1 //===- AArch64RegisterBankInfo.cpp ----------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements the targeting of the RegisterBankInfo class for
10 /// AArch64.
11 /// \todo This should be generated by TableGen.
12 //===----------------------------------------------------------------------===//
13 
14 #include "AArch64RegisterBankInfo.h"
15 #include "AArch64RegisterInfo.h"
16 #include "MCTargetDesc/AArch64MCTargetDesc.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h"
20 #include "llvm/CodeGen/GlobalISel/Utils.h"
21 #include "llvm/CodeGen/LowLevelType.h"
22 #include "llvm/CodeGen/MachineFunction.h"
23 #include "llvm/CodeGen/MachineInstr.h"
24 #include "llvm/CodeGen/MachineOperand.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/CodeGen/RegisterBank.h"
27 #include "llvm/CodeGen/RegisterBankInfo.h"
28 #include "llvm/CodeGen/TargetOpcodes.h"
29 #include "llvm/CodeGen/TargetRegisterInfo.h"
30 #include "llvm/CodeGen/TargetSubtargetInfo.h"
31 #include "llvm/IR/IntrinsicsAArch64.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include <algorithm>
34 #include <cassert>
35 
36 #define GET_TARGET_REGBANK_IMPL
37 #include "AArch64GenRegisterBank.inc"
38 
39 // This file will be TableGen'ed at some point.
40 #include "AArch64GenRegisterBankInfo.def"
41 
42 using namespace llvm;
43 
44 AArch64RegisterBankInfo::AArch64RegisterBankInfo(
45     const TargetRegisterInfo &TRI) {
46   static llvm::once_flag InitializeRegisterBankFlag;
47 
48   static auto InitializeRegisterBankOnce = [&]() {
49     // We have only one set of register banks, whatever the subtarget
50     // is. Therefore, the initialization of the RegBanks table should be
51     // done only once. Indeed the table of all register banks
52     // (AArch64::RegBanks) is unique in the compiler. At some point, it
53     // will get tablegen'ed and the whole constructor becomes empty.
54 
55     const RegisterBank &RBGPR = getRegBank(AArch64::GPRRegBankID);
56     (void)RBGPR;
57     assert(&AArch64::GPRRegBank == &RBGPR &&
58            "The order in RegBanks is messed up");
59 
60     const RegisterBank &RBFPR = getRegBank(AArch64::FPRRegBankID);
61     (void)RBFPR;
62     assert(&AArch64::FPRRegBank == &RBFPR &&
63            "The order in RegBanks is messed up");
64 
65     const RegisterBank &RBCCR = getRegBank(AArch64::CCRegBankID);
66     (void)RBCCR;
67     assert(&AArch64::CCRegBank == &RBCCR &&
68            "The order in RegBanks is messed up");
69 
70     // The GPR register bank is fully defined by all the registers in
71     // GR64all + its subclasses.
72     assert(RBGPR.covers(*TRI.getRegClass(AArch64::GPR32RegClassID)) &&
73            "Subclass not added?");
74     assert(RBGPR.getSize() == 128 && "GPRs should hold up to 128-bit");
75 
76     // The FPR register bank is fully defined by all the registers in
77     // GR64all + its subclasses.
78     assert(RBFPR.covers(*TRI.getRegClass(AArch64::QQRegClassID)) &&
79            "Subclass not added?");
80     assert(RBFPR.covers(*TRI.getRegClass(AArch64::FPR64RegClassID)) &&
81            "Subclass not added?");
82     assert(RBFPR.getSize() == 512 &&
83            "FPRs should hold up to 512-bit via QQQQ sequence");
84 
85     assert(RBCCR.covers(*TRI.getRegClass(AArch64::CCRRegClassID)) &&
86            "Class not added?");
87     assert(RBCCR.getSize() == 32 && "CCR should hold up to 32-bit");
88 
89     // Check that the TableGen'ed like file is in sync we our expectations.
90     // First, the Idx.
91     assert(checkPartialMappingIdx(PMI_FirstGPR, PMI_LastGPR,
92                                   {PMI_GPR32, PMI_GPR64, PMI_GPR128}) &&
93            "PartialMappingIdx's are incorrectly ordered");
94     assert(checkPartialMappingIdx(PMI_FirstFPR, PMI_LastFPR,
95                                   {PMI_FPR16, PMI_FPR32, PMI_FPR64, PMI_FPR128,
96                                    PMI_FPR256, PMI_FPR512}) &&
97            "PartialMappingIdx's are incorrectly ordered");
98 // Now, the content.
99 // Check partial mapping.
100 #define CHECK_PARTIALMAP(Idx, ValStartIdx, ValLength, RB)                      \
101   do {                                                                         \
102     assert(                                                                    \
103         checkPartialMap(PartialMappingIdx::Idx, ValStartIdx, ValLength, RB) && \
104         #Idx " is incorrectly initialized");                                   \
105   } while (false)
106 
107     CHECK_PARTIALMAP(PMI_GPR32, 0, 32, RBGPR);
108     CHECK_PARTIALMAP(PMI_GPR64, 0, 64, RBGPR);
109     CHECK_PARTIALMAP(PMI_GPR128, 0, 128, RBGPR);
110     CHECK_PARTIALMAP(PMI_FPR16, 0, 16, RBFPR);
111     CHECK_PARTIALMAP(PMI_FPR32, 0, 32, RBFPR);
112     CHECK_PARTIALMAP(PMI_FPR64, 0, 64, RBFPR);
113     CHECK_PARTIALMAP(PMI_FPR128, 0, 128, RBFPR);
114     CHECK_PARTIALMAP(PMI_FPR256, 0, 256, RBFPR);
115     CHECK_PARTIALMAP(PMI_FPR512, 0, 512, RBFPR);
116 
117 // Check value mapping.
