048   case AArch64::LDPDi: {
1049     unsigned Reg0 =  RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg());
1050     unsigned Reg1 =  RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
1051     MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFRegP))
1052               .addImm(Reg0)
1053               .addImm(Reg1)
1054               .addImm(Imm * 8)
1055               .setMIFlag(Flag);
1056     break;
1057   }
1058   case AArch64::STPXi:
1059   case AArch64::LDPXi: {
1060     Register Reg0 = MBBI->getOperand(0).getReg();
1061     Register Reg1 = MBBI->getOperand(1).getReg();
1062     if (Reg0 == AArch64::FP && Reg1 == AArch64::LR)
1063       MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFPLR))
1064                 .addImm(Imm * 8)
1065                 .setMIFlag(Flag);
1066     else
1067       MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveRegP))
1068                 .addImm(RegInfo->getSEHRegNum(Reg0))
1069                 .addImm(RegInfo->getSEHRegNum(Reg1))
1070                 .addImm(Imm * 8)
1071                 .setMIFlag(Flag);
1072     break;
1073   }
1074   case AArch64::STRXui:
1075   case AArch64::LDRXui: {
1076     int Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg());
1077     MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveReg))
1078               .addImm(Reg)
1079               .addImm(Imm * 8)
1080               .setMIFlag(Flag);
1081     break;
1082   }
1083   case AArch64::STRDui:
1084   case AArch64::LDRDui: {
1085     unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg());
1086     MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFReg))
1087               .addImm(Reg)
1088               .addImm(Imm * 8)
1089               .setMIFlag(Flag);
1090     break;
1091   }
1092   }
1093   auto I = MBB->insertAfter(MBBI, MIB);
1094   return I;
1095 }
1096 
1097 // Fix up the SEH opcode associated with the save/restore instruction.
1098 static void fixupSEHOpcode(MachineBasicBlock::iterator MBBI,
1099                            unsigned LocalStackSize) {
1100   MachineOperand *ImmOpnd = nullptr;
1101   unsigned ImmIdx = MBBI->getNumOperands() - 1;
1102   switch (MBBI->getOpcode()) {
1103   default:
1104     llvm_unreachable("Fix the offset in the SEH instruction");
1105   case AArch64::SEH_SaveFPLR:
1106   case AArch64::SEH_SaveRegP:
1107   case AArch64::SEH_SaveReg:
1108   case AArch64::SEH_SaveFRegP:
1109   case AArch64::SEH_SaveFReg:
1110     ImmOpnd = &MBBI->getOperand(ImmIdx);
1111     break;
1112   }
1113   if (ImmOpnd)
1114     ImmOpnd->setImm(ImmOpnd->getImm() + LocalStackSize);
1115 }
1116 
1117 // Convert callee-save register save/restore instruction to do stack pointer
1118 // decrement/increment to allocate/deallocate the callee-save stack area by
1119 // converting store/load to use pre/post increment version.
1120 static MachineBasicBlock::iterator convertCalleeSaveRestoreToSPPrePostIncDec(
1121     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
1122     const DebugLoc &DL, const TargetInstrInfo *TII, int CSStackSizeInc,
1123     bool NeedsWinCFI, bool *HasWinCFI, bool EmitCFI,
1124     MachineInstr::MIFlag FrameFlag = MachineInstr::FrameSetup,
1125     int CFAOffset = 0) {
1126   unsigned NewOpc;
1127   switch (MBBI->getOpcode()) {
1128   default:
1129     llvm_unreachable("Unexpected callee-save save/restore opcode!");
1130   case AArch64::STPXi:
1131     NewOpc = AArch64::STPXpre;
1132     break;
1133   case AArch64::STPDi:
1134     NewOpc = AArch64::STPDpre;
1135     break;
1136   case AArch64::STPQi:
1137     NewOpc = AArch64::STPQpre;
1138     break;
1139   case AArch64::STRXui:
1140     NewOpc = AArch64::STRXpre;
1141     break;
1142   case AArch64::STRDui:
1143     NewOpc = AArch64::STRDpre;
1144     break;
1145   case AArch64::STRQui:
1146     NewOpc = AArch64::STRQpre;
1147     break;
1148   case AArch64::LDPXi:
1149     NewOpc = AArch64::LDPXpost;
1150     break;
1151   case AArch64::LDPDi:
1152     NewOpc = AArch64::LDPDpost;
1153     break;
1154   case AArch64::LDPQi:
1155     NewOpc = AArch64::LDPQpost;
1156     break;
1157   case AArch64::LDRXui:
1158     NewOpc = AArch64::LDRXpost;
1159     break;
1160   case AArch64::LDRDui:
1161     NewOpc = AArch64::LDRDpost;
1162     break;
1163   case AArch64::LDRQui:
1164     NewOpc = AArch64::LDRQpost;
1165     break;
1166   }
1167   // Get rid of the SEH code associated with the old instruction.
1168   if (NeedsWinCFI) {
1169     auto SEH = std::next(MBBI);
1170     if (AArch64InstrInfo::isSEHInstruction(*SEH))
1171       SEH->eraseFromParent();
1172   }
1173 
1174   TypeSize Scale = TypeSize::Fixed(1);
1175   unsigned Width;
1176   int64_t MinOffset, MaxOffset;
1177   bool Success = static_cast<const AArch64InstrInfo *>(TII)->getMemOpInfo(
1178       NewOpc, Scale, Width, MinOffset, MaxOffset);
1179   (void)Success;
1180   assert(Success && "unknown load/store opcode");
1181 
1182   // If the first store isn't right where we want SP then we can't fold the
1183   // update in so create a normal arithmetic instruction instead.
1184   MachineFunction &MF = *MBB.getParent();
1185   if (MBBI->getOperand(MBBI->getNumOperands() - 1).getImm() != 0 ||
1186       CSStackSizeInc < MinOffset || CSStackSizeInc > MaxOffset) {
1187     emitFrameOffset(MBB, MBBI, DL, AArch64::SP, AArch64::SP,
1188                     StackOffset::getFixed(CSStackSizeInc), TII, FrameFlag,
1189                     false, false, nullptr, EmitCFI,
1190                     StackOffset::getFixed(CFAOffset));
1191 
1192     return std::prev(MBBI);
1193   }
1194 
1195   MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(NewOpc));
1196   MIB.addReg(AArch64::SP, RegState::Define);
1197 
1198   // Copy all operands other than the immediate offset.
1199   unsigned OpndIdx = 0;
1200   for (unsigned OpndEnd = MBBI->getNumOperands() - 1; OpndIdx < OpndEnd;
1201        ++OpndIdx)
1202     MIB.add(MBBI->getOperand(OpndIdx));
1203 
1204   assert(MBBI->getOperand(OpndIdx).getImm() == 0 &&
1205          "Unexpected immediate offset in first/last callee-save save/restore "
1206          "instruction!");
1207   assert(MBBI->getOperand(OpndIdx - 1).getReg() == AArch64::SP &&
1208          "Unexpected base register in callee-save save/restore instruction!");
1209   assert(CSStackSizeInc % Scale == 0);
1210   MIB.addImm(CSStackSizeInc / (int)Scale);
1211 
1212   MIB.setMIFlags(MBBI->getFlags());
1213   MIB.setMemRefs(MBBI->memoperands());
1214 
1215   // Generate a new SEH code that corresponds to the new instruction.
1216   if (NeedsWinCFI) {
1217     *HasWinCFI = true;
1218     InsertSEH(*MIB, *TII, FrameFlag);
1219   }
1220 
1221   if (EmitCFI) {
1222     unsigned CFIIndex = MF.addFrameInst(
1223         MCCFIInstruction::cfiDefCfaOffset(nullptr, CFAOffset - CSStackSizeInc));
1224     BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
1225         .addCFIIndex(CFIIndex)
1226         .setMIFlags(FrameFlag);
1227   }
1228 
1229   return std::prev(MBB.erase(MBBI));
1230 }
1231 
1232 // Fixup callee-save register save/restore instructions to take into account
1233 // combined SP bump by adding the local stack size to the stack offsets.
1234 static void fixupCalleeSaveRestoreStackOffset(MachineInstr &MI,
1235                                               uint64_t LocalStackSize,
1236                                               bool NeedsWinCFI,
1237                                               bool *HasWinCFI) {
1238   if (AArch64InstrInfo::isSEHInstruction(MI))
1239     return;
1240 
1241   unsigned Opc = MI.getOpcode();
1242   unsigned Scale;
1243   switch (Opc) {
1244   case AArch64::STPXi:
1245   case AArch64::STRXui:
1246   case AArch64::STPDi:
1247   case AArch64::STRDui:
1248   case AArch64::LDPXi:
1249   case AArch64::LDRXui:
1250   case AArch64::LDPDi:
1251   case AArch64::LDRDui:
1252     Scale = 8;
1253     break;
1254   case AArch64::STPQi:
1255   case AArch64::STRQui:
1256   case AArch64::LDPQi:
1257   case AArch64::LDRQui:
1258     Scale = 16;
1259     break;
1260   default:
1261     llvm_unreachable("Unexpected callee-save save/restore opcode!");
1262   }
1263 
1264   unsigned OffsetIdx = MI.getNumExplicitOperands() - 1;
1265   assert(MI.getOperand(OffsetIdx - 1).getReg() == AArch64::SP &&
1266          "Unexpected base register in callee-save save/restore instruction!");
1267   // Last operand is immediate offset that needs fixing.
1268   MachineOperand &OffsetOpnd = MI.getOperand(OffsetIdx);
1269   // All generated opcodes have scaled offsets.
1270   assert(LocalStackSize % Scale == 0);
1271   OffsetOpnd.setImm(OffsetOpnd.getImm() + LocalStackSize / Scale);
1272 
1273   if (NeedsWinCFI) {
1274     *HasWinCFI = true;
1275     auto MBBI = std::next(MachineBasicBlock::iterator(MI));
1276     assert(MBBI != MI.getParent()->end() && "Expecting a valid instruction");
1277     assert(AArch64InstrInfo::isSEHInstruction(*MBBI) &&
1278            "Expecting a SEH instruction");
1279     fixupSEHOpcode(MBBI, LocalStackSize);
1280   }
1281 }
1282 
1283 static bool isTargetWindows(const MachineFunction &MF) {
1284   return MF.getSubtarget<AArch64Subtarget>().isTargetWindows();
1285 }
1286 
1287 // Convenience function to determine whether I is an SVE callee save.
1288 static bool IsSVECalleeSave(MachineBasicBlock::iterator I) {
1289   switch (I->getOpcode()) {
1290   default:
1291     return false;
1292   case AArch64::STR_ZXI:
1293   case AArch64::STR_PXI:
1294   case AArch64::LDR_ZXI:
1295   case AArch64::LDR_PXI:
1296     return I->getFlag(MachineInstr::FrameSetup) ||
1297            I->getFlag(MachineInstr::FrameDestroy);
1298   }
1299 }
1300 
1301 static bool needsShadowCallStackPrologueEpilogue(MachineFunction &MF) {
1302   if (!(llvm::any_of(
1303             MF.getFrameInfo().getCalleeSavedInfo(),
1304             [](const auto &Info) { return Info.getReg() == AArch64::LR; }) &&
1305         MF.getFunction().hasFnAttribute(Attribute::ShadowCallStack)))
1306     return false;
1307 
1308   if (!MF.getSubtarget<AArch64Subtarget>().isXRegisterReserved(18))
1309     report_fatal_error("Must reserve x18 to use shadow call stack");
1310 
1311   return true;
1312 }
1313 
1314 static void emitShadowCallStackPrologue(const TargetInstrInfo &TII,
1315                                         MachineFunction &MF,
1316                                         MachineBasicBlock &MBB,
1317                                         MachineBasicBlock::iterator MBBI,
1318                                         const DebugLoc &DL, bool NeedsWinCFI,
1319                                         bool NeedsUnwindInfo) {
1320   // Shadow call stack prolog: str x30, [x18], #8
1321   BuildMI(MBB, MBBI, DL, TII.get(AArch64::STRXpost))
1322       .addReg(AArch64::X18, RegState::Define)
1323       .addReg(AArch64::LR)
1324       .addReg(AArch64::X18)
1325       .addImm(8)
1326       .setMIFlag(MachineInstr::FrameSetup);
1327 
1328   // This instruction also makes x18 live-in to the entry block.
1329   MBB.addLiveIn(AArch64::X18);
1330 
1331   if (NeedsWinCFI)
1332     BuildMI(MBB, MBBI, DL, TII.get(AArch64::SEH_Nop))
1333         .setMIFlag(MachineInstr::FrameSetup);
1334 
1335   if (NeedsUnwindInfo) {
1336     // Emit a CFI instruction that causes 8 to be subtracted from the value of
1337     // x18 when unwinding past this frame.
1338     static const char CFIInst[] = {
1339         dwarf::DW_CFA_val_expression,
1340         18, // register
1341         2,  // length
1342         static_cast<char>(unsigned(dwarf::DW_OP_breg18)),
1343         static_cast<char>(-8) & 0x7f, // addend (sleb128)
1344     };
1345     unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createEscape(
1346         nullptr, StringRef(CFIInst, sizeof(CFIInst))));
1347     BuildMI(MBB, MBBI, DL, TII.get(AArch64::CFI_INSTRUCTION))
1348         .addCFIIndex(CFIIndex)
1349         .setMIFlag(MachineInstr::FrameSetup);
1350   }
1351 }
1352 
1353 static void emitShadowCallStackEpilogue(const TargetInstrInfo &TII,
1354                                         MachineFunction &MF,
1355                                         MachineBasicBlock &MBB,
1356                                         MachineBasicBlock::iterator MBBI,
1357                                         const DebugLoc &DL) {
1358   // Shadow call stack epilog: ldr x30, [x18, #-8]!
1359   BuildMI(MBB, MBBI, DL, TII.get(AArch64::LDRXpre))
1360       .addReg(AArch64::X18, RegState::Define)
1361       .addReg(AArch64::LR, RegState::Define)
1362       .addReg(AArch64::X18)
1363       .addImm(-8)
1364       .setMIFlag(MachineInstr::FrameDestroy);
1365 
1366   if (MF.getInfo<AArch64FunctionInfo>()->needsAsyncDwarfUnwindInfo()) {
1367     unsigned CFIIndex =
1368         MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, 18));
1369     BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
1370         .addCFIIndex(CFIIndex)
1371         .setMIFlags(MachineInstr::FrameDestroy);
1372   }
1373 }
1374 
1375 void AArch64FrameLowering::emitPrologue(MachineFunction &MF,
1376                                         MachineBasicBlock &MBB) const {
1377   MachineBasicBlock::iterator MBBI = MBB.begin();
1378   const MachineFrameInfo &MFI = MF.getFrameInfo();
1379   const Function &F = MF.getFunction();
1380   const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
1381   const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
1382   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1383   MachineModuleInfo &MMI = MF.getMMI();
1384   AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
1385   bool EmitCFI = AFI->needsDwarfUnwindInfo();
1386   bool HasFP = hasFP(MF);
1387   bool NeedsWinCFI = needsWinCFI(MF);
1388   bool HasWinCFI = false;
1389   auto Cleanup = make_scope_exit([&]() { MF.setHasWinCFI(HasWinCFI); });
1390 
1391   bool IsFunclet = MBB.isEHFuncletEntry();
1392 
1393   // At this point, we're going to decide whether or not the function uses a
1394   // redzone. In most cases, the function doesn't have a redzone so let's
1395   // assume that's false and set it to true in the case that there's a redzone.
1396   AFI->setHasRedZone(false);
1397 
1398   // Debug location must be unknown since the first debug location is used
1399   // to determine the end of the prologue.
1400   DebugLoc DL;
1401 
1402   const auto &MFnI = *MF.getInfo<AArch64FunctionInfo>();
1403   if (needsShadowCallStackPrologueEpilogue(MF))
1404     emitShadowCallStackPrologue(*TII, MF, MBB, MBBI, DL, NeedsWinCFI,
1405                                 MFnI.needsDwarfUnwindInfo());
1406 
1407   if (MFnI.shouldSignReturnAddress()) {
1408     unsigned PACI;
1409     if (MFnI.shouldSignWithBKey()) {
1410       BuildMI(MBB, MBBI, DL, TII->get(AArch64::EMITBKEY))
1411           .setMIFlag(MachineInstr::FrameSetup);
1412       PACI = Subtarget.hasPAuth() ? AArch64::PACIB : AArch64::PACIBSP;
1413     } else {
1414       PACI = Subtarget.hasPAuth() ? AArch64::PACIA : AArch64::PACIASP;
1415     }
1416 
1417     auto MI = BuildMI(MBB, MBBI, DL, TII->get(PACI));
1418     if (Subtarget.hasPAuth())
1419       MI.addReg(AArch64::LR, RegState::Define)
1420           .addReg(AArch64::LR)
1421           .addReg(AArch64::SP, RegState::InternalRead);
1422     MI.setMIFlag(MachineInstr::FrameSetup);
1423     if (EmitCFI) {
1424       unsigned CFIIndex =
1425           MF.addFrameInst(MCCFIInstruction::createNegateRAState(nullptr));
1426       BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
1427           .addCFIIndex(CFIIndex)
1428           .setMIFlags(MachineInstr::FrameSetup);
1429     }
1430   }
1431   if (EmitCFI && MFnI.isMTETagged()) {
1432     BuildMI(MBB, MBBI, DL, TII->get(AArch64::EMITMTETAGGED))
1433         .setMIFlag(MachineInstr::FrameSetup);
1434   }
1435 
1436   // We signal the presence of a Swift extended frame to external tools by
1437   // storing FP with 0b0001 in bits 63:60. In normal userland operation a simple
1438   // ORR is sufficient, it is assumed a Swift kernel would initialize the TBI
1439   // bits so that is still true.
