1//=- AArch64InstrInfo.td - Describe the AArch64 Instructions -*- tablegen -*-=//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// AArch64 Instruction definitions.
10//
11//===----------------------------------------------------------------------===//
12
13//===----------------------------------------------------------------------===//
14// ARM Instruction Predicate Definitions.
15//
16def HasV8_1a         : Predicate<"Subtarget->hasV8_1aOps()">,
17                                 AssemblerPredicate<(all_of HasV8_1aOps), "armv8.1a">;
18def HasV8_2a         : Predicate<"Subtarget->hasV8_2aOps()">,
19                                 AssemblerPredicate<(all_of HasV8_2aOps), "armv8.2a">;
20def HasV8_3a         : Predicate<"Subtarget->hasV8_3aOps()">,
21                                 AssemblerPredicate<(all_of HasV8_3aOps), "armv8.3a">;
22def HasV8_4a         : Predicate<"Subtarget->hasV8_4aOps()">,
23                                 AssemblerPredicate<(all_of HasV8_4aOps), "armv8.4a">;
24def HasV8_5a         : Predicate<"Subtarget->hasV8_5aOps()">,
25                                 AssemblerPredicate<(all_of HasV8_5aOps), "armv8.5a">;
26def HasV8_6a         : Predicate<"Subtarget->hasV8_6aOps()">,
27                                 AssemblerPredicate<(all_of HasV8_6aOps), "armv8.6a">;
28def HasV8_7a         : Predicate<"Subtarget->hasV8_7aOps()">,
29                                 AssemblerPredicate<(all_of HasV8_7aOps), "armv8.7a">;
30def HasVH            : Predicate<"Subtarget->hasVH()">,
31                       AssemblerPredicate<(all_of FeatureVH), "vh">;
32
33def HasLOR           : Predicate<"Subtarget->hasLOR()">,
34                       AssemblerPredicate<(all_of FeatureLOR), "lor">;
35
36def HasPAuth         : Predicate<"Subtarget->hasPAuth()">,
37                       AssemblerPredicate<(all_of FeaturePAuth), "pauth">;
38
39def HasJS            : Predicate<"Subtarget->hasJS()">,
40                       AssemblerPredicate<(all_of FeatureJS), "jsconv">;
41
42def HasCCIDX         : Predicate<"Subtarget->hasCCIDX()">,
43                       AssemblerPredicate<(all_of FeatureCCIDX), "ccidx">;
44
45def HasComplxNum      : Predicate<"Subtarget->hasComplxNum()">,
46                       AssemblerPredicate<(all_of FeatureComplxNum), "complxnum">;
47
48def HasNV            : Predicate<"Subtarget->hasNV()">,
49                       AssemblerPredicate<(all_of FeatureNV), "nv">;
50
51def HasMPAM          : Predicate<"Subtarget->hasMPAM()">,
52                       AssemblerPredicate<(all_of FeatureMPAM), "mpam">;
53
54def HasDIT           : Predicate<"Subtarget->hasDIT()">,
55                       AssemblerPredicate<(all_of FeatureDIT), "dit">;
56
57def HasTRACEV8_4         : Predicate<"Subtarget->hasTRACEV8_4()">,
58                       AssemblerPredicate<(all_of FeatureTRACEV8_4), "tracev8.4">;
59
60def HasAM            : Predicate<"Subtarget->hasAM()">,
61                       AssemblerPredicate<(all_of FeatureAM), "am">;
62
63def HasSEL2          : Predicate<"Subtarget->hasSEL2()">,
64                       AssemblerPredicate<(all_of FeatureSEL2), "sel2">;
65
66def HasPMU           : Predicate<"Subtarget->hasPMU()">,
67                       AssemblerPredicate<(all_of FeaturePMU), "pmu">;
68
69def HasTLB_RMI          : Predicate<"Subtarget->hasTLB_RMI()">,
70                       AssemblerPredicate<(all_of FeatureTLB_RMI), "tlb-rmi">;
71
72def HasFlagM         : Predicate<"Subtarget->hasFlagM()">,
73                       AssemblerPredicate<(all_of FeatureFlagM), "flagm">;
74
75def HasRCPC_IMMO      : Predicate<"Subtarget->hasRCPCImm()">,
76                       AssemblerPredicate<(all_of FeatureRCPC_IMMO), "rcpc-immo">;
77
78def HasFPARMv8       : Predicate<"Subtarget->hasFPARMv8()">,
79                               AssemblerPredicate<(all_of FeatureFPARMv8), "fp-armv8">;
80def HasNEON          : Predicate<"Subtarget->hasNEON()">,
81                                 AssemblerPredicate<(all_of FeatureNEON), "neon">;
82def HasCrypto        : Predicate<"Subtarget->hasCrypto()">,
83                                 AssemblerPredicate<(all_of FeatureCrypto), "crypto">;
84def HasSM4           : Predicate<"Subtarget->hasSM4()">,
85                                 AssemblerPredicate<(all_of FeatureSM4), "sm4">;
86def HasSHA3          : Predicate<"Subtarget->hasSHA3()">,
87                                 AssemblerPredicate<(all_of FeatureSHA3), "sha3">;
88def HasSHA2          : Predicate<"Subtarget->hasSHA2()">,
89                                 AssemblerPredicate<(all_of FeatureSHA2), "sha2">;
90def HasAES           : Predicate<"Subtarget->hasAES()">,
91                                 AssemblerPredicate<(all_of FeatureAES), "aes">;
92def HasDotProd       : Predicate<"Subtarget->hasDotProd()">,
93                                 AssemblerPredicate<(all_of FeatureDotProd), "dotprod">;
94def HasCRC           : Predicate<"Subtarget->hasCRC()">,
95                                 AssemblerPredicate<(all_of FeatureCRC), "crc">;
96def HasLSE           : Predicate<"Subtarget->hasLSE()">,
97                                 AssemblerPredicate<(all_of FeatureLSE), "lse">;
98def HasNoLSE         : Predicate<"!Subtarget->hasLSE()">;
99def HasRAS           : Predicate<"Subtarget->hasRAS()">,
100                                 AssemblerPredicate<(all_of FeatureRAS), "ras">;
101def HasRDM           : Predicate<"Subtarget->hasRDM()">,
102                                 AssemblerPredicate<(all_of FeatureRDM), "rdm">;
103def HasPerfMon       : Predicate<"Subtarget->hasPerfMon()">;
104def HasFullFP16      : Predicate<"Subtarget->hasFullFP16()">,
105                                 AssemblerPredicate<(all_of FeatureFullFP16), "fullfp16">;
106def HasFP16FML       : Predicate<"Subtarget->hasFP16FML()">,
107                                 AssemblerPredicate<(all_of FeatureFP16FML), "fp16fml">;
108def HasSPE           : Predicate<"Subtarget->hasSPE()">,
109                                 AssemblerPredicate<(all_of FeatureSPE), "spe">;
110def HasFuseAES       : Predicate<"Subtarget->hasFuseAES()">,
111                                 AssemblerPredicate<(all_of FeatureFuseAES),
112                                 "fuse-aes">;
113def HasSVE           : Predicate<"Subtarget->hasSVE()">,
114                                 AssemblerPredicate<(all_of FeatureSVE), "sve">;
115def HasSVE2          : Predicate<"Subtarget->hasSVE2()">,
116                                 AssemblerPredicate<(all_of FeatureSVE2), "sve2">;
117def HasSVE2AES       : Predicate<"Subtarget->hasSVE2AES()">,
118                                 AssemblerPredicate<(all_of FeatureSVE2AES), "sve2-aes">;
119def HasSVE2SM4       : Predicate<"Subtarget->hasSVE2SM4()">,
120                                 AssemblerPredicate<(all_of FeatureSVE2SM4), "sve2-sm4">;
121def HasSVE2SHA3      : Predicate<"Subtarget->hasSVE2SHA3()">,
122                                 AssemblerPredicate<(all_of FeatureSVE2SHA3), "sve2-sha3">;
123def HasSVE2BitPerm   : Predicate<"Subtarget->hasSVE2BitPerm()">,
124                                 AssemblerPredicate<(all_of FeatureSVE2BitPerm), "sve2-bitperm">;
125def HasSME           : Predicate<"Subtarget->hasSME()">,
126                                 AssemblerPredicate<(all_of FeatureSME), "sme">;
127def HasSMEF64        : Predicate<"Subtarget->hasSMEF64()">,
128                                 AssemblerPredicate<(all_of FeatureSMEF64), "sme-f64">;
129def HasSMEI64        : Predicate<"Subtarget->hasSMEI64()">,
130                                 AssemblerPredicate<(all_of FeatureSMEI64), "sme-i64">;
131def HasRCPC          : Predicate<"Subtarget->hasRCPC()">,
132                                 AssemblerPredicate<(all_of FeatureRCPC), "rcpc">;
133def HasAltNZCV       : Predicate<"Subtarget->hasAlternativeNZCV()">,
134                       AssemblerPredicate<(all_of FeatureAltFPCmp), "altnzcv">;
135def HasFRInt3264     : Predicate<"Subtarget->hasFRInt3264()">,
136                       AssemblerPredicate<(all_of FeatureFRInt3264), "frint3264">;
137def HasSB            : Predicate<"Subtarget->hasSB()">,
138                       AssemblerPredicate<(all_of FeatureSB), "sb">;
139def HasPredRes      : Predicate<"Subtarget->hasPredRes()">,
140                       AssemblerPredicate<(all_of FeaturePredRes), "predres">;
141def HasCCDP          : Predicate<"Subtarget->hasCCDP()">,
142                       AssemblerPredicate<(all_of FeatureCacheDeepPersist), "ccdp">;
143def HasBTI           : Predicate<"Subtarget->hasBTI()">,
144                       AssemblerPredicate<(all_of FeatureBranchTargetId), "bti">;
145def HasMTE           : Predicate<"Subtarget->hasMTE()">,
146                       AssemblerPredicate<(all_of FeatureMTE), "mte">;
147def HasTME           : Predicate<"Subtarget->hasTME()">,
148                       AssemblerPredicate<(all_of FeatureTME), "tme">;
149def HasETE           : Predicate<"Subtarget->hasETE()">,
150                       AssemblerPredicate<(all_of FeatureETE), "ete">;
151def HasTRBE          : Predicate<"Subtarget->hasTRBE()">,
152                       AssemblerPredicate<(all_of FeatureTRBE), "trbe">;
153def HasBF16          : Predicate<"Subtarget->hasBF16()">,
154                       AssemblerPredicate<(all_of FeatureBF16), "bf16">;
155def HasMatMulInt8    : Predicate<"Subtarget->hasMatMulInt8()">,
156                       AssemblerPredicate<(all_of FeatureMatMulInt8), "i8mm">;
157def HasMatMulFP32    : Predicate<"Subtarget->hasMatMulFP32()">,
158                       AssemblerPredicate<(all_of FeatureMatMulFP32), "f32mm">;
159def HasMatMulFP64    : Predicate<"Subtarget->hasMatMulFP64()">,
160                       AssemblerPredicate<(all_of FeatureMatMulFP64), "f64mm">;
161def HasXS            : Predicate<"Subtarget->hasXS()">,
162                       AssemblerPredicate<(all_of FeatureXS), "xs">;
163def HasWFxT          : Predicate<"Subtarget->hasWFxT()">,
164                       AssemblerPredicate<(all_of FeatureWFxT), "wfxt">;
165def HasLS64          : Predicate<"Subtarget->hasLS64()">,
166                       AssemblerPredicate<(all_of FeatureLS64), "ls64">;
167def HasBRBE          : Predicate<"Subtarget->hasBRBE()">,
168                       AssemblerPredicate<(all_of FeatureBRBE), "brbe">;
169def HasSPE_EEF       : Predicate<"Subtarget->hasSPE_EEF()">,
170                       AssemblerPredicate<(all_of FeatureSPE_EEF), "spe-eef">;
171def IsLE             : Predicate<"Subtarget->isLittleEndian()">;
172def IsBE             : Predicate<"!Subtarget->isLittleEndian()">;
173def IsWindows        : Predicate<"Subtarget->isTargetWindows()">;
174def UseExperimentalZeroingPseudos
175    : Predicate<"Subtarget->useExperimentalZeroingPseudos()">;
176def UseAlternateSExtLoadCVTF32
177    : Predicate<"Subtarget->useAlternateSExtLoadCVTF32Pattern()">;
178
179def UseNegativeImmediates
180    : Predicate<"false">, AssemblerPredicate<(all_of (not FeatureNoNegativeImmediates)),
181                                             "NegativeImmediates">;
182
183def AArch64LocalRecover : SDNode<"ISD::LOCAL_RECOVER",
184                                  SDTypeProfile<1, 1, [SDTCisSameAs<0, 1>,
185                                                       SDTCisInt<1>]>>;
186
187
188//===----------------------------------------------------------------------===//
189// AArch64-specific DAG Nodes.
190//
191
192// SDTBinaryArithWithFlagsOut - RES1, FLAGS = op LHS, RHS
193def SDTBinaryArithWithFlagsOut : SDTypeProfile<2, 2,
194                                              [SDTCisSameAs<0, 2>,
195                                               SDTCisSameAs<0, 3>,
196                                               SDTCisInt<0>, SDTCisVT<1, i32>]>;
197
198// SDTBinaryArithWithFlagsIn - RES1, FLAGS = op LHS, RHS, FLAGS
199def SDTBinaryArithWithFlagsIn : SDTypeProfile<1, 3,
200                                            [SDTCisSameAs<0, 1>,
201                                             SDTCisSameAs<0, 2>,
202                                             SDTCisInt<0>,
203                                             SDTCisVT<3, i32>]>;
204
205// SDTBinaryArithWithFlagsInOut - RES1, FLAGS = op LHS, RHS, FLAGS
206def SDTBinaryArithWithFlagsInOut : SDTypeProfile<2, 3,
207                                            [SDTCisSameAs<0, 2>,
208                                             SDTCisSameAs<0, 3>,
209                                             SDTCisInt<0>,
210                                             SDTCisVT<1, i32>,
211                                             SDTCisVT<4, i32>]>;
212
213def SDT_AArch64Brcond  : SDTypeProfile<0, 3,
214                                     [SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>,
215                                      SDTCisVT<2, i32>]>;
216def SDT_AArch64cbz : SDTypeProfile<0, 2, [SDTCisInt<0>, SDTCisVT<1, OtherVT>]>;
217def SDT_AArch64tbz : SDTypeProfile<0, 3, [SDTCisInt<0>, SDTCisInt<1>,
218                                        SDTCisVT<2, OtherVT>]>;
219
220
221def SDT_AArch64CSel  : SDTypeProfile<1, 4,
222                                   [SDTCisSameAs<0, 1>,
223                                    SDTCisSameAs<0, 2>,
224                                    SDTCisInt<3>,
225                                    SDTCisVT<4, i32>]>;
226def SDT_AArch64CCMP : SDTypeProfile<1, 5,
227                                    [SDTCisVT<0, i32>,
228                                     SDTCisInt<1>,
229                                     SDTCisSameAs<1, 2>,
230                                     SDTCisInt<3>,
231                                     SDTCisInt<4>,
232                                     SDTCisVT<5, i32>]>;
233def SDT_AArch64FCCMP : SDTypeProfile<1, 5,
234                                     [SDTCisVT<0, i32>,
235                                      SDTCisFP<1>,
236                                      SDTCisSameAs<1, 2>,
237                                      SDTCisInt<3>,
238                                      SDTCisInt<4>,
239                                      SDTCisVT<5, i32>]>;
240def SDT_AArch64FCmp   : SDTypeProfile<0, 2,
241                                   [SDTCisFP<0>,
242                                    SDTCisSameAs<0, 1>]>;
243def SDT_AArch64Dup   : SDTypeProfile<1, 1, [SDTCisVec<0>]>;
244def SDT_AArch64DupLane   : SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisInt<2>]>;
245def SDT_AArch64Insr  : SDTypeProfile<1, 2, [SDTCisVec<0>]>;
246def SDT_AArch64Zip   : SDTypeProfile<1, 2, [SDTCisVec<0>,
247                                          SDTCisSameAs<0, 1>,
248                                          SDTCisSameAs<0, 2>]>;
249def SDT_AArch64MOVIedit : SDTypeProfile<1, 1, [SDTCisInt<1>]>;
250def SDT_AArch64MOVIshift : SDTypeProfile<1, 2, [SDTCisInt<1>, SDTCisInt<2>]>;
251def SDT_AArch64vecimm : SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisSameAs<0,1>,
252                                           SDTCisInt<2>, SDTCisInt<3>]>;
253def SDT_AArch64UnaryVec: SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisSameAs<0,1>]>;
254def SDT_AArch64ExtVec: SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisSameAs<0,1>,
255                                          SDTCisSameAs<0,2>, SDTCisInt<3>]>;
256def SDT_AArch64vshift : SDTypeProfile<1, 2, [SDTCisSameAs<0,1>, SDTCisInt<2>]>;
257def SDT_AArch64Dot: SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisSameAs<0,1>,
258                                         SDTCisVec<2>, SDTCisSameAs<2,3>]>;
259
260def SDT_AArch64vshiftinsert : SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisInt<3>,
261                                                 SDTCisSameAs<0,1>,
262                                                 SDTCisSameAs<0,2>]>;
263
264def SDT_AArch64unvec : SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisSameAs<0,1>]>;
265def SDT_AArch64fcmpz : SDTypeProfile<1, 1, []>;
266def SDT_AArch64fcmp  : SDTypeProfile<1, 2, [SDTCisSameAs<1,2>]>;
267def SDT_AArch64binvec : SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisSameAs<0,1>,
268                                           SDTCisSameAs<0,2>]>;
269def SDT_AArch64trivec : SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisSameAs<0,1>,
270                                           SDTCisSameAs<0,2>,
271                                           SDTCisSameAs<0,3>]>;
272def SDT_AArch64TCRET : SDTypeProfile<0, 2, [SDTCisPtrTy<0>]>;
273def SDT_AArch64PREFETCH : SDTypeProfile<0, 2, [SDTCisVT<0, i32>, SDTCisPtrTy<1>]>;
274
275def SDT_AArch64ITOF  : SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisSameAs<0,1>]>;
276
277def SDT_AArch64TLSDescCall : SDTypeProfile<0, -2, [SDTCisPtrTy<0>,
278                                                 SDTCisPtrTy<1>]>;
279
280def SDT_AArch64uaddlp : SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisVec<1>]>;
281
282def SDT_AArch64ldp : SDTypeProfile<2, 1, [SDTCisVT<0, i64>, SDTCisSameAs<0, 1>, SDTCisPtrTy<2>]>;
283def SDT_AArch64stp : SDTypeProfile<0, 3, [SDTCisVT<0, i64>, SDTCisSameAs<0, 1>, SDTCisPtrTy<2>]>;
284def SDT_AArch64stnp : SDTypeProfile<0, 3, [SDTCisVT<0, v4i32>, SDTCisSameAs<0, 1>, SDTCisPtrTy<2>]>;
285
286// Generates the general dynamic sequences, i.e.
287//  adrp  x0, :tlsdesc:var
288//  ldr   x1, [x0, #:tlsdesc_lo12:var]
289//  add   x0, x0, #:tlsdesc_lo12:var
290//  .tlsdesccall var
291//  blr   x1
292
293// (the TPIDR_EL0 offset is put directly in X0, hence no "result" here)
294// number of operands (the variable)
295def SDT_AArch64TLSDescCallSeq : SDTypeProfile<0,1,
296                                          [SDTCisPtrTy<0>]>;
297
298def SDT_AArch64WrapperLarge : SDTypeProfile<1, 4,
299                                        [SDTCisVT<0, i64>, SDTCisVT<1, i32>,
300                                         SDTCisSameAs<1, 2>, SDTCisSameAs<1, 3>,
301                                         SDTCisSameAs<1, 4>]>;
302
303def SDT_AArch64TBL : SDTypeProfile<1, 2, [
304  SDTCisVec<0>, SDTCisSameAs<0, 1>, SDTCisInt<2>
305]>;
306
307// non-extending masked load fragment.
308def nonext_masked_load :
309  PatFrag<(ops node:$ptr, node:$pred, node:$def),
310          (masked_ld node:$ptr, undef, node:$pred, node:$def), [{
311  return cast<MaskedLoadSDNode>(N)->getExtensionType() == ISD::NON_EXTLOAD &&
312         cast<MaskedLoadSDNode>(N)->isUnindexed() &&
313         !cast<MaskedLoadSDNode>(N)->isNonTemporal();
314}]>;
315// sign extending masked load fragments.
316def asext_masked_load :
317  PatFrag<(ops node:$ptr, node:$pred, node:$def),
318          (masked_ld node:$ptr, undef, node:$pred, node:$def),[{
319  return (cast<MaskedLoadSDNode>(N)->getExtensionType() == ISD::EXTLOAD ||
320          cast<MaskedLoadSDNode>(N)->getExtensionType() == ISD::SEXTLOAD) &&
321         cast<MaskedLoadSDNode>(N)->isUnindexed();
322}]>;
323def asext_masked_load_i8 :
324  PatFrag<(ops node:$ptr, node:$pred, node:$def),
325          (asext_masked_load node:$ptr, node:$pred, node:$def), [{
326  return cast<MaskedLoadSDNode>(N)->getMemoryVT().getScalarType() == MVT::i8;
327}]>;
328def asext_masked_load_i16 :
329  PatFrag<(ops node:$ptr, node:$pred, node:$def),
330          (asext_masked_load node:$ptr, node:$pred, node:$def), [{
331  return cast<MaskedLoadSDNode>(N)->getMemoryVT().getScalarType() == MVT::i16;
332}]>;
333def asext_masked_load_i32 :
334  PatFrag<(ops node:$ptr, node:$pred, node:$def),
335          (asext_masked_load node:$ptr, node:$pred, node:$def), [{
336  return cast<MaskedLoadSDNode>(N)->getMemoryVT().getScalarType() == MVT::i32;
337}]>;
338// zero extending masked load fragments.
339def zext_masked_load :
340  PatFrag<(ops node:$ptr, node:$pred, node:$def),
341          (masked_ld node:$ptr, undef, node:$pred, node:$def), [{
342  return cast<MaskedLoadSDNode>(N)->getExtensionType() == ISD::ZEXTLOAD &&
343         cast<MaskedLoadSDNode>(N)->isUnindexed();
344}]>;
345def zext_masked_load_i8 :
346  PatFrag<(ops node:$ptr, node:$pred, node:$def),
347          (zext_masked_load node:$ptr, node:$pred, node:$def), [{
348  return cast<MaskedLoadSDNode>(N)->getMemoryVT().getScalarType() == MVT::i8;
349}]>;
350def zext_masked_load_i16 :
351  PatFrag<(ops node:$ptr, node:$pred, node:$def),
352          (zext_masked_load node:$ptr, node:$pred, node:$def), [{
353  return cast<MaskedLoadSDNode>(N)->getMemoryVT().getScalarType() == MVT::i16;
354}]>;
355def zext_masked_load_i32 :
356  PatFrag<(ops node:$ptr, node:$pred, node:$def),
357          (zext_masked_load node:$ptr, node:$pred, node:$def), [{
358  return cast<MaskedLoadSDNode>(N)->getMemoryVT().getScalarType() == MVT::i32;
359}]>;
360
361def non_temporal_load :
362   PatFrag<(ops node:$ptr, node:$pred, node:$def),
363           (masked_ld node:$ptr, undef, node:$pred, node:$def), [{
364   return cast<MaskedLoadSDNode>(N)->getExtensionType() == ISD::NON_EXTLOAD &&
365          cast<MaskedLoadSDNode>(N)->isUnindexed() &&
366          cast<MaskedLoadSDNode>(N)->isNonTemporal();
367}]>;
368
369// non-truncating masked store fragment.
370def nontrunc_masked_store :
371  PatFrag<(ops node:$val, node:$ptr, node:$pred),
372          (masked_st node:$val, node:$ptr, undef, node:$pred), [{
373  return !cast<MaskedStoreSDNode>(N)->isTruncatingStore() &&
374         cast<MaskedStoreSDNode>(N)->isUnindexed() &&
375         !cast<MaskedStoreSDNode>(N)->isNonTemporal();
376}]>;
377// truncating masked store fragments.
378def trunc_masked_store :
379  PatFrag<(ops node:$val, node:$ptr, node:$pred),
380          (masked_st node:$val, node:$ptr, undef, node:$pred), [{
381  return cast<MaskedStoreSDNode>(N)->isTruncatingStore() &&
382         cast<MaskedStoreSDNode>(N)->isUnindexed();
383}]>;
384def trunc_masked_store_i8 :
385  PatFrag<(ops node:$val, node:$ptr, node:$pred),
386          (trunc_masked_store node:$val, node:$ptr, node:$pred), [{
387  return cast<MaskedStoreSDNode>(N)->getMemoryVT().getScalarType() == MVT::i8;
388}]>;
389def trunc_masked_store_i16 :
390  PatFrag<(ops node:$val, node:$ptr, node:$pred),
391          (trunc_masked_store node:$val, node:$ptr, node:$pred), [{
392  return cast<MaskedStoreSDNode>(N)->getMemoryVT().getScalarType() == MVT::i16;
393}]>;
394def trunc_masked_store_i32 :
395  PatFrag<(ops node:$val, node:$ptr, node:$pred),
396          (trunc_masked_store node:$val, node:$ptr, node:$pred), [{
397  return cast<MaskedStoreSDNode>(N)->getMemoryVT().getScalarType() == MVT::i32;
398}]>;
399
400def non_temporal_store :
401  PatFrag<(ops node:$val, node:$ptr, node:$pred),
402          (masked_st node:$val, node:$ptr, undef, node:$pred), [{
403  return !cast<MaskedStoreSDNode>(N)->isTruncatingStore() &&
404         cast<MaskedStoreSDNode>(N)->isUnindexed() &&
405         cast<MaskedStoreSDNode>(N)->isNonTemporal();
406}]>;
407
408// Node definitions.
409def AArch64adrp          : SDNode<"AArch64ISD::ADRP", SDTIntUnaryOp, []>;
410def AArch64adr           : SDNode<"AArch64ISD::ADR", SDTIntUnaryOp, []>;
411def AArch64addlow        : SDNode<"AArch64ISD::ADDlow", SDTIntBinOp, []>;
412def AArch64LOADgot       : SDNode<"AArch64ISD::LOADgot", SDTIntUnaryOp>;
413def AArch64callseq_start : SDNode<"ISD::CALLSEQ_START",
414                                SDCallSeqStart<[ SDTCisVT<0, i32>,
415                                                 SDTCisVT<1, i32> ]>,
416                                [SDNPHasChain, SDNPOutGlue]>;
417def AArch64callseq_end   : SDNode<"ISD::CALLSEQ_END",
418                                SDCallSeqEnd<[ SDTCisVT<0, i32>,
419                                               SDTCisVT<1, i32> ]>,
420                                [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
421def AArch64call          : SDNode<"AArch64ISD::CALL",
422                                SDTypeProfile<0, -1, [SDTCisPtrTy<0>]>,
423                                [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
424                                 SDNPVariadic]>;
425
426def AArch64call_rvmarker: SDNode<"AArch64ISD::CALL_RVMARKER",
427                             SDTypeProfile<0, -1, [SDTCisPtrTy<0>]>,
428                             [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
429                              SDNPVariadic]>;
430
431def AArch64brcond        : SDNode<"AArch64ISD::BRCOND", SDT_AArch64Brcond,
432                                [SDNPHasChain]>;
433def AArch64cbz           : SDNode<"AArch64ISD::CBZ", SDT_AArch64cbz,
434                                [SDNPHasChain]>;
435def AArch64cbnz           : SDNode<"AArch64ISD::CBNZ", SDT_AArch64cbz,
436                                [SDNPHasChain]>;
437def AArch64tbz           : SDNode<"AArch64ISD::TBZ", SDT_AArch64tbz,
438                                [SDNPHasChain]>;
439def AArch64tbnz           : SDNode<"AArch64ISD::TBNZ", SDT_AArch64tbz,
440                                [SDNPHasChain]>;
441
442
443def AArch64csel          : SDNode<"AArch64ISD::CSEL", SDT_AArch64CSel>;
444def AArch64csinv         : SDNode<"AArch64ISD::CSINV", SDT_AArch64CSel>;
445def AArch64csneg         : SDNode<"AArch64ISD::CSNEG", SDT_AArch64CSel>;
446def AArch64csinc         : SDNode<"AArch64ISD::CSINC", SDT_AArch64CSel>;
447def AArch64retflag       : SDNode<"AArch64ISD::RET_FLAG", SDTNone,
448                                [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
449def AArch64adc       : SDNode<"AArch64ISD::ADC",  SDTBinaryArithWithFlagsIn >;
450def AArch64sbc       : SDNode<"AArch64ISD::SBC",  SDTBinaryArithWithFlagsIn>;
451def AArch64add_flag  : SDNode<"AArch64ISD::ADDS",  SDTBinaryArithWithFlagsOut,
452                            [SDNPCommutative]>;
453def AArch64sub_flag  : SDNode<"AArch64ISD::SUBS",  SDTBinaryArithWithFlagsOut>;
454def AArch64and_flag  : SDNode<"AArch64ISD::ANDS",  SDTBinaryArithWithFlagsOut,
455                            [SDNPCommutative]>;
456def AArch64adc_flag  : SDNode<"AArch64ISD::ADCS",  SDTBinaryArithWithFlagsInOut>;
457def AArch64sbc_flag  : SDNode<"AArch64ISD::SBCS",  SDTBinaryArithWithFlagsInOut>;
458
459def AArch64ccmp      : SDNode<"AArch64ISD::CCMP",  SDT_AArch64CCMP>;
460def AArch64ccmn      : SDNode<"AArch64ISD::CCMN",  SDT_AArch64CCMP>;
461def AArch64fccmp     : SDNode<"AArch64ISD::FCCMP", SDT_AArch64FCCMP>;
462
463def AArch64threadpointer : SDNode<"AArch64ISD::THREAD_POINTER", SDTPtrLeaf>;
464
465def AArch64fcmp         : SDNode<"AArch64ISD::FCMP", SDT_AArch64FCmp>;
466def AArch64strict_fcmp  : SDNode<"AArch64ISD::STRICT_FCMP", SDT_AArch64FCmp,
467                                 [SDNPHasChain]>;
468def AArch64strict_fcmpe : SDNode<"AArch64ISD::STRICT_FCMPE", SDT_AArch64FCmp,
469                                 [SDNPHasChain]>;
470def AArch64any_fcmp     : PatFrags<(ops node:$lhs, node:$rhs),
471                                   [(AArch64strict_fcmp node:$lhs, node:$rhs),
472                                    (AArch64fcmp node:$lhs, node:$rhs)]>;
473
474def AArch64dup       : SDNode<"AArch64ISD::DUP", SDT_AArch64Dup>;
475def AArch64duplane8  : SDNode<"AArch64ISD::DUPLANE8", SDT_AArch64DupLane>;
476def AArch64duplane16 : SDNode<"AArch64ISD::DUPLANE16", SDT_AArch64DupLane>;
477def AArch64duplane32 : SDNode<"AArch64ISD::DUPLANE32", SDT_AArch64DupLane>;
478def AArch64duplane64 : SDNode<"AArch64ISD::DUPLANE64", SDT_AArch64DupLane>;
479
480def AArch64insr      : SDNode<"AArch64ISD::INSR", SDT_AArch64Insr>;
481
482def AArch64zip1      : SDNode<"AArch64ISD::ZIP1", SDT_AArch64Zip>;
483def AArch64zip2      : SDNode<"AArch64ISD::ZIP2", SDT_AArch64Zip>;
484def AArch64uzp1      : SDNode<"AArch64ISD::UZP1", SDT_AArch64Zip>;
485def AArch64uzp2      : SDNode<"AArch64ISD::UZP2", SDT_AArch64Zip>;
486def AArch64trn1      : SDNode<"AArch64ISD::TRN1", SDT_AArch64Zip>;
487def AArch64trn2      : SDNode<"AArch64ISD::TRN2", SDT_AArch64Zip>;
488
489def AArch64movi_edit : SDNode<"AArch64ISD::MOVIedit", SDT_AArch64MOVIedit>;
490def AArch64movi_shift : SDNode<"AArch64ISD::MOVIshift", SDT_AArch64MOVIshift>;
491def AArch64movi_msl : SDNode<"AArch64ISD::MOVImsl", SDT_AArch64MOVIshift>;
492def AArch64mvni_shift : SDNode<"AArch64ISD::MVNIshift", SDT_AArch64MOVIshift>;
493def AArch64mvni_msl : SDNode<"AArch64ISD::MVNImsl", SDT_AArch64MOVIshift>;
494def AArch64movi : SDNode<"AArch64ISD::MOVI", SDT_AArch64MOVIedit>;
495def AArch64fmov : SDNode<"AArch64ISD::FMOV", SDT_AArch64MOVIedit>;
496
497def AArch64rev16 : SDNode<"AArch64ISD::REV16", SDT_AArch64UnaryVec>;
498def AArch64rev32 : SDNode<"AArch64ISD::REV32", SDT_AArch64UnaryVec>;
499def AArch64rev64 : SDNode<"AArch64ISD::REV64", SDT_AArch64UnaryVec>;
500def AArch64ext : SDNode<"AArch64ISD::EXT", SDT_AArch64ExtVec>;
501
502def AArch64vashr : SDNode<"AArch64ISD::VASHR", SDT_AArch64vshift>;
503def AArch64vlshr : SDNode<"AArch64ISD::VLSHR", SDT_AArch64vshift>;
504def AArch64vshl : SDNode<"AArch64ISD::VSHL", SDT_AArch64vshift>;
505def AArch64sqshli : SDNode<"AArch64ISD::SQSHL_I", SDT_AArch64vshift>;
506def AArch64uqshli : SDNode<"AArch64ISD::UQSHL_I", SDT_AArch64vshift>;
507def AArch64sqshlui : SDNode<"AArch64ISD::SQSHLU_I", SDT_AArch64vshift>;
508def AArch64srshri : SDNode<"AArch64ISD::SRSHR_I", SDT_AArch64vshift>;
509def AArch64urshri : SDNode<"AArch64ISD::URSHR_I", SDT_AArch64vshift>;
510def AArch64vsli : SDNode<"AArch64ISD::VSLI", SDT_AArch64vshiftinsert>;
511def AArch64vsri : SDNode<"AArch64ISD::VSRI", SDT_AArch64vshiftinsert>;
512
513def AArch64bit: SDNode<"AArch64ISD::BIT", SDT_AArch64trivec>;
514def AArch64bsp: SDNode<"AArch64ISD::BSP", SDT_AArch64trivec>;
515
516def AArch64cmeq: SDNode<"AArch64ISD::CMEQ", SDT_AArch64binvec>;
517def AArch64cmge: SDNode<"AArch64ISD::CMGE", SDT_AArch64binvec>;
518def AArch64cmgt: SDNode<"AArch64ISD::CMGT", SDT_AArch64binvec>;
519def AArch64cmhi: SDNode<"AArch64ISD::CMHI", SDT_AArch64binvec>;
520def AArch64cmhs: SDNode<"AArch64ISD::CMHS", SDT_AArch64binvec>;
521
522def AArch64fcmeq: SDNode<"AArch64ISD::FCMEQ", SDT_AArch64fcmp>;
523def AArch64fcmge: SDNode<"AArch64ISD::FCMGE", SDT_AArch64fcmp>;
524def AArch64fcmgt: SDNode<"AArch64ISD::FCMGT", SDT_AArch64fcmp>;
525
526def AArch64cmeqz: SDNode<"AArch64ISD::CMEQz", SDT_AArch64unvec>;
527def AArch64cmgez: SDNode<"AArch64ISD::CMGEz", SDT_AArch64unvec>;
528def AArch64cmgtz: SDNode<"AArch64ISD::CMGTz", SDT_AArch64unvec>;
529def AArch64cmlez: SDNode<"AArch64ISD::CMLEz", SDT_AArch64unvec>;
530def AArch64cmltz: SDNode<"AArch64ISD::CMLTz", SDT_AArch64unvec>;
531def AArch64cmtst : PatFrag<(ops node:$LHS, node:$RHS),
532                        (vnot (AArch64cmeqz (and node:$LHS, node:$RHS)))>;
533
534def AArch64fcmeqz: SDNode<"AArch64ISD::FCMEQz", SDT_AArch64fcmpz>;
535def AArch64fcmgez: SDNode<"AArch64ISD::FCMGEz", SDT_AArch64fcmpz>;
536def AArch64fcmgtz: SDNode<"AArch64ISD::FCMGTz", SDT_AArch64fcmpz>;
537def AArch64fcmlez: SDNode<"AArch64ISD::FCMLEz", SDT_AArch64fcmpz>;
538def AArch64fcmltz: SDNode<"AArch64ISD::FCMLTz", SDT_AArch64fcmpz>;
539
540def AArch64bici: SDNode<"AArch64ISD::BICi", SDT_AArch64vecimm>;
541def AArch64orri: SDNode<"AArch64ISD::ORRi", SDT_AArch64vecimm>;
542
543def AArch64tcret: SDNode<"AArch64ISD::TC_RETURN", SDT_AArch64TCRET,
544                  [SDNPHasChain,  SDNPOptInGlue, SDNPVariadic]>;
545
546def AArch64Prefetch        : SDNode<"AArch64ISD::PREFETCH", SDT_AArch64PREFETCH,
547                               [SDNPHasChain, SDNPSideEffect]>;
548
549def AArch64sitof: SDNode<"AArch64ISD::SITOF", SDT_AArch64ITOF>;
550def AArch64uitof: SDNode<"AArch64ISD::UITOF", SDT_AArch64ITOF>;
551
552def AArch64tlsdesc_callseq : SDNode<"AArch64ISD::TLSDESC_CALLSEQ",
553                                    SDT_AArch64TLSDescCallSeq,
554                                    [SDNPInGlue, SDNPOutGlue, SDNPHasChain,
555                                     SDNPVariadic]>;
556
557
558def AArch64WrapperLarge : SDNode<"AArch64ISD::WrapperLarge",
559                                 SDT_AArch64WrapperLarge>;
560
561def AArch64NvCast : SDNode<"AArch64ISD::NVCAST", SDTUnaryOp>;
562
563def SDT_AArch64mull : SDTypeProfile<1, 2, [SDTCisInt<0>, SDTCisInt<1>,
564                                    SDTCisSameAs<1, 2>]>;
565def AArch64smull    : SDNode<"AArch64ISD::SMULL", SDT_AArch64mull>;
566def AArch64umull    : SDNode<"AArch64ISD::UMULL", SDT_AArch64mull>;
567
568def AArch64frecpe   : SDNode<"AArch64ISD::FRECPE", SDTFPUnaryOp>;
569def AArch64frecps   : SDNode<"AArch64ISD::FRECPS", SDTFPBinOp>;
570def AArch64frsqrte  : SDNode<"AArch64ISD::FRSQRTE", SDTFPUnaryOp>;
571def AArch64frsqrts  : SDNode<"AArch64ISD::FRSQRTS", SDTFPBinOp>;
572
573def AArch64sdot     : SDNode<"AArch64ISD::SDOT", SDT_AArch64Dot>;
574def AArch64udot     : SDNode<"AArch64ISD::UDOT", SDT_AArch64Dot>;
575
576def AArch64saddv    : SDNode<"AArch64ISD::SADDV", SDT_AArch64UnaryVec>;
577def AArch64uaddv    : SDNode<"AArch64ISD::UADDV", SDT_AArch64UnaryVec>;
578def AArch64sminv    : SDNode<"AArch64ISD::SMINV", SDT_AArch64UnaryVec>;
579def AArch64uminv    : SDNode<"AArch64ISD::UMINV", SDT_AArch64UnaryVec>;
580def AArch64smaxv    : SDNode<"AArch64ISD::SMAXV", SDT_AArch64UnaryVec>;
581def AArch64umaxv    : SDNode<"AArch64ISD::UMAXV", SDT_AArch64UnaryVec>;
582
583def AArch64srhadd   : SDNode<"AArch64ISD::SRHADD", SDT_AArch64binvec>;
584def AArch64urhadd   : SDNode<"AArch64ISD::URHADD", SDT_AArch64binvec>;
585def AArch64shadd   : SDNode<"AArch64ISD::SHADD", SDT_AArch64binvec>;
586def AArch64uhadd   : SDNode<"AArch64ISD::UHADD", SDT_AArch64binvec>;
587
588def AArch64uabd     : PatFrags<(ops node:$lhs, node:$rhs),
589                               [(abdu node:$lhs, node:$rhs),
590                                (int_aarch64_neon_uabd node:$lhs, node:$rhs)]>;
591def AArch64sabd     : PatFrags<(ops node:$lhs, node:$rhs),
592                               [(abds node:$lhs, node:$rhs),
593                                (int_aarch64_neon_sabd node:$lhs, node:$rhs)]>;
594
595def AArch64uaddlp_n : SDNode<"AArch64ISD::UADDLP", SDT_AArch64uaddlp>;
596def AArch64uaddlp   : PatFrags<(ops node:$src),
597                               [(AArch64uaddlp_n node:$src),
598                                (int_aarch64_neon_uaddlp node:$src)]>;
599
600def SDT_AArch64SETTAG : SDTypeProfile<0, 2, [SDTCisPtrTy<0>, SDTCisPtrTy<1>]>;
601def AArch64stg : SDNode<"AArch64ISD::STG", SDT_AArch64SETTAG, [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
602def AArch64stzg : SDNode<"AArch64ISD::STZG", SDT_AArch64SETTAG, [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
603def AArch64st2g : SDNode<"AArch64ISD::ST2G", SDT_AArch64SETTAG, [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
604def AArch64stz2g : SDNode<"AArch64ISD::STZ2G", SDT_AArch64SETTAG, [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
605
606def SDT_AArch64unpk : SDTypeProfile<1, 1, [
607    SDTCisInt<0>, SDTCisInt<1>, SDTCisOpSmallerThanOp<1, 0>
608]>;
609def AArch64sunpkhi : SDNode<"AArch64ISD::SUNPKHI", SDT_AArch64unpk>;
610def AArch64sunpklo : SDNode<"AArch64ISD::SUNPKLO", SDT_AArch64unpk>;
611def AArch64uunpkhi : SDNode<"AArch64ISD::UUNPKHI", SDT_AArch64unpk>;
612def AArch64uunpklo : SDNode<"AArch64ISD::UUNPKLO", SDT_AArch64unpk>;
613
614def AArch64ldp : SDNode<"AArch64ISD::LDP", SDT_AArch64ldp, [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
615def AArch64stp : SDNode<"AArch64ISD::STP", SDT_AArch64stp, [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
616def AArch64stnp : SDNode<"AArch64ISD::STNP", SDT_AArch64stnp, [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
617
618def AArch64tbl : SDNode<"AArch64ISD::TBL", SDT_AArch64TBL>;
619def AArch64mrs : SDNode<"AArch64ISD::MRS",
620                        SDTypeProfile<1, 1, [SDTCisVT<0, i64>, SDTCisVT<1, i32>]>,
621                        [SDNPHasChain, SDNPOutGlue]>;
622//===----------------------------------------------------------------------===//
623
624//===----------------------------------------------------------------------===//
625
626// AArch64 Instruction Predicate Definitions.
627// We could compute these on a per-module basis but doing so requires accessing
628// the Function object through the <Target>Subtarget and objections were raised
629// to that (see post-commit review comments for r301750).
630let RecomputePerFunction = 1 in {
631  def ForCodeSize   : Predicate<"shouldOptForSize(MF)">;
632  def NotForCodeSize   : Predicate<"!shouldOptForSize(MF)">;
633  // Avoid generating STRQro if it is slow, unless we're optimizing for code size.
634  def UseSTRQro : Predicate<"!Subtarget->isSTRQroSlow() || shouldOptForSize(MF)">;
635
636  def UseBTI : Predicate<[{ MF->getInfo<AArch64FunctionInfo>()->branchTargetEnforcement() }]>;
637  def NotUseBTI : Predicate<[{ !MF->getInfo<AArch64FunctionInfo>()->branchTargetEnforcement() }]>;
638
639  def SLSBLRMitigation : Predicate<[{ MF->getSubtarget<AArch64Subtarget>().hardenSlsBlr() }]>;
640  def NoSLSBLRMitigation : Predicate<[{ !MF->getSubtarget<AArch64Subtarget>().hardenSlsBlr() }]>;
641  // Toggles patterns which aren't beneficial in GlobalISel when we aren't
642  // optimizing. This allows us to selectively use patterns without impacting
643  // SelectionDAG's behaviour.
644  // FIXME: One day there will probably be a nicer way to check for this, but
645  // today is not that day.
646  def OptimizedGISelOrOtherSelector : Predicate<"!MF->getFunction().hasOptNone() || MF->getProperties().hasProperty(MachineFunctionProperties::Property::FailedISel) || !MF->getProperties().hasProperty(MachineFunctionProperties::Property::Legalized)">;
647}
648
649include "AArch64InstrFormats.td"
650include "SVEInstrFormats.td"
651include "SMEInstrFormats.td"
652
653//===----------------------------------------------------------------------===//
654
655//===----------------------------------------------------------------------===//
656// Miscellaneous instructions.
657//===----------------------------------------------------------------------===//
658
659let Defs = [SP], Uses = [SP], hasSideEffects = 1, isCodeGenOnly = 1 in {
660// We set Sched to empty list because we expect these instructions to simply get
661// removed in most cases.
662def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
663                              [(AArch64callseq_start timm:$amt1, timm:$amt2)]>,
664                              Sched<[]>;
665def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
666                            [(AArch64callseq_end timm:$amt1, timm:$amt2)]>,
667                            Sched<[]>;
668} // Defs = [SP], Uses = [SP], hasSideEffects = 1, isCodeGenOnly = 1
669
670let isReMaterializable = 1, isCodeGenOnly = 1 in {
671// FIXME: The following pseudo instructions are only needed because remat
672// cannot handle multiple instructions.  When that changes, they can be
673// removed, along with the AArch64Wrapper node.
674
675let AddedComplexity = 10 in
676def LOADgot : Pseudo<(outs GPR64:$dst), (ins i64imm:$addr),
677                     [(set GPR64:$dst, (AArch64LOADgot tglobaladdr:$addr))]>,
678              Sched<[WriteLDAdr]>;
679
680// The MOVaddr instruction should match only when the add is not folded
681// into a load or store address.
682def MOVaddr
683    : Pseudo<(outs GPR64:$dst), (ins i64imm:$hi, i64imm:$low),
684             [(set GPR64:$dst, (AArch64addlow (AArch64adrp tglobaladdr:$hi),
685                                            tglobaladdr:$low))]>,
686      Sched<[WriteAdrAdr]>;
687def MOVaddrJT
688    : Pseudo<(outs GPR64:$dst), (ins i64imm:$hi, i64imm:$low),
689             [(set GPR64:$dst, (AArch64addlow (AArch64adrp tjumptable:$hi),
690                                             tjumptable:$low))]>,
691      Sched<[WriteAdrAdr]>;
692def MOVaddrCP
693    : Pseudo<(outs GPR64:$dst), (ins i64imm:$hi, i64imm:$low),
694             [(set GPR64:$dst, (AArch64addlow (AArch64adrp tconstpool:$hi),
695                                             tconstpool:$low))]>,
696      Sched<[WriteAdrAdr]>;
697def MOVaddrBA
698    : Pseudo<(outs GPR64:$dst), (ins i64imm:$hi, i64imm:$low),
699             [(set GPR64:$dst, (AArch64addlow (AArch64adrp tblockaddress:$hi),
700                                             tblockaddress:$low))]>,
701      Sched<[WriteAdrAdr]>;
702def MOVaddrTLS
703    : Pseudo<(outs GPR64:$dst), (ins i64imm:$hi, i64imm:$low),
704             [(set GPR64:$dst, (AArch64addlow (AArch64adrp tglobaltlsaddr:$hi),
705                                            tglobaltlsaddr:$low))]>,
706      Sched<[WriteAdrAdr]>;
707def MOVaddrEXT
708    : Pseudo<(outs GPR64:$dst), (ins i64imm:$hi, i64imm:$low),
709             [(set GPR64:$dst, (AArch64addlow (AArch64adrp texternalsym:$hi),
710                                            texternalsym:$low))]>,
711      Sched<[WriteAdrAdr]>;
712// Normally AArch64addlow either gets folded into a following ldr/str,
713// or together with an adrp into MOVaddr above. For cases with TLS, it
714// might appear without either of them, so allow lowering it into a plain
715// add.
716def ADDlowTLS
717    : Pseudo<(outs GPR64:$dst), (ins GPR64:$src, i64imm:$low),
718             [(set GPR64:$dst, (AArch64addlow GPR64:$src,
719                                            tglobaltlsaddr:$low))]>,
720      Sched<[WriteAdr]>;
721
722} // isReMaterializable, isCodeGenOnly
723
724def : Pat<(AArch64LOADgot tglobaltlsaddr:$addr),
725          (LOADgot tglobaltlsaddr:$addr)>;
726
727def : Pat<(AArch64LOADgot texternalsym:$addr),
728          (LOADgot texternalsym:$addr)>;
729
730def : Pat<(AArch64LOADgot tconstpool:$addr),
731          (LOADgot tconstpool:$addr)>;
732
733// 32-bit jump table destination is actually only 2 instructions since we can
734// use the table itself as a PC-relative base. But optimization occurs after
735// branch relaxation so be pessimistic.
736let Size = 12, Constraints = "@earlyclobber $dst,@earlyclobber $scratch",
737    isNotDuplicable = 1 in {
738def JumpTableDest32 : Pseudo<(outs GPR64:$dst, GPR64sp:$scratch),
739                             (ins GPR64:$table, GPR64:$entry, i32imm:$jti), []>,
740                      Sched<[]>;
741def JumpTableDest16 : Pseudo<(outs GPR64:$dst, GPR64sp:$scratch),
742                             (ins GPR64:$table, GPR64:$entry, i32imm:$jti), []>,
743                      Sched<[]>;
744def JumpTableDest8 : Pseudo<(outs GPR64:$dst, GPR64sp:$scratch),
745                            (ins GPR64:$table, GPR64:$entry, i32imm:$jti), []>,
746                     Sched<[]>;
747}
748
749// Space-consuming pseudo to aid testing of placement and reachability
750// algorithms. Immediate operand is the number of bytes this "instruction"
751// occupies; register operands can be used to enforce dependency and constrain
752// the scheduler.
753let hasSideEffects = 1, mayLoad = 1, mayStore = 1 in
754def SPACE : Pseudo<(outs GPR64:$Rd), (ins i32imm:$size, GPR64:$Rn),
755                   [(set GPR64:$Rd, (int_aarch64_space imm:$size, GPR64:$Rn))]>,
756            Sched<[]>;
757
758let hasSideEffects = 1, isCodeGenOnly = 1 in {
759  def SpeculationSafeValueX
760      : Pseudo<(outs GPR64:$dst), (ins GPR64:$src), []>, Sched<[]>;
761  def SpeculationSafeValueW
762      : Pseudo<(outs GPR32:$dst), (ins GPR32:$src), []>, Sched<[]>;
763}
764
765// SpeculationBarrierEndBB must only be used after an unconditional control
766// flow, i.e. after a terminator for which isBarrier is True.
767let hasSideEffects = 1, isCodeGenOnly = 1, isTerminator = 1, isBarrier = 1 in {
768  def SpeculationBarrierISBDSBEndBB
769      : Pseudo<(outs), (ins), []>, Sched<[]>;
770  def SpeculationBarrierSBEndBB
771      : Pseudo<(outs), (ins), []>, Sched<[]>;
772}
773
774//===----------------------------------------------------------------------===//
775// System instructions.
776//===----------------------------------------------------------------------===//
777
778def HINT : HintI<"hint">;
779def : InstAlias<"nop",  (HINT 0b000)>;
780def : InstAlias<"yield",(HINT 0b001)>;
781def : InstAlias<"wfe",  (HINT 0b010)>;
782def : InstAlias<"wfi",  (HINT 0b011)>;
783def : InstAlias<"sev",  (HINT 0b100)>;
784def : InstAlias<"sevl", (HINT 0b101)>;
785def : InstAlias<"dgh",  (HINT 0b110)>;
786def : InstAlias<"esb",  (HINT 0b10000)>, Requires<[HasRAS]>;
787def : InstAlias<"csdb", (HINT 20)>;
788// In order to be able to write readable assembly, LLVM should accept assembly
789// inputs that use Branch Target Indentification mnemonics, even with BTI disabled.
790// However, in order to be compatible with other assemblers (e.g. GAS), LLVM
791// should not emit these mnemonics unless BTI is enabled.
792def : InstAlias<"bti",  (HINT 32), 0>;
793def : InstAlias<"bti $op", (HINT btihint_op:$op), 0>;
794def : InstAlias<"bti",  (HINT 32)>, Requires<[HasBTI]>;
795def : InstAlias<"bti $op", (HINT btihint_op:$op)>, Requires<[HasBTI]>;
796
797// v8.2a Statistical Profiling extension
798def : InstAlias<"psb $op",  (HINT psbhint_op:$op)>, Requires<[HasSPE]>;
799
800// As far as LLVM is concerned this writes to the system's exclusive monitors.
801let mayLoad = 1, mayStore = 1 in
802def CLREX : CRmSystemI<imm0_15, 0b010, "clrex">;
803
804// NOTE: ideally, this would have mayStore = 0, mayLoad = 0, but we cannot
805// model patterns with sufficiently fine granularity.
806let mayLoad = ?, mayStore = ? in {
807def DMB   : CRmSystemI<barrier_op, 0b101, "dmb",
808                       [(int_aarch64_dmb (i32 imm32_0_15:$CRm))]>;
809
810def DSB   : CRmSystemI<barrier_op, 0b100, "dsb",
811                       [(int_aarch64_dsb (i32 imm32_0_15:$CRm))]>;
812
813def ISB   : CRmSystemI<barrier_op, 0b110, "isb",
814                       [(int_aarch64_isb (i32 imm32_0_15:$CRm))]>;
815
816def TSB   : CRmSystemI<barrier_op, 0b010, "tsb", []> {
817  let CRm        = 0b0010;
818  let Inst{12}   = 0;
819  let Predicates = [HasTRACEV8_4];
820}
821
822def DSBnXS  : CRmSystemI<barrier_nxs_op, 0b001, "dsb"> {
823  let CRm{1-0}   = 0b11;
824  let Inst{9-8}  = 0b10;
825  let Predicates = [HasXS];
826}
827
828let Predicates = [HasWFxT] in {
829def WFET : RegInputSystemI<0b0000, 0b000, "wfet">;
830def WFIT : RegInputSystemI<0b0000, 0b001, "wfit">;
831}
832
833// Branch Record Buffer two-word mnemonic instructions
834class BRBEI<bits<3> op2, string keyword>
835    : SimpleSystemI<0, (ins), "brb", keyword>, Sched<[WriteSys]> {
836  let Inst{31-8} = 0b110101010000100101110010;
837  let Inst{7-5} = op2;
838  let Predicates = [HasBRBE];
839}
840def BRB_IALL: BRBEI<0b100, "\tiall">;
841def BRB_INJ:  BRBEI<0b101, "\tinj">;
842
843}
844
845// Allow uppercase and lowercase keyword arguments for BRB IALL and BRB INJ
846def : TokenAlias<"INJ", "inj">;
847def : TokenAlias<"IALL", "iall">;
848
849// ARMv8.2-A Dot Product
850let Predicates = [HasDotProd] in {
851defm SDOT : SIMDThreeSameVectorDot<0, 0, "sdot", AArch64sdot>;
852defm UDOT : SIMDThreeSameVectorDot<1, 0, "udot", AArch64udot>;
853defm SDOTlane : SIMDThreeSameVectorDotIndex<0, 0, 0b10, "sdot", AArch64sdot>;
854defm UDOTlane : SIMDThreeSameVectorDotIndex<1, 0, 0b10, "udot", AArch64udot>;
855}
856
857// ARMv8.6-A BFloat
858let Predicates = [HasBF16] in {
859defm BFDOT       : SIMDThreeSameVectorBFDot<1, "bfdot">;
860defm BF16DOTlane : SIMDThreeSameVectorBF16DotI<0, "bfdot">;
861def BFMMLA       : SIMDThreeSameVectorBF16MatrixMul<"bfmmla">;
862def BFMLALB      : SIMDBF16MLAL<0, "bfmlalb", int_aarch64_neon_bfmlalb>;
863def BFMLALT      : SIMDBF16MLAL<1, "bfmlalt", int_aarch64_neon_bfmlalt>;
864def BFMLALBIdx   : SIMDBF16MLALIndex<0, "bfmlalb", int_aarch64_neon_bfmlalb>;
865def BFMLALTIdx   : SIMDBF16MLALIndex<1, "bfmlalt", int_aarch64_neon_bfmlalt>;
866def BFCVTN       : SIMD_BFCVTN;
867def BFCVTN2      : SIMD_BFCVTN2;
868def BFCVT        : BF16ToSinglePrecision<"bfcvt">;
869
870// Vector-scalar BFDOT:
871// The second source operand of the 64-bit variant of BF16DOTlane is a 128-bit
872// register (the instruction uses a single 32-bit lane from it), so the pattern
873// is a bit tricky.
874def : Pat<(v2f32 (int_aarch64_neon_bfdot
875                    (v2f32 V64:$Rd), (v4bf16 V64:$Rn),
876                    (v4bf16 (bitconvert
877                      (v2i32 (AArch64duplane32
878                        (v4i32 (bitconvert
879                          (v8bf16 (insert_subvector undef,
880                            (v4bf16 V64:$Rm),
881                            (i64 0))))),
882                        VectorIndexS:$idx)))))),
883          (BF16DOTlanev4bf16 (v2f32 V64:$Rd), (v4bf16 V64:$Rn),
884                             (SUBREG_TO_REG (i32 0), V64:$Rm, dsub),
885                             VectorIndexS:$idx)>;
886}
887
888// ARMv8.6A AArch64 matrix multiplication
889let Predicates = [HasMatMulInt8] in {
890def  SMMLA : SIMDThreeSameVectorMatMul<0, 0, "smmla", int_aarch64_neon_smmla>;
891def  UMMLA : SIMDThreeSameVectorMatMul<0, 1, "ummla", int_aarch64_neon_ummla>;
892def USMMLA : SIMDThreeSameVectorMatMul<1, 0, "usmmla", int_aarch64_neon_usmmla>;
893defm USDOT : SIMDThreeSameVectorDot<0, 1, "usdot", int_aarch64_neon_usdot>;
894defm USDOTlane : SIMDThreeSameVectorDotIndex<0, 1, 0b10, "usdot", int_aarch64_neon_usdot>;
895
896// sudot lane has a pattern where usdot is expected (there is no sudot).
897// The second operand is used in the dup operation to repeat the indexed
898// element.
899class BaseSIMDSUDOTIndex<bit Q, string dst_kind, string lhs_kind,
900                         string rhs_kind, RegisterOperand RegType,
901                         ValueType AccumType, ValueType InputType>
902      : BaseSIMDThreeSameVectorDotIndex<Q, 0, 1, 0b00, "sudot", dst_kind,
903                                        lhs_kind, rhs_kind, RegType, AccumType,
904                                        InputType, null_frag> {
905  let Pattern = [(set (AccumType RegType:$dst),
906                      (AccumType (int_aarch64_neon_usdot (AccumType RegType:$Rd),
907                                 (InputType (bitconvert (AccumType
908                                    (AArch64duplane32 (v4i32 V128:$Rm),
909                                        VectorIndexS:$idx)))),
910                                 (InputType RegType:$Rn))))];
911}
912
913multiclass SIMDSUDOTIndex {
914  def v8i8  : BaseSIMDSUDOTIndex<0, ".2s", ".8b", ".4b", V64, v2i32, v8i8>;
915  def v16i8 : BaseSIMDSUDOTIndex<1, ".4s", ".16b", ".4b", V128, v4i32, v16i8>;
916}
917
918defm SUDOTlane : SIMDSUDOTIndex;
919
920}
921
922// ARMv8.2-A FP16 Fused Multiply-Add Long
923let Predicates = [HasNEON, HasFP16FML] in {
924defm FMLAL      : SIMDThreeSameVectorFML<0, 1, 0b001, "fmlal", int_aarch64_neon_fmlal>;
925defm FMLSL      : SIMDThreeSameVectorFML<0, 1, 0b101, "fmlsl", int_aarch64_neon_fmlsl>;
926defm FMLAL2     : SIMDThreeSameVectorFML<1, 0, 0b001, "fmlal2", int_aarch64_neon_fmlal2>;
927defm FMLSL2     : SIMDThreeSameVectorFML<1, 0, 0b101, "fmlsl2", int_aarch64_neon_fmlsl2>;
928defm FMLALlane  : SIMDThreeSameVectorFMLIndex<0, 0b0000, "fmlal", int_aarch64_neon_fmlal>;
929defm FMLSLlane  : SIMDThreeSameVectorFMLIndex<0, 0b0100, "fmlsl", int_aarch64_neon_fmlsl>;
930defm FMLAL2lane : SIMDThreeSameVectorFMLIndex<1, 0b1000, "fmlal2", int_aarch64_neon_fmlal2>;
931defm FMLSL2lane : SIMDThreeSameVectorFMLIndex<1, 0b1100, "fmlsl2", int_aarch64_neon_fmlsl2>;
932}
933
934// Armv8.2-A Crypto extensions
935let Predicates = [HasSHA3] in {
936def SHA512H   : CryptoRRRTied<0b0, 0b00, "sha512h">;
937def SHA512H2  : CryptoRRRTied<0b0, 0b01, "sha512h2">;
938def SHA512SU0 : CryptoRRTied_2D<0b0, 0b00, "sha512su0">;
939def SHA512SU1 : CryptoRRRTied_2D<0b0, 0b10, "sha512su1">;
940def RAX1      : CryptoRRR_2D<0b0,0b11, "rax1">;
941def EOR3      : CryptoRRRR_16B<0b00, "eor3">;
942def BCAX      : CryptoRRRR_16B<0b01, "bcax">;
943def XAR       : CryptoRRRi6<"xar">;
944
945class SHA3_pattern<Instruction INST, Intrinsic OpNode, ValueType VecTy>
946  : Pat<(VecTy (OpNode (VecTy V128:$Vd), (VecTy V128:$Vn), (VecTy V128:$Vm))),
947        (INST (VecTy V128:$Vd), (VecTy V128:$Vn), (VecTy V128:$Vm))>;
948
949def : Pat<(v2i64 (int_aarch64_crypto_sha512su0 (v2i64 V128:$Vn), (v2i64 V128:$Vm))),
950          (SHA512SU0 (v2i64 V128:$Vn), (v2i64 V128:$Vm))>;
951
952def : SHA3_pattern<SHA512H, int_aarch64_crypto_sha512h, v2i64>;
953def : SHA3_pattern<SHA512H2, int_aarch64_crypto_sha512h2, v2i64>;
954def : SHA3_pattern<SHA512SU1, int_aarch64_crypto_sha512su1, v2i64>;
955
956def : SHA3_pattern<EOR3, int_aarch64_crypto_eor3u, v16i8>;
957def : SHA3_pattern<EOR3, int_aarch64_crypto_eor3u, v8i16>;
958def : SHA3_pattern<EOR3, int_aarch64_crypto_eor3u, v4i32>;
959def : SHA3_pattern<EOR3, int_aarch64_crypto_eor3u, v2i64>;
960
961def : SHA3_pattern<BCAX, int_aarch64_crypto_bcaxu, v16i8>;
962def : SHA3_pattern<BCAX, int_aarch64_crypto_bcaxu, v8i16>;
963def : SHA3_pattern<BCAX, int_aarch64_crypto_bcaxu, v4i32>;
964def : SHA3_pattern<BCAX, int_aarch64_crypto_bcaxu, v2i64>;
965
966def : SHA3_pattern<EOR3, int_aarch64_crypto_eor3s, v16i8>;
967def : SHA3_pattern<EOR3, int_aarch64_crypto_eor3s, v8i16>;
968def : SHA3_pattern<EOR3, int_aarch64_crypto_eor3s, v4i32>;
969def : SHA3_pattern<EOR3, int_aarch64_crypto_eor3s, v2i64>;
970
971def : SHA3_pattern<BCAX, int_aarch64_crypto_bcaxs, v16i8>;
972def : SHA3_pattern<BCAX, int_aarch64_crypto_bcaxs, v8i16>;
973def : SHA3_pattern<BCAX, int_aarch64_crypto_bcaxs, v4i32>;
974def : SHA3_pattern<BCAX, int_aarch64_crypto_bcaxs, v2i64>;
975
976def : Pat<(v2i64 (int_aarch64_crypto_rax1 (v2i64 V128:$Vn), (v2i64 V128:$Vm))),
977          (RAX1 (v2i64 V128:$Vn), (v2i64 V128:$Vm))>;
978
979def : Pat<(v2i64 (int_aarch64_crypto_xar (v2i64 V128:$Vn), (v2i64 V128:$Vm), (i64 timm0_63:$imm))),
980          (XAR (v2i64 V128:$Vn), (v2i64 V128:$Vm), (timm0_63:$imm))>;
981
982
983} // HasSHA3
984
985let Predicates = [HasSM4] in {
986def SM3TT1A   : CryptoRRRi2Tied<0b0, 0b00, "sm3tt1a">;
987def SM3TT1B   : CryptoRRRi2Tied<0b0, 0b01, "sm3tt1b">;
988def SM3TT2A   : CryptoRRRi2Tied<0b0, 0b10, "sm3tt2a">;
989def SM3TT2B   : CryptoRRRi2Tied<0b0, 0b11, "sm3tt2b">;
990def SM3SS1    : CryptoRRRR_4S<0b10, "sm3ss1">;
991def SM3PARTW1 : CryptoRRRTied_4S<0b1, 0b00, "sm3partw1">;
992def SM3PARTW2 : CryptoRRRTied_4S<0b1, 0b01, "sm3partw2">;
993def SM4ENCKEY : CryptoRRR_4S<0b1, 0b10, "sm4ekey">;
994def SM4E      : CryptoRRTied_4S<0b0, 0b01, "sm4e">;
995
996def : Pat<(v4i32 (int_aarch64_crypto_sm3ss1 (v4i32 V128:$Vn), (v4i32 V128:$Vm), (v4i32 V128:$Va))),
997          (SM3SS1 (v4i32 V128:$Vn), (v4i32 V128:$Vm), (v4i32 V128:$Va))>;
998
999class SM3PARTW_pattern<Instruction INST, Intrinsic OpNode>
1000  : Pat<(v4i32 (OpNode (v4i32 V128:$Vd), (v4i32 V128:$Vn), (v4i32 V128:$Vm))),
1001        (INST (v4i32 V128:$Vd), (v4i32 V128:$Vn), (v4i32 V128:$Vm))>;
1002
1003class SM3TT_pattern<Instruction INST, Intrinsic OpNode>
1004  : Pat<(v4i32 (OpNode (v4i32 V128:$Vd), (v4i32 V128:$Vn), (v4i32 V128:$Vm), (i64 VectorIndexS_timm:$imm) )),
1005        (INST (v4i32 V128:$Vd), (v4i32 V128:$Vn), (v4i32 V128:$Vm), (VectorIndexS_timm:$imm))>;
1006
1007class SM4_pattern<Instruction INST, Intrinsic OpNode>
1008  : Pat<(v4i32 (OpNode (v4i32 V128:$Vn), (v4i32 V128:$Vm))),
1009        (INST (v4i32 V128:$Vn), (v4i32 V128:$Vm))>;
1010
1011def : SM3PARTW_pattern<SM3PARTW1, int_aarch64_crypto_sm3partw1>;
1012def : SM3PARTW_pattern<SM3PARTW2, int_aarch64_crypto_sm3partw2>;
1013
1014def : SM3TT_pattern<SM3TT1A, int_aarch64_crypto_sm3tt1a>;
1015def : SM3TT_pattern<SM3TT1B, int_aarch64_crypto_sm3tt1b>;
1016def : SM3TT_pattern<SM3TT2A, int_aarch64_crypto_sm3tt2a>;
1017def : SM3TT_pattern<SM3TT2B, int_aarch64_crypto_sm3tt2b>;
1018
1019def : SM4_pattern<SM4ENCKEY, int_aarch64_crypto_sm4ekey>;
1020def : SM4_pattern<SM4E, int_aarch64_crypto_sm4e>;
1021} // HasSM4
1022
1023let Predicates = [HasRCPC] in {
1024  // v8.3 Release Consistent Processor Consistent support, optional in v8.2.
1025  def LDAPRB  : RCPCLoad<0b00, "ldaprb", GPR32>;
1026  def LDAPRH  : RCPCLoad<0b01, "ldaprh", GPR32>;
1027  def LDAPRW  : RCPCLoad<0b10, "ldapr", GPR32>;
1028  def LDAPRX  : RCPCLoad<0b11, "ldapr", GPR64>;
1029}
1030
1031// v8.3a complex add and multiply-accumulate. No predicate here, that is done
1032// inside the multiclass as the FP16 versions need different predicates.