118 #define CHECK_VALUEMAP_IMPL(RBName, Size, Offset)                              \
119   do {                                                                         \
120     assert(checkValueMapImpl(PartialMappingIdx::PMI_##RBName##Size,            \
121                              PartialMappingIdx::PMI_First##RBName, Size,       \
122                              Offset) &&                                        \
123            #RBName #Size " " #Offset " is incorrectly initialized");           \
124   } while (false)
125 
126 #define CHECK_VALUEMAP(RBName, Size) CHECK_VALUEMAP_IMPL(RBName, Size, 0)
127 
128     CHECK_VALUEMAP(GPR, 32);
129     CHECK_VALUEMAP(GPR, 64);
130     CHECK_VALUEMAP(GPR, 128);
131     CHECK_VALUEMAP(FPR, 16);
132     CHECK_VALUEMAP(FPR, 32);
133     CHECK_VALUEMAP(FPR, 64);
134     CHECK_VALUEMAP(FPR, 128);
135     CHECK_VALUEMAP(FPR, 256);
136     CHECK_VALUEMAP(FPR, 512);
137 
138 // Check the value mapping for 3-operands instructions where all the operands
139 // map to the same value mapping.
140 #define CHECK_VALUEMAP_3OPS(RBName, Size)                                      \
141   do {                                                                         \
142     CHECK_VALUEMAP_IMPL(RBName, Size, 0);                                      \
143     CHECK_VALUEMAP_IMPL(RBName, Size, 1);                                      \
144     CHECK_VALUEMAP_IMPL(RBName, Size, 2);                                      \
145   } while (false)
146 
147     CHECK_VALUEMAP_3OPS(GPR, 32);
148     CHECK_VALUEMAP_3OPS(GPR, 64);
149     CHECK_VALUEMAP_3OPS(GPR, 128);
150     CHECK_VALUEMAP_3OPS(FPR, 32);
151     CHECK_VALUEMAP_3OPS(FPR, 64);
152     CHECK_VALUEMAP_3OPS(FPR, 128);
153     CHECK_VALUEMAP_3OPS(FPR, 256);
154     CHECK_VALUEMAP_3OPS(FPR, 512);
155 
156 #define CHECK_VALUEMAP_CROSSREGCPY(RBNameDst, RBNameSrc, Size)                 \
157   do {                                                                         \
158     unsigned PartialMapDstIdx = PMI_##RBNameDst##Size - PMI_Min;               \
159     unsigned PartialMapSrcIdx = PMI_##RBNameSrc##Size - PMI_Min;               \
160     (void)PartialMapDstIdx;                                                    \
161     (void)PartialMapSrcIdx;                                                    \
162     const ValueMapping *Map = getCopyMapping(                                  \
163         AArch64::RBNameDst##RegBankID, AArch64::RBNameSrc##RegBankID, Size);  \
164     (void)Map;                                                                 \
165     assert(Map[0].BreakDown ==                                                 \
166                &AArch64GenRegisterBankInfo::PartMappings[PartialMapDstIdx] &&  \
167            Map[0].NumBreakDowns == 1 && #RBNameDst #Size                       \
168            " Dst is incorrectly initialized");                                 \
169     assert(Map[1].BreakDown ==                                                 \
170                &AArch64GenRegisterBankInfo::PartMappings[PartialMapSrcIdx] &&  \
171            Map[1].NumBreakDowns == 1 && #RBNameSrc #Size                       \
172            " Src is incorrectly initialized");                                 \
173                                                                                \
174   } while (false)
175 
176     CHECK_VALUEMAP_CROSSREGCPY(GPR, GPR, 32);
177     CHECK_VALUEMAP_CROSSREGCPY(GPR, FPR, 32);
178     CHECK_VALUEMAP_CROSSREGCPY(GPR, GPR, 64);
179     CHECK_VALUEMAP_CROSSREGCPY(GPR, FPR, 64);
180     CHECK_VALUEMAP_CROSSREGCPY(FPR, FPR, 32);
181     CHECK_VALUEMAP_CROSSREGCPY(FPR, GPR, 32);
182     CHECK_VALUEMAP_CROSSREGCPY(FPR, FPR, 64);
183     CHECK_VALUEMAP_CROSSREGCPY(FPR, GPR, 64);
184 
185 #define CHECK_VALUEMAP_FPEXT(DstSize, SrcSize)                                 \
186   do {                                                                         \
187     unsigned PartialMapDstIdx = PMI_FPR##DstSize - PMI_Min;                    \
188     unsigned PartialMapSrcIdx = PMI_FPR##SrcSize - PMI_Min;                    \
189     (void)PartialMapDstIdx;                                                    \
190     (void)PartialMapSrcIdx;                                                    \
191     const ValueMapping *Map = getFPExtMapping(DstSize, SrcSize);               \
192     (void)Map;                                                                 \
193     assert(Map[0].BreakDown ==                                                 \
194                &AArch64GenRegisterBankInfo::PartMappings[PartialMapDstIdx] &&  \
195            Map[0].NumBreakDowns == 1 && "FPR" #DstSize                         \
196                                         " Dst is incorrectly initialized");    \
197     assert(Map[1].BreakDown ==                                                 \
198                &AArch64GenRegisterBankInfo::PartMappings[PartialMapSrcIdx] &&  \
199            Map[1].NumBreakDowns == 1 && "FPR" #SrcSize                         \
200                                         " Src is incorrectly initialized");    \
201                                                                                \
202   } while (false)
203 
204     CHECK_VALUEMAP_FPEXT(32, 16);
205     CHECK_VALUEMAP_FPEXT(64, 16);
206     CHECK_VALUEMAP_FPEXT(64, 32);
207     CHECK_VALUEMAP_FPEXT(128, 64);
208 
209     assert(verify(TRI) && "Invalid register bank information");
210   };
211 
212   llvm::call_once(InitializeRegisterBankFlag, InitializeRegisterBankOnce);
213 }
214 
215 unsigned AArch64RegisterBankInfo::copyCost(const RegisterBank &A,
216                                            const RegisterBank &B,
217                                            unsigned Size) const {
218   // What do we do with different size?