1440   if (HasFP && AFI->hasSwiftAsyncContext()) {
1441     switch (MF.getTarget().Options.SwiftAsyncFramePointer) {
1442     case SwiftAsyncFramePointerMode::DeploymentBased:
1443       if (Subtarget.swiftAsyncContextIsDynamicallySet()) {
1444         // The special symbol below is absolute and has a *value* that can be
1445         // combined with the frame pointer to signal an extended frame.
1446         BuildMI(MBB, MBBI, DL, TII->get(AArch64::LOADgot), AArch64::X16)
1447             .addExternalSymbol("swift_async_extendedFramePointerFlags",
1448                                AArch64II::MO_GOT);
1449         BuildMI(MBB, MBBI, DL, TII->get(AArch64::ORRXrs), AArch64::FP)
1450             .addUse(AArch64::FP)
1451             .addUse(AArch64::X16)
1452             .addImm(Subtarget.isTargetILP32() ? 32 : 0);
1453         break;
1454       }
1455       LLVM_FALLTHROUGH;
1456 
1457     case SwiftAsyncFramePointerMode::Always:
1458       // ORR x29, x29, #0x1000_0000_0000_0000
1459       BuildMI(MBB, MBBI, DL, TII->get(AArch64::ORRXri), AArch64::FP)
1460           .addUse(AArch64::FP)
1461           .addImm(0x1100)
1462           .setMIFlag(MachineInstr::FrameSetup);
1463       break;
1464 
1465     case SwiftAsyncFramePointerMode::Never:
1466       break;
1467     }
1468   }
1469 
1470   // All calls are tail calls in GHC calling conv, and functions have no
1471   // prologue/epilogue.
1472   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
1473     return;
1474 
1475   // Set tagged base pointer to the requested stack slot.
1476   // Ideally it should match SP value after prologue.
1477   Optional<int> TBPI = AFI->getTaggedBasePointerIndex();
1478   if (TBPI)
1479     AFI->setTaggedBasePointerOffset(-MFI.getObjectOffset(*TBPI));
1480   else
1481     AFI->setTaggedBasePointerOffset(MFI.getStackSize());
1482 
1483   const StackOffset &SVEStackSize = getSVEStackSize(MF);
1484 
1485   // getStackSize() includes all the locals in its size calculation. We don't
1486   // include these locals when computing the stack size of a funclet, as they
1487   // are allocated in the parent's stack frame and accessed via the frame
1488   // pointer from the funclet.  We only save the callee saved registers in the
1489   // funclet, which are really the callee saved registers of the parent
1490   // function, including the funclet.
1491   int64_t NumBytes = IsFunclet ? getWinEHFuncletFrameSize(MF)
1492                                : MFI.getStackSize();
1493   if (!AFI->hasStackFrame() && !windowsRequiresStackProbe(MF, NumBytes)) {
1494     assert(!HasFP && "unexpected function without stack frame but with FP");
1495     assert(!SVEStackSize &&
1496            "unexpected function without stack frame but with SVE objects");
1497     // All of the stack allocation is for locals.
1498     AFI->setLocalStackSize(NumBytes);
1499     if (!NumBytes)
1500       return;
1501     // REDZONE: If the stack size is less than 128 bytes, we don't need
1502     // to actually allocate.
1503     if (canUseRedZone(MF)) {
1504       AFI->setHasRedZone(true);
1505       ++NumRedZoneFunctions;
1506     } else {
1507       emitFrameOffset(MBB, MBBI, DL, AArch64::SP, AArch64::SP,
1508                       StackOffset::getFixed(-NumBytes), TII,
1509                       MachineInstr::FrameSetup, false, NeedsWinCFI, &HasWinCFI);
1510       if (EmitCFI) {
1511         // Label used to tie together the PROLOG_LABEL and the MachineMoves.
1512         MCSymbol *FrameLabel = MMI.getContext().createTempSymbol();
1513           // Encode the stack size of the leaf function.
1514         unsigned CFIIndex = MF.addFrameInst(
1515             MCCFIInstruction::cfiDefCfaOffset(FrameLabel, NumBytes));
1516         BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
1517             .addCFIIndex(CFIIndex)
1518             .setMIFlags(MachineInstr::FrameSetup);
1519       }
1520     }
1521 
1522     if (NeedsWinCFI) {
1523       HasWinCFI = true;
1524       BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_PrologEnd))
1525           .setMIFlag(MachineInstr::FrameSetup);
1526     }
1527 
1528     return;
1529   }
1530 
1531   bool IsWin64 =
1532       Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv());
1533   unsigned FixedObject = getFixedObjectSize(MF, AFI, IsWin64, IsFunclet);
1534 
1535   auto PrologueSaveSize = AFI->getCalleeSavedStackSize() + FixedObject;
1536   // All of the remaining stack allocations are for locals.
1537   AFI->setLocalStackSize(NumBytes - PrologueSaveSize);
1538   bool CombineSPBump = shouldCombineCSRLocalStackBump(MF, NumBytes);
1539   bool HomPrologEpilog = homogeneousPrologEpilog(MF);
1540   if (CombineSPBump) {
1541     assert(!SVEStackSize && "Cannot combine SP bump with SVE");
1542     emitFrameOffset(MBB, MBBI, DL, AArch64::SP, AArch64::SP,
1543                     StackOffset::getFixed(-NumBytes), TII,
1544                     MachineInstr::FrameSetup, false, NeedsWinCFI, &HasWinCFI,
1545                     EmitCFI);
1546     NumBytes = 0;
1547   } else if (HomPrologEpilog) {
1548     // Stack has been already adjusted.
1549     NumBytes -= PrologueSaveSize;
1550   } else if (PrologueSaveSize != 0) {
1551     MBBI = convertCalleeSaveRestoreToSPPrePostIncDec(
1552         MBB, MBBI, DL, TII, -PrologueSaveSize, NeedsWinCFI, &HasWinCFI,
1553         EmitCFI);
1554     NumBytes -= PrologueSaveSize;
1555   }
1556   assert(NumBytes >= 0 && "Negative stack allocation size!?");
1557 
1558   // Move past the saves of the callee-saved registers, fixing up the offsets
1559   // and pre-inc if we decided to combine the callee-save and local stack
1560   // pointer bump above.
1561   MachineBasicBlock::iterator End = MBB.end();
1562   while (MBBI != End && MBBI->getFlag(MachineInstr::FrameSetup) &&
1563          !IsSVECalleeSave(MBBI)) {
1564     if (CombineSPBump)
1565       fixupCalleeSaveRestoreStackOffset(*MBBI, AFI->getLocalStackSize(),
1566                                         NeedsWinCFI, &HasWinCFI);
1567     ++MBBI;
1568   }
1569 
1570   // For funclets the FP belongs to the containing function.
1571   if (!IsFunclet && HasFP) {
1572     // Only set up FP if we actually need to.
1573     int64_t FPOffset = AFI->getCalleeSaveBaseToFrameRecordOffset();
1574 
1575     if (CombineSPBump)
1576       FPOffset += AFI->getLocalStackSize();
1577 
1578     if (AFI->hasSwiftAsyncContext()) {
1579       // Before we update the live FP we have to ensure there's a valid (or
1580       // null) asynchronous context in its slot just before FP in the frame
1581       // record, so store it now.
1582       const auto &Attrs = MF.getFunction().getAttributes();
1583       bool HaveInitialContext = Attrs.hasAttrSomewhere(Attribute::SwiftAsync);
1584       if (HaveInitialContext)
1585         MBB.addLiveIn(AArch64::X22);
1586       BuildMI(MBB, MBBI, DL, TII->get(AArch64::StoreSwiftAsyncContext))
1587           .addUse(HaveInitialContext ? AArch64::X22 : AArch64::XZR)
1588           .addUse(AArch64::SP)
1589           .addImm(FPOffset - 8)
1590           .setMIFlags(MachineInstr::FrameSetup);
1591     }
1592 
1593     if (HomPrologEpilog) {
1594       auto Prolog = MBBI;
1595       --Prolog;
1596       assert(Prolog->getOpcode() == AArch64::HOM_Prolog);
1597       Prolog->addOperand(MachineOperand::CreateImm(FPOffset));
1598     } else {
1599       // Issue    sub fp, sp, FPOffset or
1600       //          mov fp,sp          when FPOffset is zero.
1601       // Note: All stores of callee-saved registers are marked as "FrameSetup".
1602       // This code marks the instruction(s) that set the FP also.
1603       emitFrameOffset(MBB, MBBI, DL, AArch64::FP, AArch64::SP,
1604                       StackOffset::getFixed(FPOffset), TII,
1605                       MachineInstr::FrameSetup, false, NeedsWinCFI, &HasWinCFI);
1606     }
1607     if (EmitCFI) {
1608       // Define the current CFA rule to use the provided FP.
1609       const int OffsetToFirstCalleeSaveFromFP =
1610           AFI->getCalleeSaveBaseToFrameRecordOffset() -
1611           AFI->getCalleeSavedStackSize();
1612       Register FramePtr = RegInfo->getFrameRegister(MF);
1613       unsigned Reg = RegInfo->getDwarfRegNum(FramePtr, true);
1614       unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfa(
1615           nullptr, Reg, FixedObject - OffsetToFirstCalleeSaveFromFP));
1616       BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
1617           .addCFIIndex(CFIIndex)
1618           .setMIFlags(MachineInstr::FrameSetup);
1619     }
1620   }
1621 
1622   // Now emit the moves for whatever callee saved regs we have (including FP,
1623   // LR if those are saved). Frame instructions for SVE register are emitted
1624   // later, after the instruction which actually save SVE regs.
1625   if (EmitCFI)
1626     emitCalleeSavedGPRLocations(MBB, MBBI);
1627 
1628   if (windowsRequiresStackProbe(MF, NumBytes)) {
1629     uint64_t NumWords = NumBytes >> 4;
1630     if (NeedsWinCFI) {
1631       HasWinCFI = true;
1632       // alloc_l can hold at most 256MB, so assume that NumBytes doesn't
1633       // exceed this amount.  We need to move at most 2^24 - 1 into x15.
1634       // This is at most two instructions, MOVZ follwed by MOVK.
1635       // TODO: Fix to use multiple stack alloc unwind codes for stacks
1636       // exceeding 256MB in size.
1637       if (NumBytes >= (1 << 28))
1638         report_fatal_error("Stack size cannot exceed 256MB for stack "
1639                             "unwinding purposes");
1640 
1641       uint32_t LowNumWords = NumWords & 0xFFFF;
1642       BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVZXi), AArch64::X15)
1643             .addImm(LowNumWords)
1644             .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0))
1645             .setMIFlag(MachineInstr::FrameSetup);
1646       BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1647             .setMIFlag(MachineInstr::FrameSetup);
1648       if ((NumWords & 0xFFFF0000) != 0) {
1649           BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVKXi), AArch64::X15)
1650               .addReg(AArch64::X15)
1651               .addImm((NumWords & 0xFFFF0000) >> 16) // High half
1652               .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 16))
1653               .setMIFlag(MachineInstr::FrameSetup);
1654           BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1655             .setMIFlag(MachineInstr::FrameSetup);
1656       }
1657     } else {
1658       BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVi64imm), AArch64::X15)
1659           .addImm(NumWords)
1660           .setMIFlags(MachineInstr::FrameSetup);
1661     }
1662 
1663     switch (MF.getTarget().getCodeModel()) {
1664     case CodeModel::Tiny:
1665     case CodeModel::Small:
1666     case CodeModel::Medium:
1667     case CodeModel::Kernel:
1668       BuildMI(MBB, MBBI, DL, TII->get(AArch64::BL))
1669           .addExternalSymbol("__chkstk")
1670           .addReg(AArch64::X15, RegState::Implicit)
1671           .addReg(AArch64::X16, RegState::Implicit | RegState::Define | RegState::Dead)
1672           .addReg(AArch64::X17, RegState::Implicit | RegState::Define | RegState::Dead)
1673           .addReg(AArch64::NZCV, RegState::Implicit | RegState::Define | RegState::Dead)
1674           .setMIFlags(MachineInstr::FrameSetup);
1675       if (NeedsWinCFI) {
1676         HasWinCFI = true;
1677         BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1678             .setMIFlag(MachineInstr::FrameSetup);
1679       }
1680       break;
1681     case CodeModel::Large:
1682       BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVaddrEXT))
1683           .addReg(AArch64::X16, RegState::Define)
1684           .addExternalSymbol("__chkstk")
1685           .addExternalSymbol("__chkstk")
1686           .setMIFlags(MachineInstr::FrameSetup);
1687       if (NeedsWinCFI) {
1688         HasWinCFI = true;
1689         BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1690             .setMIFlag(MachineInstr::FrameSetup);
1691       }
1692 
1693       BuildMI(MBB, MBBI, DL, TII->get(getBLRCallOpcode(MF)))
1694           .addReg(AArch64::X16, RegState::Kill)
1695           .addReg(AArch64::X15, RegState::Implicit | RegState::Define)
1696           .addReg(AArch64::X16, RegState::Implicit | RegState::Define | RegState::Dead)
1697           .addReg(AArch64::X17, RegState::Implicit | RegState::Define | RegState::Dead)
1698           .addReg(AArch64::NZCV, RegState::Implicit | RegState::Define | RegState::Dead)
1699           .setMIFlags(MachineInstr::FrameSetup);
1700       if (NeedsWinCFI) {
1701         HasWinCFI = true;
1702         BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1703             .setMIFlag(MachineInstr::FrameSetup);
1704       }
1705       break;
1706     }
1707 
1708     BuildMI(MBB, MBBI, DL, TII->get(AArch64::SUBXrx64), AArch64::SP)
1709         .addReg(AArch64::SP, RegState::Kill)
1710         .addReg(AArch64::X15, RegState::Kill)
1711         .addImm(AArch64_AM::getArithExtendImm(AArch64_AM::UXTX, 4))
1712         .setMIFlags(MachineInstr::FrameSetup);
1713     if (NeedsWinCFI) {
1714       HasWinCFI = true;
1715       BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_StackAlloc))
1716           .addImm(NumBytes)
1717           .setMIFlag(MachineInstr::FrameSetup);
1718     }
1719     NumBytes = 0;
1720   }
1721 
1722   StackOffset AllocateBefore = SVEStackSize, AllocateAfter = {};
1723   MachineBasicBlock::iterator CalleeSavesBegin = MBBI, CalleeSavesEnd = MBBI;
1724 
1725   // Process the SVE callee-saves to determine what space needs to be
1726   // allocated.
1727   if (int64_t CalleeSavedSize = AFI->getSVECalleeSavedStackSize()) {
1728     // Find callee save instructions in frame.
1729     CalleeSavesBegin = MBBI;
1730     assert(IsSVECalleeSave(CalleeSavesBegin) && "Unexpected instruction");
1731     while (IsSVECalleeSave(MBBI) && MBBI != MBB.getFirstTerminator())
1732       ++MBBI;
1733     CalleeSavesEnd = MBBI;
1734 
1735     AllocateBefore = StackOffset::getScalable(CalleeSavedSize);
1736     AllocateAfter = SVEStackSize - AllocateBefore;
1737   }
1738 
1739   // Allocate space for the callee saves (if any).
1740   emitFrameOffset(
1741       MBB, CalleeSavesBegin, DL, AArch64::SP, AArch64::SP, -AllocateBefore, TII,
1742       MachineInstr::FrameSetup, false, false, nullptr,
1743       EmitCFI && !HasFP && AllocateBefore,
1744       StackOffset::getFixed((int64_t)MFI.getStackSize() - NumBytes));
1745 
1746   if (EmitCFI)
1747     emitCalleeSavedSVELocations(MBB, CalleeSavesEnd);
1748 
1749   // Finally allocate remaining SVE stack space.
1750   emitFrameOffset(MBB, CalleeSavesEnd, DL, AArch64::SP, AArch64::SP,
1751                   -AllocateAfter, TII, MachineInstr::FrameSetup, false, false,
1752                   nullptr, EmitCFI && !HasFP && AllocateAfter,
1753                   AllocateBefore + StackOffset::getFixed(
1754                                        (int64_t)MFI.getStackSize() - NumBytes));
1755 
1756   // Allocate space for the rest of the frame.
1757   if (NumBytes) {
1758     // Alignment is required for the parent frame, not the funclet
1759     const bool NeedsRealignment =
1760         !IsFunclet && RegInfo->hasStackRealignment(MF);
1761     unsigned scratchSPReg = AArch64::SP;
1762 
1763     if (NeedsRealignment) {
1764       scratchSPReg = findScratchNonCalleeSaveRegister(&MBB);
1765       assert(scratchSPReg != AArch64::NoRegister);
1766     }
1767 
1768     // If we're a leaf function, try using the red zone.
1769     if (!canUseRedZone(MF)) {
1770       // FIXME: in the case of dynamic re-alignment, NumBytes doesn't have
1771       // the correct value here, as NumBytes also includes padding bytes,
1772       // which shouldn't be counted here.
1773       emitFrameOffset(
1774           MBB, MBBI, DL, scratchSPReg, AArch64::SP,
1775           StackOffset::getFixed(-NumBytes), TII, MachineInstr::FrameSetup,
1776           false, NeedsWinCFI, &HasWinCFI, EmitCFI && !HasFP,
1777           SVEStackSize +
1778               StackOffset::getFixed((int64_t)MFI.getStackSize() - NumBytes));
1779     }
1780     if (NeedsRealignment) {
1781       const unsigned NrBitsToZero = Log2(MFI.getMaxAlign());
1782       assert(NrBitsToZero > 1);
1783       assert(scratchSPReg != AArch64::SP);
1784 
1785       // SUB X9, SP, NumBytes
1786       //   -- X9 is temporary register, so shouldn't contain any live data here,
1787       //   -- free to use. This is already produced by emitFrameOffset above.