1033defm FCMLA : SIMDThreeSameVectorTiedComplexHSD<1, 0b110, complexrotateop,
1034                                               "fcmla", null_frag>;
1035defm FCADD : SIMDThreeSameVectorComplexHSD<1, 0b111, complexrotateopodd,
1036                                           "fcadd", null_frag>;
1037defm FCMLA : SIMDIndexedTiedComplexHSD<1, 0, 1, complexrotateop, "fcmla",
1038                                       null_frag>;
1039
1040let Predicates = [HasComplxNum, HasNEON, HasFullFP16] in {
1041  def : Pat<(v4f16 (int_aarch64_neon_vcadd_rot90 (v4f16 V64:$Rn), (v4f16 V64:$Rm))),
1042            (FCADDv4f16 (v4f16 V64:$Rn), (v4f16 V64:$Rm), (i32 0))>;
1043  def : Pat<(v4f16 (int_aarch64_neon_vcadd_rot270 (v4f16 V64:$Rn), (v4f16 V64:$Rm))),
1044            (FCADDv4f16 (v4f16 V64:$Rn), (v4f16 V64:$Rm), (i32 1))>;
1045  def : Pat<(v8f16 (int_aarch64_neon_vcadd_rot90 (v8f16 V128:$Rn), (v8f16 V128:$Rm))),
1046            (FCADDv8f16 (v8f16 V128:$Rn), (v8f16 V128:$Rm), (i32 0))>;
1047  def : Pat<(v8f16 (int_aarch64_neon_vcadd_rot270 (v8f16 V128:$Rn), (v8f16 V128:$Rm))),
1048            (FCADDv8f16 (v8f16 V128:$Rn), (v8f16 V128:$Rm), (i32 1))>;
1049}
1050
1051let Predicates = [HasComplxNum, HasNEON] in {
1052  def : Pat<(v2f32 (int_aarch64_neon_vcadd_rot90 (v2f32 V64:$Rn), (v2f32 V64:$Rm))),
1053            (FCADDv2f32 (v2f32 V64:$Rn), (v2f32 V64:$Rm), (i32 0))>;
1054  def : Pat<(v2f32 (int_aarch64_neon_vcadd_rot270 (v2f32 V64:$Rn), (v2f32 V64:$Rm))),
1055            (FCADDv2f32 (v2f32 V64:$Rn), (v2f32 V64:$Rm), (i32 1))>;
1056  foreach Ty = [v4f32, v2f64] in {
1057    def : Pat<(Ty (int_aarch64_neon_vcadd_rot90 (Ty V128:$Rn), (Ty V128:$Rm))),
1058              (!cast<Instruction>("FCADD"#Ty) (Ty V128:$Rn), (Ty V128:$Rm), (i32 0))>;
1059    def : Pat<(Ty (int_aarch64_neon_vcadd_rot270 (Ty V128:$Rn), (Ty V128:$Rm))),
1060              (!cast<Instruction>("FCADD"#Ty) (Ty V128:$Rn), (Ty V128:$Rm), (i32 1))>;
1061  }
1062}
1063
1064multiclass FCMLA_PATS<ValueType ty, DAGOperand Reg> {
1065  def : Pat<(ty (int_aarch64_neon_vcmla_rot0 (ty Reg:$Rd), (ty Reg:$Rn), (ty Reg:$Rm))),
1066            (!cast<Instruction>("FCMLA" # ty) $Rd, $Rn, $Rm, 0)>;
1067  def : Pat<(ty (int_aarch64_neon_vcmla_rot90 (ty Reg:$Rd), (ty Reg:$Rn), (ty Reg:$Rm))),
1068            (!cast<Instruction>("FCMLA" # ty) $Rd, $Rn, $Rm, 1)>;
1069  def : Pat<(ty (int_aarch64_neon_vcmla_rot180 (ty Reg:$Rd), (ty Reg:$Rn), (ty Reg:$Rm))),
1070            (!cast<Instruction>("FCMLA" # ty) $Rd, $Rn, $Rm, 2)>;
1071  def : Pat<(ty (int_aarch64_neon_vcmla_rot270 (ty Reg:$Rd), (ty Reg:$Rn), (ty Reg:$Rm))),
1072            (!cast<Instruction>("FCMLA" # ty) $Rd, $Rn, $Rm, 3)>;
1073}
1074
1075multiclass FCMLA_LANE_PATS<ValueType ty, DAGOperand Reg, dag RHSDup> {
1076  def : Pat<(ty (int_aarch64_neon_vcmla_rot0 (ty Reg:$Rd), (ty Reg:$Rn), RHSDup)),
1077            (!cast<Instruction>("FCMLA" # ty # "_indexed") $Rd, $Rn, $Rm, VectorIndexS:$idx, 0)>;
1078  def : Pat<(ty (int_aarch64_neon_vcmla_rot90 (ty Reg:$Rd), (ty Reg:$Rn), RHSDup)),
1079            (!cast<Instruction>("FCMLA" # ty # "_indexed") $Rd, $Rn, $Rm, VectorIndexS:$idx, 1)>;
1080  def : Pat<(ty (int_aarch64_neon_vcmla_rot180 (ty Reg:$Rd), (ty Reg:$Rn), RHSDup)),
1081            (!cast<Instruction>("FCMLA" # ty # "_indexed") $Rd, $Rn, $Rm, VectorIndexS:$idx, 2)>;
1082  def : Pat<(ty (int_aarch64_neon_vcmla_rot270 (ty Reg:$Rd), (ty Reg:$Rn), RHSDup)),
1083            (!cast<Instruction>("FCMLA" # ty # "_indexed") $Rd, $Rn, $Rm, VectorIndexS:$idx, 3)>;
1084}
1085
1086
1087let Predicates = [HasComplxNum, HasNEON, HasFullFP16] in {
1088  defm : FCMLA_PATS<v4f16, V64>;
1089  defm : FCMLA_PATS<v8f16, V128>;
1090
1091  defm : FCMLA_LANE_PATS<v4f16, V64,
1092                         (v4f16 (bitconvert (v2i32 (AArch64duplane32 (v4i32 V128:$Rm), VectorIndexD:$idx))))>;
1093  defm : FCMLA_LANE_PATS<v8f16, V128,
1094                         (v8f16 (bitconvert (v4i32 (AArch64duplane32 (v4i32 V128:$Rm), VectorIndexS:$idx))))>;
1095}
1096let Predicates = [HasComplxNum, HasNEON] in {
1097  defm : FCMLA_PATS<v2f32, V64>;
1098  defm : FCMLA_PATS<v4f32, V128>;
1099  defm : FCMLA_PATS<v2f64, V128>;
1100
1101  defm : FCMLA_LANE_PATS<v4f32, V128,
1102                         (v4f32 (bitconvert (v2i64 (AArch64duplane64 (v2i64 V128:$Rm), VectorIndexD:$idx))))>;
1103}
1104
1105// v8.3a Pointer Authentication
1106// These instructions inhabit part of the hint space and so can be used for
1107// armv8 targets. Keeping the old HINT mnemonic when compiling without PA is
1108// important for compatibility with other assemblers (e.g. GAS) when building
1109// software compatible with both CPUs that do or don't implement PA.
1110let Uses = [LR], Defs = [LR] in {
1111  def PACIAZ   : SystemNoOperands<0b000, "hint\t#24">;
1112  def PACIBZ   : SystemNoOperands<0b010, "hint\t#26">;
1113  let isAuthenticated = 1 in {
1114    def AUTIAZ   : SystemNoOperands<0b100, "hint\t#28">;
1115    def AUTIBZ   : SystemNoOperands<0b110, "hint\t#30">;
1116  }
1117}
1118let Uses = [LR, SP], Defs = [LR] in {
1119  def PACIASP  : SystemNoOperands<0b001, "hint\t#25">;
1120  def PACIBSP  : SystemNoOperands<0b011, "hint\t#27">;
1121  let isAuthenticated = 1 in {
1122    def AUTIASP  : SystemNoOperands<0b101, "hint\t#29">;
1123    def AUTIBSP  : SystemNoOperands<0b111, "hint\t#31">;
1124  }
1125}
1126let Uses = [X16, X17], Defs = [X17], CRm = 0b0001 in {
1127  def PACIA1716  : SystemNoOperands<0b000, "hint\t#8">;
1128  def PACIB1716  : SystemNoOperands<0b010, "hint\t#10">;
1129  let isAuthenticated = 1 in {
1130    def AUTIA1716  : SystemNoOperands<0b100, "hint\t#12">;
1131    def AUTIB1716  : SystemNoOperands<0b110, "hint\t#14">;
1132  }
1133}
1134
1135let Uses = [LR], Defs = [LR], CRm = 0b0000 in {
1136  def XPACLRI   : SystemNoOperands<0b111, "hint\t#7">;
1137}
1138
1139// In order to be able to write readable assembly, LLVM should accept assembly
1140// inputs that use pointer authentication mnemonics, even with PA disabled.
1141// However, in order to be compatible with other assemblers (e.g. GAS), LLVM
1142// should not emit these mnemonics unless PA is enabled.
1143def : InstAlias<"paciaz", (PACIAZ), 0>;
1144def : InstAlias<"pacibz", (PACIBZ), 0>;
1145def : InstAlias<"autiaz", (AUTIAZ), 0>;
1146def : InstAlias<"autibz", (AUTIBZ), 0>;
1147def : InstAlias<"paciasp", (PACIASP), 0>;
1148def : InstAlias<"pacibsp", (PACIBSP), 0>;
1149def : InstAlias<"autiasp", (AUTIASP), 0>;
1150def : InstAlias<"autibsp", (AUTIBSP), 0>;
1151def : InstAlias<"pacia1716", (PACIA1716), 0>;
1152def : InstAlias<"pacib1716", (PACIB1716), 0>;
1153def : InstAlias<"autia1716", (AUTIA1716), 0>;
1154def : InstAlias<"autib1716", (AUTIB1716), 0>;
1155def : InstAlias<"xpaclri", (XPACLRI), 0>;
1156
1157// These pointer authentication instructions require armv8.3a
1158let Predicates = [HasPAuth] in {
1159
1160  // When PA is enabled, a better mnemonic should be emitted.
1161  def : InstAlias<"paciaz", (PACIAZ), 1>;
1162  def : InstAlias<"pacibz", (PACIBZ), 1>;
1163  def : InstAlias<"autiaz", (AUTIAZ), 1>;
1164  def : InstAlias<"autibz", (AUTIBZ), 1>;
1165  def : InstAlias<"paciasp", (PACIASP), 1>;
1166  def : InstAlias<"pacibsp", (PACIBSP), 1>;
1167  def : InstAlias<"autiasp", (AUTIASP), 1>;
1168  def : InstAlias<"autibsp", (AUTIBSP), 1>;
1169  def : InstAlias<"pacia1716", (PACIA1716), 1>;
1170  def : InstAlias<"pacib1716", (PACIB1716), 1>;
1171  def : InstAlias<"autia1716", (AUTIA1716), 1>;
1172  def : InstAlias<"autib1716", (AUTIB1716), 1>;
1173  def : InstAlias<"xpaclri", (XPACLRI), 1>;
1174
1175  multiclass SignAuth<bits<3> prefix, bits<3> prefix_z, string asm> {
1176    def IA   : SignAuthOneData<prefix, 0b00, !strconcat(asm, "ia")>;
1177    def IB   : SignAuthOneData<prefix, 0b01, !strconcat(asm, "ib")>;
1178    def DA   : SignAuthOneData<prefix, 0b10, !strconcat(asm, "da")>;
1179    def DB   : SignAuthOneData<prefix, 0b11, !strconcat(asm, "db")>;
1180    def IZA  : SignAuthZero<prefix_z, 0b00, !strconcat(asm, "iza")>;
1181    def DZA  : SignAuthZero<prefix_z, 0b10, !strconcat(asm, "dza")>;
1182    def IZB  : SignAuthZero<prefix_z, 0b01, !strconcat(asm, "izb")>;
1183    def DZB  : SignAuthZero<prefix_z, 0b11, !strconcat(asm, "dzb")>;
1184  }
1185
1186  defm PAC : SignAuth<0b000, 0b010, "pac">;
1187  defm AUT : SignAuth<0b001, 0b011, "aut">;
1188
1189  def XPACI : ClearAuth<0, "xpaci">;
1190  def XPACD : ClearAuth<1, "xpacd">;
1191  def PACGA : SignAuthTwoOperand<0b1100, "pacga", null_frag>;
1192
1193  // Combined Instructions
1194  let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1  in {
1195    def BRAA    : AuthBranchTwoOperands<0, 0, "braa">;
1196    def BRAB    : AuthBranchTwoOperands<0, 1, "brab">;
1197  }
1198  let isCall = 1, Defs = [LR], Uses = [SP] in {
1199    def BLRAA   : AuthBranchTwoOperands<1, 0, "blraa">;
1200    def BLRAB   : AuthBranchTwoOperands<1, 1, "blrab">;
1201  }
1202
1203  let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1  in {
1204    def BRAAZ   : AuthOneOperand<0b000, 0, "braaz">;
1205    def BRABZ   : AuthOneOperand<0b000, 1, "brabz">;
1206  }
1207  let isCall = 1, Defs = [LR], Uses = [SP] in {
1208    def BLRAAZ  : AuthOneOperand<0b001, 0, "blraaz">;
1209    def BLRABZ  : AuthOneOperand<0b001, 1, "blrabz">;
1210  }
1211
1212  let isReturn = 1, isTerminator = 1, isBarrier = 1 in {
1213    def RETAA   : AuthReturn<0b010, 0, "retaa">;
1214    def RETAB   : AuthReturn<0b010, 1, "retab">;
1215    def ERETAA  : AuthReturn<0b100, 0, "eretaa">;
1216    def ERETAB  : AuthReturn<0b100, 1, "eretab">;
1217  }
1218
1219  defm LDRAA  : AuthLoad<0, "ldraa", simm10Scaled>;
1220  defm LDRAB  : AuthLoad<1, "ldrab", simm10Scaled>;
1221
1222}
1223
1224// v8.3a floating point conversion for javascript
1225let Predicates = [HasJS, HasFPARMv8], Defs = [NZCV] in
1226def FJCVTZS  : BaseFPToIntegerUnscaled<0b01, 0b11, 0b110, FPR64, GPR32,
1227                                      "fjcvtzs",
1228                                      [(set GPR32:$Rd,
1229                                         (int_aarch64_fjcvtzs FPR64:$Rn))]> {
1230  let Inst{31} = 0;
1231} // HasJS, HasFPARMv8
1232
1233// v8.4 Flag manipulation instructions
1234let Predicates = [HasFlagM], Defs = [NZCV], Uses = [NZCV] in {
1235def CFINV : SimpleSystemI<0, (ins), "cfinv", "">, Sched<[WriteSys]> {
1236  let Inst{20-5} = 0b0000001000000000;
1237}
1238def SETF8  : BaseFlagManipulation<0, 0, (ins GPR32:$Rn), "setf8", "{\t$Rn}">;
1239def SETF16 : BaseFlagManipulation<0, 1, (ins GPR32:$Rn), "setf16", "{\t$Rn}">;
1240def RMIF   : FlagRotate<(ins GPR64:$Rn, uimm6:$imm, imm0_15:$mask), "rmif",
1241                        "{\t$Rn, $imm, $mask}">;
1242} // HasFlagM
1243
1244// v8.5 flag manipulation instructions
1245let Predicates = [HasAltNZCV], Uses = [NZCV], Defs = [NZCV] in {
1246
1247def XAFLAG : PstateWriteSimple<(ins), "xaflag", "">, Sched<[WriteSys]> {
1248  let Inst{18-16} = 0b000;
1249  let Inst{11-8} = 0b0000;
1250  let Unpredictable{11-8} = 0b1111;
1251  let Inst{7-5} = 0b001;
1252}
1253
1254def AXFLAG : PstateWriteSimple<(ins), "axflag", "">, Sched<[WriteSys]> {
1255  let Inst{18-16} = 0b000;
1256  let Inst{11-8} = 0b0000;
1257  let Unpredictable{11-8} = 0b1111;
1258  let Inst{7-5} = 0b010;
1259}
1260} // HasAltNZCV
1261
1262
1263// Armv8.5-A speculation barrier
1264def SB : SimpleSystemI<0, (ins), "sb", "">, Sched<[]> {
1265  let Inst{20-5} = 0b0001100110000111;
1266  let Unpredictable{11-8} = 0b1111;
1267  let Predicates = [HasSB];
1268  let hasSideEffects = 1;
1269}
1270
1271def : InstAlias<"clrex", (CLREX 0xf)>;
1272def : InstAlias<"isb", (ISB 0xf)>;
1273def : InstAlias<"ssbb", (DSB 0)>;
1274def : InstAlias<"pssbb", (DSB 4)>;
1275
1276def MRS    : MRSI;
1277def MSR    : MSRI;
1278def MSRpstateImm1 : MSRpstateImm0_1;
1279def MSRpstateImm4 : MSRpstateImm0_15;
1280
1281def : Pat<(AArch64mrs imm:$id),
1282          (MRS imm:$id)>;
1283
1284// The thread pointer (on Linux, at least, where this has been implemented) is
1285// TPIDR_EL0.
1286def MOVbaseTLS : Pseudo<(outs GPR64:$dst), (ins),
1287                       [(set GPR64:$dst, AArch64threadpointer)]>, Sched<[WriteSys]>;
1288
1289let Uses = [ X9 ], Defs = [ X16, X17, LR, NZCV ] in {
1290def HWASAN_CHECK_MEMACCESS : Pseudo<
1291  (outs), (ins GPR64noip:$ptr, i32imm:$accessinfo),
1292  [(int_hwasan_check_memaccess X9, GPR64noip:$ptr, (i32 timm:$accessinfo))]>,
1293  Sched<[]>;
1294}
1295
1296let Uses = [ X20 ], Defs = [ X16, X17, LR, NZCV ] in {
1297def HWASAN_CHECK_MEMACCESS_SHORTGRANULES : Pseudo<
1298  (outs), (ins GPR64noip:$ptr, i32imm:$accessinfo),
1299  [(int_hwasan_check_memaccess_shortgranules X20, GPR64noip:$ptr, (i32 timm:$accessinfo))]>,
1300  Sched<[]>;
1301}
1302
1303// The cycle counter PMC register is PMCCNTR_EL0.
1304let Predicates = [HasPerfMon] in
1305def : Pat<(readcyclecounter), (MRS 0xdce8)>;
1306
1307// FPCR register
1308def : Pat<(i64 (int_aarch64_get_fpcr)), (MRS 0xda20)>;
1309def : Pat<(int_aarch64_set_fpcr i64:$val), (MSR 0xda20, GPR64:$val)>;
1310
1311// Generic system instructions
1312def SYSxt  : SystemXtI<0, "sys">;
1313def SYSLxt : SystemLXtI<1, "sysl">;
1314
1315def : InstAlias<"sys $op1, $Cn, $Cm, $op2",
1316                (SYSxt imm0_7:$op1, sys_cr_op:$Cn,
1317                 sys_cr_op:$Cm, imm0_7:$op2, XZR)>;
1318
1319
1320let Predicates = [HasTME] in {
1321
1322def TSTART : TMSystemI<0b0000, "tstart",
1323                      [(set GPR64:$Rt, (int_aarch64_tstart))]>;
1324
1325def TCOMMIT : TMSystemINoOperand<0b0000, "tcommit", [(int_aarch64_tcommit)]>;
1326
1327def TCANCEL : TMSystemException<0b011, "tcancel",
1328                                [(int_aarch64_tcancel i64_imm0_65535:$imm)]>;
1329
1330def TTEST : TMSystemI<0b0001, "ttest", [(set GPR64:$Rt, (int_aarch64_ttest))]> {
1331  let mayLoad = 0;
1332  let mayStore = 0;
1333}
1334} // HasTME
1335
1336//===----------------------------------------------------------------------===//
1337// Move immediate instructions.
1338//===----------------------------------------------------------------------===//
1339
1340defm MOVK : InsertImmediate<0b11, "movk">;
1341defm MOVN : MoveImmediate<0b00, "movn">;
1342
1343let PostEncoderMethod = "fixMOVZ" in
1344defm MOVZ : MoveImmediate<0b10, "movz">;
1345
1346// First group of aliases covers an implicit "lsl #0".
1347def : InstAlias<"movk $dst, $imm", (MOVKWi GPR32:$dst, i32_imm0_65535:$imm, 0), 0>;
1348def : InstAlias<"movk $dst, $imm", (MOVKXi GPR64:$dst, i32_imm0_65535:$imm, 0), 0>;
1349def : InstAlias<"movn $dst, $imm", (MOVNWi GPR32:$dst, i32_imm0_65535:$imm, 0)>;
1350def : InstAlias<"movn $dst, $imm", (MOVNXi GPR64:$dst, i32_imm0_65535:$imm, 0)>;
1351def : InstAlias<"movz $dst, $imm", (MOVZWi GPR32:$dst, i32_imm0_65535:$imm, 0)>;
1352def : InstAlias<"movz $dst, $imm", (MOVZXi GPR64:$dst, i32_imm0_65535:$imm, 0)>;
1353
1354// Next, we have various ELF relocations with the ":XYZ_g0:sym" syntax.
1355def : InstAlias<"movz $Rd, $sym", (MOVZXi GPR64:$Rd, movw_symbol_g3:$sym, 48)>;
1356def : InstAlias<"movz $Rd, $sym", (MOVZXi GPR64:$Rd, movw_symbol_g2:$sym, 32)>;
1357def : InstAlias<"movz $Rd, $sym", (MOVZXi GPR64:$Rd, movw_symbol_g1:$sym, 16)>;
1358def : InstAlias<"movz $Rd, $sym", (MOVZXi GPR64:$Rd, movw_symbol_g0:$sym, 0)>;
1359
1360def : InstAlias<"movn $Rd, $sym", (MOVNXi GPR64:$Rd, movw_symbol_g3:$sym, 48)>;
1361def : InstAlias<"movn $Rd, $sym", (MOVNXi GPR64:$Rd, movw_symbol_g2:$sym, 32)>;
1362def : InstAlias<"movn $Rd, $sym", (MOVNXi GPR64:$Rd, movw_symbol_g1:$sym, 16)>;
1363def : InstAlias<"movn $Rd, $sym", (MOVNXi GPR64:$Rd, movw_symbol_g0:$sym, 0)>;
1364
1365def : InstAlias<"movk $Rd, $sym", (MOVKXi GPR64:$Rd, movw_symbol_g3:$sym, 48), 0>;
1366def : InstAlias<"movk $Rd, $sym", (MOVKXi GPR64:$Rd, movw_symbol_g2:$sym, 32), 0>;
1367def : InstAlias<"movk $Rd, $sym", (MOVKXi GPR64:$Rd, movw_symbol_g1:$sym, 16), 0>;
1368def : InstAlias<"movk $Rd, $sym", (MOVKXi GPR64:$Rd, movw_symbol_g0:$sym, 0), 0>;
1369
1370def : InstAlias<"movz $Rd, $sym", (MOVZWi GPR32:$Rd, movw_symbol_g1:$sym, 16)>;
1371def : InstAlias<"movz $Rd, $sym", (MOVZWi GPR32:$Rd, movw_symbol_g0:$sym, 0)>;
1372
1373def : InstAlias<"movn $Rd, $sym", (MOVNWi GPR32:$Rd, movw_symbol_g1:$sym, 16)>;
1374def : InstAlias<"movn $Rd, $sym", (MOVNWi GPR32:$Rd, movw_symbol_g0:$sym, 0)>;
1375
1376def : InstAlias<"movk $Rd, $sym", (MOVKWi GPR32:$Rd, movw_symbol_g1:$sym, 16), 0>;
1377def : InstAlias<"movk $Rd, $sym", (MOVKWi GPR32:$Rd, movw_symbol_g0:$sym, 0), 0>;
1378
1379// Final group of aliases covers true "mov $Rd, $imm" cases.
1380multiclass movw_mov_alias<string basename,Instruction INST, RegisterClass GPR,
1381                          int width, int shift> {
1382  def _asmoperand : AsmOperandClass {
1383    let Name = basename # width # "_lsl" # shift # "MovAlias";
1384    let PredicateMethod = "is" # basename # "MovAlias<" # width # ", "
1385                               # shift # ">";
1386    let RenderMethod = "add" # basename # "MovAliasOperands<" # shift # ">";
1387  }
1388
1389  def _movimm : Operand<i32> {
1390    let ParserMatchClass = !cast<AsmOperandClass>(NAME # "_asmoperand");
1391  }
1392
1393  def : InstAlias<"mov $Rd, $imm",
1394                  (INST GPR:$Rd, !cast<Operand>(NAME # "_movimm"):$imm, shift)>;
1395}
1396
1397defm : movw_mov_alias<"MOVZ", MOVZWi, GPR32, 32, 0>;
1398defm : movw_mov_alias<"MOVZ", MOVZWi, GPR32, 32, 16>;
1399
1400defm : movw_mov_alias<"MOVZ", MOVZXi, GPR64, 64, 0>;
1401defm : movw_mov_alias<"MOVZ", MOVZXi, GPR64, 64, 16>;
1402defm : movw_mov_alias<"MOVZ", MOVZXi, GPR64, 64, 32>;
1403defm : movw_mov_alias<"MOVZ", MOVZXi, GPR64, 64, 48>;
1404
1405defm : movw_mov_alias<"MOVN", MOVNWi, GPR32, 32, 0>;
1406defm : movw_mov_alias<"MOVN", MOVNWi, GPR32, 32, 16>;
1407
1408defm : movw_mov_alias<"MOVN", MOVNXi, GPR64, 64, 0>;
1409defm : movw_mov_alias<"MOVN", MOVNXi, GPR64, 64, 16>;
1410defm : movw_mov_alias<"MOVN", MOVNXi, GPR64, 64, 32>;
1411defm : movw_mov_alias<"MOVN", MOVNXi, GPR64, 64, 48>;
1412
1413let isReMaterializable = 1, isCodeGenOnly = 1, isMoveImm = 1,
1414    isAsCheapAsAMove = 1 in {
1415// FIXME: The following pseudo instructions are only needed because remat
1416// cannot handle multiple instructions.  When that changes, we can select
1417// directly to the real instructions and get rid of these pseudos.
1418
1419def MOVi32imm
1420    : Pseudo<(outs GPR32:$dst), (ins i32imm:$src),
1421             [(set GPR32:$dst, imm:$src)]>,
1422      Sched<[WriteImm]>;
1423def MOVi64imm
1424    : Pseudo<(outs GPR64:$dst), (ins i64imm:$src),
1425             [(set GPR64:$dst, imm:$src)]>,
1426      Sched<[WriteImm]>;
1427} // isReMaterializable, isCodeGenOnly
1428
1429// If possible, we want to use MOVi32imm even for 64-bit moves. This gives the
1430// eventual expansion code fewer bits to worry about getting right. Marshalling
1431// the types is a little tricky though:
1432def i64imm_32bit : ImmLeaf<i64, [{
1433  return (Imm & 0xffffffffULL) == static_cast<uint64_t>(Imm);
1434}]>;
1435
1436def s64imm_32bit : ImmLeaf<i64, [{
1437  int64_t Imm64 = static_cast<int64_t>(Imm);
1438  return Imm64 >= std::numeric_limits<int32_t>::min() &&
1439         Imm64 <= std::numeric_limits<int32_t>::max();
1440}]>;
1441
1442def trunc_imm : SDNodeXForm<imm, [{
1443  return CurDAG->getTargetConstant(N->getZExtValue(), SDLoc(N), MVT::i32);
1444}]>;
1445
1446def gi_trunc_imm : GICustomOperandRenderer<"renderTruncImm">,
1447  GISDNodeXFormEquiv<trunc_imm>;
1448
1449let Predicates = [OptimizedGISelOrOtherSelector] in {
1450// The SUBREG_TO_REG isn't eliminated at -O0, which can result in pointless
1451// copies.
1452def : Pat<(i64 i64imm_32bit:$src),
1453          (SUBREG_TO_REG (i64 0), (MOVi32imm (trunc_imm imm:$src)), sub_32)>;
1454}
1455
1456// Materialize FP constants via MOVi32imm/MOVi64imm (MachO large code model).
1457def bitcast_fpimm_to_i32 : SDNodeXForm<fpimm, [{
1458return CurDAG->getTargetConstant(
1459  N->getValueAPF().bitcastToAPInt().getZExtValue(), SDLoc(N), MVT::i32);
1460}]>;
1461
1462def bitcast_fpimm_to_i64 : SDNodeXForm<fpimm, [{
1463return CurDAG->getTargetConstant(
1464  N->getValueAPF().bitcastToAPInt().getZExtValue(), SDLoc(N), MVT::i64);
1465}]>;
1466
1467
1468def : Pat<(f32 fpimm:$in),
1469  (COPY_TO_REGCLASS (MOVi32imm (bitcast_fpimm_to_i32 f32:$in)), FPR32)>;
1470def : Pat<(f64 fpimm:$in),
1471  (COPY_TO_REGCLASS (MOVi64imm (bitcast_fpimm_to_i64 f64:$in)), FPR64)>;
1472
1473
1474// Deal with the various forms of (ELF) large addressing with MOVZ/MOVK
1475// sequences.
1476def : Pat<(AArch64WrapperLarge tglobaladdr:$g3, tglobaladdr:$g2,
1477                             tglobaladdr:$g1, tglobaladdr:$g0),
1478          (MOVKXi (MOVKXi (MOVKXi (MOVZXi tglobaladdr:$g0, 0),
1479                                  tglobaladdr:$g1, 16),
1480                          tglobaladdr:$g2, 32),
1481                  tglobaladdr:$g3, 48)>;
1482
1483def : Pat<(AArch64WrapperLarge tblockaddress:$g3, tblockaddress:$g2,
1484                             tblockaddress:$g1, tblockaddress:$g0),
1485          (MOVKXi (MOVKXi (MOVKXi (MOVZXi tblockaddress:$g0, 0),
1486                                  tblockaddress:$g1, 16),
1487                          tblockaddress:$g2, 32),
1488                  tblockaddress:$g3, 48)>;
1489
1490def : Pat<(AArch64WrapperLarge tconstpool:$g3, tconstpool:$g2,
1491                             tconstpool:$g1, tconstpool:$g0),
1492          (MOVKXi (MOVKXi (MOVKXi (MOVZXi tconstpool:$g0, 0),
1493                                  tconstpool:$g1, 16),
1494                          tconstpool:$g2, 32),
1495                  tconstpool:$g3, 48)>;
1496
1497def : Pat<(AArch64WrapperLarge tjumptable:$g3, tjumptable:$g2,
1498                             tjumptable:$g1, tjumptable:$g0),
1499          (MOVKXi (MOVKXi (MOVKXi (MOVZXi tjumptable:$g0, 0),
1500                                  tjumptable:$g1, 16),
1501                          tjumptable:$g2, 32),
1502                  tjumptable:$g3, 48)>;
1503
1504
1505//===----------------------------------------------------------------------===//
1506// Arithmetic instructions.
1507//===----------------------------------------------------------------------===//
1508
1509// Add/subtract with carry.
1510defm ADC : AddSubCarry<0, "adc", "adcs", AArch64adc, AArch64adc_flag>;
1511defm SBC : AddSubCarry<1, "sbc", "sbcs", AArch64sbc, AArch64sbc_flag>;
1512
1513def : InstAlias<"ngc $dst, $src",  (SBCWr  GPR32:$dst, WZR, GPR32:$src)>;
1514def : InstAlias<"ngc $dst, $src",  (SBCXr  GPR64:$dst, XZR, GPR64:$src)>;
1515def : InstAlias<"ngcs $dst, $src", (SBCSWr GPR32:$dst, WZR, GPR32:$src)>;
1516def : InstAlias<"ngcs $dst, $src", (SBCSXr GPR64:$dst, XZR, GPR64:$src)>;
1517
1518// Add/subtract
1519defm ADD : AddSub<0, "add", "sub", add>;
1520defm SUB : AddSub<1, "sub", "add">;
1521
1522def : InstAlias<"mov $dst, $src",
1523                (ADDWri GPR32sponly:$dst, GPR32sp:$src, 0, 0)>;
1524def : InstAlias<"mov $dst, $src",
1525                (ADDWri GPR32sp:$dst, GPR32sponly:$src, 0, 0)>;
1526def : InstAlias<"mov $dst, $src",
1527                (ADDXri GPR64sponly:$dst, GPR64sp:$src, 0, 0)>;
1528def : InstAlias<"mov $dst, $src",
1529                (ADDXri GPR64sp:$dst, GPR64sponly:$src, 0, 0)>;
1530
1531defm ADDS : AddSubS<0, "adds", AArch64add_flag, "cmn", "subs", "cmp">;
1532defm SUBS : AddSubS<1, "subs", AArch64sub_flag, "cmp", "adds", "cmn">;
1533
1534// Use SUBS instead of SUB to enable CSE between SUBS and SUB.
1535def : Pat<(sub GPR32sp:$Rn, addsub_shifted_imm32:$imm),
1536          (SUBSWri GPR32sp:$Rn, addsub_shifted_imm32:$imm)>;
1537def : Pat<(sub GPR64sp:$Rn, addsub_shifted_imm64:$imm),
1538          (SUBSXri GPR64sp:$Rn, addsub_shifted_imm64:$imm)>;
1539def : Pat<(sub GPR32:$Rn, GPR32:$Rm),
1540          (SUBSWrr GPR32:$Rn, GPR32:$Rm)>;
1541def : Pat<(sub GPR64:$Rn, GPR64:$Rm),
1542          (SUBSXrr GPR64:$Rn, GPR64:$Rm)>;
1543def : Pat<(sub GPR32:$Rn, arith_shifted_reg32:$Rm),
1544          (SUBSWrs GPR32:$Rn, arith_shifted_reg32:$Rm)>;
1545def : Pat<(sub GPR64:$Rn, arith_shifted_reg64:$Rm),
1546          (SUBSXrs GPR64:$Rn, arith_shifted_reg64:$Rm)>;
1547let AddedComplexity = 1 in {
1548def : Pat<(sub GPR32sp:$R2, arith_extended_reg32_i32:$R3),
1549          (SUBSWrx GPR32sp:$R2, arith_extended_reg32_i32:$R3)>;
1550def : Pat<(sub GPR64sp:$R2, arith_extended_reg32to64_i64:$R3),
1551          (SUBSXrx GPR64sp:$R2, arith_extended_reg32to64_i64:$R3)>;
1552}
1553
1554// Because of the immediate format for add/sub-imm instructions, the
1555// expression (add x, -1) must be transformed to (SUB{W,X}ri x, 1).
1556//  These patterns capture that transformation.
1557let AddedComplexity = 1 in {
1558def : Pat<(add GPR32:$Rn, neg_addsub_shifted_imm32:$imm),
1559          (SUBSWri GPR32:$Rn, neg_addsub_shifted_imm32:$imm)>;
1560def : Pat<(add GPR64:$Rn, neg_addsub_shifted_imm64:$imm),
1561          (SUBSXri GPR64:$Rn, neg_addsub_shifted_imm64:$imm)>;
1562def : Pat<(sub GPR32:$Rn, neg_addsub_shifted_imm32:$imm),
1563          (ADDWri GPR32:$Rn, neg_addsub_shifted_imm32:$imm)>;
1564def : Pat<(sub GPR64:$Rn, neg_addsub_shifted_imm64:$imm),
1565          (ADDXri GPR64:$Rn, neg_addsub_shifted_imm64:$imm)>;
1566}
1567
1568// Because of the immediate format for add/sub-imm instructions, the
1569// expression (add x, -1) must be transformed to (SUB{W,X}ri x, 1).
1570//  These patterns capture that transformation.
1571let AddedComplexity = 1 in {
1572def : Pat<(AArch64add_flag GPR32:$Rn, neg_addsub_shifted_imm32:$imm),
1573          (SUBSWri GPR32:$Rn, neg_addsub_shifted_imm32:$imm)>;
1574def : Pat<(AArch64add_flag GPR64:$Rn, neg_addsub_shifted_imm64:$imm),
1575          (SUBSXri GPR64:$Rn, neg_addsub_shifted_imm64:$imm)>;
1576def : Pat<(AArch64sub_flag GPR32:$Rn, neg_addsub_shifted_imm32:$imm),
1577          (ADDSWri GPR32:$Rn, neg_addsub_shifted_imm32:$imm)>;
1578def : Pat<(AArch64sub_flag GPR64:$Rn, neg_addsub_shifted_imm64:$imm),
1579          (ADDSXri GPR64:$Rn, neg_addsub_shifted_imm64:$imm)>;
1580}
1581
1582def : InstAlias<"neg $dst, $src", (SUBWrs GPR32:$dst, WZR, GPR32:$src, 0), 3>;
1583def : InstAlias<"neg $dst, $src", (SUBXrs GPR64:$dst, XZR, GPR64:$src, 0), 3>;
1584def : InstAlias<"neg $dst, $src$shift",
1585                (SUBWrs GPR32:$dst, WZR, GPR32:$src, arith_shift32:$shift), 2>;
1586def : InstAlias<"neg $dst, $src$shift",
1587                (SUBXrs GPR64:$dst, XZR, GPR64:$src, arith_shift64:$shift), 2>;
1588
1589def : InstAlias<"negs $dst, $src", (SUBSWrs GPR32:$dst, WZR, GPR32:$src, 0), 3>;
1590def : InstAlias<"negs $dst, $src", (SUBSXrs GPR64:$dst, XZR, GPR64:$src, 0), 3>;
1591def : InstAlias<"negs $dst, $src$shift",
1592                (SUBSWrs GPR32:$dst, WZR, GPR32:$src, arith_shift32:$shift), 2>;
1593def : InstAlias<"negs $dst, $src$shift",
1594                (SUBSXrs GPR64:$dst, XZR, GPR64:$src, arith_shift64:$shift), 2>;
1595
1596
1597// Unsigned/Signed divide
1598defm UDIV : Div<0, "udiv", udiv>;
1599defm SDIV : Div<1, "sdiv", sdiv>;
1600
1601def : Pat<(int_aarch64_udiv GPR32:$Rn, GPR32:$Rm), (UDIVWr GPR32:$Rn, GPR32:$Rm)>;
1602def : Pat<(int_aarch64_udiv GPR64:$Rn, GPR64:$Rm), (UDIVXr GPR64:$Rn, GPR64:$Rm)>;
1603def : Pat<(int_aarch64_sdiv GPR32:$Rn, GPR32:$Rm), (SDIVWr GPR32:$Rn, GPR32:$Rm)>;
1604def : Pat<(int_aarch64_sdiv GPR64:$Rn, GPR64:$Rm), (SDIVXr GPR64:$Rn, GPR64:$Rm)>;
1605
1606// Variable shift
1607defm ASRV : Shift<0b10, "asr", sra>;
1608defm LSLV : Shift<0b00, "lsl", shl>;
1609defm LSRV : Shift<0b01, "lsr", srl>;
1610defm RORV : Shift<0b11, "ror", rotr>;
1611
1612def : ShiftAlias<"asrv", ASRVWr, GPR32>;
1613def : ShiftAlias<"asrv", ASRVXr, GPR64>;
1614def : ShiftAlias<"lslv", LSLVWr, GPR32>;
1615def : ShiftAlias<"lslv", LSLVXr, GPR64>;
1616def : ShiftAlias<"lsrv", LSRVWr, GPR32>;
1617def : ShiftAlias<"lsrv", LSRVXr, GPR64>;
1618def : ShiftAlias<"rorv", RORVWr, GPR32>;
1619def : ShiftAlias<"rorv", RORVXr, GPR64>;
1620
1621// Multiply-add
1622let AddedComplexity = 5 in {
1623defm MADD : MulAccum<0, "madd", add>;
1624defm MSUB : MulAccum<1, "msub", sub>;
1625
1626def : Pat<(i32 (mul GPR32:$Rn, GPR32:$Rm)),
1627          (MADDWrrr GPR32:$Rn, GPR32:$Rm, WZR)>;
1628def : Pat<(i64 (mul GPR64:$Rn, GPR64:$Rm)),
1629          (MADDXrrr GPR64:$Rn, GPR64:$Rm, XZR)>;
1630
1631def : Pat<(i32 (ineg (mul GPR32:$Rn, GPR32:$Rm))),
1632          (MSUBWrrr GPR32:$Rn, GPR32:$Rm, WZR)>;
1633def : Pat<(i64 (ineg (mul GPR64:$Rn, GPR64:$Rm))),
1634          (MSUBXrrr GPR64:$Rn, GPR64:$Rm, XZR)>;
1635def : Pat<(i32 (mul (ineg GPR32:$Rn), GPR32:$Rm)),
1636          (MSUBWrrr GPR32:$Rn, GPR32:$Rm, WZR)>;
1637def : Pat<(i64 (mul (ineg GPR64:$Rn), GPR64:$Rm)),
1638          (MSUBXrrr GPR64:$Rn, GPR64:$Rm, XZR)>;
1639} // AddedComplexity = 5
1640
1641let AddedComplexity = 5 in {
1642def SMADDLrrr : WideMulAccum<0, 0b001, "smaddl", add, sext>;
1643def SMSUBLrrr : WideMulAccum<1, 0b001, "smsubl", sub, sext>;
1644def UMADDLrrr : WideMulAccum<0, 0b101, "umaddl", add, zext>;
1645def UMSUBLrrr : WideMulAccum<1, 0b101, "umsubl", sub, zext>;
1646
1647def : Pat<(i64 (mul (sext_inreg GPR64:$Rn, i32), (sext_inreg GPR64:$Rm, i32))),
1648          (SMADDLrrr (EXTRACT_SUBREG $Rn, sub_32), (EXTRACT_SUBREG $Rm, sub_32), XZR)>;
1649def : Pat<(i64 (mul (sext_inreg GPR64:$Rn, i32), (sext GPR32:$Rm))),
1650          (SMADDLrrr (EXTRACT_SUBREG $Rn, sub_32), $Rm, XZR)>;
1651def : Pat<(i64 (mul (sext GPR32:$Rn), (sext GPR32:$Rm))),
1652          (SMADDLrrr GPR32:$Rn, GPR32:$Rm, XZR)>;
1653def : Pat<(i64 (mul (and GPR64:$Rn, 0xFFFFFFFF), (and GPR64:$Rm, 0xFFFFFFFF))),
1654          (UMADDLrrr (EXTRACT_SUBREG $Rn, sub_32), (EXTRACT_SUBREG $Rm, sub_32), XZR)>;
1655def : Pat<(i64 (mul (and GPR64:$Rn, 0xFFFFFFFF), (zext GPR32:$Rm))),
1656          (UMADDLrrr (EXTRACT_SUBREG $Rn, sub_32), $Rm, XZR)>;
1657def : Pat<(i64 (mul (zext GPR32:$Rn), (zext GPR32:$Rm))),
1658          (UMADDLrrr GPR32:$Rn, GPR32:$Rm, XZR)>;
1659
1660def : Pat<(i64 (ineg (mul (sext GPR32:$Rn), (sext GPR32:$Rm)))),
1661          (SMSUBLrrr GPR32:$Rn, GPR32:$Rm, XZR)>;
1662def : Pat<(i64 (ineg (mul (zext GPR32:$Rn), (zext GPR32:$Rm)))),
1663          (UMSUBLrrr GPR32:$Rn, GPR32:$Rm, XZR)>;
1664
1665def : Pat<(i64 (mul (sext GPR32:$Rn), (s64imm_32bit:$C))),
1666          (SMADDLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), XZR)>;
1667def : Pat<(i64 (mul (zext GPR32:$Rn), (i64imm_32bit:$C))),
1668          (UMADDLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), XZR)>;
1669def : Pat<(i64 (mul (sext_inreg GPR64:$Rn, i32), (s64imm_32bit:$C))),
1670          (SMADDLrrr (i32 (EXTRACT_SUBREG GPR64:$Rn, sub_32)),
1671                     (MOVi32imm (trunc_imm imm:$C)), XZR)>;
1672
1673def : Pat<(i64 (ineg (mul (sext GPR32:$Rn), (s64imm_32bit:$C)))),
1674          (SMSUBLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), XZR)>;
1675def : Pat<(i64 (ineg (mul (zext GPR32:$Rn), (i64imm_32bit:$C)))),
1676          (UMSUBLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), XZR)>;
1677def : Pat<(i64 (ineg (mul (sext_inreg GPR64:$Rn, i32), (s64imm_32bit:$C)))),
1678          (SMSUBLrrr (i32 (EXTRACT_SUBREG GPR64:$Rn, sub_32)),
1679                     (MOVi32imm (trunc_imm imm:$C)), XZR)>;
1680
1681def : Pat<(i64 (add (mul (sext GPR32:$Rn), (s64imm_32bit:$C)), GPR64:$Ra)),
1682          (SMADDLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), GPR64:$Ra)>;
1683def : Pat<(i64 (add (mul (zext GPR32:$Rn), (i64imm_32bit:$C)), GPR64:$Ra)),
1684          (UMADDLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), GPR64:$Ra)>;
1685def : Pat<(i64 (add (mul (sext_inreg GPR64:$Rn, i32), (s64imm_32bit:$C)),
1686                    GPR64:$Ra)),
1687          (SMADDLrrr (i32 (EXTRACT_SUBREG GPR64:$Rn, sub_32)),
1688                     (MOVi32imm (trunc_imm imm:$C)), GPR64:$Ra)>;
1689
1690def : Pat<(i64 (sub GPR64:$Ra, (mul (sext GPR32:$Rn), (s64imm_32bit:$C)))),
1691          (SMSUBLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), GPR64:$Ra)>;
1692def : Pat<(i64 (sub GPR64:$Ra, (mul (zext GPR32:$Rn), (i64imm_32bit:$C)))),
1693          (UMSUBLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), GPR64:$Ra)>;
1694def : Pat<(i64 (sub GPR64:$Ra, (mul (sext_inreg GPR64:$Rn, i32),
1695                                    (s64imm_32bit:$C)))),
1696          (SMSUBLrrr (i32 (EXTRACT_SUBREG GPR64:$Rn, sub_32)),
1697                     (MOVi32imm (trunc_imm imm:$C)), GPR64:$Ra)>;
1698} // AddedComplexity = 5
1699
1700def : MulAccumWAlias<"mul", MADDWrrr>;
1701def : MulAccumXAlias<"mul", MADDXrrr>;
1702def : MulAccumWAlias<"mneg", MSUBWrrr>;
1703def : MulAccumXAlias<"mneg", MSUBXrrr>;
1704def : WideMulAccumAlias<"smull", SMADDLrrr>;
1705def : WideMulAccumAlias<"smnegl", SMSUBLrrr>;
1706def : WideMulAccumAlias<"umull", UMADDLrrr>;
1707def : WideMulAccumAlias<"umnegl", UMSUBLrrr>;
1708
1709// Multiply-high
1710def SMULHrr : MulHi<0b010, "smulh", mulhs>;
1711def UMULHrr : MulHi<0b110, "umulh", mulhu>;
1712
1713// CRC32
1714def CRC32Brr : BaseCRC32<0, 0b00, 0, GPR32, int_aarch64_crc32b, "crc32b">;
1715def CRC32Hrr : BaseCRC32<0, 0b01, 0, GPR32, int_aarch64_crc32h, "crc32h">;
1716def CRC32Wrr : BaseCRC32<0, 0b10, 0, GPR32, int_aarch64_crc32w, "crc32w">;
1717def CRC32Xrr : BaseCRC32<1, 0b11, 0, GPR64, int_aarch64_crc32x, "crc32x">;
1718
1719def CRC32CBrr : BaseCRC32<0, 0b00, 1, GPR32, int_aarch64_crc32cb, "crc32cb">;
1720def CRC32CHrr : BaseCRC32<0, 0b01, 1, GPR32, int_aarch64_crc32ch, "crc32ch">;
1721def CRC32CWrr : BaseCRC32<0, 0b10, 1, GPR32, int_aarch64_crc32cw, "crc32cw">;
1722def CRC32CXrr : BaseCRC32<1, 0b11, 1, GPR64, int_aarch64_crc32cx, "crc32cx">;
1723
1724// v8.1 atomic CAS
1725defm CAS   : CompareAndSwap<0, 0, "">;
1726defm CASA  : CompareAndSwap<1, 0, "a">;
1727defm CASL  : CompareAndSwap<0, 1, "l">;
1728defm CASAL : CompareAndSwap<1, 1, "al">;
1729
1730// v8.1 atomic CASP
1731defm CASP   : CompareAndSwapPair<0, 0, "">;
1732defm CASPA  : CompareAndSwapPair<1, 0, "a">;
1733defm CASPL  : CompareAndSwapPair<0, 1, "l">;
1734defm CASPAL : CompareAndSwapPair<1, 1, "al">;
1735
1736// v8.1 atomic SWP
1737defm SWP   : Swap<0, 0, "">;
1738defm SWPA  : Swap<1, 0, "a">;
1739defm SWPL  : Swap<0, 1, "l">;
1740defm SWPAL : Swap<1, 1, "al">;
1741
1742// v8.1 atomic LD<OP>(register). Performs load and then ST<OP>(register)
1743defm LDADD   : LDOPregister<0b000, "add", 0, 0, "">;
1744defm LDADDA  : LDOPregister<0b000, "add", 1, 0, "a">;
1745defm LDADDL  : LDOPregister<0b000, "add", 0, 1, "l">;
1746defm LDADDAL : LDOPregister<0b000, "add", 1, 1, "al">;
1747
1748defm LDCLR   : LDOPregister<0b001, "clr", 0, 0, "">;
1749defm LDCLRA  : LDOPregister<0b001, "clr", 1, 0, "a">;
1750defm LDCLRL  : LDOPregister<0b001, "clr", 0, 1, "l">;
1751defm LDCLRAL : LDOPregister<0b001, "clr", 1, 1, "al">;
1752
1753defm LDEOR   : LDOPregister<0b010, "eor", 0, 0, "">;
1754defm LDEORA  : LDOPregister<0b010, "eor", 1, 0, "a">;
1755defm LDEORL  : LDOPregister<0b010, "eor", 0, 1, "l">;
1756defm LDEORAL : LDOPregister<0b010, "eor", 1, 1, "al">;
1757
1758defm LDSET   : LDOPregister<0b011, "set", 0, 0, "">;
1759defm LDSETA  : LDOPregister<0b011, "set", 1, 0, "a">;
1760defm LDSETL  : LDOPregister<0b011, "set", 0, 1, "l">;
1761defm LDSETAL : LDOPregister<0b011, "set", 1, 1, "al">;
1762
1763defm LDSMAX   : LDOPregister<0b100, "smax", 0, 0, "">;
1764defm LDSMAXA  : LDOPregister<0b100, "smax", 1, 0, "a">;
1765defm LDSMAXL  : LDOPregister<0b100, "smax", 0, 1, "l">;
1766defm LDSMAXAL : LDOPregister<0b100, "smax", 1, 1, "al">;
1767
1768defm LDSMIN   : LDOPregister<0b101, "smin", 0, 0, "">;
1769defm LDSMINA  : LDOPregister<0b101, "smin", 1, 0, "a">;
1770defm LDSMINL  : LDOPregister<0b101, "smin", 0, 1, "l">;
1771defm LDSMINAL : LDOPregister<0b101, "smin", 1, 1, "al">;
1772
1773defm LDUMAX   : LDOPregister<0b110, "umax", 0, 0, "">;
1774defm LDUMAXA  : LDOPregister<0b110, "umax", 1, 0, "a">;
1775defm LDUMAXL  : LDOPregister<0b110, "umax", 0, 1, "l">;
1776defm LDUMAXAL : LDOPregister<0b110, "umax", 1, 1, "al">;
1777
1778defm LDUMIN   : LDOPregister<0b111, "umin", 0, 0, "">;
1779defm LDUMINA  : LDOPregister<0b111, "umin", 1, 0, "a">;
1780defm LDUMINL  : LDOPregister<0b111, "umin", 0, 1, "l">;
1781defm LDUMINAL : LDOPregister<0b111, "umin", 1, 1, "al">;
1782
1783// v8.1 atomic ST<OP>(register) as aliases to "LD<OP>(register) when Rt=xZR"
1784defm : STOPregister<"stadd","LDADD">; // STADDx
1785defm : STOPregister<"stclr","LDCLR">; // STCLRx
1786defm : STOPregister<"steor","LDEOR">; // STEORx
1787defm : STOPregister<"stset","LDSET">; // STSETx
1788defm : STOPregister<"stsmax","LDSMAX">;// STSMAXx
1789defm : STOPregister<"stsmin","LDSMIN">;// STSMINx
1790defm : STOPregister<"stumax","LDUMAX">;// STUMAXx
1791defm : STOPregister<"stumin","LDUMIN">;// STUMINx
1792
1793// v8.5 Memory Tagging Extension
1794let Predicates = [HasMTE] in {
1795
1796def IRG   : BaseTwoOperand<0b0100, GPR64sp, "irg", int_aarch64_irg, GPR64sp, GPR64>,
1797            Sched<[]>{
1798  let Inst{31} = 1;
1799}
1800def GMI   : BaseTwoOperand<0b0101, GPR64, "gmi", int_aarch64_gmi, GPR64sp>, Sched<[]>{
1801  let Inst{31} = 1;
1802  let isNotDuplicable = 1;
1803}
1804def ADDG  : AddSubG<0, "addg", null_frag>;
1805def SUBG  : AddSubG<1, "subg", null_frag>;
1806
1807def : InstAlias<"irg $dst, $src", (IRG GPR64sp:$dst, GPR64sp:$src, XZR), 1>;
1808
1809def SUBP : SUBP<0, "subp", int_aarch64_subp>, Sched<[]>;
1810def SUBPS : SUBP<1, "subps", null_frag>, Sched<[]>{
1811  let Defs = [NZCV];
1812}
1813
1814def : InstAlias<"cmpp $lhs, $rhs", (SUBPS XZR, GPR64sp:$lhs, GPR64sp:$rhs), 0>;
1815
1816def LDG : MemTagLoad<"ldg", "\t$Rt, [$Rn, $offset]">;
1817
1818def : Pat<(int_aarch64_addg (am_indexedu6s128 GPR64sp:$Rn, uimm6s16:$imm6), imm0_15:$imm4),
1819          (ADDG GPR64sp:$Rn, imm0_63:$imm6, imm0_15:$imm4)>;
1820def : Pat<(int_aarch64_ldg GPR64:$Rt, (am_indexeds9s128 GPR64sp:$Rn,  simm9s16:$offset)),
1821          (LDG GPR64:$Rt, GPR64sp:$Rn,  simm9s16:$offset)>;
1822
1823def : InstAlias<"ldg $Rt, [$Rn]", (LDG GPR64:$Rt, GPR64sp:$Rn, 0), 1>;
1824
1825def LDGM : MemTagVector<1, "ldgm", "\t$Rt, [$Rn]",
1826                   (outs GPR64:$Rt), (ins GPR64sp:$Rn)>;
1827def STGM : MemTagVector<0, "stgm", "\t$Rt, [$Rn]",
1828                   (outs), (ins GPR64:$Rt, GPR64sp:$Rn)>;
1829def STZGM : MemTagVector<0, "stzgm", "\t$Rt, [$Rn]",
1830                   (outs), (ins GPR64:$Rt, GPR64sp:$Rn)> {
1831  let Inst{23} = 0;
1832}
1833
1834defm STG   : MemTagStore<0b00, "stg">;
1835defm STZG  : MemTagStore<0b01, "stzg">;
1836defm ST2G  : MemTagStore<0b10, "st2g">;
1837defm STZ2G : MemTagStore<0b11, "stz2g">;
1838
1839def : Pat<(AArch64stg GPR64sp:$Rn, (am_indexeds9s128 GPR64sp:$Rm, simm9s16:$imm)),
1840          (STGOffset $Rn, $Rm, $imm)>;
1841def : Pat<(AArch64stzg GPR64sp:$Rn, (am_indexeds9s128 GPR64sp:$Rm, simm9s16:$imm)),
1842          (STZGOffset $Rn, $Rm, $imm)>;
1843def : Pat<(AArch64st2g GPR64sp:$Rn, (am_indexeds9s128 GPR64sp:$Rm, simm9s16:$imm)),
1844          (ST2GOffset $Rn, $Rm, $imm)>;
1845def : Pat<(AArch64stz2g GPR64sp:$Rn, (am_indexeds9s128 GPR64sp:$Rm, simm9s16:$imm)),
1846          (STZ2GOffset $Rn, $Rm, $imm)>;
1847
1848defm STGP     : StorePairOffset <0b01, 0, GPR64z, simm7s16, "stgp">;
1849def  STGPpre  : StorePairPreIdx <0b01, 0, GPR64z, simm7s16, "stgp">;
1850def  STGPpost : StorePairPostIdx<0b01, 0, GPR64z, simm7s16, "stgp">;
1851
1852def : Pat<(int_aarch64_stg GPR64:$Rt, (am_indexeds9s128 GPR64sp:$Rn, simm9s16:$offset)),
1853          (STGOffset GPR64:$Rt, GPR64sp:$Rn,  simm9s16:$offset)>;
1854
1855def : Pat<(int_aarch64_stgp (am_indexed7s128 GPR64sp:$Rn, simm7s16:$imm), GPR64:$Rt, GPR64:$Rt2),
1856          (STGPi $Rt, $Rt2, $Rn, $imm)>;
1857
1858def IRGstack
1859    : Pseudo<(outs GPR64sp:$Rd), (ins GPR64sp:$Rsp, GPR64:$Rm), []>,
1860      Sched<[]>;
1861def TAGPstack
1862    : Pseudo<(outs GPR64sp:$Rd), (ins GPR64sp:$Rn, uimm6s16:$imm6, GPR64sp:$Rm, imm0_15:$imm4), []>,
1863      Sched<[]>;
1864
1865// Explicit SP in the first operand prevents ShrinkWrap optimization
1866// from leaving this instruction out of the stack frame. When IRGstack
1867// is transformed into IRG, this operand is replaced with the actual
1868// register / expression for the tagged base pointer of the current function.
1869def : Pat<(int_aarch64_irg_sp i64:$Rm), (IRGstack SP, i64:$Rm)>;
1870
1871// Large STG to be expanded into a loop. $sz is the size, $Rn is start address.
1872// $Rn_wback is one past the end of the range. $Rm is the loop counter.
1873let isCodeGenOnly=1, mayStore=1 in {
1874def STGloop_wback
1875    : Pseudo<(outs GPR64common:$Rm, GPR64sp:$Rn_wback), (ins i64imm:$sz, GPR64sp:$Rn),
1876             [], "$Rn = $Rn_wback,@earlyclobber $Rn_wback,@earlyclobber $Rm" >,
1877      Sched<[WriteAdr, WriteST]>;
1878
1879def STZGloop_wback
1880    : Pseudo<(outs GPR64common:$Rm, GPR64sp:$Rn_wback), (ins i64imm:$sz, GPR64sp:$Rn),
1881             [], "$Rn = $Rn_wback,@earlyclobber $Rn_wback,@earlyclobber $Rm" >,
1882      Sched<[WriteAdr, WriteST]>;
1883
1884// A variant of the above where $Rn2 is an independent register not tied to the input register $Rn.
1885// Their purpose is to use a FrameIndex operand as $Rn (which of course can not be written back).
1886def STGloop
1887    : Pseudo<(outs GPR64common:$Rm, GPR64sp:$Rn2), (ins i64imm:$sz, GPR64sp:$Rn),
1888             [], "@earlyclobber $Rn2,@earlyclobber $Rm" >,
1889      Sched<[WriteAdr, WriteST]>;
1890
1891def STZGloop
1892    : Pseudo<(outs GPR64common:$Rm, GPR64sp:$Rn2), (ins i64imm:$sz, GPR64sp:$Rn),
1893             [], "@earlyclobber $Rn2,@earlyclobber $Rm" >,
1894      Sched<[WriteAdr, WriteST]>;
1895}
1896
1897} // Predicates = [HasMTE]
1898
1899//===----------------------------------------------------------------------===//
1900// Logical instructions.
1901//===----------------------------------------------------------------------===//
1902
1903// (immediate)
1904defm ANDS : LogicalImmS<0b11, "ands", AArch64and_flag, "bics">;
1905defm AND  : LogicalImm<0b00, "and", and, "bic">;
1906defm EOR  : LogicalImm<0b10, "eor", xor, "eon">;
1907defm ORR  : LogicalImm<0b01, "orr", or, "orn">;
1908
1909// FIXME: these aliases *are* canonical sometimes (when movz can't be
1910// used). Actually, it seems to be working right now, but putting logical_immXX
1911// here is a bit dodgy on the AsmParser side too.
1912def : InstAlias<"mov $dst, $imm", (ORRWri GPR32sp:$dst, WZR,
1913                                          logical_imm32:$imm), 0>;
1914def : InstAlias<"mov $dst, $imm", (ORRXri GPR64sp:$dst, XZR,
1915                                          logical_imm64:$imm), 0>;
1916
1917
1918// (register)
1919defm ANDS : LogicalRegS<0b11, 0, "ands", AArch64and_flag>;
1920defm BICS : LogicalRegS<0b11, 1, "bics",
1921                        BinOpFrag<(AArch64and_flag node:$LHS, (not node:$RHS))>>;
1922defm AND  : LogicalReg<0b00, 0, "and", and>;
1923defm BIC  : LogicalReg<0b00, 1, "bic",
1924                       BinOpFrag<(and node:$LHS, (not node:$RHS))>>;
1925defm EON  : LogicalReg<0b10, 1, "eon",
1926                       BinOpFrag<(not (xor node:$LHS, node:$RHS))>>;
1927defm EOR  : LogicalReg<0b10, 0, "eor", xor>;
1928defm ORN  : LogicalReg<0b01, 1, "orn",
1929                       BinOpFrag<(or node:$LHS, (not node:$RHS))>>;
1930defm ORR  : LogicalReg<0b01, 0, "orr", or>;
1931
1932def : InstAlias<"mov $dst, $src", (ORRWrs GPR32:$dst, WZR, GPR32:$src, 0), 2>;
1933def : InstAlias<"mov $dst, $src", (ORRXrs GPR64:$dst, XZR, GPR64:$src, 0), 2>;
1934
1935def : InstAlias<"mvn $Wd, $Wm", (ORNWrs GPR32:$Wd, WZR, GPR32:$Wm, 0), 3>;
1936def : InstAlias<"mvn $Xd, $Xm", (ORNXrs GPR64:$Xd, XZR, GPR64:$Xm, 0), 3>;
1937
1938def : InstAlias<"mvn $Wd, $Wm$sh",
1939                (ORNWrs GPR32:$Wd, WZR, GPR32:$Wm, logical_shift32:$sh), 2>;
1940def : InstAlias<"mvn $Xd, $Xm$sh",
1941                (ORNXrs GPR64:$Xd, XZR, GPR64:$Xm, logical_shift64:$sh), 2>;
1942
1943def : InstAlias<"tst $src1, $src2",
1944                (ANDSWri WZR, GPR32:$src1, logical_imm32:$src2), 2>;
1945def : InstAlias<"tst $src1, $src2",
1946                (ANDSXri XZR, GPR64:$src1, logical_imm64:$src2), 2>;
1947
1948def : InstAlias<"tst $src1, $src2",
1949                        (ANDSWrs WZR, GPR32:$src1, GPR32:$src2, 0), 3>;
1950def : InstAlias<"tst $src1, $src2",
1951                        (ANDSXrs XZR, GPR64:$src1, GPR64:$src2, 0), 3>;
1952
1953def : InstAlias<"tst $src1, $src2$sh",
1954               (ANDSWrs WZR, GPR32:$src1, GPR32:$src2, logical_shift32:$sh), 2>;
1955def : InstAlias<"tst $src1, $src2$sh",
1956               (ANDSXrs XZR, GPR64:$src1, GPR64:$src2, logical_shift64:$sh), 2>;
1957
1958
1959def : Pat<(not GPR32:$Wm), (ORNWrr WZR, GPR32:$Wm)>;
1960def : Pat<(not GPR64:$Xm), (ORNXrr XZR, GPR64:$Xm)>;
1961
1962
1963//===----------------------------------------------------------------------===//
1964// One operand data processing instructions.
1965//===----------------------------------------------------------------------===//
1966
1967defm CLS    : OneOperandData<0b101, "cls">;
1968defm CLZ    : OneOperandData<0b100, "clz", ctlz>;
1969defm RBIT   : OneOperandData<0b000, "rbit", bitreverse>;
1970
1971def  REV16Wr : OneWRegData<0b001, "rev16",
1972                                  UnOpFrag<(rotr (bswap node:$LHS), (i64 16))>>;
1973def  REV16Xr : OneXRegData<0b001, "rev16", null_frag>;
1974
1975def : Pat<(cttz GPR32:$Rn),
1976          (CLZWr (RBITWr GPR32:$Rn))>;
1977def : Pat<(cttz GPR64:$Rn),
1978          (CLZXr (RBITXr GPR64:$Rn))>;
1979def : Pat<(ctlz (or (shl (xor (sra GPR32:$Rn, (i64 31)), GPR32:$Rn), (i64 1)),
1980                (i32 1))),
1981          (CLSWr GPR32:$Rn)>;
1982def : Pat<(ctlz (or (shl (xor (sra GPR64:$Rn, (i64 63)), GPR64:$Rn), (i64 1)),
1983                (i64 1))),
1984          (CLSXr GPR64:$Rn)>;
1985def : Pat<(int_aarch64_cls GPR32:$Rn), (CLSWr GPR32:$Rn)>;
1986def : Pat<(int_aarch64_cls64 GPR64:$Rm), (EXTRACT_SUBREG (CLSXr GPR64:$Rm), sub_32)>;
1987
1988// Unlike the other one operand instructions, the instructions with the "rev"
1989// mnemonic do *not* just different in the size bit, but actually use different
1990// opcode bits for the different sizes.
1991def REVWr   : OneWRegData<0b010, "rev", bswap>;
1992def REVXr   : OneXRegData<0b011, "rev", bswap>;
1993def REV32Xr : OneXRegData<0b010, "rev32",
1994                                 UnOpFrag<(rotr (bswap node:$LHS), (i64 32))>>;
1995
1996def : InstAlias<"rev64 $Rd, $Rn", (REVXr GPR64:$Rd, GPR64:$Rn), 0>;
1997
1998// The bswap commutes with the rotr so we want a pattern for both possible
1999// orders.
2000def : Pat<(bswap (rotr GPR32:$Rn, (i64 16))), (REV16Wr GPR32:$Rn)>;
2001def : Pat<(bswap (rotr GPR64:$Rn, (i64 32))), (REV32Xr GPR64:$Rn)>;
2002
2003//===----------------------------------------------------------------------===//
2004// Bitfield immediate extraction instruction.
2005//===----------------------------------------------------------------------===//
2006let hasSideEffects = 0 in
2007defm EXTR : ExtractImm<"extr">;
2008def : InstAlias<"ror $dst, $src, $shift",
2009            (EXTRWrri GPR32:$dst, GPR32:$src, GPR32:$src, imm0_31:$shift)>;
2010def : InstAlias<"ror $dst, $src, $shift",
2011            (EXTRXrri GPR64:$dst, GPR64:$src, GPR64:$src, imm0_63:$shift)>;
2012
2013def : Pat<(rotr GPR32:$Rn, (i64 imm0_31:$imm)),
2014          (EXTRWrri GPR32:$Rn, GPR32:$Rn, imm0_31:$imm)>;
2015def : Pat<(rotr GPR64:$Rn, (i64 imm0_63:$imm)),
2016          (EXTRXrri GPR64:$Rn, GPR64:$Rn, imm0_63:$imm)>;
2017
2018//===----------------------------------------------------------------------===//
2019// Other bitfield immediate instructions.
2020//===----------------------------------------------------------------------===//
2021let hasSideEffects = 0 in {
2022defm BFM  : BitfieldImmWith2RegArgs<0b01, "bfm">;
2023defm SBFM : BitfieldImm<0b00, "sbfm">;
2024defm UBFM : BitfieldImm<0b10, "ubfm">;
2025}
2026
2027def i32shift_a : Operand<i64>, SDNodeXForm<imm, [{
2028  uint64_t enc = (32 - N->getZExtValue()) & 0x1f;
2029  return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
2030}]>;
2031
2032def i32shift_b : Operand<i64>, SDNodeXForm<imm, [{
2033  uint64_t enc = 31 - N->getZExtValue();
2034  return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
2035}]>;
2036
2037// min(7, 31 - shift_amt)
2038def i32shift_sext_i8 : Operand<i64>, SDNodeXForm<imm, [{
2039  uint64_t enc = 31 - N->getZExtValue();
2040  enc = enc > 7 ? 7 : enc;
2041  return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
2042}]>;
2043
2044// min(15, 31 - shift_amt)
2045def i32shift_sext_i16 : Operand<i64>, SDNodeXForm<imm, [{
2046  uint64_t enc = 31 - N->getZExtValue();
2047  enc = enc > 15 ? 15 : enc;
2048  return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
2049}]>;
2050
2051def i64shift_a : Operand<i64>, SDNodeXForm<imm, [{
2052  uint64_t enc = (64 - N->getZExtValue()) & 0x3f;
2053  return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
2054}]>;
2055
2056def i64shift_b : Operand<i64>, SDNodeXForm<imm, [{
2057  uint64_t enc = 63 - N->getZExtValue();
2058  return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
2059}]>;
2060
2061// min(7, 63 - shift_amt)
2062def i64shift_sext_i8 : Operand<i64>, SDNodeXForm<imm, [{
2063  uint64_t enc = 63 - N->getZExtValue();
2064  enc = enc > 7 ? 7 : enc;
2065  return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
2066}]>;
2067
2068// min(15, 63 - shift_amt)
2069def i64shift_sext_i16 : Operand<i64>, SDNodeXForm<imm, [{
2070  uint64_t enc = 63 - N->getZExtValue();
2071  enc = enc > 15 ? 15 : enc;
2072  return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
2073}]>;
2074
2075// min(31, 63 - shift_amt)
2076def i64shift_sext_i32 : Operand<i64>, SDNodeXForm<imm, [{
2077  uint64_t enc = 63 - N->getZExtValue();
2078  enc = enc > 31 ? 31 : enc;
2079  return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
2080}]>;
2081
2082def : Pat<(shl GPR32:$Rn, (i64 imm0_31:$imm)),
2083          (UBFMWri GPR32:$Rn, (i64 (i32shift_a imm0_31:$imm)),
2084                              (i64 (i32shift_b imm0_31:$imm)))>;
2085def : Pat<(shl GPR64:$Rn, (i64 imm0_63:$imm)),
2086          (UBFMXri GPR64:$Rn, (i64 (i64shift_a imm0_63:$imm)),
2087                              (i64 (i64shift_b imm0_63:$imm)))>;
2088
2089let AddedComplexity = 10 in {
2090def : Pat<(sra GPR32:$Rn, (i64 imm0_31:$imm)),
2091          (SBFMWri GPR32:$Rn, imm0_31:$imm, 31)>;
2092def : Pat<(sra GPR64:$Rn, (i64 imm0_63:$imm)),
2093          (SBFMXri GPR64:$Rn, imm0_63:$imm, 63)>;
2094}
2095
2096def : InstAlias<"asr $dst, $src, $shift",
2097                (SBFMWri GPR32:$dst, GPR32:$src, imm0_31:$shift, 31)>;
2098def : InstAlias<"asr $dst, $src, $shift",
2099                (SBFMXri GPR64:$dst, GPR64:$src, imm0_63:$shift, 63)>;
2100def : InstAlias<"sxtb $dst, $src", (SBFMWri GPR32:$dst, GPR32:$src, 0, 7)>;
2101def : InstAlias<"sxtb $dst, $src", (SBFMXri GPR64:$dst, GPR64:$src, 0, 7)>;
2102def : InstAlias<"sxth $dst, $src", (SBFMWri GPR32:$dst, GPR32:$src, 0, 15)>;
2103def : InstAlias<"sxth $dst, $src", (SBFMXri GPR64:$dst, GPR64:$src, 0, 15)>;
2104def : InstAlias<"sxtw $dst, $src", (SBFMXri GPR64:$dst, GPR64:$src, 0, 31)>;
2105
2106def : Pat<(srl GPR32:$Rn, (i64 imm0_31:$imm)),
2107          (UBFMWri GPR32:$Rn, imm0_31:$imm, 31)>;
2108def : Pat<(srl GPR64:$Rn, (i64 imm0_63:$imm)),
2109          (UBFMXri GPR64:$Rn, imm0_63:$imm, 63)>;
2110
2111def : InstAlias<"lsr $dst, $src, $shift",
2112                (UBFMWri GPR32:$dst, GPR32:$src, imm0_31:$shift, 31)>;
2113def : InstAlias<"lsr $dst, $src, $shift",
2114                (UBFMXri GPR64:$dst, GPR64:$src, imm0_63:$shift, 63)>;
2115def : InstAlias<"uxtb $dst, $src", (UBFMWri GPR32:$dst, GPR32:$src, 0, 7)>;
2116def : InstAlias<"uxtb $dst, $src", (UBFMXri GPR64:$dst, GPR64:$src, 0, 7)>;
2117def : InstAlias<"uxth $dst, $src", (UBFMWri GPR32:$dst, GPR32:$src, 0, 15)>;
2118def : InstAlias<"uxth $dst, $src", (UBFMXri GPR64:$dst, GPR64:$src, 0, 15)>;
2119def : InstAlias<"uxtw $dst, $src", (UBFMXri GPR64:$dst, GPR64:$src, 0, 31)>;
2120
2121//===----------------------------------------------------------------------===//
2122// Conditional comparison instructions.
2123//===----------------------------------------------------------------------===//
2124defm CCMN : CondComparison<0, "ccmn", AArch64ccmn>;
2125defm CCMP : CondComparison<1, "ccmp", AArch64ccmp>;
2126
2127//===----------------------------------------------------------------------===//
2128// Conditional select instructions.