219   // copy are same size.
220   // Will introduce other hooks for different size:
221   // * extract cost.
222   // * build_sequence cost.
223 
224   // Copy from (resp. to) GPR to (resp. from) FPR involves FMOV.
225   // FIXME: This should be deduced from the scheduling model.
226   if (&A == &AArch64::GPRRegBank && &B == &AArch64::FPRRegBank)
227     // FMOVXDr or FMOVWSr.
228     return 5;
229   if (&A == &AArch64::FPRRegBank && &B == &AArch64::GPRRegBank)
230     // FMOVDXr or FMOVSWr.
231     return 4;
232 
233   return RegisterBankInfo::copyCost(A, B, Size);
234 }
235 
236 const RegisterBank &
237 AArch64RegisterBankInfo::getRegBankFromRegClass(const TargetRegisterClass &RC,
238                                                 LLT) const {
239   switch (RC.getID()) {
240   case AArch64::FPR8RegClassID:
241   case AArch64::FPR16RegClassID:
242   case AArch64::FPR16_loRegClassID:
243   case AArch64::FPR32_with_hsub_in_FPR16_loRegClassID:
244   case AArch64::FPR32RegClassID:
245   case AArch64::FPR64RegClassID:
246   case AArch64::FPR64_loRegClassID:
247   case AArch64::FPR128RegClassID:
248   case AArch64::FPR128_loRegClassID:
249   case AArch64::DDRegClassID:
250   case AArch64::DDDRegClassID:
251   case AArch64::DDDDRegClassID:
252   case AArch64::QQRegClassID:
253   case AArch64::QQQRegClassID:
254   case AArch64::QQQQRegClassID:
255     return getRegBank(AArch64::FPRRegBankID);
256   case AArch64::GPR32commonRegClassID:
257   case AArch64::GPR32RegClassID:
258   case AArch64::GPR32spRegClassID:
259   case AArch64::GPR32sponlyRegClassID:
260   case AArch64::GPR32argRegClassID:
261   case AArch64::GPR32allRegClassID:
262   case AArch64::GPR64commonRegClassID:
263   case AArch64::GPR64RegClassID:
264   case AArch64::GPR64spRegClassID:
265   case AArch64::GPR64sponlyRegClassID:
266   case AArch64::GPR64argRegClassID:
267   case AArch64::GPR64allRegClassID:
268   case AArch64::GPR64noipRegClassID:
269   case AArch64::GPR64common_and_GPR64noipRegClassID:
270   case AArch64::GPR64noip_and_tcGPR64RegClassID:
271   case AArch64::tcGPR64RegClassID:
272   case AArch64::rtcGPR64RegClassID:
273   case AArch64::WSeqPairsClassRegClassID:
274   case AArch64::XSeqPairsClassRegClassID:
275   case AArch64::MatrixIndexGPR32_12_15RegClassID:
276   case AArch64::GPR64_with_sub_32_in_MatrixIndexGPR32_12_15RegClassID:
277     return getRegBank(AArch64::GPRRegBankID);
278   case AArch64::CCRRegClassID:
279     return getRegBank(AArch64::CCRegBankID);
280   default:
281     llvm_unreachable("Register class not supported");
282   }
283 }
284 
285 RegisterBankInfo::InstructionMappings
286 AArch64RegisterBankInfo::getInstrAlternativeMappings(
287     const MachineInstr &MI) const {
288   const MachineFunction &MF = *MI.getParent()->getParent();
289   const TargetSubtargetInfo &STI = MF.getSubtarget();
290   const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
291   const MachineRegisterInfo &MRI = MF.getRegInfo();
292 
293   switch (MI.getOpcode()) {
294   case TargetOpcode::G_OR: {
295     // 32 and 64-bit or can be mapped on either FPR or
296     // GPR for the same cost.