1788       // AND SP, X9, 0b11111...0000
1789       // The logical immediates have a non-trivial encoding. The following
1790       // formula computes the encoded immediate with all ones but
1791       // NrBitsToZero zero bits as least significant bits.
1792       uint32_t andMaskEncoded = (1 << 12)                         // = N
1793                                 | ((64 - NrBitsToZero) << 6)      // immr
1794                                 | ((64 - NrBitsToZero - 1) << 0); // imms
1795 
1796       BuildMI(MBB, MBBI, DL, TII->get(AArch64::ANDXri), AArch64::SP)
1797           .addReg(scratchSPReg, RegState::Kill)
1798           .addImm(andMaskEncoded);
1799       AFI->setStackRealigned(true);
1800       if (NeedsWinCFI) {
1801         HasWinCFI = true;
1802         BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_StackAlloc))
1803             .addImm(NumBytes & andMaskEncoded)
1804             .setMIFlag(MachineInstr::FrameSetup);
1805       }
1806     }
1807   }
1808 
1809   // If we need a base pointer, set it up here. It's whatever the value of the
1810   // stack pointer is at this point. Any variable size objects will be allocated
1811   // after this, so we can still use the base pointer to reference locals.
1812   //
1813   // FIXME: Clarify FrameSetup flags here.
1814   // Note: Use emitFrameOffset() like above for FP if the FrameSetup flag is
1815   // needed.
1816   // For funclets the BP belongs to the containing function.
1817   if (!IsFunclet && RegInfo->hasBasePointer(MF)) {
1818     TII->copyPhysReg(MBB, MBBI, DL, RegInfo->getBaseRegister(), AArch64::SP,
1819                      false);
1820     if (NeedsWinCFI) {
1821       HasWinCFI = true;
1822       BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1823           .setMIFlag(MachineInstr::FrameSetup);
1824     }
1825   }
1826 
1827   // The very last FrameSetup instruction indicates the end of prologue. Emit a
1828   // SEH opcode indicating the prologue end.
1829   if (NeedsWinCFI && HasWinCFI) {
1830     BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_PrologEnd))
1831         .setMIFlag(MachineInstr::FrameSetup);
1832   }
1833 
1834   // SEH funclets are passed the frame pointer in X1.  If the parent
1835   // function uses the base register, then the base register is used
1836   // directly, and is not retrieved from X1.
1837   if (IsFunclet && F.hasPersonalityFn()) {
1838     EHPersonality Per = classifyEHPersonality(F.getPersonalityFn());
1839     if (isAsynchronousEHPersonality(Per)) {
1840       BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::COPY), AArch64::FP)
1841           .addReg(AArch64::X1)
1842           .setMIFlag(MachineInstr::FrameSetup);
1843       MBB.addLiveIn(AArch64::X1);
1844     }
1845   }
1846 }
1847 
1848 static void InsertReturnAddressAuth(MachineFunction &MF,
1849                                     MachineBasicBlock &MBB) {
1850   const auto &MFI = *MF.getInfo<AArch64FunctionInfo>();
1851   if (!MFI.shouldSignReturnAddress())
1852     return;
1853   const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
1854   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1855 
1856   MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
1857   DebugLoc DL;
1858   if (MBBI != MBB.end())
1859     DL = MBBI->getDebugLoc();
1860 
1861   // The AUTIASP instruction assembles to a hint instruction before v8.3a so
1862   // this instruction can safely used for any v8a architecture.
1863   // From v8.3a onwards there are optimised authenticate LR and return
1864   // instructions, namely RETA{A,B}, that can be used instead. In this case the
1865   // DW_CFA_AARCH64_negate_ra_state can't be emitted.
1866   if (Subtarget.hasPAuth() && MBBI != MBB.end() &&
1867       MBBI->getOpcode() == AArch64::RET_ReallyLR) {
1868     BuildMI(MBB, MBBI, DL,
1869             TII->get(MFI.shouldSignWithBKey() ? AArch64::RETAB : AArch64::RETAA))
1870         .copyImplicitOps(*MBBI);
1871     MBB.erase(MBBI);
1872   } else {
1873     BuildMI(
1874         MBB, MBBI, DL,
1875         TII->get(MFI.shouldSignWithBKey() ? AArch64::AUTIBSP : AArch64::AUTIASP))
1876         .setMIFlag(MachineInstr::FrameDestroy);
1877 
1878     unsigned CFIIndex =
1879         MF.addFrameInst(MCCFIInstruction::createNegateRAState(nullptr));
1880     BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
1881         .addCFIIndex(CFIIndex)
1882         .setMIFlags(MachineInstr::FrameDestroy);
1883   }
1884 }
1885 
1886 static bool isFuncletReturnInstr(const MachineInstr &MI) {
1887   switch (MI.getOpcode()) {
1888   default:
1889     return false;
1890   case AArch64::CATCHRET:
1891   case AArch64::CLEANUPRET:
1892     return true;
1893   }
1894 }
1895 
1896 void AArch64FrameLowering::emitEpilogue(MachineFunction &MF,
1897                                         MachineBasicBlock &MBB) const {
1898   MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
1899   MachineFrameInfo &MFI = MF.getFrameInfo();
1900   const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
1901   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1902   DebugLoc DL;
1903   bool NeedsWinCFI = needsWinCFI(MF);
1904   bool EmitCFI = MF.getInfo<AArch64FunctionInfo>()->needsAsyncDwarfUnwindInfo();
1905   bool HasWinCFI = false;
1906   bool IsFunclet = false;
1907   auto WinCFI = make_scope_exit([&]() { assert(HasWinCFI == MF.hasWinCFI()); });
1908 
1909   if (MBB.end() != MBBI) {
1910     DL = MBBI->getDebugLoc();
1911     IsFunclet = isFuncletReturnInstr(*MBBI);
1912   }
1913 
1914   auto FinishingTouches = make_scope_exit([&]() {
1915     InsertReturnAddressAuth(MF, MBB);
1916     if (needsShadowCallStackPrologueEpilogue(MF))
1917       emitShadowCallStackEpilogue(*TII, MF, MBB, MBB.getFirstTerminator(), DL);
1918     if (EmitCFI)
1919       emitCalleeSavedGPRRestores(MBB, MBB.getFirstTerminator());
1920   });
1921 
1922   int64_t NumBytes = IsFunclet ? getWinEHFuncletFrameSize(MF)
1923                                : MFI.getStackSize();
1924   AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
1925 
1926   // All calls are tail calls in GHC calling conv, and functions have no
1927   // prologue/epilogue.
1928   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
1929     return;
1930 
1931   // How much of the stack used by incoming arguments this function is expected
1932   // to restore in this particular epilogue.
1933   int64_t ArgumentStackToRestore = getArgumentStackToRestore(MF, MBB);
1934   bool IsWin64 =
1935       Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv());
1936   unsigned FixedObject = getFixedObjectSize(MF, AFI, IsWin64, IsFunclet);
1937 
1938   int64_t AfterCSRPopSize = ArgumentStackToRestore;
1939   auto PrologueSaveSize = AFI->getCalleeSavedStackSize() + FixedObject;
1940   // We cannot rely on the local stack size set in emitPrologue if the function
1941   // has funclets, as funclets have different local stack size requirements, and
1942   // the current value set in emitPrologue may be that of the containing
1943   // function.
1944   if (MF.hasEHFunclets())
1945     AFI->setLocalStackSize(NumBytes - PrologueSaveSize);
1946   if (homogeneousPrologEpilog(MF, &MBB)) {
1947     assert(!NeedsWinCFI);
1948     auto LastPopI = MBB.getFirstTerminator();
1949     if (LastPopI != MBB.begin()) {
1950       auto HomogeneousEpilog = std::prev(LastPopI);
1951       if (HomogeneousEpilog->getOpcode() == AArch64::HOM_Epilog)
1952         LastPopI = HomogeneousEpilog;
1953     }
1954 
1955     // Adjust local stack
1956     emitFrameOffset(MBB, LastPopI, DL, AArch64::SP, AArch64::SP,
1957                     StackOffset::getFixed(AFI->getLocalStackSize()), TII,
1958                     MachineInstr::FrameDestroy, false, NeedsWinCFI);
1959 
1960     // SP has been already adjusted while restoring callee save regs.
1961     // We've bailed-out the case with adjusting SP for arguments.
1962     assert(AfterCSRPopSize == 0);
1963     return;
1964   }
1965   bool CombineSPBump = shouldCombineCSRLocalStackBumpInEpilogue(MBB, NumBytes);
1966   // Assume we can't combine the last pop with the sp restore.
1967 
1968   bool CombineAfterCSRBump = false;
1969   if (!CombineSPBump && PrologueSaveSize != 0) {
1970     MachineBasicBlock::iterator Pop = std::prev(MBB.getFirstTerminator());
1971     while (Pop->getOpcode() == TargetOpcode::CFI_INSTRUCTION ||
1972            AArch64InstrInfo::isSEHInstruction(*Pop))
1973       Pop = std::prev(Pop);
1974     // Converting the last ldp to a post-index ldp is valid only if the last
1975     // ldp's offset is 0.
1976     const MachineOperand &OffsetOp = Pop->getOperand(Pop->getNumOperands() - 1);
1977     // If the offset is 0 and the AfterCSR pop is not actually trying to
1978     // allocate more stack for arguments (in space that an untimely interrupt
1979     // may clobber), convert it to a post-index ldp.
1980     if (OffsetOp.getImm() == 0 && AfterCSRPopSize >= 0) {
1981       convertCalleeSaveRestoreToSPPrePostIncDec(
1982           MBB, Pop, DL, TII, PrologueSaveSize, NeedsWinCFI, &HasWinCFI, EmitCFI,
1983           MachineInstr::FrameDestroy, PrologueSaveSize);
1984     } else {
1985       // If not, make sure to emit an add after the last ldp.
1986       // We're doing this by transfering the size to be restored from the
1987       // adjustment *before* the CSR pops to the adjustment *after* the CSR
1988       // pops.
1989       AfterCSRPopSize += PrologueSaveSize;
1990       CombineAfterCSRBump = true;
1991     }
1992   }
1993 
1994   // Move past the restores of the callee-saved registers.
1995   // If we plan on combining the sp bump of the local stack size and the callee
1996   // save stack size, we might need to adjust the CSR save and restore offsets.
1997   MachineBasicBlock::iterator LastPopI = MBB.getFirstTerminator();
1998   MachineBasicBlock::iterator Begin = MBB.begin();
1999   while (LastPopI != Begin) {
2000     --LastPopI;
2001     if (!LastPopI->getFlag(MachineInstr::FrameDestroy) ||
2002         IsSVECalleeSave(LastPopI)) {
2003       ++LastPopI;
2004       break;
2005     } else if (CombineSPBump)
2006       fixupCalleeSaveRestoreStackOffset(*LastPopI, AFI->getLocalStackSize(),
2007                                         NeedsWinCFI, &HasWinCFI);
2008   }
2009 
2010   if (MF.hasWinCFI()) {
2011     // If the prologue didn't contain any SEH opcodes and didn't set the
2012     // MF.hasWinCFI() flag, assume the epilogue won't either, and skip the
2013     // EpilogStart - to avoid generating CFI for functions that don't need it.
2014     // (And as we didn't generate any prologue at all, it would be asymmetrical
2015     // to the epilogue.) By the end of the function, we assert that
2016     // HasWinCFI is equal to MF.hasWinCFI(), to verify this assumption.
2017     HasWinCFI = true;
2018     BuildMI(MBB, LastPopI, DL, TII->get(AArch64::SEH_EpilogStart))
2019         .setMIFlag(MachineInstr::FrameDestroy);
2020   }
2021 
2022   if (hasFP(MF) && AFI->hasSwiftAsyncContext()) {
2023     switch (MF.getTarget().Options.SwiftAsyncFramePointer) {
2024     case SwiftAsyncFramePointerMode::DeploymentBased:
2025       // Avoid the reload as it is GOT relative, and instead fall back to the
2026       // hardcoded value below.  This allows a mismatch between the OS and
2027       // application without immediately terminating on the difference.
2028       LLVM_FALLTHROUGH;
2029     case SwiftAsyncFramePointerMode::Always:
2030       // We need to reset FP to its untagged state on return. Bit 60 is
2031       // currently used to show the presence of an extended frame.
2032 
2033       // BIC x29, x29, #0x1000_0000_0000_0000
2034       BuildMI(MBB, MBB.getFirstTerminator(), DL, TII->get(AArch64::ANDXri),
2035               AArch64::FP)
2036           .addUse(AArch64::FP)
2037           .addImm(0x10fe)
2038           .setMIFlag(MachineInstr::FrameDestroy);
2039       break;
2040 
2041     case SwiftAsyncFramePointerMode::Never:
2042       break;
2043     }
2044   }
2045 
2046   const StackOffset &SVEStackSize = getSVEStackSize(MF);
2047 
2048   // If there is a single SP update, insert it before the ret and we're done.
2049   if (CombineSPBump) {
2050     assert(!SVEStackSize && "Cannot combine SP bump with SVE");
2051 
2052     // When we are about to restore the CSRs, the CFA register is SP again.
2053     if (EmitCFI && hasFP(MF)) {
2054       const AArch64RegisterInfo &RegInfo = *Subtarget.getRegisterInfo();
2055       unsigned Reg = RegInfo.getDwarfRegNum(AArch64::SP, true);
2056       unsigned CFIIndex =
2057           MF.addFrameInst(MCCFIInstruction::cfiDefCfa(nullptr, Reg, NumBytes));
2058       BuildMI(MBB, LastPopI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
2059           .addCFIIndex(CFIIndex)
2060           .setMIFlags(MachineInstr::FrameDestroy);
2061     }
2062 
2063     emitFrameOffset(MBB, MBB.getFirstTerminator(), DL, AArch64::SP, AArch64::SP,
2064                     StackOffset::getFixed(NumBytes + (int64_t)AfterCSRPopSize),
2065                     TII, MachineInstr::FrameDestroy, false, NeedsWinCFI,
2066                     &HasWinCFI, EmitCFI, StackOffset::getFixed(NumBytes));
2067     if (HasWinCFI)
2068       BuildMI(MBB, MBB.getFirstTerminator(), DL,
2069               TII->get(AArch64::SEH_EpilogEnd))
2070           .setMIFlag(MachineInstr::FrameDestroy);
2071     return;
2072   }
2073 
2074   NumBytes -= PrologueSaveSize;
2075   assert(NumBytes >= 0 && "Negative stack allocation size!?");
2076 
2077   // Process the SVE callee-saves to determine what space needs to be
2078   // deallocated.
2079   StackOffset DeallocateBefore = {}, DeallocateAfter = SVEStackSize;
2080   MachineBasicBlock::iterator RestoreBegin = LastPopI, RestoreEnd = LastPopI;
2081   if (int64_t CalleeSavedSize = AFI->getSVECalleeSavedStackSize()) {
2082     RestoreBegin = std::prev(RestoreEnd);
2083     while (RestoreBegin != MBB.begin() &&
2084            IsSVECalleeSave(std::prev(RestoreBegin)))
2085       --RestoreBegin;
2086 
2087     assert(IsSVECalleeSave(RestoreBegin) &&
2088            IsSVECalleeSave(std::prev(RestoreEnd)) && "Unexpected instruction");
2089 
2090     StackOffset CalleeSavedSizeAsOffset =
2091         StackOffset::getScalable(CalleeSavedSize);
2092     DeallocateBefore = SVEStackSize - CalleeSavedSizeAsOffset;
2093     DeallocateAfter = CalleeSavedSizeAsOffset;
2094   }
2095 
2096   // Deallocate the SVE area.
2097   if (SVEStackSize) {
2098     // If we have stack realignment or variable sized objects on the stack,
2099     // restore the stack pointer from the frame pointer prior to SVE CSR
2100     // restoration.
2101     if (AFI->isStackRealigned() || MFI.hasVarSizedObjects()) {
2102       if (int64_t CalleeSavedSize = AFI->getSVECalleeSavedStackSize()) {
2103         // Set SP to start of SVE callee-save area from which they can
2104         // be reloaded. The code below will deallocate the stack space
2105         // space by moving FP -> SP.
2106         emitFrameOffset(MBB, RestoreBegin, DL, AArch64::SP, AArch64::FP,
2107                         StackOffset::getScalable(-CalleeSavedSize), TII,
2108                         MachineInstr::FrameDestroy);
2109       }
2110     } else {
2111       if (AFI->getSVECalleeSavedStackSize()) {
2112         // Deallocate the non-SVE locals first before we can deallocate (and
2113         // restore callee saves) from the SVE area.
2114         emitFrameOffset(
2115             MBB, RestoreBegin, DL, AArch64::SP, AArch64::SP,
2116             StackOffset::getFixed(NumBytes), TII, MachineInstr::FrameDestroy,
2117             false, false, nullptr, EmitCFI && !hasFP(MF),
2118             SVEStackSize + StackOffset::getFixed(NumBytes + PrologueSaveSize));
2119         NumBytes = 0;
2120       }
2121 
2122       emitFrameOffset(MBB, RestoreBegin, DL, AArch64::SP, AArch64::SP,
2123                       DeallocateBefore, TII, MachineInstr::FrameDestroy, false,
2124                       false, nullptr, EmitCFI && !hasFP(MF),
2125                       SVEStackSize +
2126                           StackOffset::getFixed(NumBytes + PrologueSaveSize));
2127 
2128       emitFrameOffset(MBB, RestoreEnd, DL, AArch64::SP, AArch64::SP,
2129                       DeallocateAfter, TII, MachineInstr::FrameDestroy, false,
2130                       false, nullptr, EmitCFI && !hasFP(MF),
2131                       DeallocateAfter +
2132                           StackOffset::getFixed(NumBytes + PrologueSaveSize));
2133     }
2134     if (EmitCFI)
2135       emitCalleeSavedSVERestores(MBB, RestoreEnd);
2136   }
2137 
2138   if (!hasFP(MF)) {
2139     bool RedZone = canUseRedZone(MF);
2140     // If this was a redzone leaf function, we don't need to restore the
2141     // stack pointer (but we may need to pop stack args for fastcc).