2129//===----------------------------------------------------------------------===//
2130defm CSEL  : CondSelect<0, 0b00, "csel">;
2131
2132def inc : PatFrag<(ops node:$in), (add node:$in, 1)>;
2133defm CSINC : CondSelectOp<0, 0b01, "csinc", inc>;
2134defm CSINV : CondSelectOp<1, 0b00, "csinv", not>;
2135defm CSNEG : CondSelectOp<1, 0b01, "csneg", ineg>;
2136
2137def : Pat<(AArch64csinv GPR32:$tval, GPR32:$fval, (i32 imm:$cc), NZCV),
2138          (CSINVWr GPR32:$tval, GPR32:$fval, (i32 imm:$cc))>;
2139def : Pat<(AArch64csinv GPR64:$tval, GPR64:$fval, (i32 imm:$cc), NZCV),
2140          (CSINVXr GPR64:$tval, GPR64:$fval, (i32 imm:$cc))>;
2141def : Pat<(AArch64csneg GPR32:$tval, GPR32:$fval, (i32 imm:$cc), NZCV),
2142          (CSNEGWr GPR32:$tval, GPR32:$fval, (i32 imm:$cc))>;
2143def : Pat<(AArch64csneg GPR64:$tval, GPR64:$fval, (i32 imm:$cc), NZCV),
2144          (CSNEGXr GPR64:$tval, GPR64:$fval, (i32 imm:$cc))>;
2145def : Pat<(AArch64csinc GPR32:$tval, GPR32:$fval, (i32 imm:$cc), NZCV),
2146          (CSINCWr GPR32:$tval, GPR32:$fval, (i32 imm:$cc))>;
2147def : Pat<(AArch64csinc GPR64:$tval, GPR64:$fval, (i32 imm:$cc), NZCV),
2148          (CSINCXr GPR64:$tval, GPR64:$fval, (i32 imm:$cc))>;
2149
2150def : Pat<(AArch64csel (i32 0), (i32 1), (i32 imm:$cc), NZCV),
2151          (CSINCWr WZR, WZR, (i32 imm:$cc))>;
2152def : Pat<(AArch64csel (i64 0), (i64 1), (i32 imm:$cc), NZCV),
2153          (CSINCXr XZR, XZR, (i32 imm:$cc))>;
2154def : Pat<(AArch64csel GPR32:$tval, (i32 1), (i32 imm:$cc), NZCV),
2155          (CSINCWr GPR32:$tval, WZR, (i32 imm:$cc))>;
2156def : Pat<(AArch64csel GPR64:$tval, (i64 1), (i32 imm:$cc), NZCV),
2157          (CSINCXr GPR64:$tval, XZR, (i32 imm:$cc))>;
2158def : Pat<(AArch64csel (i32 1), GPR32:$fval, (i32 imm:$cc), NZCV),
2159          (CSINCWr GPR32:$fval, WZR, (i32 (inv_cond_XFORM imm:$cc)))>;
2160def : Pat<(AArch64csel (i64 1), GPR64:$fval, (i32 imm:$cc), NZCV),
2161          (CSINCXr GPR64:$fval, XZR, (i32 (inv_cond_XFORM imm:$cc)))>;
2162def : Pat<(AArch64csel (i32 0), (i32 -1), (i32 imm:$cc), NZCV),
2163          (CSINVWr WZR, WZR, (i32 imm:$cc))>;
2164def : Pat<(AArch64csel (i64 0), (i64 -1), (i32 imm:$cc), NZCV),
2165          (CSINVXr XZR, XZR, (i32 imm:$cc))>;
2166def : Pat<(AArch64csel GPR32:$tval, (i32 -1), (i32 imm:$cc), NZCV),
2167          (CSINVWr GPR32:$tval, WZR, (i32 imm:$cc))>;
2168def : Pat<(AArch64csel GPR64:$tval, (i64 -1), (i32 imm:$cc), NZCV),
2169          (CSINVXr GPR64:$tval, XZR, (i32 imm:$cc))>;
2170def : Pat<(AArch64csel (i32 -1), GPR32:$fval, (i32 imm:$cc), NZCV),
2171          (CSINVWr GPR32:$fval, WZR, (i32 (inv_cond_XFORM imm:$cc)))>;
2172def : Pat<(AArch64csel (i64 -1), GPR64:$fval, (i32 imm:$cc), NZCV),
2173          (CSINVXr GPR64:$fval, XZR, (i32 (inv_cond_XFORM imm:$cc)))>;
2174
2175def : Pat<(add GPR32:$val, (AArch64csel (i32 0), (i32 1), (i32 imm:$cc), NZCV)),
2176          (CSINCWr GPR32:$val, GPR32:$val, (i32 imm:$cc))>;
2177def : Pat<(add GPR64:$val, (zext (AArch64csel (i32 0), (i32 1), (i32 imm:$cc), NZCV))),
2178          (CSINCXr GPR64:$val, GPR64:$val, (i32 imm:$cc))>;
2179
2180// The inverse of the condition code from the alias instruction is what is used
2181// in the aliased instruction. The parser all ready inverts the condition code
2182// for these aliases.
2183def : InstAlias<"cset $dst, $cc",
2184                (CSINCWr GPR32:$dst, WZR, WZR, inv_ccode:$cc)>;
2185def : InstAlias<"cset $dst, $cc",
2186                (CSINCXr GPR64:$dst, XZR, XZR, inv_ccode:$cc)>;
2187
2188def : InstAlias<"csetm $dst, $cc",
2189                (CSINVWr GPR32:$dst, WZR, WZR, inv_ccode:$cc)>;
2190def : InstAlias<"csetm $dst, $cc",
2191                (CSINVXr GPR64:$dst, XZR, XZR, inv_ccode:$cc)>;
2192
2193def : InstAlias<"cinc $dst, $src, $cc",
2194                (CSINCWr GPR32:$dst, GPR32:$src, GPR32:$src, inv_ccode:$cc)>;
2195def : InstAlias<"cinc $dst, $src, $cc",
2196                (CSINCXr GPR64:$dst, GPR64:$src, GPR64:$src, inv_ccode:$cc)>;
2197
2198def : InstAlias<"cinv $dst, $src, $cc",
2199                (CSINVWr GPR32:$dst, GPR32:$src, GPR32:$src, inv_ccode:$cc)>;
2200def : InstAlias<"cinv $dst, $src, $cc",
2201                (CSINVXr GPR64:$dst, GPR64:$src, GPR64:$src, inv_ccode:$cc)>;
2202
2203def : InstAlias<"cneg $dst, $src, $cc",
2204                (CSNEGWr GPR32:$dst, GPR32:$src, GPR32:$src, inv_ccode:$cc)>;
2205def : InstAlias<"cneg $dst, $src, $cc",
2206                (CSNEGXr GPR64:$dst, GPR64:$src, GPR64:$src, inv_ccode:$cc)>;
2207
2208//===----------------------------------------------------------------------===//
2209// PC-relative instructions.
2210//===----------------------------------------------------------------------===//
2211let isReMaterializable = 1 in {
2212let hasSideEffects = 0, mayStore = 0, mayLoad = 0 in {
2213def ADR  : ADRI<0, "adr", adrlabel,
2214                [(set GPR64:$Xd, (AArch64adr tglobaladdr:$label))]>;
2215} // hasSideEffects = 0
2216
2217def ADRP : ADRI<1, "adrp", adrplabel,
2218                [(set GPR64:$Xd, (AArch64adrp tglobaladdr:$label))]>;
2219} // isReMaterializable = 1
2220
2221// page address of a constant pool entry, block address
2222def : Pat<(AArch64adr tconstpool:$cp), (ADR tconstpool:$cp)>;
2223def : Pat<(AArch64adr tblockaddress:$cp), (ADR tblockaddress:$cp)>;
2224def : Pat<(AArch64adr texternalsym:$sym), (ADR texternalsym:$sym)>;
2225def : Pat<(AArch64adr tjumptable:$sym), (ADR tjumptable:$sym)>;
2226def : Pat<(AArch64adrp tconstpool:$cp), (ADRP tconstpool:$cp)>;
2227def : Pat<(AArch64adrp tblockaddress:$cp), (ADRP tblockaddress:$cp)>;
2228def : Pat<(AArch64adrp texternalsym:$sym), (ADRP texternalsym:$sym)>;
2229
2230//===----------------------------------------------------------------------===//
2231// Unconditional branch (register) instructions.
2232//===----------------------------------------------------------------------===//
2233
2234let isReturn = 1, isTerminator = 1, isBarrier = 1 in {
2235def RET  : BranchReg<0b0010, "ret", []>;
2236def DRPS : SpecialReturn<0b0101, "drps">;
2237def ERET : SpecialReturn<0b0100, "eret">;
2238} // isReturn = 1, isTerminator = 1, isBarrier = 1
2239
2240// Default to the LR register.
2241def : InstAlias<"ret", (RET LR)>;
2242
2243let isCall = 1, Defs = [LR], Uses = [SP] in {
2244  def BLR : BranchReg<0b0001, "blr", []>;
2245  def BLRNoIP : Pseudo<(outs), (ins GPR64noip:$Rn), []>,
2246                Sched<[WriteBrReg]>,
2247                PseudoInstExpansion<(BLR GPR64:$Rn)>;
2248  def BLR_RVMARKER : Pseudo<(outs), (ins variable_ops), []>,
2249                     Sched<[WriteBrReg]>;
2250} // isCall
2251
2252def : Pat<(AArch64call GPR64:$Rn),
2253          (BLR GPR64:$Rn)>,
2254      Requires<[NoSLSBLRMitigation]>;
2255def : Pat<(AArch64call GPR64noip:$Rn),
2256          (BLRNoIP GPR64noip:$Rn)>,
2257      Requires<[SLSBLRMitigation]>;
2258
2259def : Pat<(AArch64call_rvmarker GPR64:$Rn),
2260          (BLR_RVMARKER GPR64:$Rn)>,
2261      Requires<[NoSLSBLRMitigation]>;
2262
2263let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in {
2264def BR  : BranchReg<0b0000, "br", [(brind GPR64:$Rn)]>;
2265} // isBranch, isTerminator, isBarrier, isIndirectBranch
2266
2267// Create a separate pseudo-instruction for codegen to use so that we don't
2268// flag lr as used in every function. It'll be restored before the RET by the
2269// epilogue if it's legitimately used.
2270def RET_ReallyLR : Pseudo<(outs), (ins), [(AArch64retflag)]>,
2271                   Sched<[WriteBrReg]> {
2272  let isTerminator = 1;
2273  let isBarrier = 1;
2274  let isReturn = 1;
2275}
2276
2277// This is a directive-like pseudo-instruction. The purpose is to insert an
2278// R_AARCH64_TLSDESC_CALL relocation at the offset of the following instruction
2279// (which in the usual case is a BLR).
2280let hasSideEffects = 1 in
2281def TLSDESCCALL : Pseudo<(outs), (ins i64imm:$sym), []>, Sched<[]> {
2282  let AsmString = ".tlsdesccall $sym";
2283}
2284
2285// Pseudo instruction to tell the streamer to emit a 'B' character into the
2286// augmentation string.
2287def EMITBKEY : Pseudo<(outs), (ins), []>, Sched<[]> {}
2288
2289// FIXME: maybe the scratch register used shouldn't be fixed to X1?
2290// FIXME: can "hasSideEffects be dropped?
2291let isCall = 1, Defs = [LR, X0, X1], hasSideEffects = 1,
2292    isCodeGenOnly = 1 in
2293def TLSDESC_CALLSEQ
2294    : Pseudo<(outs), (ins i64imm:$sym),
2295             [(AArch64tlsdesc_callseq tglobaltlsaddr:$sym)]>,
2296      Sched<[WriteI, WriteLD, WriteI, WriteBrReg]>;
2297def : Pat<(AArch64tlsdesc_callseq texternalsym:$sym),
2298          (TLSDESC_CALLSEQ texternalsym:$sym)>;
2299
2300//===----------------------------------------------------------------------===//
2301// Conditional branch (immediate) instruction.
2302//===----------------------------------------------------------------------===//
2303def Bcc : BranchCond;
2304
2305//===----------------------------------------------------------------------===//
2306// Compare-and-branch instructions.
2307//===----------------------------------------------------------------------===//
2308defm CBZ  : CmpBranch<0, "cbz", AArch64cbz>;
2309defm CBNZ : CmpBranch<1, "cbnz", AArch64cbnz>;
2310
2311//===----------------------------------------------------------------------===//
2312// Test-bit-and-branch instructions.
2313//===----------------------------------------------------------------------===//
2314defm TBZ  : TestBranch<0, "tbz", AArch64tbz>;
2315defm TBNZ : TestBranch<1, "tbnz", AArch64tbnz>;
2316
2317//===----------------------------------------------------------------------===//
2318// Unconditional branch (immediate) instructions.
2319//===----------------------------------------------------------------------===//
2320let isBranch = 1, isTerminator = 1, isBarrier = 1 in {
2321def B  : BranchImm<0, "b", [(br bb:$addr)]>;
2322} // isBranch, isTerminator, isBarrier
2323
2324let isCall = 1, Defs = [LR], Uses = [SP] in {
2325def BL : CallImm<1, "bl", [(AArch64call tglobaladdr:$addr)]>;
2326} // isCall
2327def : Pat<(AArch64call texternalsym:$func), (BL texternalsym:$func)>;
2328
2329//===----------------------------------------------------------------------===//
2330// Exception generation instructions.
2331//===----------------------------------------------------------------------===//
2332let isTrap = 1 in {
2333def BRK   : ExceptionGeneration<0b001, 0b00, "brk">;
2334}
2335def DCPS1 : ExceptionGeneration<0b101, 0b01, "dcps1">;
2336def DCPS2 : ExceptionGeneration<0b101, 0b10, "dcps2">;
2337def DCPS3 : ExceptionGeneration<0b101, 0b11, "dcps3">;
2338def HLT   : ExceptionGeneration<0b010, 0b00, "hlt">;
2339def HVC   : ExceptionGeneration<0b000, 0b10, "hvc">;
2340def SMC   : ExceptionGeneration<0b000, 0b11, "smc">;
2341def SVC   : ExceptionGeneration<0b000, 0b01, "svc">;
2342
2343// DCPSn defaults to an immediate operand of zero if unspecified.
2344def : InstAlias<"dcps1", (DCPS1 0)>;
2345def : InstAlias<"dcps2", (DCPS2 0)>;
2346def : InstAlias<"dcps3", (DCPS3 0)>;
2347
2348def UDF : UDFType<0, "udf">;
2349
2350//===----------------------------------------------------------------------===//
2351// Load instructions.
2352//===----------------------------------------------------------------------===//
2353
2354// Pair (indexed, offset)
2355defm LDPW : LoadPairOffset<0b00, 0, GPR32z, simm7s4, "ldp">;
2356defm LDPX : LoadPairOffset<0b10, 0, GPR64z, simm7s8, "ldp">;
2357defm LDPS : LoadPairOffset<0b00, 1, FPR32Op, simm7s4, "ldp">;
2358defm LDPD : LoadPairOffset<0b01, 1, FPR64Op, simm7s8, "ldp">;
2359defm LDPQ : LoadPairOffset<0b10, 1, FPR128Op, simm7s16, "ldp">;
2360
2361defm LDPSW : LoadPairOffset<0b01, 0, GPR64z, simm7s4, "ldpsw">;
2362
2363// Pair (pre-indexed)
2364def LDPWpre : LoadPairPreIdx<0b00, 0, GPR32z, simm7s4, "ldp">;
2365def LDPXpre : LoadPairPreIdx<0b10, 0, GPR64z, simm7s8, "ldp">;
2366def LDPSpre : LoadPairPreIdx<0b00, 1, FPR32Op, simm7s4, "ldp">;
2367def LDPDpre : LoadPairPreIdx<0b01, 1, FPR64Op, simm7s8, "ldp">;
2368def LDPQpre : LoadPairPreIdx<0b10, 1, FPR128Op, simm7s16, "ldp">;
2369
2370def LDPSWpre : LoadPairPreIdx<0b01, 0, GPR64z, simm7s4, "ldpsw">;
2371
2372// Pair (post-indexed)
2373def LDPWpost : LoadPairPostIdx<0b00, 0, GPR32z, simm7s4, "ldp">;
2374def LDPXpost : LoadPairPostIdx<0b10, 0, GPR64z, simm7s8, "ldp">;
2375def LDPSpost : LoadPairPostIdx<0b00, 1, FPR32Op, simm7s4, "ldp">;
2376def LDPDpost : LoadPairPostIdx<0b01, 1, FPR64Op, simm7s8, "ldp">;
2377def LDPQpost : LoadPairPostIdx<0b10, 1, FPR128Op, simm7s16, "ldp">;
2378
2379def LDPSWpost : LoadPairPostIdx<0b01, 0, GPR64z, simm7s4, "ldpsw">;
2380
2381
2382// Pair (no allocate)
2383defm LDNPW : LoadPairNoAlloc<0b00, 0, GPR32z, simm7s4, "ldnp">;
2384defm LDNPX : LoadPairNoAlloc<0b10, 0, GPR64z, simm7s8, "ldnp">;
2385defm LDNPS : LoadPairNoAlloc<0b00, 1, FPR32Op, simm7s4, "ldnp">;
2386defm LDNPD : LoadPairNoAlloc<0b01, 1, FPR64Op, simm7s8, "ldnp">;
2387defm LDNPQ : LoadPairNoAlloc<0b10, 1, FPR128Op, simm7s16, "ldnp">;
2388
2389def : Pat<(AArch64ldp (am_indexed7s64 GPR64sp:$Rn, simm7s8:$offset)),
2390          (LDPXi GPR64sp:$Rn, simm7s8:$offset)>;
2391
2392//---
2393// (register offset)
2394//---
2395
2396// Integer
2397defm LDRBB : Load8RO<0b00,  0, 0b01, GPR32, "ldrb", i32, zextloadi8>;
2398defm LDRHH : Load16RO<0b01, 0, 0b01, GPR32, "ldrh", i32, zextloadi16>;
2399defm LDRW  : Load32RO<0b10, 0, 0b01, GPR32, "ldr", i32, load>;
2400defm LDRX  : Load64RO<0b11, 0, 0b01, GPR64, "ldr", i64, load>;
2401
2402// Floating-point
2403defm LDRB : Load8RO<0b00,   1, 0b01, FPR8Op,   "ldr", untyped, load>;
2404defm LDRH : Load16RO<0b01,  1, 0b01, FPR16Op,  "ldr", f16, load>;
2405defm LDRS : Load32RO<0b10,  1, 0b01, FPR32Op,  "ldr", f32, load>;
2406defm LDRD : Load64RO<0b11,  1, 0b01, FPR64Op,  "ldr", f64, load>;
2407defm LDRQ : Load128RO<0b00, 1, 0b11, FPR128Op, "ldr", f128, load>;
2408
2409// Load sign-extended half-word
2410defm LDRSHW : Load16RO<0b01, 0, 0b11, GPR32, "ldrsh", i32, sextloadi16>;
2411defm LDRSHX : Load16RO<0b01, 0, 0b10, GPR64, "ldrsh", i64, sextloadi16>;
2412
2413// Load sign-extended byte
2414defm LDRSBW : Load8RO<0b00, 0, 0b11, GPR32, "ldrsb", i32, sextloadi8>;
2415defm LDRSBX : Load8RO<0b00, 0, 0b10, GPR64, "ldrsb", i64, sextloadi8>;
2416
2417// Load sign-extended word
2418defm LDRSW  : Load32RO<0b10, 0, 0b10, GPR64, "ldrsw", i64, sextloadi32>;
2419
2420// Pre-fetch.
2421defm PRFM : PrefetchRO<0b11, 0, 0b10, "prfm">;
2422
2423// For regular load, we do not have any alignment requirement.
2424// Thus, it is safe to directly map the vector loads with interesting
2425// addressing modes.
2426// FIXME: We could do the same for bitconvert to floating point vectors.
2427multiclass ScalToVecROLoadPat<ROAddrMode ro, SDPatternOperator loadop,
2428                              ValueType ScalTy, ValueType VecTy,
2429                              Instruction LOADW, Instruction LOADX,
2430                              SubRegIndex sub> {
2431  def : Pat<(VecTy (scalar_to_vector (ScalTy
2432              (loadop (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$offset))))),
2433            (INSERT_SUBREG (VecTy (IMPLICIT_DEF)),
2434                           (LOADW GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$offset),
2435                           sub)>;
2436
2437  def : Pat<(VecTy (scalar_to_vector (ScalTy
2438              (loadop (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$offset))))),
2439            (INSERT_SUBREG (VecTy (IMPLICIT_DEF)),
2440                           (LOADX GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$offset),
2441                           sub)>;
2442}
2443
2444let AddedComplexity = 10 in {
2445defm : ScalToVecROLoadPat<ro8,  extloadi8,  i32, v8i8,  LDRBroW, LDRBroX, bsub>;
2446defm : ScalToVecROLoadPat<ro8,  extloadi8,  i32, v16i8, LDRBroW, LDRBroX, bsub>;
2447
2448defm : ScalToVecROLoadPat<ro16, extloadi16, i32, v4i16, LDRHroW, LDRHroX, hsub>;
2449defm : ScalToVecROLoadPat<ro16, extloadi16, i32, v8i16, LDRHroW, LDRHroX, hsub>;
2450
2451defm : ScalToVecROLoadPat<ro16, load,       i32, v4f16, LDRHroW, LDRHroX, hsub>;
2452defm : ScalToVecROLoadPat<ro16, load,       i32, v8f16, LDRHroW, LDRHroX, hsub>;
2453
2454defm : ScalToVecROLoadPat<ro32, load,       i32, v2i32, LDRSroW, LDRSroX, ssub>;
2455defm : ScalToVecROLoadPat<ro32, load,       i32, v4i32, LDRSroW, LDRSroX, ssub>;
2456
2457defm : ScalToVecROLoadPat<ro32, load,       f32, v2f32, LDRSroW, LDRSroX, ssub>;
2458defm : ScalToVecROLoadPat<ro32, load,       f32, v4f32, LDRSroW, LDRSroX, ssub>;
2459
2460defm : ScalToVecROLoadPat<ro64, load,       i64, v2i64, LDRDroW, LDRDroX, dsub>;
2461
2462defm : ScalToVecROLoadPat<ro64, load,       f64, v2f64, LDRDroW, LDRDroX, dsub>;
2463
2464
2465def : Pat <(v1i64 (scalar_to_vector (i64
2466                      (load (ro_Windexed64 GPR64sp:$Rn, GPR32:$Rm,
2467                                           ro_Wextend64:$extend))))),
2468           (LDRDroW GPR64sp:$Rn, GPR32:$Rm, ro_Wextend64:$extend)>;
2469
2470def : Pat <(v1i64 (scalar_to_vector (i64
2471                      (load (ro_Xindexed64 GPR64sp:$Rn, GPR64:$Rm,
2472                                           ro_Xextend64:$extend))))),
2473           (LDRDroX GPR64sp:$Rn, GPR64:$Rm, ro_Xextend64:$extend)>;
2474}
2475
2476// Match all load 64 bits width whose type is compatible with FPR64
2477multiclass VecROLoadPat<ROAddrMode ro, ValueType VecTy,
2478                        Instruction LOADW, Instruction LOADX> {
2479
2480  def : Pat<(VecTy (load (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend))),
2481            (LOADW GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)>;
2482
2483  def : Pat<(VecTy (load (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend))),
2484            (LOADX GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)>;
2485}
2486
2487let AddedComplexity = 10 in {
2488let Predicates = [IsLE] in {
2489  // We must do vector loads with LD1 in big-endian.
2490  defm : VecROLoadPat<ro64, v2i32, LDRDroW, LDRDroX>;
2491  defm : VecROLoadPat<ro64, v2f32, LDRDroW, LDRDroX>;
2492  defm : VecROLoadPat<ro64, v8i8,  LDRDroW, LDRDroX>;
2493  defm : VecROLoadPat<ro64, v4i16, LDRDroW, LDRDroX>;
2494  defm : VecROLoadPat<ro64, v4f16, LDRDroW, LDRDroX>;
2495  defm : VecROLoadPat<ro64, v4bf16, LDRDroW, LDRDroX>;
2496}
2497
2498defm : VecROLoadPat<ro64, v1i64,  LDRDroW, LDRDroX>;
2499defm : VecROLoadPat<ro64, v1f64,  LDRDroW, LDRDroX>;
2500
2501// Match all load 128 bits width whose type is compatible with FPR128
2502let Predicates = [IsLE] in {
2503  // We must do vector loads with LD1 in big-endian.
2504  defm : VecROLoadPat<ro128, v2i64,  LDRQroW, LDRQroX>;
2505  defm : VecROLoadPat<ro128, v2f64,  LDRQroW, LDRQroX>;
2506  defm : VecROLoadPat<ro128, v4i32,  LDRQroW, LDRQroX>;
2507  defm : VecROLoadPat<ro128, v4f32,  LDRQroW, LDRQroX>;
2508  defm : VecROLoadPat<ro128, v8i16,  LDRQroW, LDRQroX>;
2509  defm : VecROLoadPat<ro128, v8f16,  LDRQroW, LDRQroX>;
2510  defm : VecROLoadPat<ro128, v8bf16,  LDRQroW, LDRQroX>;
2511  defm : VecROLoadPat<ro128, v16i8,  LDRQroW, LDRQroX>;
2512}
2513} // AddedComplexity = 10
2514
2515// zextload -> i64
2516multiclass ExtLoadTo64ROPat<ROAddrMode ro, SDPatternOperator loadop,
2517                            Instruction INSTW, Instruction INSTX> {
2518  def : Pat<(i64 (loadop (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend))),
2519            (SUBREG_TO_REG (i64 0),
2520                           (INSTW GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend),
2521                           sub_32)>;
2522
2523  def : Pat<(i64 (loadop (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend))),
2524            (SUBREG_TO_REG (i64 0),
2525                           (INSTX GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend),
2526                           sub_32)>;
2527}
2528
2529let AddedComplexity = 10 in {
2530  defm : ExtLoadTo64ROPat<ro8,  zextloadi8,  LDRBBroW, LDRBBroX>;
2531  defm : ExtLoadTo64ROPat<ro16, zextloadi16, LDRHHroW, LDRHHroX>;
2532  defm : ExtLoadTo64ROPat<ro32, zextloadi32, LDRWroW,  LDRWroX>;
2533
2534  // zextloadi1 -> zextloadi8
2535  defm : ExtLoadTo64ROPat<ro8,  zextloadi1,  LDRBBroW, LDRBBroX>;
2536
2537  // extload -> zextload
2538  defm : ExtLoadTo64ROPat<ro8,  extloadi8,   LDRBBroW, LDRBBroX>;
2539  defm : ExtLoadTo64ROPat<ro16, extloadi16,  LDRHHroW, LDRHHroX>;
2540  defm : ExtLoadTo64ROPat<ro32, extloadi32,  LDRWroW,  LDRWroX>;
2541
2542  // extloadi1 -> zextloadi8
2543  defm : ExtLoadTo64ROPat<ro8,  extloadi1,   LDRBBroW, LDRBBroX>;
2544}
2545
2546
2547// zextload -> i64
2548multiclass ExtLoadTo32ROPat<ROAddrMode ro, SDPatternOperator loadop,
2549                            Instruction INSTW, Instruction INSTX> {
2550  def : Pat<(i32 (loadop (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend))),
2551            (INSTW GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)>;
2552
2553  def : Pat<(i32 (loadop (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend))),
2554            (INSTX GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)>;
2555
2556}
2557
2558let AddedComplexity = 10 in {
2559  // extload -> zextload
2560  defm : ExtLoadTo32ROPat<ro8,  extloadi8,   LDRBBroW, LDRBBroX>;
2561  defm : ExtLoadTo32ROPat<ro16, extloadi16,  LDRHHroW, LDRHHroX>;
2562  defm : ExtLoadTo32ROPat<ro32, extloadi32,  LDRWroW,  LDRWroX>;
2563
2564  // zextloadi1 -> zextloadi8
2565  defm : ExtLoadTo32ROPat<ro8, zextloadi1, LDRBBroW, LDRBBroX>;
2566}
2567
2568//---
2569// (unsigned immediate)
2570//---
2571defm LDRX : LoadUI<0b11, 0, 0b01, GPR64z, uimm12s8, "ldr",
2572                   [(set GPR64z:$Rt,
2573                         (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)))]>;
2574defm LDRW : LoadUI<0b10, 0, 0b01, GPR32z, uimm12s4, "ldr",
2575                   [(set GPR32z:$Rt,
2576                         (load (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset)))]>;
2577defm LDRB : LoadUI<0b00, 1, 0b01, FPR8Op, uimm12s1, "ldr",
2578                   [(set FPR8Op:$Rt,
2579                         (load (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset)))]>;
2580defm LDRH : LoadUI<0b01, 1, 0b01, FPR16Op, uimm12s2, "ldr",
2581                   [(set (f16 FPR16Op:$Rt),
2582                         (load (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset)))]>;
2583defm LDRS : LoadUI<0b10, 1, 0b01, FPR32Op, uimm12s4, "ldr",
2584                   [(set (f32 FPR32Op:$Rt),
2585                         (load (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset)))]>;
2586defm LDRD : LoadUI<0b11, 1, 0b01, FPR64Op, uimm12s8, "ldr",
2587                   [(set (f64 FPR64Op:$Rt),
2588                         (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)))]>;
2589defm LDRQ : LoadUI<0b00, 1, 0b11, FPR128Op, uimm12s16, "ldr",
2590                 [(set (f128 FPR128Op:$Rt),
2591                       (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)))]>;
2592
2593// bf16 load pattern
2594def : Pat <(bf16 (load (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))),
2595           (LDRHui GPR64sp:$Rn, uimm12s2:$offset)>;
2596
2597// For regular load, we do not have any alignment requirement.
2598// Thus, it is safe to directly map the vector loads with interesting
2599// addressing modes.
2600// FIXME: We could do the same for bitconvert to floating point vectors.
2601def : Pat <(v8i8 (scalar_to_vector (i32
2602               (extloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))))),
2603           (INSERT_SUBREG (v8i8 (IMPLICIT_DEF)),
2604                          (LDRBui GPR64sp:$Rn, uimm12s1:$offset), bsub)>;
2605def : Pat <(v16i8 (scalar_to_vector (i32
2606               (extloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))))),
2607           (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
2608                          (LDRBui GPR64sp:$Rn, uimm12s1:$offset), bsub)>;
2609def : Pat <(v4i16 (scalar_to_vector (i32
2610               (extloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))))),
2611           (INSERT_SUBREG (v4i16 (IMPLICIT_DEF)),
2612                          (LDRHui GPR64sp:$Rn, uimm12s2:$offset), hsub)>;
2613def : Pat <(v8i16 (scalar_to_vector (i32
2614               (extloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))))),
2615           (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)),
2616                          (LDRHui GPR64sp:$Rn, uimm12s2:$offset), hsub)>;
2617def : Pat <(v2i32 (scalar_to_vector (i32
2618               (load (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))))),
2619           (INSERT_SUBREG (v2i32 (IMPLICIT_DEF)),
2620                          (LDRSui GPR64sp:$Rn, uimm12s4:$offset), ssub)>;
2621def : Pat <(v4i32 (scalar_to_vector (i32
2622               (load (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))))),
2623           (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)),
2624                          (LDRSui GPR64sp:$Rn, uimm12s4:$offset), ssub)>;
2625def : Pat <(v1i64 (scalar_to_vector (i64
2626               (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))))),
2627           (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
2628def : Pat <(v2i64 (scalar_to_vector (i64
2629               (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))))),
2630           (INSERT_SUBREG (v2i64 (IMPLICIT_DEF)),
2631                          (LDRDui GPR64sp:$Rn, uimm12s8:$offset), dsub)>;
2632
2633// Match all load 64 bits width whose type is compatible with FPR64
2634let Predicates = [IsLE] in {
2635  // We must use LD1 to perform vector loads in big-endian.
2636  def : Pat<(v2f32 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))),
2637            (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
2638  def : Pat<(v8i8 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))),
2639            (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
2640  def : Pat<(v4i16 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))),
2641            (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
2642  def : Pat<(v2i32 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))),
2643            (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
2644  def : Pat<(v4f16 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))),
2645            (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
2646  def : Pat<(v4bf16 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))),
2647            (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
2648}
2649def : Pat<(v1f64 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))),
2650          (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
2651def : Pat<(v1i64 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))),
2652          (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
2653
2654// Match all load 128 bits width whose type is compatible with FPR128
2655let Predicates = [IsLE] in {
2656  // We must use LD1 to perform vector loads in big-endian.
2657  def : Pat<(v4f32 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
2658            (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
2659  def : Pat<(v2f64 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
2660            (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
2661  def : Pat<(v16i8 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
2662            (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
2663  def : Pat<(v8i16 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
2664            (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
2665  def : Pat<(v4i32 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
2666            (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
2667  def : Pat<(v2i64 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
2668            (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
2669  def : Pat<(v8f16 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
2670            (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
2671  def : Pat<(v8bf16 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
2672            (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
2673}
2674def : Pat<(f128  (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
2675          (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
2676
2677defm LDRHH : LoadUI<0b01, 0, 0b01, GPR32, uimm12s2, "ldrh",
2678                    [(set GPR32:$Rt,
2679                          (zextloadi16 (am_indexed16 GPR64sp:$Rn,
2680                                                     uimm12s2:$offset)))]>;
2681defm LDRBB : LoadUI<0b00, 0, 0b01, GPR32, uimm12s1, "ldrb",
2682                    [(set GPR32:$Rt,
2683                          (zextloadi8 (am_indexed8 GPR64sp:$Rn,
2684                                                   uimm12s1:$offset)))]>;
2685// zextload -> i64
2686def : Pat<(i64 (zextloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))),
2687    (SUBREG_TO_REG (i64 0), (LDRBBui GPR64sp:$Rn, uimm12s1:$offset), sub_32)>;
2688def : Pat<(i64 (zextloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))),
2689    (SUBREG_TO_REG (i64 0), (LDRHHui GPR64sp:$Rn, uimm12s2:$offset), sub_32)>;
2690
2691// zextloadi1 -> zextloadi8
2692def : Pat<(i32 (zextloadi1 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))),
2693          (LDRBBui GPR64sp:$Rn, uimm12s1:$offset)>;
2694def : Pat<(i64 (zextloadi1 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))),
2695    (SUBREG_TO_REG (i64 0), (LDRBBui GPR64sp:$Rn, uimm12s1:$offset), sub_32)>;
2696
2697// extload -> zextload
2698def : Pat<(i32 (extloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))),
2699          (LDRHHui GPR64sp:$Rn, uimm12s2:$offset)>;
2700def : Pat<(i32 (extloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))),
2701          (LDRBBui GPR64sp:$Rn, uimm12s1:$offset)>;
2702def : Pat<(i32 (extloadi1 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))),
2703          (LDRBBui GPR64sp:$Rn, uimm12s1:$offset)>;
2704def : Pat<(i64 (extloadi32 (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))),
2705    (SUBREG_TO_REG (i64 0), (LDRWui GPR64sp:$Rn, uimm12s4:$offset), sub_32)>;
2706def : Pat<(i64 (extloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))),
2707    (SUBREG_TO_REG (i64 0), (LDRHHui GPR64sp:$Rn, uimm12s2:$offset), sub_32)>;
2708def : Pat<(i64 (extloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))),
2709    (SUBREG_TO_REG (i64 0), (LDRBBui GPR64sp:$Rn, uimm12s1:$offset), sub_32)>;
2710def : Pat<(i64 (extloadi1 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))),
2711    (SUBREG_TO_REG (i64 0), (LDRBBui GPR64sp:$Rn, uimm12s1:$offset), sub_32)>;
2712
2713// load sign-extended half-word
2714defm LDRSHW : LoadUI<0b01, 0, 0b11, GPR32, uimm12s2, "ldrsh",
2715                     [(set GPR32:$Rt,
2716                           (sextloadi16 (am_indexed16 GPR64sp:$Rn,
2717                                                      uimm12s2:$offset)))]>;
2718defm LDRSHX : LoadUI<0b01, 0, 0b10, GPR64, uimm12s2, "ldrsh",
2719                     [(set GPR64:$Rt,
2720                           (sextloadi16 (am_indexed16 GPR64sp:$Rn,
2721                                                      uimm12s2:$offset)))]>;
2722
2723// load sign-extended byte
2724defm LDRSBW : LoadUI<0b00, 0, 0b11, GPR32, uimm12s1, "ldrsb",
2725                     [(set GPR32:$Rt,
2726                           (sextloadi8 (am_indexed8 GPR64sp:$Rn,
2727                                                    uimm12s1:$offset)))]>;
2728defm LDRSBX : LoadUI<0b00, 0, 0b10, GPR64, uimm12s1, "ldrsb",
2729                     [(set GPR64:$Rt,
2730                           (sextloadi8 (am_indexed8 GPR64sp:$Rn,
2731                                                    uimm12s1:$offset)))]>;
2732
2733// load sign-extended word
2734defm LDRSW  : LoadUI<0b10, 0, 0b10, GPR64, uimm12s4, "ldrsw",
2735                     [(set GPR64:$Rt,
2736                           (sextloadi32 (am_indexed32 GPR64sp:$Rn,
2737                                                      uimm12s4:$offset)))]>;
2738
2739// load zero-extended word
2740def : Pat<(i64 (zextloadi32 (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))),
2741      (SUBREG_TO_REG (i64 0), (LDRWui GPR64sp:$Rn, uimm12s4:$offset), sub_32)>;
2742
2743// Pre-fetch.
2744def PRFMui : PrefetchUI<0b11, 0, 0b10, "prfm",
2745                        [(AArch64Prefetch imm:$Rt,
2746                                        (am_indexed64 GPR64sp:$Rn,
2747                                                      uimm12s8:$offset))]>;
2748
2749def : InstAlias<"prfm $Rt, [$Rn]", (PRFMui prfop:$Rt, GPR64sp:$Rn, 0)>;
2750
2751//---
2752// (literal)
2753
2754def alignedglobal : PatLeaf<(iPTR iPTR:$label), [{
2755  if (auto *G = dyn_cast<GlobalAddressSDNode>(N)) {
2756    const DataLayout &DL = MF->getDataLayout();
2757    Align Align = G->getGlobal()->getPointerAlignment(DL);
2758    return Align >= 4 && G->getOffset() % 4 == 0;
2759  }
2760  if (auto *C = dyn_cast<ConstantPoolSDNode>(N))
2761    return C->getAlign() >= 4 && C->getOffset() % 4 == 0;
2762  return false;
2763}]>;
2764
2765def LDRWl : LoadLiteral<0b00, 0, GPR32z, "ldr",
2766  [(set GPR32z:$Rt, (load (AArch64adr alignedglobal:$label)))]>;
2767def LDRXl : LoadLiteral<0b01, 0, GPR64z, "ldr",
2768  [(set GPR64z:$Rt, (load (AArch64adr alignedglobal:$label)))]>;
2769def LDRSl : LoadLiteral<0b00, 1, FPR32Op, "ldr",
2770  [(set (f32 FPR32Op:$Rt), (load (AArch64adr alignedglobal:$label)))]>;
2771def LDRDl : LoadLiteral<0b01, 1, FPR64Op, "ldr",
2772  [(set (f64 FPR64Op:$Rt), (load (AArch64adr alignedglobal:$label)))]>;
2773def LDRQl : LoadLiteral<0b10, 1, FPR128Op, "ldr",
2774  [(set (f128 FPR128Op:$Rt), (load (AArch64adr alignedglobal:$label)))]>;
2775
2776// load sign-extended word
2777def LDRSWl : LoadLiteral<0b10, 0, GPR64z, "ldrsw",
2778  [(set GPR64z:$Rt, (sextloadi32 (AArch64adr alignedglobal:$label)))]>;
2779
2780let AddedComplexity = 20 in {
2781def : Pat<(i64 (zextloadi32 (AArch64adr alignedglobal:$label))),
2782        (SUBREG_TO_REG (i64 0), (LDRWl $label), sub_32)>;
2783}
2784
2785// prefetch
2786def PRFMl : PrefetchLiteral<0b11, 0, "prfm", []>;
2787//                   [(AArch64Prefetch imm:$Rt, tglobaladdr:$label)]>;
2788
2789//---
2790// (unscaled immediate)
2791defm LDURX : LoadUnscaled<0b11, 0, 0b01, GPR64z, "ldur",
2792                    [(set GPR64z:$Rt,
2793                          (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset)))]>;
2794defm LDURW : LoadUnscaled<0b10, 0, 0b01, GPR32z, "ldur",
2795                    [(set GPR32z:$Rt,
2796                          (load (am_unscaled32 GPR64sp:$Rn, simm9:$offset)))]>;
2797defm LDURB : LoadUnscaled<0b00, 1, 0b01, FPR8Op, "ldur",
2798                    [(set FPR8Op:$Rt,
2799                          (load (am_unscaled8 GPR64sp:$Rn, simm9:$offset)))]>;
2800defm LDURH : LoadUnscaled<0b01, 1, 0b01, FPR16Op, "ldur",
2801                    [(set (f16 FPR16Op:$Rt),
2802                          (load (am_unscaled16 GPR64sp:$Rn, simm9:$offset)))]>;
2803defm LDURS : LoadUnscaled<0b10, 1, 0b01, FPR32Op, "ldur",
2804                    [(set (f32 FPR32Op:$Rt),
2805                          (load (am_unscaled32 GPR64sp:$Rn, simm9:$offset)))]>;
2806defm LDURD : LoadUnscaled<0b11, 1, 0b01, FPR64Op, "ldur",
2807                    [(set (f64 FPR64Op:$Rt),
2808                          (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset)))]>;
2809defm LDURQ : LoadUnscaled<0b00, 1, 0b11, FPR128Op, "ldur",
2810                    [(set (f128 FPR128Op:$Rt),
2811                          (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset)))]>;
2812
2813defm LDURHH
2814    : LoadUnscaled<0b01, 0, 0b01, GPR32, "ldurh",
2815             [(set GPR32:$Rt,
2816                    (zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset)))]>;
2817defm LDURBB
2818    : LoadUnscaled<0b00, 0, 0b01, GPR32, "ldurb",
2819             [(set GPR32:$Rt,
2820                    (zextloadi8 (am_unscaled16 GPR64sp:$Rn, simm9:$offset)))]>;
2821
2822// Match all load 64 bits width whose type is compatible with FPR64
2823let Predicates = [IsLE] in {
2824  def : Pat<(v2f32 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))),
2825            (LDURDi GPR64sp:$Rn, simm9:$offset)>;
2826  def : Pat<(v2i32 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))),
2827            (LDURDi GPR64sp:$Rn, simm9:$offset)>;
2828  def : Pat<(v4i16 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))),
2829            (LDURDi GPR64sp:$Rn, simm9:$offset)>;
2830  def : Pat<(v8i8 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))),
2831            (LDURDi GPR64sp:$Rn, simm9:$offset)>;
2832  def : Pat<(v4f16 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))),
2833            (LDURDi GPR64sp:$Rn, simm9:$offset)>;
2834}
2835def : Pat<(v1f64 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))),
2836          (LDURDi GPR64sp:$Rn, simm9:$offset)>;
2837def : Pat<(v1i64 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))),
2838          (LDURDi GPR64sp:$Rn, simm9:$offset)>;
2839
2840// Match all load 128 bits width whose type is compatible with FPR128
2841let Predicates = [IsLE] in {
2842  def : Pat<(v2f64 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))),
2843            (LDURQi GPR64sp:$Rn, simm9:$offset)>;
2844  def : Pat<(v2i64 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))),
2845            (LDURQi GPR64sp:$Rn, simm9:$offset)>;
2846  def : Pat<(v4f32 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))),
2847            (LDURQi GPR64sp:$Rn, simm9:$offset)>;
2848  def : Pat<(v4i32 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))),
2849            (LDURQi GPR64sp:$Rn, simm9:$offset)>;
2850  def : Pat<(v8i16 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))),
2851            (LDURQi GPR64sp:$Rn, simm9:$offset)>;
2852  def : Pat<(v16i8 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))),
2853            (LDURQi GPR64sp:$Rn, simm9:$offset)>;
2854  def : Pat<(v8f16 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))),
2855            (LDURQi GPR64sp:$Rn, simm9:$offset)>;
2856}
2857
2858//  anyext -> zext
2859def : Pat<(i32 (extloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))),
2860          (LDURHHi GPR64sp:$Rn, simm9:$offset)>;
2861def : Pat<(i32 (extloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
2862          (LDURBBi GPR64sp:$Rn, simm9:$offset)>;
2863def : Pat<(i32 (extloadi1 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
2864          (LDURBBi GPR64sp:$Rn, simm9:$offset)>;
2865def : Pat<(i64 (extloadi32 (am_unscaled32 GPR64sp:$Rn, simm9:$offset))),
2866    (SUBREG_TO_REG (i64 0), (LDURWi GPR64sp:$Rn, simm9:$offset), sub_32)>;
2867def : Pat<(i64 (extloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))),
2868    (SUBREG_TO_REG (i64 0), (LDURHHi GPR64sp:$Rn, simm9:$offset), sub_32)>;
2869def : Pat<(i64 (extloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
2870    (SUBREG_TO_REG (i64 0), (LDURBBi GPR64sp:$Rn, simm9:$offset), sub_32)>;
2871def : Pat<(i64 (extloadi1 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
2872    (SUBREG_TO_REG (i64 0), (LDURBBi GPR64sp:$Rn, simm9:$offset), sub_32)>;
2873// unscaled zext
2874def : Pat<(i32 (zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))),
2875          (LDURHHi GPR64sp:$Rn, simm9:$offset)>;
2876def : Pat<(i32 (zextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
2877          (LDURBBi GPR64sp:$Rn, simm9:$offset)>;
2878def : Pat<(i32 (zextloadi1 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
2879          (LDURBBi GPR64sp:$Rn, simm9:$offset)>;
2880def : Pat<(i64 (zextloadi32 (am_unscaled32 GPR64sp:$Rn, simm9:$offset))),
2881    (SUBREG_TO_REG (i64 0), (LDURWi GPR64sp:$Rn, simm9:$offset), sub_32)>;
2882def : Pat<(i64 (zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))),
2883    (SUBREG_TO_REG (i64 0), (LDURHHi GPR64sp:$Rn, simm9:$offset), sub_32)>;
2884def : Pat<(i64 (zextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
2885    (SUBREG_TO_REG (i64 0), (LDURBBi GPR64sp:$Rn, simm9:$offset), sub_32)>;
2886def : Pat<(i64 (zextloadi1 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
2887    (SUBREG_TO_REG (i64 0), (LDURBBi GPR64sp:$Rn, simm9:$offset), sub_32)>;
2888
2889
2890//---
2891// LDR mnemonics fall back to LDUR for negative or unaligned offsets.
2892
2893// Define new assembler match classes as we want to only match these when
2894// the don't otherwise match the scaled addressing mode for LDR/STR. Don't
2895// associate a DiagnosticType either, as we want the diagnostic for the
2896// canonical form (the scaled operand) to take precedence.
2897class SImm9OffsetOperand<int Width> : AsmOperandClass {
2898  let Name = "SImm9OffsetFB" # Width;
2899  let PredicateMethod = "isSImm9OffsetFB<" # Width # ">";
2900  let RenderMethod = "addImmOperands";
2901}
2902
2903def SImm9OffsetFB8Operand : SImm9OffsetOperand<8>;
2904def SImm9OffsetFB16Operand : SImm9OffsetOperand<16>;
2905def SImm9OffsetFB32Operand : SImm9OffsetOperand<32>;
2906def SImm9OffsetFB64Operand : SImm9OffsetOperand<64>;
2907def SImm9OffsetFB128Operand : SImm9OffsetOperand<128>;
2908
2909def simm9_offset_fb8 : Operand<i64> {
2910  let ParserMatchClass = SImm9OffsetFB8Operand;
2911}
2912def simm9_offset_fb16 : Operand<i64> {
2913  let ParserMatchClass = SImm9OffsetFB16Operand;
2914}
2915def simm9_offset_fb32 : Operand<i64> {
2916  let ParserMatchClass = SImm9OffsetFB32Operand;
2917}
2918def simm9_offset_fb64 : Operand<i64> {
2919  let ParserMatchClass = SImm9OffsetFB64Operand;
2920}
2921def simm9_offset_fb128 : Operand<i64> {
2922  let ParserMatchClass = SImm9OffsetFB128Operand;
2923}
2924
2925def : InstAlias<"ldr $Rt, [$Rn, $offset]",
2926                (LDURXi GPR64:$Rt, GPR64sp:$Rn, simm9_offset_fb64:$offset), 0>;
2927def : InstAlias<"ldr $Rt, [$Rn, $offset]",
2928                (LDURWi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb32:$offset), 0>;
2929def : InstAlias<"ldr $Rt, [$Rn, $offset]",
2930                (LDURBi FPR8Op:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>;
2931def : InstAlias<"ldr $Rt, [$Rn, $offset]",
2932                (LDURHi FPR16Op:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>;
2933def : InstAlias<"ldr $Rt, [$Rn, $offset]",
2934                (LDURSi FPR32Op:$Rt, GPR64sp:$Rn, simm9_offset_fb32:$offset), 0>;
2935def : InstAlias<"ldr $Rt, [$Rn, $offset]",
2936                (LDURDi FPR64Op:$Rt, GPR64sp:$Rn, simm9_offset_fb64:$offset), 0>;
2937def : InstAlias<"ldr $Rt, [$Rn, $offset]",
2938               (LDURQi FPR128Op:$Rt, GPR64sp:$Rn, simm9_offset_fb128:$offset), 0>;
2939
2940// zextload -> i64
2941def : Pat<(i64 (zextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
2942  (SUBREG_TO_REG (i64 0), (LDURBBi GPR64sp:$Rn, simm9:$offset), sub_32)>;
2943def : Pat<(i64 (zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))),
2944  (SUBREG_TO_REG (i64 0), (LDURHHi GPR64sp:$Rn, simm9:$offset), sub_32)>;
2945
2946// load sign-extended half-word
2947defm LDURSHW
2948    : LoadUnscaled<0b01, 0, 0b11, GPR32, "ldursh",
2949               [(set GPR32:$Rt,
2950                    (sextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset)))]>;
2951defm LDURSHX
2952    : LoadUnscaled<0b01, 0, 0b10, GPR64, "ldursh",
2953              [(set GPR64:$Rt,
2954                    (sextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset)))]>;
2955
2956// load sign-extended byte
2957defm LDURSBW
2958    : LoadUnscaled<0b00, 0, 0b11, GPR32, "ldursb",
2959                [(set GPR32:$Rt,
2960                      (sextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset)))]>;
2961defm LDURSBX
2962    : LoadUnscaled<0b00, 0, 0b10, GPR64, "ldursb",
2963                [(set GPR64:$Rt,
2964                      (sextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset)))]>;
2965
2966// load sign-extended word
2967defm LDURSW
2968    : LoadUnscaled<0b10, 0, 0b10, GPR64, "ldursw",
2969              [(set GPR64:$Rt,
2970                    (sextloadi32 (am_unscaled32 GPR64sp:$Rn, simm9:$offset)))]>;
2971
2972// zero and sign extending aliases from generic LDR* mnemonics to LDUR*.
2973def : InstAlias<"ldrb $Rt, [$Rn, $offset]",
2974                (LDURBBi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>;
2975def : InstAlias<"ldrh $Rt, [$Rn, $offset]",
2976                (LDURHHi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>;
2977def : InstAlias<"ldrsb $Rt, [$Rn, $offset]",
2978                (LDURSBWi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>;
2979def : InstAlias<"ldrsb $Rt, [$Rn, $offset]",
2980                (LDURSBXi GPR64:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>;
2981def : InstAlias<"ldrsh $Rt, [$Rn, $offset]",
2982                (LDURSHWi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>;
2983def : InstAlias<"ldrsh $Rt, [$Rn, $offset]",
2984                (LDURSHXi GPR64:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>;
2985def : InstAlias<"ldrsw $Rt, [$Rn, $offset]",
2986                (LDURSWi GPR64:$Rt, GPR64sp:$Rn, simm9_offset_fb32:$offset), 0>;
2987
2988// Pre-fetch.
2989defm PRFUM : PrefetchUnscaled<0b11, 0, 0b10, "prfum",
2990                  [(AArch64Prefetch imm:$Rt,
2991                                  (am_unscaled64 GPR64sp:$Rn, simm9:$offset))]>;
2992
2993//---
2994// (unscaled immediate, unprivileged)
2995defm LDTRX : LoadUnprivileged<0b11, 0, 0b01, GPR64, "ldtr">;
2996defm LDTRW : LoadUnprivileged<0b10, 0, 0b01, GPR32, "ldtr">;
2997
2998defm LDTRH : LoadUnprivileged<0b01, 0, 0b01, GPR32, "ldtrh">;
2999defm LDTRB : LoadUnprivileged<0b00, 0, 0b01, GPR32, "ldtrb">;
3000
3001// load sign-extended half-word
3002defm LDTRSHW : LoadUnprivileged<0b01, 0, 0b11, GPR32, "ldtrsh">;
3003defm LDTRSHX : LoadUnprivileged<0b01, 0, 0b10, GPR64, "ldtrsh">;
3004
3005// load sign-extended byte
3006defm LDTRSBW : LoadUnprivileged<0b00, 0, 0b11, GPR32, "ldtrsb">;
3007defm LDTRSBX : LoadUnprivileged<0b00, 0, 0b10, GPR64, "ldtrsb">;
3008
3009// load sign-extended word
3010defm LDTRSW  : LoadUnprivileged<0b10, 0, 0b10, GPR64, "ldtrsw">;
3011
3012//---
3013// (immediate pre-indexed)
3014def LDRWpre : LoadPreIdx<0b10, 0, 0b01, GPR32z, "ldr">;
3015def LDRXpre : LoadPreIdx<0b11, 0, 0b01, GPR64z, "ldr">;
3016def LDRBpre : LoadPreIdx<0b00, 1, 0b01, FPR8Op,  "ldr">;
3017def LDRHpre : LoadPreIdx<0b01, 1, 0b01, FPR16Op, "ldr">;
3018def LDRSpre : LoadPreIdx<0b10, 1, 0b01, FPR32Op, "ldr">;
3019def LDRDpre : LoadPreIdx<0b11, 1, 0b01, FPR64Op, "ldr">;
3020def LDRQpre : LoadPreIdx<0b00, 1, 0b11, FPR128Op, "ldr">;
3021
3022// load sign-extended half-word
3023def LDRSHWpre : LoadPreIdx<0b01, 0, 0b11, GPR32z, "ldrsh">;
3024def LDRSHXpre : LoadPreIdx<0b01, 0, 0b10, GPR64z, "ldrsh">;
3025
3026// load sign-extended byte
3027def LDRSBWpre : LoadPreIdx<0b00, 0, 0b11, GPR32z, "ldrsb">;
3028def LDRSBXpre : LoadPreIdx<0b00, 0, 0b10, GPR64z, "ldrsb">;
3029
3030// load zero-extended byte
3031def LDRBBpre : LoadPreIdx<0b00, 0, 0b01, GPR32z, "ldrb">;
3032def LDRHHpre : LoadPreIdx<0b01, 0, 0b01, GPR32z, "ldrh">;
3033
3034// load sign-extended word
3035def LDRSWpre : LoadPreIdx<0b10, 0, 0b10, GPR64z, "ldrsw">;
3036
3037//---
3038// (immediate post-indexed)
3039def LDRWpost : LoadPostIdx<0b10, 0, 0b01, GPR32z, "ldr">;
3040def LDRXpost : LoadPostIdx<0b11, 0, 0b01, GPR64z, "ldr">;
3041def LDRBpost : LoadPostIdx<0b00, 1, 0b01, FPR8Op,  "ldr">;
3042def LDRHpost : LoadPostIdx<0b01, 1, 0b01, FPR16Op, "ldr">;
3043def LDRSpost : LoadPostIdx<0b10, 1, 0b01, FPR32Op, "ldr">;
3044def LDRDpost : LoadPostIdx<0b11, 1, 0b01, FPR64Op, "ldr">;
3045def LDRQpost : LoadPostIdx<0b00, 1, 0b11, FPR128Op, "ldr">;
3046
3047// load sign-extended half-word
3048def LDRSHWpost : LoadPostIdx<0b01, 0, 0b11, GPR32z, "ldrsh">;
3049def LDRSHXpost : LoadPostIdx<0b01, 0, 0b10, GPR64z, "ldrsh">;
3050
3051// load sign-extended byte
3052def LDRSBWpost : LoadPostIdx<0b00, 0, 0b11, GPR32z, "ldrsb">;
3053def LDRSBXpost : LoadPostIdx<0b00, 0, 0b10, GPR64z, "ldrsb">;
3054
3055// load zero-extended byte
3056def LDRBBpost : LoadPostIdx<0b00, 0, 0b01, GPR32z, "ldrb">;
3057def LDRHHpost : LoadPostIdx<0b01, 0, 0b01, GPR32z, "ldrh">;
3058
3059// load sign-extended word
3060def LDRSWpost : LoadPostIdx<0b10, 0, 0b10, GPR64z, "ldrsw">;
3061
3062//===----------------------------------------------------------------------===//
3063// Store instructions.
3064//===----------------------------------------------------------------------===//
3065
3066// Pair (indexed, offset)
3067// FIXME: Use dedicated range-checked addressing mode operand here.
3068defm STPW : StorePairOffset<0b00, 0, GPR32z, simm7s4, "stp">;
3069defm STPX : StorePairOffset<0b10, 0, GPR64z, simm7s8, "stp">;
3070defm STPS : StorePairOffset<0b00, 1, FPR32Op, simm7s4, "stp">;
3071defm STPD : StorePairOffset<0b01, 1, FPR64Op, simm7s8, "stp">;
3072defm STPQ : StorePairOffset<0b10, 1, FPR128Op, simm7s16, "stp">;
3073
3074// Pair (pre-indexed)
3075def STPWpre : StorePairPreIdx<0b00, 0, GPR32z, simm7s4, "stp">;
3076def STPXpre : StorePairPreIdx<0b10, 0, GPR64z, simm7s8, "stp">;
3077def STPSpre : StorePairPreIdx<0b00, 1, FPR32Op, simm7s4, "stp">;
3078def STPDpre : StorePairPreIdx<0b01, 1, FPR64Op, simm7s8, "stp">;
3079def STPQpre : StorePairPreIdx<0b10, 1, FPR128Op, simm7s16, "stp">;
3080
3081// Pair (pre-indexed)
3082def STPWpost : StorePairPostIdx<0b00, 0, GPR32z, simm7s4, "stp">;
3083def STPXpost : StorePairPostIdx<0b10, 0, GPR64z, simm7s8, "stp">;
3084def STPSpost : StorePairPostIdx<0b00, 1, FPR32Op, simm7s4, "stp">;
3085def STPDpost : StorePairPostIdx<0b01, 1, FPR64Op, simm7s8, "stp">;
3086def STPQpost : StorePairPostIdx<0b10, 1, FPR128Op, simm7s16, "stp">;
3087
3088// Pair (no allocate)
3089defm STNPW : StorePairNoAlloc<0b00, 0, GPR32z, simm7s4, "stnp">;
3090defm STNPX : StorePairNoAlloc<0b10, 0, GPR64z, simm7s8, "stnp">;
3091defm STNPS : StorePairNoAlloc<0b00, 1, FPR32Op, simm7s4, "stnp">;
3092defm STNPD : StorePairNoAlloc<0b01, 1, FPR64Op, simm7s8, "stnp">;
3093defm STNPQ : StorePairNoAlloc<0b10, 1, FPR128Op, simm7s16, "stnp">;
3094
3095def : Pat<(AArch64stp GPR64z:$Rt, GPR64z:$Rt2, (am_indexed7s64 GPR64sp:$Rn, simm7s8:$offset)),
3096          (STPXi GPR64z:$Rt, GPR64z:$Rt2, GPR64sp:$Rn, simm7s8:$offset)>;
3097
3098def : Pat<(AArch64stnp FPR128:$Rt, FPR128:$Rt2, (am_indexed7s128 GPR64sp:$Rn, simm7s16:$offset)),
3099          (STNPQi FPR128:$Rt, FPR128:$Rt2, GPR64sp:$Rn, simm7s16:$offset)>;
3100
3101
3102//---
3103// (Register offset)
3104
3105// Integer
3106defm STRBB : Store8RO< 0b00, 0, 0b00, GPR32, "strb", i32, truncstorei8>;
3107defm STRHH : Store16RO<0b01, 0, 0b00, GPR32, "strh", i32, truncstorei16>;
3108defm STRW  : Store32RO<0b10, 0, 0b00, GPR32, "str",  i32, store>;
3109defm STRX  : Store64RO<0b11, 0, 0b00, GPR64, "str",  i64, store>;
3110
3111
3112// Floating-point
3113defm STRB : Store8RO< 0b00,  1, 0b00, FPR8Op,   "str", untyped, store>;
3114defm STRH : Store16RO<0b01,  1, 0b00, FPR16Op,  "str", f16,     store>;
3115defm STRS : Store32RO<0b10,  1, 0b00, FPR32Op,  "str", f32,     store>;
3116defm STRD : Store64RO<0b11,  1, 0b00, FPR64Op,  "str", f64,     store>;
3117defm STRQ : Store128RO<0b00, 1, 0b10, FPR128Op, "str", f128,    store>;
3118
3119let Predicates = [UseSTRQro], AddedComplexity = 10 in {
3120  def : Pat<(store (f128 FPR128:$Rt),
3121                        (ro_Windexed128 GPR64sp:$Rn, GPR32:$Rm,
3122                                        ro_Wextend128:$extend)),
3123            (STRQroW FPR128:$Rt, GPR64sp:$Rn, GPR32:$Rm, ro_Wextend128:$extend)>;
3124  def : Pat<(store (f128 FPR128:$Rt),
3125                        (ro_Xindexed128 GPR64sp:$Rn, GPR64:$Rm,
3126                                        ro_Xextend128:$extend)),
3127            (STRQroX FPR128:$Rt, GPR64sp:$Rn, GPR64:$Rm, ro_Wextend128:$extend)>;
3128}
3129
3130multiclass TruncStoreFrom64ROPat<ROAddrMode ro, SDPatternOperator storeop,
3131                                 Instruction STRW, Instruction STRX> {
3132
3133  def : Pat<(storeop GPR64:$Rt,
3134                     (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)),
3135            (STRW (EXTRACT_SUBREG GPR64:$Rt, sub_32),
3136                  GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)>;
3137
3138  def : Pat<(storeop GPR64:$Rt,
3139                     (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)),
3140            (STRX (EXTRACT_SUBREG GPR64:$Rt, sub_32),
3141                  GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)>;
3142}
3143
3144let AddedComplexity = 10 in {
3145  // truncstore i64
3146  defm : TruncStoreFrom64ROPat<ro8,  truncstorei8,  STRBBroW, STRBBroX>;
3147  defm : TruncStoreFrom64ROPat<ro16, truncstorei16, STRHHroW, STRHHroX>;
3148  defm : TruncStoreFrom64ROPat<ro32, truncstorei32, STRWroW,  STRWroX>;
3149}
3150
3151multiclass VecROStorePat<ROAddrMode ro, ValueType VecTy, RegisterClass FPR,
3152                         Instruction STRW, Instruction STRX> {
3153  def : Pat<(store (VecTy FPR:$Rt),
3154                   (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)),
3155            (STRW FPR:$Rt, GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)>;
3156
3157  def : Pat<(store (VecTy FPR:$Rt),
3158                   (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)),
3159            (STRX FPR:$Rt, GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)>;
3160}
3161
3162let AddedComplexity = 10 in {
3163// Match all store 64 bits width whose type is compatible with FPR64
3164let Predicates = [IsLE] in {
3165  // We must use ST1 to store vectors in big-endian.
3166  defm : VecROStorePat<ro64, v2i32, FPR64, STRDroW, STRDroX>;
3167  defm : VecROStorePat<ro64, v2f32, FPR64, STRDroW, STRDroX>;
3168  defm : VecROStorePat<ro64, v4i16, FPR64, STRDroW, STRDroX>;
3169  defm : VecROStorePat<ro64, v8i8, FPR64, STRDroW, STRDroX>;
3170  defm : VecROStorePat<ro64, v4f16, FPR64, STRDroW, STRDroX>;
3171  defm : VecROStorePat<ro64, v4bf16, FPR64, STRDroW, STRDroX>;
3172}
3173
3174defm : VecROStorePat<ro64, v1i64, FPR64, STRDroW, STRDroX>;
3175defm : VecROStorePat<ro64, v1f64, FPR64, STRDroW, STRDroX>;
3176
3177// Match all store 128 bits width whose type is compatible with FPR128
3178let Predicates = [IsLE, UseSTRQro] in {
3179  // We must use ST1 to store vectors in big-endian.
3180  defm : VecROStorePat<ro128, v2i64, FPR128, STRQroW, STRQroX>;
3181  defm : VecROStorePat<ro128, v2f64, FPR128, STRQroW, STRQroX>;
3182  defm : VecROStorePat<ro128, v4i32, FPR128, STRQroW, STRQroX>;
3183  defm : VecROStorePat<ro128, v4f32, FPR128, STRQroW, STRQroX>;
3184  defm : VecROStorePat<ro128, v8i16, FPR128, STRQroW, STRQroX>;
3185  defm : VecROStorePat<ro128, v16i8, FPR128, STRQroW, STRQroX>;
3186  defm : VecROStorePat<ro128, v8f16, FPR128, STRQroW, STRQroX>;
3187  defm : VecROStorePat<ro128, v8bf16, FPR128, STRQroW, STRQroX>;
3188}
3189} // AddedComplexity = 10
3190
3191// Match stores from lane 0 to the appropriate subreg's store.
3192multiclass VecROStoreLane0Pat<ROAddrMode ro, SDPatternOperator storeop,
3193                              ValueType VecTy, ValueType STy,
3194                              SubRegIndex SubRegIdx,
3195                              Instruction STRW, Instruction STRX> {
3196
3197  def : Pat<(storeop (STy (vector_extract (VecTy VecListOne128:$Vt), 0)),
3198                     (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)),
3199            (STRW (EXTRACT_SUBREG VecListOne128:$Vt, SubRegIdx),
3200                  GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)>;
3201
3202  def : Pat<(storeop (STy (vector_extract (VecTy VecListOne128:$Vt), 0)),
3203                     (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)),
3204            (STRX (EXTRACT_SUBREG VecListOne128:$Vt, SubRegIdx),
3205                  GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)>;
3206}
3207
3208let AddedComplexity = 19 in {
3209  defm : VecROStoreLane0Pat<ro16, truncstorei16, v8i16, i32, hsub, STRHroW, STRHroX>;
3210  defm : VecROStoreLane0Pat<ro16,         store, v8f16, f16, hsub, STRHroW, STRHroX>;
3211  defm : VecROStoreLane0Pat<ro32,         store, v4i32, i32, ssub, STRSroW, STRSroX>;
3212  defm : VecROStoreLane0Pat<ro32,         store, v4f32, f32, ssub, STRSroW, STRSroX>;
3213  defm : VecROStoreLane0Pat<ro64,         store, v2i64, i64, dsub, STRDroW, STRDroX>;
3214  defm : VecROStoreLane0Pat<ro64,         store, v2f64, f64, dsub, STRDroW, STRDroX>;
3215}
3216
3217//---
3218// (unsigned immediate)
3219defm STRX : StoreUIz<0b11, 0, 0b00, GPR64z, uimm12s8, "str",
3220                   [(store GPR64z:$Rt,
3221                            (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))]>;
3222defm STRW : StoreUIz<0b10, 0, 0b00, GPR32z, uimm12s4, "str",
3223                    [(store GPR32z:$Rt,
3224                            (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))]>;
3225defm STRB : StoreUI<0b00, 1, 0b00, FPR8Op, uimm12s1, "str",
3226                    [(store FPR8Op:$Rt,
3227                            (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))]>;
3228defm STRH : StoreUI<0b01, 1, 0b00, FPR16Op, uimm12s2, "str",
3229                    [(store (f16 FPR16Op:$Rt),
3230                            (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))]>;
3231defm STRS : StoreUI<0b10, 1, 0b00, FPR32Op, uimm12s4, "str",
3232                    [(store (f32 FPR32Op:$Rt),
3233                            (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))]>;
3234defm STRD : StoreUI<0b11, 1, 0b00, FPR64Op, uimm12s8, "str",
3235                    [(store (f64 FPR64Op:$Rt),
3236                            (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))]>;
3237defm STRQ : StoreUI<0b00, 1, 0b10, FPR128Op, uimm12s16, "str", []>;
3238
3239defm STRHH : StoreUIz<0b01, 0, 0b00, GPR32z, uimm12s2, "strh",
3240                     [(truncstorei16 GPR32z:$Rt,
3241                                     (am_indexed16 GPR64sp:$Rn,
3242                                                   uimm12s2:$offset))]>;
3243defm STRBB : StoreUIz<0b00, 0, 0b00, GPR32z, uimm12s1,  "strb",
3244                     [(truncstorei8 GPR32z:$Rt,
3245                                    (am_indexed8 GPR64sp:$Rn,
3246                                                 uimm12s1:$offset))]>;
3247
3248// bf16 store pattern
3249def : Pat<(store (bf16 FPR16Op:$Rt),
3250                 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset)),
3251          (STRHui FPR16:$Rt, GPR64sp:$Rn, uimm12s2:$offset)>;
3252
3253let AddedComplexity = 10 in {
3254
3255// Match all store 64 bits width whose type is compatible with FPR64
3256def : Pat<(store (v1i64 FPR64:$Rt),
3257                 (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)),
3258          (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>;
3259def : Pat<(store (v1f64 FPR64:$Rt),
3260                 (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)),
3261          (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>;
3262
3263let Predicates = [IsLE] in {
3264  // We must use ST1 to store vectors in big-endian.
3265  def : Pat<(store (v2f32 FPR64:$Rt),
3266                   (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)),
3267            (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>;
3268  def : Pat<(store (v8i8 FPR64:$Rt),
3269                   (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)),
3270            (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>;
3271  def : Pat<(store (v4i16 FPR64:$Rt),
3272                   (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)),
3273            (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>;
3274  def : Pat<(store (v2i32 FPR64:$Rt),
3275                   (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)),
3276            (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>;
3277  def : Pat<(store (v4f16 FPR64:$Rt),
3278                   (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)),
3279            (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>;
3280  def : Pat<(store (v4bf16 FPR64:$Rt),
3281                   (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)),
3282            (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>;
3283}
3284
3285// Match all store 128 bits width whose type is compatible with FPR128
3286def : Pat<(store (f128  FPR128:$Rt),
3287                 (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
3288          (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
3289
3290let Predicates = [IsLE] in {
3291  // We must use ST1 to store vectors in big-endian.
3292  def : Pat<(store (v4f32 FPR128:$Rt),
3293                   (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
3294            (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
3295  def : Pat<(store (v2f64 FPR128:$Rt),
3296                   (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
3297            (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
3298  def : Pat<(store (v16i8 FPR128:$Rt),
3299                   (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
3300            (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
3301  def : Pat<(store (v8i16 FPR128:$Rt),
3302                   (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
3303            (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
3304  def : Pat<(store (v4i32 FPR128:$Rt),
3305                   (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
3306            (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
3307  def : Pat<(store (v2i64 FPR128:$Rt),
3308                   (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
3309            (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
3310  def : Pat<(store (v8f16 FPR128:$Rt),
3311                   (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
3312            (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
3313  def : Pat<(store (v8bf16 FPR128:$Rt),
3314                   (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
3315            (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
3316}
3317
3318// truncstore i64
3319def : Pat<(truncstorei32 GPR64:$Rt,
3320                         (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset)),
3321  (STRWui (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, uimm12s4:$offset)>;
3322def : Pat<(truncstorei16 GPR64:$Rt,
3323                         (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset)),
3324  (STRHHui (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, uimm12s2:$offset)>;
3325def : Pat<(truncstorei8 GPR64:$Rt, (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset)),
3326  (STRBBui (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, uimm12s1:$offset)>;
3327
3328} // AddedComplexity = 10
3329
3330// Match stores from lane 0 to the appropriate subreg's store.