297     unsigned Size = getSizeInBits(MI.getOperand(0).getReg(), MRI, TRI);
298     if (Size != 32 && Size != 64)
299       break;
300 
301     // If the instruction has any implicit-defs or uses,
302     // do not mess with it.
303     if (MI.getNumOperands() != 3)
304       break;
305     InstructionMappings AltMappings;
306     const InstructionMapping &GPRMapping = getInstructionMapping(
307         /*ID*/ 1, /*Cost*/ 1, getValueMapping(PMI_FirstGPR, Size),
308         /*NumOperands*/ 3);
309     const InstructionMapping &FPRMapping = getInstructionMapping(
310         /*ID*/ 2, /*Cost*/ 1, getValueMapping(PMI_FirstFPR, Size),
311         /*NumOperands*/ 3);
312 
313     AltMappings.push_back(&GPRMapping);
314     AltMappings.push_back(&FPRMapping);
315     return AltMappings;
316   }
317   case TargetOpcode::G_BITCAST: {
318     unsigned Size = getSizeInBits(MI.getOperand(0).getReg(), MRI, TRI);
319     if (Size != 32 && Size != 64)
320       break;
321 
322     // If the instruction has any implicit-defs or uses,
323     // do not mess with it.
324     if (MI.getNumOperands() != 2)
325       break;
326 
327     InstructionMappings AltMappings;
328     const InstructionMapping &GPRMapping = getInstructionMapping(
329         /*ID*/ 1, /*Cost*/ 1,
330         getCopyMapping(AArch64::GPRRegBankID, AArch64::GPRRegBankID, Size),
331         /*NumOperands*/ 2);
332     const InstructionMapping &FPRMapping = getInstructionMapping(
333         /*ID*/ 2, /*Cost*/ 1,
334         getCopyMapping(AArch64::FPRRegBankID, AArch64::FPRRegBankID, Size),
335         /*NumOperands*/ 2);
336     const InstructionMapping &GPRToFPRMapping = getInstructionMapping(
337         /*ID*/ 3,
338         /*Cost*/ copyCost(AArch64::GPRRegBank, AArch64::FPRRegBank, Size),
339         getCopyMapping(AArch64::FPRRegBankID, AArch64::GPRRegBankID, Size),
340         /*NumOperands*/ 2);
341     const InstructionMapping &FPRToGPRMapping = getInstructionMapping(
342         /*ID*/ 3,
343         /*Cost*/ copyCost(AArch64::GPRRegBank, AArch64::FPRRegBank, Size),
344         getCopyMapping(AArch64::GPRRegBankID, AArch64::FPRRegBankID, Size),
345         /*NumOperands*/ 2);
346 
347     AltMappings.push_back(&GPRMapping);
348     AltMappings.push_back(&FPRMapping);
349     AltMappings.push_back(&GPRToFPRMapping);
350     AltMappings.push_back(&FPRToGPRMapping);
351     return AltMappings;
352   }
353   case TargetOpcode::G_LOAD: {
354     unsigned Size = getSizeInBits(MI.getOperand(0).getReg(), MRI, TRI);
355     if (Size != 64)
356       break;
357 
358     // If the instruction has any implicit-defs or uses,
359     // do not mess with it.
360     if (MI.getNumOperands() != 2)
361       break;
362 
363     InstructionMappings AltMappings;
364     const InstructionMapping &GPRMapping = getInstructionMapping(
365         /*ID*/ 1, /*Cost*/ 1,
366         getOperandsMapping({getValueMapping(PMI_FirstGPR, Size),
367                             // Addresses are GPR 64-bit.
368                             getValueMapping(PMI_FirstGPR, 64)}),
369         /*NumOperands*/ 2);
370     const InstructionMapping &FPRMapping = getInstructionMapping(
371         /*ID*/ 2, /*Cost*/ 1,
372         getOperandsMapping({getValueMapping(PMI_FirstFPR, Size),
373                             // Addresses are GPR 64-bit.
374                             getValueMapping(PMI_FirstGPR, 64)}),
375         /*NumOperands*/ 2);
376 
377     AltMappings.push_back(&GPRMapping);
378     AltMappings.push_back(&FPRMapping);
379     return AltMappings;
380   }
381   default:
382     break;
383   }
384   return RegisterBankInfo::getInstrAlternativeMappings(MI);
385 }
386 
387 void AArch64RegisterBankInfo::applyMappingImpl(
388     const OperandsMapper &OpdMapper) const {
389   switch (OpdMapper.getMI().getOpcode()) {
390   case TargetOpcode::G_OR:
391   case TargetOpcode::G_BITCAST:
392   case TargetOpcode::G_LOAD:
393     // Those ID must match getInstrAlternativeMappings.
394     assert((OpdMapper.getInstrMapping().getID() >= 1 &&
395             OpdMapper.getInstrMapping().getID() <= 4) &&
396            "Don't know how to handle that ID");
397     return applyDefaultMapping(OpdMapper);
398   default:
399     llvm_unreachable("Don't know how to handle that operation");
400   }
401 }
402 
403 /// Returns whether opcode \p Opc is a pre-isel generic floating-point opcode,
404 /// having only floating-point operands.