2142     if (RedZone && AfterCSRPopSize == 0)
2143       return;
2144 
2145     // Pop the local variables off the stack. If there are no callee-saved
2146     // registers, it means we are actually positioned at the terminator and can
2147     // combine stack increment for the locals and the stack increment for
2148     // callee-popped arguments into (possibly) a single instruction and be done.
2149     bool NoCalleeSaveRestore = PrologueSaveSize == 0;
2150     int64_t StackRestoreBytes = RedZone ? 0 : NumBytes;
2151     if (NoCalleeSaveRestore)
2152       StackRestoreBytes += AfterCSRPopSize;
2153 
2154     emitFrameOffset(
2155         MBB, LastPopI, DL, AArch64::SP, AArch64::SP,
2156         StackOffset::getFixed(StackRestoreBytes), TII,
2157         MachineInstr::FrameDestroy, false, NeedsWinCFI, &HasWinCFI, EmitCFI,
2158         StackOffset::getFixed((RedZone ? 0 : NumBytes) + PrologueSaveSize));
2159 
2160     // If we were able to combine the local stack pop with the argument pop,
2161     // then we're done.
2162     if (NoCalleeSaveRestore || AfterCSRPopSize == 0) {
2163       if (HasWinCFI) {
2164         BuildMI(MBB, MBB.getFirstTerminator(), DL,
2165                 TII->get(AArch64::SEH_EpilogEnd))
2166             .setMIFlag(MachineInstr::FrameDestroy);
2167       }
2168       return;
2169     }
2170 
2171     NumBytes = 0;
2172   }
2173 
2174   // Restore the original stack pointer.
2175   // FIXME: Rather than doing the math here, we should instead just use
2176   // non-post-indexed loads for the restores if we aren't actually going to
2177   // be able to save any instructions.
2178   if (!IsFunclet && (MFI.hasVarSizedObjects() || AFI->isStackRealigned())) {
2179     emitFrameOffset(
2180         MBB, LastPopI, DL, AArch64::SP, AArch64::FP,
2181         StackOffset::getFixed(-AFI->getCalleeSaveBaseToFrameRecordOffset()),
2182         TII, MachineInstr::FrameDestroy, false, NeedsWinCFI);
2183   } else if (NumBytes)
2184     emitFrameOffset(MBB, LastPopI, DL, AArch64::SP, AArch64::SP,
2185                     StackOffset::getFixed(NumBytes), TII,
2186                     MachineInstr::FrameDestroy, false, NeedsWinCFI);
2187 
2188   // When we are about to restore the CSRs, the CFA register is SP again.
2189   if (EmitCFI && hasFP(MF)) {
2190     const AArch64RegisterInfo &RegInfo = *Subtarget.getRegisterInfo();
2191     unsigned Reg = RegInfo.getDwarfRegNum(AArch64::SP, true);
2192     unsigned CFIIndex = MF.addFrameInst(
2193         MCCFIInstruction::cfiDefCfa(nullptr, Reg, PrologueSaveSize));
2194     BuildMI(MBB, LastPopI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
2195         .addCFIIndex(CFIIndex)
2196         .setMIFlags(MachineInstr::FrameDestroy);
2197   }
2198 
2199   // This must be placed after the callee-save restore code because that code
2200   // assumes the SP is at the same location as it was after the callee-save save
2201   // code in the prologue.
2202   if (AfterCSRPopSize) {
2203     assert(AfterCSRPopSize > 0 && "attempting to reallocate arg stack that an "
2204                                   "interrupt may have clobbered");
2205 
2206     emitFrameOffset(
2207         MBB, MBB.getFirstTerminator(), DL, AArch64::SP, AArch64::SP,
2208         StackOffset::getFixed(AfterCSRPopSize), TII, MachineInstr::FrameDestroy,
2209         false, NeedsWinCFI, &HasWinCFI, EmitCFI,
2210         StackOffset::getFixed(CombineAfterCSRBump ? PrologueSaveSize : 0));
2211   }
2212   if (HasWinCFI)
2213     BuildMI(MBB, MBB.getFirstTerminator(), DL, TII->get(AArch64::SEH_EpilogEnd))
2214         .setMIFlag(MachineInstr::FrameDestroy);
2215 }
2216 
2217 /// getFrameIndexReference - Provide a base+offset reference to an FI slot for
2218 /// debug info.  It's the same as what we use for resolving the code-gen
2219 /// references for now.  FIXME: This can go wrong when references are
2220 /// SP-relative and simple call frames aren't used.
2221 StackOffset
2222 AArch64FrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI,
2223                                              Register &FrameReg) const {
2224   return resolveFrameIndexReference(
2225       MF, FI, FrameReg,
2226       /*PreferFP=*/
2227       MF.getFunction().hasFnAttribute(Attribute::SanitizeHWAddress),
2228       /*ForSimm=*/false);
2229 }
2230 
2231 StackOffset
2232 AArch64FrameLowering::getNonLocalFrameIndexReference(const MachineFunction &MF,
2233                                                      int FI) const {
2234   return StackOffset::getFixed(getSEHFrameIndexOffset(MF, FI));
2235 }
2236 
2237 static StackOffset getFPOffset(const MachineFunction &MF,
2238                                int64_t ObjectOffset) {
2239   const auto *AFI = MF.getInfo<AArch64FunctionInfo>();
2240   const auto &Subtarget = MF.getSubtarget<AArch64Subtarget>();
2241   bool IsWin64 =
2242       Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv());
2243   unsigned FixedObject =
2244       getFixedObjectSize(MF, AFI, IsWin64, /*IsFunclet=*/false);
2245   int64_t CalleeSaveSize = AFI->getCalleeSavedStackSize(MF.getFrameInfo());
2246   int64_t FPAdjust =
2247       CalleeSaveSize - AFI->getCalleeSaveBaseToFrameRecordOffset();
2248   return StackOffset::getFixed(ObjectOffset + FixedObject + FPAdjust);
2249 }
2250 
2251 static StackOffset getStackOffset(const MachineFunction &MF,
2252                                   int64_t ObjectOffset) {
2253   const auto &MFI = MF.getFrameInfo();
2254   return StackOffset::getFixed(ObjectOffset + (int64_t)MFI.getStackSize());
2255 }
2256 
2257   // TODO: This function currently does not work for scalable vectors.
2258 int AArch64FrameLowering::getSEHFrameIndexOffset(const MachineFunction &MF,
2259                                                  int FI) const {
2260   const auto *RegInfo = static_cast<const AArch64RegisterInfo *>(
2261       MF.getSubtarget().getRegisterInfo());
2262   int ObjectOffset = MF.getFrameInfo().getObjectOffset(FI);
2263   return RegInfo->getLocalAddressRegister(MF) == AArch64::FP
2264              ? getFPOffset(MF, ObjectOffset).getFixed()
2265              : getStackOffset(MF, ObjectOffset).getFixed();
2266 }
2267 
2268 StackOffset AArch64FrameLowering::resolveFrameIndexReference(
2269     const MachineFunction &MF, int FI, Register &FrameReg, bool PreferFP,
2270     bool ForSimm) const {
2271   const auto &MFI = MF.getFrameInfo();
2272   int64_t ObjectOffset = MFI.getObjectOffset(FI);
2273   bool isFixed = MFI.isFixedObjectIndex(FI);
2274   bool isSVE = MFI.getStackID(FI) == TargetStackID::ScalableVector;
2275   return resolveFrameOffsetReference(MF, ObjectOffset, isFixed, isSVE, FrameReg,
2276                                      PreferFP, ForSimm);
2277 }
2278 
2279 StackOffset AArch64FrameLowering::resolveFrameOffsetReference(
2280     const MachineFunction &MF, int64_t ObjectOffset, bool isFixed, bool isSVE,
2281     Register &FrameReg, bool PreferFP, bool ForSimm) const {
2282   const auto &MFI = MF.getFrameInfo();
2283   const auto *RegInfo = static_cast<const AArch64RegisterInfo *>(
2284       MF.getSubtarget().getRegisterInfo());
2285   const auto *AFI = MF.getInfo<AArch64FunctionInfo>();
2286   const auto &Subtarget = MF.getSubtarget<AArch64Subtarget>();
2287 
2288   int64_t FPOffset = getFPOffset(MF, ObjectOffset).getFixed();
2289   int64_t Offset = getStackOffset(MF, ObjectOffset).getFixed();
2290   bool isCSR =
2291       !isFixed && ObjectOffset >= -((int)AFI->getCalleeSavedStackSize(MFI));
2292 
2293   const StackOffset &SVEStackSize = getSVEStackSize(MF);
2294 
2295   // Use frame pointer to reference fixed objects. Use it for locals if
2296   // there are VLAs or a dynamically realigned SP (and thus the SP isn't
2297   // reliable as a base). Make sure useFPForScavengingIndex() does the
2298   // right thing for the emergency spill slot.
2299   bool UseFP = false;
2300   if (AFI->hasStackFrame() && !isSVE) {
2301     // We shouldn't prefer using the FP to access fixed-sized stack objects when
2302     // there are scalable (SVE) objects in between the FP and the fixed-sized
2303     // objects.
2304     PreferFP &= !SVEStackSize;
2305 
2306     // Note: Keeping the following as multiple 'if' statements rather than
2307     // merging to a single expression for readability.
2308     //
2309     // Argument access should always use the FP.
2310     if (isFixed) {
2311       UseFP = hasFP(MF);
2312     } else if (isCSR && RegInfo->hasStackRealignment(MF)) {
2313       // References to the CSR area must use FP if we're re-aligning the stack
2314       // since the dynamically-sized alignment padding is between the SP/BP and
2315       // the CSR area.
2316       assert(hasFP(MF) && "Re-aligned stack must have frame pointer");
2317       UseFP = true;
2318     } else if (hasFP(MF) && !RegInfo->hasStackRealignment(MF)) {
2319       // If the FPOffset is negative and we're producing a signed immediate, we
2320       // have to keep in mind that the available offset range for negative
2321       // offsets is smaller than for positive ones. If an offset is available
2322       // via the FP and the SP, use whichever is closest.
2323       bool FPOffsetFits = !ForSimm || FPOffset >= -256;
2324       PreferFP |= Offset > -FPOffset && !SVEStackSize;
2325 
2326       if (MFI.hasVarSizedObjects()) {
2327         // If we have variable sized objects, we can use either FP or BP, as the
2328         // SP offset is unknown. We can use the base pointer if we have one and
2329         // FP is not preferred. If not, we're stuck with using FP.
2330         bool CanUseBP = RegInfo->hasBasePointer(MF);
2331         if (FPOffsetFits && CanUseBP) // Both are ok. Pick the best.
2332           UseFP = PreferFP;
2333         else if (!CanUseBP) // Can't use BP. Forced to use FP.
2334           UseFP = true;
2335         // else we can use BP and FP, but the offset from FP won't fit.
2336         // That will make us scavenge registers which we can probably avoid by
2337         // using BP. If it won't fit for BP either, we'll scavenge anyway.
2338       } else if (FPOffset >= 0) {
2339         // Use SP or FP, whichever gives us the best chance of the offset
2340         // being in range for direct access. If the FPOffset is positive,
2341         // that'll always be best, as the SP will be even further away.
2342         UseFP = true;
2343       } else if (MF.hasEHFunclets() && !RegInfo->hasBasePointer(MF)) {
2344         // Funclets access the locals contained in the parent's stack frame
2345         // via the frame pointer, so we have to use the FP in the parent
2346         // function.
2347         (void) Subtarget;
2348         assert(
2349             Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv()) &&
2350             "Funclets should only be present on Win64");
2351         UseFP = true;
2352       } else {
2353         // We have the choice between FP and (SP or BP).
2354         if (FPOffsetFits && PreferFP) // If FP is the best fit, use it.
2355           UseFP = true;
2356       }
2357     }
2358   }
2359 
2360   assert(
2361       ((isFixed || isCSR) || !RegInfo->hasStackRealignment(MF) || !UseFP) &&
2362       "In the presence of dynamic stack pointer realignment, "
2363       "non-argument/CSR objects cannot be accessed through the frame pointer");
2364 
2365   if (isSVE) {
2366     StackOffset FPOffset =
2367         StackOffset::get(-AFI->getCalleeSaveBaseToFrameRecordOffset(), ObjectOffset);
2368     StackOffset SPOffset =
2369         SVEStackSize +
2370         StackOffset::get(MFI.getStackSize() - AFI->getCalleeSavedStackSize(),
2371                          ObjectOffset);
2372     // Always use the FP for SVE spills if available and beneficial.
2373     if (hasFP(MF) && (SPOffset.getFixed() ||
2374                       FPOffset.getScalable() < SPOffset.getScalable() ||
2375                       RegInfo->hasStackRealignment(MF))) {
2376       FrameReg = RegInfo->getFrameRegister(MF);
2377       return FPOffset;
2378     }
2379 
2380     FrameReg = RegInfo->hasBasePointer(MF) ? RegInfo->getBaseRegister()
2381                                            : (unsigned)AArch64::SP;
2382     return SPOffset;
2383   }
2384 
2385   StackOffset ScalableOffset = {};
2386   if (UseFP && !(isFixed || isCSR))
2387     ScalableOffset = -SVEStackSize;
2388   if (!UseFP && (isFixed || isCSR))
2389     ScalableOffset = SVEStackSize;
2390 
2391   if (UseFP) {
2392     FrameReg = RegInfo->getFrameRegister(MF);
2393     return StackOffset::getFixed(FPOffset) + ScalableOffset;
2394   }
2395 
2396   // Use the base pointer if we have one.
2397   if (RegInfo->hasBasePointer(MF))
2398     FrameReg = RegInfo->getBaseRegister();
2399   else {
2400     assert(!MFI.hasVarSizedObjects() &&
2401            "Can't use SP when we have var sized objects.");
2402     FrameReg = AArch64::SP;
2403     // If we're using the red zone for this function, the SP won't actually
2404     // be adjusted, so the offsets will be negative. They're also all
2405     // within range of the signed 9-bit immediate instructions.
2406     if (canUseRedZone(MF))
2407       Offset -= AFI->getLocalStackSize();
2408   }
2409 
2410   return StackOffset::getFixed(Offset) + ScalableOffset;
2411 }
2412 
2413 static unsigned getPrologueDeath(MachineFunction &MF, unsigned Reg) {
2414   // Do not set a kill flag on values that are also marked as live-in. This
2415   // happens with the @llvm-returnaddress intrinsic and with arguments passed in
2416   // callee saved registers.
2417   // Omitting the kill flags is conservatively correct even if the live-in
2418   // is not used after all.
2419   bool IsLiveIn = MF.getRegInfo().isLiveIn(Reg);
2420   return getKillRegState(!IsLiveIn);
2421 }
2422 
2423 static bool produceCompactUnwindFrame(MachineFunction &MF) {
2424   const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
2425   AttributeList Attrs = MF.getFunction().getAttributes();
2426   return Subtarget.isTargetMachO() &&
2427          !(Subtarget.getTargetLowering()->supportSwiftError() &&
2428            Attrs.hasAttrSomewhere(Attribute::SwiftError)) &&
2429          MF.getFunction().getCallingConv() != CallingConv::SwiftTail;
2430 }
2431 
2432 static bool invalidateWindowsRegisterPairing(unsigned Reg1, unsigned Reg2,
2433                                              bool NeedsWinCFI, bool IsFirst) {
2434   // If we are generating register pairs for a Windows function that requires
2435   // EH support, then pair consecutive registers only.  There are no unwind
2436   // opcodes for saves/restores of non-consectuve register pairs.
2437   // The unwind opcodes are save_regp, save_regp_x, save_fregp, save_frepg_x,
2438   // save_lrpair.
2439   // https://docs.microsoft.com/en-us/cpp/build/arm64-exception-handling
2440 
2441   if (Reg2 == AArch64::FP)
2442     return true;
2443   if (!NeedsWinCFI)
2444     return false;
2445   if (Reg2 == Reg1 + 1)
2446     return false;
2447   // If pairing a GPR with LR, the pair can be described by the save_lrpair
2448   // opcode. If this is the first register pair, it would end up with a
2449   // predecrement, but there's no save_lrpair_x opcode, so we can only do this
2450   // if LR is paired with something else than the first register.
2451   // The save_lrpair opcode requires the first register to be an odd one.
2452   if (Reg1 >= AArch64::X19 && Reg1 <= AArch64::X27 &&
2453       (Reg1 - AArch64::X19) % 2 == 0 && Reg2 == AArch64::LR && !IsFirst)
2454     return false;
2455   return true;
2456 }
2457 
2458 /// Returns true if Reg1 and Reg2 cannot be paired using a ldp/stp instruction.
2459 /// WindowsCFI requires that only consecutive registers can be paired.
2460 /// LR and FP need to be allocated together when the frame needs to save
2461 /// the frame-record. This means any other register pairing with LR is invalid.
2462 static bool invalidateRegisterPairing(unsigned Reg1, unsigned Reg2,
2463                                       bool UsesWinAAPCS, bool NeedsWinCFI,
2464                                       bool NeedsFrameRecord, bool IsFirst) {
2465   if (UsesWinAAPCS)
2466     return invalidateWindowsRegisterPairing(Reg1, Reg2, NeedsWinCFI, IsFirst);
2467 
2468   // If we need to store the frame record, don't pair any register
2469   // with LR other than FP.