3331multiclass VecStoreLane0Pat<ComplexPattern UIAddrMode, SDPatternOperator storeop,
3332                            ValueType VTy, ValueType STy,
3333                            SubRegIndex SubRegIdx, Operand IndexType,
3334                            Instruction STR> {
3335  def : Pat<(storeop (STy (vector_extract (VTy VecListOne128:$Vt), 0)),
3336                     (UIAddrMode GPR64sp:$Rn, IndexType:$offset)),
3337            (STR (EXTRACT_SUBREG VecListOne128:$Vt, SubRegIdx),
3338                 GPR64sp:$Rn, IndexType:$offset)>;
3339}
3340
3341let AddedComplexity = 19 in {
3342  defm : VecStoreLane0Pat<am_indexed16, truncstorei16, v8i16, i32, hsub, uimm12s2, STRHui>;
3343  defm : VecStoreLane0Pat<am_indexed16,         store, v8f16, f16, hsub, uimm12s2, STRHui>;
3344  defm : VecStoreLane0Pat<am_indexed32,         store, v4i32, i32, ssub, uimm12s4, STRSui>;
3345  defm : VecStoreLane0Pat<am_indexed32,         store, v4f32, f32, ssub, uimm12s4, STRSui>;
3346  defm : VecStoreLane0Pat<am_indexed64,         store, v2i64, i64, dsub, uimm12s8, STRDui>;
3347  defm : VecStoreLane0Pat<am_indexed64,         store, v2f64, f64, dsub, uimm12s8, STRDui>;
3348}
3349
3350//---
3351// (unscaled immediate)
3352defm STURX : StoreUnscaled<0b11, 0, 0b00, GPR64z, "stur",
3353                         [(store GPR64z:$Rt,
3354                                 (am_unscaled64 GPR64sp:$Rn, simm9:$offset))]>;
3355defm STURW : StoreUnscaled<0b10, 0, 0b00, GPR32z, "stur",
3356                         [(store GPR32z:$Rt,
3357                                 (am_unscaled32 GPR64sp:$Rn, simm9:$offset))]>;
3358defm STURB : StoreUnscaled<0b00, 1, 0b00, FPR8Op, "stur",
3359                         [(store FPR8Op:$Rt,
3360                                 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))]>;
3361defm STURH : StoreUnscaled<0b01, 1, 0b00, FPR16Op, "stur",
3362                         [(store (f16 FPR16Op:$Rt),
3363                                 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))]>;
3364defm STURS : StoreUnscaled<0b10, 1, 0b00, FPR32Op, "stur",
3365                         [(store (f32 FPR32Op:$Rt),
3366                                 (am_unscaled32 GPR64sp:$Rn, simm9:$offset))]>;
3367defm STURD : StoreUnscaled<0b11, 1, 0b00, FPR64Op, "stur",
3368                         [(store (f64 FPR64Op:$Rt),
3369                                 (am_unscaled64 GPR64sp:$Rn, simm9:$offset))]>;
3370defm STURQ : StoreUnscaled<0b00, 1, 0b10, FPR128Op, "stur",
3371                         [(store (f128 FPR128Op:$Rt),
3372                                 (am_unscaled128 GPR64sp:$Rn, simm9:$offset))]>;
3373defm STURHH : StoreUnscaled<0b01, 0, 0b00, GPR32z, "sturh",
3374                         [(truncstorei16 GPR32z:$Rt,
3375                                 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))]>;
3376defm STURBB : StoreUnscaled<0b00, 0, 0b00, GPR32z, "sturb",
3377                         [(truncstorei8 GPR32z:$Rt,
3378                                  (am_unscaled8 GPR64sp:$Rn, simm9:$offset))]>;
3379
3380// Armv8.4 Weaker Release Consistency enhancements
3381//         LDAPR & STLR with Immediate Offset instructions
3382let Predicates = [HasRCPC_IMMO] in {
3383defm STLURB     : BaseStoreUnscaleV84<"stlurb",  0b00, 0b00, GPR32>;
3384defm STLURH     : BaseStoreUnscaleV84<"stlurh",  0b01, 0b00, GPR32>;
3385defm STLURW     : BaseStoreUnscaleV84<"stlur",   0b10, 0b00, GPR32>;
3386defm STLURX     : BaseStoreUnscaleV84<"stlur",   0b11, 0b00, GPR64>;
3387defm LDAPURB    : BaseLoadUnscaleV84<"ldapurb",  0b00, 0b01, GPR32>;
3388defm LDAPURSBW  : BaseLoadUnscaleV84<"ldapursb", 0b00, 0b11, GPR32>;
3389defm LDAPURSBX  : BaseLoadUnscaleV84<"ldapursb", 0b00, 0b10, GPR64>;
3390defm LDAPURH    : BaseLoadUnscaleV84<"ldapurh",  0b01, 0b01, GPR32>;
3391defm LDAPURSHW  : BaseLoadUnscaleV84<"ldapursh", 0b01, 0b11, GPR32>;
3392defm LDAPURSHX  : BaseLoadUnscaleV84<"ldapursh", 0b01, 0b10, GPR64>;
3393defm LDAPUR     : BaseLoadUnscaleV84<"ldapur",   0b10, 0b01, GPR32>;
3394defm LDAPURSW   : BaseLoadUnscaleV84<"ldapursw", 0b10, 0b10, GPR64>;
3395defm LDAPURX    : BaseLoadUnscaleV84<"ldapur",   0b11, 0b01, GPR64>;
3396}
3397
3398// Match all store 64 bits width whose type is compatible with FPR64
3399def : Pat<(store (v1f64 FPR64:$Rt), (am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
3400          (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>;
3401def : Pat<(store (v1i64 FPR64:$Rt), (am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
3402          (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>;
3403
3404let AddedComplexity = 10 in {
3405
3406let Predicates = [IsLE] in {
3407  // We must use ST1 to store vectors in big-endian.
3408  def : Pat<(store (v2f32 FPR64:$Rt),
3409                   (am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
3410            (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>;
3411  def : Pat<(store (v8i8 FPR64:$Rt),
3412                   (am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
3413            (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>;
3414  def : Pat<(store (v4i16 FPR64:$Rt),
3415                   (am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
3416            (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>;
3417  def : Pat<(store (v2i32 FPR64:$Rt),
3418                   (am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
3419            (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>;
3420  def : Pat<(store (v4f16 FPR64:$Rt),
3421                   (am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
3422            (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>;
3423  def : Pat<(store (v4bf16 FPR64:$Rt),
3424                   (am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
3425            (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>;
3426}
3427
3428// Match all store 128 bits width whose type is compatible with FPR128
3429def : Pat<(store (f128 FPR128:$Rt), (am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
3430          (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
3431
3432let Predicates = [IsLE] in {
3433  // We must use ST1 to store vectors in big-endian.
3434  def : Pat<(store (v4f32 FPR128:$Rt),
3435                   (am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
3436            (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
3437  def : Pat<(store (v2f64 FPR128:$Rt),
3438                   (am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
3439            (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
3440  def : Pat<(store (v16i8 FPR128:$Rt),
3441                   (am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
3442            (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
3443  def : Pat<(store (v8i16 FPR128:$Rt),
3444                   (am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
3445            (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
3446  def : Pat<(store (v4i32 FPR128:$Rt),
3447                   (am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
3448            (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
3449  def : Pat<(store (v2i64 FPR128:$Rt),
3450                   (am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
3451            (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
3452  def : Pat<(store (v2f64 FPR128:$Rt),
3453                   (am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
3454            (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
3455  def : Pat<(store (v8f16 FPR128:$Rt),
3456                   (am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
3457            (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
3458  def : Pat<(store (v8bf16 FPR128:$Rt),
3459                   (am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
3460            (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
3461}
3462
3463} // AddedComplexity = 10
3464
3465// unscaled i64 truncating stores
3466def : Pat<(truncstorei32 GPR64:$Rt, (am_unscaled32 GPR64sp:$Rn, simm9:$offset)),
3467  (STURWi (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, simm9:$offset)>;
3468def : Pat<(truncstorei16 GPR64:$Rt, (am_unscaled16 GPR64sp:$Rn, simm9:$offset)),
3469  (STURHHi (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, simm9:$offset)>;
3470def : Pat<(truncstorei8 GPR64:$Rt, (am_unscaled8 GPR64sp:$Rn, simm9:$offset)),
3471  (STURBBi (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, simm9:$offset)>;
3472
3473// Match stores from lane 0 to the appropriate subreg's store.
3474multiclass VecStoreULane0Pat<SDPatternOperator StoreOp,
3475                             ValueType VTy, ValueType STy,
3476                             SubRegIndex SubRegIdx, Instruction STR> {
3477  defm : VecStoreLane0Pat<am_unscaled128, StoreOp, VTy, STy, SubRegIdx, simm9, STR>;
3478}
3479
3480let AddedComplexity = 19 in {
3481  defm : VecStoreULane0Pat<truncstorei16, v8i16, i32, hsub, STURHi>;
3482  defm : VecStoreULane0Pat<store,         v8f16, f16, hsub, STURHi>;
3483  defm : VecStoreULane0Pat<store,         v4i32, i32, ssub, STURSi>;
3484  defm : VecStoreULane0Pat<store,         v4f32, f32, ssub, STURSi>;
3485  defm : VecStoreULane0Pat<store,         v2i64, i64, dsub, STURDi>;
3486  defm : VecStoreULane0Pat<store,         v2f64, f64, dsub, STURDi>;
3487}
3488
3489//---
3490// STR mnemonics fall back to STUR for negative or unaligned offsets.
3491def : InstAlias<"str $Rt, [$Rn, $offset]",
3492                (STURXi GPR64:$Rt, GPR64sp:$Rn, simm9_offset_fb64:$offset), 0>;
3493def : InstAlias<"str $Rt, [$Rn, $offset]",
3494                (STURWi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb32:$offset), 0>;
3495def : InstAlias<"str $Rt, [$Rn, $offset]",
3496                (STURBi FPR8Op:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>;
3497def : InstAlias<"str $Rt, [$Rn, $offset]",
3498                (STURHi FPR16Op:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>;
3499def : InstAlias<"str $Rt, [$Rn, $offset]",
3500                (STURSi FPR32Op:$Rt, GPR64sp:$Rn, simm9_offset_fb32:$offset), 0>;
3501def : InstAlias<"str $Rt, [$Rn, $offset]",
3502                (STURDi FPR64Op:$Rt, GPR64sp:$Rn, simm9_offset_fb64:$offset), 0>;
3503def : InstAlias<"str $Rt, [$Rn, $offset]",
3504                (STURQi FPR128Op:$Rt, GPR64sp:$Rn, simm9_offset_fb128:$offset), 0>;
3505
3506def : InstAlias<"strb $Rt, [$Rn, $offset]",
3507                (STURBBi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>;
3508def : InstAlias<"strh $Rt, [$Rn, $offset]",
3509                (STURHHi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>;
3510
3511//---
3512// (unscaled immediate, unprivileged)
3513defm STTRW : StoreUnprivileged<0b10, 0, 0b00, GPR32, "sttr">;
3514defm STTRX : StoreUnprivileged<0b11, 0, 0b00, GPR64, "sttr">;
3515
3516defm STTRH : StoreUnprivileged<0b01, 0, 0b00, GPR32, "sttrh">;
3517defm STTRB : StoreUnprivileged<0b00, 0, 0b00, GPR32, "sttrb">;
3518
3519//---
3520// (immediate pre-indexed)
3521def STRWpre : StorePreIdx<0b10, 0, 0b00, GPR32z, "str",  pre_store, i32>;
3522def STRXpre : StorePreIdx<0b11, 0, 0b00, GPR64z, "str",  pre_store, i64>;
3523def STRBpre : StorePreIdx<0b00, 1, 0b00, FPR8Op,  "str",  pre_store, untyped>;
3524def STRHpre : StorePreIdx<0b01, 1, 0b00, FPR16Op, "str",  pre_store, f16>;
3525def STRSpre : StorePreIdx<0b10, 1, 0b00, FPR32Op, "str",  pre_store, f32>;
3526def STRDpre : StorePreIdx<0b11, 1, 0b00, FPR64Op, "str",  pre_store, f64>;
3527def STRQpre : StorePreIdx<0b00, 1, 0b10, FPR128Op, "str", pre_store, f128>;
3528
3529def STRBBpre : StorePreIdx<0b00, 0, 0b00, GPR32z, "strb", pre_truncsti8,  i32>;
3530def STRHHpre : StorePreIdx<0b01, 0, 0b00, GPR32z, "strh", pre_truncsti16, i32>;
3531
3532// truncstore i64
3533def : Pat<(pre_truncsti32 GPR64:$Rt, GPR64sp:$addr, simm9:$off),
3534  (STRWpre (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr,
3535           simm9:$off)>;
3536def : Pat<(pre_truncsti16 GPR64:$Rt, GPR64sp:$addr, simm9:$off),
3537  (STRHHpre (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr,
3538            simm9:$off)>;
3539def : Pat<(pre_truncsti8 GPR64:$Rt, GPR64sp:$addr, simm9:$off),
3540  (STRBBpre (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr,
3541            simm9:$off)>;
3542
3543def : Pat<(pre_store (v8i8 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
3544          (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
3545def : Pat<(pre_store (v4i16 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
3546          (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
3547def : Pat<(pre_store (v2i32 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
3548          (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
3549def : Pat<(pre_store (v2f32 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
3550          (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
3551def : Pat<(pre_store (v1i64 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
3552          (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
3553def : Pat<(pre_store (v1f64 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
3554          (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
3555def : Pat<(pre_store (v4f16 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
3556          (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
3557
3558def : Pat<(pre_store (v16i8 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
3559          (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
3560def : Pat<(pre_store (v8i16 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
3561          (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
3562def : Pat<(pre_store (v4i32 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
3563          (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
3564def : Pat<(pre_store (v4f32 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
3565          (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
3566def : Pat<(pre_store (v2i64 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
3567          (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
3568def : Pat<(pre_store (v2f64 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
3569          (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
3570def : Pat<(pre_store (v8f16 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
3571          (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
3572
3573//---
3574// (immediate post-indexed)
3575def STRWpost : StorePostIdx<0b10, 0, 0b00, GPR32z,  "str", post_store, i32>;
3576def STRXpost : StorePostIdx<0b11, 0, 0b00, GPR64z,  "str", post_store, i64>;
3577def STRBpost : StorePostIdx<0b00, 1, 0b00, FPR8Op,   "str", post_store, untyped>;
3578def STRHpost : StorePostIdx<0b01, 1, 0b00, FPR16Op,  "str", post_store, f16>;
3579def STRSpost : StorePostIdx<0b10, 1, 0b00, FPR32Op,  "str", post_store, f32>;
3580def STRDpost : StorePostIdx<0b11, 1, 0b00, FPR64Op,  "str", post_store, f64>;
3581def STRQpost : StorePostIdx<0b00, 1, 0b10, FPR128Op, "str", post_store, f128>;
3582
3583def STRBBpost : StorePostIdx<0b00, 0, 0b00, GPR32z, "strb", post_truncsti8, i32>;
3584def STRHHpost : StorePostIdx<0b01, 0, 0b00, GPR32z, "strh", post_truncsti16, i32>;
3585
3586// truncstore i64
3587def : Pat<(post_truncsti32 GPR64:$Rt, GPR64sp:$addr, simm9:$off),
3588  (STRWpost (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr,
3589            simm9:$off)>;
3590def : Pat<(post_truncsti16 GPR64:$Rt, GPR64sp:$addr, simm9:$off),
3591  (STRHHpost (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr,
3592             simm9:$off)>;
3593def : Pat<(post_truncsti8 GPR64:$Rt, GPR64sp:$addr, simm9:$off),
3594  (STRBBpost (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr,
3595             simm9:$off)>;
3596
3597def : Pat<(post_store (bf16 FPR16:$Rt), GPR64sp:$addr, simm9:$off),
3598          (STRHpost FPR16:$Rt, GPR64sp:$addr, simm9:$off)>;
3599
3600def : Pat<(post_store (v8i8 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
3601          (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
3602def : Pat<(post_store (v4i16 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
3603          (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
3604def : Pat<(post_store (v2i32 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
3605          (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
3606def : Pat<(post_store (v2f32 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
3607          (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
3608def : Pat<(post_store (v1i64 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
3609          (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
3610def : Pat<(post_store (v1f64 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
3611          (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
3612def : Pat<(post_store (v4f16 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
3613          (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
3614def : Pat<(post_store (v4bf16 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
3615          (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
3616
3617def : Pat<(post_store (v16i8 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
3618          (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
3619def : Pat<(post_store (v8i16 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
3620          (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
3621def : Pat<(post_store (v4i32 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
3622          (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
3623def : Pat<(post_store (v4f32 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
3624          (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
3625def : Pat<(post_store (v2i64 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
3626          (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
3627def : Pat<(post_store (v2f64 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
3628          (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
3629def : Pat<(post_store (v8f16 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
3630          (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
3631def : Pat<(post_store (v8bf16 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
3632          (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
3633
3634//===----------------------------------------------------------------------===//
3635// Load/store exclusive instructions.
3636//===----------------------------------------------------------------------===//
3637
3638def LDARW  : LoadAcquire   <0b10, 1, 1, 0, 1, GPR32, "ldar">;
3639def LDARX  : LoadAcquire   <0b11, 1, 1, 0, 1, GPR64, "ldar">;
3640def LDARB  : LoadAcquire   <0b00, 1, 1, 0, 1, GPR32, "ldarb">;
3641def LDARH  : LoadAcquire   <0b01, 1, 1, 0, 1, GPR32, "ldarh">;
3642
3643def LDAXRW : LoadExclusive <0b10, 0, 1, 0, 1, GPR32, "ldaxr">;
3644def LDAXRX : LoadExclusive <0b11, 0, 1, 0, 1, GPR64, "ldaxr">;
3645def LDAXRB : LoadExclusive <0b00, 0, 1, 0, 1, GPR32, "ldaxrb">;
3646def LDAXRH : LoadExclusive <0b01, 0, 1, 0, 1, GPR32, "ldaxrh">;
3647
3648def LDXRW  : LoadExclusive <0b10, 0, 1, 0, 0, GPR32, "ldxr">;
3649def LDXRX  : LoadExclusive <0b11, 0, 1, 0, 0, GPR64, "ldxr">;
3650def LDXRB  : LoadExclusive <0b00, 0, 1, 0, 0, GPR32, "ldxrb">;
3651def LDXRH  : LoadExclusive <0b01, 0, 1, 0, 0, GPR32, "ldxrh">;
3652
3653def STLRW  : StoreRelease  <0b10, 1, 0, 0, 1, GPR32, "stlr">;
3654def STLRX  : StoreRelease  <0b11, 1, 0, 0, 1, GPR64, "stlr">;
3655def STLRB  : StoreRelease  <0b00, 1, 0, 0, 1, GPR32, "stlrb">;
3656def STLRH  : StoreRelease  <0b01, 1, 0, 0, 1, GPR32, "stlrh">;
3657
3658def STLXRW : StoreExclusive<0b10, 0, 0, 0, 1, GPR32, "stlxr">;
3659def STLXRX : StoreExclusive<0b11, 0, 0, 0, 1, GPR64, "stlxr">;
3660def STLXRB : StoreExclusive<0b00, 0, 0, 0, 1, GPR32, "stlxrb">;
3661def STLXRH : StoreExclusive<0b01, 0, 0, 0, 1, GPR32, "stlxrh">;
3662
3663def STXRW  : StoreExclusive<0b10, 0, 0, 0, 0, GPR32, "stxr">;
3664def STXRX  : StoreExclusive<0b11, 0, 0, 0, 0, GPR64, "stxr">;
3665def STXRB  : StoreExclusive<0b00, 0, 0, 0, 0, GPR32, "stxrb">;
3666def STXRH  : StoreExclusive<0b01, 0, 0, 0, 0, GPR32, "stxrh">;
3667
3668def LDAXPW : LoadExclusivePair<0b10, 0, 1, 1, 1, GPR32, "ldaxp">;
3669def LDAXPX : LoadExclusivePair<0b11, 0, 1, 1, 1, GPR64, "ldaxp">;
3670
3671def LDXPW  : LoadExclusivePair<0b10, 0, 1, 1, 0, GPR32, "ldxp">;
3672def LDXPX  : LoadExclusivePair<0b11, 0, 1, 1, 0, GPR64, "ldxp">;
3673
3674def STLXPW : StoreExclusivePair<0b10, 0, 0, 1, 1, GPR32, "stlxp">;
3675def STLXPX : StoreExclusivePair<0b11, 0, 0, 1, 1, GPR64, "stlxp">;
3676
3677def STXPW  : StoreExclusivePair<0b10, 0, 0, 1, 0, GPR32, "stxp">;
3678def STXPX  : StoreExclusivePair<0b11, 0, 0, 1, 0, GPR64, "stxp">;
3679
3680let Predicates = [HasLOR] in {
3681  // v8.1a "Limited Order Region" extension load-acquire instructions
3682  def LDLARW  : LoadAcquire   <0b10, 1, 1, 0, 0, GPR32, "ldlar">;
3683  def LDLARX  : LoadAcquire   <0b11, 1, 1, 0, 0, GPR64, "ldlar">;
3684  def LDLARB  : LoadAcquire   <0b00, 1, 1, 0, 0, GPR32, "ldlarb">;
3685  def LDLARH  : LoadAcquire   <0b01, 1, 1, 0, 0, GPR32, "ldlarh">;
3686
3687  // v8.1a "Limited Order Region" extension store-release instructions
3688  def STLLRW  : StoreRelease   <0b10, 1, 0, 0, 0, GPR32, "stllr">;
3689  def STLLRX  : StoreRelease   <0b11, 1, 0, 0, 0, GPR64, "stllr">;
3690  def STLLRB  : StoreRelease   <0b00, 1, 0, 0, 0, GPR32, "stllrb">;
3691  def STLLRH  : StoreRelease   <0b01, 1, 0, 0, 0, GPR32, "stllrh">;
3692}
3693
3694//===----------------------------------------------------------------------===//
3695// Scaled floating point to integer conversion instructions.
3696//===----------------------------------------------------------------------===//
3697
3698defm FCVTAS : FPToIntegerUnscaled<0b00, 0b100, "fcvtas", int_aarch64_neon_fcvtas>;
3699defm FCVTAU : FPToIntegerUnscaled<0b00, 0b101, "fcvtau", int_aarch64_neon_fcvtau>;
3700defm FCVTMS : FPToIntegerUnscaled<0b10, 0b000, "fcvtms", int_aarch64_neon_fcvtms>;
3701defm FCVTMU : FPToIntegerUnscaled<0b10, 0b001, "fcvtmu", int_aarch64_neon_fcvtmu>;
3702defm FCVTNS : FPToIntegerUnscaled<0b00, 0b000, "fcvtns", int_aarch64_neon_fcvtns>;
3703defm FCVTNU : FPToIntegerUnscaled<0b00, 0b001, "fcvtnu", int_aarch64_neon_fcvtnu>;
3704defm FCVTPS : FPToIntegerUnscaled<0b01, 0b000, "fcvtps", int_aarch64_neon_fcvtps>;
3705defm FCVTPU : FPToIntegerUnscaled<0b01, 0b001, "fcvtpu", int_aarch64_neon_fcvtpu>;
3706defm FCVTZS : FPToIntegerUnscaled<0b11, 0b000, "fcvtzs", any_fp_to_sint>;
3707defm FCVTZU : FPToIntegerUnscaled<0b11, 0b001, "fcvtzu", any_fp_to_uint>;
3708defm FCVTZS : FPToIntegerScaled<0b11, 0b000, "fcvtzs", any_fp_to_sint>;
3709defm FCVTZU : FPToIntegerScaled<0b11, 0b001, "fcvtzu", any_fp_to_uint>;
3710
3711// AArch64's FCVT instructions saturate when out of range.
3712multiclass FPToIntegerSatPats<SDNode to_int_sat, string INST> {
3713  def : Pat<(i32 (to_int_sat f16:$Rn, i32)),
3714            (!cast<Instruction>(INST # UWHr) f16:$Rn)>;
3715  def : Pat<(i32 (to_int_sat f32:$Rn, i32)),
3716            (!cast<Instruction>(INST # UWSr) f32:$Rn)>;
3717  def : Pat<(i32 (to_int_sat f64:$Rn, i32)),
3718            (!cast<Instruction>(INST # UWDr) f64:$Rn)>;
3719  def : Pat<(i64 (to_int_sat f16:$Rn, i64)),
3720            (!cast<Instruction>(INST # UXHr) f16:$Rn)>;
3721  def : Pat<(i64 (to_int_sat f32:$Rn, i64)),
3722            (!cast<Instruction>(INST # UXSr) f32:$Rn)>;
3723  def : Pat<(i64 (to_int_sat f64:$Rn, i64)),
3724            (!cast<Instruction>(INST # UXDr) f64:$Rn)>;
3725}
3726
3727defm : FPToIntegerSatPats<fp_to_sint_sat, "FCVTZS">;
3728defm : FPToIntegerSatPats<fp_to_uint_sat, "FCVTZU">;
3729
3730multiclass FPToIntegerIntPats<Intrinsic round, string INST> {
3731  def : Pat<(i32 (round f16:$Rn)), (!cast<Instruction>(INST # UWHr) $Rn)>;
3732  def : Pat<(i64 (round f16:$Rn)), (!cast<Instruction>(INST # UXHr) $Rn)>;
3733  def : Pat<(i32 (round f32:$Rn)), (!cast<Instruction>(INST # UWSr) $Rn)>;
3734  def : Pat<(i64 (round f32:$Rn)), (!cast<Instruction>(INST # UXSr) $Rn)>;
3735  def : Pat<(i32 (round f64:$Rn)), (!cast<Instruction>(INST # UWDr) $Rn)>;
3736  def : Pat<(i64 (round f64:$Rn)), (!cast<Instruction>(INST # UXDr) $Rn)>;
3737
3738  def : Pat<(i32 (round (fmul f16:$Rn, fixedpoint_f16_i32:$scale))),
3739            (!cast<Instruction>(INST # SWHri) $Rn, $scale)>;
3740  def : Pat<(i64 (round (fmul f16:$Rn, fixedpoint_f16_i64:$scale))),
3741            (!cast<Instruction>(INST # SXHri) $Rn, $scale)>;
3742  def : Pat<(i32 (round (fmul f32:$Rn, fixedpoint_f32_i32:$scale))),
3743            (!cast<Instruction>(INST # SWSri) $Rn, $scale)>;
3744  def : Pat<(i64 (round (fmul f32:$Rn, fixedpoint_f32_i64:$scale))),
3745            (!cast<Instruction>(INST # SXSri) $Rn, $scale)>;
3746  def : Pat<(i32 (round (fmul f64:$Rn, fixedpoint_f64_i32:$scale))),
3747            (!cast<Instruction>(INST # SWDri) $Rn, $scale)>;
3748  def : Pat<(i64 (round (fmul f64:$Rn, fixedpoint_f64_i64:$scale))),
3749            (!cast<Instruction>(INST # SXDri) $Rn, $scale)>;
3750}
3751
3752defm : FPToIntegerIntPats<int_aarch64_neon_fcvtzs, "FCVTZS">;
3753defm : FPToIntegerIntPats<int_aarch64_neon_fcvtzu, "FCVTZU">;
3754
3755multiclass FPToIntegerPats<SDNode to_int, SDNode to_int_sat, SDNode round, string INST> {
3756  def : Pat<(i32 (to_int (round f32:$Rn))),
3757            (!cast<Instruction>(INST # UWSr) f32:$Rn)>;
3758  def : Pat<(i64 (to_int (round f32:$Rn))),
3759            (!cast<Instruction>(INST # UXSr) f32:$Rn)>;
3760  def : Pat<(i32 (to_int (round f64:$Rn))),
3761            (!cast<Instruction>(INST # UWDr) f64:$Rn)>;
3762  def : Pat<(i64 (to_int (round f64:$Rn))),
3763            (!cast<Instruction>(INST # UXDr) f64:$Rn)>;
3764
3765  // These instructions saturate like fp_to_[su]int_sat.
3766  def : Pat<(i32 (to_int_sat (round f16:$Rn), i32)),
3767            (!cast<Instruction>(INST # UWHr) f16:$Rn)>;
3768  def : Pat<(i64 (to_int_sat (round f16:$Rn), i64)),
3769            (!cast<Instruction>(INST # UXHr) f16:$Rn)>;
3770  def : Pat<(i32 (to_int_sat (round f32:$Rn), i32)),
3771            (!cast<Instruction>(INST # UWSr) f32:$Rn)>;
3772  def : Pat<(i64 (to_int_sat (round f32:$Rn), i64)),
3773            (!cast<Instruction>(INST # UXSr) f32:$Rn)>;
3774  def : Pat<(i32 (to_int_sat (round f64:$Rn), i32)),
3775            (!cast<Instruction>(INST # UWDr) f64:$Rn)>;
3776  def : Pat<(i64 (to_int_sat (round f64:$Rn), i64)),
3777            (!cast<Instruction>(INST # UXDr) f64:$Rn)>;
3778}
3779
3780defm : FPToIntegerPats<fp_to_sint, fp_to_sint_sat, fceil,  "FCVTPS">;
3781defm : FPToIntegerPats<fp_to_uint, fp_to_uint_sat, fceil,  "FCVTPU">;
3782defm : FPToIntegerPats<fp_to_sint, fp_to_sint_sat, ffloor, "FCVTMS">;
3783defm : FPToIntegerPats<fp_to_uint, fp_to_uint_sat, ffloor, "FCVTMU">;
3784defm : FPToIntegerPats<fp_to_sint, fp_to_sint_sat, ftrunc, "FCVTZS">;
3785defm : FPToIntegerPats<fp_to_uint, fp_to_uint_sat, ftrunc, "FCVTZU">;
3786defm : FPToIntegerPats<fp_to_sint, fp_to_sint_sat, fround, "FCVTAS">;
3787defm : FPToIntegerPats<fp_to_uint, fp_to_uint_sat, fround, "FCVTAU">;
3788
3789
3790
3791let Predicates = [HasFullFP16] in {
3792  def : Pat<(i32 (lround f16:$Rn)),
3793            (!cast<Instruction>(FCVTASUWHr) f16:$Rn)>;
3794  def : Pat<(i64 (lround f16:$Rn)),
3795            (!cast<Instruction>(FCVTASUXHr) f16:$Rn)>;
3796  def : Pat<(i64 (llround f16:$Rn)),
3797            (!cast<Instruction>(FCVTASUXHr) f16:$Rn)>;
3798}
3799def : Pat<(i32 (lround f32:$Rn)),
3800          (!cast<Instruction>(FCVTASUWSr) f32:$Rn)>;
3801def : Pat<(i32 (lround f64:$Rn)),
3802          (!cast<Instruction>(FCVTASUWDr) f64:$Rn)>;
3803def : Pat<(i64 (lround f32:$Rn)),
3804          (!cast<Instruction>(FCVTASUXSr) f32:$Rn)>;
3805def : Pat<(i64 (lround f64:$Rn)),
3806          (!cast<Instruction>(FCVTASUXDr) f64:$Rn)>;
3807def : Pat<(i64 (llround f32:$Rn)),
3808          (!cast<Instruction>(FCVTASUXSr) f32:$Rn)>;
3809def : Pat<(i64 (llround f64:$Rn)),
3810          (!cast<Instruction>(FCVTASUXDr) f64:$Rn)>;
3811
3812//===----------------------------------------------------------------------===//
3813// Scaled integer to floating point conversion instructions.
3814//===----------------------------------------------------------------------===//
3815
3816defm SCVTF : IntegerToFP<0, "scvtf", any_sint_to_fp>;
3817defm UCVTF : IntegerToFP<1, "ucvtf", any_uint_to_fp>;
3818
3819//===----------------------------------------------------------------------===//
3820// Unscaled integer to floating point conversion instruction.
3821//===----------------------------------------------------------------------===//
3822
3823defm FMOV : UnscaledConversion<"fmov">;
3824
3825// Add pseudo ops for FMOV 0 so we can mark them as isReMaterializable
3826let isReMaterializable = 1, isCodeGenOnly = 1, isAsCheapAsAMove = 1 in {
3827def FMOVH0 : Pseudo<(outs FPR16:$Rd), (ins), [(set f16:$Rd, (fpimm0))]>,
3828    Sched<[WriteF]>, Requires<[HasFullFP16]>;
3829def FMOVS0 : Pseudo<(outs FPR32:$Rd), (ins), [(set f32:$Rd, (fpimm0))]>,
3830    Sched<[WriteF]>;
3831def FMOVD0 : Pseudo<(outs FPR64:$Rd), (ins), [(set f64:$Rd, (fpimm0))]>,
3832    Sched<[WriteF]>;
3833}
3834// Similarly add aliases
3835def : InstAlias<"fmov $Rd, #0.0", (FMOVWHr FPR16:$Rd, WZR), 0>,
3836    Requires<[HasFullFP16]>;
3837def : InstAlias<"fmov $Rd, #0.0", (FMOVWSr FPR32:$Rd, WZR), 0>;
3838def : InstAlias<"fmov $Rd, #0.0", (FMOVXDr FPR64:$Rd, XZR), 0>;
3839
3840//===----------------------------------------------------------------------===//
3841// Floating point conversion instruction.
3842//===----------------------------------------------------------------------===//
3843
3844defm FCVT : FPConversion<"fcvt">;
3845
3846//===----------------------------------------------------------------------===//
3847// Floating point single operand instructions.
3848//===----------------------------------------------------------------------===//
3849
3850defm FABS   : SingleOperandFPData<0b0001, "fabs", fabs>;
3851defm FMOV   : SingleOperandFPData<0b0000, "fmov">;
3852defm FNEG   : SingleOperandFPData<0b0010, "fneg", fneg>;
3853defm FRINTA : SingleOperandFPData<0b1100, "frinta", fround>;
3854defm FRINTI : SingleOperandFPData<0b1111, "frinti", fnearbyint>;
3855defm FRINTM : SingleOperandFPData<0b1010, "frintm", ffloor>;
3856defm FRINTN : SingleOperandFPData<0b1000, "frintn", froundeven>;
3857defm FRINTP : SingleOperandFPData<0b1001, "frintp", fceil>;
3858
3859defm FRINTX : SingleOperandFPData<0b1110, "frintx", frint>;
3860defm FRINTZ : SingleOperandFPData<0b1011, "frintz", ftrunc>;
3861
3862let SchedRW = [WriteFDiv] in {
3863defm FSQRT  : SingleOperandFPData<0b0011, "fsqrt", fsqrt>;
3864}
3865
3866let Predicates = [HasFRInt3264] in {
3867  defm FRINT32Z : FRIntNNT<0b00, "frint32z", int_aarch64_frint32z>;
3868  defm FRINT64Z : FRIntNNT<0b10, "frint64z", int_aarch64_frint64z>;
3869  defm FRINT32X : FRIntNNT<0b01, "frint32x", int_aarch64_frint32x>;
3870  defm FRINT64X : FRIntNNT<0b11, "frint64x", int_aarch64_frint64x>;
3871} // HasFRInt3264
3872
3873let Predicates = [HasFullFP16] in {
3874  def : Pat<(i32 (lrint f16:$Rn)),
3875            (FCVTZSUWHr (!cast<Instruction>(FRINTXHr) f16:$Rn))>;
3876  def : Pat<(i64 (lrint f16:$Rn)),
3877            (FCVTZSUXHr (!cast<Instruction>(FRINTXHr) f16:$Rn))>;
3878  def : Pat<(i64 (llrint f16:$Rn)),
3879            (FCVTZSUXHr (!cast<Instruction>(FRINTXHr) f16:$Rn))>;
3880}
3881def : Pat<(i32 (lrint f32:$Rn)),
3882          (FCVTZSUWSr (!cast<Instruction>(FRINTXSr) f32:$Rn))>;
3883def : Pat<(i32 (lrint f64:$Rn)),
3884          (FCVTZSUWDr (!cast<Instruction>(FRINTXDr) f64:$Rn))>;
3885def : Pat<(i64 (lrint f32:$Rn)),
3886          (FCVTZSUXSr (!cast<Instruction>(FRINTXSr) f32:$Rn))>;
3887def : Pat<(i64 (lrint f64:$Rn)),
3888          (FCVTZSUXDr (!cast<Instruction>(FRINTXDr) f64:$Rn))>;
3889def : Pat<(i64 (llrint f32:$Rn)),
3890          (FCVTZSUXSr (!cast<Instruction>(FRINTXSr) f32:$Rn))>;
3891def : Pat<(i64 (llrint f64:$Rn)),
3892          (FCVTZSUXDr (!cast<Instruction>(FRINTXDr) f64:$Rn))>;
3893
3894//===----------------------------------------------------------------------===//
3895// Floating point two operand instructions.
3896//===----------------------------------------------------------------------===//
3897
3898defm FADD   : TwoOperandFPData<0b0010, "fadd", fadd>;
3899let SchedRW = [WriteFDiv] in {
3900defm FDIV   : TwoOperandFPData<0b0001, "fdiv", fdiv>;
3901}
3902defm FMAXNM : TwoOperandFPData<0b0110, "fmaxnm", fmaxnum>;
3903defm FMAX   : TwoOperandFPData<0b0100, "fmax", fmaximum>;
3904defm FMINNM : TwoOperandFPData<0b0111, "fminnm", fminnum>;
3905defm FMIN   : TwoOperandFPData<0b0101, "fmin", fminimum>;
3906let SchedRW = [WriteFMul] in {
3907defm FMUL   : TwoOperandFPData<0b0000, "fmul", fmul>;
3908defm FNMUL  : TwoOperandFPDataNeg<0b1000, "fnmul", fmul>;
3909}
3910defm FSUB   : TwoOperandFPData<0b0011, "fsub", fsub>;
3911
3912def : Pat<(v1f64 (fmaximum (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))),
3913          (FMAXDrr FPR64:$Rn, FPR64:$Rm)>;
3914def : Pat<(v1f64 (fminimum (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))),
3915          (FMINDrr FPR64:$Rn, FPR64:$Rm)>;
3916def : Pat<(v1f64 (fmaxnum (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))),
3917          (FMAXNMDrr FPR64:$Rn, FPR64:$Rm)>;
3918def : Pat<(v1f64 (fminnum (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))),
3919          (FMINNMDrr FPR64:$Rn, FPR64:$Rm)>;
3920
3921//===----------------------------------------------------------------------===//
3922// Floating point three operand instructions.
3923//===----------------------------------------------------------------------===//
3924
3925defm FMADD  : ThreeOperandFPData<0, 0, "fmadd", fma>;
3926defm FMSUB  : ThreeOperandFPData<0, 1, "fmsub",
3927     TriOpFrag<(fma node:$LHS, (fneg node:$MHS), node:$RHS)> >;
3928defm FNMADD : ThreeOperandFPData<1, 0, "fnmadd",
3929     TriOpFrag<(fneg (fma node:$LHS, node:$MHS, node:$RHS))> >;
3930defm FNMSUB : ThreeOperandFPData<1, 1, "fnmsub",
3931     TriOpFrag<(fma node:$LHS, node:$MHS, (fneg node:$RHS))> >;
3932
3933// The following def pats catch the case where the LHS of an FMA is negated.
3934// The TriOpFrag above catches the case where the middle operand is negated.
3935
3936// N.b. FMSUB etc have the accumulator at the *end* of (outs), unlike
3937// the NEON variant.
3938
3939// Here we handle first -(a + b*c) for FNMADD:
3940
3941let Predicates = [HasNEON, HasFullFP16] in
3942def : Pat<(f16 (fma (fneg FPR16:$Rn), FPR16:$Rm, FPR16:$Ra)),
3943          (FMSUBHrrr FPR16:$Rn, FPR16:$Rm, FPR16:$Ra)>;
3944
3945def : Pat<(f32 (fma (fneg FPR32:$Rn), FPR32:$Rm, FPR32:$Ra)),
3946          (FMSUBSrrr FPR32:$Rn, FPR32:$Rm, FPR32:$Ra)>;
3947
3948def : Pat<(f64 (fma (fneg FPR64:$Rn), FPR64:$Rm, FPR64:$Ra)),
3949          (FMSUBDrrr FPR64:$Rn, FPR64:$Rm, FPR64:$Ra)>;
3950
3951// Now it's time for "(-a) + (-b)*c"
3952
3953let Predicates = [HasNEON, HasFullFP16] in
3954def : Pat<(f16 (fma (fneg FPR16:$Rn), FPR16:$Rm, (fneg FPR16:$Ra))),
3955          (FNMADDHrrr FPR16:$Rn, FPR16:$Rm, FPR16:$Ra)>;
3956
3957def : Pat<(f32 (fma (fneg FPR32:$Rn), FPR32:$Rm, (fneg FPR32:$Ra))),
3958          (FNMADDSrrr FPR32:$Rn, FPR32:$Rm, FPR32:$Ra)>;
3959
3960def : Pat<(f64 (fma (fneg FPR64:$Rn), FPR64:$Rm, (fneg FPR64:$Ra))),
3961          (FNMADDDrrr FPR64:$Rn, FPR64:$Rm, FPR64:$Ra)>;
3962
3963//===----------------------------------------------------------------------===//
3964// Floating point comparison instructions.
3965//===----------------------------------------------------------------------===//
3966
3967defm FCMPE : FPComparison<1, "fcmpe", AArch64strict_fcmpe>;
3968defm FCMP  : FPComparison<0, "fcmp", AArch64any_fcmp>;
3969
3970//===----------------------------------------------------------------------===//
3971// Floating point conditional comparison instructions.
3972//===----------------------------------------------------------------------===//
3973
3974defm FCCMPE : FPCondComparison<1, "fccmpe">;
3975defm FCCMP  : FPCondComparison<0, "fccmp", AArch64fccmp>;
3976
3977//===----------------------------------------------------------------------===//
3978// Floating point conditional select instruction.
3979//===----------------------------------------------------------------------===//
3980
3981defm FCSEL : FPCondSelect<"fcsel">;
3982
3983// CSEL instructions providing f128 types need to be handled by a
3984// pseudo-instruction since the eventual code will need to introduce basic
3985// blocks and control flow.
3986def F128CSEL : Pseudo<(outs FPR128:$Rd),
3987                      (ins FPR128:$Rn, FPR128:$Rm, ccode:$cond),
3988                      [(set (f128 FPR128:$Rd),
3989                            (AArch64csel FPR128:$Rn, FPR128:$Rm,
3990                                       (i32 imm:$cond), NZCV))]> {
3991  let Uses = [NZCV];
3992  let usesCustomInserter = 1;
3993  let hasNoSchedulingInfo = 1;
3994}
3995
3996//===----------------------------------------------------------------------===//
3997// Instructions used for emitting unwind opcodes on ARM64 Windows.
3998//===----------------------------------------------------------------------===//
3999let isPseudo = 1 in {
4000  def SEH_StackAlloc : Pseudo<(outs), (ins i32imm:$size), []>, Sched<[]>;
4001  def SEH_SaveFPLR : Pseudo<(outs), (ins i32imm:$offs), []>, Sched<[]>;
4002  def SEH_SaveFPLR_X : Pseudo<(outs), (ins i32imm:$offs), []>, Sched<[]>;
4003  def SEH_SaveReg : Pseudo<(outs), (ins i32imm:$reg, i32imm:$offs), []>, Sched<[]>;
4004  def SEH_SaveReg_X : Pseudo<(outs), (ins i32imm:$reg, i32imm:$offs), []>, Sched<[]>;
4005  def SEH_SaveRegP : Pseudo<(outs), (ins i32imm:$reg0, i32imm:$reg1, i32imm:$offs), []>, Sched<[]>;
4006  def SEH_SaveRegP_X : Pseudo<(outs), (ins i32imm:$reg0, i32imm:$reg1, i32imm:$offs), []>, Sched<[]>;
4007  def SEH_SaveFReg : Pseudo<(outs), (ins i32imm:$reg, i32imm:$offs), []>, Sched<[]>;
4008  def SEH_SaveFReg_X :  Pseudo<(outs), (ins i32imm:$reg, i32imm:$offs), []>, Sched<[]>;
4009  def SEH_SaveFRegP : Pseudo<(outs), (ins i32imm:$reg0, i32imm:$reg1, i32imm:$offs), []>, Sched<[]>;
4010  def SEH_SaveFRegP_X : Pseudo<(outs), (ins i32imm:$reg0, i32imm:$reg1, i32imm:$offs), []>, Sched<[]>;
4011  def SEH_SetFP : Pseudo<(outs), (ins), []>, Sched<[]>;
4012  def SEH_AddFP : Pseudo<(outs), (ins i32imm:$offs), []>, Sched<[]>;
4013  def SEH_Nop : Pseudo<(outs), (ins), []>, Sched<[]>;
4014  def SEH_PrologEnd : Pseudo<(outs), (ins), []>, Sched<[]>;
4015  def SEH_EpilogStart : Pseudo<(outs), (ins), []>, Sched<[]>;
4016  def SEH_EpilogEnd : Pseudo<(outs), (ins), []>, Sched<[]>;
4017}
4018
4019// Pseudo instructions for Windows EH
4020//===----------------------------------------------------------------------===//
4021let isTerminator = 1, hasSideEffects = 1, isBarrier = 1, hasCtrlDep = 1,
4022    isCodeGenOnly = 1, isReturn = 1, isEHScopeReturn = 1, isPseudo = 1 in {
4023   def CLEANUPRET : Pseudo<(outs), (ins), [(cleanupret)]>, Sched<[]>;
4024   let usesCustomInserter = 1 in
4025     def CATCHRET : Pseudo<(outs), (ins am_brcond:$dst, am_brcond:$src), [(catchret bb:$dst, bb:$src)]>,
4026                    Sched<[]>;
4027}
4028
4029// Pseudo instructions for homogeneous prolog/epilog
4030let isPseudo = 1 in {
4031  // Save CSRs in order, {FPOffset}
4032  def HOM_Prolog : Pseudo<(outs), (ins variable_ops), []>, Sched<[]>;
4033  // Restore CSRs in order
4034  def HOM_Epilog : Pseudo<(outs), (ins variable_ops), []>, Sched<[]>;
4035}
4036
4037//===----------------------------------------------------------------------===//
4038// Floating point immediate move.
4039//===----------------------------------------------------------------------===//
4040
4041let isReMaterializable = 1, isAsCheapAsAMove = 1 in {
4042defm FMOV : FPMoveImmediate<"fmov">;
4043}
4044
4045//===----------------------------------------------------------------------===//
4046// Advanced SIMD two vector instructions.
4047//===----------------------------------------------------------------------===//
4048
4049defm UABDL   : SIMDLongThreeVectorBHSabdl<1, 0b0111, "uabdl",
4050                                          AArch64uabd>;
4051// Match UABDL in log2-shuffle patterns.
4052def : Pat<(abs (v8i16 (sub (zext (v8i8 V64:$opA)),
4053                           (zext (v8i8 V64:$opB))))),
4054          (UABDLv8i8_v8i16 V64:$opA, V64:$opB)>;
4055def : Pat<(xor (v8i16 (AArch64vashr v8i16:$src, (i32 15))),
4056               (v8i16 (add (sub (zext (v8i8 V64:$opA)),
4057                                (zext (v8i8 V64:$opB))),
4058                           (AArch64vashr v8i16:$src, (i32 15))))),
4059          (UABDLv8i8_v8i16 V64:$opA, V64:$opB)>;
4060def : Pat<(abs (v8i16 (sub (zext (extract_high_v16i8 V128:$opA)),
4061                           (zext (extract_high_v16i8 V128:$opB))))),
4062          (UABDLv16i8_v8i16 V128:$opA, V128:$opB)>;
4063def : Pat<(xor (v8i16 (AArch64vashr v8i16:$src, (i32 15))),
4064               (v8i16 (add (sub (zext (extract_high_v16i8 V128:$opA)),
4065                                (zext (extract_high_v16i8 V128:$opB))),
4066                           (AArch64vashr v8i16:$src, (i32 15))))),
4067          (UABDLv16i8_v8i16 V128:$opA, V128:$opB)>;
4068def : Pat<(abs (v4i32 (sub (zext (v4i16 V64:$opA)),
4069                           (zext (v4i16 V64:$opB))))),
4070          (UABDLv4i16_v4i32 V64:$opA, V64:$opB)>;
4071def : Pat<(abs (v4i32 (sub (zext (extract_high_v8i16 V128:$opA)),
4072                           (zext (extract_high_v8i16 V128:$opB))))),
4073          (UABDLv8i16_v4i32 V128:$opA, V128:$opB)>;
4074def : Pat<(abs (v2i64 (sub (zext (v2i32 V64:$opA)),
4075                           (zext (v2i32 V64:$opB))))),
4076          (UABDLv2i32_v2i64 V64:$opA, V64:$opB)>;
4077def : Pat<(abs (v2i64 (sub (zext (extract_high_v4i32 V128:$opA)),
4078                           (zext (extract_high_v4i32 V128:$opB))))),
4079          (UABDLv4i32_v2i64 V128:$opA, V128:$opB)>;
4080
4081defm ABS    : SIMDTwoVectorBHSD<0, 0b01011, "abs", abs>;
4082defm CLS    : SIMDTwoVectorBHS<0, 0b00100, "cls", int_aarch64_neon_cls>;
4083defm CLZ    : SIMDTwoVectorBHS<1, 0b00100, "clz", ctlz>;
4084defm CMEQ   : SIMDCmpTwoVector<0, 0b01001, "cmeq", AArch64cmeqz>;
4085defm CMGE   : SIMDCmpTwoVector<1, 0b01000, "cmge", AArch64cmgez>;
4086defm CMGT   : SIMDCmpTwoVector<0, 0b01000, "cmgt", AArch64cmgtz>;
4087defm CMLE   : SIMDCmpTwoVector<1, 0b01001, "cmle", AArch64cmlez>;
4088defm CMLT   : SIMDCmpTwoVector<0, 0b01010, "cmlt", AArch64cmltz>;
4089defm CNT    : SIMDTwoVectorB<0, 0b00, 0b00101, "cnt", ctpop>;
4090defm FABS   : SIMDTwoVectorFP<0, 1, 0b01111, "fabs", fabs>;
4091
4092defm FCMEQ  : SIMDFPCmpTwoVector<0, 1, 0b01101, "fcmeq", AArch64fcmeqz>;
4093defm FCMGE  : SIMDFPCmpTwoVector<1, 1, 0b01100, "fcmge", AArch64fcmgez>;
4094defm FCMGT  : SIMDFPCmpTwoVector<0, 1, 0b01100, "fcmgt", AArch64fcmgtz>;
4095defm FCMLE  : SIMDFPCmpTwoVector<1, 1, 0b01101, "fcmle", AArch64fcmlez>;
4096defm FCMLT  : SIMDFPCmpTwoVector<0, 1, 0b01110, "fcmlt", AArch64fcmltz>;
4097defm FCVTAS : SIMDTwoVectorFPToInt<0,0,0b11100, "fcvtas",int_aarch64_neon_fcvtas>;
4098defm FCVTAU : SIMDTwoVectorFPToInt<1,0,0b11100, "fcvtau",int_aarch64_neon_fcvtau>;
4099defm FCVTL  : SIMDFPWidenTwoVector<0, 0, 0b10111, "fcvtl">;
4100def : Pat<(v4f32 (int_aarch64_neon_vcvthf2fp (v4i16 V64:$Rn))),
4101          (FCVTLv4i16 V64:$Rn)>;
4102def : Pat<(v4f32 (int_aarch64_neon_vcvthf2fp (extract_subvector (v8i16 V128:$Rn),
4103                                                              (i64 4)))),
4104          (FCVTLv8i16 V128:$Rn)>;
4105def : Pat<(v2f64 (fpextend (v2f32 V64:$Rn))), (FCVTLv2i32 V64:$Rn)>;
4106
4107def : Pat<(v4f32 (fpextend (v4f16 V64:$Rn))), (FCVTLv4i16 V64:$Rn)>;
4108
4109defm FCVTMS : SIMDTwoVectorFPToInt<0,0,0b11011, "fcvtms",int_aarch64_neon_fcvtms>;
4110defm FCVTMU : SIMDTwoVectorFPToInt<1,0,0b11011, "fcvtmu",int_aarch64_neon_fcvtmu>;
4111defm FCVTNS : SIMDTwoVectorFPToInt<0,0,0b11010, "fcvtns",int_aarch64_neon_fcvtns>;
4112defm FCVTNU : SIMDTwoVectorFPToInt<1,0,0b11010, "fcvtnu",int_aarch64_neon_fcvtnu>;
4113defm FCVTN  : SIMDFPNarrowTwoVector<0, 0, 0b10110, "fcvtn">;
4114def : Pat<(v4i16 (int_aarch64_neon_vcvtfp2hf (v4f32 V128:$Rn))),
4115          (FCVTNv4i16 V128:$Rn)>;
4116def : Pat<(concat_vectors V64:$Rd,
4117                          (v4i16 (int_aarch64_neon_vcvtfp2hf (v4f32 V128:$Rn)))),
4118          (FCVTNv8i16 (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub), V128:$Rn)>;
4119def : Pat<(v2f32 (fpround (v2f64 V128:$Rn))), (FCVTNv2i32 V128:$Rn)>;
4120def : Pat<(v4f16 (fpround (v4f32 V128:$Rn))), (FCVTNv4i16 V128:$Rn)>;
4121def : Pat<(concat_vectors V64:$Rd, (v2f32 (fpround (v2f64 V128:$Rn)))),
4122          (FCVTNv4i32 (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub), V128:$Rn)>;
4123defm FCVTPS : SIMDTwoVectorFPToInt<0,1,0b11010, "fcvtps",int_aarch64_neon_fcvtps>;
4124defm FCVTPU : SIMDTwoVectorFPToInt<1,1,0b11010, "fcvtpu",int_aarch64_neon_fcvtpu>;
4125defm FCVTXN : SIMDFPInexactCvtTwoVector<1, 0, 0b10110, "fcvtxn",
4126                                        int_aarch64_neon_fcvtxn>;
4127defm FCVTZS : SIMDTwoVectorFPToInt<0, 1, 0b11011, "fcvtzs", fp_to_sint>;
4128defm FCVTZU : SIMDTwoVectorFPToInt<1, 1, 0b11011, "fcvtzu", fp_to_uint>;
4129
4130def : Pat<(v4i16 (int_aarch64_neon_fcvtzs v4f16:$Rn)), (FCVTZSv4f16 $Rn)>;
4131def : Pat<(v8i16 (int_aarch64_neon_fcvtzs v8f16:$Rn)), (FCVTZSv8f16 $Rn)>;
4132def : Pat<(v2i32 (int_aarch64_neon_fcvtzs v2f32:$Rn)), (FCVTZSv2f32 $Rn)>;
4133def : Pat<(v4i32 (int_aarch64_neon_fcvtzs v4f32:$Rn)), (FCVTZSv4f32 $Rn)>;
4134def : Pat<(v2i64 (int_aarch64_neon_fcvtzs v2f64:$Rn)), (FCVTZSv2f64 $Rn)>;
4135
4136def : Pat<(v4i16 (int_aarch64_neon_fcvtzu v4f16:$Rn)), (FCVTZUv4f16 $Rn)>;
4137def : Pat<(v8i16 (int_aarch64_neon_fcvtzu v8f16:$Rn)), (FCVTZUv8f16 $Rn)>;
4138def : Pat<(v2i32 (int_aarch64_neon_fcvtzu v2f32:$Rn)), (FCVTZUv2f32 $Rn)>;
4139def : Pat<(v4i32 (int_aarch64_neon_fcvtzu v4f32:$Rn)), (FCVTZUv4f32 $Rn)>;
4140def : Pat<(v2i64 (int_aarch64_neon_fcvtzu v2f64:$Rn)), (FCVTZUv2f64 $Rn)>;
4141
4142defm FNEG   : SIMDTwoVectorFP<1, 1, 0b01111, "fneg", fneg>;
4143defm FRECPE : SIMDTwoVectorFP<0, 1, 0b11101, "frecpe", int_aarch64_neon_frecpe>;
4144defm FRINTA : SIMDTwoVectorFP<1, 0, 0b11000, "frinta", fround>;
4145defm FRINTI : SIMDTwoVectorFP<1, 1, 0b11001, "frinti", fnearbyint>;
4146defm FRINTM : SIMDTwoVectorFP<0, 0, 0b11001, "frintm", ffloor>;
4147defm FRINTN : SIMDTwoVectorFP<0, 0, 0b11000, "frintn", froundeven>;
4148defm FRINTP : SIMDTwoVectorFP<0, 1, 0b11000, "frintp", fceil>;
4149defm FRINTX : SIMDTwoVectorFP<1, 0, 0b11001, "frintx", frint>;
4150defm FRINTZ : SIMDTwoVectorFP<0, 1, 0b11001, "frintz", ftrunc>;
4151
4152let Predicates = [HasFRInt3264] in {
4153  defm FRINT32Z : FRIntNNTVector<0, 0, "frint32z", int_aarch64_neon_frint32z>;
4154  defm FRINT64Z : FRIntNNTVector<0, 1, "frint64z", int_aarch64_neon_frint64z>;
4155  defm FRINT32X : FRIntNNTVector<1, 0, "frint32x", int_aarch64_neon_frint32x>;
4156  defm FRINT64X : FRIntNNTVector<1, 1, "frint64x", int_aarch64_neon_frint64x>;
4157} // HasFRInt3264
4158
4159defm FRSQRTE: SIMDTwoVectorFP<1, 1, 0b11101, "frsqrte", int_aarch64_neon_frsqrte>;
4160defm FSQRT  : SIMDTwoVectorFP<1, 1, 0b11111, "fsqrt", fsqrt>;
4161defm NEG    : SIMDTwoVectorBHSD<1, 0b01011, "neg",
4162                               UnOpFrag<(sub immAllZerosV, node:$LHS)> >;
4163defm NOT    : SIMDTwoVectorB<1, 0b00, 0b00101, "not", vnot>;
4164// Aliases for MVN -> NOT.
4165def : InstAlias<"mvn{ $Vd.8b, $Vn.8b|.8b $Vd, $Vn}",
4166                (NOTv8i8 V64:$Vd, V64:$Vn)>;
4167def : InstAlias<"mvn{ $Vd.16b, $Vn.16b|.16b $Vd, $Vn}",
4168                (NOTv16i8 V128:$Vd, V128:$Vn)>;
4169
4170def : Pat<(vnot (v4i16 V64:$Rn)),  (NOTv8i8  V64:$Rn)>;
4171def : Pat<(vnot (v8i16 V128:$Rn)), (NOTv16i8 V128:$Rn)>;
4172def : Pat<(vnot (v2i32 V64:$Rn)),  (NOTv8i8  V64:$Rn)>;
4173def : Pat<(vnot (v4i32 V128:$Rn)), (NOTv16i8 V128:$Rn)>;
4174def : Pat<(vnot (v1i64 V64:$Rn)),  (NOTv8i8  V64:$Rn)>;
4175def : Pat<(vnot (v2i64 V128:$Rn)), (NOTv16i8 V128:$Rn)>;
4176
4177defm RBIT   : SIMDTwoVectorB<1, 0b01, 0b00101, "rbit", bitreverse>;
4178defm REV16  : SIMDTwoVectorB<0, 0b00, 0b00001, "rev16", AArch64rev16>;
4179defm REV32  : SIMDTwoVectorBH<1, 0b00000, "rev32", AArch64rev32>;
4180defm REV64  : SIMDTwoVectorBHS<0, 0b00000, "rev64", AArch64rev64>;
4181defm SADALP : SIMDLongTwoVectorTied<0, 0b00110, "sadalp",
4182       BinOpFrag<(add node:$LHS, (int_aarch64_neon_saddlp node:$RHS))> >;
4183defm SADDLP : SIMDLongTwoVector<0, 0b00010, "saddlp", int_aarch64_neon_saddlp>;
4184defm SCVTF  : SIMDTwoVectorIntToFP<0, 0, 0b11101, "scvtf", sint_to_fp>;
4185defm SHLL   : SIMDVectorLShiftLongBySizeBHS;
4186defm SQABS  : SIMDTwoVectorBHSD<0, 0b00111, "sqabs", int_aarch64_neon_sqabs>;
4187defm SQNEG  : SIMDTwoVectorBHSD<1, 0b00111, "sqneg", int_aarch64_neon_sqneg>;
4188defm SQXTN  : SIMDMixedTwoVector<0, 0b10100, "sqxtn", int_aarch64_neon_sqxtn>;
4189defm SQXTUN : SIMDMixedTwoVector<1, 0b10010, "sqxtun", int_aarch64_neon_sqxtun>;
4190defm SUQADD : SIMDTwoVectorBHSDTied<0, 0b00011, "suqadd",int_aarch64_neon_suqadd>;
4191defm UADALP : SIMDLongTwoVectorTied<1, 0b00110, "uadalp",
4192       BinOpFrag<(add node:$LHS, (AArch64uaddlp node:$RHS))> >;
4193defm UADDLP : SIMDLongTwoVector<1, 0b00010, "uaddlp", AArch64uaddlp>;
4194defm UCVTF  : SIMDTwoVectorIntToFP<1, 0, 0b11101, "ucvtf", uint_to_fp>;
4195defm UQXTN  : SIMDMixedTwoVector<1, 0b10100, "uqxtn", int_aarch64_neon_uqxtn>;
4196defm URECPE : SIMDTwoVectorS<0, 1, 0b11100, "urecpe", int_aarch64_neon_urecpe>;
4197defm URSQRTE: SIMDTwoVectorS<1, 1, 0b11100, "ursqrte", int_aarch64_neon_ursqrte>;
4198defm USQADD : SIMDTwoVectorBHSDTied<1, 0b00011, "usqadd",int_aarch64_neon_usqadd>;
4199defm XTN    : SIMDMixedTwoVector<0, 0b10010, "xtn", trunc>;
4200
4201def : Pat<(v4f16  (AArch64rev32 V64:$Rn)),  (REV32v4i16 V64:$Rn)>;
4202def : Pat<(v4f16  (AArch64rev64 V64:$Rn)),  (REV64v4i16 V64:$Rn)>;
4203def : Pat<(v4bf16 (AArch64rev32 V64:$Rn)),  (REV32v4i16 V64:$Rn)>;
4204def : Pat<(v4bf16 (AArch64rev64 V64:$Rn)),  (REV64v4i16 V64:$Rn)>;
4205def : Pat<(v8f16  (AArch64rev32 V128:$Rn)), (REV32v8i16 V128:$Rn)>;
4206def : Pat<(v8f16  (AArch64rev64 V128:$Rn)), (REV64v8i16 V128:$Rn)>;
4207def : Pat<(v8bf16 (AArch64rev32 V128:$Rn)), (REV32v8i16 V128:$Rn)>;
4208def : Pat<(v8bf16 (AArch64rev64 V128:$Rn)), (REV64v8i16 V128:$Rn)>;
4209def : Pat<(v2f32  (AArch64rev64 V64:$Rn)),  (REV64v2i32 V64:$Rn)>;
4210def : Pat<(v4f32  (AArch64rev64 V128:$Rn)), (REV64v4i32 V128:$Rn)>;
4211
4212// Patterns for vector long shift (by element width). These need to match all
4213// three of zext, sext and anyext so it's easier to pull the patterns out of the
4214// definition.
4215multiclass SIMDVectorLShiftLongBySizeBHSPats<SDPatternOperator ext> {
4216  def : Pat<(AArch64vshl (v8i16 (ext (v8i8 V64:$Rn))), (i32 8)),
4217            (SHLLv8i8 V64:$Rn)>;
4218  def : Pat<(AArch64vshl (v8i16 (ext (extract_high_v16i8 V128:$Rn))), (i32 8)),
4219            (SHLLv16i8 V128:$Rn)>;
4220  def : Pat<(AArch64vshl (v4i32 (ext (v4i16 V64:$Rn))), (i32 16)),
4221            (SHLLv4i16 V64:$Rn)>;
4222  def : Pat<(AArch64vshl (v4i32 (ext (extract_high_v8i16 V128:$Rn))), (i32 16)),
4223            (SHLLv8i16 V128:$Rn)>;
4224  def : Pat<(AArch64vshl (v2i64 (ext (v2i32 V64:$Rn))), (i32 32)),
4225            (SHLLv2i32 V64:$Rn)>;
4226  def : Pat<(AArch64vshl (v2i64 (ext (extract_high_v4i32 V128:$Rn))), (i32 32)),
4227            (SHLLv4i32 V128:$Rn)>;
4228}
4229
4230defm : SIMDVectorLShiftLongBySizeBHSPats<anyext>;
4231defm : SIMDVectorLShiftLongBySizeBHSPats<zext>;
4232defm : SIMDVectorLShiftLongBySizeBHSPats<sext>;
4233
4234// Constant vector values, used in the S/UQXTN patterns below.
4235def VImmFF:   PatLeaf<(AArch64NvCast (v2i64 (AArch64movi_edit (i32 85))))>;
4236def VImmFFFF: PatLeaf<(AArch64NvCast (v2i64 (AArch64movi_edit (i32 51))))>;
4237def VImm7F:   PatLeaf<(AArch64movi_shift (i32 127), (i32 0))>;
4238def VImm80:   PatLeaf<(AArch64mvni_shift (i32 127), (i32 0))>;
4239def VImm7FFF: PatLeaf<(AArch64movi_msl (i32 127), (i32 264))>;
4240def VImm8000: PatLeaf<(AArch64mvni_msl (i32 127), (i32 264))>;
4241
4242// trunc(umin(X, 255)) -> UQXTRN v8i8
4243def : Pat<(v8i8 (trunc (umin (v8i16 V128:$Vn), (v8i16 VImmFF)))),
4244          (UQXTNv8i8 V128:$Vn)>;
4245// trunc(umin(X, 65535)) -> UQXTRN v4i16
4246def : Pat<(v4i16 (trunc (umin (v4i32 V128:$Vn), (v4i32 VImmFFFF)))),
4247          (UQXTNv4i16 V128:$Vn)>;
4248// trunc(smin(smax(X, -128), 128)) -> SQXTRN
4249//  with reversed min/max
4250def : Pat<(v8i8 (trunc (smin (smax (v8i16 V128:$Vn), (v8i16 VImm80)),
4251                             (v8i16 VImm7F)))),
4252          (SQXTNv8i8 V128:$Vn)>;
4253def : Pat<(v8i8 (trunc (smax (smin (v8i16 V128:$Vn), (v8i16 VImm7F)),
4254                             (v8i16 VImm80)))),
4255          (SQXTNv8i8 V128:$Vn)>;
4256// trunc(smin(smax(X, -32768), 32767)) -> SQXTRN
4257//  with reversed min/max
4258def : Pat<(v4i16 (trunc (smin (smax (v4i32 V128:$Vn), (v4i32 VImm8000)),
4259                              (v4i32 VImm7FFF)))),
4260          (SQXTNv4i16 V128:$Vn)>;
4261def : Pat<(v4i16 (trunc (smax (smin (v4i32 V128:$Vn), (v4i32 VImm7FFF)),
4262                              (v4i32 VImm8000)))),
4263          (SQXTNv4i16 V128:$Vn)>;
4264
4265//===----------------------------------------------------------------------===//
4266// Advanced SIMD three vector instructions.
4267//===----------------------------------------------------------------------===//
4268
4269defm ADD     : SIMDThreeSameVector<0, 0b10000, "add", add>;
4270defm ADDP    : SIMDThreeSameVector<0, 0b10111, "addp", int_aarch64_neon_addp>;
4271defm CMEQ    : SIMDThreeSameVector<1, 0b10001, "cmeq", AArch64cmeq>;
4272defm CMGE    : SIMDThreeSameVector<0, 0b00111, "cmge", AArch64cmge>;
4273defm CMGT    : SIMDThreeSameVector<0, 0b00110, "cmgt", AArch64cmgt>;
4274defm CMHI    : SIMDThreeSameVector<1, 0b00110, "cmhi", AArch64cmhi>;
4275defm CMHS    : SIMDThreeSameVector<1, 0b00111, "cmhs", AArch64cmhs>;
4276defm CMTST   : SIMDThreeSameVector<0, 0b10001, "cmtst", AArch64cmtst>;
4277foreach VT = [ v8i8, v16i8, v4i16, v8i16, v2i32, v4i32, v2i64 ] in {
4278def : Pat<(vnot (AArch64cmeqz VT:$Rn)), (!cast<Instruction>("CMTST"#VT) VT:$Rn, VT:$Rn)>;
4279}
4280defm FABD    : SIMDThreeSameVectorFP<1,1,0b010,"fabd", int_aarch64_neon_fabd>;
4281let Predicates = [HasNEON] in {
4282foreach VT = [ v2f32, v4f32, v2f64 ] in
4283def : Pat<(fabs (fsub VT:$Rn, VT:$Rm)), (!cast<Instruction>("FABD"#VT) VT:$Rn, VT:$Rm)>;
4284}
4285let Predicates = [HasNEON, HasFullFP16] in {
4286foreach VT = [ v4f16, v8f16 ] in
4287def : Pat<(fabs (fsub VT:$Rn, VT:$Rm)), (!cast<Instruction>("FABD"#VT) VT:$Rn, VT:$Rm)>;
4288}
4289defm FACGE   : SIMDThreeSameVectorFPCmp<1,0,0b101,"facge",int_aarch64_neon_facge>;
4290defm FACGT   : SIMDThreeSameVectorFPCmp<1,1,0b101,"facgt",int_aarch64_neon_facgt>;
4291defm FADDP   : SIMDThreeSameVectorFP<1,0,0b010,"faddp",int_aarch64_neon_faddp>;
4292defm FADD    : SIMDThreeSameVectorFP<0,0,0b010,"fadd", fadd>;
4293defm FCMEQ   : SIMDThreeSameVectorFPCmp<0, 0, 0b100, "fcmeq", AArch64fcmeq>;
4294defm FCMGE   : SIMDThreeSameVectorFPCmp<1, 0, 0b100, "fcmge", AArch64fcmge>;
4295defm FCMGT   : SIMDThreeSameVectorFPCmp<1, 1, 0b100, "fcmgt", AArch64fcmgt>;
4296defm FDIV    : SIMDThreeSameVectorFP<1,0,0b111,"fdiv", fdiv>;
4297defm FMAXNMP : SIMDThreeSameVectorFP<1,0,0b000,"fmaxnmp", int_aarch64_neon_fmaxnmp>;
4298defm FMAXNM  : SIMDThreeSameVectorFP<0,0,0b000,"fmaxnm", fmaxnum>;
4299defm FMAXP   : SIMDThreeSameVectorFP<1,0,0b110,"fmaxp", int_aarch64_neon_fmaxp>;
4300defm FMAX    : SIMDThreeSameVectorFP<0,0,0b110,"fmax", fmaximum>;
4301defm FMINNMP : SIMDThreeSameVectorFP<1,1,0b000,"fminnmp", int_aarch64_neon_fminnmp>;
4302defm FMINNM  : SIMDThreeSameVectorFP<0,1,0b000,"fminnm", fminnum>;
4303defm FMINP   : SIMDThreeSameVectorFP<1,1,0b110,"fminp", int_aarch64_neon_fminp>;
4304defm FMIN    : SIMDThreeSameVectorFP<0,1,0b110,"fmin", fminimum>;
4305
4306// NOTE: The operands of the PatFrag are reordered on FMLA/FMLS because the
4307// instruction expects the addend first, while the fma intrinsic puts it last.