405 static bool isPreISelGenericFloatingPointOpcode(unsigned Opc) {
406   switch (Opc) {
407   case TargetOpcode::G_FADD:
408   case TargetOpcode::G_FSUB:
409   case TargetOpcode::G_FMUL:
410   case TargetOpcode::G_FMA:
411   case TargetOpcode::G_FDIV:
412   case TargetOpcode::G_FCONSTANT:
413   case TargetOpcode::G_FPEXT:
414   case TargetOpcode::G_FPTRUNC:
415   case TargetOpcode::G_FCEIL:
416   case TargetOpcode::G_FFLOOR:
417   case TargetOpcode::G_FNEARBYINT:
418   case TargetOpcode::G_FNEG:
419   case TargetOpcode::G_FCOS:
420   case TargetOpcode::G_FSIN:
421   case TargetOpcode::G_FLOG10:
422   case TargetOpcode::G_FLOG:
423   case TargetOpcode::G_FLOG2:
424   case TargetOpcode::G_FSQRT:
425   case TargetOpcode::G_FABS:
426   case TargetOpcode::G_FEXP:
427   case TargetOpcode::G_FRINT:
428   case TargetOpcode::G_INTRINSIC_TRUNC:
429   case TargetOpcode::G_INTRINSIC_ROUND:
430   case TargetOpcode::G_FMAXNUM:
431   case TargetOpcode::G_FMINNUM:
432   case TargetOpcode::G_FMAXIMUM:
433   case TargetOpcode::G_FMINIMUM:
434     return true;
435   }
436   return false;
437 }
438 
439 const RegisterBankInfo::InstructionMapping &
440 AArch64RegisterBankInfo::getSameKindOfOperandsMapping(
441     const MachineInstr &MI) const {
442   const unsigned Opc = MI.getOpcode();
443   const MachineFunction &MF = *MI.getParent()->getParent();
444   const MachineRegisterInfo &MRI = MF.getRegInfo();
445 
446   unsigned NumOperands = MI.getNumOperands();
447   assert(NumOperands <= 3 &&
448          "This code is for instructions with 3 or less operands");
449 
450   LLT Ty = MRI.getType(MI.getOperand(0).getReg());
451   unsigned Size = Ty.getSizeInBits();
452   bool IsFPR = Ty.isVector() || isPreISelGenericFloatingPointOpcode(Opc);
453 
454   PartialMappingIdx RBIdx = IsFPR ? PMI_FirstFPR : PMI_FirstGPR;
455 
456 #ifndef NDEBUG
457   // Make sure all the operands are using similar size and type.
458   // Should probably be checked by the machine verifier.
459   // This code won't catch cases where the number of lanes is
460   // different between the operands.
461   // If we want to go to that level of details, it is probably
462   // best to check that the types are the same, period.
463   // Currently, we just check that the register banks are the same
464   // for each types.
465   for (unsigned Idx = 1; Idx != NumOperands; ++Idx) {
466     LLT OpTy = MRI.getType(MI.getOperand(Idx).getReg());
467     assert(
468         AArch64GenRegisterBankInfo::getRegBankBaseIdxOffset(
469             RBIdx, OpTy.getSizeInBits()) ==
470             AArch64GenRegisterBankInfo::getRegBankBaseIdxOffset(RBIdx, Size) &&
471         "Operand has incompatible size");
472     bool OpIsFPR = OpTy.isVector() || isPreISelGenericFloatingPointOpcode(Opc);
473     (void)OpIsFPR;
474     assert(IsFPR == OpIsFPR && "Operand has incompatible type");
475   }
476 #endif // End NDEBUG.
477 
478   return getInstructionMapping(DefaultMappingID, 1,
479                                getValueMapping(RBIdx, Size), NumOperands);
480 }
481 
482 /// \returns true if a given intrinsic \p ID only uses and defines FPRs.
483 static bool isFPIntrinsic(unsigned ID) {
484   // TODO: Add more intrinsics.
485   switch (ID) {
486   default:
487     return false;
488   case Intrinsic::aarch64_neon_uaddlv:
489     return true;
490   }
491 }
492 
493 bool AArch64RegisterBankInfo::hasFPConstraints(const MachineInstr &MI,
494                                                const MachineRegisterInfo &MRI,
495                                                const TargetRegisterInfo &TRI,
496                                                unsigned Depth) const {
497   unsigned Op = MI.getOpcode();
498   if (Op == TargetOpcode::G_INTRINSIC && isFPIntrinsic(MI.getIntrinsicID()))
499     return true;
500 
501   // Do we have an explicit floating point instruction?
502   if (isPreISelGenericFloatingPointOpcode(Op))
503     return true;
504 
505   // No. Check if we have a copy-like instruction. If we do, then we could
506   // still be fed by floating point instructions.
507   if (Op != TargetOpcode::COPY && !MI.isPHI() &&
508       !isPreISelGenericOptimizationHint(Op))
509     return false;
510 
511   // Check if we already know the register bank.
512   auto *RB = getRegBank(MI.getOperand(0).getReg(), MRI, TRI);
513   if (RB == &AArch64::FPRRegBank)
514     return true;
515   if (RB == &AArch64::GPRRegBank)
516     return false;
517 
518   // We don't know anything.
519   //
520   // If we have a phi, we may be able to infer that it will be assigned a FPR
521   // based off of its inputs.