2470   if (NeedsFrameRecord)
2471     return Reg2 == AArch64::LR;
2472 
2473   return false;
2474 }
2475 
2476 namespace {
2477 
2478 struct RegPairInfo {
2479   unsigned Reg1 = AArch64::NoRegister;
2480   unsigned Reg2 = AArch64::NoRegister;
2481   int FrameIdx;
2482   int Offset;
2483   enum RegType { GPR, FPR64, FPR128, PPR, ZPR } Type;
2484 
2485   RegPairInfo() = default;
2486 
2487   bool isPaired() const { return Reg2 != AArch64::NoRegister; }
2488 
2489   unsigned getScale() const {
2490     switch (Type) {
2491     case PPR:
2492       return 2;
2493     case GPR:
2494     case FPR64:
2495       return 8;
2496     case ZPR:
2497     case FPR128:
2498       return 16;
2499     }
2500     llvm_unreachable("Unsupported type");
2501   }
2502 
2503   bool isScalable() const { return Type == PPR || Type == ZPR; }
2504 };
2505 
2506 } // end anonymous namespace
2507 
2508 static void computeCalleeSaveRegisterPairs(
2509     MachineFunction &MF, ArrayRef<CalleeSavedInfo> CSI,
2510     const TargetRegisterInfo *TRI, SmallVectorImpl<RegPairInfo> &RegPairs,
2511     bool NeedsFrameRecord) {
2512 
2513   if (CSI.empty())
2514     return;
2515 
2516   bool IsWindows = isTargetWindows(MF);
2517   bool NeedsWinCFI = needsWinCFI(MF);
2518   AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
2519   MachineFrameInfo &MFI = MF.getFrameInfo();
2520   CallingConv::ID CC = MF.getFunction().getCallingConv();
2521   unsigned Count = CSI.size();
2522   (void)CC;
2523   // MachO's compact unwind format relies on all registers being stored in
2524   // pairs.
2525   assert((!produceCompactUnwindFrame(MF) ||
2526           CC == CallingConv::PreserveMost || CC == CallingConv::CXX_FAST_TLS ||
2527           (Count & 1) == 0) &&
2528          "Odd number of callee-saved regs to spill!");
2529   int ByteOffset = AFI->getCalleeSavedStackSize();
2530   int StackFillDir = -1;
2531   int RegInc = 1;
2532   unsigned FirstReg = 0;
2533   if (NeedsWinCFI) {
2534     // For WinCFI, fill the stack from the bottom up.
2535     ByteOffset = 0;
2536     StackFillDir = 1;
2537     // As the CSI array is reversed to match PrologEpilogInserter, iterate
2538     // backwards, to pair up registers starting from lower numbered registers.
2539     RegInc = -1;
2540     FirstReg = Count - 1;
2541   }
2542   int ScalableByteOffset = AFI->getSVECalleeSavedStackSize();
2543   bool NeedGapToAlignStack = AFI->hasCalleeSaveStackFreeSpace();
2544 
2545   // When iterating backwards, the loop condition relies on unsigned wraparound.
2546   for (unsigned i = FirstReg; i < Count; i += RegInc) {
2547     RegPairInfo RPI;
2548     RPI.Reg1 = CSI[i].getReg();
2549 
2550     if (AArch64::GPR64RegClass.contains(RPI.Reg1))
2551       RPI.Type = RegPairInfo::GPR;
2552     else if (AArch64::FPR64RegClass.contains(RPI.Reg1))
2553       RPI.Type = RegPairInfo::FPR64;
2554     else if (AArch64::FPR128RegClass.contains(RPI.Reg1))
2555       RPI.Type = RegPairInfo::FPR128;
2556     else if (AArch64::ZPRRegClass.contains(RPI.Reg1))
2557       RPI.Type = RegPairInfo::ZPR;
2558     else if (AArch64::PPRRegClass.contains(RPI.Reg1))
2559       RPI.Type = RegPairInfo::PPR;
2560     else
2561       llvm_unreachable("Unsupported register class.");
2562 
2563     // Add the next reg to the pair if it is in the same register class.
2564     if (unsigned(i + RegInc) < Count) {
2565       Register NextReg = CSI[i + RegInc].getReg();
2566       bool IsFirst = i == FirstReg;
2567       switch (RPI.Type) {
2568       case RegPairInfo::GPR:
2569         if (AArch64::GPR64RegClass.contains(NextReg) &&
2570             !invalidateRegisterPairing(RPI.Reg1, NextReg, IsWindows,
2571                                        NeedsWinCFI, NeedsFrameRecord, IsFirst))
2572           RPI.Reg2 = NextReg;
2573         break;
2574       case RegPairInfo::FPR64:
2575         if (AArch64::FPR64RegClass.contains(NextReg) &&
2576             !invalidateWindowsRegisterPairing(RPI.Reg1, NextReg, NeedsWinCFI,
2577                                               IsFirst))
2578           RPI.Reg2 = NextReg;
2579         break;
2580       case RegPairInfo::FPR128:
2581         if (AArch64::FPR128RegClass.contains(NextReg))
2582           RPI.Reg2 = NextReg;
2583         break;
2584       case RegPairInfo::PPR:
2585       case RegPairInfo::ZPR:
2586         break;
2587       }
2588     }
2589 
2590     // GPRs and FPRs are saved in pairs of 64-bit regs. We expect the CSI
2591     // list to come in sorted by frame index so that we can issue the store
2592     // pair instructions directly. Assert if we see anything otherwise.
2593     //
2594     // The order of the registers in the list is controlled by
2595     // getCalleeSavedRegs(), so they will always be in-order, as well.
2596     assert((!RPI.isPaired() ||
2597             (CSI[i].getFrameIdx() + RegInc == CSI[i + RegInc].getFrameIdx())) &&
2598            "Out of order callee saved regs!");
2599 
2600     assert((!RPI.isPaired() || !NeedsFrameRecord || RPI.Reg2 != AArch64::FP ||
2601             RPI.Reg1 == AArch64::LR) &&
2602            "FrameRecord must be allocated together with LR");
2603 
2604     // Windows AAPCS has FP and LR reversed.
2605     assert((!RPI.isPaired() || !NeedsFrameRecord || RPI.Reg1 != AArch64::FP ||
2606             RPI.Reg2 == AArch64::LR) &&
2607            "FrameRecord must be allocated together with LR");
2608 
2609     // MachO's compact unwind format relies on all registers being stored in
2610     // adjacent register pairs.
2611     assert((!produceCompactUnwindFrame(MF) ||
2612             CC == CallingConv::PreserveMost || CC == CallingConv::CXX_FAST_TLS ||
2613             (RPI.isPaired() &&
2614              ((RPI.Reg1 == AArch64::LR && RPI.Reg2 == AArch64::FP) ||
2615               RPI.Reg1 + 1 == RPI.Reg2))) &&
2616            "Callee-save registers not saved as adjacent register pair!");
2617 
2618     RPI.FrameIdx = CSI[i].getFrameIdx();
2619     if (NeedsWinCFI &&
2620         RPI.isPaired()) // RPI.FrameIdx must be the lower index of the pair
2621       RPI.FrameIdx = CSI[i + RegInc].getFrameIdx();
2622 
2623     int Scale = RPI.getScale();
2624 
2625     int OffsetPre = RPI.isScalable() ? ScalableByteOffset : ByteOffset;
2626     assert(OffsetPre % Scale == 0);
2627 
2628     if (RPI.isScalable())
2629       ScalableByteOffset += StackFillDir * Scale;
2630     else
2631       ByteOffset += StackFillDir * (RPI.isPaired() ? 2 * Scale : Scale);
2632 
2633     // Swift's async context is directly before FP, so allocate an extra
2634     // 8 bytes for it.
2635     if (NeedsFrameRecord && AFI->hasSwiftAsyncContext() &&
2636         RPI.Reg2 == AArch64::FP)
2637       ByteOffset += StackFillDir * 8;
2638 
2639     assert(!(RPI.isScalable() && RPI.isPaired()) &&
2640            "Paired spill/fill instructions don't exist for SVE vectors");
2641 
2642     // Round up size of non-pair to pair size if we need to pad the
2643     // callee-save area to ensure 16-byte alignment.
2644     if (NeedGapToAlignStack && !NeedsWinCFI &&
2645         !RPI.isScalable() && RPI.Type != RegPairInfo::FPR128 &&
2646         !RPI.isPaired() && ByteOffset % 16 != 0) {
2647       ByteOffset += 8 * StackFillDir;
2648       assert(MFI.getObjectAlign(RPI.FrameIdx) <= Align(16));
2649       // A stack frame with a gap looks like this, bottom up:
2650       // d9, d8. x21, gap, x20, x19.
2651       // Set extra alignment on the x21 object to create the gap above it.
2652       MFI.setObjectAlignment(RPI.FrameIdx, Align(16));
2653       NeedGapToAlignStack = false;
2654     }
2655 
2656     int OffsetPost = RPI.isScalable() ? ScalableByteOffset : ByteOffset;
2657     assert(OffsetPost % Scale == 0);
2658     // If filling top down (default), we want the offset after incrementing it.
2659     // If fillibg bootom up (WinCFI) we need the original offset.
2660     int Offset = NeedsWinCFI ? OffsetPre : OffsetPost;
2661 
2662     // The FP, LR pair goes 8 bytes into our expanded 24-byte slot so that the
2663     // Swift context can directly precede FP.
2664     if (NeedsFrameRecord && AFI->hasSwiftAsyncContext() &&
2665         RPI.Reg2 == AArch64::FP)
2666       Offset += 8;
2667     RPI.Offset = Offset / Scale;
2668 
2669     assert(((!RPI.isScalable() && RPI.Offset >= -64 && RPI.Offset <= 63) ||
2670             (RPI.isScalable() && RPI.Offset >= -256 && RPI.Offset <= 255)) &&
2671            "Offset out of bounds for LDP/STP immediate");
2672 
2673     // Save the offset to frame record so that the FP register can point to the
2674     // innermost frame record (spilled FP and LR registers).
2675     if (NeedsFrameRecord && ((!IsWindows && RPI.Reg1 == AArch64::LR &&
2676                               RPI.Reg2 == AArch64::FP) ||
2677                              (IsWindows && RPI.Reg1 == AArch64::FP &&
2678                               RPI.Reg2 == AArch64::LR)))
2679       AFI->setCalleeSaveBaseToFrameRecordOffset(Offset);
2680 
2681     RegPairs.push_back(RPI);
2682     if (RPI.isPaired())
2683       i += RegInc;
2684   }
2685   if (NeedsWinCFI) {
2686     // If we need an alignment gap in the stack, align the topmost stack
2687     // object. A stack frame with a gap looks like this, bottom up:
2688     // x19, d8. d9, gap.
2689     // Set extra alignment on the topmost stack object (the first element in
2690     // CSI, which goes top down), to create the gap above it.
2691     if (AFI->hasCalleeSaveStackFreeSpace())
2692       MFI.setObjectAlignment(CSI[0].getFrameIdx(), Align(16));
2693     // We iterated bottom up over the registers; flip RegPairs back to top
2694     // down order.
2695     std::reverse(RegPairs.begin(), RegPairs.end());
2696   }
2697 }
2698 
2699 bool AArch64FrameLowering::spillCalleeSavedRegisters(
2700     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
2701     ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
2702   MachineFunction &MF = *MBB.getParent();
2703   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
2704   bool NeedsWinCFI = needsWinCFI(MF);
2705   DebugLoc DL;
2706   SmallVector<RegPairInfo, 8> RegPairs;
2707 
2708   computeCalleeSaveRegisterPairs(MF, CSI, TRI, RegPairs, hasFP(MF));
2709 
2710   const MachineRegisterInfo &MRI = MF.getRegInfo();
2711   if (homogeneousPrologEpilog(MF)) {
2712     auto MIB = BuildMI(MBB, MI, DL, TII.get(AArch64::HOM_Prolog))
2713                    .setMIFlag(MachineInstr::FrameSetup);
2714 
2715     for (auto &RPI : RegPairs) {
2716       MIB.addReg(RPI.Reg1);
2717       MIB.addReg(RPI.Reg2);
2718 
2719       // Update register live in.
2720       if (!MRI.isReserved(RPI.Reg1))
2721         MBB.addLiveIn(RPI.Reg1);
2722       if (!MRI.isReserved(RPI.Reg2))
2723         MBB.addLiveIn(RPI.Reg2);
2724     }
2725     return true;
2726   }
2727   for (const RegPairInfo &RPI : llvm::reverse(RegPairs)) {
2728     unsigned Reg1 = RPI.Reg1;
2729     unsigned Reg2 = RPI.Reg2;
2730     unsigned StrOpc;
2731 
2732     // Issue sequence of spills for cs regs.  The first spill may be converted
2733     // to a pre-decrement store later by emitPrologue if the callee-save stack
2734     // area allocation can't be combined with the local stack area allocation.
2735     // For example:
2736     //    stp     x22, x21, [sp, #0]     // addImm(+0)
2737     //    stp     x20, x19, [sp, #16]    // addImm(+2)
2738     //    stp     fp, lr, [sp, #32]      // addImm(+4)
2739     // Rationale: This sequence saves uop updates compared to a sequence of
2740     // pre-increment spills like stp xi,xj,[sp,#-16]!
2741     // Note: Similar rationale and sequence for restores in epilog.
2742     unsigned Size;
2743     Align Alignment;
2744     switch (RPI.Type) {
2745     case RegPairInfo::GPR:
2746        StrOpc = RPI.isPaired() ? AArch64::STPXi : AArch64::STRXui;
2747        Size = 8;
2748        Alignment = Align(8);
2749        break;
2750     case RegPairInfo::FPR64:
2751        StrOpc = RPI.isPaired() ? AArch64::STPDi : AArch64::STRDui;
2752        Size = 8;
2753        Alignment = Align(8);
2754        break;
2755     case RegPairInfo::FPR128:
2756        StrOpc = RPI.isPaired() ? AArch64::STPQi : AArch64::STRQui;
2757        Size = 16;
2758        Alignment = Align(16);
2759        break;
2760     case RegPairInfo::ZPR:
2761        StrOpc = AArch64::STR_ZXI;
2762        Size = 16;
2763        Alignment = Align(16);
2764        break;
2765     case RegPairInfo::PPR:
2766        StrOpc = AArch64::STR_PXI;
2767        Size = 2;
2768        Alignment = Align(2);
2769        break;
2770     }
2771     LLVM_DEBUG(dbgs() << "CSR spill: (" << printReg(Reg1, TRI);
2772                if (RPI.isPaired()) dbgs() << ", " << printReg(Reg2, TRI);
2773                dbgs() << ") -> fi#(" << RPI.FrameIdx;
2774                if (RPI.isPaired()) dbgs() << ", " << RPI.FrameIdx + 1;
2775                dbgs() << ")\n");
2776 
2777     assert((!NeedsWinCFI || !(Reg1 == AArch64::LR && Reg2 == AArch64::FP)) &&
2778            "Windows unwdinding requires a consecutive (FP,LR) pair");
2779     // Windows unwind codes require consecutive registers if registers are
2780     // paired.  Make the switch here, so that the code below will save (x,x+1)
2781     // and not (x+1,x).
2782     unsigned FrameIdxReg1 = RPI.FrameIdx;
2783     unsigned FrameIdxReg2 = RPI.FrameIdx + 1;
2784     if (NeedsWinCFI && RPI.isPaired()) {
2785       std::swap(Reg1, Reg2);
2786       std::swap(FrameIdxReg1, FrameIdxReg2);
2787     }
2788     MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StrOpc));
2789     if (!MRI.isReserved(Reg1))
2790       MBB.addLiveIn(Reg1);
2791     if (RPI.isPaired()) {
2792       if (!MRI.isReserved(Reg2))
2793         MBB.addLiveIn(Reg2);
2794       MIB.addReg(Reg2, getPrologueDeath(MF, Reg2));
2795       MIB.addMemOperand(MF.getMachineMemOperand(
2796           MachinePointerInfo::getFixedStack(MF, FrameIdxReg2),
2797           MachineMemOperand::MOStore, Size, Alignment));
2798     }
2799     MIB.addReg(Reg1, getPrologueDeath(MF, Reg1))
2800         .addReg(AArch64::SP)
2801         .addImm(RPI.Offset) // [sp, #offset*scale],
2802                             // where factor*scale is implicit
2803         .setMIFlag(MachineInstr::FrameSetup);
2804     MIB.addMemOperand(MF.getMachineMemOperand(
2805         MachinePointerInfo::getFixedStack(MF, FrameIdxReg1),
2806         MachineMemOperand::MOStore, Size, Alignment));
2807     if (NeedsWinCFI)
2808       InsertSEH(MIB, TII, MachineInstr::FrameSetup);
2809 
2810     // Update the StackIDs of the SVE stack slots.
2811     MachineFrameInfo &MFI = MF.getFrameInfo();
2812     if (RPI.Type == RegPairInfo::ZPR || RPI.Type == RegPairInfo::PPR)
2813       MFI.setStackID(RPI.FrameIdx, TargetStackID::ScalableVector);
2814 
2815   }
2816   return true;
2817 }
2818 
2819 bool AArch64FrameLowering::restoreCalleeSavedRegisters(
2820     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
2821     MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
2822   MachineFunction &MF = *MBB.getParent();
2823   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
2824   DebugLoc DL;
2825   SmallVector<RegPairInfo, 8> RegPairs;
2826   bool NeedsWinCFI = needsWinCFI(MF);
2827 
2828   if (MBBI != MBB.end())
2829     DL = MBBI->getDebugLoc();
2830 
2831   computeCalleeSaveRegisterPairs(MF, CSI, TRI, RegPairs, hasFP(MF));
2832 
2833   auto EmitMI = [&](const RegPairInfo &RPI) -> MachineBasicBlock::iterator {
2834     unsigned Reg1 = RPI.Reg1;
2835     unsigned Reg2 = RPI.Reg2;
2836 
2837     // Issue sequence of restores for cs regs. The last restore may be converted
2838     // to a post-increment load later by emitEpilogue if the callee-save stack
2839     // area allocation can't be combined with the local stack area allocation.