4308defm FMLA     : SIMDThreeSameVectorFPTied<0, 0, 0b001, "fmla",
4309            TriOpFrag<(fma node:$RHS, node:$MHS, node:$LHS)> >;
4310defm FMLS     : SIMDThreeSameVectorFPTied<0, 1, 0b001, "fmls",
4311            TriOpFrag<(fma node:$MHS, (fneg node:$RHS), node:$LHS)> >;
4312
4313defm FMULX    : SIMDThreeSameVectorFP<0,0,0b011,"fmulx", int_aarch64_neon_fmulx>;
4314defm FMUL     : SIMDThreeSameVectorFP<1,0,0b011,"fmul", fmul>;
4315defm FRECPS   : SIMDThreeSameVectorFP<0,0,0b111,"frecps", int_aarch64_neon_frecps>;
4316defm FRSQRTS  : SIMDThreeSameVectorFP<0,1,0b111,"frsqrts", int_aarch64_neon_frsqrts>;
4317defm FSUB     : SIMDThreeSameVectorFP<0,1,0b010,"fsub", fsub>;
4318
4319// MLA and MLS are generated in MachineCombine
4320defm MLA      : SIMDThreeSameVectorBHSTied<0, 0b10010, "mla", null_frag>;
4321defm MLS      : SIMDThreeSameVectorBHSTied<1, 0b10010, "mls", null_frag>;
4322
4323defm MUL      : SIMDThreeSameVectorBHS<0, 0b10011, "mul", mul>;
4324defm PMUL     : SIMDThreeSameVectorB<1, 0b10011, "pmul", int_aarch64_neon_pmul>;
4325defm SABA     : SIMDThreeSameVectorBHSTied<0, 0b01111, "saba",
4326      TriOpFrag<(add node:$LHS, (AArch64sabd node:$MHS, node:$RHS))> >;
4327defm SABD     : SIMDThreeSameVectorBHS<0,0b01110,"sabd", AArch64sabd>;
4328defm SHADD    : SIMDThreeSameVectorBHS<0,0b00000,"shadd", AArch64shadd>;
4329defm SHSUB    : SIMDThreeSameVectorBHS<0,0b00100,"shsub", int_aarch64_neon_shsub>;
4330defm SMAXP    : SIMDThreeSameVectorBHS<0,0b10100,"smaxp", int_aarch64_neon_smaxp>;
4331defm SMAX     : SIMDThreeSameVectorBHS<0,0b01100,"smax", smax>;
4332defm SMINP    : SIMDThreeSameVectorBHS<0,0b10101,"sminp", int_aarch64_neon_sminp>;
4333defm SMIN     : SIMDThreeSameVectorBHS<0,0b01101,"smin", smin>;
4334defm SQADD    : SIMDThreeSameVector<0,0b00001,"sqadd", int_aarch64_neon_sqadd>;
4335defm SQDMULH  : SIMDThreeSameVectorHS<0,0b10110,"sqdmulh",int_aarch64_neon_sqdmulh>;
4336defm SQRDMULH : SIMDThreeSameVectorHS<1,0b10110,"sqrdmulh",int_aarch64_neon_sqrdmulh>;
4337defm SQRSHL   : SIMDThreeSameVector<0,0b01011,"sqrshl", int_aarch64_neon_sqrshl>;
4338defm SQSHL    : SIMDThreeSameVector<0,0b01001,"sqshl", int_aarch64_neon_sqshl>;
4339defm SQSUB    : SIMDThreeSameVector<0,0b00101,"sqsub", int_aarch64_neon_sqsub>;
4340defm SRHADD   : SIMDThreeSameVectorBHS<0,0b00010,"srhadd", AArch64srhadd>;
4341defm SRSHL    : SIMDThreeSameVector<0,0b01010,"srshl", int_aarch64_neon_srshl>;
4342defm SSHL     : SIMDThreeSameVector<0,0b01000,"sshl", int_aarch64_neon_sshl>;
4343defm SUB      : SIMDThreeSameVector<1,0b10000,"sub", sub>;
4344defm UABA     : SIMDThreeSameVectorBHSTied<1, 0b01111, "uaba",
4345      TriOpFrag<(add node:$LHS, (AArch64uabd node:$MHS, node:$RHS))> >;
4346defm UABD     : SIMDThreeSameVectorBHS<1,0b01110,"uabd", AArch64uabd>;
4347defm UHADD    : SIMDThreeSameVectorBHS<1,0b00000,"uhadd", AArch64uhadd>;
4348defm UHSUB    : SIMDThreeSameVectorBHS<1,0b00100,"uhsub", int_aarch64_neon_uhsub>;
4349defm UMAXP    : SIMDThreeSameVectorBHS<1,0b10100,"umaxp", int_aarch64_neon_umaxp>;
4350defm UMAX     : SIMDThreeSameVectorBHS<1,0b01100,"umax", umax>;
4351defm UMINP    : SIMDThreeSameVectorBHS<1,0b10101,"uminp", int_aarch64_neon_uminp>;
4352defm UMIN     : SIMDThreeSameVectorBHS<1,0b01101,"umin", umin>;
4353defm UQADD    : SIMDThreeSameVector<1,0b00001,"uqadd", int_aarch64_neon_uqadd>;
4354defm UQRSHL   : SIMDThreeSameVector<1,0b01011,"uqrshl", int_aarch64_neon_uqrshl>;
4355defm UQSHL    : SIMDThreeSameVector<1,0b01001,"uqshl", int_aarch64_neon_uqshl>;
4356defm UQSUB    : SIMDThreeSameVector<1,0b00101,"uqsub", int_aarch64_neon_uqsub>;
4357defm URHADD   : SIMDThreeSameVectorBHS<1,0b00010,"urhadd", AArch64urhadd>;
4358defm URSHL    : SIMDThreeSameVector<1,0b01010,"urshl", int_aarch64_neon_urshl>;
4359defm USHL     : SIMDThreeSameVector<1,0b01000,"ushl", int_aarch64_neon_ushl>;
4360defm SQRDMLAH : SIMDThreeSameVectorSQRDMLxHTiedHS<1,0b10000,"sqrdmlah",
4361                                                  int_aarch64_neon_sqadd>;
4362defm SQRDMLSH : SIMDThreeSameVectorSQRDMLxHTiedHS<1,0b10001,"sqrdmlsh",
4363                                                    int_aarch64_neon_sqsub>;
4364
4365// Extra saturate patterns, other than the intrinsics matches above
4366defm : SIMDThreeSameVectorExtraPatterns<"SQADD", saddsat>;
4367defm : SIMDThreeSameVectorExtraPatterns<"UQADD", uaddsat>;
4368defm : SIMDThreeSameVectorExtraPatterns<"SQSUB", ssubsat>;
4369defm : SIMDThreeSameVectorExtraPatterns<"UQSUB", usubsat>;
4370
4371defm AND : SIMDLogicalThreeVector<0, 0b00, "and", and>;
4372defm BIC : SIMDLogicalThreeVector<0, 0b01, "bic",
4373                                  BinOpFrag<(and node:$LHS, (vnot node:$RHS))> >;
4374defm EOR : SIMDLogicalThreeVector<1, 0b00, "eor", xor>;
4375defm ORN : SIMDLogicalThreeVector<0, 0b11, "orn",
4376                                  BinOpFrag<(or node:$LHS, (vnot node:$RHS))> >;
4377defm ORR : SIMDLogicalThreeVector<0, 0b10, "orr", or>;
4378
4379// Pseudo bitwise select pattern BSP.
4380// It is expanded into BSL/BIT/BIF after register allocation.
4381defm BSP : SIMDLogicalThreeVectorPseudo<TriOpFrag<(or (and node:$LHS, node:$MHS),
4382                                                      (and (vnot node:$LHS), node:$RHS))>>;
4383defm BSL : SIMDLogicalThreeVectorTied<1, 0b01, "bsl">;
4384defm BIT : SIMDLogicalThreeVectorTied<1, 0b10, "bit", AArch64bit>;
4385defm BIF : SIMDLogicalThreeVectorTied<1, 0b11, "bif">;
4386
4387def : Pat<(AArch64bsp (v8i8 V64:$Rd), V64:$Rn, V64:$Rm),
4388          (BSPv8i8 V64:$Rd, V64:$Rn, V64:$Rm)>;
4389def : Pat<(AArch64bsp (v4i16 V64:$Rd), V64:$Rn, V64:$Rm),
4390          (BSPv8i8 V64:$Rd, V64:$Rn, V64:$Rm)>;
4391def : Pat<(AArch64bsp (v2i32 V64:$Rd), V64:$Rn, V64:$Rm),
4392          (BSPv8i8 V64:$Rd, V64:$Rn, V64:$Rm)>;
4393def : Pat<(AArch64bsp (v1i64 V64:$Rd), V64:$Rn, V64:$Rm),
4394          (BSPv8i8 V64:$Rd, V64:$Rn, V64:$Rm)>;
4395
4396def : Pat<(AArch64bsp (v16i8 V128:$Rd), V128:$Rn, V128:$Rm),
4397          (BSPv16i8 V128:$Rd, V128:$Rn, V128:$Rm)>;
4398def : Pat<(AArch64bsp (v8i16 V128:$Rd), V128:$Rn, V128:$Rm),
4399          (BSPv16i8 V128:$Rd, V128:$Rn, V128:$Rm)>;
4400def : Pat<(AArch64bsp (v4i32 V128:$Rd), V128:$Rn, V128:$Rm),
4401          (BSPv16i8 V128:$Rd, V128:$Rn, V128:$Rm)>;
4402def : Pat<(AArch64bsp (v2i64 V128:$Rd), V128:$Rn, V128:$Rm),
4403          (BSPv16i8 V128:$Rd, V128:$Rn, V128:$Rm)>;
4404
4405def : InstAlias<"mov{\t$dst.16b, $src.16b|.16b\t$dst, $src}",
4406                (ORRv16i8 V128:$dst, V128:$src, V128:$src), 1>;
4407def : InstAlias<"mov{\t$dst.8h, $src.8h|.8h\t$dst, $src}",
4408                (ORRv16i8 V128:$dst, V128:$src, V128:$src), 0>;
4409def : InstAlias<"mov{\t$dst.4s, $src.4s|.4s\t$dst, $src}",
4410                (ORRv16i8 V128:$dst, V128:$src, V128:$src), 0>;
4411def : InstAlias<"mov{\t$dst.2d, $src.2d|.2d\t$dst, $src}",
4412                (ORRv16i8 V128:$dst, V128:$src, V128:$src), 0>;
4413
4414def : InstAlias<"mov{\t$dst.8b, $src.8b|.8b\t$dst, $src}",
4415                (ORRv8i8 V64:$dst, V64:$src, V64:$src), 1>;
4416def : InstAlias<"mov{\t$dst.4h, $src.4h|.4h\t$dst, $src}",
4417                (ORRv8i8 V64:$dst, V64:$src, V64:$src), 0>;
4418def : InstAlias<"mov{\t$dst.2s, $src.2s|.2s\t$dst, $src}",
4419                (ORRv8i8 V64:$dst, V64:$src, V64:$src), 0>;
4420def : InstAlias<"mov{\t$dst.1d, $src.1d|.1d\t$dst, $src}",
4421                (ORRv8i8 V64:$dst, V64:$src, V64:$src), 0>;
4422
4423def : InstAlias<"{cmls\t$dst.8b, $src1.8b, $src2.8b" #
4424                "|cmls.8b\t$dst, $src1, $src2}",
4425                (CMHSv8i8 V64:$dst, V64:$src2, V64:$src1), 0>;
4426def : InstAlias<"{cmls\t$dst.16b, $src1.16b, $src2.16b" #
4427                "|cmls.16b\t$dst, $src1, $src2}",
4428                (CMHSv16i8 V128:$dst, V128:$src2, V128:$src1), 0>;
4429def : InstAlias<"{cmls\t$dst.4h, $src1.4h, $src2.4h" #
4430                "|cmls.4h\t$dst, $src1, $src2}",
4431                (CMHSv4i16 V64:$dst, V64:$src2, V64:$src1), 0>;
4432def : InstAlias<"{cmls\t$dst.8h, $src1.8h, $src2.8h" #
4433                "|cmls.8h\t$dst, $src1, $src2}",
4434                (CMHSv8i16 V128:$dst, V128:$src2, V128:$src1), 0>;
4435def : InstAlias<"{cmls\t$dst.2s, $src1.2s, $src2.2s" #
4436                "|cmls.2s\t$dst, $src1, $src2}",
4437                (CMHSv2i32 V64:$dst, V64:$src2, V64:$src1), 0>;
4438def : InstAlias<"{cmls\t$dst.4s, $src1.4s, $src2.4s" #
4439                "|cmls.4s\t$dst, $src1, $src2}",
4440                (CMHSv4i32 V128:$dst, V128:$src2, V128:$src1), 0>;
4441def : InstAlias<"{cmls\t$dst.2d, $src1.2d, $src2.2d" #
4442                "|cmls.2d\t$dst, $src1, $src2}",
4443                (CMHSv2i64 V128:$dst, V128:$src2, V128:$src1), 0>;
4444
4445def : InstAlias<"{cmlo\t$dst.8b, $src1.8b, $src2.8b" #
4446                "|cmlo.8b\t$dst, $src1, $src2}",
4447                (CMHIv8i8 V64:$dst, V64:$src2, V64:$src1), 0>;
4448def : InstAlias<"{cmlo\t$dst.16b, $src1.16b, $src2.16b" #
4449                "|cmlo.16b\t$dst, $src1, $src2}",
4450                (CMHIv16i8 V128:$dst, V128:$src2, V128:$src1), 0>;
4451def : InstAlias<"{cmlo\t$dst.4h, $src1.4h, $src2.4h" #
4452                "|cmlo.4h\t$dst, $src1, $src2}",
4453                (CMHIv4i16 V64:$dst, V64:$src2, V64:$src1), 0>;
4454def : InstAlias<"{cmlo\t$dst.8h, $src1.8h, $src2.8h" #
4455                "|cmlo.8h\t$dst, $src1, $src2}",
4456                (CMHIv8i16 V128:$dst, V128:$src2, V128:$src1), 0>;
4457def : InstAlias<"{cmlo\t$dst.2s, $src1.2s, $src2.2s" #
4458                "|cmlo.2s\t$dst, $src1, $src2}",
4459                (CMHIv2i32 V64:$dst, V64:$src2, V64:$src1), 0>;
4460def : InstAlias<"{cmlo\t$dst.4s, $src1.4s, $src2.4s" #
4461                "|cmlo.4s\t$dst, $src1, $src2}",
4462                (CMHIv4i32 V128:$dst, V128:$src2, V128:$src1), 0>;
4463def : InstAlias<"{cmlo\t$dst.2d, $src1.2d, $src2.2d" #
4464                "|cmlo.2d\t$dst, $src1, $src2}",
4465                (CMHIv2i64 V128:$dst, V128:$src2, V128:$src1), 0>;
4466
4467def : InstAlias<"{cmle\t$dst.8b, $src1.8b, $src2.8b" #
4468                "|cmle.8b\t$dst, $src1, $src2}",
4469                (CMGEv8i8 V64:$dst, V64:$src2, V64:$src1), 0>;
4470def : InstAlias<"{cmle\t$dst.16b, $src1.16b, $src2.16b" #
4471                "|cmle.16b\t$dst, $src1, $src2}",
4472                (CMGEv16i8 V128:$dst, V128:$src2, V128:$src1), 0>;
4473def : InstAlias<"{cmle\t$dst.4h, $src1.4h, $src2.4h" #
4474                "|cmle.4h\t$dst, $src1, $src2}",
4475                (CMGEv4i16 V64:$dst, V64:$src2, V64:$src1), 0>;
4476def : InstAlias<"{cmle\t$dst.8h, $src1.8h, $src2.8h" #
4477                "|cmle.8h\t$dst, $src1, $src2}",
4478                (CMGEv8i16 V128:$dst, V128:$src2, V128:$src1), 0>;
4479def : InstAlias<"{cmle\t$dst.2s, $src1.2s, $src2.2s" #
4480                "|cmle.2s\t$dst, $src1, $src2}",
4481                (CMGEv2i32 V64:$dst, V64:$src2, V64:$src1), 0>;
4482def : InstAlias<"{cmle\t$dst.4s, $src1.4s, $src2.4s" #
4483                "|cmle.4s\t$dst, $src1, $src2}",
4484                (CMGEv4i32 V128:$dst, V128:$src2, V128:$src1), 0>;
4485def : InstAlias<"{cmle\t$dst.2d, $src1.2d, $src2.2d" #
4486                "|cmle.2d\t$dst, $src1, $src2}",
4487                (CMGEv2i64 V128:$dst, V128:$src2, V128:$src1), 0>;
4488
4489def : InstAlias<"{cmlt\t$dst.8b, $src1.8b, $src2.8b" #
4490                "|cmlt.8b\t$dst, $src1, $src2}",
4491                (CMGTv8i8 V64:$dst, V64:$src2, V64:$src1), 0>;
4492def : InstAlias<"{cmlt\t$dst.16b, $src1.16b, $src2.16b" #
4493                "|cmlt.16b\t$dst, $src1, $src2}",
4494                (CMGTv16i8 V128:$dst, V128:$src2, V128:$src1), 0>;
4495def : InstAlias<"{cmlt\t$dst.4h, $src1.4h, $src2.4h" #
4496                "|cmlt.4h\t$dst, $src1, $src2}",
4497                (CMGTv4i16 V64:$dst, V64:$src2, V64:$src1), 0>;
4498def : InstAlias<"{cmlt\t$dst.8h, $src1.8h, $src2.8h" #
4499                "|cmlt.8h\t$dst, $src1, $src2}",
4500                (CMGTv8i16 V128:$dst, V128:$src2, V128:$src1), 0>;
4501def : InstAlias<"{cmlt\t$dst.2s, $src1.2s, $src2.2s" #
4502                "|cmlt.2s\t$dst, $src1, $src2}",
4503                (CMGTv2i32 V64:$dst, V64:$src2, V64:$src1), 0>;
4504def : InstAlias<"{cmlt\t$dst.4s, $src1.4s, $src2.4s" #
4505                "|cmlt.4s\t$dst, $src1, $src2}",
4506                (CMGTv4i32 V128:$dst, V128:$src2, V128:$src1), 0>;
4507def : InstAlias<"{cmlt\t$dst.2d, $src1.2d, $src2.2d" #
4508                "|cmlt.2d\t$dst, $src1, $src2}",
4509                (CMGTv2i64 V128:$dst, V128:$src2, V128:$src1), 0>;
4510
4511let Predicates = [HasNEON, HasFullFP16] in {
4512def : InstAlias<"{fcmle\t$dst.4h, $src1.4h, $src2.4h" #
4513                "|fcmle.4h\t$dst, $src1, $src2}",
4514                (FCMGEv4f16 V64:$dst, V64:$src2, V64:$src1), 0>;
4515def : InstAlias<"{fcmle\t$dst.8h, $src1.8h, $src2.8h" #
4516                "|fcmle.8h\t$dst, $src1, $src2}",
4517                (FCMGEv8f16 V128:$dst, V128:$src2, V128:$src1), 0>;
4518}
4519def : InstAlias<"{fcmle\t$dst.2s, $src1.2s, $src2.2s" #
4520                "|fcmle.2s\t$dst, $src1, $src2}",
4521                (FCMGEv2f32 V64:$dst, V64:$src2, V64:$src1), 0>;
4522def : InstAlias<"{fcmle\t$dst.4s, $src1.4s, $src2.4s" #
4523                "|fcmle.4s\t$dst, $src1, $src2}",
4524                (FCMGEv4f32 V128:$dst, V128:$src2, V128:$src1), 0>;
4525def : InstAlias<"{fcmle\t$dst.2d, $src1.2d, $src2.2d" #
4526                "|fcmle.2d\t$dst, $src1, $src2}",
4527                (FCMGEv2f64 V128:$dst, V128:$src2, V128:$src1), 0>;
4528
4529let Predicates = [HasNEON, HasFullFP16] in {
4530def : InstAlias<"{fcmlt\t$dst.4h, $src1.4h, $src2.4h" #
4531                "|fcmlt.4h\t$dst, $src1, $src2}",
4532                (FCMGTv4f16 V64:$dst, V64:$src2, V64:$src1), 0>;
4533def : InstAlias<"{fcmlt\t$dst.8h, $src1.8h, $src2.8h" #
4534                "|fcmlt.8h\t$dst, $src1, $src2}",
4535                (FCMGTv8f16 V128:$dst, V128:$src2, V128:$src1), 0>;
4536}
4537def : InstAlias<"{fcmlt\t$dst.2s, $src1.2s, $src2.2s" #
4538                "|fcmlt.2s\t$dst, $src1, $src2}",
4539                (FCMGTv2f32 V64:$dst, V64:$src2, V64:$src1), 0>;
4540def : InstAlias<"{fcmlt\t$dst.4s, $src1.4s, $src2.4s" #
4541                "|fcmlt.4s\t$dst, $src1, $src2}",
4542                (FCMGTv4f32 V128:$dst, V128:$src2, V128:$src1), 0>;
4543def : InstAlias<"{fcmlt\t$dst.2d, $src1.2d, $src2.2d" #
4544                "|fcmlt.2d\t$dst, $src1, $src2}",
4545                (FCMGTv2f64 V128:$dst, V128:$src2, V128:$src1), 0>;
4546
4547let Predicates = [HasNEON, HasFullFP16] in {
4548def : InstAlias<"{facle\t$dst.4h, $src1.4h, $src2.4h" #
4549                "|facle.4h\t$dst, $src1, $src2}",
4550                (FACGEv4f16 V64:$dst, V64:$src2, V64:$src1), 0>;
4551def : InstAlias<"{facle\t$dst.8h, $src1.8h, $src2.8h" #
4552                "|facle.8h\t$dst, $src1, $src2}",
4553                (FACGEv8f16 V128:$dst, V128:$src2, V128:$src1), 0>;
4554}
4555def : InstAlias<"{facle\t$dst.2s, $src1.2s, $src2.2s" #
4556                "|facle.2s\t$dst, $src1, $src2}",
4557                (FACGEv2f32 V64:$dst, V64:$src2, V64:$src1), 0>;
4558def : InstAlias<"{facle\t$dst.4s, $src1.4s, $src2.4s" #
4559                "|facle.4s\t$dst, $src1, $src2}",
4560                (FACGEv4f32 V128:$dst, V128:$src2, V128:$src1), 0>;
4561def : InstAlias<"{facle\t$dst.2d, $src1.2d, $src2.2d" #
4562                "|facle.2d\t$dst, $src1, $src2}",
4563                (FACGEv2f64 V128:$dst, V128:$src2, V128:$src1), 0>;
4564
4565let Predicates = [HasNEON, HasFullFP16] in {
4566def : InstAlias<"{faclt\t$dst.4h, $src1.4h, $src2.4h" #
4567                "|faclt.4h\t$dst, $src1, $src2}",
4568                (FACGTv4f16 V64:$dst, V64:$src2, V64:$src1), 0>;
4569def : InstAlias<"{faclt\t$dst.8h, $src1.8h, $src2.8h" #
4570                "|faclt.8h\t$dst, $src1, $src2}",
4571                (FACGTv8f16 V128:$dst, V128:$src2, V128:$src1), 0>;
4572}
4573def : InstAlias<"{faclt\t$dst.2s, $src1.2s, $src2.2s" #
4574                "|faclt.2s\t$dst, $src1, $src2}",
4575                (FACGTv2f32 V64:$dst, V64:$src2, V64:$src1), 0>;
4576def : InstAlias<"{faclt\t$dst.4s, $src1.4s, $src2.4s" #
4577                "|faclt.4s\t$dst, $src1, $src2}",
4578                (FACGTv4f32 V128:$dst, V128:$src2, V128:$src1), 0>;
4579def : InstAlias<"{faclt\t$dst.2d, $src1.2d, $src2.2d" #
4580                "|faclt.2d\t$dst, $src1, $src2}",
4581                (FACGTv2f64 V128:$dst, V128:$src2, V128:$src1), 0>;
4582
4583//===----------------------------------------------------------------------===//
4584// Advanced SIMD three scalar instructions.
4585//===----------------------------------------------------------------------===//
4586
4587defm ADD      : SIMDThreeScalarD<0, 0b10000, "add", add>;
4588defm CMEQ     : SIMDThreeScalarD<1, 0b10001, "cmeq", AArch64cmeq>;
4589defm CMGE     : SIMDThreeScalarD<0, 0b00111, "cmge", AArch64cmge>;
4590defm CMGT     : SIMDThreeScalarD<0, 0b00110, "cmgt", AArch64cmgt>;
4591defm CMHI     : SIMDThreeScalarD<1, 0b00110, "cmhi", AArch64cmhi>;
4592defm CMHS     : SIMDThreeScalarD<1, 0b00111, "cmhs", AArch64cmhs>;
4593defm CMTST    : SIMDThreeScalarD<0, 0b10001, "cmtst", AArch64cmtst>;
4594defm FABD     : SIMDFPThreeScalar<1, 1, 0b010, "fabd", int_aarch64_sisd_fabd>;
4595def : Pat<(v1f64 (int_aarch64_neon_fabd (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))),
4596          (FABD64 FPR64:$Rn, FPR64:$Rm)>;
4597let Predicates = [HasFullFP16] in {
4598def : Pat<(fabs (fsub f16:$Rn, f16:$Rm)), (FABD16 f16:$Rn, f16:$Rm)>;
4599}
4600def : Pat<(fabs (fsub f32:$Rn, f32:$Rm)), (FABD32 f32:$Rn, f32:$Rm)>;
4601def : Pat<(fabs (fsub f64:$Rn, f64:$Rm)), (FABD64 f64:$Rn, f64:$Rm)>;
4602defm FACGE    : SIMDThreeScalarFPCmp<1, 0, 0b101, "facge",
4603                                     int_aarch64_neon_facge>;
4604defm FACGT    : SIMDThreeScalarFPCmp<1, 1, 0b101, "facgt",
4605                                     int_aarch64_neon_facgt>;
4606defm FCMEQ    : SIMDThreeScalarFPCmp<0, 0, 0b100, "fcmeq", AArch64fcmeq>;
4607defm FCMGE    : SIMDThreeScalarFPCmp<1, 0, 0b100, "fcmge", AArch64fcmge>;
4608defm FCMGT    : SIMDThreeScalarFPCmp<1, 1, 0b100, "fcmgt", AArch64fcmgt>;
4609defm FMULX    : SIMDFPThreeScalar<0, 0, 0b011, "fmulx", int_aarch64_neon_fmulx>;
4610defm FRECPS   : SIMDFPThreeScalar<0, 0, 0b111, "frecps", int_aarch64_neon_frecps>;
4611defm FRSQRTS  : SIMDFPThreeScalar<0, 1, 0b111, "frsqrts", int_aarch64_neon_frsqrts>;
4612defm SQADD    : SIMDThreeScalarBHSD<0, 0b00001, "sqadd", int_aarch64_neon_sqadd>;
4613defm SQDMULH  : SIMDThreeScalarHS<  0, 0b10110, "sqdmulh", int_aarch64_neon_sqdmulh>;
4614defm SQRDMULH : SIMDThreeScalarHS<  1, 0b10110, "sqrdmulh", int_aarch64_neon_sqrdmulh>;
4615defm SQRSHL   : SIMDThreeScalarBHSD<0, 0b01011, "sqrshl",int_aarch64_neon_sqrshl>;
4616defm SQSHL    : SIMDThreeScalarBHSD<0, 0b01001, "sqshl", int_aarch64_neon_sqshl>;
4617defm SQSUB    : SIMDThreeScalarBHSD<0, 0b00101, "sqsub", int_aarch64_neon_sqsub>;
4618defm SRSHL    : SIMDThreeScalarD<   0, 0b01010, "srshl", int_aarch64_neon_srshl>;
4619defm SSHL     : SIMDThreeScalarD<   0, 0b01000, "sshl", int_aarch64_neon_sshl>;
4620defm SUB      : SIMDThreeScalarD<   1, 0b10000, "sub", sub>;
4621defm UQADD    : SIMDThreeScalarBHSD<1, 0b00001, "uqadd", int_aarch64_neon_uqadd>;
4622defm UQRSHL   : SIMDThreeScalarBHSD<1, 0b01011, "uqrshl",int_aarch64_neon_uqrshl>;
4623defm UQSHL    : SIMDThreeScalarBHSD<1, 0b01001, "uqshl", int_aarch64_neon_uqshl>;
4624defm UQSUB    : SIMDThreeScalarBHSD<1, 0b00101, "uqsub", int_aarch64_neon_uqsub>;
4625defm URSHL    : SIMDThreeScalarD<   1, 0b01010, "urshl", int_aarch64_neon_urshl>;
4626defm USHL     : SIMDThreeScalarD<   1, 0b01000, "ushl", int_aarch64_neon_ushl>;
4627let Predicates = [HasRDM] in {
4628  defm SQRDMLAH : SIMDThreeScalarHSTied<1, 0, 0b10000, "sqrdmlah">;
4629  defm SQRDMLSH : SIMDThreeScalarHSTied<1, 0, 0b10001, "sqrdmlsh">;
4630  def : Pat<(i32 (int_aarch64_neon_sqadd
4631                   (i32 FPR32:$Rd),
4632                   (i32 (int_aarch64_neon_sqrdmulh (i32 FPR32:$Rn),
4633                                                   (i32 FPR32:$Rm))))),
4634            (SQRDMLAHv1i32 FPR32:$Rd, FPR32:$Rn, FPR32:$Rm)>;
4635  def : Pat<(i32 (int_aarch64_neon_sqsub
4636                   (i32 FPR32:$Rd),
4637                   (i32 (int_aarch64_neon_sqrdmulh (i32 FPR32:$Rn),
4638                                                   (i32 FPR32:$Rm))))),
4639            (SQRDMLSHv1i32 FPR32:$Rd, FPR32:$Rn, FPR32:$Rm)>;
4640}
4641
4642def : InstAlias<"cmls $dst, $src1, $src2",
4643                (CMHSv1i64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;
4644def : InstAlias<"cmle $dst, $src1, $src2",
4645                (CMGEv1i64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;
4646def : InstAlias<"cmlo $dst, $src1, $src2",
4647                (CMHIv1i64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;
4648def : InstAlias<"cmlt $dst, $src1, $src2",
4649                (CMGTv1i64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;
4650def : InstAlias<"fcmle $dst, $src1, $src2",
4651                (FCMGE32 FPR32:$dst, FPR32:$src2, FPR32:$src1), 0>;
4652def : InstAlias<"fcmle $dst, $src1, $src2",
4653                (FCMGE64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;
4654def : InstAlias<"fcmlt $dst, $src1, $src2",
4655                (FCMGT32 FPR32:$dst, FPR32:$src2, FPR32:$src1), 0>;
4656def : InstAlias<"fcmlt $dst, $src1, $src2",
4657                (FCMGT64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;
4658def : InstAlias<"facle $dst, $src1, $src2",
4659                (FACGE32 FPR32:$dst, FPR32:$src2, FPR32:$src1), 0>;
4660def : InstAlias<"facle $dst, $src1, $src2",
4661                (FACGE64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;
4662def : InstAlias<"faclt $dst, $src1, $src2",
4663                (FACGT32 FPR32:$dst, FPR32:$src2, FPR32:$src1), 0>;
4664def : InstAlias<"faclt $dst, $src1, $src2",
4665                (FACGT64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;
4666
4667//===----------------------------------------------------------------------===//
4668// Advanced SIMD three scalar instructions (mixed operands).
4669//===----------------------------------------------------------------------===//
4670defm SQDMULL  : SIMDThreeScalarMixedHS<0, 0b11010, "sqdmull",
4671                                       int_aarch64_neon_sqdmulls_scalar>;
4672defm SQDMLAL  : SIMDThreeScalarMixedTiedHS<0, 0b10010, "sqdmlal">;
4673defm SQDMLSL  : SIMDThreeScalarMixedTiedHS<0, 0b10110, "sqdmlsl">;
4674
4675def : Pat<(i64 (int_aarch64_neon_sqadd (i64 FPR64:$Rd),
4676                   (i64 (int_aarch64_neon_sqdmulls_scalar (i32 FPR32:$Rn),
4677                                                        (i32 FPR32:$Rm))))),
4678          (SQDMLALi32 FPR64:$Rd, FPR32:$Rn, FPR32:$Rm)>;
4679def : Pat<(i64 (int_aarch64_neon_sqsub (i64 FPR64:$Rd),
4680                   (i64 (int_aarch64_neon_sqdmulls_scalar (i32 FPR32:$Rn),
4681                                                        (i32 FPR32:$Rm))))),
4682          (SQDMLSLi32 FPR64:$Rd, FPR32:$Rn, FPR32:$Rm)>;
4683
4684//===----------------------------------------------------------------------===//
4685// Advanced SIMD two scalar instructions.
4686//===----------------------------------------------------------------------===//
4687
4688defm ABS    : SIMDTwoScalarD<    0, 0b01011, "abs", abs>;
4689defm CMEQ   : SIMDCmpTwoScalarD< 0, 0b01001, "cmeq", AArch64cmeqz>;
4690defm CMGE   : SIMDCmpTwoScalarD< 1, 0b01000, "cmge", AArch64cmgez>;
4691defm CMGT   : SIMDCmpTwoScalarD< 0, 0b01000, "cmgt", AArch64cmgtz>;
4692defm CMLE   : SIMDCmpTwoScalarD< 1, 0b01001, "cmle", AArch64cmlez>;
4693defm CMLT   : SIMDCmpTwoScalarD< 0, 0b01010, "cmlt", AArch64cmltz>;
4694defm FCMEQ  : SIMDFPCmpTwoScalar<0, 1, 0b01101, "fcmeq", AArch64fcmeqz>;
4695defm FCMGE  : SIMDFPCmpTwoScalar<1, 1, 0b01100, "fcmge", AArch64fcmgez>;
4696defm FCMGT  : SIMDFPCmpTwoScalar<0, 1, 0b01100, "fcmgt", AArch64fcmgtz>;
4697defm FCMLE  : SIMDFPCmpTwoScalar<1, 1, 0b01101, "fcmle", AArch64fcmlez>;
4698defm FCMLT  : SIMDFPCmpTwoScalar<0, 1, 0b01110, "fcmlt", AArch64fcmltz>;
4699defm FCVTAS : SIMDFPTwoScalar<   0, 0, 0b11100, "fcvtas">;
4700defm FCVTAU : SIMDFPTwoScalar<   1, 0, 0b11100, "fcvtau">;
4701defm FCVTMS : SIMDFPTwoScalar<   0, 0, 0b11011, "fcvtms">;
4702defm FCVTMU : SIMDFPTwoScalar<   1, 0, 0b11011, "fcvtmu">;
4703defm FCVTNS : SIMDFPTwoScalar<   0, 0, 0b11010, "fcvtns">;
4704defm FCVTNU : SIMDFPTwoScalar<   1, 0, 0b11010, "fcvtnu">;
4705defm FCVTPS : SIMDFPTwoScalar<   0, 1, 0b11010, "fcvtps">;
4706defm FCVTPU : SIMDFPTwoScalar<   1, 1, 0b11010, "fcvtpu">;
4707def  FCVTXNv1i64 : SIMDInexactCvtTwoScalar<0b10110, "fcvtxn">;
4708defm FCVTZS : SIMDFPTwoScalar<   0, 1, 0b11011, "fcvtzs">;
4709defm FCVTZU : SIMDFPTwoScalar<   1, 1, 0b11011, "fcvtzu">;
4710defm FRECPE : SIMDFPTwoScalar<   0, 1, 0b11101, "frecpe">;
4711defm FRECPX : SIMDFPTwoScalar<   0, 1, 0b11111, "frecpx">;
4712defm FRSQRTE : SIMDFPTwoScalar<  1, 1, 0b11101, "frsqrte">;
4713defm NEG    : SIMDTwoScalarD<    1, 0b01011, "neg",
4714                                 UnOpFrag<(sub immAllZerosV, node:$LHS)> >;
4715defm SCVTF  : SIMDFPTwoScalarCVT<   0, 0, 0b11101, "scvtf", AArch64sitof>;
4716defm SQABS  : SIMDTwoScalarBHSD< 0, 0b00111, "sqabs", int_aarch64_neon_sqabs>;
4717defm SQNEG  : SIMDTwoScalarBHSD< 1, 0b00111, "sqneg", int_aarch64_neon_sqneg>;
4718defm SQXTN  : SIMDTwoScalarMixedBHS< 0, 0b10100, "sqxtn", int_aarch64_neon_scalar_sqxtn>;
4719defm SQXTUN : SIMDTwoScalarMixedBHS< 1, 0b10010, "sqxtun", int_aarch64_neon_scalar_sqxtun>;
4720defm SUQADD : SIMDTwoScalarBHSDTied< 0, 0b00011, "suqadd",
4721                                     int_aarch64_neon_suqadd>;
4722defm UCVTF  : SIMDFPTwoScalarCVT<   1, 0, 0b11101, "ucvtf", AArch64uitof>;
4723defm UQXTN  : SIMDTwoScalarMixedBHS<1, 0b10100, "uqxtn", int_aarch64_neon_scalar_uqxtn>;
4724defm USQADD : SIMDTwoScalarBHSDTied< 1, 0b00011, "usqadd",
4725                                    int_aarch64_neon_usqadd>;
4726
4727def : Pat<(v1i64 (int_aarch64_neon_fcvtas (v1f64 FPR64:$Rn))),
4728          (FCVTASv1i64 FPR64:$Rn)>;
4729def : Pat<(v1i64 (int_aarch64_neon_fcvtau (v1f64 FPR64:$Rn))),
4730          (FCVTAUv1i64 FPR64:$Rn)>;
4731def : Pat<(v1i64 (int_aarch64_neon_fcvtms (v1f64 FPR64:$Rn))),
4732          (FCVTMSv1i64 FPR64:$Rn)>;
4733def : Pat<(v1i64 (int_aarch64_neon_fcvtmu (v1f64 FPR64:$Rn))),
4734          (FCVTMUv1i64 FPR64:$Rn)>;
4735def : Pat<(v1i64 (int_aarch64_neon_fcvtns (v1f64 FPR64:$Rn))),
4736          (FCVTNSv1i64 FPR64:$Rn)>;
4737def : Pat<(v1i64 (int_aarch64_neon_fcvtnu (v1f64 FPR64:$Rn))),
4738          (FCVTNUv1i64 FPR64:$Rn)>;
4739def : Pat<(v1i64 (int_aarch64_neon_fcvtps (v1f64 FPR64:$Rn))),
4740          (FCVTPSv1i64 FPR64:$Rn)>;
4741def : Pat<(v1i64 (int_aarch64_neon_fcvtpu (v1f64 FPR64:$Rn))),
4742          (FCVTPUv1i64 FPR64:$Rn)>;
4743def : Pat<(v1i64 (int_aarch64_neon_fcvtzs (v1f64 FPR64:$Rn))),
4744          (FCVTZSv1i64 FPR64:$Rn)>;
4745def : Pat<(v1i64 (int_aarch64_neon_fcvtzu (v1f64 FPR64:$Rn))),
4746          (FCVTZUv1i64 FPR64:$Rn)>;
4747
4748def : Pat<(f16 (int_aarch64_neon_frecpe (f16 FPR16:$Rn))),
4749          (FRECPEv1f16 FPR16:$Rn)>;
4750def : Pat<(f32 (int_aarch64_neon_frecpe (f32 FPR32:$Rn))),
4751          (FRECPEv1i32 FPR32:$Rn)>;
4752def : Pat<(f64 (int_aarch64_neon_frecpe (f64 FPR64:$Rn))),
4753          (FRECPEv1i64 FPR64:$Rn)>;
4754def : Pat<(v1f64 (int_aarch64_neon_frecpe (v1f64 FPR64:$Rn))),
4755          (FRECPEv1i64 FPR64:$Rn)>;
4756
4757def : Pat<(f32 (AArch64frecpe (f32 FPR32:$Rn))),
4758          (FRECPEv1i32 FPR32:$Rn)>;
4759def : Pat<(v2f32 (AArch64frecpe (v2f32 V64:$Rn))),
4760          (FRECPEv2f32 V64:$Rn)>;
4761def : Pat<(v4f32 (AArch64frecpe (v4f32 FPR128:$Rn))),
4762          (FRECPEv4f32 FPR128:$Rn)>;
4763def : Pat<(f64 (AArch64frecpe (f64 FPR64:$Rn))),
4764          (FRECPEv1i64 FPR64:$Rn)>;
4765def : Pat<(v1f64 (AArch64frecpe (v1f64 FPR64:$Rn))),
4766          (FRECPEv1i64 FPR64:$Rn)>;
4767def : Pat<(v2f64 (AArch64frecpe (v2f64 FPR128:$Rn))),
4768          (FRECPEv2f64 FPR128:$Rn)>;
4769
4770def : Pat<(f32 (AArch64frecps (f32 FPR32:$Rn), (f32 FPR32:$Rm))),
4771          (FRECPS32 FPR32:$Rn, FPR32:$Rm)>;
4772def : Pat<(v2f32 (AArch64frecps (v2f32 V64:$Rn), (v2f32 V64:$Rm))),
4773          (FRECPSv2f32 V64:$Rn, V64:$Rm)>;
4774def : Pat<(v4f32 (AArch64frecps (v4f32 FPR128:$Rn), (v4f32 FPR128:$Rm))),
4775          (FRECPSv4f32 FPR128:$Rn, FPR128:$Rm)>;
4776def : Pat<(f64 (AArch64frecps (f64 FPR64:$Rn), (f64 FPR64:$Rm))),
4777          (FRECPS64 FPR64:$Rn, FPR64:$Rm)>;
4778def : Pat<(v2f64 (AArch64frecps (v2f64 FPR128:$Rn), (v2f64 FPR128:$Rm))),
4779          (FRECPSv2f64 FPR128:$Rn, FPR128:$Rm)>;
4780
4781def : Pat<(f16 (int_aarch64_neon_frecpx (f16 FPR16:$Rn))),
4782          (FRECPXv1f16 FPR16:$Rn)>;
4783def : Pat<(f32 (int_aarch64_neon_frecpx (f32 FPR32:$Rn))),
4784          (FRECPXv1i32 FPR32:$Rn)>;
4785def : Pat<(f64 (int_aarch64_neon_frecpx (f64 FPR64:$Rn))),
4786          (FRECPXv1i64 FPR64:$Rn)>;
4787
4788def : Pat<(f16 (int_aarch64_neon_frsqrte (f16 FPR16:$Rn))),
4789          (FRSQRTEv1f16 FPR16:$Rn)>;
4790def : Pat<(f32 (int_aarch64_neon_frsqrte (f32 FPR32:$Rn))),
4791          (FRSQRTEv1i32 FPR32:$Rn)>;
4792def : Pat<(f64 (int_aarch64_neon_frsqrte (f64 FPR64:$Rn))),
4793          (FRSQRTEv1i64 FPR64:$Rn)>;
4794def : Pat<(v1f64 (int_aarch64_neon_frsqrte (v1f64 FPR64:$Rn))),
4795          (FRSQRTEv1i64 FPR64:$Rn)>;
4796
4797def : Pat<(f32 (AArch64frsqrte (f32 FPR32:$Rn))),
4798          (FRSQRTEv1i32 FPR32:$Rn)>;
4799def : Pat<(v2f32 (AArch64frsqrte (v2f32 V64:$Rn))),
4800          (FRSQRTEv2f32 V64:$Rn)>;
4801def : Pat<(v4f32 (AArch64frsqrte (v4f32 FPR128:$Rn))),
4802          (FRSQRTEv4f32 FPR128:$Rn)>;
4803def : Pat<(f64 (AArch64frsqrte (f64 FPR64:$Rn))),
4804          (FRSQRTEv1i64 FPR64:$Rn)>;
4805def : Pat<(v1f64 (AArch64frsqrte (v1f64 FPR64:$Rn))),
4806          (FRSQRTEv1i64 FPR64:$Rn)>;
4807def : Pat<(v2f64 (AArch64frsqrte (v2f64 FPR128:$Rn))),
4808          (FRSQRTEv2f64 FPR128:$Rn)>;
4809
4810def : Pat<(f32 (AArch64frsqrts (f32 FPR32:$Rn), (f32 FPR32:$Rm))),
4811          (FRSQRTS32 FPR32:$Rn, FPR32:$Rm)>;
4812def : Pat<(v2f32 (AArch64frsqrts (v2f32 V64:$Rn), (v2f32 V64:$Rm))),
4813          (FRSQRTSv2f32 V64:$Rn, V64:$Rm)>;
4814def : Pat<(v4f32 (AArch64frsqrts (v4f32 FPR128:$Rn), (v4f32 FPR128:$Rm))),
4815          (FRSQRTSv4f32 FPR128:$Rn, FPR128:$Rm)>;
4816def : Pat<(f64 (AArch64frsqrts (f64 FPR64:$Rn), (f64 FPR64:$Rm))),
4817          (FRSQRTS64 FPR64:$Rn, FPR64:$Rm)>;
4818def : Pat<(v2f64 (AArch64frsqrts (v2f64 FPR128:$Rn), (v2f64 FPR128:$Rm))),
4819          (FRSQRTSv2f64 FPR128:$Rn, FPR128:$Rm)>;
4820
4821// Some float -> int -> float conversion patterns for which we want to keep the
4822// int values in FP registers using the corresponding NEON instructions to
4823// avoid more costly int <-> fp register transfers.
4824let Predicates = [HasNEON] in {
4825def : Pat<(f64 (sint_to_fp (i64 (fp_to_sint f64:$Rn)))),
4826          (SCVTFv1i64 (i64 (FCVTZSv1i64 f64:$Rn)))>;
4827def : Pat<(f32 (sint_to_fp (i32 (fp_to_sint f32:$Rn)))),
4828          (SCVTFv1i32 (i32 (FCVTZSv1i32 f32:$Rn)))>;
4829def : Pat<(f64 (uint_to_fp (i64 (fp_to_uint f64:$Rn)))),
4830          (UCVTFv1i64 (i64 (FCVTZUv1i64 f64:$Rn)))>;
4831def : Pat<(f32 (uint_to_fp (i32 (fp_to_uint f32:$Rn)))),
4832          (UCVTFv1i32 (i32 (FCVTZUv1i32 f32:$Rn)))>;
4833
4834let Predicates = [HasFullFP16] in {
4835def : Pat<(f16 (sint_to_fp (i32 (fp_to_sint f16:$Rn)))),
4836          (SCVTFv1i16 (f16 (FCVTZSv1f16 f16:$Rn)))>;
4837def : Pat<(f16 (uint_to_fp (i32 (fp_to_uint f16:$Rn)))),
4838          (UCVTFv1i16 (f16 (FCVTZUv1f16 f16:$Rn)))>;
4839}
4840}
4841
4842// If an integer is about to be converted to a floating point value,
4843// just load it on the floating point unit.
4844// Here are the patterns for 8 and 16-bits to float.
4845// 8-bits -> float.
4846multiclass UIntToFPROLoadPat<ValueType DstTy, ValueType SrcTy,
4847                             SDPatternOperator loadop, Instruction UCVTF,
4848                             ROAddrMode ro, Instruction LDRW, Instruction LDRX,
4849                             SubRegIndex sub> {
4850  def : Pat<(DstTy (uint_to_fp (SrcTy
4851                     (loadop (ro.Wpat GPR64sp:$Rn, GPR32:$Rm,
4852                                      ro.Wext:$extend))))),
4853           (UCVTF (INSERT_SUBREG (DstTy (IMPLICIT_DEF)),
4854                                 (LDRW GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend),
4855                                 sub))>;
4856
4857  def : Pat<(DstTy (uint_to_fp (SrcTy
4858                     (loadop (ro.Xpat GPR64sp:$Rn, GPR64:$Rm,
4859                                      ro.Wext:$extend))))),
4860           (UCVTF (INSERT_SUBREG (DstTy (IMPLICIT_DEF)),
4861                                 (LDRX GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend),
4862                                 sub))>;
4863}
4864
4865defm : UIntToFPROLoadPat<f32, i32, zextloadi8,
4866                         UCVTFv1i32, ro8, LDRBroW, LDRBroX, bsub>;
4867def : Pat <(f32 (uint_to_fp (i32
4868               (zextloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))))),
4869           (UCVTFv1i32 (INSERT_SUBREG (f32 (IMPLICIT_DEF)),
4870                          (LDRBui GPR64sp:$Rn, uimm12s1:$offset), bsub))>;
4871def : Pat <(f32 (uint_to_fp (i32
4872                     (zextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))))),
4873           (UCVTFv1i32 (INSERT_SUBREG (f32 (IMPLICIT_DEF)),
4874                          (LDURBi GPR64sp:$Rn, simm9:$offset), bsub))>;
4875// 16-bits -> float.
4876defm : UIntToFPROLoadPat<f32, i32, zextloadi16,
4877                         UCVTFv1i32, ro16, LDRHroW, LDRHroX, hsub>;
4878def : Pat <(f32 (uint_to_fp (i32
4879                  (zextloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))))),
4880           (UCVTFv1i32 (INSERT_SUBREG (f32 (IMPLICIT_DEF)),
4881                          (LDRHui GPR64sp:$Rn, uimm12s2:$offset), hsub))>;
4882def : Pat <(f32 (uint_to_fp (i32
4883                  (zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))))),
4884           (UCVTFv1i32 (INSERT_SUBREG (f32 (IMPLICIT_DEF)),
4885                          (LDURHi GPR64sp:$Rn, simm9:$offset), hsub))>;
4886// 32-bits are handled in target specific dag combine:
4887// performIntToFpCombine.
4888// 64-bits integer to 32-bits floating point, not possible with
4889// UCVTF on floating point registers (both source and destination
4890// must have the same size).
4891
4892// Here are the patterns for 8, 16, 32, and 64-bits to double.
4893// 8-bits -> double.
4894defm : UIntToFPROLoadPat<f64, i32, zextloadi8,
4895                         UCVTFv1i64, ro8, LDRBroW, LDRBroX, bsub>;
4896def : Pat <(f64 (uint_to_fp (i32
4897                    (zextloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))))),
4898           (UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
4899                          (LDRBui GPR64sp:$Rn, uimm12s1:$offset), bsub))>;
4900def : Pat <(f64 (uint_to_fp (i32
4901                  (zextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))))),
4902           (UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
4903                          (LDURBi GPR64sp:$Rn, simm9:$offset), bsub))>;
4904// 16-bits -> double.
4905defm : UIntToFPROLoadPat<f64, i32, zextloadi16,
4906                         UCVTFv1i64, ro16, LDRHroW, LDRHroX, hsub>;
4907def : Pat <(f64 (uint_to_fp (i32
4908                  (zextloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))))),
4909           (UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
4910                          (LDRHui GPR64sp:$Rn, uimm12s2:$offset), hsub))>;
4911def : Pat <(f64 (uint_to_fp (i32
4912                  (zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))))),
4913           (UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
4914                          (LDURHi GPR64sp:$Rn, simm9:$offset), hsub))>;
4915// 32-bits -> double.
4916defm : UIntToFPROLoadPat<f64, i32, load,
4917                         UCVTFv1i64, ro32, LDRSroW, LDRSroX, ssub>;
4918def : Pat <(f64 (uint_to_fp (i32
4919                  (load (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))))),
4920           (UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
4921                          (LDRSui GPR64sp:$Rn, uimm12s4:$offset), ssub))>;
4922def : Pat <(f64 (uint_to_fp (i32
4923                  (load (am_unscaled32 GPR64sp:$Rn, simm9:$offset))))),
4924           (UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
4925                          (LDURSi GPR64sp:$Rn, simm9:$offset), ssub))>;
4926// 64-bits -> double are handled in target specific dag combine:
4927// performIntToFpCombine.
4928
4929//===----------------------------------------------------------------------===//
4930// Advanced SIMD three different-sized vector instructions.
4931//===----------------------------------------------------------------------===//
4932
4933defm ADDHN  : SIMDNarrowThreeVectorBHS<0,0b0100,"addhn", int_aarch64_neon_addhn>;
4934defm SUBHN  : SIMDNarrowThreeVectorBHS<0,0b0110,"subhn", int_aarch64_neon_subhn>;
4935defm RADDHN : SIMDNarrowThreeVectorBHS<1,0b0100,"raddhn",int_aarch64_neon_raddhn>;
4936defm RSUBHN : SIMDNarrowThreeVectorBHS<1,0b0110,"rsubhn",int_aarch64_neon_rsubhn>;
4937defm PMULL  : SIMDDifferentThreeVectorBD<0,0b1110,"pmull",int_aarch64_neon_pmull>;
4938defm SABAL  : SIMDLongThreeVectorTiedBHSabal<0,0b0101,"sabal",
4939                                             AArch64sabd>;
4940defm SABDL   : SIMDLongThreeVectorBHSabdl<0, 0b0111, "sabdl",
4941                                          AArch64sabd>;
4942defm SADDL   : SIMDLongThreeVectorBHS<   0, 0b0000, "saddl",
4943            BinOpFrag<(add (sext node:$LHS), (sext node:$RHS))>>;
4944defm SADDW   : SIMDWideThreeVectorBHS<   0, 0b0001, "saddw",
4945                 BinOpFrag<(add node:$LHS, (sext node:$RHS))>>;
4946defm SMLAL   : SIMDLongThreeVectorTiedBHS<0, 0b1000, "smlal",
4947    TriOpFrag<(add node:$LHS, (int_aarch64_neon_smull node:$MHS, node:$RHS))>>;
4948defm SMLSL   : SIMDLongThreeVectorTiedBHS<0, 0b1010, "smlsl",
4949    TriOpFrag<(sub node:$LHS, (int_aarch64_neon_smull node:$MHS, node:$RHS))>>;
4950defm SMULL   : SIMDLongThreeVectorBHS<0, 0b1100, "smull", int_aarch64_neon_smull>;
4951defm SQDMLAL : SIMDLongThreeVectorSQDMLXTiedHS<0, 0b1001, "sqdmlal",
4952                                               int_aarch64_neon_sqadd>;
4953defm SQDMLSL : SIMDLongThreeVectorSQDMLXTiedHS<0, 0b1011, "sqdmlsl",
4954                                               int_aarch64_neon_sqsub>;
4955defm SQDMULL : SIMDLongThreeVectorHS<0, 0b1101, "sqdmull",
4956                                     int_aarch64_neon_sqdmull>;
4957defm SSUBL   : SIMDLongThreeVectorBHS<0, 0b0010, "ssubl",
4958                 BinOpFrag<(sub (sext node:$LHS), (sext node:$RHS))>>;
4959defm SSUBW   : SIMDWideThreeVectorBHS<0, 0b0011, "ssubw",
4960                 BinOpFrag<(sub node:$LHS, (sext node:$RHS))>>;
4961defm UABAL   : SIMDLongThreeVectorTiedBHSabal<1, 0b0101, "uabal",
4962                                              AArch64uabd>;
4963defm UADDL   : SIMDLongThreeVectorBHS<1, 0b0000, "uaddl",
4964                 BinOpFrag<(add (zanyext node:$LHS), (zanyext node:$RHS))>>;
4965defm UADDW   : SIMDWideThreeVectorBHS<1, 0b0001, "uaddw",
4966                 BinOpFrag<(add node:$LHS, (zanyext node:$RHS))>>;
4967defm UMLAL   : SIMDLongThreeVectorTiedBHS<1, 0b1000, "umlal",
4968    TriOpFrag<(add node:$LHS, (int_aarch64_neon_umull node:$MHS, node:$RHS))>>;
4969defm UMLSL   : SIMDLongThreeVectorTiedBHS<1, 0b1010, "umlsl",
4970    TriOpFrag<(sub node:$LHS, (int_aarch64_neon_umull node:$MHS, node:$RHS))>>;
4971defm UMULL   : SIMDLongThreeVectorBHS<1, 0b1100, "umull", int_aarch64_neon_umull>;
4972defm USUBL   : SIMDLongThreeVectorBHS<1, 0b0010, "usubl",
4973                 BinOpFrag<(sub (zanyext node:$LHS), (zanyext node:$RHS))>>;
4974defm USUBW   : SIMDWideThreeVectorBHS<   1, 0b0011, "usubw",
4975                 BinOpFrag<(sub node:$LHS, (zanyext node:$RHS))>>;
4976
4977// Additional patterns for [SU]ML[AS]L
4978multiclass Neon_mul_acc_widen_patterns<SDPatternOperator opnode, SDPatternOperator vecopnode,
4979  Instruction INST8B, Instruction INST4H, Instruction INST2S> {
4980  def : Pat<(v4i16 (opnode
4981                    V64:$Ra,
4982                    (v4i16 (extract_subvector
4983                            (vecopnode (v8i8 V64:$Rn),(v8i8 V64:$Rm)),
4984                            (i64 0))))),
4985             (EXTRACT_SUBREG (v8i16 (INST8B
4986                                     (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)), V64:$Ra, dsub),
4987                                     V64:$Rn, V64:$Rm)), dsub)>;
4988  def : Pat<(v2i32 (opnode
4989                    V64:$Ra,
4990                    (v2i32 (extract_subvector
4991                            (vecopnode (v4i16 V64:$Rn),(v4i16 V64:$Rm)),
4992                            (i64 0))))),
4993             (EXTRACT_SUBREG (v4i32 (INST4H
4994                                     (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), V64:$Ra, dsub),
4995                                     V64:$Rn, V64:$Rm)), dsub)>;
4996  def : Pat<(v1i64 (opnode
4997                    V64:$Ra,
4998                    (v1i64 (extract_subvector
4999                            (vecopnode (v2i32 V64:$Rn),(v2i32 V64:$Rm)),
5000                            (i64 0))))),
5001             (EXTRACT_SUBREG (v2i64 (INST2S
5002                                     (INSERT_SUBREG (v2i64 (IMPLICIT_DEF)), V64:$Ra, dsub),
5003                                     V64:$Rn, V64:$Rm)), dsub)>;
5004}
5005
5006defm : Neon_mul_acc_widen_patterns<add, int_aarch64_neon_umull,
5007     UMLALv8i8_v8i16, UMLALv4i16_v4i32, UMLALv2i32_v2i64>;
5008defm : Neon_mul_acc_widen_patterns<add, int_aarch64_neon_smull,
5009     SMLALv8i8_v8i16, SMLALv4i16_v4i32, SMLALv2i32_v2i64>;
5010defm : Neon_mul_acc_widen_patterns<sub, int_aarch64_neon_umull,
5011     UMLSLv8i8_v8i16, UMLSLv4i16_v4i32, UMLSLv2i32_v2i64>;
5012defm : Neon_mul_acc_widen_patterns<sub, int_aarch64_neon_smull,
5013     SMLSLv8i8_v8i16, SMLSLv4i16_v4i32, SMLSLv2i32_v2i64>;
5014
5015// Additional patterns for SMULL and UMULL
5016multiclass Neon_mul_widen_patterns<SDPatternOperator opnode,
5017  Instruction INST8B, Instruction INST4H, Instruction INST2S> {
5018  def : Pat<(v8i16 (opnode (v8i8 V64:$Rn), (v8i8 V64:$Rm))),
5019            (INST8B V64:$Rn, V64:$Rm)>;
5020  def : Pat<(v4i32 (opnode (v4i16 V64:$Rn), (v4i16 V64:$Rm))),
5021            (INST4H V64:$Rn, V64:$Rm)>;
5022  def : Pat<(v2i64 (opnode (v2i32 V64:$Rn), (v2i32 V64:$Rm))),
5023            (INST2S V64:$Rn, V64:$Rm)>;
5024}
5025
5026defm : Neon_mul_widen_patterns<AArch64smull, SMULLv8i8_v8i16,
5027  SMULLv4i16_v4i32, SMULLv2i32_v2i64>;
5028defm : Neon_mul_widen_patterns<AArch64umull, UMULLv8i8_v8i16,
5029  UMULLv4i16_v4i32, UMULLv2i32_v2i64>;
5030
5031// Patterns for smull2/umull2.
5032multiclass Neon_mul_high_patterns<SDPatternOperator opnode,
5033  Instruction INST8B, Instruction INST4H, Instruction INST2S> {
5034  def : Pat<(v8i16 (opnode (extract_high_v16i8 V128:$Rn),
5035                           (extract_high_v16i8 V128:$Rm))),
5036             (INST8B V128:$Rn, V128:$Rm)>;
5037  def : Pat<(v4i32 (opnode (extract_high_v8i16 V128:$Rn),
5038                           (extract_high_v8i16 V128:$Rm))),
5039             (INST4H V128:$Rn, V128:$Rm)>;
5040  def : Pat<(v2i64 (opnode (extract_high_v4i32 V128:$Rn),
5041                           (extract_high_v4i32 V128:$Rm))),
5042             (INST2S V128:$Rn, V128:$Rm)>;
5043}
5044
5045defm : Neon_mul_high_patterns<AArch64smull, SMULLv16i8_v8i16,
5046  SMULLv8i16_v4i32, SMULLv4i32_v2i64>;
5047defm : Neon_mul_high_patterns<AArch64umull, UMULLv16i8_v8i16,
5048  UMULLv8i16_v4i32, UMULLv4i32_v2i64>;
5049
5050// Additional patterns for SMLAL/SMLSL and UMLAL/UMLSL
5051multiclass Neon_mulacc_widen_patterns<SDPatternOperator opnode,
5052  Instruction INST8B, Instruction INST4H, Instruction INST2S> {
5053  def : Pat<(v8i16 (opnode (v8i16 V128:$Rd), (v8i8 V64:$Rn), (v8i8 V64:$Rm))),
5054            (INST8B V128:$Rd, V64:$Rn, V64:$Rm)>;
5055  def : Pat<(v4i32 (opnode (v4i32 V128:$Rd), (v4i16 V64:$Rn), (v4i16 V64:$Rm))),
5056            (INST4H V128:$Rd, V64:$Rn, V64:$Rm)>;
5057  def : Pat<(v2i64 (opnode (v2i64 V128:$Rd), (v2i32 V64:$Rn), (v2i32 V64:$Rm))),
5058            (INST2S  V128:$Rd, V64:$Rn, V64:$Rm)>;
5059}
5060
5061defm : Neon_mulacc_widen_patterns<
5062  TriOpFrag<(add node:$LHS, (AArch64smull node:$MHS, node:$RHS))>,
5063  SMLALv8i8_v8i16, SMLALv4i16_v4i32, SMLALv2i32_v2i64>;
5064defm : Neon_mulacc_widen_patterns<
5065  TriOpFrag<(add node:$LHS, (AArch64umull node:$MHS, node:$RHS))>,
5066  UMLALv8i8_v8i16, UMLALv4i16_v4i32, UMLALv2i32_v2i64>;
5067defm : Neon_mulacc_widen_patterns<
5068  TriOpFrag<(sub node:$LHS, (AArch64smull node:$MHS, node:$RHS))>,
5069  SMLSLv8i8_v8i16, SMLSLv4i16_v4i32, SMLSLv2i32_v2i64>;
5070defm : Neon_mulacc_widen_patterns<
5071  TriOpFrag<(sub node:$LHS, (AArch64umull node:$MHS, node:$RHS))>,
5072  UMLSLv8i8_v8i16, UMLSLv4i16_v4i32, UMLSLv2i32_v2i64>;
5073
5074// Patterns for 64-bit pmull
5075def : Pat<(int_aarch64_neon_pmull64 V64:$Rn, V64:$Rm),
5076          (PMULLv1i64 V64:$Rn, V64:$Rm)>;
5077def : Pat<(int_aarch64_neon_pmull64 (extractelt (v2i64 V128:$Rn), (i64 1)),
5078                                    (extractelt (v2i64 V128:$Rm), (i64 1))),
5079          (PMULLv2i64 V128:$Rn, V128:$Rm)>;
5080
5081// CodeGen patterns for addhn and subhn instructions, which can actually be
5082// written in LLVM IR without too much difficulty.
5083
5084// ADDHN
5085def : Pat<(v8i8 (trunc (v8i16 (AArch64vlshr (add V128:$Rn, V128:$Rm), (i32 8))))),
5086          (ADDHNv8i16_v8i8 V128:$Rn, V128:$Rm)>;
5087def : Pat<(v4i16 (trunc (v4i32 (AArch64vlshr (add V128:$Rn, V128:$Rm),
5088                                           (i32 16))))),
5089          (ADDHNv4i32_v4i16 V128:$Rn, V128:$Rm)>;
5090def : Pat<(v2i32 (trunc (v2i64 (AArch64vlshr (add V128:$Rn, V128:$Rm),
5091                                           (i32 32))))),
5092          (ADDHNv2i64_v2i32 V128:$Rn, V128:$Rm)>;
5093def : Pat<(concat_vectors (v8i8 V64:$Rd),
5094                          (trunc (v8i16 (AArch64vlshr (add V128:$Rn, V128:$Rm),
5095                                                    (i32 8))))),
5096          (ADDHNv8i16_v16i8 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub),
5097                            V128:$Rn, V128:$Rm)>;
5098def : Pat<(concat_vectors (v4i16 V64:$Rd),
5099                          (trunc (v4i32 (AArch64vlshr (add V128:$Rn, V128:$Rm),
5100                                                    (i32 16))))),
5101          (ADDHNv4i32_v8i16 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub),
5102                            V128:$Rn, V128:$Rm)>;
5103def : Pat<(concat_vectors (v2i32 V64:$Rd),
5104                          (trunc (v2i64 (AArch64vlshr (add V128:$Rn, V128:$Rm),
5105                                                    (i32 32))))),
5106          (ADDHNv2i64_v4i32 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub),
5107                            V128:$Rn, V128:$Rm)>;
5108
5109// SUBHN
5110def : Pat<(v8i8 (trunc (v8i16 (AArch64vlshr (sub V128:$Rn, V128:$Rm), (i32 8))))),
5111          (SUBHNv8i16_v8i8 V128:$Rn, V128:$Rm)>;
5112def : Pat<(v4i16 (trunc (v4i32 (AArch64vlshr (sub V128:$Rn, V128:$Rm),
5113                                           (i32 16))))),
5114          (SUBHNv4i32_v4i16 V128:$Rn, V128:$Rm)>;
5115def : Pat<(v2i32 (trunc (v2i64 (AArch64vlshr (sub V128:$Rn, V128:$Rm),
5116                                           (i32 32))))),
5117          (SUBHNv2i64_v2i32 V128:$Rn, V128:$Rm)>;
5118def : Pat<(concat_vectors (v8i8 V64:$Rd),
5119                          (trunc (v8i16 (AArch64vlshr (sub V128:$Rn, V128:$Rm),
5120                                                    (i32 8))))),
5121          (SUBHNv8i16_v16i8 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub),
5122                            V128:$Rn, V128:$Rm)>;
5123def : Pat<(concat_vectors (v4i16 V64:$Rd),
5124                          (trunc (v4i32 (AArch64vlshr (sub V128:$Rn, V128:$Rm),
5125                                                    (i32 16))))),
5126          (SUBHNv4i32_v8i16 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub),
5127                            V128:$Rn, V128:$Rm)>;
5128def : Pat<(concat_vectors (v2i32 V64:$Rd),
5129                          (trunc (v2i64 (AArch64vlshr (sub V128:$Rn, V128:$Rm),
5130                                                    (i32 32))))),
5131          (SUBHNv2i64_v4i32 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub),
5132                            V128:$Rn, V128:$Rm)>;
5133
5134//----------------------------------------------------------------------------
5135// AdvSIMD bitwise extract from vector instruction.
5136//----------------------------------------------------------------------------
5137
5138defm EXT : SIMDBitwiseExtract<"ext">;
5139
5140def AdjustExtImm : SDNodeXForm<imm, [{
5141  return CurDAG->getTargetConstant(8 + N->getZExtValue(), SDLoc(N), MVT::i32);
5142}]>;
5143multiclass ExtPat<ValueType VT64, ValueType VT128, int N> {
5144  def : Pat<(VT64 (AArch64ext V64:$Rn, V64:$Rm, (i32 imm:$imm))),
5145            (EXTv8i8 V64:$Rn, V64:$Rm, imm:$imm)>;
5146  def : Pat<(VT128 (AArch64ext V128:$Rn, V128:$Rm, (i32 imm:$imm))),
5147            (EXTv16i8 V128:$Rn, V128:$Rm, imm:$imm)>;
5148  // We use EXT to handle extract_subvector to copy the upper 64-bits of a
5149  // 128-bit vector.
5150  def : Pat<(VT64 (extract_subvector V128:$Rn, (i64 N))),
5151            (EXTRACT_SUBREG (EXTv16i8 V128:$Rn, V128:$Rn, 8), dsub)>;
5152  // A 64-bit EXT of two halves of the same 128-bit register can be done as a
5153  // single 128-bit EXT.
5154  def : Pat<(VT64 (AArch64ext (extract_subvector V128:$Rn, (i64 0)),
5155                              (extract_subvector V128:$Rn, (i64 N)),
5156                              (i32 imm:$imm))),
5157            (EXTRACT_SUBREG (EXTv16i8 V128:$Rn, V128:$Rn, imm:$imm), dsub)>;
5158  // A 64-bit EXT of the high half of a 128-bit register can be done using a
5159  // 128-bit EXT of the whole register with an adjustment to the immediate. The
5160  // top half of the other operand will be unset, but that doesn't matter as it
5161  // will not be used.