522   if (!MI.isPHI() || Depth > MaxFPRSearchDepth)
523     return false;
524 
525   return any_of(MI.explicit_uses(), [&](const MachineOperand &Op) {
526     return Op.isReg() &&
527            onlyDefinesFP(*MRI.getVRegDef(Op.getReg()), MRI, TRI, Depth + 1);
528   });
529 }
530 
531 bool AArch64RegisterBankInfo::onlyUsesFP(const MachineInstr &MI,
532                                          const MachineRegisterInfo &MRI,
533                                          const TargetRegisterInfo &TRI,
534                                          unsigned Depth) const {
535   switch (MI.getOpcode()) {
536   case TargetOpcode::G_FPTOSI:
537   case TargetOpcode::G_FPTOUI:
538   case TargetOpcode::G_FCMP:
539   case TargetOpcode::G_LROUND:
540   case TargetOpcode::G_LLROUND:
541     return true;
542   default:
543     break;
544   }
545   return hasFPConstraints(MI, MRI, TRI, Depth);
546 }
547 
548 bool AArch64RegisterBankInfo::onlyDefinesFP(const MachineInstr &MI,
549                                             const MachineRegisterInfo &MRI,
550                                             const TargetRegisterInfo &TRI,
551                                             unsigned Depth) const {
552   switch (MI.getOpcode()) {
553   case AArch64::G_DUP:
554   case TargetOpcode::G_SITOFP:
555   case TargetOpcode::G_UITOFP:
556   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
557   case TargetOpcode::G_INSERT_VECTOR_ELT:
558   case TargetOpcode::G_BUILD_VECTOR:
559   case TargetOpcode::G_BUILD_VECTOR_TRUNC:
560     return true;
561   default:
562     break;
563   }
564   return hasFPConstraints(MI, MRI, TRI, Depth);
565 }
566 
567 const RegisterBankInfo::InstructionMapping &
568 AArch64RegisterBankInfo::getInstrMapping(const MachineInstr &MI) const {
569   const unsigned Opc = MI.getOpcode();
570 
571   // Try the default logic for non-generic instructions that are either copies
572   // or already have some operands assigned to banks.
573   if ((Opc != TargetOpcode::COPY && !isPreISelGenericOpcode(Opc)) ||
574       Opc == TargetOpcode::G_PHI) {
575     const RegisterBankInfo::InstructionMapping &Mapping =
576         getInstrMappingImpl(MI);
577     if (Mapping.isValid())
578       return Mapping;
579   }
580 
581   const MachineFunction &MF = *MI.getParent()->getParent();
582   const MachineRegisterInfo &MRI = MF.getRegInfo();
583   const TargetSubtargetInfo &STI = MF.getSubtarget();
584   const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
585 
586   switch (Opc) {
587     // G_{F|S|U}REM are not listed because they are not legal.
588     // Arithmetic ops.
589   case TargetOpcode::G_ADD:
590   case TargetOpcode::G_SUB:
591   case TargetOpcode::G_PTR_ADD:
592   case TargetOpcode::G_MUL:
593   case TargetOpcode::G_SDIV:
594   case TargetOpcode::G_UDIV:
595     // Bitwise ops.
596   case TargetOpcode::G_AND:
597   case TargetOpcode::G_OR:
598   case TargetOpcode::G_XOR:
599     // Floating point ops.
600   case TargetOpcode::G_FADD:
601   case TargetOpcode::G_FSUB:
602   case TargetOpcode::G_FMUL:
603   case TargetOpcode::G_FDIV:
604   case TargetOpcode::G_FMAXIMUM:
605   case TargetOpcode::G_FMINIMUM:
606     return getSameKindOfOperandsMapping(MI);
607   case TargetOpcode::G_FPEXT: {
608     LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
609     LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
610     return getInstructionMapping(
611         DefaultMappingID, /*Cost*/ 1,
612         getFPExtMapping(DstTy.getSizeInBits(), SrcTy.getSizeInBits()),
613         /*NumOperands*/ 2);
614   }
615     // Shifts.
616   case TargetOpcode::G_SHL:
617   case TargetOpcode::G_LSHR:
618   case TargetOpcode::G_ASHR: {
619     LLT ShiftAmtTy = MRI.getType(MI.getOperand(2).getReg());
620     LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
621     if (ShiftAmtTy.getSizeInBits() == 64 && SrcTy.getSizeInBits() == 32)
622       return getInstructionMapping(DefaultMappingID, 1,
623                                    &ValMappings[Shift64Imm], 3);
624     return getSameKindOfOperandsMapping(MI);
625   }
626   case TargetOpcode::COPY: {
627     Register DstReg = MI.getOperand(0).getReg();
628     Register SrcReg = MI.getOperand(1).getReg();
629     // Check if one of the register is not a generic register.
630     if ((Register::isPhysicalRegister(DstReg) ||
631          !MRI.getType(DstReg).isValid()) ||
632         (Register::isPhysicalRegister(SrcReg) ||
633          !MRI.getType(SrcReg).isValid())) {
634       const RegisterBank *DstRB = getRegBank(DstReg, MRI, TRI);
635       const RegisterBank *SrcRB = getRegBank(SrcReg, MRI, TRI);
636       if (!DstRB)
637         DstRB = SrcRB;
638       else if (!SrcRB)
639         SrcRB = DstRB;
640       // If both RB are null that means both registers are generic.