2840     // For example:
2841     //    ldp     fp, lr, [sp, #32]       // addImm(+4)
2842     //    ldp     x20, x19, [sp, #16]     // addImm(+2)
2843     //    ldp     x22, x21, [sp, #0]      // addImm(+0)
2844     // Note: see comment in spillCalleeSavedRegisters()
2845     unsigned LdrOpc;
2846     unsigned Size;
2847     Align Alignment;
2848     switch (RPI.Type) {
2849     case RegPairInfo::GPR:
2850        LdrOpc = RPI.isPaired() ? AArch64::LDPXi : AArch64::LDRXui;
2851        Size = 8;
2852        Alignment = Align(8);
2853        break;
2854     case RegPairInfo::FPR64:
2855        LdrOpc = RPI.isPaired() ? AArch64::LDPDi : AArch64::LDRDui;
2856        Size = 8;
2857        Alignment = Align(8);
2858        break;
2859     case RegPairInfo::FPR128:
2860        LdrOpc = RPI.isPaired() ? AArch64::LDPQi : AArch64::LDRQui;
2861        Size = 16;
2862        Alignment = Align(16);
2863        break;
2864     case RegPairInfo::ZPR:
2865        LdrOpc = AArch64::LDR_ZXI;
2866        Size = 16;
2867        Alignment = Align(16);
2868        break;
2869     case RegPairInfo::PPR:
2870        LdrOpc = AArch64::LDR_PXI;
2871        Size = 2;
2872        Alignment = Align(2);
2873        break;
2874     }
2875     LLVM_DEBUG(dbgs() << "CSR restore: (" << printReg(Reg1, TRI);
2876                if (RPI.isPaired()) dbgs() << ", " << printReg(Reg2, TRI);
2877                dbgs() << ") -> fi#(" << RPI.FrameIdx;
2878                if (RPI.isPaired()) dbgs() << ", " << RPI.FrameIdx + 1;
2879                dbgs() << ")\n");
2880 
2881     // Windows unwind codes require consecutive registers if registers are
2882     // paired.  Make the switch here, so that the code below will save (x,x+1)
2883     // and not (x+1,x).
2884     unsigned FrameIdxReg1 = RPI.FrameIdx;
2885     unsigned FrameIdxReg2 = RPI.FrameIdx + 1;
2886     if (NeedsWinCFI && RPI.isPaired()) {
2887       std::swap(Reg1, Reg2);
2888       std::swap(FrameIdxReg1, FrameIdxReg2);
2889     }
2890     MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII.get(LdrOpc));
2891     if (RPI.isPaired()) {
2892       MIB.addReg(Reg2, getDefRegState(true));
2893       MIB.addMemOperand(MF.getMachineMemOperand(
2894           MachinePointerInfo::getFixedStack(MF, FrameIdxReg2),
2895           MachineMemOperand::MOLoad, Size, Alignment));
2896     }
2897     MIB.addReg(Reg1, getDefRegState(true))
2898         .addReg(AArch64::SP)
2899         .addImm(RPI.Offset) // [sp, #offset*scale]
2900                             // where factor*scale is implicit
2901         .setMIFlag(MachineInstr::FrameDestroy);
2902     MIB.addMemOperand(MF.getMachineMemOperand(
2903         MachinePointerInfo::getFixedStack(MF, FrameIdxReg1),
2904         MachineMemOperand::MOLoad, Size, Alignment));
2905     if (NeedsWinCFI)
2906       InsertSEH(MIB, TII, MachineInstr::FrameDestroy);
2907 
2908     return MIB->getIterator();
2909   };
2910 
2911   // SVE objects are always restored in reverse order.
2912   for (const RegPairInfo &RPI : reverse(RegPairs))
2913     if (RPI.isScalable())
2914       EmitMI(RPI);
2915 
2916   if (homogeneousPrologEpilog(MF, &MBB)) {
2917     auto MIB = BuildMI(MBB, MBBI, DL, TII.get(AArch64::HOM_Epilog))
2918                    .setMIFlag(MachineInstr::FrameDestroy);
2919     for (auto &RPI : RegPairs) {
2920       MIB.addReg(RPI.Reg1, RegState::Define);
2921       MIB.addReg(RPI.Reg2, RegState::Define);
2922     }
2923     return true;
2924   }
2925 
2926   if (ReverseCSRRestoreSeq) {
2927     MachineBasicBlock::iterator First = MBB.end();
2928     for (const RegPairInfo &RPI : reverse(RegPairs)) {
2929       if (RPI.isScalable())
2930         continue;
2931       MachineBasicBlock::iterator It = EmitMI(RPI);
2932       if (First == MBB.end())
2933         First = It;
2934     }
2935     if (First != MBB.end())
2936       MBB.splice(MBBI, &MBB, First);
2937   } else {
2938     for (const RegPairInfo &RPI : RegPairs) {
2939       if (RPI.isScalable())
2940         continue;
2941       (void)EmitMI(RPI);
2942     }
2943   }
2944 
2945   return true;
2946 }
2947 
2948 void AArch64FrameLowering::determineCalleeSaves(MachineFunction &MF,
2949                                                 BitVector &SavedRegs,
2950                                                 RegScavenger *RS) const {
2951   // All calls are tail calls in GHC calling conv, and functions have no
2952   // prologue/epilogue.
2953   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
2954     return;
2955 
2956   TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
2957   const AArch64RegisterInfo *RegInfo = static_cast<const AArch64RegisterInfo *>(
2958       MF.getSubtarget().getRegisterInfo());
2959   const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
2960   AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
2961   unsigned UnspilledCSGPR = AArch64::NoRegister;
2962   unsigned UnspilledCSGPRPaired = AArch64::NoRegister;
2963 
2964   MachineFrameInfo &MFI = MF.getFrameInfo();
2965   const MCPhysReg *CSRegs = MF.getRegInfo().getCalleeSavedRegs();
2966 
2967   unsigned BasePointerReg = RegInfo->hasBasePointer(MF)
2968                                 ? RegInfo->getBaseRegister()
2969                                 : (unsigned)AArch64::NoRegister;
2970 
2971   unsigned ExtraCSSpill = 0;
2972   // Figure out which callee-saved registers to save/restore.
2973   for (unsigned i = 0; CSRegs[i]; ++i) {
2974     const unsigned Reg = CSRegs[i];
2975 
2976     // Add the base pointer register to SavedRegs if it is callee-save.
2977     if (Reg == BasePointerReg)
2978       SavedRegs.set(Reg);
2979 
2980     bool RegUsed = SavedRegs.test(Reg);
2981     unsigned PairedReg = AArch64::NoRegister;
2982     if (AArch64::GPR64RegClass.contains(Reg) ||
2983         AArch64::FPR64RegClass.contains(Reg) ||
2984         AArch64::FPR128RegClass.contains(Reg))
2985       PairedReg = CSRegs[i ^ 1];
2986 
2987     if (!RegUsed) {
2988       if (AArch64::GPR64RegClass.contains(Reg) &&
2989           !RegInfo->isReservedReg(MF, Reg)) {
2990         UnspilledCSGPR = Reg;
2991         UnspilledCSGPRPaired = PairedReg;
2992       }
2993       continue;
2994     }
2995 
2996     // MachO's compact unwind format relies on all registers being stored in
2997     // pairs.
2998     // FIXME: the usual format is actually better if unwinding isn't needed.
2999     if (producePairRegisters(MF) && PairedReg != AArch64::NoRegister &&
3000         !SavedRegs.test(PairedReg)) {
3001       SavedRegs.set(PairedReg);
3002       if (AArch64::GPR64RegClass.contains(PairedReg) &&
3003           !RegInfo->isReservedReg(MF, PairedReg))
3004         ExtraCSSpill = PairedReg;
3005     }
3006   }
3007 
3008   if (MF.getFunction().getCallingConv() == CallingConv::Win64 &&
3009       !Subtarget.isTargetWindows()) {
3010     // For Windows calling convention on a non-windows OS, where X18 is treated
3011     // as reserved, back up X18 when entering non-windows code (marked with the
3012     // Windows calling convention) and restore when returning regardless of
3013     // whether the individual function uses it - it might call other functions
3014     // that clobber it.
3015     SavedRegs.set(AArch64::X18);
3016   }
3017 
3018   // Calculates the callee saved stack size.
3019   unsigned CSStackSize = 0;
3020   unsigned SVECSStackSize = 0;
3021   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
3022   const MachineRegisterInfo &MRI = MF.getRegInfo();
3023   for (unsigned Reg : SavedRegs.set_bits()) {
3024     auto RegSize = TRI->getRegSizeInBits(Reg, MRI) / 8;
3025     if (AArch64::PPRRegClass.contains(Reg) ||
3026         AArch64::ZPRRegClass.contains(Reg))
3027       SVECSStackSize += RegSize;
3028     else
3029       CSStackSize += RegSize;
3030   }
3031 
3032   // Save number of saved regs, so we can easily update CSStackSize later.
3033   unsigned NumSavedRegs = SavedRegs.count();
3034 
3035   // The frame record needs to be created by saving the appropriate registers
3036   uint64_t EstimatedStackSize = MFI.estimateStackSize(MF);
3037   if (hasFP(MF) ||
3038       windowsRequiresStackProbe(MF, EstimatedStackSize + CSStackSize + 16)) {
3039     SavedRegs.set(AArch64::FP);
3040     SavedRegs.set(AArch64::LR);
3041   }
3042 
3043   LLVM_DEBUG(dbgs() << "*** determineCalleeSaves\nSaved CSRs:";
3044              for (unsigned Reg
3045                   : SavedRegs.set_bits()) dbgs()
3046              << ' ' << printReg(Reg, RegInfo);
3047              dbgs() << "\n";);
3048 
3049   // If any callee-saved registers are used, the frame cannot be eliminated.
3050   int64_t SVEStackSize =
3051       alignTo(SVECSStackSize + estimateSVEStackObjectOffsets(MFI), 16);
3052   bool CanEliminateFrame = (SavedRegs.count() == 0) && !SVEStackSize;
3053 
3054   // The CSR spill slots have not been allocated yet, so estimateStackSize
3055   // won't include them.
3056   unsigned EstimatedStackSizeLimit = estimateRSStackSizeLimit(MF);
3057 
3058   // Conservatively always assume BigStack when there are SVE spills.
3059   bool BigStack = SVEStackSize ||
3060                   (EstimatedStackSize + CSStackSize) > EstimatedStackSizeLimit;
3061   if (BigStack || !CanEliminateFrame || RegInfo->cannotEliminateFrame(MF))
3062     AFI->setHasStackFrame(true);
3063 
3064   // Estimate if we might need to scavenge a register at some point in order
3065   // to materialize a stack offset. If so, either spill one additional
3066   // callee-saved register or reserve a special spill slot to facilitate
3067   // register scavenging. If we already spilled an extra callee-saved register
3068   // above to keep the number of spills even, we don't need to do anything else
3069   // here.
3070   if (BigStack) {
3071     if (!ExtraCSSpill && UnspilledCSGPR != AArch64::NoRegister) {
3072       LLVM_DEBUG(dbgs() << "Spilling " << printReg(UnspilledCSGPR, RegInfo)
3073                         << " to get a scratch register.\n");
3074       SavedRegs.set(UnspilledCSGPR);
3075       // MachO's compact unwind format relies on all registers being stored in
3076       // pairs, so if we need to spill one extra for BigStack, then we need to
3077       // store the pair.
3078       if (producePairRegisters(MF))
3079         SavedRegs.set(UnspilledCSGPRPaired);
3080       ExtraCSSpill = UnspilledCSGPR;
3081     }
3082 
3083     // If we didn't find an extra callee-saved register to spill, create
3084     // an emergency spill slot.
3085     if (!ExtraCSSpill || MF.getRegInfo().isPhysRegUsed(ExtraCSSpill)) {
3086       const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
3087       const TargetRegisterClass &RC = AArch64::GPR64RegClass;
3088       unsigned Size = TRI->getSpillSize(RC);
3089       Align Alignment = TRI->getSpillAlign(RC);
3090       int FI = MFI.CreateStackObject(Size, Alignment, false);
3091       RS->addScavengingFrameIndex(FI);
3092       LLVM_DEBUG(dbgs() << "No available CS registers, allocated fi#" << FI
3093                         << " as the emergency spill slot.\n");
3094     }
3095   }
3096 
3097   // Adding the size of additional 64bit GPR saves.
3098   CSStackSize += 8 * (SavedRegs.count() - NumSavedRegs);
3099 
3100   // A Swift asynchronous context extends the frame record with a pointer
3101   // directly before FP.
3102   if (hasFP(MF) && AFI->hasSwiftAsyncContext())
3103     CSStackSize += 8;
3104 
3105   uint64_t AlignedCSStackSize = alignTo(CSStackSize, 16);
3106   LLVM_DEBUG(dbgs() << "Estimated stack frame size: "
3107                << EstimatedStackSize + AlignedCSStackSize
3108                << " bytes.\n");
3109 
3110   assert((!MFI.isCalleeSavedInfoValid() ||
3111           AFI->getCalleeSavedStackSize() == AlignedCSStackSize) &&
3112          "Should not invalidate callee saved info");
3113 
3114   // Round up to register pair alignment to avoid additional SP adjustment
3115   // instructions.
3116   AFI->setCalleeSavedStackSize(AlignedCSStackSize);
3117   AFI->setCalleeSaveStackHasFreeSpace(AlignedCSStackSize != CSStackSize);
3118   AFI->setSVECalleeSavedStackSize(alignTo(SVECSStackSize, 16));
3119 }
3120 
3121 bool AArch64FrameLowering::assignCalleeSavedSpillSlots(
3122     MachineFunction &MF, const TargetRegisterInfo *RegInfo,
3123     std::vector<CalleeSavedInfo> &CSI, unsigned &MinCSFrameIndex,
3124     unsigned &MaxCSFrameIndex) const {
3125   bool NeedsWinCFI = needsWinCFI(MF);
3126   // To match the canonical windows frame layout, reverse the list of
3127   // callee saved registers to get them laid out by PrologEpilogInserter
3128   // in the right order. (PrologEpilogInserter allocates stack objects top
3129   // down. Windows canonical prologs store higher numbered registers at
3130   // the top, thus have the CSI array start from the highest registers.)
3131   if (NeedsWinCFI)
3132     std::reverse(CSI.begin(), CSI.end());
3133 
3134   if (CSI.empty())
3135     return true; // Early exit if no callee saved registers are modified!
3136 
3137   // Now that we know which registers need to be saved and restored, allocate
3138   // stack slots for them.
3139   MachineFrameInfo &MFI = MF.getFrameInfo();
3140   auto *AFI = MF.getInfo<AArch64FunctionInfo>();
3141 
3142   bool UsesWinAAPCS = isTargetWindows(MF);
3143   if (UsesWinAAPCS && hasFP(MF) && AFI->hasSwiftAsyncContext()) {
3144     int FrameIdx = MFI.CreateStackObject(8, Align(16), true);
3145     AFI->setSwiftAsyncContextFrameIdx(FrameIdx);
3146     if ((unsigned)FrameIdx < MinCSFrameIndex) MinCSFrameIndex = FrameIdx;
3147     if ((unsigned)FrameIdx > MaxCSFrameIndex) MaxCSFrameIndex = FrameIdx;
3148   }
3149 
3150   for (auto &CS : CSI) {
3151     Register Reg = CS.getReg();
3152     const TargetRegisterClass *RC = RegInfo->getMinimalPhysRegClass(Reg);
3153 
3154     unsigned Size = RegInfo->getSpillSize(*RC);
3155     Align Alignment(RegInfo->getSpillAlign(*RC));
3156     int FrameIdx = MFI.CreateStackObject(Size, Alignment, true);
3157     CS.setFrameIdx(FrameIdx);
3158 
3159     if ((unsigned)FrameIdx < MinCSFrameIndex) MinCSFrameIndex = FrameIdx;
3160     if ((unsigned)FrameIdx > MaxCSFrameIndex) MaxCSFrameIndex = FrameIdx;
3161 
3162     // Grab 8 bytes below FP for the extended asynchronous frame info.
3163     if (hasFP(MF) && AFI->hasSwiftAsyncContext() && !UsesWinAAPCS &&
3164         Reg == AArch64::FP) {
3165       FrameIdx = MFI.CreateStackObject(8, Alignment, true);
3166       AFI->setSwiftAsyncContextFrameIdx(FrameIdx);
3167       if ((unsigned)FrameIdx < MinCSFrameIndex) MinCSFrameIndex = FrameIdx;
3168       if ((unsigned)FrameIdx > MaxCSFrameIndex) MaxCSFrameIndex = FrameIdx;
3169     }
3170   }
3171   return true;
3172 }
3173 
3174 bool AArch64FrameLowering::enableStackSlotScavenging(
3175     const MachineFunction &MF) const {
3176   const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
3177   return AFI->hasCalleeSaveStackFreeSpace();
3178 }
3179 
3180 /// returns true if there are any SVE callee saves.