5162  def : Pat<(VT64 (AArch64ext (extract_subvector V128:$Rn, (i64 N)),
5163                              V64:$Rm,
5164                              (i32 imm:$imm))),
5165            (EXTRACT_SUBREG (EXTv16i8 V128:$Rn,
5166                                      (SUBREG_TO_REG (i32 0), V64:$Rm, dsub),
5167                                      (AdjustExtImm imm:$imm)), dsub)>;
5168}
5169
5170defm : ExtPat<v8i8, v16i8, 8>;
5171defm : ExtPat<v4i16, v8i16, 4>;
5172defm : ExtPat<v4f16, v8f16, 4>;
5173defm : ExtPat<v4bf16, v8bf16, 4>;
5174defm : ExtPat<v2i32, v4i32, 2>;
5175defm : ExtPat<v2f32, v4f32, 2>;
5176defm : ExtPat<v1i64, v2i64, 1>;
5177defm : ExtPat<v1f64, v2f64, 1>;
5178
5179//----------------------------------------------------------------------------
5180// AdvSIMD zip vector
5181//----------------------------------------------------------------------------
5182
5183defm TRN1 : SIMDZipVector<0b010, "trn1", AArch64trn1>;
5184defm TRN2 : SIMDZipVector<0b110, "trn2", AArch64trn2>;
5185defm UZP1 : SIMDZipVector<0b001, "uzp1", AArch64uzp1>;
5186defm UZP2 : SIMDZipVector<0b101, "uzp2", AArch64uzp2>;
5187defm ZIP1 : SIMDZipVector<0b011, "zip1", AArch64zip1>;
5188defm ZIP2 : SIMDZipVector<0b111, "zip2", AArch64zip2>;
5189
5190//----------------------------------------------------------------------------
5191// AdvSIMD TBL/TBX instructions
5192//----------------------------------------------------------------------------
5193
5194defm TBL : SIMDTableLookup<    0, "tbl">;
5195defm TBX : SIMDTableLookupTied<1, "tbx">;
5196
5197def : Pat<(v8i8 (int_aarch64_neon_tbl1 (v16i8 VecListOne128:$Rn), (v8i8 V64:$Ri))),
5198          (TBLv8i8One VecListOne128:$Rn, V64:$Ri)>;
5199def : Pat<(v16i8 (int_aarch64_neon_tbl1 (v16i8 V128:$Ri), (v16i8 V128:$Rn))),
5200          (TBLv16i8One V128:$Ri, V128:$Rn)>;
5201
5202def : Pat<(v8i8 (int_aarch64_neon_tbx1 (v8i8 V64:$Rd),
5203                  (v16i8 VecListOne128:$Rn), (v8i8 V64:$Ri))),
5204          (TBXv8i8One V64:$Rd, VecListOne128:$Rn, V64:$Ri)>;
5205def : Pat<(v16i8 (int_aarch64_neon_tbx1 (v16i8 V128:$Rd),
5206                   (v16i8 V128:$Ri), (v16i8 V128:$Rn))),
5207          (TBXv16i8One V128:$Rd, V128:$Ri, V128:$Rn)>;
5208
5209
5210//----------------------------------------------------------------------------
5211// AdvSIMD scalar CPY instruction
5212//----------------------------------------------------------------------------
5213
5214defm CPY : SIMDScalarCPY<"cpy">;
5215
5216//----------------------------------------------------------------------------
5217// AdvSIMD scalar pairwise instructions
5218//----------------------------------------------------------------------------
5219
5220defm ADDP    : SIMDPairwiseScalarD<0, 0b11011, "addp">;
5221defm FADDP   : SIMDFPPairwiseScalar<0, 0b01101, "faddp">;
5222defm FMAXNMP : SIMDFPPairwiseScalar<0, 0b01100, "fmaxnmp">;
5223defm FMAXP   : SIMDFPPairwiseScalar<0, 0b01111, "fmaxp">;
5224defm FMINNMP : SIMDFPPairwiseScalar<1, 0b01100, "fminnmp">;
5225defm FMINP   : SIMDFPPairwiseScalar<1, 0b01111, "fminp">;
5226
5227let Predicates = [HasFullFP16] in {
5228def : Pat<(f16 (vecreduce_fadd (v8f16 V128:$Rn))),
5229            (FADDPv2i16p
5230              (EXTRACT_SUBREG
5231                 (FADDPv8f16 (FADDPv8f16 V128:$Rn, (v8f16 (IMPLICIT_DEF))), (v8f16 (IMPLICIT_DEF))),
5232               dsub))>;
5233def : Pat<(f16 (vecreduce_fadd (v4f16 V64:$Rn))),
5234          (FADDPv2i16p (FADDPv4f16 V64:$Rn, (v4f16 (IMPLICIT_DEF))))>;
5235}
5236def : Pat<(f32 (vecreduce_fadd (v4f32 V128:$Rn))),
5237          (FADDPv2i32p
5238            (EXTRACT_SUBREG
5239              (FADDPv4f32 V128:$Rn, (v4f32 (IMPLICIT_DEF))),
5240             dsub))>;
5241def : Pat<(f32 (vecreduce_fadd (v2f32 V64:$Rn))),
5242          (FADDPv2i32p V64:$Rn)>;
5243def : Pat<(f64 (vecreduce_fadd (v2f64 V128:$Rn))),
5244          (FADDPv2i64p V128:$Rn)>;
5245
5246def : Pat<(v2i64 (AArch64saddv V128:$Rn)),
5247          (INSERT_SUBREG (v2i64 (IMPLICIT_DEF)), (ADDPv2i64p V128:$Rn), dsub)>;
5248def : Pat<(v2i64 (AArch64uaddv V128:$Rn)),
5249          (INSERT_SUBREG (v2i64 (IMPLICIT_DEF)), (ADDPv2i64p V128:$Rn), dsub)>;
5250def : Pat<(f32 (int_aarch64_neon_faddv (v2f32 V64:$Rn))),
5251          (FADDPv2i32p V64:$Rn)>;
5252def : Pat<(f32 (int_aarch64_neon_faddv (v4f32 V128:$Rn))),
5253          (FADDPv2i32p (EXTRACT_SUBREG (FADDPv4f32 V128:$Rn, V128:$Rn), dsub))>;
5254def : Pat<(f64 (int_aarch64_neon_faddv (v2f64 V128:$Rn))),
5255          (FADDPv2i64p V128:$Rn)>;
5256def : Pat<(f32 (int_aarch64_neon_fmaxnmv (v2f32 V64:$Rn))),
5257          (FMAXNMPv2i32p V64:$Rn)>;
5258def : Pat<(f64 (int_aarch64_neon_fmaxnmv (v2f64 V128:$Rn))),
5259          (FMAXNMPv2i64p V128:$Rn)>;
5260def : Pat<(f32 (int_aarch64_neon_fmaxv (v2f32 V64:$Rn))),
5261          (FMAXPv2i32p V64:$Rn)>;
5262def : Pat<(f64 (int_aarch64_neon_fmaxv (v2f64 V128:$Rn))),
5263          (FMAXPv2i64p V128:$Rn)>;
5264def : Pat<(f32 (int_aarch64_neon_fminnmv (v2f32 V64:$Rn))),
5265          (FMINNMPv2i32p V64:$Rn)>;
5266def : Pat<(f64 (int_aarch64_neon_fminnmv (v2f64 V128:$Rn))),
5267          (FMINNMPv2i64p V128:$Rn)>;
5268def : Pat<(f32 (int_aarch64_neon_fminv (v2f32 V64:$Rn))),
5269          (FMINPv2i32p V64:$Rn)>;
5270def : Pat<(f64 (int_aarch64_neon_fminv (v2f64 V128:$Rn))),
5271          (FMINPv2i64p V128:$Rn)>;
5272
5273//----------------------------------------------------------------------------
5274// AdvSIMD INS/DUP instructions
5275//----------------------------------------------------------------------------
5276
5277def DUPv8i8gpr  : SIMDDupFromMain<0, {?,?,?,?,1}, ".8b", v8i8, V64, GPR32>;
5278def DUPv16i8gpr : SIMDDupFromMain<1, {?,?,?,?,1}, ".16b", v16i8, V128, GPR32>;
5279def DUPv4i16gpr : SIMDDupFromMain<0, {?,?,?,1,0}, ".4h", v4i16, V64, GPR32>;
5280def DUPv8i16gpr : SIMDDupFromMain<1, {?,?,?,1,0}, ".8h", v8i16, V128, GPR32>;
5281def DUPv2i32gpr : SIMDDupFromMain<0, {?,?,1,0,0}, ".2s", v2i32, V64, GPR32>;
5282def DUPv4i32gpr : SIMDDupFromMain<1, {?,?,1,0,0}, ".4s", v4i32, V128, GPR32>;
5283def DUPv2i64gpr : SIMDDupFromMain<1, {?,1,0,0,0}, ".2d", v2i64, V128, GPR64>;
5284
5285def DUPv2i64lane : SIMDDup64FromElement;
5286def DUPv2i32lane : SIMDDup32FromElement<0, ".2s", v2i32, V64>;
5287def DUPv4i32lane : SIMDDup32FromElement<1, ".4s", v4i32, V128>;
5288def DUPv4i16lane : SIMDDup16FromElement<0, ".4h", v4i16, V64>;
5289def DUPv8i16lane : SIMDDup16FromElement<1, ".8h", v8i16, V128>;
5290def DUPv8i8lane  : SIMDDup8FromElement <0, ".8b", v8i8, V64>;
5291def DUPv16i8lane : SIMDDup8FromElement <1, ".16b", v16i8, V128>;
5292
5293// DUP from a 64-bit register to a 64-bit register is just a copy
5294def : Pat<(v1i64 (AArch64dup (i64 GPR64:$Rn))),
5295          (COPY_TO_REGCLASS GPR64:$Rn, FPR64)>;
5296def : Pat<(v1f64 (AArch64dup (f64 FPR64:$Rn))),
5297          (COPY_TO_REGCLASS FPR64:$Rn, FPR64)>;
5298
5299def : Pat<(v2f32 (AArch64dup (f32 FPR32:$Rn))),
5300          (v2f32 (DUPv2i32lane
5301            (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR32:$Rn, ssub),
5302            (i64 0)))>;
5303def : Pat<(v4f32 (AArch64dup (f32 FPR32:$Rn))),
5304          (v4f32 (DUPv4i32lane
5305            (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR32:$Rn, ssub),
5306            (i64 0)))>;
5307def : Pat<(v2f64 (AArch64dup (f64 FPR64:$Rn))),
5308          (v2f64 (DUPv2i64lane
5309            (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR64:$Rn, dsub),
5310            (i64 0)))>;
5311def : Pat<(v4f16 (AArch64dup (f16 FPR16:$Rn))),
5312          (v4f16 (DUPv4i16lane
5313            (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)), FPR16:$Rn, hsub),
5314            (i64 0)))>;
5315def : Pat<(v4bf16 (AArch64dup (bf16 FPR16:$Rn))),
5316          (v4bf16 (DUPv4i16lane
5317            (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)), FPR16:$Rn, hsub),
5318            (i64 0)))>;
5319def : Pat<(v8f16 (AArch64dup (f16 FPR16:$Rn))),
5320          (v8f16 (DUPv8i16lane
5321            (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)), FPR16:$Rn, hsub),
5322            (i64 0)))>;
5323def : Pat<(v8bf16 (AArch64dup (bf16 FPR16:$Rn))),
5324          (v8bf16 (DUPv8i16lane
5325            (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)), FPR16:$Rn, hsub),
5326            (i64 0)))>;
5327
5328def : Pat<(v4f16 (AArch64duplane16 (v8f16 V128:$Rn), VectorIndexH:$imm)),
5329          (DUPv4i16lane V128:$Rn, VectorIndexH:$imm)>;
5330def : Pat<(v8f16 (AArch64duplane16 (v8f16 V128:$Rn), VectorIndexH:$imm)),
5331          (DUPv8i16lane V128:$Rn, VectorIndexH:$imm)>;
5332
5333def : Pat<(v4bf16 (AArch64duplane16 (v8bf16 V128:$Rn), VectorIndexH:$imm)),
5334          (DUPv4i16lane V128:$Rn, VectorIndexH:$imm)>;
5335def : Pat<(v8bf16 (AArch64duplane16 (v8bf16 V128:$Rn), VectorIndexH:$imm)),
5336          (DUPv8i16lane V128:$Rn, VectorIndexH:$imm)>;
5337
5338def : Pat<(v2f32 (AArch64duplane32 (v4f32 V128:$Rn), VectorIndexS:$imm)),
5339          (DUPv2i32lane V128:$Rn, VectorIndexS:$imm)>;
5340def : Pat<(v4f32 (AArch64duplane32 (v4f32 V128:$Rn), VectorIndexS:$imm)),
5341         (DUPv4i32lane V128:$Rn, VectorIndexS:$imm)>;
5342def : Pat<(v2f64 (AArch64duplane64 (v2f64 V128:$Rn), VectorIndexD:$imm)),
5343          (DUPv2i64lane V128:$Rn, VectorIndexD:$imm)>;
5344
5345// If there's an (AArch64dup (vector_extract ...) ...), we can use a duplane
5346// instruction even if the types don't match: we just have to remap the lane
5347// carefully. N.b. this trick only applies to truncations.
5348def VecIndex_x2 : SDNodeXForm<imm, [{
5349  return CurDAG->getTargetConstant(2 * N->getZExtValue(), SDLoc(N), MVT::i64);
5350}]>;
5351def VecIndex_x4 : SDNodeXForm<imm, [{
5352  return CurDAG->getTargetConstant(4 * N->getZExtValue(), SDLoc(N), MVT::i64);
5353}]>;
5354def VecIndex_x8 : SDNodeXForm<imm, [{
5355  return CurDAG->getTargetConstant(8 * N->getZExtValue(), SDLoc(N), MVT::i64);
5356}]>;
5357
5358multiclass DUPWithTruncPats<ValueType ResVT, ValueType Src64VT,
5359                            ValueType Src128VT, ValueType ScalVT,
5360                            Instruction DUP, SDNodeXForm IdxXFORM> {
5361  def : Pat<(ResVT (AArch64dup (ScalVT (vector_extract (Src128VT V128:$Rn),
5362                                                     imm:$idx)))),
5363            (DUP V128:$Rn, (IdxXFORM imm:$idx))>;
5364
5365  def : Pat<(ResVT (AArch64dup (ScalVT (vector_extract (Src64VT V64:$Rn),
5366                                                     imm:$idx)))),
5367            (DUP (SUBREG_TO_REG (i64 0), V64:$Rn, dsub), (IdxXFORM imm:$idx))>;
5368}
5369
5370defm : DUPWithTruncPats<v8i8,   v4i16, v8i16, i32, DUPv8i8lane,  VecIndex_x2>;
5371defm : DUPWithTruncPats<v8i8,   v2i32, v4i32, i32, DUPv8i8lane,  VecIndex_x4>;
5372defm : DUPWithTruncPats<v4i16,  v2i32, v4i32, i32, DUPv4i16lane, VecIndex_x2>;
5373
5374defm : DUPWithTruncPats<v16i8,  v4i16, v8i16, i32, DUPv16i8lane, VecIndex_x2>;
5375defm : DUPWithTruncPats<v16i8,  v2i32, v4i32, i32, DUPv16i8lane, VecIndex_x4>;
5376defm : DUPWithTruncPats<v8i16,  v2i32, v4i32, i32, DUPv8i16lane, VecIndex_x2>;
5377
5378multiclass DUPWithTrunci64Pats<ValueType ResVT, Instruction DUP,
5379                               SDNodeXForm IdxXFORM> {
5380  def : Pat<(ResVT (AArch64dup (i32 (trunc (extractelt (v2i64 V128:$Rn),
5381                                                         imm:$idx))))),
5382            (DUP V128:$Rn, (IdxXFORM imm:$idx))>;
5383
5384  def : Pat<(ResVT (AArch64dup (i32 (trunc (extractelt (v1i64 V64:$Rn),
5385                                                       imm:$idx))))),
5386            (DUP (SUBREG_TO_REG (i64 0), V64:$Rn, dsub), (IdxXFORM imm:$idx))>;
5387}
5388
5389defm : DUPWithTrunci64Pats<v8i8,  DUPv8i8lane,   VecIndex_x8>;
5390defm : DUPWithTrunci64Pats<v4i16, DUPv4i16lane,  VecIndex_x4>;
5391defm : DUPWithTrunci64Pats<v2i32, DUPv2i32lane,  VecIndex_x2>;
5392
5393defm : DUPWithTrunci64Pats<v16i8, DUPv16i8lane, VecIndex_x8>;
5394defm : DUPWithTrunci64Pats<v8i16, DUPv8i16lane, VecIndex_x4>;
5395defm : DUPWithTrunci64Pats<v4i32, DUPv4i32lane, VecIndex_x2>;
5396
5397// SMOV and UMOV definitions, with some extra patterns for convenience
5398defm SMOV : SMov;
5399defm UMOV : UMov;
5400
5401def : Pat<(sext_inreg (vector_extract (v16i8 V128:$Rn), VectorIndexB:$idx), i8),
5402          (i32 (SMOVvi8to32 V128:$Rn, VectorIndexB:$idx))>;
5403def : Pat<(sext_inreg (vector_extract (v16i8 V128:$Rn), VectorIndexB:$idx), i8),
5404          (i64 (SMOVvi8to64 V128:$Rn, VectorIndexB:$idx))>;
5405def : Pat<(sext_inreg (vector_extract (v8i16 V128:$Rn), VectorIndexH:$idx),i16),
5406          (i32 (SMOVvi16to32 V128:$Rn, VectorIndexH:$idx))>;
5407def : Pat<(sext_inreg (vector_extract (v8i16 V128:$Rn), VectorIndexH:$idx),i16),
5408          (i64 (SMOVvi16to64 V128:$Rn, VectorIndexH:$idx))>;
5409def : Pat<(sext_inreg (vector_extract (v8i16 V128:$Rn), VectorIndexH:$idx),i16),
5410          (i32 (SMOVvi16to32 V128:$Rn, VectorIndexH:$idx))>;
5411def : Pat<(sext (i32 (vector_extract (v4i32 V128:$Rn), VectorIndexS:$idx))),
5412          (i64 (SMOVvi32to64 V128:$Rn, VectorIndexS:$idx))>;
5413
5414def : Pat<(sext_inreg (i64 (anyext (i32 (vector_extract (v16i8 V128:$Rn),
5415            VectorIndexB:$idx)))), i8),
5416          (i64 (SMOVvi8to64 V128:$Rn, VectorIndexB:$idx))>;
5417def : Pat<(sext_inreg (i64 (anyext (i32 (vector_extract (v8i16 V128:$Rn),
5418            VectorIndexH:$idx)))), i16),
5419          (i64 (SMOVvi16to64 V128:$Rn, VectorIndexH:$idx))>;
5420
5421// Extracting i8 or i16 elements will have the zero-extend transformed to
5422// an 'and' mask by type legalization since neither i8 nor i16 are legal types
5423// for AArch64. Match these patterns here since UMOV already zeroes out the high
5424// bits of the destination register.
5425def : Pat<(and (vector_extract (v16i8 V128:$Rn), VectorIndexB:$idx),
5426               (i32 0xff)),
5427          (i32 (UMOVvi8 V128:$Rn, VectorIndexB:$idx))>;
5428def : Pat<(and (vector_extract (v8i16 V128:$Rn), VectorIndexH:$idx),
5429               (i32 0xffff)),
5430          (i32 (UMOVvi16 V128:$Rn, VectorIndexH:$idx))>;
5431
5432def : Pat<(i64 (and (i64 (anyext (i32 (vector_extract (v16i8 V128:$Rn),
5433            VectorIndexB:$idx)))), (i64 0xff))),
5434          (SUBREG_TO_REG (i64 0), (i32 (UMOVvi8 V128:$Rn, VectorIndexB:$idx)), sub_32)>;
5435def : Pat<(i64 (and (i64 (anyext (i32 (vector_extract (v8i16 V128:$Rn),
5436            VectorIndexH:$idx)))), (i64 0xffff))),
5437          (SUBREG_TO_REG (i64 0), (i32 (UMOVvi16 V128:$Rn, VectorIndexH:$idx)), sub_32)>;
5438
5439defm INS : SIMDIns;
5440
5441def : Pat<(v16i8 (scalar_to_vector GPR32:$Rn)),
5442          (SUBREG_TO_REG (i32 0),
5443                         (f32 (COPY_TO_REGCLASS GPR32:$Rn, FPR32)), ssub)>;
5444def : Pat<(v8i8 (scalar_to_vector GPR32:$Rn)),
5445          (SUBREG_TO_REG (i32 0),
5446                         (f32 (COPY_TO_REGCLASS GPR32:$Rn, FPR32)), ssub)>;
5447
5448def : Pat<(v8i16 (scalar_to_vector GPR32:$Rn)),
5449          (SUBREG_TO_REG (i32 0),
5450                         (f32 (COPY_TO_REGCLASS GPR32:$Rn, FPR32)), ssub)>;
5451def : Pat<(v4i16 (scalar_to_vector GPR32:$Rn)),
5452          (SUBREG_TO_REG (i32 0),
5453                         (f32 (COPY_TO_REGCLASS GPR32:$Rn, FPR32)), ssub)>;
5454
5455def : Pat<(v4f16 (scalar_to_vector (f16 FPR16:$Rn))),
5456          (INSERT_SUBREG (v4f16 (IMPLICIT_DEF)), FPR16:$Rn, hsub)>;
5457def : Pat<(v8f16 (scalar_to_vector (f16 FPR16:$Rn))),
5458          (INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), FPR16:$Rn, hsub)>;
5459
5460def : Pat<(v4bf16 (scalar_to_vector (bf16 FPR16:$Rn))),
5461          (INSERT_SUBREG (v4bf16 (IMPLICIT_DEF)), FPR16:$Rn, hsub)>;
5462def : Pat<(v8bf16 (scalar_to_vector (bf16 FPR16:$Rn))),
5463          (INSERT_SUBREG (v8bf16 (IMPLICIT_DEF)), FPR16:$Rn, hsub)>;
5464
5465def : Pat<(v2i32 (scalar_to_vector (i32 FPR32:$Rn))),
5466            (v2i32 (INSERT_SUBREG (v2i32 (IMPLICIT_DEF)),
5467                                  (i32 FPR32:$Rn), ssub))>;
5468def : Pat<(v4i32 (scalar_to_vector (i32 FPR32:$Rn))),
5469            (v4i32 (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)),
5470                                  (i32 FPR32:$Rn), ssub))>;
5471
5472def : Pat<(v2i64 (scalar_to_vector (i64 FPR64:$Rn))),
5473            (v2i64 (INSERT_SUBREG (v2i64 (IMPLICIT_DEF)),
5474                                  (i64 FPR64:$Rn), dsub))>;
5475
5476def : Pat<(v4f16 (scalar_to_vector (f16 FPR16:$Rn))),
5477          (INSERT_SUBREG (v4f16 (IMPLICIT_DEF)), FPR16:$Rn, hsub)>;
5478def : Pat<(v8f16 (scalar_to_vector (f16 FPR16:$Rn))),
5479          (INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), FPR16:$Rn, hsub)>;
5480
5481def : Pat<(v4bf16 (scalar_to_vector (bf16 FPR16:$Rn))),
5482          (INSERT_SUBREG (v4bf16 (IMPLICIT_DEF)), FPR16:$Rn, hsub)>;
5483def : Pat<(v8bf16 (scalar_to_vector (bf16 FPR16:$Rn))),
5484          (INSERT_SUBREG (v8bf16 (IMPLICIT_DEF)), FPR16:$Rn, hsub)>;
5485
5486def : Pat<(v4f32 (scalar_to_vector (f32 FPR32:$Rn))),
5487          (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), FPR32:$Rn, ssub)>;
5488def : Pat<(v2f32 (scalar_to_vector (f32 FPR32:$Rn))),
5489          (INSERT_SUBREG (v2f32 (IMPLICIT_DEF)), FPR32:$Rn, ssub)>;
5490
5491def : Pat<(v2f64 (scalar_to_vector (f64 FPR64:$Rn))),
5492          (INSERT_SUBREG (v2f64 (IMPLICIT_DEF)), FPR64:$Rn, dsub)>;
5493
5494def : Pat<(v4f16 (vector_insert (v4f16 V64:$Rn),
5495            (f16 FPR16:$Rm), (i64 VectorIndexS:$imm))),
5496          (EXTRACT_SUBREG
5497            (INSvi16lane
5498              (v8f16 (INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), V64:$Rn, dsub)),
5499              VectorIndexS:$imm,
5500              (v8f16 (INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), FPR16:$Rm, hsub)),
5501              (i64 0)),
5502            dsub)>;
5503
5504def : Pat<(vector_insert (v8f16 v8f16:$Rn), (f16 fpimm0),
5505            (i64 VectorIndexH:$imm)),
5506          (INSvi16gpr V128:$Rn, VectorIndexH:$imm, WZR)>;
5507def : Pat<(vector_insert v4f32:$Rn, (f32 fpimm0),
5508            (i64 VectorIndexS:$imm)),
5509          (INSvi32gpr V128:$Rn, VectorIndexS:$imm, WZR)>;
5510def : Pat<(vector_insert v2f64:$Rn, (f64 fpimm0),
5511            (i64 VectorIndexD:$imm)),
5512          (INSvi64gpr V128:$Rn, VectorIndexS:$imm, XZR)>;
5513
5514def : Pat<(v8f16 (vector_insert (v8f16 V128:$Rn),
5515            (f16 FPR16:$Rm), (i64 VectorIndexH:$imm))),
5516          (INSvi16lane
5517            V128:$Rn, VectorIndexH:$imm,
5518            (v8f16 (INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), FPR16:$Rm, hsub)),
5519            (i64 0))>;
5520
5521def : Pat<(v4bf16 (vector_insert (v4bf16 V64:$Rn),
5522            (bf16 FPR16:$Rm), (i64 VectorIndexS:$imm))),
5523          (EXTRACT_SUBREG
5524            (INSvi16lane
5525              (v8bf16 (INSERT_SUBREG (v8bf16 (IMPLICIT_DEF)), V64:$Rn, dsub)),
5526              VectorIndexS:$imm,
5527              (v8bf16 (INSERT_SUBREG (v8bf16 (IMPLICIT_DEF)), FPR16:$Rm, hsub)),
5528              (i64 0)),
5529            dsub)>;
5530
5531def : Pat<(v8bf16 (vector_insert (v8bf16 V128:$Rn),
5532            (bf16 FPR16:$Rm), (i64 VectorIndexH:$imm))),
5533          (INSvi16lane
5534            V128:$Rn, VectorIndexH:$imm,
5535            (v8bf16 (INSERT_SUBREG (v8bf16 (IMPLICIT_DEF)), FPR16:$Rm, hsub)),
5536            (i64 0))>;
5537
5538def : Pat<(v2f32 (vector_insert (v2f32 V64:$Rn),
5539            (f32 FPR32:$Rm), (i64 VectorIndexS:$imm))),
5540          (EXTRACT_SUBREG
5541            (INSvi32lane
5542              (v4f32 (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), V64:$Rn, dsub)),
5543              VectorIndexS:$imm,
5544              (v4f32 (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), FPR32:$Rm, ssub)),
5545              (i64 0)),
5546            dsub)>;
5547def : Pat<(v4f32 (vector_insert (v4f32 V128:$Rn),
5548            (f32 FPR32:$Rm), (i64 VectorIndexS:$imm))),
5549          (INSvi32lane
5550            V128:$Rn, VectorIndexS:$imm,
5551            (v4f32 (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), FPR32:$Rm, ssub)),
5552            (i64 0))>;
5553def : Pat<(v2f64 (vector_insert (v2f64 V128:$Rn),
5554            (f64 FPR64:$Rm), (i64 VectorIndexD:$imm))),
5555          (INSvi64lane
5556            V128:$Rn, VectorIndexD:$imm,
5557            (v2f64 (INSERT_SUBREG (v2f64 (IMPLICIT_DEF)), FPR64:$Rm, dsub)),
5558            (i64 0))>;
5559
5560// Copy an element at a constant index in one vector into a constant indexed
5561// element of another.
5562// FIXME refactor to a shared class/dev parameterized on vector type, vector
5563// index type and INS extension
5564def : Pat<(v16i8 (int_aarch64_neon_vcopy_lane
5565                   (v16i8 V128:$Vd), VectorIndexB:$idx, (v16i8 V128:$Vs),
5566                   VectorIndexB:$idx2)),
5567          (v16i8 (INSvi8lane
5568                   V128:$Vd, VectorIndexB:$idx, V128:$Vs, VectorIndexB:$idx2)
5569          )>;
5570def : Pat<(v8i16 (int_aarch64_neon_vcopy_lane
5571                   (v8i16 V128:$Vd), VectorIndexH:$idx, (v8i16 V128:$Vs),
5572                   VectorIndexH:$idx2)),
5573          (v8i16 (INSvi16lane
5574                   V128:$Vd, VectorIndexH:$idx, V128:$Vs, VectorIndexH:$idx2)
5575          )>;
5576def : Pat<(v4i32 (int_aarch64_neon_vcopy_lane
5577                   (v4i32 V128:$Vd), VectorIndexS:$idx, (v4i32 V128:$Vs),
5578                   VectorIndexS:$idx2)),
5579          (v4i32 (INSvi32lane
5580                   V128:$Vd, VectorIndexS:$idx, V128:$Vs, VectorIndexS:$idx2)
5581          )>;
5582def : Pat<(v2i64 (int_aarch64_neon_vcopy_lane
5583                   (v2i64 V128:$Vd), VectorIndexD:$idx, (v2i64 V128:$Vs),
5584                   VectorIndexD:$idx2)),
5585          (v2i64 (INSvi64lane
5586                   V128:$Vd, VectorIndexD:$idx, V128:$Vs, VectorIndexD:$idx2)
5587          )>;
5588
5589multiclass Neon_INS_elt_pattern<ValueType VT128, ValueType VT64,
5590                                ValueType VTScal, Instruction INS> {
5591  def : Pat<(VT128 (vector_insert V128:$src,
5592                        (VTScal (vector_extract (VT128 V128:$Rn), imm:$Immn)),
5593                        imm:$Immd)),
5594            (INS V128:$src, imm:$Immd, V128:$Rn, imm:$Immn)>;
5595
5596  def : Pat<(VT128 (vector_insert V128:$src,
5597                        (VTScal (vector_extract (VT64 V64:$Rn), imm:$Immn)),
5598                        imm:$Immd)),
5599            (INS V128:$src, imm:$Immd,
5600                 (SUBREG_TO_REG (i64 0), V64:$Rn, dsub), imm:$Immn)>;
5601
5602  def : Pat<(VT64 (vector_insert V64:$src,
5603                        (VTScal (vector_extract (VT128 V128:$Rn), imm:$Immn)),
5604                        imm:$Immd)),
5605            (EXTRACT_SUBREG (INS (SUBREG_TO_REG (i64 0), V64:$src, dsub),
5606                                 imm:$Immd, V128:$Rn, imm:$Immn),
5607                            dsub)>;
5608
5609  def : Pat<(VT64 (vector_insert V64:$src,
5610                        (VTScal (vector_extract (VT64 V64:$Rn), imm:$Immn)),
5611                        imm:$Immd)),
5612            (EXTRACT_SUBREG
5613                (INS (SUBREG_TO_REG (i64 0), V64:$src, dsub), imm:$Immd,
5614                     (SUBREG_TO_REG (i64 0), V64:$Rn, dsub), imm:$Immn),
5615                dsub)>;
5616}
5617
5618defm : Neon_INS_elt_pattern<v8f16, v4f16, f16, INSvi16lane>;
5619defm : Neon_INS_elt_pattern<v8bf16, v4bf16, bf16, INSvi16lane>;
5620defm : Neon_INS_elt_pattern<v4f32, v2f32, f32, INSvi32lane>;
5621defm : Neon_INS_elt_pattern<v2f64, v1f64, f64, INSvi64lane>;
5622
5623
5624// Floating point vector extractions are codegen'd as either a sequence of
5625// subregister extractions, or a MOV (aka CPY here, alias for DUP) if
5626// the lane number is anything other than zero.
5627def : Pat<(vector_extract (v2f64 V128:$Rn), 0),
5628          (f64 (EXTRACT_SUBREG V128:$Rn, dsub))>;
5629def : Pat<(vector_extract (v4f32 V128:$Rn), 0),
5630          (f32 (EXTRACT_SUBREG V128:$Rn, ssub))>;
5631def : Pat<(vector_extract (v8f16 V128:$Rn), 0),
5632          (f16 (EXTRACT_SUBREG V128:$Rn, hsub))>;
5633def : Pat<(vector_extract (v8bf16 V128:$Rn), 0),
5634          (bf16 (EXTRACT_SUBREG V128:$Rn, hsub))>;
5635
5636
5637def : Pat<(vector_extract (v2f64 V128:$Rn), VectorIndexD:$idx),
5638          (f64 (CPYi64 V128:$Rn, VectorIndexD:$idx))>;
5639def : Pat<(vector_extract (v4f32 V128:$Rn), VectorIndexS:$idx),
5640          (f32 (CPYi32 V128:$Rn, VectorIndexS:$idx))>;
5641def : Pat<(vector_extract (v8f16 V128:$Rn), VectorIndexH:$idx),
5642          (f16 (CPYi16 V128:$Rn, VectorIndexH:$idx))>;
5643def : Pat<(vector_extract (v8bf16 V128:$Rn), VectorIndexH:$idx),
5644          (bf16 (CPYi16 V128:$Rn, VectorIndexH:$idx))>;
5645
5646// All concat_vectors operations are canonicalised to act on i64 vectors for
5647// AArch64. In the general case we need an instruction, which had just as well be
5648// INS.
5649class ConcatPat<ValueType DstTy, ValueType SrcTy>
5650  : Pat<(DstTy (concat_vectors (SrcTy V64:$Rd), V64:$Rn)),
5651        (INSvi64lane (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub), 1,
5652                     (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rn, dsub), 0)>;
5653
5654def : ConcatPat<v2i64, v1i64>;
5655def : ConcatPat<v2f64, v1f64>;
5656def : ConcatPat<v4i32, v2i32>;
5657def : ConcatPat<v4f32, v2f32>;
5658def : ConcatPat<v8i16, v4i16>;
5659def : ConcatPat<v8f16, v4f16>;
5660def : ConcatPat<v8bf16, v4bf16>;
5661def : ConcatPat<v16i8, v8i8>;
5662
5663// If the high lanes are undef, though, we can just ignore them:
5664class ConcatUndefPat<ValueType DstTy, ValueType SrcTy>
5665  : Pat<(DstTy (concat_vectors (SrcTy V64:$Rn), undef)),
5666        (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rn, dsub)>;
5667
5668def : ConcatUndefPat<v2i64, v1i64>;
5669def : ConcatUndefPat<v2f64, v1f64>;
5670def : ConcatUndefPat<v4i32, v2i32>;
5671def : ConcatUndefPat<v4f32, v2f32>;
5672def : ConcatUndefPat<v8i16, v4i16>;
5673def : ConcatUndefPat<v16i8, v8i8>;
5674
5675//----------------------------------------------------------------------------
5676// AdvSIMD across lanes instructions
5677//----------------------------------------------------------------------------
5678
5679defm ADDV    : SIMDAcrossLanesBHS<0, 0b11011, "addv">;
5680defm SMAXV   : SIMDAcrossLanesBHS<0, 0b01010, "smaxv">;
5681defm SMINV   : SIMDAcrossLanesBHS<0, 0b11010, "sminv">;
5682defm UMAXV   : SIMDAcrossLanesBHS<1, 0b01010, "umaxv">;
5683defm UMINV   : SIMDAcrossLanesBHS<1, 0b11010, "uminv">;
5684defm SADDLV  : SIMDAcrossLanesHSD<0, 0b00011, "saddlv">;
5685defm UADDLV  : SIMDAcrossLanesHSD<1, 0b00011, "uaddlv">;
5686defm FMAXNMV : SIMDFPAcrossLanes<0b01100, 0, "fmaxnmv", int_aarch64_neon_fmaxnmv>;
5687defm FMAXV   : SIMDFPAcrossLanes<0b01111, 0, "fmaxv", int_aarch64_neon_fmaxv>;
5688defm FMINNMV : SIMDFPAcrossLanes<0b01100, 1, "fminnmv", int_aarch64_neon_fminnmv>;
5689defm FMINV   : SIMDFPAcrossLanes<0b01111, 1, "fminv", int_aarch64_neon_fminv>;
5690
5691// Patterns for uaddv(uaddlp(x)) ==> uaddlv
5692def : Pat<(i32 (vector_extract (v8i16 (insert_subvector undef,
5693            (v4i16 (AArch64uaddv (v4i16 (AArch64uaddlp (v8i8 V64:$op))))),
5694            (i64 0))), (i64 0))),
5695          (EXTRACT_SUBREG (INSERT_SUBREG (v4i16 (IMPLICIT_DEF)),
5696           (UADDLVv4i16v V64:$op), ssub), ssub)>;
5697def : Pat<(i32 (vector_extract (v8i16 (AArch64uaddv (v8i16 (AArch64uaddlp
5698           (v16i8 V128:$op))))), (i64 0))),
5699          (EXTRACT_SUBREG (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)),
5700           (UADDLVv16i8v V128:$op), hsub), ssub)>;
5701def : Pat<(v4i32 (AArch64uaddv (v4i32 (AArch64uaddlp (v8i16 V128:$op))))),
5702          (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), (UADDLVv8i16v V128:$op), ssub)>;
5703
5704// Patterns for addp(uaddlp(x))) ==> uaddlv
5705def : Pat<(v2i32 (AArch64uaddv (v2i32 (AArch64uaddlp (v4i16 V64:$op))))),
5706          (INSERT_SUBREG (v2i32 (IMPLICIT_DEF)), (UADDLVv4i16v V64:$op), ssub)>;
5707def : Pat<(v2i64 (AArch64uaddv (v2i64 (AArch64uaddlp (v4i32 V128:$op))))),
5708          (INSERT_SUBREG (v2i64 (IMPLICIT_DEF)), (UADDLVv4i32v V128:$op), dsub)>;
5709
5710// Patterns for across-vector intrinsics, that have a node equivalent, that
5711// returns a vector (with only the low lane defined) instead of a scalar.
5712// In effect, opNode is the same as (scalar_to_vector (IntNode)).
5713multiclass SIMDAcrossLanesIntrinsic<string baseOpc,
5714                                    SDPatternOperator opNode> {
5715// If a lane instruction caught the vector_extract around opNode, we can
5716// directly match the latter to the instruction.
5717def : Pat<(v8i8 (opNode V64:$Rn)),
5718          (INSERT_SUBREG (v8i8 (IMPLICIT_DEF)),
5719           (!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn), bsub)>;
5720def : Pat<(v16i8 (opNode V128:$Rn)),
5721          (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
5722           (!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn), bsub)>;
5723def : Pat<(v4i16 (opNode V64:$Rn)),
5724          (INSERT_SUBREG (v4i16 (IMPLICIT_DEF)),
5725           (!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn), hsub)>;
5726def : Pat<(v8i16 (opNode V128:$Rn)),
5727          (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)),
5728           (!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn), hsub)>;
5729def : Pat<(v4i32 (opNode V128:$Rn)),
5730          (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)),
5731           (!cast<Instruction>(!strconcat(baseOpc, "v4i32v")) V128:$Rn), ssub)>;
5732
5733
5734// If none did, fallback to the explicit patterns, consuming the vector_extract.
5735def : Pat<(i32 (vector_extract (insert_subvector undef, (v8i8 (opNode V64:$Rn)),
5736            (i64 0)), (i64 0))),
5737          (EXTRACT_SUBREG (INSERT_SUBREG (v8i8 (IMPLICIT_DEF)),
5738            (!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn),
5739            bsub), ssub)>;
5740def : Pat<(i32 (vector_extract (v16i8 (opNode V128:$Rn)), (i64 0))),
5741          (EXTRACT_SUBREG (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
5742            (!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn),
5743            bsub), ssub)>;
5744def : Pat<(i32 (vector_extract (insert_subvector undef,
5745            (v4i16 (opNode V64:$Rn)), (i64 0)), (i64 0))),
5746          (EXTRACT_SUBREG (INSERT_SUBREG (v4i16 (IMPLICIT_DEF)),
5747            (!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn),
5748            hsub), ssub)>;
5749def : Pat<(i32 (vector_extract (v8i16 (opNode V128:$Rn)), (i64 0))),
5750          (EXTRACT_SUBREG (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)),
5751            (!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn),
5752            hsub), ssub)>;
5753def : Pat<(i32 (vector_extract (v4i32 (opNode V128:$Rn)), (i64 0))),
5754          (EXTRACT_SUBREG (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)),
5755            (!cast<Instruction>(!strconcat(baseOpc, "v4i32v")) V128:$Rn),
5756            ssub), ssub)>;
5757
5758}
5759
5760multiclass SIMDAcrossLanesSignedIntrinsic<string baseOpc,
5761                                          SDPatternOperator opNode>
5762    : SIMDAcrossLanesIntrinsic<baseOpc, opNode> {
5763// If there is a sign extension after this intrinsic, consume it as smov already
5764// performed it
5765def : Pat<(i32 (sext_inreg (i32 (vector_extract (insert_subvector undef,
5766            (opNode (v8i8 V64:$Rn)), (i64 0)), (i64 0))), i8)),
5767          (i32 (SMOVvi8to32
5768            (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
5769              (!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn), bsub),
5770            (i64 0)))>;
5771def : Pat<(i32 (sext_inreg (i32 (vector_extract
5772            (opNode (v16i8 V128:$Rn)), (i64 0))), i8)),
5773          (i32 (SMOVvi8to32
5774            (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
5775             (!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn), bsub),
5776            (i64 0)))>;
5777def : Pat<(i32 (sext_inreg (i32 (vector_extract (insert_subvector undef,
5778            (opNode (v4i16 V64:$Rn)), (i64 0)), (i64 0))), i16)),
5779          (i32 (SMOVvi16to32
5780           (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
5781            (!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn), hsub),
5782           (i64 0)))>;
5783def : Pat<(i32 (sext_inreg (i32 (vector_extract
5784            (opNode (v8i16 V128:$Rn)), (i64 0))), i16)),
5785          (i32 (SMOVvi16to32
5786            (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
5787             (!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn), hsub),
5788            (i64 0)))>;
5789}
5790
5791multiclass SIMDAcrossLanesUnsignedIntrinsic<string baseOpc,
5792                                            SDPatternOperator opNode>
5793    : SIMDAcrossLanesIntrinsic<baseOpc, opNode> {
5794// If there is a masking operation keeping only what has been actually
5795// generated, consume it.
5796def : Pat<(i32 (and (i32 (vector_extract (insert_subvector undef,
5797            (opNode (v8i8 V64:$Rn)), (i64 0)), (i64 0))), maski8_or_more)),
5798      (i32 (EXTRACT_SUBREG
5799        (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
5800          (!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn), bsub),
5801        ssub))>;
5802def : Pat<(i32 (and (i32 (vector_extract (opNode (v16i8 V128:$Rn)), (i64 0))),
5803            maski8_or_more)),
5804        (i32 (EXTRACT_SUBREG
5805          (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
5806            (!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn), bsub),
5807          ssub))>;
5808def : Pat<(i32 (and (i32 (vector_extract (insert_subvector undef,
5809            (opNode (v4i16 V64:$Rn)), (i64 0)), (i64 0))), maski16_or_more)),
5810          (i32 (EXTRACT_SUBREG
5811            (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
5812              (!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn), hsub),
5813            ssub))>;
5814def : Pat<(i32 (and (i32 (vector_extract (opNode (v8i16 V128:$Rn)), (i64 0))),
5815            maski16_or_more)),
5816        (i32 (EXTRACT_SUBREG
5817          (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
5818            (!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn), hsub),
5819          ssub))>;
5820}
5821
5822defm : SIMDAcrossLanesSignedIntrinsic<"ADDV",  AArch64saddv>;
5823// vaddv_[su]32 is special; -> ADDP Vd.2S,Vn.2S,Vm.2S; return Vd.s[0];Vn==Vm
5824def : Pat<(v2i32 (AArch64saddv (v2i32 V64:$Rn))),
5825          (ADDPv2i32 V64:$Rn, V64:$Rn)>;
5826
5827defm : SIMDAcrossLanesUnsignedIntrinsic<"ADDV", AArch64uaddv>;
5828// vaddv_[su]32 is special; -> ADDP Vd.2S,Vn.2S,Vm.2S; return Vd.s[0];Vn==Vm
5829def : Pat<(v2i32 (AArch64uaddv (v2i32 V64:$Rn))),
5830          (ADDPv2i32 V64:$Rn, V64:$Rn)>;
5831
5832defm : SIMDAcrossLanesSignedIntrinsic<"SMAXV", AArch64smaxv>;
5833def : Pat<(v2i32 (AArch64smaxv (v2i32 V64:$Rn))),
5834          (SMAXPv2i32 V64:$Rn, V64:$Rn)>;
5835
5836defm : SIMDAcrossLanesSignedIntrinsic<"SMINV", AArch64sminv>;
5837def : Pat<(v2i32 (AArch64sminv (v2i32 V64:$Rn))),
5838          (SMINPv2i32 V64:$Rn, V64:$Rn)>;
5839
5840defm : SIMDAcrossLanesUnsignedIntrinsic<"UMAXV", AArch64umaxv>;
5841def : Pat<(v2i32 (AArch64umaxv (v2i32 V64:$Rn))),
5842          (UMAXPv2i32 V64:$Rn, V64:$Rn)>;
5843
5844defm : SIMDAcrossLanesUnsignedIntrinsic<"UMINV", AArch64uminv>;
5845def : Pat<(v2i32 (AArch64uminv (v2i32 V64:$Rn))),
5846          (UMINPv2i32 V64:$Rn, V64:$Rn)>;
5847
5848multiclass SIMDAcrossLanesSignedLongIntrinsic<string baseOpc, Intrinsic intOp> {
5849  def : Pat<(i32 (intOp (v8i8 V64:$Rn))),
5850        (i32 (SMOVvi16to32
5851          (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
5852            (!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn), hsub),
5853          (i64 0)))>;
5854def : Pat<(i32 (intOp (v16i8 V128:$Rn))),
5855        (i32 (SMOVvi16to32
5856          (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
5857           (!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn), hsub),
5858          (i64 0)))>;
5859
5860def : Pat<(i32 (intOp (v4i16 V64:$Rn))),
5861          (i32 (EXTRACT_SUBREG
5862           (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
5863            (!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn), ssub),
5864           ssub))>;
5865def : Pat<(i32 (intOp (v8i16 V128:$Rn))),
5866        (i32 (EXTRACT_SUBREG
5867          (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
5868           (!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn), ssub),
5869          ssub))>;
5870
5871def : Pat<(i64 (intOp (v4i32 V128:$Rn))),
5872        (i64 (EXTRACT_SUBREG
5873          (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
5874           (!cast<Instruction>(!strconcat(baseOpc, "v4i32v")) V128:$Rn), dsub),
5875          dsub))>;
5876}
5877
5878multiclass SIMDAcrossLanesUnsignedLongIntrinsic<string baseOpc,
5879                                                Intrinsic intOp> {
5880  def : Pat<(i32 (intOp (v8i8 V64:$Rn))),
5881        (i32 (EXTRACT_SUBREG
5882          (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
5883            (!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn), hsub),
5884          ssub))>;
5885def : Pat<(i32 (intOp (v16i8 V128:$Rn))),
5886        (i32 (EXTRACT_SUBREG
5887          (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
5888            (!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn), hsub),
5889          ssub))>;
5890
5891def : Pat<(i32 (intOp (v4i16 V64:$Rn))),
5892          (i32 (EXTRACT_SUBREG
5893            (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
5894              (!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn), ssub),
5895            ssub))>;
5896def : Pat<(i32 (intOp (v8i16 V128:$Rn))),
5897        (i32 (EXTRACT_SUBREG
5898          (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
5899            (!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn), ssub),
5900          ssub))>;
5901
5902def : Pat<(i64 (intOp (v4i32 V128:$Rn))),
5903        (i64 (EXTRACT_SUBREG
5904          (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
5905            (!cast<Instruction>(!strconcat(baseOpc, "v4i32v")) V128:$Rn), dsub),
5906          dsub))>;
5907}
5908
5909defm : SIMDAcrossLanesSignedLongIntrinsic<"SADDLV", int_aarch64_neon_saddlv>;
5910defm : SIMDAcrossLanesUnsignedLongIntrinsic<"UADDLV", int_aarch64_neon_uaddlv>;
5911
5912// The vaddlv_s32 intrinsic gets mapped to SADDLP.
5913def : Pat<(i64 (int_aarch64_neon_saddlv (v2i32 V64:$Rn))),
5914          (i64 (EXTRACT_SUBREG
5915            (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
5916              (SADDLPv2i32_v1i64 V64:$Rn), dsub),
5917            dsub))>;
5918// The vaddlv_u32 intrinsic gets mapped to UADDLP.
5919def : Pat<(i64 (int_aarch64_neon_uaddlv (v2i32 V64:$Rn))),
5920          (i64 (EXTRACT_SUBREG
5921            (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
5922              (UADDLPv2i32_v1i64 V64:$Rn), dsub),
5923            dsub))>;
5924
5925//------------------------------------------------------------------------------
5926// AdvSIMD modified immediate instructions
5927//------------------------------------------------------------------------------
5928
5929// AdvSIMD BIC
5930defm BIC : SIMDModifiedImmVectorShiftTied<1, 0b11, 0b01, "bic", AArch64bici>;
5931// AdvSIMD ORR
5932defm ORR : SIMDModifiedImmVectorShiftTied<0, 0b11, 0b01, "orr", AArch64orri>;
5933
5934def : InstAlias<"bic $Vd.4h, $imm", (BICv4i16 V64:$Vd,  imm0_255:$imm, 0)>;
5935def : InstAlias<"bic $Vd.8h, $imm", (BICv8i16 V128:$Vd, imm0_255:$imm, 0)>;
5936def : InstAlias<"bic $Vd.2s, $imm", (BICv2i32 V64:$Vd,  imm0_255:$imm, 0)>;
5937def : InstAlias<"bic $Vd.4s, $imm", (BICv4i32 V128:$Vd, imm0_255:$imm, 0)>;
5938
5939def : InstAlias<"bic.4h $Vd, $imm", (BICv4i16 V64:$Vd,  imm0_255:$imm, 0)>;
5940def : InstAlias<"bic.8h $Vd, $imm", (BICv8i16 V128:$Vd, imm0_255:$imm, 0)>;
5941def : InstAlias<"bic.2s $Vd, $imm", (BICv2i32 V64:$Vd,  imm0_255:$imm, 0)>;
5942def : InstAlias<"bic.4s $Vd, $imm", (BICv4i32 V128:$Vd, imm0_255:$imm, 0)>;
5943
5944def : InstAlias<"orr $Vd.4h, $imm", (ORRv4i16 V64:$Vd,  imm0_255:$imm, 0)>;
5945def : InstAlias<"orr $Vd.8h, $imm", (ORRv8i16 V128:$Vd, imm0_255:$imm, 0)>;
5946def : InstAlias<"orr $Vd.2s, $imm", (ORRv2i32 V64:$Vd,  imm0_255:$imm, 0)>;
5947def : InstAlias<"orr $Vd.4s, $imm", (ORRv4i32 V128:$Vd, imm0_255:$imm, 0)>;
5948
5949def : InstAlias<"orr.4h $Vd, $imm", (ORRv4i16 V64:$Vd,  imm0_255:$imm, 0)>;
5950def : InstAlias<"orr.8h $Vd, $imm", (ORRv8i16 V128:$Vd, imm0_255:$imm, 0)>;
5951def : InstAlias<"orr.2s $Vd, $imm", (ORRv2i32 V64:$Vd,  imm0_255:$imm, 0)>;
5952def : InstAlias<"orr.4s $Vd, $imm", (ORRv4i32 V128:$Vd, imm0_255:$imm, 0)>;
5953
5954// AdvSIMD FMOV
5955def FMOVv2f64_ns : SIMDModifiedImmVectorNoShift<1, 1, 0, 0b1111, V128, fpimm8,
5956                                              "fmov", ".2d",
5957                       [(set (v2f64 V128:$Rd), (AArch64fmov imm0_255:$imm8))]>;
5958def FMOVv2f32_ns : SIMDModifiedImmVectorNoShift<0, 0, 0, 0b1111, V64,  fpimm8,
5959                                              "fmov", ".2s",
5960                       [(set (v2f32 V64:$Rd), (AArch64fmov imm0_255:$imm8))]>;
5961def FMOVv4f32_ns : SIMDModifiedImmVectorNoShift<1, 0, 0, 0b1111, V128, fpimm8,
5962                                              "fmov", ".4s",
5963                       [(set (v4f32 V128:$Rd), (AArch64fmov imm0_255:$imm8))]>;
5964let Predicates = [HasNEON, HasFullFP16] in {
5965def FMOVv4f16_ns : SIMDModifiedImmVectorNoShift<0, 0, 1, 0b1111, V64,  fpimm8,
5966                                              "fmov", ".4h",
5967                       [(set (v4f16 V64:$Rd), (AArch64fmov imm0_255:$imm8))]>;
5968def FMOVv8f16_ns : SIMDModifiedImmVectorNoShift<1, 0, 1, 0b1111, V128, fpimm8,
5969                                              "fmov", ".8h",
5970                       [(set (v8f16 V128:$Rd), (AArch64fmov imm0_255:$imm8))]>;
5971} // Predicates = [HasNEON, HasFullFP16]
5972
5973// AdvSIMD MOVI
5974
5975// EDIT byte mask: scalar
5976let isReMaterializable = 1, isAsCheapAsAMove = 1 in
5977def MOVID      : SIMDModifiedImmScalarNoShift<0, 1, 0b1110, "movi",
5978                    [(set FPR64:$Rd, simdimmtype10:$imm8)]>;
5979// The movi_edit node has the immediate value already encoded, so we use
5980// a plain imm0_255 here.
5981def : Pat<(f64 (AArch64movi_edit imm0_255:$shift)),
5982          (MOVID imm0_255:$shift)>;
5983
5984// EDIT byte mask: 2d
5985
5986// The movi_edit node has the immediate value already encoded, so we use
5987// a plain imm0_255 in the pattern
5988let isReMaterializable = 1, isAsCheapAsAMove = 1 in
5989def MOVIv2d_ns   : SIMDModifiedImmVectorNoShift<1, 1, 0, 0b1110, V128,
5990                                                simdimmtype10,
5991                                                "movi", ".2d",
5992                   [(set (v2i64 V128:$Rd), (AArch64movi_edit imm0_255:$imm8))]>;
5993
5994def : Pat<(v2i64 immAllZerosV), (MOVIv2d_ns (i32 0))>;
5995def : Pat<(v4i32 immAllZerosV), (MOVIv2d_ns (i32 0))>;
5996def : Pat<(v8i16 immAllZerosV), (MOVIv2d_ns (i32 0))>;
5997def : Pat<(v16i8 immAllZerosV), (MOVIv2d_ns (i32 0))>;
5998
5999def : Pat<(v2i64 immAllOnesV), (MOVIv2d_ns (i32 255))>;
6000def : Pat<(v4i32 immAllOnesV), (MOVIv2d_ns (i32 255))>;
6001def : Pat<(v8i16 immAllOnesV), (MOVIv2d_ns (i32 255))>;
6002def : Pat<(v16i8 immAllOnesV), (MOVIv2d_ns (i32 255))>;
6003
6004// Set 64-bit vectors to all 0/1 by extracting from a 128-bit register as the
6005// extract is free and this gives better MachineCSE results.
6006def : Pat<(v1i64 immAllZerosV), (EXTRACT_SUBREG (MOVIv2d_ns (i32 0)), dsub)>;
6007def : Pat<(v2i32 immAllZerosV), (EXTRACT_SUBREG (MOVIv2d_ns (i32 0)), dsub)>;
6008def : Pat<(v4i16 immAllZerosV), (EXTRACT_SUBREG (MOVIv2d_ns (i32 0)), dsub)>;
6009def : Pat<(v8i8  immAllZerosV), (EXTRACT_SUBREG (MOVIv2d_ns (i32 0)), dsub)>;
6010
6011def : Pat<(v1i64 immAllOnesV), (EXTRACT_SUBREG (MOVIv2d_ns (i32 255)), dsub)>;
6012def : Pat<(v2i32 immAllOnesV), (EXTRACT_SUBREG (MOVIv2d_ns (i32 255)), dsub)>;
6013def : Pat<(v4i16 immAllOnesV), (EXTRACT_SUBREG (MOVIv2d_ns (i32 255)), dsub)>;
6014def : Pat<(v8i8  immAllOnesV), (EXTRACT_SUBREG (MOVIv2d_ns (i32 255)), dsub)>;
6015
6016// EDIT per word & halfword: 2s, 4h, 4s, & 8h
6017let isReMaterializable = 1, isAsCheapAsAMove = 1 in
6018defm MOVI      : SIMDModifiedImmVectorShift<0, 0b10, 0b00, "movi">;
6019
6020def : InstAlias<"movi $Vd.4h, $imm", (MOVIv4i16 V64:$Vd,  imm0_255:$imm, 0), 0>;
6021def : InstAlias<"movi $Vd.8h, $imm", (MOVIv8i16 V128:$Vd, imm0_255:$imm, 0), 0>;
6022def : InstAlias<"movi $Vd.2s, $imm", (MOVIv2i32 V64:$Vd,  imm0_255:$imm, 0), 0>;
6023def : InstAlias<"movi $Vd.4s, $imm", (MOVIv4i32 V128:$Vd, imm0_255:$imm, 0), 0>;
6024
6025def : InstAlias<"movi.4h $Vd, $imm", (MOVIv4i16 V64:$Vd,  imm0_255:$imm, 0), 0>;
6026def : InstAlias<"movi.8h $Vd, $imm", (MOVIv8i16 V128:$Vd, imm0_255:$imm, 0), 0>;
6027def : InstAlias<"movi.2s $Vd, $imm", (MOVIv2i32 V64:$Vd,  imm0_255:$imm, 0), 0>;
6028def : InstAlias<"movi.4s $Vd, $imm", (MOVIv4i32 V128:$Vd, imm0_255:$imm, 0), 0>;
6029
6030def : Pat<(v2i32 (AArch64movi_shift imm0_255:$imm8, (i32 imm:$shift))),
6031          (MOVIv2i32 imm0_255:$imm8, imm:$shift)>;
6032def : Pat<(v4i32 (AArch64movi_shift imm0_255:$imm8, (i32 imm:$shift))),
6033          (MOVIv4i32 imm0_255:$imm8, imm:$shift)>;
6034def : Pat<(v4i16 (AArch64movi_shift imm0_255:$imm8, (i32 imm:$shift))),
6035          (MOVIv4i16 imm0_255:$imm8, imm:$shift)>;
6036def : Pat<(v8i16 (AArch64movi_shift imm0_255:$imm8, (i32 imm:$shift))),
6037          (MOVIv8i16 imm0_255:$imm8, imm:$shift)>;
6038
6039let isReMaterializable = 1, isAsCheapAsAMove = 1 in {
6040// EDIT per word: 2s & 4s with MSL shifter
6041def MOVIv2s_msl  : SIMDModifiedImmMoveMSL<0, 0, {1,1,0,?}, V64, "movi", ".2s",
6042                      [(set (v2i32 V64:$Rd),
6043                            (AArch64movi_msl imm0_255:$imm8, (i32 imm:$shift)))]>;
6044def MOVIv4s_msl  : SIMDModifiedImmMoveMSL<1, 0, {1,1,0,?}, V128, "movi", ".4s",
6045                      [(set (v4i32 V128:$Rd),
6046                            (AArch64movi_msl imm0_255:$imm8, (i32 imm:$shift)))]>;
6047
6048// Per byte: 8b & 16b
6049def MOVIv8b_ns   : SIMDModifiedImmVectorNoShift<0, 0, 0, 0b1110, V64,  imm0_255,
6050                                                 "movi", ".8b",
6051                       [(set (v8i8 V64:$Rd), (AArch64movi imm0_255:$imm8))]>;
6052
6053def MOVIv16b_ns  : SIMDModifiedImmVectorNoShift<1, 0, 0, 0b1110, V128, imm0_255,
6054                                                 "movi", ".16b",
6055                       [(set (v16i8 V128:$Rd), (AArch64movi imm0_255:$imm8))]>;
6056}
6057
6058// AdvSIMD MVNI
6059
6060// EDIT per word & halfword: 2s, 4h, 4s, & 8h
6061let isReMaterializable = 1, isAsCheapAsAMove = 1 in
6062defm MVNI      : SIMDModifiedImmVectorShift<1, 0b10, 0b00, "mvni">;
6063
6064def : InstAlias<"mvni $Vd.4h, $imm", (MVNIv4i16 V64:$Vd,  imm0_255:$imm, 0), 0>;
6065def : InstAlias<"mvni $Vd.8h, $imm", (MVNIv8i16 V128:$Vd, imm0_255:$imm, 0), 0>;
6066def : InstAlias<"mvni $Vd.2s, $imm", (MVNIv2i32 V64:$Vd,  imm0_255:$imm, 0), 0>;
6067def : InstAlias<"mvni $Vd.4s, $imm", (MVNIv4i32 V128:$Vd, imm0_255:$imm, 0), 0>;
6068
6069def : InstAlias<"mvni.4h $Vd, $imm", (MVNIv4i16 V64:$Vd,  imm0_255:$imm, 0), 0>;
6070def : InstAlias<"mvni.8h $Vd, $imm", (MVNIv8i16 V128:$Vd, imm0_255:$imm, 0), 0>;
6071def : InstAlias<"mvni.2s $Vd, $imm", (MVNIv2i32 V64:$Vd,  imm0_255:$imm, 0), 0>;
6072def : InstAlias<"mvni.4s $Vd, $imm", (MVNIv4i32 V128:$Vd, imm0_255:$imm, 0), 0>;
6073
6074def : Pat<(v2i32 (AArch64mvni_shift imm0_255:$imm8, (i32 imm:$shift))),
6075          (MVNIv2i32 imm0_255:$imm8, imm:$shift)>;
6076def : Pat<(v4i32 (AArch64mvni_shift imm0_255:$imm8, (i32 imm:$shift))),
6077          (MVNIv4i32 imm0_255:$imm8, imm:$shift)>;
6078def : Pat<(v4i16 (AArch64mvni_shift imm0_255:$imm8, (i32 imm:$shift))),
6079          (MVNIv4i16 imm0_255:$imm8, imm:$shift)>;
6080def : Pat<(v8i16 (AArch64mvni_shift imm0_255:$imm8, (i32 imm:$shift))),
6081          (MVNIv8i16 imm0_255:$imm8, imm:$shift)>;
6082
6083// EDIT per word: 2s & 4s with MSL shifter
6084let isReMaterializable = 1, isAsCheapAsAMove = 1 in {
6085def MVNIv2s_msl   : SIMDModifiedImmMoveMSL<0, 1, {1,1,0,?}, V64, "mvni", ".2s",
6086                      [(set (v2i32 V64:$Rd),
6087                            (AArch64mvni_msl imm0_255:$imm8, (i32 imm:$shift)))]>;
6088def MVNIv4s_msl   : SIMDModifiedImmMoveMSL<1, 1, {1,1,0,?}, V128, "mvni", ".4s",
6089                      [(set (v4i32 V128:$Rd),
6090                            (AArch64mvni_msl imm0_255:$imm8, (i32 imm:$shift)))]>;
6091}
6092
6093//----------------------------------------------------------------------------
6094// AdvSIMD indexed element
6095//----------------------------------------------------------------------------
6096
6097let hasSideEffects = 0 in {
6098  defm FMLA  : SIMDFPIndexedTied<0, 0b0001, "fmla">;
6099  defm FMLS  : SIMDFPIndexedTied<0, 0b0101, "fmls">;
6100}
6101
6102// NOTE: Operands are reordered in the FMLA/FMLS PatFrags because the
6103// instruction expects the addend first, while the intrinsic expects it last.
6104
6105// On the other hand, there are quite a few valid combinatorial options due to
6106// the commutativity of multiplication and the fact that (-x) * y = x * (-y).
6107defm : SIMDFPIndexedTiedPatterns<"FMLA",
6108           TriOpFrag<(fma node:$RHS, node:$MHS, node:$LHS)>>;
6109defm : SIMDFPIndexedTiedPatterns<"FMLA",
6110           TriOpFrag<(fma node:$MHS, node:$RHS, node:$LHS)>>;
6111
6112defm : SIMDFPIndexedTiedPatterns<"FMLS",
6113           TriOpFrag<(fma node:$MHS, (fneg node:$RHS), node:$LHS)> >;
6114defm : SIMDFPIndexedTiedPatterns<"FMLS",
6115           TriOpFrag<(fma node:$RHS, (fneg node:$MHS), node:$LHS)> >;
6116defm : SIMDFPIndexedTiedPatterns<"FMLS",
6117           TriOpFrag<(fma (fneg node:$RHS), node:$MHS, node:$LHS)> >;
6118defm : SIMDFPIndexedTiedPatterns<"FMLS",
6119           TriOpFrag<(fma (fneg node:$MHS), node:$RHS, node:$LHS)> >;
6120
6121multiclass FMLSIndexedAfterNegPatterns<SDPatternOperator OpNode> {
6122  // 3 variants for the .2s version: DUPLANE from 128-bit, DUPLANE from 64-bit
6123  // and DUP scalar.
6124  def : Pat<(v2f32 (OpNode (v2f32 V64:$Rd), (v2f32 V64:$Rn),
6125                           (AArch64duplane32 (v4f32 (fneg V128:$Rm)),
6126                                           VectorIndexS:$idx))),
6127            (FMLSv2i32_indexed V64:$Rd, V64:$Rn, V128:$Rm, VectorIndexS:$idx)>;
6128  def : Pat<(v2f32 (OpNode (v2f32 V64:$Rd), (v2f32 V64:$Rn),
6129                           (v2f32 (AArch64duplane32
6130                                      (v4f32 (insert_subvector undef,
6131                                                 (v2f32 (fneg V64:$Rm)),
6132                                                 (i64 0))),
6133                                      VectorIndexS:$idx)))),
6134            (FMLSv2i32_indexed V64:$Rd, V64:$Rn,
6135                               (SUBREG_TO_REG (i32 0), V64:$Rm, dsub),
6136                               VectorIndexS:$idx)>;
6137  def : Pat<(v2f32 (OpNode (v2f32 V64:$Rd), (v2f32 V64:$Rn),
6138                           (AArch64dup (f32 (fneg FPR32Op:$Rm))))),
6139            (FMLSv2i32_indexed V64:$Rd, V64:$Rn,
6140                (SUBREG_TO_REG (i32 0), FPR32Op:$Rm, ssub), (i64 0))>;
6141
6142  // 3 variants for the .4s version: DUPLANE from 128-bit, DUPLANE from 64-bit
6143  // and DUP scalar.
6144  def : Pat<(v4f32 (OpNode (v4f32 V128:$Rd), (v4f32 V128:$Rn),
6145                           (AArch64duplane32 (v4f32 (fneg V128:$Rm)),
6146                                           VectorIndexS:$idx))),
6147            (FMLSv4i32_indexed V128:$Rd, V128:$Rn, V128:$Rm,
6148                               VectorIndexS:$idx)>;
6149  def : Pat<(v4f32 (OpNode (v4f32 V128:$Rd), (v4f32 V128:$Rn),
6150                           (v4f32 (AArch64duplane32
6151                                      (v4f32 (insert_subvector undef,
6152                                                 (v2f32 (fneg V64:$Rm)),
6153                                                 (i64 0))),
6154                                      VectorIndexS:$idx)))),
6155            (FMLSv4i32_indexed V128:$Rd, V128:$Rn,
6156                               (SUBREG_TO_REG (i32 0), V64:$Rm, dsub),
6157                               VectorIndexS:$idx)>;
6158  def : Pat<(v4f32 (OpNode (v4f32 V128:$Rd), (v4f32 V128:$Rn),
6159                           (AArch64dup (f32 (fneg FPR32Op:$Rm))))),
6160            (FMLSv4i32_indexed V128:$Rd, V128:$Rn,
6161                (SUBREG_TO_REG (i32 0), FPR32Op:$Rm, ssub), (i64 0))>;
6162
6163  // 2 variants for the .2d version: DUPLANE from 128-bit, and DUP scalar
6164  // (DUPLANE from 64-bit would be trivial).
6165  def : Pat<(v2f64 (OpNode (v2f64 V128:$Rd), (v2f64 V128:$Rn),
6166                           (AArch64duplane64 (v2f64 (fneg V128:$Rm)),
6167                                           VectorIndexD:$idx))),
6168            (FMLSv2i64_indexed
6169                V128:$Rd, V128:$Rn, V128:$Rm, VectorIndexS:$idx)>;
6170  def : Pat<(v2f64 (OpNode (v2f64 V128:$Rd), (v2f64 V128:$Rn),
6171                           (AArch64dup (f64 (fneg FPR64Op:$Rm))))),
6172            (FMLSv2i64_indexed V128:$Rd, V128:$Rn,
6173                (SUBREG_TO_REG (i32 0), FPR64Op:$Rm, dsub), (i64 0))>;
6174
6175  // 2 variants for 32-bit scalar version: extract from .2s or from .4s
6176  def : Pat<(f32 (OpNode (f32 FPR32:$Rd), (f32 FPR32:$Rn),
6177                         (vector_extract (v4f32 (fneg V128:$Rm)),
6178                                         VectorIndexS:$idx))),
6179            (FMLSv1i32_indexed FPR32:$Rd, FPR32:$Rn,
6180                V128:$Rm, VectorIndexS:$idx)>;
6181  def : Pat<(f32 (OpNode (f32 FPR32:$Rd), (f32 FPR32:$Rn),
6182                         (vector_extract (v4f32 (insert_subvector undef,
6183                                                    (v2f32 (fneg V64:$Rm)),
6184                                                    (i64 0))),
6185                                         VectorIndexS:$idx))),
6186            (FMLSv1i32_indexed FPR32:$Rd, FPR32:$Rn,
6187                (SUBREG_TO_REG (i32 0), V64:$Rm, dsub), VectorIndexS:$idx)>;
6188
6189  // 1 variant for 64-bit scalar version: extract from .1d or from .2d
6190  def : Pat<(f64 (OpNode (f64 FPR64:$Rd), (f64 FPR64:$Rn),
6191                         (vector_extract (v2f64 (fneg V128:$Rm)),
6192                                         VectorIndexS:$idx))),
6193            (FMLSv1i64_indexed FPR64:$Rd, FPR64:$Rn,
6194                V128:$Rm, VectorIndexS:$idx)>;
6195}
6196
6197defm : FMLSIndexedAfterNegPatterns<
6198           TriOpFrag<(fma node:$RHS, node:$MHS, node:$LHS)> >;
6199defm : FMLSIndexedAfterNegPatterns<
6200           TriOpFrag<(fma node:$MHS, node:$RHS, node:$LHS)> >;
6201
6202defm FMULX : SIMDFPIndexed<1, 0b1001, "fmulx", int_aarch64_neon_fmulx>;
6203defm FMUL  : SIMDFPIndexed<0, 0b1001, "fmul", fmul>;
6204
6205def : Pat<(v2f32 (fmul V64:$Rn, (AArch64dup (f32 FPR32:$Rm)))),
6206          (FMULv2i32_indexed V64:$Rn,
6207            (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR32:$Rm, ssub),
6208            (i64 0))>;
6209def : Pat<(v4f32 (fmul V128:$Rn, (AArch64dup (f32 FPR32:$Rm)))),
6210          (FMULv4i32_indexed V128:$Rn,
6211            (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR32:$Rm, ssub),
6212            (i64 0))>;
6213def : Pat<(v2f64 (fmul V128:$Rn, (AArch64dup (f64 FPR64:$Rm)))),
6214          (FMULv2i64_indexed V128:$Rn,
6215            (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR64:$Rm, dsub),
6216            (i64 0))>;
6217
6218defm SQDMULH : SIMDIndexedHS<0, 0b1100, "sqdmulh", int_aarch64_neon_sqdmulh>;
6219defm SQRDMULH : SIMDIndexedHS<0, 0b1101, "sqrdmulh", int_aarch64_neon_sqrdmulh>;
6220
6221defm SQDMULH : SIMDIndexedHSPatterns<int_aarch64_neon_sqdmulh_lane,
6222                                     int_aarch64_neon_sqdmulh_laneq>;
6223defm SQRDMULH : SIMDIndexedHSPatterns<int_aarch64_neon_sqrdmulh_lane,
6224                                      int_aarch64_neon_sqrdmulh_laneq>;
6225
6226// Generated by MachineCombine
6227defm MLA   : SIMDVectorIndexedHSTied<1, 0b0000, "mla", null_frag>;
6228defm MLS   : SIMDVectorIndexedHSTied<1, 0b0100, "mls", null_frag>;
6229
6230defm MUL   : SIMDVectorIndexedHS<0, 0b1000, "mul", mul>;
6231defm SMLAL : SIMDVectorIndexedLongSDTied<0, 0b0010, "smlal",
6232    TriOpFrag<(add node:$LHS, (int_aarch64_neon_smull node:$MHS, node:$RHS))>>;
6233defm SMLSL : SIMDVectorIndexedLongSDTied<0, 0b0110, "smlsl",
6234    TriOpFrag<(sub node:$LHS, (int_aarch64_neon_smull node:$MHS, node:$RHS))>>;
6235defm SMULL : SIMDVectorIndexedLongSD<0, 0b1010, "smull",
6236                int_aarch64_neon_smull>;
6237defm SQDMLAL : SIMDIndexedLongSQDMLXSDTied<0, 0b0011, "sqdmlal",
6238                                           int_aarch64_neon_sqadd>;
6239defm SQDMLSL : SIMDIndexedLongSQDMLXSDTied<0, 0b0111, "sqdmlsl",
6240                                           int_aarch64_neon_sqsub>;
6241defm SQRDMLAH : SIMDIndexedSQRDMLxHSDTied<1, 0b1101, "sqrdmlah",
6242                                          int_aarch64_neon_sqadd>;
6243defm SQRDMLSH : SIMDIndexedSQRDMLxHSDTied<1, 0b1111, "sqrdmlsh",
6244                                          int_aarch64_neon_sqsub>;
6245defm SQDMULL : SIMDIndexedLongSD<0, 0b1011, "sqdmull", int_aarch64_neon_sqdmull>;
6246defm UMLAL   : SIMDVectorIndexedLongSDTied<1, 0b0010, "umlal",
6247    TriOpFrag<(add node:$LHS, (int_aarch64_neon_umull node:$MHS, node:$RHS))>>;
6248defm UMLSL   : SIMDVectorIndexedLongSDTied<1, 0b0110, "umlsl",
6249    TriOpFrag<(sub node:$LHS, (int_aarch64_neon_umull node:$MHS, node:$RHS))>>;
6250defm UMULL   : SIMDVectorIndexedLongSD<1, 0b1010, "umull",
6251                int_aarch64_neon_umull>;
6252
6253// A scalar sqdmull with the second operand being a vector lane can be
6254// handled directly with the indexed instruction encoding.
6255def : Pat<(int_aarch64_neon_sqdmulls_scalar (i32 FPR32:$Rn),
6256                                          (vector_extract (v4i32 V128:$Vm),
6257                                                           VectorIndexS:$idx)),
6258          (SQDMULLv1i64_indexed FPR32:$Rn, V128:$Vm, VectorIndexS:$idx)>;
6259
6260//----------------------------------------------------------------------------
6261// AdvSIMD scalar shift instructions
6262//----------------------------------------------------------------------------
6263defm FCVTZS : SIMDFPScalarRShift<0, 0b11111, "fcvtzs">;
6264defm FCVTZU : SIMDFPScalarRShift<1, 0b11111, "fcvtzu">;
6265defm SCVTF  : SIMDFPScalarRShift<0, 0b11100, "scvtf">;
6266defm UCVTF  : SIMDFPScalarRShift<1, 0b11100, "ucvtf">;
6267// Codegen patterns for the above. We don't put these directly on the
6268// instructions because TableGen's type inference can't handle the truth.