641       // We shouldn't be here.
642       assert(DstRB && SrcRB && "Both RegBank were nullptr");
643       unsigned Size = getSizeInBits(DstReg, MRI, TRI);
644       return getInstructionMapping(
645           DefaultMappingID, copyCost(*DstRB, *SrcRB, Size),
646           getCopyMapping(DstRB->getID(), SrcRB->getID(), Size),
647           // We only care about the mapping of the destination.
648           /*NumOperands*/ 1);
649     }
650     // Both registers are generic, use G_BITCAST.
651     LLVM_FALLTHROUGH;
652   }
653   case TargetOpcode::G_BITCAST: {
654     LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
655     LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
656     unsigned Size = DstTy.getSizeInBits();
657     bool DstIsGPR = !DstTy.isVector() && DstTy.getSizeInBits() <= 64;
658     bool SrcIsGPR = !SrcTy.isVector() && SrcTy.getSizeInBits() <= 64;
659     const RegisterBank &DstRB =
660         DstIsGPR ? AArch64::GPRRegBank : AArch64::FPRRegBank;
661     const RegisterBank &SrcRB =
662         SrcIsGPR ? AArch64::GPRRegBank : AArch64::FPRRegBank;
663     return getInstructionMapping(
664         DefaultMappingID, copyCost(DstRB, SrcRB, Size),
665         getCopyMapping(DstRB.getID(), SrcRB.getID(), Size),
666         // We only care about the mapping of the destination for COPY.
667         /*NumOperands*/ Opc == TargetOpcode::G_BITCAST ? 2 : 1);
668   }
669   default:
670     break;
671   }
672 
673   unsigned NumOperands = MI.getNumOperands();
674 
675   // Track the size and bank of each register.  We don't do partial mappings.
676   SmallVector<unsigned, 4> OpSize(NumOperands);
677   SmallVector<PartialMappingIdx, 4> OpRegBankIdx(NumOperands);
678   for (unsigned Idx = 0; Idx < NumOperands; ++Idx) {
679     auto &MO = MI.getOperand(Idx);
680     if (!MO.isReg() || !MO.getReg())
681       continue;
682 
683     LLT Ty = MRI.getType(MO.getReg());
684     OpSize[Idx] = Ty.getSizeInBits();
685 
686     // As a top-level guess, vectors go in FPRs, scalars and pointers in GPRs.
687     // For floating-point instructions, scalars go in FPRs.
688     if (Ty.isVector() || isPreISelGenericFloatingPointOpcode(Opc) ||
689         Ty.getSizeInBits() > 64)
690       OpRegBankIdx[Idx] = PMI_FirstFPR;
691     else
692       OpRegBankIdx[Idx] = PMI_FirstGPR;
693   }
694 
695   unsigned Cost = 1;
696   // Some of the floating-point instructions have mixed GPR and FPR operands:
697   // fine-tune the computed mapping.
698   switch (Opc) {
699   case AArch64::G_DUP: {
700     Register ScalarReg = MI.getOperand(1).getReg();
701     LLT ScalarTy = MRI.getType(ScalarReg);
702     auto ScalarDef = MRI.getVRegDef(ScalarReg);
703     // s8 is an exception for G_DUP, which we always want on gpr.
704     if (ScalarTy.getSizeInBits() != 8 &&
705         (getRegBank(ScalarReg, MRI, TRI) == &AArch64::FPRRegBank ||
706          onlyDefinesFP(*ScalarDef, MRI, TRI)))
707       OpRegBankIdx = {PMI_FirstFPR, PMI_FirstFPR};
708     else
709       OpRegBankIdx = {PMI_FirstFPR, PMI_FirstGPR};
710     break;
711   }
712   case TargetOpcode::G_TRUNC: {
713     LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
714     if (!SrcTy.isVector() && SrcTy.getSizeInBits() == 128)
715       OpRegBankIdx = {PMI_FirstFPR, PMI_FirstFPR};
716     break;
717   }
718   case TargetOpcode::G_SITOFP:
719   case TargetOpcode::G_UITOFP: {
720     if (MRI.getType(MI.getOperand(0).getReg()).isVector())
721       break;
722     // Integer to FP conversions don't necessarily happen between GPR -> FPR
723     // regbanks. They can also be done within an FPR register.
724     Register SrcReg = MI.getOperand(1).getReg();
725     if (getRegBank(SrcReg, MRI, TRI) == &AArch64::FPRRegBank)
726       OpRegBankIdx = {PMI_FirstFPR, PMI_FirstFPR};
727     else
728       OpRegBankIdx = {PMI_FirstFPR, PMI_FirstGPR};
729     break;
730   }
731   case TargetOpcode::G_FPTOSI:
732   case TargetOpcode::G_FPTOUI:
733     if (MRI.getType(MI.getOperand(0).getReg()).isVector())
734       break;
735     OpRegBankIdx = {PMI_FirstGPR, PMI_FirstFPR};
736     break;
737   case TargetOpcode::G_FCMP: {
738     // If the result is a vector, it must use a FPR.