3181 static bool getSVECalleeSaveSlotRange(const MachineFrameInfo &MFI,
3182                                       int &Min, int &Max) {
3183   Min = std::numeric_limits<int>::max();
3184   Max = std::numeric_limits<int>::min();
3185 
3186   if (!MFI.isCalleeSavedInfoValid())
3187     return false;
3188 
3189   const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
3190   for (auto &CS : CSI) {
3191     if (AArch64::ZPRRegClass.contains(CS.getReg()) ||
3192         AArch64::PPRRegClass.contains(CS.getReg())) {
3193       assert((Max == std::numeric_limits<int>::min() ||
3194               Max + 1 == CS.getFrameIdx()) &&
3195              "SVE CalleeSaves are not consecutive");
3196 
3197       Min = std::min(Min, CS.getFrameIdx());
3198       Max = std::max(Max, CS.getFrameIdx());
3199     }
3200   }
3201   return Min != std::numeric_limits<int>::max();
3202 }
3203 
3204 // Process all the SVE stack objects and determine offsets for each
3205 // object. If AssignOffsets is true, the offsets get assigned.
3206 // Fills in the first and last callee-saved frame indices into
3207 // Min/MaxCSFrameIndex, respectively.
3208 // Returns the size of the stack.
3209 static int64_t determineSVEStackObjectOffsets(MachineFrameInfo &MFI,
3210                                               int &MinCSFrameIndex,
3211                                               int &MaxCSFrameIndex,
3212                                               bool AssignOffsets) {
3213 #ifndef NDEBUG
3214   // First process all fixed stack objects.
3215   for (int I = MFI.getObjectIndexBegin(); I != 0; ++I)
3216     assert(MFI.getStackID(I) != TargetStackID::ScalableVector &&
3217            "SVE vectors should never be passed on the stack by value, only by "
3218            "reference.");
3219 #endif
3220 
3221   auto Assign = [&MFI](int FI, int64_t Offset) {
3222     LLVM_DEBUG(dbgs() << "alloc FI(" << FI << ") at SP[" << Offset << "]\n");
3223     MFI.setObjectOffset(FI, Offset);
3224   };
3225 
3226   int64_t Offset = 0;
3227 
3228   // Then process all callee saved slots.
3229   if (getSVECalleeSaveSlotRange(MFI, MinCSFrameIndex, MaxCSFrameIndex)) {
3230     // Assign offsets to the callee save slots.
3231     for (int I = MinCSFrameIndex; I <= MaxCSFrameIndex; ++I) {
3232       Offset += MFI.getObjectSize(I);
3233       Offset = alignTo(Offset, MFI.getObjectAlign(I));
3234       if (AssignOffsets)
3235         Assign(I, -Offset);
3236     }
3237   }
3238 
3239   // Ensure that the Callee-save area is aligned to 16bytes.
3240   Offset = alignTo(Offset, Align(16U));
3241 
3242   // Create a buffer of SVE objects to allocate and sort it.
3243   SmallVector<int, 8> ObjectsToAllocate;
3244   // If we have a stack protector, and we've previously decided that we have SVE
3245   // objects on the stack and thus need it to go in the SVE stack area, then it
3246   // needs to go first.
3247   int StackProtectorFI = -1;
3248   if (MFI.hasStackProtectorIndex()) {
3249     StackProtectorFI = MFI.getStackProtectorIndex();
3250     if (MFI.getStackID(StackProtectorFI) == TargetStackID::ScalableVector)
3251       ObjectsToAllocate.push_back(StackProtectorFI);
3252   }
3253   for (int I = 0, E = MFI.getObjectIndexEnd(); I != E; ++I) {
3254     unsigned StackID = MFI.getStackID(I);
3255     if (StackID != TargetStackID::ScalableVector)
3256       continue;
3257     if (I == StackProtectorFI)
3258       continue;
3259     if (MaxCSFrameIndex >= I && I >= MinCSFrameIndex)
3260       continue;
3261     if (MFI.isDeadObjectIndex(I))
3262       continue;
3263 
3264     ObjectsToAllocate.push_back(I);
3265   }
3266 
3267   // Allocate all SVE locals and spills
3268   for (unsigned FI : ObjectsToAllocate) {
3269     Align Alignment = MFI.getObjectAlign(FI);
3270     // FIXME: Given that the length of SVE vectors is not necessarily a power of
3271     // two, we'd need to align every object dynamically at runtime if the
3272     // alignment is larger than 16. This is not yet supported.
3273     if (Alignment > Align(16))
3274       report_fatal_error(
3275           "Alignment of scalable vectors > 16 bytes is not yet supported");
3276 
3277     Offset = alignTo(Offset + MFI.getObjectSize(FI), Alignment);
3278     if (AssignOffsets)
3279       Assign(FI, -Offset);
3280   }
3281 
3282   return Offset;
3283 }
3284 
3285 int64_t AArch64FrameLowering::estimateSVEStackObjectOffsets(
3286     MachineFrameInfo &MFI) const {
3287   int MinCSFrameIndex, MaxCSFrameIndex;
3288   return determineSVEStackObjectOffsets(MFI, MinCSFrameIndex, MaxCSFrameIndex, false);
3289 }
3290 
3291 int64_t AArch64FrameLowering::assignSVEStackObjectOffsets(
3292     MachineFrameInfo &MFI, int &MinCSFrameIndex, int &MaxCSFrameIndex) const {
3293   return determineSVEStackObjectOffsets(MFI, MinCSFrameIndex, MaxCSFrameIndex,
3294                                         true);
3295 }
3296 
3297 void AArch64FrameLowering::processFunctionBeforeFrameFinalized(
3298     MachineFunction &MF, RegScavenger *RS) const {
3299   MachineFrameInfo &MFI = MF.getFrameInfo();
3300 
3301   assert(getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown &&
3302          "Upwards growing stack unsupported");
3303 
3304   int MinCSFrameIndex, MaxCSFrameIndex;
3305   int64_t SVEStackSize =
3306       assignSVEStackObjectOffsets(MFI, MinCSFrameIndex, MaxCSFrameIndex);
3307 
3308   AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
3309   AFI->setStackSizeSVE(alignTo(SVEStackSize, 16U));
3310   AFI->setMinMaxSVECSFrameIndex(MinCSFrameIndex, MaxCSFrameIndex);
3311 
3312   // If this function isn't doing Win64-style C++ EH, we don't need to do
3313   // anything.
3314   if (!MF.hasEHFunclets())
3315     return;
3316   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
3317   WinEHFuncInfo &EHInfo = *MF.getWinEHFuncInfo();
3318 
3319   MachineBasicBlock &MBB = MF.front();
3320   auto MBBI = MBB.begin();
3321   while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup))
3322     ++MBBI;
3323 
3324   // Create an UnwindHelp object.
3325   // The UnwindHelp object is allocated at the start of the fixed object area
3326   int64_t FixedObject =
3327       getFixedObjectSize(MF, AFI, /*IsWin64*/ true, /*IsFunclet*/ false);
3328   int UnwindHelpFI = MFI.CreateFixedObject(/*Size*/ 8,
3329                                            /*SPOffset*/ -FixedObject,
3330                                            /*IsImmutable=*/false);
3331   EHInfo.UnwindHelpFrameIdx = UnwindHelpFI;
3332 
3333   // We need to store -2 into the UnwindHelp object at the start of the
3334   // function.
3335   DebugLoc DL;
3336   RS->enterBasicBlockEnd(MBB);
3337   RS->backward(std::prev(MBBI));
3338   Register DstReg = RS->FindUnusedReg(&AArch64::GPR64commonRegClass);
3339   assert(DstReg && "There must be a free register after frame setup");
3340   BuildMI(MBB, MBBI, DL, TII.get(AArch64::MOVi64imm), DstReg).addImm(-2);
3341   BuildMI(MBB, MBBI, DL, TII.get(AArch64::STURXi))
3342       .addReg(DstReg, getKillRegState(true))
3343       .addFrameIndex(UnwindHelpFI)
3344       .addImm(0);
3345 }
3346 
3347 namespace {
3348 struct TagStoreInstr {
3349   MachineInstr *MI;
3350   int64_t Offset, Size;
3351   explicit TagStoreInstr(MachineInstr *MI, int64_t Offset, int64_t Size)
3352       : MI(MI), Offset(Offset), Size(Size) {}
3353 };
3354 
3355 class TagStoreEdit {
3356   MachineFunction *MF;
3357   MachineBasicBlock *MBB;
3358   MachineRegisterInfo *MRI;
3359   // Tag store instructions that are being replaced.
3360   SmallVector<TagStoreInstr, 8> TagStores;
3361   // Combined memref arguments of the above instructions.
3362   SmallVector<MachineMemOperand *, 8> CombinedMemRefs;
3363 
3364   // Replace allocation tags in [FrameReg + FrameRegOffset, FrameReg +
3365   // FrameRegOffset + Size) with the address tag of SP.
3366   Register FrameReg;
3367   StackOffset FrameRegOffset;
3368   int64_t Size;
3369   // If not None, move FrameReg to (FrameReg + FrameRegUpdate) at the end.
3370   Optional<int64_t> FrameRegUpdate;
3371   // MIFlags for any FrameReg updating instructions.
3372   unsigned FrameRegUpdateFlags;
3373 
3374   // Use zeroing instruction variants.
3375   bool ZeroData;
3376   DebugLoc DL;
3377 
3378   void emitUnrolled(MachineBasicBlock::iterator InsertI);
3379   void emitLoop(MachineBasicBlock::iterator InsertI);
3380 
3381 public:
3382   TagStoreEdit(MachineBasicBlock *MBB, bool ZeroData)
3383       : MBB(MBB), ZeroData(ZeroData) {
3384     MF = MBB->getParent();
3385     MRI = &MF->getRegInfo();
3386   }
3387   // Add an instruction to be replaced. Instructions must be added in the
3388   // ascending order of Offset, and have to be adjacent.
3389   void addInstruction(TagStoreInstr I) {
3390     assert((TagStores.empty() ||
3391             TagStores.back().Offset + TagStores.back().Size == I.Offset) &&
3392            "Non-adjacent tag store instructions.");
3393     TagStores.push_back(I);
3394   }
3395   void clear() { TagStores.clear(); }
3396   // Emit equivalent code at the given location, and erase the current set of
3397   // instructions. May skip if the replacement is not profitable. May invalidate
3398   // the input iterator and replace it with a valid one.
3399   void emitCode(MachineBasicBlock::iterator &InsertI,
3400                 const AArch64FrameLowering *TFI, bool TryMergeSPUpdate);
3401 };
3402 
3403 void TagStoreEdit::emitUnrolled(MachineBasicBlock::iterator InsertI) {
3404   const AArch64InstrInfo *TII =
3405       MF->getSubtarget<AArch64Subtarget>().getInstrInfo();
3406 
3407   const int64_t kMinOffset = -256 * 16;
3408   const int64_t kMaxOffset = 255 * 16;
3409 
3410   Register BaseReg = FrameReg;
3411   int64_t BaseRegOffsetBytes = FrameRegOffset.getFixed();
3412   if (BaseRegOffsetBytes < kMinOffset ||
3413       BaseRegOffsetBytes + (Size - Size % 32) > kMaxOffset) {
3414     Register ScratchReg = MRI->createVirtualRegister(&AArch64::GPR64RegClass);
3415     emitFrameOffset(*MBB, InsertI, DL, ScratchReg, BaseReg,
3416                     StackOffset::getFixed(BaseRegOffsetBytes), TII);
3417     BaseReg = ScratchReg;
3418     BaseRegOffsetBytes = 0;
3419   }
3420 
3421   MachineInstr *LastI = nullptr;
3422   while (Size) {
3423     int64_t InstrSize = (Size > 16) ? 32 : 16;
3424     unsigned Opcode =
3425         InstrSize == 16
3426             ? (ZeroData ? AArch64::STZGOffset : AArch64::STGOffset)
3427             : (ZeroData ? AArch64::STZ2GOffset : AArch64::ST2GOffset);
3428     MachineInstr *I = BuildMI(*MBB, InsertI, DL, TII->get(Opcode))
3429                           .addReg(AArch64::SP)
3430                           .addReg(BaseReg)
3431                           .addImm(BaseRegOffsetBytes / 16)
3432                           .setMemRefs(CombinedMemRefs);
3433     // A store to [BaseReg, #0] should go last for an opportunity to fold the
3434     // final SP adjustment in the epilogue.
3435     if (BaseRegOffsetBytes == 0)
3436       LastI = I;
3437     BaseRegOffsetBytes += InstrSize;
3438     Size -= InstrSize;
3439   }
3440 
3441   if (LastI)
3442     MBB->splice(InsertI, MBB, LastI);
3443 }
3444 
3445 void TagStoreEdit::emitLoop(MachineBasicBlock::iterator InsertI) {
3446   const AArch64InstrInfo *TII =
3447       MF->getSubtarget<AArch64Subtarget>().getInstrInfo();
3448 
3449   Register BaseReg = FrameRegUpdate
3450                          ? FrameReg
3451                          : MRI->createVirtualRegister(&AArch64::GPR64RegClass);
3452   Register SizeReg = MRI->createVirtualRegister(&AArch64::GPR64RegClass);
3453 
3454   emitFrameOffset(*MBB, InsertI, DL, BaseReg, FrameReg, FrameRegOffset, TII);
3455 
3456   int64_t LoopSize = Size;
3457   // If the loop size is not a multiple of 32, split off one 16-byte store at
3458   // the end to fold BaseReg update into.
3459   if (FrameRegUpdate && *FrameRegUpdate)
3460     LoopSize -= LoopSize % 32;
3461   MachineInstr *LoopI = BuildMI(*MBB, InsertI, DL,
3462                                 TII->get(ZeroData ? AArch64::STZGloop_wback
3463                                                   : AArch64::STGloop_wback))
3464                             .addDef(SizeReg)
3465                             .addDef(BaseReg)
3466                             .addImm(LoopSize)
3467                             .addReg(BaseReg)
3468                             .setMemRefs(CombinedMemRefs);
3469   if (FrameRegUpdate)
3470     LoopI->setFlags(FrameRegUpdateFlags);
3471 
3472   int64_t ExtraBaseRegUpdate =
3473       FrameRegUpdate ? (*FrameRegUpdate - FrameRegOffset.getFixed() - Size) : 0;
3474   if (LoopSize < Size) {
3475     assert(FrameRegUpdate);
3476     assert(Size - LoopSize == 16);
3477     // Tag 16 more bytes at BaseReg and update BaseReg.
3478     BuildMI(*MBB, InsertI, DL,
3479             TII->get(ZeroData ? AArch64::STZGPostIndex : AArch64::STGPostIndex))
3480         .addDef(BaseReg)
3481         .addReg(BaseReg)
3482         .addReg(BaseReg)
3483         .addImm(1 + ExtraBaseRegUpdate / 16)
3484         .setMemRefs(CombinedMemRefs)
3485         .setMIFlags(FrameRegUpdateFlags);
3486   } else if (ExtraBaseRegUpdate) {
3487     // Update BaseReg.
3488     BuildMI(
3489         *MBB, InsertI, DL,
3490         TII->get(ExtraBaseRegUpdate > 0 ? AArch64::ADDXri : AArch64::SUBXri))
3491         .addDef(BaseReg)
3492         .addReg(BaseReg)
3493         .addImm(std::abs(ExtraBaseRegUpdate))
3494         .addImm(0)
3495         .setMIFlags(FrameRegUpdateFlags);
3496   }
3497 }
3498 
3499 // Check if *II is a register update that can be merged into STGloop that ends
3500 // at (Reg + Size). RemainingOffset is the required adjustment to Reg after the
3501 // end of the loop.
3502 bool canMergeRegUpdate(MachineBasicBlock::iterator II, unsigned Reg,
3503                        int64_t Size, int64_t *TotalOffset) {
3504   MachineInstr &MI = *II;
3505   if ((MI.getOpcode() == AArch64::ADDXri ||
3506        MI.getOpcode() == AArch64::SUBXri) &&
3507       MI.getOperand(0).getReg() == Reg && MI.getOperand(1).getReg() == Reg) {
3508     unsigned Shift = AArch64_AM::getShiftValue(MI.getOperand(3).getImm());
3509     int64_t Offset = MI.getOperand(2).getImm() << Shift;
3510     if (MI.getOpcode() == AArch64::SUBXri)
3511       Offset = -Offset;
3512     int64_t AbsPostOffset = std::abs(Offset - Size);
3513     const int64_t kMaxOffset =
3514         0xFFF; // Max encoding for unshifted ADDXri / SUBXri
3515     if (AbsPostOffset <= kMaxOffset && AbsPostOffset % 16 == 0) {
3516       *TotalOffset = Offset;
3517       return true;
3518     }
3519   }
3520   return false;
3521 }
3522 
3523 void mergeMemRefs(const SmallVectorImpl<TagStoreInstr> &TSE,
3524                   SmallVectorImpl<MachineMemOperand *> &MemRefs) {
3525   MemRefs.clear();
3526   for (auto &TS : TSE) {
3527     MachineInstr *MI = TS.MI;
3528     // An instruction without memory operands may access anything. Be
3529     // conservative and return an empty list.