6269// Having the same base pattern for fp <--> int totally freaks it out.
6270def : Pat<(int_aarch64_neon_vcvtfp2fxs FPR32:$Rn, vecshiftR32:$imm),
6271          (FCVTZSs FPR32:$Rn, vecshiftR32:$imm)>;
6272def : Pat<(int_aarch64_neon_vcvtfp2fxu FPR32:$Rn, vecshiftR32:$imm),
6273          (FCVTZUs FPR32:$Rn, vecshiftR32:$imm)>;
6274def : Pat<(i64 (int_aarch64_neon_vcvtfp2fxs (f64 FPR64:$Rn), vecshiftR64:$imm)),
6275          (FCVTZSd FPR64:$Rn, vecshiftR64:$imm)>;
6276def : Pat<(i64 (int_aarch64_neon_vcvtfp2fxu (f64 FPR64:$Rn), vecshiftR64:$imm)),
6277          (FCVTZUd FPR64:$Rn, vecshiftR64:$imm)>;
6278def : Pat<(v1i64 (int_aarch64_neon_vcvtfp2fxs (v1f64 FPR64:$Rn),
6279                                            vecshiftR64:$imm)),
6280          (FCVTZSd FPR64:$Rn, vecshiftR64:$imm)>;
6281def : Pat<(v1i64 (int_aarch64_neon_vcvtfp2fxu (v1f64 FPR64:$Rn),
6282                                            vecshiftR64:$imm)),
6283          (FCVTZUd FPR64:$Rn, vecshiftR64:$imm)>;
6284def : Pat<(int_aarch64_neon_vcvtfxu2fp FPR32:$Rn, vecshiftR32:$imm),
6285          (UCVTFs FPR32:$Rn, vecshiftR32:$imm)>;
6286def : Pat<(f64 (int_aarch64_neon_vcvtfxu2fp (i64 FPR64:$Rn), vecshiftR64:$imm)),
6287          (UCVTFd FPR64:$Rn, vecshiftR64:$imm)>;
6288def : Pat<(v1f64 (int_aarch64_neon_vcvtfxs2fp (v1i64 FPR64:$Rn),
6289                                            vecshiftR64:$imm)),
6290          (SCVTFd FPR64:$Rn, vecshiftR64:$imm)>;
6291def : Pat<(f64 (int_aarch64_neon_vcvtfxs2fp (i64 FPR64:$Rn), vecshiftR64:$imm)),
6292          (SCVTFd FPR64:$Rn, vecshiftR64:$imm)>;
6293def : Pat<(v1f64 (int_aarch64_neon_vcvtfxu2fp (v1i64 FPR64:$Rn),
6294                                            vecshiftR64:$imm)),
6295          (UCVTFd FPR64:$Rn, vecshiftR64:$imm)>;
6296def : Pat<(int_aarch64_neon_vcvtfxs2fp FPR32:$Rn, vecshiftR32:$imm),
6297          (SCVTFs FPR32:$Rn, vecshiftR32:$imm)>;
6298
6299// Patterns for FP16 Instrinsics - requires reg copy to/from as i16s not supported.
6300
6301def : Pat<(f16 (int_aarch64_neon_vcvtfxs2fp (i32 (sext_inreg FPR32:$Rn, i16)), vecshiftR16:$imm)),
6302          (SCVTFh (EXTRACT_SUBREG FPR32:$Rn, hsub), vecshiftR16:$imm)>;
6303def : Pat<(f16 (int_aarch64_neon_vcvtfxs2fp (i32 FPR32:$Rn), vecshiftR16:$imm)),
6304          (SCVTFh (EXTRACT_SUBREG FPR32:$Rn, hsub), vecshiftR16:$imm)>;
6305def : Pat<(f16 (int_aarch64_neon_vcvtfxs2fp (i64 FPR64:$Rn), vecshiftR16:$imm)),
6306          (SCVTFh (EXTRACT_SUBREG FPR64:$Rn, hsub), vecshiftR16:$imm)>;
6307def : Pat<(f16 (int_aarch64_neon_vcvtfxu2fp
6308            (and FPR32:$Rn, (i32 65535)),
6309            vecshiftR16:$imm)),
6310          (UCVTFh (EXTRACT_SUBREG FPR32:$Rn, hsub), vecshiftR16:$imm)>;
6311def : Pat<(f16 (int_aarch64_neon_vcvtfxu2fp FPR32:$Rn, vecshiftR16:$imm)),
6312          (UCVTFh (EXTRACT_SUBREG FPR32:$Rn, hsub), vecshiftR16:$imm)>;
6313def : Pat<(f16 (int_aarch64_neon_vcvtfxu2fp (i64 FPR64:$Rn), vecshiftR16:$imm)),
6314          (UCVTFh (EXTRACT_SUBREG FPR64:$Rn, hsub), vecshiftR16:$imm)>;
6315def : Pat<(i32 (int_aarch64_neon_vcvtfp2fxs (f16 FPR16:$Rn), vecshiftR32:$imm)),
6316          (i32 (INSERT_SUBREG
6317            (i32 (IMPLICIT_DEF)),
6318            (FCVTZSh FPR16:$Rn, vecshiftR32:$imm),
6319            hsub))>;
6320def : Pat<(i64 (int_aarch64_neon_vcvtfp2fxs (f16 FPR16:$Rn), vecshiftR64:$imm)),
6321          (i64 (INSERT_SUBREG
6322            (i64 (IMPLICIT_DEF)),
6323            (FCVTZSh FPR16:$Rn, vecshiftR64:$imm),
6324            hsub))>;
6325def : Pat<(i32 (int_aarch64_neon_vcvtfp2fxu (f16 FPR16:$Rn), vecshiftR32:$imm)),
6326          (i32 (INSERT_SUBREG
6327            (i32 (IMPLICIT_DEF)),
6328            (FCVTZUh FPR16:$Rn, vecshiftR32:$imm),
6329            hsub))>;
6330def : Pat<(i64 (int_aarch64_neon_vcvtfp2fxu (f16 FPR16:$Rn), vecshiftR64:$imm)),
6331          (i64 (INSERT_SUBREG
6332            (i64 (IMPLICIT_DEF)),
6333            (FCVTZUh FPR16:$Rn, vecshiftR64:$imm),
6334            hsub))>;
6335def : Pat<(i32 (int_aarch64_neon_facge (f16 FPR16:$Rn), (f16 FPR16:$Rm))),
6336          (i32 (INSERT_SUBREG
6337            (i32 (IMPLICIT_DEF)),
6338            (FACGE16 FPR16:$Rn, FPR16:$Rm),
6339            hsub))>;
6340def : Pat<(i32 (int_aarch64_neon_facgt (f16 FPR16:$Rn), (f16 FPR16:$Rm))),
6341          (i32 (INSERT_SUBREG
6342            (i32 (IMPLICIT_DEF)),
6343            (FACGT16 FPR16:$Rn, FPR16:$Rm),
6344            hsub))>;
6345
6346defm SHL      : SIMDScalarLShiftD<   0, 0b01010, "shl", AArch64vshl>;
6347defm SLI      : SIMDScalarLShiftDTied<1, 0b01010, "sli">;
6348defm SQRSHRN  : SIMDScalarRShiftBHS< 0, 0b10011, "sqrshrn",
6349                                     int_aarch64_neon_sqrshrn>;
6350defm SQRSHRUN : SIMDScalarRShiftBHS< 1, 0b10001, "sqrshrun",
6351                                     int_aarch64_neon_sqrshrun>;
6352defm SQSHLU   : SIMDScalarLShiftBHSD<1, 0b01100, "sqshlu", AArch64sqshlui>;
6353defm SQSHL    : SIMDScalarLShiftBHSD<0, 0b01110, "sqshl", AArch64sqshli>;
6354defm SQSHRN   : SIMDScalarRShiftBHS< 0, 0b10010, "sqshrn",
6355                                     int_aarch64_neon_sqshrn>;
6356defm SQSHRUN  : SIMDScalarRShiftBHS< 1, 0b10000, "sqshrun",
6357                                     int_aarch64_neon_sqshrun>;
6358defm SRI      : SIMDScalarRShiftDTied<   1, 0b01000, "sri">;
6359defm SRSHR    : SIMDScalarRShiftD<   0, 0b00100, "srshr", AArch64srshri>;
6360defm SRSRA    : SIMDScalarRShiftDTied<   0, 0b00110, "srsra",
6361    TriOpFrag<(add node:$LHS,
6362                   (AArch64srshri node:$MHS, node:$RHS))>>;
6363defm SSHR     : SIMDScalarRShiftD<   0, 0b00000, "sshr", AArch64vashr>;
6364defm SSRA     : SIMDScalarRShiftDTied<   0, 0b00010, "ssra",
6365    TriOpFrag<(add node:$LHS,
6366                   (AArch64vashr node:$MHS, node:$RHS))>>;
6367defm UQRSHRN  : SIMDScalarRShiftBHS< 1, 0b10011, "uqrshrn",
6368                                     int_aarch64_neon_uqrshrn>;
6369defm UQSHL    : SIMDScalarLShiftBHSD<1, 0b01110, "uqshl", AArch64uqshli>;
6370defm UQSHRN   : SIMDScalarRShiftBHS< 1, 0b10010, "uqshrn",
6371                                     int_aarch64_neon_uqshrn>;
6372defm URSHR    : SIMDScalarRShiftD<   1, 0b00100, "urshr", AArch64urshri>;
6373defm URSRA    : SIMDScalarRShiftDTied<   1, 0b00110, "ursra",
6374    TriOpFrag<(add node:$LHS,
6375                   (AArch64urshri node:$MHS, node:$RHS))>>;
6376defm USHR     : SIMDScalarRShiftD<   1, 0b00000, "ushr", AArch64vlshr>;
6377defm USRA     : SIMDScalarRShiftDTied<   1, 0b00010, "usra",
6378    TriOpFrag<(add node:$LHS,
6379                   (AArch64vlshr node:$MHS, node:$RHS))>>;
6380
6381//----------------------------------------------------------------------------
6382// AdvSIMD vector shift instructions
6383//----------------------------------------------------------------------------
6384defm FCVTZS:SIMDVectorRShiftSD<0, 0b11111, "fcvtzs", int_aarch64_neon_vcvtfp2fxs>;
6385defm FCVTZU:SIMDVectorRShiftSD<1, 0b11111, "fcvtzu", int_aarch64_neon_vcvtfp2fxu>;
6386defm SCVTF: SIMDVectorRShiftToFP<0, 0b11100, "scvtf",
6387                                   int_aarch64_neon_vcvtfxs2fp>;
6388defm RSHRN   : SIMDVectorRShiftNarrowBHS<0, 0b10001, "rshrn",
6389                                         int_aarch64_neon_rshrn>;
6390defm SHL     : SIMDVectorLShiftBHSD<0, 0b01010, "shl", AArch64vshl>;
6391defm SHRN    : SIMDVectorRShiftNarrowBHS<0, 0b10000, "shrn",
6392                          BinOpFrag<(trunc (AArch64vashr node:$LHS, node:$RHS))>>;
6393defm SLI     : SIMDVectorLShiftBHSDTied<1, 0b01010, "sli", AArch64vsli>;
6394def : Pat<(v1i64 (AArch64vsli (v1i64 FPR64:$Rd), (v1i64 FPR64:$Rn),
6395                                      (i32 vecshiftL64:$imm))),
6396          (SLId FPR64:$Rd, FPR64:$Rn, vecshiftL64:$imm)>;
6397defm SQRSHRN : SIMDVectorRShiftNarrowBHS<0, 0b10011, "sqrshrn",
6398                                         int_aarch64_neon_sqrshrn>;
6399defm SQRSHRUN: SIMDVectorRShiftNarrowBHS<1, 0b10001, "sqrshrun",
6400                                         int_aarch64_neon_sqrshrun>;
6401defm SQSHLU : SIMDVectorLShiftBHSD<1, 0b01100, "sqshlu", AArch64sqshlui>;
6402defm SQSHL  : SIMDVectorLShiftBHSD<0, 0b01110, "sqshl", AArch64sqshli>;
6403defm SQSHRN  : SIMDVectorRShiftNarrowBHS<0, 0b10010, "sqshrn",
6404                                         int_aarch64_neon_sqshrn>;
6405defm SQSHRUN : SIMDVectorRShiftNarrowBHS<1, 0b10000, "sqshrun",
6406                                         int_aarch64_neon_sqshrun>;
6407defm SRI     : SIMDVectorRShiftBHSDTied<1, 0b01000, "sri", AArch64vsri>;
6408def : Pat<(v1i64 (AArch64vsri (v1i64 FPR64:$Rd), (v1i64 FPR64:$Rn),
6409                                      (i32 vecshiftR64:$imm))),
6410          (SRId FPR64:$Rd, FPR64:$Rn, vecshiftR64:$imm)>;
6411defm SRSHR   : SIMDVectorRShiftBHSD<0, 0b00100, "srshr", AArch64srshri>;
6412defm SRSRA   : SIMDVectorRShiftBHSDTied<0, 0b00110, "srsra",
6413                 TriOpFrag<(add node:$LHS,
6414                                (AArch64srshri node:$MHS, node:$RHS))> >;
6415defm SSHLL   : SIMDVectorLShiftLongBHSD<0, 0b10100, "sshll",
6416                BinOpFrag<(AArch64vshl (sext node:$LHS), node:$RHS)>>;
6417
6418defm SSHR    : SIMDVectorRShiftBHSD<0, 0b00000, "sshr", AArch64vashr>;
6419defm SSRA    : SIMDVectorRShiftBHSDTied<0, 0b00010, "ssra",
6420                TriOpFrag<(add node:$LHS, (AArch64vashr node:$MHS, node:$RHS))>>;
6421defm UCVTF   : SIMDVectorRShiftToFP<1, 0b11100, "ucvtf",
6422                        int_aarch64_neon_vcvtfxu2fp>;
6423defm UQRSHRN : SIMDVectorRShiftNarrowBHS<1, 0b10011, "uqrshrn",
6424                                         int_aarch64_neon_uqrshrn>;
6425defm UQSHL   : SIMDVectorLShiftBHSD<1, 0b01110, "uqshl", AArch64uqshli>;
6426defm UQSHRN  : SIMDVectorRShiftNarrowBHS<1, 0b10010, "uqshrn",
6427                                         int_aarch64_neon_uqshrn>;
6428defm URSHR   : SIMDVectorRShiftBHSD<1, 0b00100, "urshr", AArch64urshri>;
6429defm URSRA   : SIMDVectorRShiftBHSDTied<1, 0b00110, "ursra",
6430                TriOpFrag<(add node:$LHS,
6431                               (AArch64urshri node:$MHS, node:$RHS))> >;
6432defm USHLL   : SIMDVectorLShiftLongBHSD<1, 0b10100, "ushll",
6433                BinOpFrag<(AArch64vshl (zext node:$LHS), node:$RHS)>>;
6434defm USHR    : SIMDVectorRShiftBHSD<1, 0b00000, "ushr", AArch64vlshr>;
6435defm USRA    : SIMDVectorRShiftBHSDTied<1, 0b00010, "usra",
6436                TriOpFrag<(add node:$LHS, (AArch64vlshr node:$MHS, node:$RHS))> >;
6437
6438// SHRN patterns for when a logical right shift was used instead of arithmetic
6439// (the immediate guarantees no sign bits actually end up in the result so it
6440// doesn't matter).
6441def : Pat<(v8i8 (trunc (AArch64vlshr (v8i16 V128:$Rn), vecshiftR16Narrow:$imm))),
6442          (SHRNv8i8_shift V128:$Rn, vecshiftR16Narrow:$imm)>;
6443def : Pat<(v4i16 (trunc (AArch64vlshr (v4i32 V128:$Rn), vecshiftR32Narrow:$imm))),
6444          (SHRNv4i16_shift V128:$Rn, vecshiftR32Narrow:$imm)>;
6445def : Pat<(v2i32 (trunc (AArch64vlshr (v2i64 V128:$Rn), vecshiftR64Narrow:$imm))),
6446          (SHRNv2i32_shift V128:$Rn, vecshiftR64Narrow:$imm)>;
6447
6448def : Pat<(v16i8 (concat_vectors (v8i8 V64:$Rd),
6449                                 (trunc (AArch64vlshr (v8i16 V128:$Rn),
6450                                                    vecshiftR16Narrow:$imm)))),
6451          (SHRNv16i8_shift (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub),
6452                           V128:$Rn, vecshiftR16Narrow:$imm)>;
6453def : Pat<(v8i16 (concat_vectors (v4i16 V64:$Rd),
6454                                 (trunc (AArch64vlshr (v4i32 V128:$Rn),
6455                                                    vecshiftR32Narrow:$imm)))),
6456          (SHRNv8i16_shift (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub),
6457                           V128:$Rn, vecshiftR32Narrow:$imm)>;
6458def : Pat<(v4i32 (concat_vectors (v2i32 V64:$Rd),
6459                                 (trunc (AArch64vlshr (v2i64 V128:$Rn),
6460                                                    vecshiftR64Narrow:$imm)))),
6461          (SHRNv4i32_shift (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub),
6462                           V128:$Rn, vecshiftR32Narrow:$imm)>;
6463
6464// Vector sign and zero extensions are implemented with SSHLL and USSHLL.
6465// Anyexts are implemented as zexts.
6466def : Pat<(v8i16 (sext   (v8i8 V64:$Rn))),  (SSHLLv8i8_shift  V64:$Rn, (i32 0))>;
6467def : Pat<(v8i16 (zext   (v8i8 V64:$Rn))),  (USHLLv8i8_shift  V64:$Rn, (i32 0))>;
6468def : Pat<(v8i16 (anyext (v8i8 V64:$Rn))),  (USHLLv8i8_shift  V64:$Rn, (i32 0))>;
6469def : Pat<(v4i32 (sext   (v4i16 V64:$Rn))), (SSHLLv4i16_shift V64:$Rn, (i32 0))>;
6470def : Pat<(v4i32 (zext   (v4i16 V64:$Rn))), (USHLLv4i16_shift V64:$Rn, (i32 0))>;
6471def : Pat<(v4i32 (anyext (v4i16 V64:$Rn))), (USHLLv4i16_shift V64:$Rn, (i32 0))>;
6472def : Pat<(v2i64 (sext   (v2i32 V64:$Rn))), (SSHLLv2i32_shift V64:$Rn, (i32 0))>;
6473def : Pat<(v2i64 (zext   (v2i32 V64:$Rn))), (USHLLv2i32_shift V64:$Rn, (i32 0))>;
6474def : Pat<(v2i64 (anyext (v2i32 V64:$Rn))), (USHLLv2i32_shift V64:$Rn, (i32 0))>;
6475// Also match an extend from the upper half of a 128 bit source register.
6476def : Pat<(v8i16 (anyext (v8i8 (extract_subvector V128:$Rn, (i64 8)) ))),
6477          (USHLLv16i8_shift V128:$Rn, (i32 0))>;
6478def : Pat<(v8i16 (zext   (v8i8 (extract_subvector V128:$Rn, (i64 8)) ))),
6479          (USHLLv16i8_shift V128:$Rn, (i32 0))>;
6480def : Pat<(v8i16 (sext   (v8i8 (extract_subvector V128:$Rn, (i64 8)) ))),
6481          (SSHLLv16i8_shift V128:$Rn, (i32 0))>;
6482def : Pat<(v4i32 (anyext (v4i16 (extract_subvector V128:$Rn, (i64 4)) ))),
6483          (USHLLv8i16_shift V128:$Rn, (i32 0))>;
6484def : Pat<(v4i32 (zext   (v4i16 (extract_subvector V128:$Rn, (i64 4)) ))),
6485          (USHLLv8i16_shift V128:$Rn, (i32 0))>;
6486def : Pat<(v4i32 (sext   (v4i16 (extract_subvector V128:$Rn, (i64 4)) ))),
6487          (SSHLLv8i16_shift V128:$Rn, (i32 0))>;
6488def : Pat<(v2i64 (anyext (v2i32 (extract_subvector V128:$Rn, (i64 2)) ))),
6489          (USHLLv4i32_shift V128:$Rn, (i32 0))>;
6490def : Pat<(v2i64 (zext   (v2i32 (extract_subvector V128:$Rn, (i64 2)) ))),
6491          (USHLLv4i32_shift V128:$Rn, (i32 0))>;
6492def : Pat<(v2i64 (sext   (v2i32 (extract_subvector V128:$Rn, (i64 2)) ))),
6493          (SSHLLv4i32_shift V128:$Rn, (i32 0))>;
6494
6495// Vector shift sxtl aliases
6496def : InstAlias<"sxtl.8h $dst, $src1",
6497                (SSHLLv8i8_shift V128:$dst, V64:$src1, 0)>;
6498def : InstAlias<"sxtl $dst.8h, $src1.8b",
6499                (SSHLLv8i8_shift V128:$dst, V64:$src1, 0)>;
6500def : InstAlias<"sxtl.4s $dst, $src1",
6501                (SSHLLv4i16_shift V128:$dst, V64:$src1, 0)>;
6502def : InstAlias<"sxtl $dst.4s, $src1.4h",
6503                (SSHLLv4i16_shift V128:$dst, V64:$src1, 0)>;
6504def : InstAlias<"sxtl.2d $dst, $src1",
6505                (SSHLLv2i32_shift V128:$dst, V64:$src1, 0)>;
6506def : InstAlias<"sxtl $dst.2d, $src1.2s",
6507                (SSHLLv2i32_shift V128:$dst, V64:$src1, 0)>;
6508
6509// Vector shift sxtl2 aliases
6510def : InstAlias<"sxtl2.8h $dst, $src1",
6511                (SSHLLv16i8_shift V128:$dst, V128:$src1, 0)>;
6512def : InstAlias<"sxtl2 $dst.8h, $src1.16b",
6513                (SSHLLv16i8_shift V128:$dst, V128:$src1, 0)>;
6514def : InstAlias<"sxtl2.4s $dst, $src1",
6515                (SSHLLv8i16_shift V128:$dst, V128:$src1, 0)>;
6516def : InstAlias<"sxtl2 $dst.4s, $src1.8h",
6517                (SSHLLv8i16_shift V128:$dst, V128:$src1, 0)>;
6518def : InstAlias<"sxtl2.2d $dst, $src1",
6519                (SSHLLv4i32_shift V128:$dst, V128:$src1, 0)>;
6520def : InstAlias<"sxtl2 $dst.2d, $src1.4s",
6521                (SSHLLv4i32_shift V128:$dst, V128:$src1, 0)>;
6522
6523// Vector shift uxtl aliases
6524def : InstAlias<"uxtl.8h $dst, $src1",
6525                (USHLLv8i8_shift V128:$dst, V64:$src1, 0)>;
6526def : InstAlias<"uxtl $dst.8h, $src1.8b",
6527                (USHLLv8i8_shift V128:$dst, V64:$src1, 0)>;
6528def : InstAlias<"uxtl.4s $dst, $src1",
6529                (USHLLv4i16_shift V128:$dst, V64:$src1, 0)>;
6530def : InstAlias<"uxtl $dst.4s, $src1.4h",
6531                (USHLLv4i16_shift V128:$dst, V64:$src1, 0)>;
6532def : InstAlias<"uxtl.2d $dst, $src1",
6533                (USHLLv2i32_shift V128:$dst, V64:$src1, 0)>;
6534def : InstAlias<"uxtl $dst.2d, $src1.2s",
6535                (USHLLv2i32_shift V128:$dst, V64:$src1, 0)>;
6536
6537// Vector shift uxtl2 aliases
6538def : InstAlias<"uxtl2.8h $dst, $src1",
6539                (USHLLv16i8_shift V128:$dst, V128:$src1, 0)>;
6540def : InstAlias<"uxtl2 $dst.8h, $src1.16b",
6541                (USHLLv16i8_shift V128:$dst, V128:$src1, 0)>;
6542def : InstAlias<"uxtl2.4s $dst, $src1",
6543                (USHLLv8i16_shift V128:$dst, V128:$src1, 0)>;
6544def : InstAlias<"uxtl2 $dst.4s, $src1.8h",
6545                (USHLLv8i16_shift V128:$dst, V128:$src1, 0)>;
6546def : InstAlias<"uxtl2.2d $dst, $src1",
6547                (USHLLv4i32_shift V128:$dst, V128:$src1, 0)>;
6548def : InstAlias<"uxtl2 $dst.2d, $src1.4s",
6549                (USHLLv4i32_shift V128:$dst, V128:$src1, 0)>;
6550
6551// If an integer is about to be converted to a floating point value,
6552// just load it on the floating point unit.
6553// These patterns are more complex because floating point loads do not
6554// support sign extension.
6555// The sign extension has to be explicitly added and is only supported for
6556// one step: byte-to-half, half-to-word, word-to-doubleword.
6557// SCVTF GPR -> FPR is 9 cycles.
6558// SCVTF FPR -> FPR is 4 cyclces.
6559// (sign extension with lengthen) SXTL FPR -> FPR is 2 cycles.
6560// Therefore, we can do 2 sign extensions and one SCVTF FPR -> FPR
6561// and still being faster.
6562// However, this is not good for code size.
6563// 8-bits -> float. 2 sizes step-up.
6564class SExtLoadi8CVTf32Pat<dag addrmode, dag INST>
6565  : Pat<(f32 (sint_to_fp (i32 (sextloadi8 addrmode)))),
6566        (SCVTFv1i32 (f32 (EXTRACT_SUBREG
6567                            (SSHLLv4i16_shift
6568                              (f64
6569                                (EXTRACT_SUBREG
6570                                  (SSHLLv8i8_shift
6571                                    (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
6572                                        INST,
6573                                        bsub),
6574                                    0),
6575                                  dsub)),
6576                               0),
6577                             ssub)))>,
6578    Requires<[NotForCodeSize, UseAlternateSExtLoadCVTF32]>;
6579
6580def : SExtLoadi8CVTf32Pat<(ro8.Wpat GPR64sp:$Rn, GPR32:$Rm, ro8.Wext:$ext),
6581                          (LDRBroW  GPR64sp:$Rn, GPR32:$Rm, ro8.Wext:$ext)>;
6582def : SExtLoadi8CVTf32Pat<(ro8.Xpat GPR64sp:$Rn, GPR64:$Rm, ro8.Xext:$ext),
6583                          (LDRBroX  GPR64sp:$Rn, GPR64:$Rm, ro8.Xext:$ext)>;
6584def : SExtLoadi8CVTf32Pat<(am_indexed8 GPR64sp:$Rn, uimm12s1:$offset),
6585                          (LDRBui GPR64sp:$Rn, uimm12s1:$offset)>;
6586def : SExtLoadi8CVTf32Pat<(am_unscaled8 GPR64sp:$Rn, simm9:$offset),
6587                          (LDURBi GPR64sp:$Rn, simm9:$offset)>;
6588
6589// 16-bits -> float. 1 size step-up.
6590class SExtLoadi16CVTf32Pat<dag addrmode, dag INST>
6591  : Pat<(f32 (sint_to_fp (i32 (sextloadi16 addrmode)))),
6592        (SCVTFv1i32 (f32 (EXTRACT_SUBREG
6593                            (SSHLLv4i16_shift
6594                                (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
6595                                  INST,
6596                                  hsub),
6597                                0),
6598                            ssub)))>, Requires<[NotForCodeSize]>;
6599
6600def : SExtLoadi16CVTf32Pat<(ro16.Wpat GPR64sp:$Rn, GPR32:$Rm, ro16.Wext:$ext),
6601                           (LDRHroW   GPR64sp:$Rn, GPR32:$Rm, ro16.Wext:$ext)>;
6602def : SExtLoadi16CVTf32Pat<(ro16.Xpat GPR64sp:$Rn, GPR64:$Rm, ro16.Xext:$ext),
6603                           (LDRHroX   GPR64sp:$Rn, GPR64:$Rm, ro16.Xext:$ext)>;
6604def : SExtLoadi16CVTf32Pat<(am_indexed16 GPR64sp:$Rn, uimm12s2:$offset),
6605                           (LDRHui GPR64sp:$Rn, uimm12s2:$offset)>;
6606def : SExtLoadi16CVTf32Pat<(am_unscaled16 GPR64sp:$Rn, simm9:$offset),
6607                           (LDURHi GPR64sp:$Rn, simm9:$offset)>;
6608
6609// 32-bits to 32-bits are handled in target specific dag combine:
6610// performIntToFpCombine.
6611// 64-bits integer to 32-bits floating point, not possible with
6612// SCVTF on floating point registers (both source and destination
6613// must have the same size).
6614
6615// Here are the patterns for 8, 16, 32, and 64-bits to double.
6616// 8-bits -> double. 3 size step-up: give up.
6617// 16-bits -> double. 2 size step.
6618class SExtLoadi16CVTf64Pat<dag addrmode, dag INST>
6619  : Pat <(f64 (sint_to_fp (i32 (sextloadi16 addrmode)))),
6620           (SCVTFv1i64 (f64 (EXTRACT_SUBREG
6621                              (SSHLLv2i32_shift
6622                                 (f64
6623                                  (EXTRACT_SUBREG
6624                                    (SSHLLv4i16_shift
6625                                      (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
6626                                        INST,
6627                                        hsub),
6628                                     0),
6629                                   dsub)),
6630                               0),
6631                             dsub)))>,
6632    Requires<[NotForCodeSize, UseAlternateSExtLoadCVTF32]>;
6633
6634def : SExtLoadi16CVTf64Pat<(ro16.Wpat GPR64sp:$Rn, GPR32:$Rm, ro16.Wext:$ext),
6635                           (LDRHroW GPR64sp:$Rn, GPR32:$Rm, ro16.Wext:$ext)>;
6636def : SExtLoadi16CVTf64Pat<(ro16.Xpat GPR64sp:$Rn, GPR64:$Rm, ro16.Xext:$ext),
6637                           (LDRHroX GPR64sp:$Rn, GPR64:$Rm, ro16.Xext:$ext)>;
6638def : SExtLoadi16CVTf64Pat<(am_indexed16 GPR64sp:$Rn, uimm12s2:$offset),
6639                           (LDRHui GPR64sp:$Rn, uimm12s2:$offset)>;
6640def : SExtLoadi16CVTf64Pat<(am_unscaled16 GPR64sp:$Rn, simm9:$offset),
6641                           (LDURHi GPR64sp:$Rn, simm9:$offset)>;
6642// 32-bits -> double. 1 size step-up.
6643class SExtLoadi32CVTf64Pat<dag addrmode, dag INST>
6644  : Pat <(f64 (sint_to_fp (i32 (load addrmode)))),
6645           (SCVTFv1i64 (f64 (EXTRACT_SUBREG
6646                              (SSHLLv2i32_shift
6647                                (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
6648                                  INST,
6649                                  ssub),
6650                               0),
6651                             dsub)))>, Requires<[NotForCodeSize]>;
6652
6653def : SExtLoadi32CVTf64Pat<(ro32.Wpat GPR64sp:$Rn, GPR32:$Rm, ro32.Wext:$ext),
6654                           (LDRSroW GPR64sp:$Rn, GPR32:$Rm, ro32.Wext:$ext)>;
6655def : SExtLoadi32CVTf64Pat<(ro32.Xpat GPR64sp:$Rn, GPR64:$Rm, ro32.Xext:$ext),
6656                           (LDRSroX GPR64sp:$Rn, GPR64:$Rm, ro32.Xext:$ext)>;
6657def : SExtLoadi32CVTf64Pat<(am_indexed32 GPR64sp:$Rn, uimm12s4:$offset),
6658                           (LDRSui GPR64sp:$Rn, uimm12s4:$offset)>;
6659def : SExtLoadi32CVTf64Pat<(am_unscaled32 GPR64sp:$Rn, simm9:$offset),
6660                           (LDURSi GPR64sp:$Rn, simm9:$offset)>;
6661
6662// 64-bits -> double are handled in target specific dag combine:
6663// performIntToFpCombine.
6664
6665
6666//----------------------------------------------------------------------------
6667// AdvSIMD Load-Store Structure
6668//----------------------------------------------------------------------------
6669defm LD1 : SIMDLd1Multiple<"ld1">;
6670defm LD2 : SIMDLd2Multiple<"ld2">;
6671defm LD3 : SIMDLd3Multiple<"ld3">;
6672defm LD4 : SIMDLd4Multiple<"ld4">;
6673
6674defm ST1 : SIMDSt1Multiple<"st1">;
6675defm ST2 : SIMDSt2Multiple<"st2">;
6676defm ST3 : SIMDSt3Multiple<"st3">;
6677defm ST4 : SIMDSt4Multiple<"st4">;
6678
6679class Ld1Pat<ValueType ty, Instruction INST>
6680  : Pat<(ty (load GPR64sp:$Rn)), (INST GPR64sp:$Rn)>;
6681
6682def : Ld1Pat<v16i8, LD1Onev16b>;
6683def : Ld1Pat<v8i16, LD1Onev8h>;
6684def : Ld1Pat<v4i32, LD1Onev4s>;
6685def : Ld1Pat<v2i64, LD1Onev2d>;
6686def : Ld1Pat<v8i8,  LD1Onev8b>;
6687def : Ld1Pat<v4i16, LD1Onev4h>;
6688def : Ld1Pat<v2i32, LD1Onev2s>;
6689def : Ld1Pat<v1i64, LD1Onev1d>;
6690
6691class St1Pat<ValueType ty, Instruction INST>
6692  : Pat<(store ty:$Vt, GPR64sp:$Rn),
6693        (INST ty:$Vt, GPR64sp:$Rn)>;
6694
6695def : St1Pat<v16i8, ST1Onev16b>;
6696def : St1Pat<v8i16, ST1Onev8h>;
6697def : St1Pat<v4i32, ST1Onev4s>;
6698def : St1Pat<v2i64, ST1Onev2d>;
6699def : St1Pat<v8i8,  ST1Onev8b>;
6700def : St1Pat<v4i16, ST1Onev4h>;
6701def : St1Pat<v2i32, ST1Onev2s>;
6702def : St1Pat<v1i64, ST1Onev1d>;
6703
6704//---
6705// Single-element
6706//---
6707
6708defm LD1R          : SIMDLdR<0, 0b110, 0, "ld1r", "One", 1, 2, 4, 8>;
6709defm LD2R          : SIMDLdR<1, 0b110, 0, "ld2r", "Two", 2, 4, 8, 16>;
6710defm LD3R          : SIMDLdR<0, 0b111, 0, "ld3r", "Three", 3, 6, 12, 24>;
6711defm LD4R          : SIMDLdR<1, 0b111, 0, "ld4r", "Four", 4, 8, 16, 32>;
6712let mayLoad = 1, hasSideEffects = 0 in {
6713defm LD1 : SIMDLdSingleBTied<0, 0b000,       "ld1", VecListOneb,   GPR64pi1>;
6714defm LD1 : SIMDLdSingleHTied<0, 0b010, 0,    "ld1", VecListOneh,   GPR64pi2>;
6715defm LD1 : SIMDLdSingleSTied<0, 0b100, 0b00, "ld1", VecListOnes,   GPR64pi4>;
6716defm LD1 : SIMDLdSingleDTied<0, 0b100, 0b01, "ld1", VecListOned,   GPR64pi8>;
6717defm LD2 : SIMDLdSingleBTied<1, 0b000,       "ld2", VecListTwob,   GPR64pi2>;
6718defm LD2 : SIMDLdSingleHTied<1, 0b010, 0,    "ld2", VecListTwoh,   GPR64pi4>;
6719defm LD2 : SIMDLdSingleSTied<1, 0b100, 0b00, "ld2", VecListTwos,   GPR64pi8>;
6720defm LD2 : SIMDLdSingleDTied<1, 0b100, 0b01, "ld2", VecListTwod,   GPR64pi16>;
6721defm LD3 : SIMDLdSingleBTied<0, 0b001,       "ld3", VecListThreeb, GPR64pi3>;
6722defm LD3 : SIMDLdSingleHTied<0, 0b011, 0,    "ld3", VecListThreeh, GPR64pi6>;
6723defm LD3 : SIMDLdSingleSTied<0, 0b101, 0b00, "ld3", VecListThrees, GPR64pi12>;
6724defm LD3 : SIMDLdSingleDTied<0, 0b101, 0b01, "ld3", VecListThreed, GPR64pi24>;
6725defm LD4 : SIMDLdSingleBTied<1, 0b001,       "ld4", VecListFourb,  GPR64pi4>;
6726defm LD4 : SIMDLdSingleHTied<1, 0b011, 0,    "ld4", VecListFourh,  GPR64pi8>;
6727defm LD4 : SIMDLdSingleSTied<1, 0b101, 0b00, "ld4", VecListFours,  GPR64pi16>;
6728defm LD4 : SIMDLdSingleDTied<1, 0b101, 0b01, "ld4", VecListFourd,  GPR64pi32>;
6729}
6730
6731def : Pat<(v8i8 (AArch64dup (i32 (extloadi8 GPR64sp:$Rn)))),
6732          (LD1Rv8b GPR64sp:$Rn)>;
6733def : Pat<(v16i8 (AArch64dup (i32 (extloadi8 GPR64sp:$Rn)))),
6734          (LD1Rv16b GPR64sp:$Rn)>;
6735def : Pat<(v4i16 (AArch64dup (i32 (extloadi16 GPR64sp:$Rn)))),
6736          (LD1Rv4h GPR64sp:$Rn)>;
6737def : Pat<(v8i16 (AArch64dup (i32 (extloadi16 GPR64sp:$Rn)))),
6738          (LD1Rv8h GPR64sp:$Rn)>;
6739def : Pat<(v2i32 (AArch64dup (i32 (load GPR64sp:$Rn)))),
6740          (LD1Rv2s GPR64sp:$Rn)>;
6741def : Pat<(v4i32 (AArch64dup (i32 (load GPR64sp:$Rn)))),
6742          (LD1Rv4s GPR64sp:$Rn)>;
6743def : Pat<(v2i64 (AArch64dup (i64 (load GPR64sp:$Rn)))),
6744          (LD1Rv2d GPR64sp:$Rn)>;
6745def : Pat<(v1i64 (AArch64dup (i64 (load GPR64sp:$Rn)))),
6746          (LD1Rv1d GPR64sp:$Rn)>;
6747// Grab the floating point version too
6748def : Pat<(v2f32 (AArch64dup (f32 (load GPR64sp:$Rn)))),
6749          (LD1Rv2s GPR64sp:$Rn)>;
6750def : Pat<(v4f32 (AArch64dup (f32 (load GPR64sp:$Rn)))),
6751          (LD1Rv4s GPR64sp:$Rn)>;
6752def : Pat<(v2f64 (AArch64dup (f64 (load GPR64sp:$Rn)))),
6753          (LD1Rv2d GPR64sp:$Rn)>;
6754def : Pat<(v1f64 (AArch64dup (f64 (load GPR64sp:$Rn)))),
6755          (LD1Rv1d GPR64sp:$Rn)>;
6756def : Pat<(v4f16 (AArch64dup (f16 (load GPR64sp:$Rn)))),
6757          (LD1Rv4h GPR64sp:$Rn)>;
6758def : Pat<(v8f16 (AArch64dup (f16 (load GPR64sp:$Rn)))),
6759          (LD1Rv8h GPR64sp:$Rn)>;
6760def : Pat<(v4bf16 (AArch64dup (bf16 (load GPR64sp:$Rn)))),
6761          (LD1Rv4h GPR64sp:$Rn)>;
6762def : Pat<(v8bf16 (AArch64dup (bf16 (load GPR64sp:$Rn)))),
6763          (LD1Rv8h GPR64sp:$Rn)>;
6764
6765class Ld1Lane128Pat<SDPatternOperator scalar_load, Operand VecIndex,
6766                    ValueType VTy, ValueType STy, Instruction LD1>
6767  : Pat<(vector_insert (VTy VecListOne128:$Rd),
6768           (STy (scalar_load GPR64sp:$Rn)), VecIndex:$idx),
6769        (LD1 VecListOne128:$Rd, VecIndex:$idx, GPR64sp:$Rn)>;
6770
6771def : Ld1Lane128Pat<extloadi8,  VectorIndexB, v16i8, i32, LD1i8>;
6772def : Ld1Lane128Pat<extloadi16, VectorIndexH, v8i16, i32, LD1i16>;
6773def : Ld1Lane128Pat<load,       VectorIndexS, v4i32, i32, LD1i32>;
6774def : Ld1Lane128Pat<load,       VectorIndexS, v4f32, f32, LD1i32>;
6775def : Ld1Lane128Pat<load,       VectorIndexD, v2i64, i64, LD1i64>;
6776def : Ld1Lane128Pat<load,       VectorIndexD, v2f64, f64, LD1i64>;
6777def : Ld1Lane128Pat<load,       VectorIndexH, v8f16, f16, LD1i16>;
6778def : Ld1Lane128Pat<load,       VectorIndexH, v8bf16, bf16, LD1i16>;
6779
6780// Generate LD1 for extload if memory type does not match the
6781// destination type, for example:
6782//
6783//   (v4i32 (insert_vector_elt (load anyext from i8) idx))
6784//
6785// In this case, the index must be adjusted to match LD1 type.
6786//
6787class Ld1Lane128IdxOpPat<SDPatternOperator scalar_load, Operand
6788                    VecIndex, ValueType VTy, ValueType STy,
6789                    Instruction LD1, SDNodeXForm IdxOp>
6790  : Pat<(vector_insert (VTy VecListOne128:$Rd),
6791                       (STy (scalar_load GPR64sp:$Rn)), VecIndex:$idx),
6792        (LD1 VecListOne128:$Rd, (IdxOp VecIndex:$idx), GPR64sp:$Rn)>;
6793
6794def VectorIndexStoH : SDNodeXForm<imm, [{
6795  return CurDAG->getTargetConstant(N->getZExtValue() * 2, SDLoc(N), MVT::i64);
6796}]>;
6797def VectorIndexStoB : SDNodeXForm<imm, [{
6798  return CurDAG->getTargetConstant(N->getZExtValue() * 4, SDLoc(N), MVT::i64);
6799}]>;
6800def VectorIndexHtoB : SDNodeXForm<imm, [{
6801  return CurDAG->getTargetConstant(N->getZExtValue() * 2, SDLoc(N), MVT::i64);
6802}]>;
6803
6804def : Ld1Lane128IdxOpPat<extloadi16, VectorIndexS, v4i32, i32, LD1i16, VectorIndexStoH>;
6805def : Ld1Lane128IdxOpPat<extloadi8, VectorIndexS, v4i32, i32, LD1i8, VectorIndexStoB>;
6806def : Ld1Lane128IdxOpPat<extloadi8, VectorIndexH, v8i16, i32, LD1i8, VectorIndexHtoB>;
6807
6808// Same as above, but the first element is populated using
6809// scalar_to_vector + insert_subvector instead of insert_vector_elt.
6810class Ld1Lane128FirstElm<ValueType ResultTy, ValueType VecTy,
6811                        SDPatternOperator ExtLoad, Instruction LD1>
6812  : Pat<(ResultTy (scalar_to_vector (i32 (ExtLoad GPR64sp:$Rn)))),
6813          (ResultTy (EXTRACT_SUBREG
6814            (LD1 (VecTy (IMPLICIT_DEF)), 0, GPR64sp:$Rn), dsub))>;
6815
6816def : Ld1Lane128FirstElm<v2i32, v8i16, extloadi16, LD1i16>;
6817def : Ld1Lane128FirstElm<v2i32, v16i8, extloadi8, LD1i8>;
6818def : Ld1Lane128FirstElm<v4i16, v16i8, extloadi8, LD1i8>;
6819
6820class Ld1Lane64Pat<SDPatternOperator scalar_load, Operand VecIndex,
6821                   ValueType VTy, ValueType STy, Instruction LD1>
6822  : Pat<(vector_insert (VTy VecListOne64:$Rd),
6823           (STy (scalar_load GPR64sp:$Rn)), VecIndex:$idx),
6824        (EXTRACT_SUBREG
6825            (LD1 (SUBREG_TO_REG (i32 0), VecListOne64:$Rd, dsub),
6826                          VecIndex:$idx, GPR64sp:$Rn),
6827            dsub)>;
6828
6829def : Ld1Lane64Pat<extloadi8,  VectorIndexB, v8i8,  i32, LD1i8>;
6830def : Ld1Lane64Pat<extloadi16, VectorIndexH, v4i16, i32, LD1i16>;
6831def : Ld1Lane64Pat<load,       VectorIndexS, v2i32, i32, LD1i32>;
6832def : Ld1Lane64Pat<load,       VectorIndexS, v2f32, f32, LD1i32>;
6833def : Ld1Lane64Pat<load,       VectorIndexH, v4f16, f16, LD1i16>;
6834def : Ld1Lane64Pat<load,       VectorIndexH, v4bf16, bf16, LD1i16>;
6835
6836
6837defm LD1 : SIMDLdSt1SingleAliases<"ld1">;
6838defm LD2 : SIMDLdSt2SingleAliases<"ld2">;
6839defm LD3 : SIMDLdSt3SingleAliases<"ld3">;
6840defm LD4 : SIMDLdSt4SingleAliases<"ld4">;
6841
6842// Stores
6843defm ST1 : SIMDStSingleB<0, 0b000,       "st1", VecListOneb, GPR64pi1>;
6844defm ST1 : SIMDStSingleH<0, 0b010, 0,    "st1", VecListOneh, GPR64pi2>;
6845defm ST1 : SIMDStSingleS<0, 0b100, 0b00, "st1", VecListOnes, GPR64pi4>;
6846defm ST1 : SIMDStSingleD<0, 0b100, 0b01, "st1", VecListOned, GPR64pi8>;
6847
6848let AddedComplexity = 19 in
6849class St1Lane128Pat<SDPatternOperator scalar_store, Operand VecIndex,
6850                    ValueType VTy, ValueType STy, Instruction ST1>
6851  : Pat<(scalar_store
6852             (STy (vector_extract (VTy VecListOne128:$Vt), VecIndex:$idx)),
6853             GPR64sp:$Rn),
6854        (ST1 VecListOne128:$Vt, VecIndex:$idx, GPR64sp:$Rn)>;
6855
6856def : St1Lane128Pat<truncstorei8,  VectorIndexB, v16i8, i32, ST1i8>;
6857def : St1Lane128Pat<truncstorei16, VectorIndexH, v8i16, i32, ST1i16>;
6858def : St1Lane128Pat<store,         VectorIndexS, v4i32, i32, ST1i32>;
6859def : St1Lane128Pat<store,         VectorIndexS, v4f32, f32, ST1i32>;
6860def : St1Lane128Pat<store,         VectorIndexD, v2i64, i64, ST1i64>;
6861def : St1Lane128Pat<store,         VectorIndexD, v2f64, f64, ST1i64>;
6862def : St1Lane128Pat<store,         VectorIndexH, v8f16, f16, ST1i16>;
6863def : St1Lane128Pat<store,         VectorIndexH, v8bf16, bf16, ST1i16>;
6864
6865let AddedComplexity = 19 in
6866class St1Lane64Pat<SDPatternOperator scalar_store, Operand VecIndex,
6867                   ValueType VTy, ValueType STy, Instruction ST1>
6868  : Pat<(scalar_store
6869             (STy (vector_extract (VTy VecListOne64:$Vt), VecIndex:$idx)),
6870             GPR64sp:$Rn),
6871        (ST1 (SUBREG_TO_REG (i32 0), VecListOne64:$Vt, dsub),
6872             VecIndex:$idx, GPR64sp:$Rn)>;
6873
6874def : St1Lane64Pat<truncstorei8,  VectorIndexB, v8i8, i32, ST1i8>;
6875def : St1Lane64Pat<truncstorei16, VectorIndexH, v4i16, i32, ST1i16>;
6876def : St1Lane64Pat<store,         VectorIndexS, v2i32, i32, ST1i32>;
6877def : St1Lane64Pat<store,         VectorIndexS, v2f32, f32, ST1i32>;
6878def : St1Lane64Pat<store,         VectorIndexH, v4f16, f16, ST1i16>;
6879def : St1Lane64Pat<store,         VectorIndexH, v4bf16, bf16, ST1i16>;
6880
6881multiclass St1LanePost64Pat<SDPatternOperator scalar_store, Operand VecIndex,
6882                             ValueType VTy, ValueType STy, Instruction ST1,
6883                             int offset> {
6884  def : Pat<(scalar_store
6885              (STy (vector_extract (VTy VecListOne64:$Vt), VecIndex:$idx)),
6886              GPR64sp:$Rn, offset),
6887        (ST1 (SUBREG_TO_REG (i32 0), VecListOne64:$Vt, dsub),
6888             VecIndex:$idx, GPR64sp:$Rn, XZR)>;
6889
6890  def : Pat<(scalar_store
6891              (STy (vector_extract (VTy VecListOne64:$Vt), VecIndex:$idx)),
6892              GPR64sp:$Rn, GPR64:$Rm),
6893        (ST1 (SUBREG_TO_REG (i32 0), VecListOne64:$Vt, dsub),
6894             VecIndex:$idx, GPR64sp:$Rn, $Rm)>;
6895}
6896
6897defm : St1LanePost64Pat<post_truncsti8, VectorIndexB, v8i8, i32, ST1i8_POST, 1>;
6898defm : St1LanePost64Pat<post_truncsti16, VectorIndexH, v4i16, i32, ST1i16_POST,
6899                        2>;
6900defm : St1LanePost64Pat<post_store, VectorIndexS, v2i32, i32, ST1i32_POST, 4>;
6901defm : St1LanePost64Pat<post_store, VectorIndexS, v2f32, f32, ST1i32_POST, 4>;
6902defm : St1LanePost64Pat<post_store, VectorIndexD, v1i64, i64, ST1i64_POST, 8>;
6903defm : St1LanePost64Pat<post_store, VectorIndexD, v1f64, f64, ST1i64_POST, 8>;
6904defm : St1LanePost64Pat<post_store, VectorIndexH, v4f16, f16, ST1i16_POST, 2>;
6905defm : St1LanePost64Pat<post_store, VectorIndexH, v4bf16, bf16, ST1i16_POST, 2>;
6906
6907multiclass St1LanePost128Pat<SDPatternOperator scalar_store, Operand VecIndex,
6908                             ValueType VTy, ValueType STy, Instruction ST1,
6909                             int offset> {
6910  def : Pat<(scalar_store
6911              (STy (vector_extract (VTy VecListOne128:$Vt), VecIndex:$idx)),
6912              GPR64sp:$Rn, offset),
6913        (ST1 VecListOne128:$Vt, VecIndex:$idx, GPR64sp:$Rn, XZR)>;
6914
6915  def : Pat<(scalar_store
6916              (STy (vector_extract (VTy VecListOne128:$Vt), VecIndex:$idx)),
6917              GPR64sp:$Rn, GPR64:$Rm),
6918        (ST1 VecListOne128:$Vt, VecIndex:$idx, GPR64sp:$Rn, $Rm)>;
6919}
6920
6921defm : St1LanePost128Pat<post_truncsti8, VectorIndexB, v16i8, i32, ST1i8_POST,
6922                         1>;
6923defm : St1LanePost128Pat<post_truncsti16, VectorIndexH, v8i16, i32, ST1i16_POST,
6924                         2>;
6925defm : St1LanePost128Pat<post_store, VectorIndexS, v4i32, i32, ST1i32_POST, 4>;
6926defm : St1LanePost128Pat<post_store, VectorIndexS, v4f32, f32, ST1i32_POST, 4>;
6927defm : St1LanePost128Pat<post_store, VectorIndexD, v2i64, i64, ST1i64_POST, 8>;
6928defm : St1LanePost128Pat<post_store, VectorIndexD, v2f64, f64, ST1i64_POST, 8>;
6929defm : St1LanePost128Pat<post_store, VectorIndexH, v8f16, f16, ST1i16_POST, 2>;
6930defm : St1LanePost128Pat<post_store, VectorIndexH, v8bf16, bf16, ST1i16_POST, 2>;
6931
6932let mayStore = 1, hasSideEffects = 0 in {
6933defm ST2 : SIMDStSingleB<1, 0b000,       "st2", VecListTwob,   GPR64pi2>;
6934defm ST2 : SIMDStSingleH<1, 0b010, 0,    "st2", VecListTwoh,   GPR64pi4>;
6935defm ST2 : SIMDStSingleS<1, 0b100, 0b00, "st2", VecListTwos,   GPR64pi8>;
6936defm ST2 : SIMDStSingleD<1, 0b100, 0b01, "st2", VecListTwod,   GPR64pi16>;
6937defm ST3 : SIMDStSingleB<0, 0b001,       "st3", VecListThreeb, GPR64pi3>;
6938defm ST3 : SIMDStSingleH<0, 0b011, 0,    "st3", VecListThreeh, GPR64pi6>;
6939defm ST3 : SIMDStSingleS<0, 0b101, 0b00, "st3", VecListThrees, GPR64pi12>;
6940defm ST3 : SIMDStSingleD<0, 0b101, 0b01, "st3", VecListThreed, GPR64pi24>;
6941defm ST4 : SIMDStSingleB<1, 0b001,       "st4", VecListFourb,  GPR64pi4>;
6942defm ST4 : SIMDStSingleH<1, 0b011, 0,    "st4", VecListFourh,  GPR64pi8>;
6943defm ST4 : SIMDStSingleS<1, 0b101, 0b00, "st4", VecListFours,  GPR64pi16>;
6944defm ST4 : SIMDStSingleD<1, 0b101, 0b01, "st4", VecListFourd,  GPR64pi32>;
6945}
6946
6947defm ST1 : SIMDLdSt1SingleAliases<"st1">;
6948defm ST2 : SIMDLdSt2SingleAliases<"st2">;
6949defm ST3 : SIMDLdSt3SingleAliases<"st3">;
6950defm ST4 : SIMDLdSt4SingleAliases<"st4">;
6951
6952//----------------------------------------------------------------------------
6953// Crypto extensions
6954//----------------------------------------------------------------------------
6955
6956let Predicates = [HasAES] in {
6957def AESErr   : AESTiedInst<0b0100, "aese",   int_aarch64_crypto_aese>;
6958def AESDrr   : AESTiedInst<0b0101, "aesd",   int_aarch64_crypto_aesd>;
6959def AESMCrr  : AESInst<    0b0110, "aesmc",  int_aarch64_crypto_aesmc>;
6960def AESIMCrr : AESInst<    0b0111, "aesimc", int_aarch64_crypto_aesimc>;
6961}
6962
6963// Pseudo instructions for AESMCrr/AESIMCrr with a register constraint required
6964// for AES fusion on some CPUs.
6965let hasSideEffects = 0, mayStore = 0, mayLoad = 0 in {
6966def AESMCrrTied: Pseudo<(outs V128:$Rd), (ins V128:$Rn), [], "$Rn = $Rd">,
6967                        Sched<[WriteV]>;
6968def AESIMCrrTied: Pseudo<(outs V128:$Rd), (ins V128:$Rn), [], "$Rn = $Rd">,
6969                         Sched<[WriteV]>;
6970}
6971
6972// Only use constrained versions of AES(I)MC instructions if they are paired with
6973// AESE/AESD.
6974def : Pat<(v16i8 (int_aarch64_crypto_aesmc
6975            (v16i8 (int_aarch64_crypto_aese (v16i8 V128:$src1),
6976                                            (v16i8 V128:$src2))))),
6977          (v16i8 (AESMCrrTied (v16i8 (AESErr (v16i8 V128:$src1),
6978                                             (v16i8 V128:$src2)))))>,
6979          Requires<[HasFuseAES]>;
6980
6981def : Pat<(v16i8 (int_aarch64_crypto_aesimc
6982            (v16i8 (int_aarch64_crypto_aesd (v16i8 V128:$src1),
6983                                            (v16i8 V128:$src2))))),
6984          (v16i8 (AESIMCrrTied (v16i8 (AESDrr (v16i8 V128:$src1),
6985                                              (v16i8 V128:$src2)))))>,
6986          Requires<[HasFuseAES]>;
6987
6988let Predicates = [HasSHA2] in {
6989def SHA1Crrr     : SHATiedInstQSV<0b000, "sha1c",   int_aarch64_crypto_sha1c>;
6990def SHA1Prrr     : SHATiedInstQSV<0b001, "sha1p",   int_aarch64_crypto_sha1p>;
6991def SHA1Mrrr     : SHATiedInstQSV<0b010, "sha1m",   int_aarch64_crypto_sha1m>;
6992def SHA1SU0rrr   : SHATiedInstVVV<0b011, "sha1su0", int_aarch64_crypto_sha1su0>;
6993def SHA256Hrrr   : SHATiedInstQQV<0b100, "sha256h", int_aarch64_crypto_sha256h>;
6994def SHA256H2rrr  : SHATiedInstQQV<0b101, "sha256h2",int_aarch64_crypto_sha256h2>;
6995def SHA256SU1rrr :SHATiedInstVVV<0b110, "sha256su1",int_aarch64_crypto_sha256su1>;
6996
6997def SHA1Hrr     : SHAInstSS<    0b0000, "sha1h",    int_aarch64_crypto_sha1h>;
6998def SHA1SU1rr   : SHATiedInstVV<0b0001, "sha1su1",  int_aarch64_crypto_sha1su1>;
6999def SHA256SU0rr : SHATiedInstVV<0b0010, "sha256su0",int_aarch64_crypto_sha256su0>;
7000}
7001
7002//----------------------------------------------------------------------------
7003// Compiler-pseudos
7004//----------------------------------------------------------------------------
7005// FIXME: Like for X86, these should go in their own separate .td file.
7006
7007def def32 : PatLeaf<(i32 GPR32:$src), [{
7008  return isDef32(*N);
7009}]>;
7010
7011// In the case of a 32-bit def that is known to implicitly zero-extend,
7012// we can use a SUBREG_TO_REG.
7013def : Pat<(i64 (zext def32:$src)), (SUBREG_TO_REG (i64 0), GPR32:$src, sub_32)>;
7014
7015// For an anyext, we don't care what the high bits are, so we can perform an
7016// INSERT_SUBREF into an IMPLICIT_DEF.
7017def : Pat<(i64 (anyext GPR32:$src)),
7018          (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GPR32:$src, sub_32)>;
7019
7020// When we need to explicitly zero-extend, we use a 32-bit MOV instruction and
7021// then assert the extension has happened.
7022def : Pat<(i64 (zext GPR32:$src)),
7023          (SUBREG_TO_REG (i32 0), (ORRWrs WZR, GPR32:$src, 0), sub_32)>;
7024
7025// To sign extend, we use a signed bitfield move instruction (SBFM) on the
7026// containing super-reg.
7027def : Pat<(i64 (sext GPR32:$src)),
7028   (SBFMXri (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GPR32:$src, sub_32), 0, 31)>;
7029def : Pat<(i64 (sext_inreg GPR64:$src, i32)), (SBFMXri GPR64:$src, 0, 31)>;
7030def : Pat<(i64 (sext_inreg GPR64:$src, i16)), (SBFMXri GPR64:$src, 0, 15)>;
7031def : Pat<(i64 (sext_inreg GPR64:$src, i8)),  (SBFMXri GPR64:$src, 0, 7)>;
7032def : Pat<(i64 (sext_inreg GPR64:$src, i1)),  (SBFMXri GPR64:$src, 0, 0)>;
7033def : Pat<(i32 (sext_inreg GPR32:$src, i16)), (SBFMWri GPR32:$src, 0, 15)>;
7034def : Pat<(i32 (sext_inreg GPR32:$src, i8)),  (SBFMWri GPR32:$src, 0, 7)>;
7035def : Pat<(i32 (sext_inreg GPR32:$src, i1)),  (SBFMWri GPR32:$src, 0, 0)>;
7036
7037def : Pat<(shl (sext_inreg GPR32:$Rn, i8), (i64 imm0_31:$imm)),
7038          (SBFMWri GPR32:$Rn, (i64 (i32shift_a       imm0_31:$imm)),
7039                              (i64 (i32shift_sext_i8 imm0_31:$imm)))>;
7040def : Pat<(shl (sext_inreg GPR64:$Rn, i8), (i64 imm0_63:$imm)),
7041          (SBFMXri GPR64:$Rn, (i64 (i64shift_a imm0_63:$imm)),
7042                              (i64 (i64shift_sext_i8 imm0_63:$imm)))>;
7043
7044def : Pat<(shl (sext_inreg GPR32:$Rn, i16), (i64 imm0_31:$imm)),
7045          (SBFMWri GPR32:$Rn, (i64 (i32shift_a        imm0_31:$imm)),
7046                              (i64 (i32shift_sext_i16 imm0_31:$imm)))>;
7047def : Pat<(shl (sext_inreg GPR64:$Rn, i16), (i64 imm0_63:$imm)),
7048          (SBFMXri GPR64:$Rn, (i64 (i64shift_a        imm0_63:$imm)),
7049                              (i64 (i64shift_sext_i16 imm0_63:$imm)))>;
7050
7051def : Pat<(shl (i64 (sext GPR32:$Rn)), (i64 imm0_63:$imm)),
7052          (SBFMXri (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GPR32:$Rn, sub_32),
7053                   (i64 (i64shift_a        imm0_63:$imm)),
7054                   (i64 (i64shift_sext_i32 imm0_63:$imm)))>;
7055
7056// sra patterns have an AddedComplexity of 10, so make sure we have a higher
7057// AddedComplexity for the following patterns since we want to match sext + sra
7058// patterns before we attempt to match a single sra node.
7059let AddedComplexity = 20 in {
7060// We support all sext + sra combinations which preserve at least one bit of the
7061// original value which is to be sign extended. E.g. we support shifts up to
7062// bitwidth-1 bits.
7063def : Pat<(sra (sext_inreg GPR32:$Rn, i8), (i64 imm0_7:$imm)),
7064          (SBFMWri GPR32:$Rn, (i64 imm0_7:$imm), 7)>;
7065def : Pat<(sra (sext_inreg GPR64:$Rn, i8), (i64 imm0_7:$imm)),
7066          (SBFMXri GPR64:$Rn, (i64 imm0_7:$imm), 7)>;
7067
7068def : Pat<(sra (sext_inreg GPR32:$Rn, i16), (i64 imm0_15:$imm)),
7069          (SBFMWri GPR32:$Rn, (i64 imm0_15:$imm), 15)>;
7070def : Pat<(sra (sext_inreg GPR64:$Rn, i16), (i64 imm0_15:$imm)),
7071          (SBFMXri GPR64:$Rn, (i64 imm0_15:$imm), 15)>;
7072
7073def : Pat<(sra (i64 (sext GPR32:$Rn)), (i64 imm0_31:$imm)),
7074          (SBFMXri (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GPR32:$Rn, sub_32),
7075                   (i64 imm0_31:$imm), 31)>;
7076} // AddedComplexity = 20
7077
7078// To truncate, we can simply extract from a subregister.
7079def : Pat<(i32 (trunc GPR64sp:$src)),
7080          (i32 (EXTRACT_SUBREG GPR64sp:$src, sub_32))>;
7081
7082// __builtin_trap() uses the BRK instruction on AArch64.
7083def : Pat<(trap), (BRK 1)>;
7084def : Pat<(debugtrap), (BRK 0xF000)>;
7085
7086def ubsan_trap_xform : SDNodeXForm<timm, [{
7087  return CurDAG->getTargetConstant(N->getZExtValue() | ('U' << 8), SDLoc(N), MVT::i32);
7088}]>;
7089
7090def ubsan_trap_imm : TImmLeaf<i32, [{
7091  return isUInt<8>(Imm);
7092}], ubsan_trap_xform>;
7093
7094def : Pat<(ubsantrap ubsan_trap_imm:$kind), (BRK ubsan_trap_imm:$kind)>;
7095
7096// Multiply high patterns which multiply the lower subvector using smull/umull
7097// and the upper subvector with smull2/umull2. Then shuffle the high the high
7098// part of both results together.
7099def : Pat<(v16i8 (mulhs V128:$Rn, V128:$Rm)),
7100          (UZP2v16i8
7101           (SMULLv8i8_v8i16 (EXTRACT_SUBREG V128:$Rn, dsub),
7102                            (EXTRACT_SUBREG V128:$Rm, dsub)),
7103           (SMULLv16i8_v8i16 V128:$Rn, V128:$Rm))>;
7104def : Pat<(v8i16 (mulhs V128:$Rn, V128:$Rm)),
7105          (UZP2v8i16
7106           (SMULLv4i16_v4i32 (EXTRACT_SUBREG V128:$Rn, dsub),
7107                             (EXTRACT_SUBREG V128:$Rm, dsub)),
7108           (SMULLv8i16_v4i32 V128:$Rn, V128:$Rm))>;
7109def : Pat<(v4i32 (mulhs V128:$Rn, V128:$Rm)),
7110          (UZP2v4i32
7111           (SMULLv2i32_v2i64 (EXTRACT_SUBREG V128:$Rn, dsub),
7112                             (EXTRACT_SUBREG V128:$Rm, dsub)),
7113           (SMULLv4i32_v2i64 V128:$Rn, V128:$Rm))>;
7114
7115def : Pat<(v16i8 (mulhu V128:$Rn, V128:$Rm)),
7116          (UZP2v16i8
7117           (UMULLv8i8_v8i16 (EXTRACT_SUBREG V128:$Rn, dsub),
7118                            (EXTRACT_SUBREG V128:$Rm, dsub)),
7119           (UMULLv16i8_v8i16 V128:$Rn, V128:$Rm))>;
7120def : Pat<(v8i16 (mulhu V128:$Rn, V128:$Rm)),
7121          (UZP2v8i16
7122           (UMULLv4i16_v4i32 (EXTRACT_SUBREG V128:$Rn, dsub),
7123                             (EXTRACT_SUBREG V128:$Rm, dsub)),
7124           (UMULLv8i16_v4i32 V128:$Rn, V128:$Rm))>;
7125def : Pat<(v4i32 (mulhu V128:$Rn, V128:$Rm)),
7126          (UZP2v4i32
7127           (UMULLv2i32_v2i64 (EXTRACT_SUBREG V128:$Rn, dsub),
7128                             (EXTRACT_SUBREG V128:$Rm, dsub)),
7129           (UMULLv4i32_v2i64 V128:$Rn, V128:$Rm))>;
7130
7131// Conversions within AdvSIMD types in the same register size are free.
7132// But because we need a consistent lane ordering, in big endian many
7133// conversions require one or more REV instructions.
7134//
7135// Consider a simple memory load followed by a bitconvert then a store.
7136//   v0 = load v2i32
7137//   v1 = BITCAST v2i32 v0 to v4i16
7138//        store v4i16 v2
7139//
7140// In big endian mode every memory access has an implicit byte swap. LDR and
7141// STR do a 64-bit byte swap, whereas LD1/ST1 do a byte swap per lane - that
7142// is, they treat the vector as a sequence of elements to be byte-swapped.
7143// The two pairs of instructions are fundamentally incompatible. We've decided
7144// to use LD1/ST1 only to simplify compiler implementation.
7145//
7146// LD1/ST1 perform the equivalent of a sequence of LDR/STR + REV. This makes
7147// the original code sequence:
7148//   v0 = load v2i32
7149//   v1 = REV v2i32                  (implicit)
7150//   v2 = BITCAST v2i32 v1 to v4i16
7151//   v3 = REV v4i16 v2               (implicit)
7152//        store v4i16 v3
7153//
7154// But this is now broken - the value stored is different to the value loaded
7155// due to lane reordering. To fix this, on every BITCAST we must perform two
7156// other REVs:
7157//   v0 = load v2i32
7158//   v1 = REV v2i32                  (implicit)
7159//   v2 = REV v2i32
7160//   v3 = BITCAST v2i32 v2 to v4i16
7161//   v4 = REV v4i16
7162//   v5 = REV v4i16 v4               (implicit)
7163//        store v4i16 v5
7164//
7165// This means an extra two instructions, but actually in most cases the two REV
7166// instructions can be combined into one. For example:
7167//   (REV64_2s (REV64_4h X)) === (REV32_4h X)
7168//
7169// There is also no 128-bit REV instruction. This must be synthesized with an
7170// EXT instruction.
7171//
7172// Most bitconverts require some sort of conversion. The only exceptions are:
7173//   a) Identity conversions -  vNfX <-> vNiX
7174//   b) Single-lane-to-scalar - v1fX <-> fX or v1iX <-> iX
7175//
7176
7177// Natural vector casts (64 bit)
7178def : Pat<(v8i8 (AArch64NvCast (v2i32 FPR64:$src))), (v8i8 FPR64:$src)>;
7179def : Pat<(v4i16 (AArch64NvCast (v2i32 FPR64:$src))), (v4i16 FPR64:$src)>;
7180def : Pat<(v4f16 (AArch64NvCast (v2i32 FPR64:$src))), (v4f16 FPR64:$src)>;
7181def : Pat<(v4bf16 (AArch64NvCast (v2i32 FPR64:$src))), (v4bf16 FPR64:$src)>;
7182def : Pat<(v2i32 (AArch64NvCast (v2i32 FPR64:$src))), (v2i32 FPR64:$src)>;
7183def : Pat<(v2f32 (AArch64NvCast (v2i32 FPR64:$src))), (v2f32 FPR64:$src)>;
7184def : Pat<(v1i64 (AArch64NvCast (v2i32 FPR64:$src))), (v1i64 FPR64:$src)>;
7185
7186def : Pat<(v8i8 (AArch64NvCast (v4i16 FPR64:$src))), (v8i8 FPR64:$src)>;
7187def : Pat<(v4i16 (AArch64NvCast (v4i16 FPR64:$src))), (v4i16 FPR64:$src)>;
7188def : Pat<(v4f16 (AArch64NvCast (v4i16 FPR64:$src))), (v4f16 FPR64:$src)>;
7189def : Pat<(v4bf16 (AArch64NvCast (v4i16 FPR64:$src))), (v4bf16 FPR64:$src)>;
7190def : Pat<(v2i32 (AArch64NvCast (v4i16 FPR64:$src))), (v2i32 FPR64:$src)>;
7191def : Pat<(v1i64 (AArch64NvCast (v4i16 FPR64:$src))), (v1i64 FPR64:$src)>;
7192
7193def : Pat<(v8i8 (AArch64NvCast (v8i8 FPR64:$src))), (v8i8 FPR64:$src)>;
7194def : Pat<(v4i16 (AArch64NvCast (v8i8 FPR64:$src))), (v4i16 FPR64:$src)>;
7195def : Pat<(v4f16 (AArch64NvCast (v8i8 FPR64:$src))), (v4f16 FPR64:$src)>;
7196def : Pat<(v4bf16 (AArch64NvCast (v8i8 FPR64:$src))), (v4bf16 FPR64:$src)>;
7197def : Pat<(v2i32 (AArch64NvCast (v8i8 FPR64:$src))), (v2i32 FPR64:$src)>;
7198def : Pat<(v2f32 (AArch64NvCast (v8i8 FPR64:$src))), (v2f32 FPR64:$src)>;
7199def : Pat<(v1i64 (AArch64NvCast (v8i8 FPR64:$src))), (v1i64 FPR64:$src)>;
7200
7201def : Pat<(v8i8 (AArch64NvCast (f64 FPR64:$src))), (v8i8 FPR64:$src)>;
7202def : Pat<(v4i16 (AArch64NvCast (f64 FPR64:$src))), (v4i16 FPR64:$src)>;
7203def : Pat<(v4f16 (AArch64NvCast (f64 FPR64:$src))), (v4f16 FPR64:$src)>;
7204def : Pat<(v4bf16 (AArch64NvCast (f64 FPR64:$src))), (v4bf16 FPR64:$src)>;
7205def : Pat<(v2i32 (AArch64NvCast (f64 FPR64:$src))), (v2i32 FPR64:$src)>;
7206def : Pat<(v2f32 (AArch64NvCast (f64 FPR64:$src))), (v2f32 FPR64:$src)>;
7207def : Pat<(v1i64 (AArch64NvCast (f64 FPR64:$src))), (v1i64 FPR64:$src)>;
7208def : Pat<(v1f64 (AArch64NvCast (f64 FPR64:$src))), (v1f64 FPR64:$src)>;
7209
7210def : Pat<(v8i8 (AArch64NvCast (v2f32 FPR64:$src))), (v8i8 FPR64:$src)>;
7211def : Pat<(v4i16 (AArch64NvCast (v2f32 FPR64:$src))), (v4i16 FPR64:$src)>;
7212def : Pat<(v2i32 (AArch64NvCast (v2f32 FPR64:$src))), (v2i32 FPR64:$src)>;
7213def : Pat<(v2f32 (AArch64NvCast (v2f32 FPR64:$src))), (v2f32 FPR64:$src)>;
7214def : Pat<(v1i64 (AArch64NvCast (v2f32 FPR64:$src))), (v1i64 FPR64:$src)>;
7215def : Pat<(v1f64 (AArch64NvCast (v2f32 FPR64:$src))), (v1f64 FPR64:$src)>;
7216
7217// Natural vector casts (128 bit)
7218def : Pat<(v16i8 (AArch64NvCast (v4i32 FPR128:$src))), (v16i8 FPR128:$src)>;
7219def : Pat<(v8i16 (AArch64NvCast (v4i32 FPR128:$src))), (v8i16 FPR128:$src)>;
7220def : Pat<(v8f16 (AArch64NvCast (v4i32 FPR128:$src))), (v8f16 FPR128:$src)>;
7221def : Pat<(v8bf16 (AArch64NvCast (v4i32 FPR128:$src))), (v8bf16 FPR128:$src)>;
7222def : Pat<(v4i32 (AArch64NvCast (v4i32 FPR128:$src))), (v4i32 FPR128:$src)>;
7223def : Pat<(v4f32 (AArch64NvCast (v4i32 FPR128:$src))), (v4f32 FPR128:$src)>;
7224def : Pat<(v2i64 (AArch64NvCast (v4i32 FPR128:$src))), (v2i64 FPR128:$src)>;
7225def : Pat<(v2f64 (AArch64NvCast (v4i32 FPR128:$src))), (v2f64 FPR128:$src)>;
7226
7227def : Pat<(v16i8 (AArch64NvCast (v8i16 FPR128:$src))), (v16i8 FPR128:$src)>;
7228def : Pat<(v8i16 (AArch64NvCast (v8i16 FPR128:$src))), (v8i16 FPR128:$src)>;
7229def : Pat<(v8f16 (AArch64NvCast (v8i16 FPR128:$src))), (v8f16 FPR128:$src)>;
7230def : Pat<(v8bf16 (AArch64NvCast (v8i16 FPR128:$src))), (v8bf16 FPR128:$src)>;
7231def : Pat<(v4i32 (AArch64NvCast (v8i16 FPR128:$src))), (v4i32 FPR128:$src)>;
7232def : Pat<(v2i64 (AArch64NvCast (v8i16 FPR128:$src))), (v2i64 FPR128:$src)>;
7233def : Pat<(v4f32 (AArch64NvCast (v8i16 FPR128:$src))), (v4f32 FPR128:$src)>;
7234def : Pat<(v2f64 (AArch64NvCast (v8i16 FPR128:$src))), (v2f64 FPR128:$src)>;
7235
7236def : Pat<(v16i8 (AArch64NvCast (v16i8 FPR128:$src))), (v16i8 FPR128:$src)>;
7237def : Pat<(v8i16 (AArch64NvCast (v16i8 FPR128:$src))), (v8i16 FPR128:$src)>;
7238def : Pat<(v8f16 (AArch64NvCast (v16i8 FPR128:$src))), (v8f16 FPR128:$src)>;
7239def : Pat<(v8bf16 (AArch64NvCast (v16i8 FPR128:$src))), (v8bf16 FPR128:$src)>;
7240def : Pat<(v4i32 (AArch64NvCast (v16i8 FPR128:$src))), (v4i32 FPR128:$src)>;
7241def : Pat<(v2i64 (AArch64NvCast (v16i8 FPR128:$src))), (v2i64 FPR128:$src)>;
7242def : Pat<(v4f32 (AArch64NvCast (v16i8 FPR128:$src))), (v4f32 FPR128:$src)>;
7243def : Pat<(v2f64 (AArch64NvCast (v16i8 FPR128:$src))), (v2f64 FPR128:$src)>;
7244
7245def : Pat<(v16i8 (AArch64NvCast (v2i64 FPR128:$src))), (v16i8 FPR128:$src)>;
7246def : Pat<(v8i16 (AArch64NvCast (v2i64 FPR128:$src))), (v8i16 FPR128:$src)>;
7247def : Pat<(v8f16 (AArch64NvCast (v2i64 FPR128:$src))), (v8f16 FPR128:$src)>;
7248def : Pat<(v8bf16 (AArch64NvCast (v2i64 FPR128:$src))), (v8bf16 FPR128:$src)>;
7249def : Pat<(v4i32 (AArch64NvCast (v2i64 FPR128:$src))), (v4i32 FPR128:$src)>;
7250def : Pat<(v2i64 (AArch64NvCast (v2i64 FPR128:$src))), (v2i64 FPR128:$src)>;
7251def : Pat<(v4f32 (AArch64NvCast (v2i64 FPR128:$src))), (v4f32 FPR128:$src)>;
7252def : Pat<(v2f64 (AArch64NvCast (v2i64 FPR128:$src))), (v2f64 FPR128:$src)>;
7253
7254def : Pat<(v16i8 (AArch64NvCast (v4f32 FPR128:$src))), (v16i8 FPR128:$src)>;
7255def : Pat<(v8i16 (AArch64NvCast (v4f32 FPR128:$src))), (v8i16 FPR128:$src)>;
7256def : Pat<(v4i32 (AArch64NvCast (v4f32 FPR128:$src))), (v4i32 FPR128:$src)>;
7257def : Pat<(v4f32 (AArch64NvCast (v4f32 FPR128:$src))), (v4f32 FPR128:$src)>;
7258def : Pat<(v2i64 (AArch64NvCast (v4f32 FPR128:$src))), (v2i64 FPR128:$src)>;
7259def : Pat<(v8f16 (AArch64NvCast (v4f32 FPR128:$src))), (v8f16 FPR128:$src)>;
7260def : Pat<(v8bf16 (AArch64NvCast (v4f32 FPR128:$src))), (v8bf16 FPR128:$src)>;
7261def : Pat<(v2f64 (AArch64NvCast (v4f32 FPR128:$src))), (v2f64 FPR128:$src)>;
7262
7263def : Pat<(v16i8 (AArch64NvCast (v2f64 FPR128:$src))), (v16i8 FPR128:$src)>;
7264def : Pat<(v8i16 (AArch64NvCast (v2f64 FPR128:$src))), (v8i16 FPR128:$src)>;
7265def : Pat<(v4i32 (AArch64NvCast (v2f64 FPR128:$src))), (v4i32 FPR128:$src)>;
7266def : Pat<(v2i64 (AArch64NvCast (v2f64 FPR128:$src))), (v2i64 FPR128:$src)>;
7267def : Pat<(v2f64 (AArch64NvCast (v2f64 FPR128:$src))), (v2f64 FPR128:$src)>;
7268def : Pat<(v8f16 (AArch64NvCast (v2f64 FPR128:$src))), (v8f16 FPR128:$src)>;
7269def : Pat<(v8bf16 (AArch64NvCast (v2f64 FPR128:$src))), (v8bf16 FPR128:$src)>;
7270def : Pat<(v4f32 (AArch64NvCast (v2f64 FPR128:$src))), (v4f32 FPR128:$src)>;
7271
7272let Predicates = [IsLE] in {
7273def : Pat<(v8i8  (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
7274def : Pat<(v4i16 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
7275def : Pat<(v2i32 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
7276def : Pat<(v4f16 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
7277def : Pat<(v4bf16 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
7278def : Pat<(v2f32 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
7279
7280def : Pat<(i64 (bitconvert (v8i8  V64:$Vn))),
7281          (COPY_TO_REGCLASS V64:$Vn, GPR64)>;
7282def : Pat<(i64 (bitconvert (v4i16 V64:$Vn))),
7283          (COPY_TO_REGCLASS V64:$Vn, GPR64)>;
7284def : Pat<(i64 (bitconvert (v2i32 V64:$Vn))),
7285          (COPY_TO_REGCLASS V64:$Vn, GPR64)>;
7286def : Pat<(i64 (bitconvert (v4f16 V64:$Vn))),
7287          (COPY_TO_REGCLASS V64:$Vn, GPR64)>;
7288def : Pat<(i64 (bitconvert (v4bf16 V64:$Vn))),
7289          (COPY_TO_REGCLASS V64:$Vn, GPR64)>;
7290def : Pat<(i64 (bitconvert (v2f32 V64:$Vn))),
7291          (COPY_TO_REGCLASS V64:$Vn, GPR64)>;
7292def : Pat<(i64 (bitconvert (v1f64 V64:$Vn))),
7293          (COPY_TO_REGCLASS V64:$Vn, GPR64)>;
7294}
7295let Predicates = [IsBE] in {
7296def : Pat<(v8i8  (bitconvert GPR64:$Xn)),
7297                 (REV64v8i8 (COPY_TO_REGCLASS GPR64:$Xn, FPR64))>;
7298def : Pat<(v4i16 (bitconvert GPR64:$Xn)),
7299                 (REV64v4i16 (COPY_TO_REGCLASS GPR64:$Xn, FPR64))>;
7300def : Pat<(v2i32 (bitconvert GPR64:$Xn)),
7301                 (REV64v2i32 (COPY_TO_REGCLASS GPR64:$Xn, FPR64))>;
7302def : Pat<(v4f16 (bitconvert GPR64:$Xn)),
7303                 (REV64v4i16 (COPY_TO_REGCLASS GPR64:$Xn, FPR64))>;
7304def : Pat<(v4bf16 (bitconvert GPR64:$Xn)),
7305                  (REV64v4i16 (COPY_TO_REGCLASS GPR64:$Xn, FPR64))>;
7306def : Pat<(v2f32 (bitconvert GPR64:$Xn)),
7307                 (REV64v2i32 (COPY_TO_REGCLASS GPR64:$Xn, FPR64))>;
7308
7309def : Pat<(i64 (bitconvert (v8i8  V64:$Vn))),
7310          (REV64v8i8 (COPY_TO_REGCLASS V64:$Vn, GPR64))>;
7311def : Pat<(i64 (bitconvert (v4i16 V64:$Vn))),
7312          (REV64v4i16 (COPY_TO_REGCLASS V64:$Vn, GPR64))>;
7313def : Pat<(i64 (bitconvert (v2i32 V64:$Vn))),
7314          (REV64v2i32 (COPY_TO_REGCLASS V64:$Vn, GPR64))>;
7315def : Pat<(i64 (bitconvert (v4f16 V64:$Vn))),
7316          (REV64v4i16 (COPY_TO_REGCLASS V64:$Vn, GPR64))>;
7317def : Pat<(i64 (bitconvert (v4bf16 V64:$Vn))),
7318          (REV64v4i16 (COPY_TO_REGCLASS V64:$Vn, GPR64))>;
7319def : Pat<(i64 (bitconvert (v2f32 V64:$Vn))),
7320          (REV64v2i32 (COPY_TO_REGCLASS V64:$Vn, GPR64))>;
7321}
7322def : Pat<(v1i64 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
7323def : Pat<(v1f64 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
7324def : Pat<(i64 (bitconvert (v1i64 V64:$Vn))),
7325          (COPY_TO_REGCLASS V64:$Vn, GPR64)>;
7326def : Pat<(v1i64 (scalar_to_vector GPR64:$Xn)),
7327          (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
7328def : Pat<(v1f64 (scalar_to_vector GPR64:$Xn)),
7329          (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
7330def : Pat<(v1f64 (scalar_to_vector (f64 FPR64:$Xn))), (v1f64 FPR64:$Xn)>;
7331
7332def : Pat<(f32 (bitconvert (i32 GPR32:$Xn))),
7333          (COPY_TO_REGCLASS GPR32:$Xn, FPR32)>;
7334def : Pat<(i32 (bitconvert (f32 FPR32:$Xn))),
7335          (COPY_TO_REGCLASS FPR32:$Xn, GPR32)>;
7336def : Pat<(f64 (bitconvert (i64 GPR64:$Xn))),
7337          (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
7338def : Pat<(i64 (bitconvert (f64 FPR64:$Xn))),
7339          (COPY_TO_REGCLASS FPR64:$Xn, GPR64)>;
7340def : Pat<(i64 (bitconvert (v1f64 V64:$Vn))),
7341          (COPY_TO_REGCLASS V64:$Vn, GPR64)>;
7342
7343let Predicates = [IsLE] in {
7344def : Pat<(v1i64 (bitconvert (v2i32 FPR64:$src))), (v1i64 FPR64:$src)>;
7345def : Pat<(v1i64 (bitconvert (v4i16 FPR64:$src))), (v1i64 FPR64:$src)>;
7346def : Pat<(v1i64 (bitconvert (v8i8  FPR64:$src))), (v1i64 FPR64:$src)>;
7347def : Pat<(v1i64 (bitconvert (v4f16 FPR64:$src))), (v1i64 FPR64:$src)>;
7348def : Pat<(v1i64 (bitconvert (v4bf16 FPR64:$src))), (v1i64 FPR64:$src)>;
7349def : Pat<(v1i64 (bitconvert (v2f32 FPR64:$src))), (v1i64 FPR64:$src)>;
7350}
7351let Predicates = [IsBE] in {
7352def : Pat<(v1i64 (bitconvert (v2i32 FPR64:$src))),
7353                             (v1i64 (REV64v2i32 FPR64:$src))>;
7354def : Pat<(v1i64 (bitconvert (v4i16 FPR64:$src))),
7355                             (v1i64 (REV64v4i16 FPR64:$src))>;
7356def : Pat<(v1i64 (bitconvert (v8i8  FPR64:$src))),
7357                             (v1i64 (REV64v8i8 FPR64:$src))>;
7358def : Pat<(v1i64 (bitconvert (v4f16 FPR64:$src))),
7359                             (v1i64 (REV64v4i16 FPR64:$src))>;
7360def : Pat<(v1i64 (bitconvert (v4bf16 FPR64:$src))),
7361                             (v1i64 (REV64v4i16 FPR64:$src))>;
7362def : Pat<(v1i64 (bitconvert (v2f32 FPR64:$src))),
7363                             (v1i64 (REV64v2i32 FPR64:$src))>;
7364}
7365def : Pat<(v1i64 (bitconvert (v1f64 FPR64:$src))), (v1i64 FPR64:$src)>;
7366def : Pat<(v1i64 (bitconvert (f64   FPR64:$src))), (v1i64 FPR64:$src)>;
7367
7368let Predicates = [IsLE] in {
7369def : Pat<(v2i32 (bitconvert (v1i64 FPR64:$src))), (v2i32 FPR64:$src)>;
7370def : Pat<(v2i32 (bitconvert (v4i16 FPR64:$src))), (v2i32 FPR64:$src)>;
7371def : Pat<(v2i32 (bitconvert (v8i8  FPR64:$src))), (v2i32 FPR64:$src)>;
7372def : Pat<(v2i32 (bitconvert (f64   FPR64:$src))), (v2i32 FPR64:$src)>;
7373def : Pat<(v2i32 (bitconvert (v1f64 FPR64:$src))), (v2i32 FPR64:$src)>;
7374def : Pat<(v2i32 (bitconvert (v4f16 FPR64:$src))), (v2i32 FPR64:$src)>;
7375def : Pat<(v2i32 (bitconvert (v4bf16 FPR64:$src))), (v2i32 FPR64:$src)>;
7376}
7377let Predicates = [IsBE] in {
7378def : Pat<(v2i32 (bitconvert (v1i64 FPR64:$src))),
7379                             (v2i32 (REV64v2i32 FPR64:$src))>;
7380def : Pat<(v2i32 (bitconvert (v4i16 FPR64:$src))),
7381                             (v2i32 (REV32v4i16 FPR64:$src))>;
7382def : Pat<(v2i32 (bitconvert (v8i8  FPR64:$src))),
7383                             (v2i32 (REV32v8i8 FPR64:$src))>;
7384def : Pat<(v2i32 (bitconvert (f64   FPR64:$src))),
7385                             (v2i32 (REV64v2i32 FPR64:$src))>;
7386def : Pat<(v2i32 (bitconvert (v1f64 FPR64:$src))),
7387                             (v2i32 (REV64v2i32 FPR64:$src))>;
7388def : Pat<(v2i32 (bitconvert (v4f16 FPR64:$src))),
7389                             (v2i32 (REV32v4i16 FPR64:$src))>;
7390def : Pat<(v2i32 (bitconvert (v4bf16 FPR64:$src))),
7391                             (v2i32 (REV32v4i16 FPR64:$src))>;
7392}
7393def : Pat<(v2i32 (bitconvert (v2f32 FPR64:$src))), (v2i32 FPR64:$src)>;
7394
7395let Predicates = [IsLE] in {
7396def : Pat<(v4i16 (bitconvert (v1i64 FPR64:$src))), (v4i16 FPR64:$src)>;
7397def : Pat<(v4i16 (bitconvert (v2i32 FPR64:$src))), (v4i16 FPR64:$src)>;
7398def : Pat<(v4i16 (bitconvert (v8i8  FPR64:$src))), (v4i16 FPR64:$src)>;
7399def : Pat<(v4i16 (bitconvert (f64   FPR64:$src))), (v4i16 FPR64:$src)>;
7400def : Pat<(v4i16 (bitconvert (v2f32 FPR64:$src))), (v4i16 FPR64:$src)>;
7401def : Pat<(v4i16 (bitconvert (v1f64 FPR64:$src))), (v4i16 FPR64:$src)>;
7402}
7403let Predicates = [IsBE] in {
7404def : Pat<(v4i16 (bitconvert (v1i64 FPR64:$src))),
7405                             (v4i16 (REV64v4i16 FPR64:$src))>;
7406def : Pat<(v4i16 (bitconvert (v2i32 FPR64:$src))),
7407                             (v4i16 (REV32v4i16 FPR64:$src))>;
7408def : Pat<(v4i16 (bitconvert (v8i8  FPR64:$src))),
7409                             (v4i16 (REV16v8i8 FPR64:$src))>;
7410def : Pat<(v4i16 (bitconvert (f64   FPR64:$src))),
7411                             (v4i16 (REV64v4i16 FPR64:$src))>;
7412def : Pat<(v4i16 (bitconvert (v2f32 FPR64:$src))),
7413                             (v4i16 (REV32v4i16 FPR64:$src))>;
7414def : Pat<(v4i16 (bitconvert (v1f64 FPR64:$src))),
7415                             (v4i16 (REV64v4i16 FPR64:$src))>;
7416}
7417def : Pat<(v4i16 (bitconvert (v4f16 FPR64:$src))), (v4i16 FPR64:$src)>;
7418def : Pat<(v4i16 (bitconvert (v4bf16 FPR64:$src))), (v4i16 FPR64:$src)>;
7419
7420let Predicates = [IsLE] in {
7421def : Pat<(v4f16 (bitconvert (v1i64 FPR64:$src))), (v4f16 FPR64:$src)>;
7422def : Pat<(v4f16 (bitconvert (v2i32 FPR64:$src))), (v4f16 FPR64:$src)>;
7423def : Pat<(v4f16 (bitconvert (v8i8  FPR64:$src))), (v4f16 FPR64:$src)>;
7424def : Pat<(v4f16 (bitconvert (f64   FPR64:$src))), (v4f16 FPR64:$src)>;
7425def : Pat<(v4f16 (bitconvert (v2f32 FPR64:$src))), (v4f16 FPR64:$src)>;
7426def : Pat<(v4f16 (bitconvert (v1f64 FPR64:$src))), (v4f16 FPR64:$src)>;
7427
7428def : Pat<(v4bf16 (bitconvert (v1i64 FPR64:$src))), (v4bf16 FPR64:$src)>;
7429def : Pat<(v4bf16 (bitconvert (v2i32 FPR64:$src))), (v4bf16 FPR64:$src)>;
7430def : Pat<(v4bf16 (bitconvert (v8i8  FPR64:$src))), (v4bf16 FPR64:$src)>;
7431def : Pat<(v4bf16 (bitconvert (f64   FPR64:$src))), (v4bf16 FPR64:$src)>;
7432def : Pat<(v4bf16 (bitconvert (v2f32 FPR64:$src))), (v4bf16 FPR64:$src)>;
7433def : Pat<(v4bf16 (bitconvert (v1f64 FPR64:$src))), (v4bf16 FPR64:$src)>;
7434}
7435let Predicates = [IsBE] in {
7436def : Pat<(v4f16 (bitconvert (v1i64 FPR64:$src))),
7437                             (v4f16 (REV64v4i16 FPR64:$src))>;
7438def : Pat<(v4f16 (bitconvert (v2i32 FPR64:$src))),
7439                             (v4f16 (REV32v4i16 FPR64:$src))>;
7440def : Pat<(v4f16 (bitconvert (v8i8  FPR64:$src))),
7441                             (v4f16 (REV16v8i8 FPR64:$src))>;
7442def : Pat<(v4f16 (bitconvert (f64   FPR64:$src))),
7443                             (v4f16 (REV64v4i16 FPR64:$src))>;
7444def : Pat<(v4f16 (bitconvert (v2f32 FPR64:$src))),
7445                             (v4f16 (REV32v4i16 FPR64:$src))>;
7446def : Pat<(v4f16 (bitconvert (v1f64 FPR64:$src))),
7447                             (v4f16 (REV64v4i16 FPR64:$src))>;
7448
7449def : Pat<(v4bf16 (bitconvert (v1i64 FPR64:$src))),
7450                             (v4bf16 (REV64v4i16 FPR64:$src))>;
7451def : Pat<(v4bf16 (bitconvert (v2i32 FPR64:$src))),
7452                             (v4bf16 (REV32v4i16 FPR64:$src))>;
7453def : Pat<(v4bf16 (bitconvert (v8i8  FPR64:$src))),
7454                             (v4bf16 (REV16v8i8 FPR64:$src))>;
7455def : Pat<(v4bf16 (bitconvert (f64   FPR64:$src))),
7456                             (v4bf16 (REV64v4i16 FPR64:$src))>;
7457def : Pat<(v4bf16 (bitconvert (v2f32 FPR64:$src))),
7458                             (v4bf16 (REV32v4i16 FPR64:$src))>;
7459def : Pat<(v4bf16 (bitconvert (v1f64 FPR64:$src))),
7460                             (v4bf16 (REV64v4i16 FPR64:$src))>;
7461}
7462def : Pat<(v4f16 (bitconvert (v4i16 FPR64:$src))), (v4f16 FPR64:$src)>;
7463def : Pat<(v4bf16 (bitconvert (v4i16 FPR64:$src))), (v4bf16 FPR64:$src)>;
7464
7465let Predicates = [IsLE] in {
7466def : Pat<(v8i8  (bitconvert (v1i64 FPR64:$src))), (v8i8  FPR64:$src)>;
7467def : Pat<(v8i8  (bitconvert (v2i32 FPR64:$src))), (v8i8  FPR64:$src)>;
7468def : Pat<(v8i8  (bitconvert (v4i16 FPR64:$src))), (v8i8  FPR64:$src)>;
7469def : Pat<(v8i8  (bitconvert (f64   FPR64:$src))), (v8i8  FPR64:$src)>;
7470def : Pat<(v8i8  (bitconvert (v2f32 FPR64:$src))), (v8i8  FPR64:$src)>;
7471def : Pat<(v8i8  (bitconvert (v1f64 FPR64:$src))), (v8i8  FPR64:$src)>;
7472def : Pat<(v8i8  (bitconvert (v4f16 FPR64:$src))), (v8i8  FPR64:$src)>;
7473def : Pat<(v8i8  (bitconvert (v4bf16 FPR64:$src))), (v8i8  FPR64:$src)>;
7474}
7475let Predicates = [IsBE] in {
7476def : Pat<(v8i8  (bitconvert (v1i64 FPR64:$src))),
7477                             (v8i8 (REV64v8i8 FPR64:$src))>;
7478def : Pat<(v8i8  (bitconvert (v2i32 FPR64:$src))),
7479                             (v8i8 (REV32v8i8 FPR64:$src))>;
7480def : Pat<(v8i8  (bitconvert (v4i16 FPR64:$src))),
7481                             (v8i8 (REV16v8i8 FPR64:$src))>;
7482def : Pat<(v8i8  (bitconvert (f64   FPR64:$src))),
7483                             (v8i8 (REV64v8i8 FPR64:$src))>;
7484def : Pat<(v8i8  (bitconvert (v2f32 FPR64:$src))),
7485                             (v8i8 (REV32v8i8 FPR64:$src))>;
7486def : Pat<(v8i8  (bitconvert (v1f64 FPR64:$src))),
7487                             (v8i8 (REV64v8i8 FPR64:$src))>;
7488def : Pat<(v8i8  (bitconvert (v4f16 FPR64:$src))),
7489                             (v8i8 (REV16v8i8 FPR64:$src))>;
7490def : Pat<(v8i8  (bitconvert (v4bf16 FPR64:$src))),
7491                             (v8i8 (REV16v8i8 FPR64:$src))>;
7492}
7493
7494let Predicates = [IsLE] in {
7495def : Pat<(f64   (bitconvert (v2i32 FPR64:$src))), (f64   FPR64:$src)>;
7496def : Pat<(f64   (bitconvert (v4i16 FPR64:$src))), (f64   FPR64:$src)>;
7497def : Pat<(f64   (bitconvert (v2f32 FPR64:$src))), (f64   FPR64:$src)>;
7498def : Pat<(f64   (bitconvert (v8i8  FPR64:$src))), (f64   FPR64:$src)>;
7499def : Pat<(f64   (bitconvert (v4f16 FPR64:$src))), (f64   FPR64:$src)>;
7500def : Pat<(f64   (bitconvert (v4bf16 FPR64:$src))), (f64   FPR64:$src)>;
7501}
7502let Predicates = [IsBE] in {
7503def : Pat<(f64   (bitconvert (v2i32 FPR64:$src))),
7504                             (f64 (REV64v2i32 FPR64:$src))>;
7505def : Pat<(f64   (bitconvert (v4i16 FPR64:$src))),
7506                             (f64 (REV64v4i16 FPR64:$src))>;
7507def : Pat<(f64   (bitconvert (v2f32 FPR64:$src))),
7508                             (f64 (REV64v2i32 FPR64:$src))>;
7509def : Pat<(f64   (bitconvert (v8i8  FPR64:$src))),
7510                             (f64 (REV64v8i8 FPR64:$src))>;
7511def : Pat<(f64   (bitconvert (v4f16 FPR64:$src))),
7512                             (f64 (REV64v4i16 FPR64:$src))>;
7513def : Pat<(f64   (bitconvert (v4bf16 FPR64:$src))),
7514                             (f64 (REV64v4i16 FPR64:$src))>;
7515}
7516def : Pat<(f64   (bitconvert (v1i64 FPR64:$src))), (f64   FPR64:$src)>;
7517def : Pat<(f64   (bitconvert (v1f64 FPR64:$src))), (f64   FPR64:$src)>;
7518
7519let Predicates = [IsLE] in {
7520def : Pat<(v1f64 (bitconvert (v2i32 FPR64:$src))), (v1f64 FPR64:$src)>;
7521def : Pat<(v1f64 (bitconvert (v4i16 FPR64:$src))), (v1f64 FPR64:$src)>;
7522def : Pat<(v1f64 (bitconvert (v8i8  FPR64:$src))), (v1f64 FPR64:$src)>;
7523def : Pat<(v1f64 (bitconvert (v2f32 FPR64:$src))), (v1f64 FPR64:$src)>;
7524def : Pat<(v1f64 (bitconvert (v4f16 FPR64:$src))), (v1f64 FPR64:$src)>;
7525def : Pat<(v1f64 (bitconvert (v4bf16 FPR64:$src))), (v1f64 FPR64:$src)>;
7526}
7527let Predicates = [IsBE] in {
7528def : Pat<(v1f64 (bitconvert (v2i32 FPR64:$src))),
7529                             (v1f64 (REV64v2i32 FPR64:$src))>;
7530def : Pat<(v1f64 (bitconvert (v4i16 FPR64:$src))),
7531                             (v1f64 (REV64v4i16 FPR64:$src))>;
7532def : Pat<(v1f64 (bitconvert (v8i8  FPR64:$src))),
7533                             (v1f64 (REV64v8i8 FPR64:$src))>;
7534def : Pat<(v1f64 (bitconvert (v2f32 FPR64:$src))),
7535                             (v1f64 (REV64v2i32 FPR64:$src))>;
7536def : Pat<(v1f64 (bitconvert (v4f16 FPR64:$src))),
7537                             (v1f64 (REV64v4i16 FPR64:$src))>;
7538def : Pat<(v1f64 (bitconvert (v4bf16 FPR64:$src))),
7539                             (v1f64 (REV64v4i16 FPR64:$src))>;
7540}
7541def : Pat<(v1f64 (bitconvert (v1i64 FPR64:$src))), (v1f64 FPR64:$src)>;
7542def : Pat<(v1f64 (bitconvert (f64   FPR64:$src))), (v1f64 FPR64:$src)>;
7543
7544let Predicates = [IsLE] in {
7545def : Pat<(v2f32 (bitconvert (v1i64 FPR64:$src))), (v2f32 FPR64:$src)>;
7546def : Pat<(v2f32 (bitconvert (v4i16 FPR64:$src))), (v2f32 FPR64:$src)>;
7547def : Pat<(v2f32 (bitconvert (v8i8  FPR64:$src))), (v2f32 FPR64:$src)>;
7548def : Pat<(v2f32 (bitconvert (v1f64 FPR64:$src))), (v2f32 FPR64:$src)>;
7549def : Pat<(v2f32 (bitconvert (f64   FPR64:$src))), (v2f32 FPR64:$src)>;
7550def : Pat<(v2f32 (bitconvert (v4f16 FPR64:$src))), (v2f32 FPR64:$src)>;
7551def : Pat<(v2f32 (bitconvert (v4bf16 FPR64:$src))), (v2f32 FPR64:$src)>;
7552}
7553let Predicates = [IsBE] in {
7554def : Pat<(v2f32 (bitconvert (v1i64 FPR64:$src))),
7555                             (v2f32 (REV64v2i32 FPR64:$src))>;
7556def : Pat<(v2f32 (bitconvert (v4i16 FPR64:$src))),
7557                             (v2f32 (REV32v4i16 FPR64:$src))>;
7558def : Pat<(v2f32 (bitconvert (v8i8  FPR64:$src))),
7559                             (v2f32 (REV32v8i8 FPR64:$src))>;
7560def : Pat<(v2f32 (bitconvert (v1f64 FPR64:$src))),
7561                             (v2f32 (REV64v2i32 FPR64:$src))>;
7562def : Pat<(v2f32 (bitconvert (f64   FPR64:$src))),
7563                             (v2f32 (REV64v2i32 FPR64:$src))>;
7564def : Pat<(v2f32 (bitconvert (v4f16 FPR64:$src))),
7565                             (v2f32 (REV32v4i16 FPR64:$src))>;
7566def : Pat<(v2f32 (bitconvert (v4bf16 FPR64:$src))),
7567                             (v2f32 (REV32v4i16 FPR64:$src))>;
7568}
7569def : Pat<(v2f32 (bitconvert (v2i32 FPR64:$src))), (v2f32 FPR64:$src)>;
7570
7571let Predicates = [IsLE] in {
7572def : Pat<(f128 (bitconvert (v2i64 FPR128:$src))), (f128 FPR128:$src)>;
7573def : Pat<(f128 (bitconvert (v4i32 FPR128:$src))), (f128 FPR128:$src)>;
7574def : Pat<(f128 (bitconvert (v8i16 FPR128:$src))), (f128 FPR128:$src)>;
7575def : Pat<(f128 (bitconvert (v2f64 FPR128:$src))), (f128 FPR128:$src)>;
7576def : Pat<(f128 (bitconvert (v4f32 FPR128:$src))), (f128 FPR128:$src)>;
7577def : Pat<(f128 (bitconvert (v8f16 FPR128:$src))), (f128 FPR128:$src)>;
7578def : Pat<(f128 (bitconvert (v8bf16 FPR128:$src))), (f128 FPR128:$src)>;
7579def : Pat<(f128 (bitconvert (v16i8 FPR128:$src))), (f128 FPR128:$src)>;
7580}
7581let Predicates = [IsBE] in {
7582def : Pat<(f128 (bitconvert (v2i64 FPR128:$src))),
7583                            (f128 (EXTv16i8 FPR128:$src, FPR128:$src, (i32 8)))>;
7584def : Pat<(f128 (bitconvert (v4i32 FPR128:$src))),
7585                            (f128 (EXTv16i8 (REV64v4i32 FPR128:$src),
7586                                            (REV64v4i32 FPR128:$src), (i32 8)))>;
7587def : Pat<(f128 (bitconvert (v8i16 FPR128:$src))),
7588                            (f128 (EXTv16i8 (REV64v8i16 FPR128:$src),
7589                                            (REV64v8i16 FPR128:$src), (i32 8)))>;
7590def : Pat<(f128 (bitconvert (v8f16 FPR128:$src))),
7591                            (f128 (EXTv16i8 (REV64v8i16 FPR128:$src),
7592                                            (REV64v8i16 FPR128:$src), (i32 8)))>;
7593def : Pat<(f128 (bitconvert (v8bf16 FPR128:$src))),
7594                            (f128 (EXTv16i8 (REV64v8i16 FPR128:$src),
7595                                            (REV64v8i16 FPR128:$src), (i32 8)))>;
7596def : Pat<(f128 (bitconvert (v2f64 FPR128:$src))),
7597                            (f128 (EXTv16i8 FPR128:$src, FPR128:$src, (i32 8)))>;
7598def : Pat<(f128 (bitconvert (v4f32 FPR128:$src))),
7599                            (f128 (EXTv16i8 (REV64v4i32 FPR128:$src),
7600                                            (REV64v4i32 FPR128:$src), (i32 8)))>;
7601def : Pat<(f128 (bitconvert (v16i8 FPR128:$src))),
7602                            (f128 (EXTv16i8 (REV64v16i8 FPR128:$src),
7603                                            (REV64v16i8 FPR128:$src), (i32 8)))>;
7604}
7605
7606let Predicates = [IsLE] in {
7607def : Pat<(v2f64 (bitconvert (f128  FPR128:$src))), (v2f64 FPR128:$src)>;
7608def : Pat<(v2f64 (bitconvert (v4i32 FPR128:$src))), (v2f64 FPR128:$src)>;
7609def : Pat<(v2f64 (bitconvert (v8i16 FPR128:$src))), (v2f64 FPR128:$src)>;
7610def : Pat<(v2f64 (bitconvert (v8f16 FPR128:$src))), (v2f64 FPR128:$src)>;
7611def : Pat<(v2f64 (bitconvert (v8bf16 FPR128:$src))), (v2f64 FPR128:$src)>;
7612def : Pat<(v2f64 (bitconvert (v16i8 FPR128:$src))), (v2f64 FPR128:$src)>;
7613def : Pat<(v2f64 (bitconvert (v4f32 FPR128:$src))), (v2f64 FPR128:$src)>;
7614}
7615let Predicates = [IsBE] in {
7616def : Pat<(v2f64 (bitconvert (f128  FPR128:$src))),
7617                             (v2f64 (EXTv16i8 FPR128:$src,
7618                                              FPR128:$src, (i32 8)))>;
7619def : Pat<(v2f64 (bitconvert (v4i32 FPR128:$src))),
7620                             (v2f64 (REV64v4i32 FPR128:$src))>;
7621def : Pat<(v2f64 (bitconvert (v8i16 FPR128:$src))),
7622                             (v2f64 (REV64v8i16 FPR128:$src))>;
7623def : Pat<(v2f64 (bitconvert (v8f16 FPR128:$src))),
7624                             (v2f64 (REV64v8i16 FPR128:$src))>;
7625def : Pat<(v2f64 (bitconvert (v8bf16 FPR128:$src))),
7626                             (v2f64 (REV64v8i16 FPR128:$src))>;
7627def : Pat<(v2f64 (bitconvert (v16i8 FPR128:$src))),
7628                             (v2f64 (REV64v16i8 FPR128:$src))>;
7629def : Pat<(v2f64 (bitconvert (v4f32 FPR128:$src))),
7630                             (v2f64 (REV64v4i32 FPR128:$src))>;
7631}
7632def : Pat<(v2f64 (bitconvert (v2i64 FPR128:$src))), (v2f64 FPR128:$src)>;
7633
7634let Predicates = [IsLE] in {
7635def : Pat<(v4f32 (bitconvert (f128  FPR128:$src))), (v4f32 FPR128:$src)>;
7636def : Pat<(v4f32 (bitconvert (v8i16 FPR128:$src))), (v4f32 FPR128:$src)>;
7637def : Pat<(v4f32 (bitconvert (v8f16 FPR128:$src))), (v4f32 FPR128:$src)>;
7638def : Pat<(v4f32 (bitconvert (v8bf16 FPR128:$src))), (v4f32 FPR128:$src)>;
7639def : Pat<(v4f32 (bitconvert (v16i8 FPR128:$src))), (v4f32 FPR128:$src)>;
7640def : Pat<(v4f32 (bitconvert (v2i64 FPR128:$src))), (v4f32 FPR128:$src)>;
7641def : Pat<(v4f32 (bitconvert (v2f64 FPR128:$src))), (v4f32 FPR128:$src)>;
7642}
7643let Predicates = [IsBE] in {
7644def : Pat<(v4f32 (bitconvert (f128  FPR128:$src))),
7645                             (v4f32 (EXTv16i8 (REV64v4i32 FPR128:$src),
7646                                    (REV64v4i32 FPR128:$src), (i32 8)))>;
7647def : Pat<(v4f32 (bitconvert (v8i16 FPR128:$src))),
7648                             (v4f32 (REV32v8i16 FPR128:$src))>;
7649def : Pat<(v4f32 (bitconvert (v8f16 FPR128:$src))),
7650                             (v4f32 (REV32v8i16 FPR128:$src))>;
7651def : Pat<(v4f32 (bitconvert (v8bf16 FPR128:$src))),
7652                             (v4f32 (REV32v8i16 FPR128:$src))>;
7653def : Pat<(v4f32 (bitconvert (v16i8 FPR128:$src))),
7654                             (v4f32 (REV32v16i8 FPR128:$src))>;
7655def : Pat<(v4f32 (bitconvert (v2i64 FPR128:$src))),
7656                             (v4f32 (REV64v4i32 FPR128:$src))>;
7657def : Pat<(v4f32 (bitconvert (v2f64 FPR128:$src))),
7658                             (v4f32 (REV64v4i32 FPR128:$src))>;
7659}
7660def : Pat<(v4f32 (bitconvert (v4i32 FPR128:$src))), (v4f32 FPR128:$src)>;
7661
7662let Predicates = [IsLE] in {
7663def : Pat<(v2i64 (bitconvert (f128  FPR128:$src))), (v2i64 FPR128:$src)>;
7664def : Pat<(v2i64 (bitconvert (v4i32 FPR128:$src))), (v2i64 FPR128:$src)>;
7665def : Pat<(v2i64 (bitconvert (v8i16 FPR128:$src))), (v2i64 FPR128:$src)>;
7666def : Pat<(v2i64 (bitconvert (v16i8 FPR128:$src))), (v2i64 FPR128:$src)>;
7667def : Pat<(v2i64 (bitconvert (v4f32 FPR128:$src))), (v2i64 FPR128:$src)>;
7668def : Pat<(v2i64 (bitconvert (v8f16 FPR128:$src))), (v2i64 FPR128:$src)>;
7669def : Pat<(v2i64 (bitconvert (v8bf16 FPR128:$src))), (v2i64 FPR128:$src)>;
7670}
7671let Predicates = [IsBE] in {
7672def : Pat<(v2i64 (bitconvert (f128  FPR128:$src))),
7673                             (v2i64 (EXTv16i8 FPR128:$src,
7674                                              FPR128:$src, (i32 8)))>;
7675def : Pat<(v2i64 (bitconvert (v4i32 FPR128:$src))),
7676                             (v2i64 (REV64v4i32 FPR128:$src))>;
7677def : Pat<(v2i64 (bitconvert (v8i16 FPR128:$src))),
7678                             (v2i64 (REV64v8i16 FPR128:$src))>;
7679def : Pat<(v2i64 (bitconvert (v16i8 FPR128:$src))),
7680                             (v2i64 (REV64v16i8 FPR128:$src))>;
7681def : Pat<(v2i64 (bitconvert (v4f32 FPR128:$src))),
7682                             (v2i64 (REV64v4i32 FPR128:$src))>;
7683def : Pat<(v2i64 (bitconvert (v8f16 FPR128:$src))),
7684                             (v2i64 (REV64v8i16 FPR128:$src))>;
7685def : Pat<(v2i64 (bitconvert (v8bf16 FPR128:$src))),
7686                             (v2i64 (REV64v8i16 FPR128:$src))>;
7687}
7688def : Pat<(v2i64 (bitconvert (v2f64 FPR128:$src))), (v2i64 FPR128:$src)>;
7689
7690let Predicates = [IsLE] in {
7691def : Pat<(v4i32 (bitconvert (f128  FPR128:$src))), (v4i32 FPR128:$src)>;
7692def : Pat<(v4i32 (bitconvert (v2i64 FPR128:$src))), (v4i32 FPR128:$src)>;
7693def : Pat<(v4i32 (bitconvert (v8i16 FPR128:$src))), (v4i32 FPR128:$src)>;
7694def : Pat<(v4i32 (bitconvert (v16i8 FPR128:$src))), (v4i32 FPR128:$src)>;
7695def : Pat<(v4i32 (bitconvert (v2f64 FPR128:$src))), (v4i32 FPR128:$src)>;
7696def : Pat<(v4i32 (bitconvert (v8f16 FPR128:$src))), (v4i32 FPR128:$src)>;
7697def : Pat<(v4i32 (bitconvert (v8bf16 FPR128:$src))), (v4i32 FPR128:$src)>;
7698}
7699let Predicates = [IsBE] in {
7700def : Pat<(v4i32 (bitconvert (f128  FPR128:$src))),
7701                             (v4i32 (EXTv16i8 (REV64v4i32 FPR128:$src),
7702                                              (REV64v4i32 FPR128:$src),
7703                                              (i32 8)))>;
7704def : Pat<(v4i32 (bitconvert (v2i64 FPR128:$src))),
7705                             (v4i32 (REV64v4i32 FPR128:$src))>;
7706def : Pat<(v4i32 (bitconvert (v8i16 FPR128:$src))),
7707                             (v4i32 (REV32v8i16 FPR128:$src))>;
7708def : Pat<(v4i32 (bitconvert (v16i8 FPR128:$src))),
7709                             (v4i32 (REV32v16i8 FPR128:$src))>;
7710def : Pat<(v4i32 (bitconvert (v2f64 FPR128:$src))),
7711                             (v4i32 (REV64v4i32 FPR128:$src))>;
7712def : Pat<(v4i32 (bitconvert (v8f16 FPR128:$src))),
7713                             (v4i32 (REV32v8i16 FPR128:$src))>;
7714def : Pat<(v4i32 (bitconvert (v8bf16 FPR128:$src))),
7715                             (v4i32 (REV32v8i16 FPR128:$src))>;
7716}
7717def : Pat<(v4i32 (bitconvert (v4f32 FPR128:$src))), (v4i32 FPR128:$src)>;
7718
7719let Predicates = [IsLE] in {
7720def : Pat<(v8i16 (bitconvert (f128  FPR128:$src))), (v8i16 FPR128:$src)>;
7721def : Pat<(v8i16 (bitconvert (v2i64 FPR128:$src))), (v8i16 FPR128:$src)>;
7722def : Pat<(v8i16 (bitconvert (v4i32 FPR128:$src))), (v8i16 FPR128:$src)>;
7723def : Pat<(v8i16 (bitconvert (v16i8 FPR128:$src))), (v8i16 FPR128:$src)>;
7724def : Pat<(v8i16 (bitconvert (v2f64 FPR128:$src))), (v8i16 FPR128:$src)>;
7725def : Pat<(v8i16 (bitconvert (v4f32 FPR128:$src))), (v8i16 FPR128:$src)>;
7726}
7727let Predicates = [IsBE] in {
7728def : Pat<(v8i16 (bitconvert (f128  FPR128:$src))),
7729                             (v8i16 (EXTv16i8 (REV64v8i16 FPR128:$src),
7730                                              (REV64v8i16 FPR128:$src),
7731                                              (i32 8)))>;
7732def : Pat<(v8i16 (bitconvert (v2i64 FPR128:$src))),
7733                             (v8i16 (REV64v8i16 FPR128:$src))>;
7734def : Pat<(v8i16 (bitconvert (v4i32 FPR128:$src))),
7735                             (v8i16 (REV32v8i16 FPR128:$src))>;
7736def : Pat<(v8i16 (bitconvert (v16i8 FPR128:$src))),
7737                             (v8i16 (REV16v16i8 FPR128:$src))>;
7738def : Pat<(v8i16 (bitconvert (v2f64 FPR128:$src))),
7739                             (v8i16 (REV64v8i16 FPR128:$src))>;
7740def : Pat<(v8i16 (bitconvert (v4f32 FPR128:$src))),
7741                             (v8i16 (REV32v8i16 FPR128:$src))>;
7742}
7743def : Pat<(v8i16 (bitconvert (v8f16 FPR128:$src))), (v8i16 FPR128:$src)>;
7744def : Pat<(v8i16 (bitconvert (v8bf16 FPR128:$src))), (v8i16 FPR128:$src)>;
7745
7746let Predicates = [IsLE] in {
7747def : Pat<(v8f16 (bitconvert (f128  FPR128:$src))), (v8f16 FPR128:$src)>;
7748def : Pat<(v8f16 (bitconvert (v2i64 FPR128:$src))), (v8f16 FPR128:$src)>;
7749def : Pat<(v8f16 (bitconvert (v4i32 FPR128:$src))), (v8f16 FPR128:$src)>;
7750def : Pat<(v8f16 (bitconvert (v16i8 FPR128:$src))), (v8f16 FPR128:$src)>;
7751def : Pat<(v8f16 (bitconvert (v2f64 FPR128:$src))), (v8f16 FPR128:$src)>;
7752def : Pat<(v8f16 (bitconvert (v4f32 FPR128:$src))), (v8f16 FPR128:$src)>;
7753
7754def : Pat<(v8bf16 (bitconvert (f128  FPR128:$src))), (v8bf16 FPR128:$src)>;
7755def : Pat<(v8bf16 (bitconvert (v2i64 FPR128:$src))), (v8bf16 FPR128:$src)>;
7756def : Pat<(v8bf16 (bitconvert (v4i32 FPR128:$src))), (v8bf16 FPR128:$src)>;
7757def : Pat<(v8bf16 (bitconvert (v16i8 FPR128:$src))), (v8bf16 FPR128:$src)>;
7758def : Pat<(v8bf16 (bitconvert (v2f64 FPR128:$src))), (v8bf16 FPR128:$src)>;
7759def : Pat<(v8bf16 (bitconvert (v4f32 FPR128:$src))), (v8bf16 FPR128:$src)>;
7760}
7761let Predicates = [IsBE] in {
7762def : Pat<(v8f16 (bitconvert (f128  FPR128:$src))),
7763                             (v8f16 (EXTv16i8 (REV64v8i16 FPR128:$src),
7764                                              (REV64v8i16 FPR128:$src),
7765                                              (i32 8)))>;
7766def : Pat<(v8f16 (bitconvert (v2i64 FPR128:$src))),
7767                             (v8f16 (REV64v8i16 FPR128:$src))>;
7768def : Pat<(v8f16 (bitconvert (v4i32 FPR128:$src))),
7769                             (v8f16 (REV32v8i16 FPR128:$src))>;
7770def : Pat<(v8f16 (bitconvert (v16i8 FPR128:$src))),
7771                             (v8f16 (REV16v16i8 FPR128:$src))>;
7772def : Pat<(v8f16 (bitconvert (v2f64 FPR128:$src))),
7773                             (v8f16 (REV64v8i16 FPR128:$src))>;
7774def : Pat<(v8f16 (bitconvert (v4f32 FPR128:$src))),
7775                             (v8f16 (REV32v8i16 FPR128:$src))>;
7776
7777def : Pat<(v8bf16 (bitconvert (f128  FPR128:$src))),
7778                             (v8bf16 (EXTv16i8 (REV64v8i16 FPR128:$src),
7779                                              (REV64v8i16 FPR128:$src),
7780                                              (i32 8)))>;
7781def : Pat<(v8bf16 (bitconvert (v2i64 FPR128:$src))),
7782                             (v8bf16 (REV64v8i16 FPR128:$src))>;
7783def : Pat<(v8bf16 (bitconvert (v4i32 FPR128:$src))),
7784                             (v8bf16 (REV32v8i16 FPR128:$src))>;
7785def : Pat<(v8bf16 (bitconvert (v16i8 FPR128:$src))),
7786                             (v8bf16 (REV16v16i8 FPR128:$src))>;
7787def : Pat<(v8bf16 (bitconvert (v2f64 FPR128:$src))),
7788                             (v8bf16 (REV64v8i16 FPR128:$src))>;
7789def : Pat<(v8bf16 (bitconvert (v4f32 FPR128:$src))),
7790                             (v8bf16 (REV32v8i16 FPR128:$src))>;
7791}
7792def : Pat<(v8f16 (bitconvert (v8i16 FPR128:$src))), (v8f16 FPR128:$src)>;
7793def : Pat<(v8bf16 (bitconvert (v8i16 FPR128:$src))), (v8bf16 FPR128:$src)>;
7794
7795let Predicates = [IsLE] in {
7796def : Pat<(v16i8 (bitconvert (f128  FPR128:$src))), (v16i8 FPR128:$src)>;
7797def : Pat<(v16i8 (bitconvert (v2i64 FPR128:$src))), (v16i8 FPR128:$src)>;
7798def : Pat<(v16i8 (bitconvert (v4i32 FPR128:$src))), (v16i8 FPR128:$src)>;
7799def : Pat<(v16i8 (bitconvert (v8i16 FPR128:$src))), (v16i8 FPR128:$src)>;
7800def : Pat<(v16i8 (bitconvert (v2f64 FPR128:$src))), (v16i8 FPR128:$src)>;
7801def : Pat<(v16i8 (bitconvert (v4f32 FPR128:$src))), (v16i8 FPR128:$src)>;
7802def : Pat<(v16i8 (bitconvert (v8f16 FPR128:$src))), (v16i8 FPR128:$src)>;
7803def : Pat<(v16i8 (bitconvert (v8bf16 FPR128:$src))), (v16i8 FPR128:$src)>;
7804}
7805let Predicates = [IsBE] in {
7806def : Pat<(v16i8 (bitconvert (f128  FPR128:$src))),
7807                             (v16i8 (EXTv16i8 (REV64v16i8 FPR128:$src),
7808                                              (REV64v16i8 FPR128:$src),
7809                                              (i32 8)))>;
7810def : Pat<(v16i8 (bitconvert (v2i64 FPR128:$src))),
7811                             (v16i8 (REV64v16i8 FPR128:$src))>;
7812def : Pat<(v16i8 (bitconvert (v4i32 FPR128:$src))),
7813                             (v16i8 (REV32v16i8 FPR128:$src))>;
7814def : Pat<(v16i8 (bitconvert (v8i16 FPR128:$src))),
7815                             (v16i8 (REV16v16i8 FPR128:$src))>;
7816def : Pat<(v16i8 (bitconvert (v2f64 FPR128:$src))),
7817                             (v16i8 (REV64v16i8 FPR128:$src))>;
7818def : Pat<(v16i8 (bitconvert (v4f32 FPR128:$src))),
7819                             (v16i8 (REV32v16i8 FPR128:$src))>;
7820def : Pat<(v16i8 (bitconvert (v8f16 FPR128:$src))),
7821                             (v16i8 (REV16v16i8 FPR128:$src))>;
7822def : Pat<(v16i8 (bitconvert (v8bf16 FPR128:$src))),
7823                             (v16i8 (REV16v16i8 FPR128:$src))>;
7824}
7825
7826def : Pat<(v4i16 (extract_subvector V128:$Rn, (i64 0))),
7827           (EXTRACT_SUBREG V128:$Rn, dsub)>;
7828def : Pat<(v8i8 (extract_subvector V128:$Rn, (i64 0))),
7829           (EXTRACT_SUBREG V128:$Rn, dsub)>;
7830def : Pat<(v2f32 (extract_subvector V128:$Rn, (i64 0))),
7831           (EXTRACT_SUBREG V128:$Rn, dsub)>;
7832def : Pat<(v4f16 (extract_subvector V128:$Rn, (i64 0))),
7833           (EXTRACT_SUBREG V128:$Rn, dsub)>;
7834def : Pat<(v4bf16 (extract_subvector V128:$Rn, (i64 0))),
7835           (EXTRACT_SUBREG V128:$Rn, dsub)>;
7836def : Pat<(v2i32 (extract_subvector V128:$Rn, (i64 0))),
7837           (EXTRACT_SUBREG V128:$Rn, dsub)>;
7838def : Pat<(v1i64 (extract_subvector V128:$Rn, (i64 0))),
7839           (EXTRACT_SUBREG V128:$Rn, dsub)>;
7840def : Pat<(v1f64 (extract_subvector V128:$Rn, (i64 0))),
7841           (EXTRACT_SUBREG V128:$Rn, dsub)>;
7842
7843def : Pat<(v8i8 (extract_subvector (v16i8 FPR128:$Rn), (i64 1))),
7844          (EXTRACT_SUBREG (DUPv2i64lane FPR128:$Rn, 1), dsub)>;
7845def : Pat<(v4i16 (extract_subvector (v8i16 FPR128:$Rn), (i64 1))),
7846          (EXTRACT_SUBREG (DUPv2i64lane FPR128:$Rn, 1), dsub)>;
7847def : Pat<(v2i32 (extract_subvector (v4i32 FPR128:$Rn), (i64 1))),
7848          (EXTRACT_SUBREG (DUPv2i64lane FPR128:$Rn, 1), dsub)>;
7849def : Pat<(v1i64 (extract_subvector (v2i64 FPR128:$Rn), (i64 1))),
7850          (EXTRACT_SUBREG (DUPv2i64lane FPR128:$Rn, 1), dsub)>;
7851
7852// A 64-bit subvector insert to the first 128-bit vector position
7853// is a subregister copy that needs no instruction.
7854multiclass InsertSubvectorUndef<ValueType Ty> {
7855  def : Pat<(insert_subvector undef, (v1i64 FPR64:$src), (Ty 0)),
7856            (INSERT_SUBREG (v2i64 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
7857  def : Pat<(insert_subvector undef, (v1f64 FPR64:$src), (Ty 0)),
7858            (INSERT_SUBREG (v2f64 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
7859  def : Pat<(insert_subvector undef, (v2i32 FPR64:$src), (Ty 0)),
7860            (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
7861  def : Pat<(insert_subvector undef, (v2f32 FPR64:$src), (Ty 0)),
7862            (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
7863  def : Pat<(insert_subvector undef, (v4i16 FPR64:$src), (Ty 0)),
7864            (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
7865  def : Pat<(insert_subvector undef, (v4f16 FPR64:$src), (Ty 0)),
7866            (INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
7867  def : Pat<(insert_subvector undef, (v4bf16 FPR64:$src), (Ty 0)),
7868            (INSERT_SUBREG (v8bf16 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
7869  def : Pat<(insert_subvector undef, (v8i8 FPR64:$src), (Ty 0)),
7870            (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
7871}
7872
7873defm : InsertSubvectorUndef<i32>;
7874defm : InsertSubvectorUndef<i64>;
7875
7876// Use pair-wise add instructions when summing up the lanes for v2f64, v2i64
7877// or v2f32.
7878def : Pat<(i64 (add (vector_extract (v2i64 FPR128:$Rn), (i64 0)),
7879                    (vector_extract (v2i64 FPR128:$Rn), (i64 1)))),
7880           (i64 (ADDPv2i64p (v2i64 FPR128:$Rn)))>;
7881def : Pat<(f64 (fadd (vector_extract (v2f64 FPR128:$Rn), (i64 0)),
7882                     (vector_extract (v2f64 FPR128:$Rn), (i64 1)))),
7883           (f64 (FADDPv2i64p (v2f64 FPR128:$Rn)))>;
7884    // vector_extract on 64-bit vectors gets promoted to a 128 bit vector,
7885    // so we match on v4f32 here, not v2f32. This will also catch adding
7886    // the low two lanes of a true v4f32 vector.
7887def : Pat<(fadd (vector_extract (v4f32 FPR128:$Rn), (i64 0)),
7888                (vector_extract (v4f32 FPR128:$Rn), (i64 1))),
7889          (f32 (FADDPv2i32p (EXTRACT_SUBREG FPR128:$Rn, dsub)))>;
7890def : Pat<(fadd (vector_extract (v8f16 FPR128:$Rn), (i64 0)),
7891                (vector_extract (v8f16 FPR128:$Rn), (i64 1))),
7892          (f16 (FADDPv2i16p (EXTRACT_SUBREG FPR128:$Rn, dsub)))>;
7893
7894// Scalar 64-bit shifts in FPR64 registers.
7895def : Pat<(i64 (int_aarch64_neon_sshl (i64 FPR64:$Rn), (i64 FPR64:$Rm))),
7896          (SSHLv1i64 FPR64:$Rn, FPR64:$Rm)>;
7897def : Pat<(i64 (int_aarch64_neon_ushl (i64 FPR64:$Rn), (i64 FPR64:$Rm))),
7898          (USHLv1i64 FPR64:$Rn, FPR64:$Rm)>;
7899def : Pat<(i64 (int_aarch64_neon_srshl (i64 FPR64:$Rn), (i64 FPR64:$Rm))),
7900          (SRSHLv1i64 FPR64:$Rn, FPR64:$Rm)>;
7901def : Pat<(i64 (int_aarch64_neon_urshl (i64 FPR64:$Rn), (i64 FPR64:$Rm))),
7902          (URSHLv1i64 FPR64:$Rn, FPR64:$Rm)>;
7903
7904// Patterns for nontemporal/no-allocate stores.
7905// We have to resort to tricks to turn a single-input store into a store pair,
7906// because there is no single-input nontemporal store, only STNP.
7907let Predicates = [IsLE] in {
7908let AddedComplexity = 15 in {
7909class NTStore128Pat<ValueType VT> :
7910  Pat<(nontemporalstore (VT FPR128:$Rt),
7911        (am_indexed7s64 GPR64sp:$Rn, simm7s8:$offset)),
7912      (STNPDi (EXTRACT_SUBREG FPR128:$Rt, dsub),
7913              (CPYi64 FPR128:$Rt, (i64 1)),
7914              GPR64sp:$Rn, simm7s8:$offset)>;
7915
7916def : NTStore128Pat<v2i64>;
7917def : NTStore128Pat<v4i32>;
7918def : NTStore128Pat<v8i16>;
7919def : NTStore128Pat<v16i8>;
7920
7921class NTStore64Pat<ValueType VT> :
7922  Pat<(nontemporalstore (VT FPR64:$Rt),
7923        (am_indexed7s32 GPR64sp:$Rn, simm7s4:$offset)),
7924      (STNPSi (EXTRACT_SUBREG FPR64:$Rt, ssub),
7925              (CPYi32 (SUBREG_TO_REG (i64 0), FPR64:$Rt, dsub), (i64 1)),
7926              GPR64sp:$Rn, simm7s4:$offset)>;
7927
7928// FIXME: Shouldn't v1f64 loads/stores be promoted to v1i64?
7929def : NTStore64Pat<v1f64>;
7930def : NTStore64Pat<v1i64>;
7931def : NTStore64Pat<v2i32>;
7932def : NTStore64Pat<v4i16>;
7933def : NTStore64Pat<v8i8>;
7934
7935def : Pat<(nontemporalstore GPR64:$Rt,
7936            (am_indexed7s32 GPR64sp:$Rn, simm7s4:$offset)),
7937          (STNPWi (EXTRACT_SUBREG GPR64:$Rt, sub_32),
7938                  (EXTRACT_SUBREG (UBFMXri GPR64:$Rt, 32, 63), sub_32),
7939                  GPR64sp:$Rn, simm7s4:$offset)>;
7940} // AddedComplexity=10
7941} // Predicates = [IsLE]
7942
7943// Tail call return handling. These are all compiler pseudo-instructions,
7944// so no encoding information or anything like that.
7945let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [SP] in {
7946  def TCRETURNdi : Pseudo<(outs), (ins i64imm:$dst, i32imm:$FPDiff), []>,
7947                   Sched<[WriteBrReg]>;
7948  def TCRETURNri : Pseudo<(outs), (ins tcGPR64:$dst, i32imm:$FPDiff), []>,
7949                   Sched<[WriteBrReg]>;
7950  // Indirect tail-call with any register allowed, used by MachineOutliner when
7951  // this is proven safe.
7952  // FIXME: If we have to add any more hacks like this, we should instead relax
7953  // some verifier checks for outlined functions.
7954  def TCRETURNriALL : Pseudo<(outs), (ins GPR64:$dst, i32imm:$FPDiff), []>,
7955                      Sched<[WriteBrReg]>;
7956  // Indirect tail-call limited to only use registers (x16 and x17) which are
7957  // allowed to tail-call a "BTI c" instruction.
7958  def TCRETURNriBTI : Pseudo<(outs), (ins rtcGPR64:$dst, i32imm:$FPDiff), []>,
7959                      Sched<[WriteBrReg]>;
7960}
7961
7962def : Pat<(AArch64tcret tcGPR64:$dst, (i32 timm:$FPDiff)),
7963          (TCRETURNri tcGPR64:$dst, imm:$FPDiff)>,
7964      Requires<[NotUseBTI]>;
7965def : Pat<(AArch64tcret rtcGPR64:$dst, (i32 timm:$FPDiff)),
7966          (TCRETURNriBTI rtcGPR64:$dst, imm:$FPDiff)>,
7967      Requires<[UseBTI]>;
7968def : Pat<(AArch64tcret tglobaladdr:$dst, (i32 timm:$FPDiff)),
7969          (TCRETURNdi texternalsym:$dst, imm:$FPDiff)>;
7970def : Pat<(AArch64tcret texternalsym:$dst, (i32 timm:$FPDiff)),
7971          (TCRETURNdi texternalsym:$dst, imm:$FPDiff)>;
7972
7973def MOVMCSym : Pseudo<(outs GPR64:$dst), (ins i64imm:$sym), []>, Sched<[]>;
7974def : Pat<(i64 (AArch64LocalRecover mcsym:$sym)), (MOVMCSym mcsym:$sym)>;
7975
7976// Extracting lane zero is a special case where we can just use a plain
7977// EXTRACT_SUBREG instruction, which will become FMOV. This is easier for the
7978// rest of the compiler, especially the register allocator and copy propagation,
7979// to reason about, so is preferred when it's possible to use it.
7980let AddedComplexity = 10 in {
7981  def : Pat<(i64 (extractelt (v2i64 V128:$V), (i64 0))), (EXTRACT_SUBREG V128:$V, dsub)>;
7982  def : Pat<(i32 (extractelt (v4i32 V128:$V), (i64 0))), (EXTRACT_SUBREG V128:$V, ssub)>;
7983  def : Pat<(i32 (extractelt (v2i32 V64:$V), (i64 0))), (EXTRACT_SUBREG V64:$V, ssub)>;
7984}
7985
7986// dot_v4i8
7987class mul_v4i8<SDPatternOperator ldop> :
7988  PatFrag<(ops node:$Rn, node:$Rm, node:$offset),
7989          (mul (ldop (add node:$Rn, node:$offset)),
7990               (ldop (add node:$Rm, node:$offset)))>;
7991class mulz_v4i8<SDPatternOperator ldop> :
7992  PatFrag<(ops node:$Rn, node:$Rm),
7993          (mul (ldop node:$Rn), (ldop node:$Rm))>;
7994
7995def load_v4i8 :
7996  OutPatFrag<(ops node:$R),
7997             (INSERT_SUBREG
7998              (v2i32 (IMPLICIT_DEF)),
7999               (i32 (COPY_TO_REGCLASS (LDRWui node:$R, (i64 0)), FPR32)),
8000              ssub)>;
8001
8002class dot_v4i8<Instruction DOT, SDPatternOperator ldop> :
8003  Pat<(i32 (add (mul_v4i8<ldop> GPR64sp:$Rn, GPR64sp:$Rm, (i64 3)),
8004           (add (mul_v4i8<ldop> GPR64sp:$Rn, GPR64sp:$Rm, (i64 2)),
8005           (add (mul_v4i8<ldop> GPR64sp:$Rn, GPR64sp:$Rm, (i64 1)),
8006                (mulz_v4i8<ldop> GPR64sp:$Rn, GPR64sp:$Rm))))),
8007      (EXTRACT_SUBREG (i64 (DOT (DUPv2i32gpr WZR),
8008                                (load_v4i8 GPR64sp:$Rn),
8009                                (load_v4i8 GPR64sp:$Rm))),
8010                      sub_32)>, Requires<[HasDotProd]>;
8011
8012// dot_v8i8
8013class ee_v8i8<SDPatternOperator extend> :
8014  PatFrag<(ops node:$V, node:$K),
8015          (v4i16 (extract_subvector (v8i16 (extend node:$V)), node:$K))>;
8016
8017class mul_v8i8<SDPatternOperator mulop, SDPatternOperator extend> :
8018  PatFrag<(ops node:$M, node:$N, node:$K),
8019          (mulop (v4i16 (ee_v8i8<extend> node:$M, node:$K)),
8020                 (v4i16 (ee_v8i8<extend> node:$N, node:$K)))>;
8021
8022class idot_v8i8<SDPatternOperator mulop, SDPatternOperator extend> :
8023  PatFrag<(ops node:$M, node:$N),
8024          (i32 (extractelt
8025           (v4i32 (AArch64uaddv
8026            (add (mul_v8i8<mulop, extend> node:$M, node:$N, (i64 0)),
8027                 (mul_v8i8<mulop, extend> node:$M, node:$N, (i64 4))))),
8028           (i64 0)))>;
8029
8030// vaddv_[su]32 is special; -> ADDP Vd.2S,Vn.2S,Vm.2S; return Vd.s[0];Vn==Vm
8031def VADDV_32 : OutPatFrag<(ops node:$R), (ADDPv2i32 node:$R, node:$R)>;
8032
8033class odot_v8i8<Instruction DOT> :
8034  OutPatFrag<(ops node:$Vm, node:$Vn),
8035             (EXTRACT_SUBREG
8036              (VADDV_32
8037               (i64 (DOT (DUPv2i32gpr WZR),
8038                         (v8i8 node:$Vm),
8039                         (v8i8 node:$Vn)))),
8040              sub_32)>;
8041
8042class dot_v8i8<Instruction DOT, SDPatternOperator mulop,
8043                    SDPatternOperator extend> :
8044  Pat<(idot_v8i8<mulop, extend> V64:$Vm, V64:$Vn),
8045      (odot_v8i8<DOT> V64:$Vm, V64:$Vn)>,
8046  Requires<[HasDotProd]>;
8047
8048// dot_v16i8
8049class ee_v16i8<SDPatternOperator extend> :
8050  PatFrag<(ops node:$V, node:$K1, node:$K2),
8051          (v4i16 (extract_subvector
8052           (v8i16 (extend
8053            (v8i8 (extract_subvector node:$V, node:$K1)))), node:$K2))>;
8054
8055class mul_v16i8<SDPatternOperator mulop, SDPatternOperator extend> :
8056  PatFrag<(ops node:$M, node:$N, node:$K1, node:$K2),
8057          (v4i32
8058           (mulop (v4i16 (ee_v16i8<extend> node:$M, node:$K1, node:$K2)),
8059                  (v4i16 (ee_v16i8<extend> node:$N, node:$K1, node:$K2))))>;
8060
8061class idot_v16i8<SDPatternOperator m, SDPatternOperator x> :
8062  PatFrag<(ops node:$M, node:$N),
8063          (i32 (extractelt
8064           (v4i32 (AArch64uaddv
8065            (add
8066             (add (mul_v16i8<m, x> node:$M, node:$N, (i64 0), (i64 0)),
8067                  (mul_v16i8<m, x> node:$M, node:$N, (i64 8), (i64 0))),
8068             (add (mul_v16i8<m, x> node:$M, node:$N, (i64 0), (i64 4)),
8069                  (mul_v16i8<m, x> node:$M, node:$N, (i64 8), (i64 4)))))),
8070           (i64 0)))>;
8071
8072class odot_v16i8<Instruction DOT> :
8073  OutPatFrag<(ops node:$Vm, node:$Vn),
8074             (i32 (ADDVv4i32v
8075              (DOT (DUPv4i32gpr WZR), node:$Vm, node:$Vn)))>;
8076
8077class dot_v16i8<Instruction DOT, SDPatternOperator mulop,
8078                SDPatternOperator extend> :
8079  Pat<(idot_v16i8<mulop, extend> V128:$Vm, V128:$Vn),
8080      (odot_v16i8<DOT> V128:$Vm, V128:$Vn)>,
8081  Requires<[HasDotProd]>;
8082
8083let AddedComplexity = 10 in {
8084  def : dot_v4i8<SDOTv8i8, sextloadi8>;
8085  def : dot_v4i8<UDOTv8i8, zextloadi8>;
8086  def : dot_v8i8<SDOTv8i8, AArch64smull, sext>;
8087  def : dot_v8i8<UDOTv8i8, AArch64umull, zext>;
8088  def : dot_v16i8<SDOTv16i8, AArch64smull, sext>;
8089  def : dot_v16i8<UDOTv16i8, AArch64umull, zext>;
8090
8091  // FIXME: add patterns to generate vector by element dot product.
8092  // FIXME: add SVE dot-product patterns.
8093}
8094
8095let Predicates = [HasLS64] in {
8096  def LD64B: LoadStore64B<0b101, "ld64b", (ins GPR64sp:$Rn),
8097                                          (outs GPR64x8:$Rt)>;
8098  def ST64B: LoadStore64B<0b001, "st64b", (ins GPR64x8:$Rt, GPR64sp:$Rn),
8099                                          (outs)>;
8100  def ST64BV:   Store64BV<0b011, "st64bv">;
8101  def ST64BV0:  Store64BV<0b010, "st64bv0">;
8102
8103  class ST64BPattern<Intrinsic intrinsic, Instruction instruction>
8104    : Pat<(intrinsic GPR64sp:$addr, GPR64:$x0, GPR64:$x1, GPR64:$x2, GPR64:$x3, GPR64:$x4, GPR64:$x5, GPR64:$x6, GPR64:$x7),
8105          (instruction (REG_SEQUENCE GPR64x8Class, $x0, x8sub_0, $x1, x8sub_1, $x2, x8sub_2, $x3, x8sub_3, $x4, x8sub_4, $x5, x8sub_5, $x6, x8sub_6, $x7, x8sub_7), $addr)>;
8106
8107  def : ST64BPattern<int_aarch64_st64b, ST64B>;
8108  def : ST64BPattern<int_aarch64_st64bv, ST64BV>;
8109  def : ST64BPattern<int_aarch64_st64bv0, ST64BV0>;
8110}
8111
8112let Defs = [X16, X17], mayStore = 1, isCodeGenOnly = 1 in
8113def StoreSwiftAsyncContext
8114      : Pseudo<(outs), (ins GPR64:$ctx, GPR64sp:$base, simm9:$offset),
8115               []>, Sched<[]>;
8116
8117include "AArch64InstrAtomics.td"
8118include "AArch64SVEInstrInfo.td"
8119include "AArch64SMEInstrInfo.td"
8120include "AArch64InstrGISel.td"
8121