3530     if (MI->memoperands_empty()) {
3531       MemRefs.clear();
3532       return;
3533     }
3534     MemRefs.append(MI->memoperands_begin(), MI->memoperands_end());
3535   }
3536 }
3537 
3538 void TagStoreEdit::emitCode(MachineBasicBlock::iterator &InsertI,
3539                             const AArch64FrameLowering *TFI,
3540                             bool TryMergeSPUpdate) {
3541   if (TagStores.empty())
3542     return;
3543   TagStoreInstr &FirstTagStore = TagStores[0];
3544   TagStoreInstr &LastTagStore = TagStores[TagStores.size() - 1];
3545   Size = LastTagStore.Offset - FirstTagStore.Offset + LastTagStore.Size;
3546   DL = TagStores[0].MI->getDebugLoc();
3547 
3548   Register Reg;
3549   FrameRegOffset = TFI->resolveFrameOffsetReference(
3550       *MF, FirstTagStore.Offset, false /*isFixed*/, false /*isSVE*/, Reg,
3551       /*PreferFP=*/false, /*ForSimm=*/true);
3552   FrameReg = Reg;
3553   FrameRegUpdate = None;
3554 
3555   mergeMemRefs(TagStores, CombinedMemRefs);
3556 
3557   LLVM_DEBUG(dbgs() << "Replacing adjacent STG instructions:\n";
3558              for (const auto &Instr
3559                   : TagStores) { dbgs() << "  " << *Instr.MI; });
3560 
3561   // Size threshold where a loop becomes shorter than a linear sequence of
3562   // tagging instructions.
3563   const int kSetTagLoopThreshold = 176;
3564   if (Size < kSetTagLoopThreshold) {
3565     if (TagStores.size() < 2)
3566       return;
3567     emitUnrolled(InsertI);
3568   } else {
3569     MachineInstr *UpdateInstr = nullptr;
3570     int64_t TotalOffset = 0;
3571     if (TryMergeSPUpdate) {
3572       // See if we can merge base register update into the STGloop.
3573       // This is done in AArch64LoadStoreOptimizer for "normal" stores,
3574       // but STGloop is way too unusual for that, and also it only
3575       // realistically happens in function epilogue. Also, STGloop is expanded
3576       // before that pass.
3577       if (InsertI != MBB->end() &&
3578           canMergeRegUpdate(InsertI, FrameReg, FrameRegOffset.getFixed() + Size,
3579                             &TotalOffset)) {
3580         UpdateInstr = &*InsertI++;
3581         LLVM_DEBUG(dbgs() << "Folding SP update into loop:\n  "
3582                           << *UpdateInstr);
3583       }
3584     }
3585 
3586     if (!UpdateInstr && TagStores.size() < 2)
3587       return;
3588 
3589     if (UpdateInstr) {
3590       FrameRegUpdate = TotalOffset;
3591       FrameRegUpdateFlags = UpdateInstr->getFlags();
3592     }
3593     emitLoop(InsertI);
3594     if (UpdateInstr)
3595       UpdateInstr->eraseFromParent();
3596   }
3597 
3598   for (auto &TS : TagStores)
3599     TS.MI->eraseFromParent();
3600 }
3601 
3602 bool isMergeableStackTaggingInstruction(MachineInstr &MI, int64_t &Offset,
3603                                         int64_t &Size, bool &ZeroData) {
3604   MachineFunction &MF = *MI.getParent()->getParent();
3605   const MachineFrameInfo &MFI = MF.getFrameInfo();
3606 
3607   unsigned Opcode = MI.getOpcode();
3608   ZeroData = (Opcode == AArch64::STZGloop || Opcode == AArch64::STZGOffset ||
3609               Opcode == AArch64::STZ2GOffset);
3610 
3611   if (Opcode == AArch64::STGloop || Opcode == AArch64::STZGloop) {
3612     if (!MI.getOperand(0).isDead() || !MI.getOperand(1).isDead())
3613       return false;
3614     if (!MI.getOperand(2).isImm() || !MI.getOperand(3).isFI())
3615       return false;
3616     Offset = MFI.getObjectOffset(MI.getOperand(3).getIndex());
3617     Size = MI.getOperand(2).getImm();
3618     return true;
3619   }
3620 
3621   if (Opcode == AArch64::STGOffset || Opcode == AArch64::STZGOffset)
3622     Size = 16;
3623   else if (Opcode == AArch64::ST2GOffset || Opcode == AArch64::STZ2GOffset)
3624     Size = 32;
3625   else
3626     return false;
3627 
3628   if (MI.getOperand(0).getReg() != AArch64::SP || !MI.getOperand(1).isFI())
3629     return false;
3630 
3631   Offset = MFI.getObjectOffset(MI.getOperand(1).getIndex()) +
3632            16 * MI.getOperand(2).getImm();
3633   return true;
3634 }
3635 
3636 // Detect a run of memory tagging instructions for adjacent stack frame slots,
3637 // and replace them with a shorter instruction sequence:
3638 // * replace STG + STG with ST2G
3639 // * replace STGloop + STGloop with STGloop
3640 // This code needs to run when stack slot offsets are already known, but before
3641 // FrameIndex operands in STG instructions are eliminated.
3642 MachineBasicBlock::iterator tryMergeAdjacentSTG(MachineBasicBlock::iterator II,
3643                                                 const AArch64FrameLowering *TFI,
3644                                                 RegScavenger *RS) {
3645   bool FirstZeroData;
3646   int64_t Size, Offset;
3647   MachineInstr &MI = *II;
3648   MachineBasicBlock *MBB = MI.getParent();
3649   MachineBasicBlock::iterator NextI = ++II;
3650   if (&MI == &MBB->instr_back())
3651     return II;
3652   if (!isMergeableStackTaggingInstruction(MI, Offset, Size, FirstZeroData))
3653     return II;
3654 
3655   SmallVector<TagStoreInstr, 4> Instrs;
3656   Instrs.emplace_back(&MI, Offset, Size);
3657 
3658   constexpr int kScanLimit = 10;
3659   int Count = 0;
3660   for (MachineBasicBlock::iterator E = MBB->end();
3661        NextI != E && Count < kScanLimit; ++NextI) {
3662     MachineInstr &MI = *NextI;
3663     bool ZeroData;
3664     int64_t Size, Offset;
3665     // Collect instructions that update memory tags with a FrameIndex operand
3666     // and (when applicable) constant size, and whose output registers are dead
3667     // (the latter is almost always the case in practice). Since these
3668     // instructions effectively have no inputs or outputs, we are free to skip
3669     // any non-aliasing instructions in between without tracking used registers.
3670     if (isMergeableStackTaggingInstruction(MI, Offset, Size, ZeroData)) {
3671       if (ZeroData != FirstZeroData)
3672         break;
3673       Instrs.emplace_back(&MI, Offset, Size);
3674       continue;
3675     }
3676 
3677     // Only count non-transient, non-tagging instructions toward the scan
3678     // limit.
3679     if (!MI.isTransient())
3680       ++Count;
3681 
3682     // Just in case, stop before the epilogue code starts.
3683     if (MI.getFlag(MachineInstr::FrameSetup) ||
3684         MI.getFlag(MachineInstr::FrameDestroy))
3685       break;
3686 
3687     // Reject anything that may alias the collected instructions.
3688     if (MI.mayLoadOrStore() || MI.hasUnmodeledSideEffects())
3689       break;
3690   }
3691 
3692   // New code will be inserted after the last tagging instruction we've found.
3693   MachineBasicBlock::iterator InsertI = Instrs.back().MI;
3694   InsertI++;
3695 
3696   llvm::stable_sort(Instrs,
3697                     [](const TagStoreInstr &Left, const TagStoreInstr &Right) {
3698                       return Left.Offset < Right.Offset;
3699                     });
3700 
3701   // Make sure that we don't have any overlapping stores.
3702   int64_t CurOffset = Instrs[0].Offset;
3703   for (auto &Instr : Instrs) {
3704     if (CurOffset > Instr.Offset)
3705       return NextI;
3706     CurOffset = Instr.Offset + Instr.Size;
3707   }
3708 
3709   // Find contiguous runs of tagged memory and emit shorter instruction
3710   // sequencies for them when possible.
3711   TagStoreEdit TSE(MBB, FirstZeroData);
3712   Optional<int64_t> EndOffset;
3713   for (auto &Instr : Instrs) {
3714     if (EndOffset && *EndOffset != Instr.Offset) {
3715       // Found a gap.
3716       TSE.emitCode(InsertI, TFI, /*TryMergeSPUpdate = */ false);
3717       TSE.clear();
3718     }
3719 
3720     TSE.addInstruction(Instr);
3721     EndOffset = Instr.Offset + Instr.Size;
3722   }
3723 
3724   // Multiple FP/SP updates in a loop cannot be described by CFI instructions.
3725   TSE.emitCode(InsertI, TFI, /*TryMergeSPUpdate = */
3726                !MBB->getParent()
3727                     ->getInfo<AArch64FunctionInfo>()
3728                     ->needsAsyncDwarfUnwindInfo());
3729 
3730   return InsertI;
3731 }
3732 } // namespace
3733 
3734 void AArch64FrameLowering::processFunctionBeforeFrameIndicesReplaced(
3735     MachineFunction &MF, RegScavenger *RS = nullptr) const {
3736   if (StackTaggingMergeSetTag)
3737     for (auto &BB : MF)
3738       for (MachineBasicBlock::iterator II = BB.begin(); II != BB.end();)
3739         II = tryMergeAdjacentSTG(II, this, RS);
3740 }
3741 
3742 /// For Win64 AArch64 EH, the offset to the Unwind object is from the SP
3743 /// before the update.  This is easily retrieved as it is exactly the offset
3744 /// that is set in processFunctionBeforeFrameFinalized.
3745 StackOffset AArch64FrameLowering::getFrameIndexReferencePreferSP(
3746     const MachineFunction &MF, int FI, Register &FrameReg,
3747     bool IgnoreSPUpdates) const {
3748   const MachineFrameInfo &MFI = MF.getFrameInfo();
3749   if (IgnoreSPUpdates) {
3750     LLVM_DEBUG(dbgs() << "Offset from the SP for " << FI << " is "
3751                       << MFI.getObjectOffset(FI) << "\n");
3752     FrameReg = AArch64::SP;
3753     return StackOffset::getFixed(MFI.getObjectOffset(FI));
3754   }
3755 
3756   // Go to common code if we cannot provide sp + offset.
3757   if (MFI.hasVarSizedObjects() ||
3758       MF.getInfo<AArch64FunctionInfo>()->getStackSizeSVE() ||
3759       MF.getSubtarget().getRegisterInfo()->hasStackRealignment(MF))
3760     return getFrameIndexReference(MF, FI, FrameReg);
3761 
3762   FrameReg = AArch64::SP;
3763   return getStackOffset(MF, MFI.getObjectOffset(FI));
3764 }
3765 
3766 /// The parent frame offset (aka dispFrame) is only used on X86_64 to retrieve
3767 /// the parent's frame pointer
3768 unsigned AArch64FrameLowering::getWinEHParentFrameOffset(
3769     const MachineFunction &MF) const {
3770   return 0;
3771 }
3772 
3773 /// Funclets only need to account for space for the callee saved registers,
3774 /// as the locals are accounted for in the parent's stack frame.
3775 unsigned AArch64FrameLowering::getWinEHFuncletFrameSize(
3776     const MachineFunction &MF) const {
3777   // This is the size of the pushed CSRs.
3778   unsigned CSSize =
3779       MF.getInfo<AArch64FunctionInfo>()->getCalleeSavedStackSize();
3780   // This is the amount of stack a funclet needs to allocate.
3781   return alignTo(CSSize + MF.getFrameInfo().getMaxCallFrameSize(),
3782                  getStackAlign());
3783 }
3784 
3785 namespace {
3786 struct FrameObject {
3787   bool IsValid = false;
3788   // Index of the object in MFI.
3789   int ObjectIndex = 0;
3790   // Group ID this object belongs to.
3791   int GroupIndex = -1;
3792   // This object should be placed first (closest to SP).
3793   bool ObjectFirst = false;
3794   // This object's group (which always contains the object with
3795   // ObjectFirst==true) should be placed first.
3796   bool GroupFirst = false;
3797 };
3798 
3799 class GroupBuilder {
3800   SmallVector<int, 8> CurrentMembers;
3801   int NextGroupIndex = 0;
3802   std::vector<FrameObject> &Objects;
3803 
3804 public:
3805   GroupBuilder(std::vector<FrameObject> &Objects) : Objects(Objects) {}
3806   void AddMember(int Index) { CurrentMembers.push_back(Index); }
3807   void EndCurrentGroup() {
3808     if (CurrentMembers.size() > 1) {
3809       // Create a new group with the current member list. This might remove them
3810       // from their pre-existing groups. That's OK, dealing with overlapping
3811       // groups is too hard and unlikely to make a difference.
3812       LLVM_DEBUG(dbgs() << "group:");
3813       for (int Index : CurrentMembers) {
3814         Objects[Index].GroupIndex = NextGroupIndex;
3815         LLVM_DEBUG(dbgs() << " " << Index);
3816       }
3817       LLVM_DEBUG(dbgs() << "\n");
3818       NextGroupIndex++;
3819     }
3820     CurrentMembers.clear();
3821   }
3822 };
3823 
3824 bool FrameObjectCompare(const FrameObject &A, const FrameObject &B) {
3825   // Objects at a lower index are closer to FP; objects at a higher index are
3826   // closer to SP.
3827   //
3828   // For consistency in our comparison, all invalid objects are placed
3829   // at the end. This also allows us to stop walking when we hit the
3830   // first invalid item after it's all sorted.
3831   //
3832   // The "first" object goes first (closest to SP), followed by the members of
3833   // the "first" group.
3834   //
3835   // The rest are sorted by the group index to keep the groups together.
3836   // Higher numbered groups are more likely to be around longer (i.e. untagged
3837   // in the function epilogue and not at some earlier point). Place them closer
3838   // to SP.
3839   //
3840   // If all else equal, sort by the object index to keep the objects in the
3841   // original order.
3842   return std::make_tuple(!A.IsValid, A.ObjectFirst, A.GroupFirst, A.GroupIndex,
3843                          A.ObjectIndex) <
3844          std::make_tuple(!B.IsValid, B.ObjectFirst, B.GroupFirst, B.GroupIndex,
3845                          B.ObjectIndex);
3846 }
3847 } // namespace
3848 
3849 void AArch64FrameLowering::orderFrameObjects(
3850     const MachineFunction &MF, SmallVectorImpl<int> &ObjectsToAllocate) const {
3851   if (!OrderFrameObjects || ObjectsToAllocate.empty())
3852     return;
3853 
3854   const MachineFrameInfo &MFI = MF.getFrameInfo();
3855   std::vector<FrameObject> FrameObjects(MFI.getObjectIndexEnd());
3856   for (auto &Obj : ObjectsToAllocate) {
3857     FrameObjects[Obj].IsValid = true;
3858     FrameObjects[Obj].ObjectIndex = Obj;
3859   }
3860 
3861   // Identify stack slots that are tagged at the same time.
3862   GroupBuilder GB(FrameObjects);
3863   for (auto &MBB : MF) {
3864     for (auto &MI : MBB) {
3865       if (MI.isDebugInstr())
3866         continue;
3867       int OpIndex;
3868       switch (MI.getOpcode()) {
3869       case AArch64::STGloop:
3870       case AArch64::STZGloop:
3871         OpIndex = 3;
3872         break;
3873       case AArch64::STGOffset:
3874       case AArch64::STZGOffset:
3875       case AArch64::ST2GOffset:
3876       case AArch64::STZ2GOffset:
3877         OpIndex = 1;
3878         break;
3879       default:
3880         OpIndex = -1;
3881       }
3882 
3883       int TaggedFI = -1;
3884       if (OpIndex >= 0) {
3885         const MachineOperand &MO = MI.getOperand(OpIndex);
3886         if (MO.isFI()) {
3887           int FI = MO.getIndex();
3888           if (FI >= 0 && FI < MFI.getObjectIndexEnd() &&
3889               FrameObjects[FI].IsValid)
3890             TaggedFI = FI;
3891         }
3892       }
3893 
3894       // If this is a stack tagging instruction for a slot that is not part of a
3895       // group yet, either start a new group or add it to the current one.
3896       if (TaggedFI >= 0)
3897         GB.AddMember(TaggedFI);
3898       else
3899         GB.EndCurrentGroup();
3900     }
3901     // Groups should never span multiple basic blocks.
3902     GB.EndCurrentGroup();
3903   }
3904 
3905   // If the function's tagged base pointer is pinned to a stack slot, we want to
3906   // put that slot first when possible. This will likely place it at SP + 0,
3907   // and save one instruction when generating the base pointer because IRG does
3908   // not allow an immediate offset.
3909   const AArch64FunctionInfo &AFI = *MF.getInfo<AArch64FunctionInfo>();
3910   Optional<int> TBPI = AFI.getTaggedBasePointerIndex();
3911   if (TBPI) {
3912     FrameObjects[*TBPI].ObjectFirst = true;
3913     FrameObjects[*TBPI].GroupFirst = true;
3914     int FirstGroupIndex = FrameObjects[*TBPI].GroupIndex;
3915     if (FirstGroupIndex >= 0)
3916       for (FrameObject &Object : FrameObjects)
3917         if (Object.GroupIndex == FirstGroupIndex)
3918           Object.GroupFirst = true;
3919   }
3920 
3921   llvm::stable_sort(FrameObjects, FrameObjectCompare);
3922 
3923   int i = 0;
3924   for (auto &Obj : FrameObjects) {
3925     // All invalid items are sorted at the end, so it's safe to stop.
3926     if (!Obj.IsValid)
3927       break;
3928     ObjectsToAllocate[i++] = Obj.ObjectIndex;
3929   }
3930 
3931   LLVM_DEBUG(dbgs() << "Final frame order:\n"; for (auto &Obj
3932                                                     : FrameObjects) {
3933     if (!Obj.IsValid)
3934       break;
3935     dbgs() << "  " << Obj.ObjectIndex << ": group " << Obj.GroupIndex;
3936     if (Obj.ObjectFirst)
3937       dbgs() << ", first";
3938     if (Obj.GroupFirst)
3939       dbgs() << ", group-first";
3940     dbgs() << "\n";
3941   });
3942 }
3943