739     AArch64GenRegisterBankInfo::PartialMappingIdx Idx0 =
740         MRI.getType(MI.getOperand(0).getReg()).isVector() ? PMI_FirstFPR
741                                                           : PMI_FirstGPR;
742     OpRegBankIdx = {Idx0,
743                     /* Predicate */ PMI_None, PMI_FirstFPR, PMI_FirstFPR};
744     break;
745   }
746   case TargetOpcode::G_BITCAST:
747     // This is going to be a cross register bank copy and this is expensive.
748     if (OpRegBankIdx[0] != OpRegBankIdx[1])
749       Cost = copyCost(
750           *AArch64GenRegisterBankInfo::PartMappings[OpRegBankIdx[0]].RegBank,
751           *AArch64GenRegisterBankInfo::PartMappings[OpRegBankIdx[1]].RegBank,
752           OpSize[0]);
753     break;
754   case TargetOpcode::G_LOAD:
755     // Loading in vector unit is slightly more expensive.
756     // This is actually only true for the LD1R and co instructions,
757     // but anyway for the fast mode this number does not matter and
758     // for the greedy mode the cost of the cross bank copy will
759     // offset this number.
760     // FIXME: Should be derived from the scheduling model.
761     if (OpRegBankIdx[0] != PMI_FirstGPR) {
762       Cost = 2;
763       break;
764     }
765 
766     if (cast<GLoad>(MI).isAtomic()) {
767       // Atomics always use GPR destinations. Don't refine any further.
768       OpRegBankIdx[0] = PMI_FirstGPR;
769       break;
770     }
771 
772     // Check if that load feeds fp instructions.
773     // In that case, we want the default mapping to be on FPR
774     // instead of blind map every scalar to GPR.
775     if (any_of(MRI.use_nodbg_instructions(MI.getOperand(0).getReg()),
776                [&](const MachineInstr &UseMI) {
777                  // If we have at least one direct use in a FP instruction,
778                  // assume this was a floating point load in the IR. If it was
779                  // not, we would have had a bitcast before reaching that
780                  // instruction.
781                  //
782                  // Int->FP conversion operations are also captured in
783                  // onlyDefinesFP().
784                  return onlyUsesFP(UseMI, MRI, TRI) ||
785                         onlyDefinesFP(UseMI, MRI, TRI);
786                }))
787       OpRegBankIdx[0] = PMI_FirstFPR;
788     break;
789   case TargetOpcode::G_STORE:
790     // Check if that store is fed by fp instructions.
791     if (OpRegBankIdx[0] == PMI_FirstGPR) {
792       Register VReg = MI.getOperand(0).getReg();
793       if (!VReg)
794         break;
795       MachineInstr *DefMI = MRI.getVRegDef(VReg);
796       if (onlyDefinesFP(*DefMI, MRI, TRI))
797         OpRegBankIdx[0] = PMI_FirstFPR;
798       break;
799     }
800     break;
801   case TargetOpcode::G_SELECT: {
802     // If the destination is FPR, preserve that.
803     if (OpRegBankIdx[0] != PMI_FirstGPR)
804       break;
805 
806     // If we're taking in vectors, we have no choice but to put everything on
807     // FPRs, except for the condition. The condition must always be on a GPR.
808     LLT SrcTy = MRI.getType(MI.getOperand(2).getReg());
809     if (SrcTy.isVector()) {
810       OpRegBankIdx = {PMI_FirstFPR, PMI_FirstGPR, PMI_FirstFPR, PMI_FirstFPR};
811       break;
812     }
813 
814     // Try to minimize the number of copies. If we have more floating point
815     // constrained values than not, then we'll put everything on FPR. Otherwise,
816     // everything has to be on GPR.
817     unsigned NumFP = 0;
818 
819     // Check if the uses of the result always produce floating point values.
820     //
821     // For example:
822     //
823     // %z = G_SELECT %cond %x %y
824     // fpr = G_FOO %z ...
825     if (any_of(MRI.use_nodbg_instructions(MI.getOperand(0).getReg()),
826                [&](MachineInstr &MI) { return onlyUsesFP(MI, MRI, TRI); }))
827       ++NumFP;
828 
829     // Check if the defs of the source values always produce floating point
830     // values.
831     //
832     // For example:
833     //
834     // %x = G_SOMETHING_ALWAYS_FLOAT %a ...
835     // %z = G_SELECT %cond %x %y
836     //
837     // Also check whether or not the sources have already been decided to be
838     // FPR. Keep track of this.
839     //
840     // This doesn't check the condition, since it's just whatever is in NZCV.
841     // This isn't passed explicitly in a register to fcsel/csel.
842     for (unsigned Idx = 2; Idx < 4; ++Idx) {
843       Register VReg = MI.getOperand(Idx).getReg();
844       MachineInstr *DefMI = MRI.getVRegDef(VReg);
845       if (getRegBank(VReg, MRI, TRI) == &AArch64::FPRRegBank ||
846           onlyDefinesFP(*DefMI, MRI, TRI))
847         ++NumFP;
848     }
849 
850     // If we have more FP constraints than not, then move everything over to
851     // FPR.
852     if (NumFP >= 2)
853       OpRegBankIdx = {PMI_FirstFPR, PMI_FirstGPR, PMI_FirstFPR, PMI_FirstFPR};
854 
855     break;
856   }
857   case TargetOpcode::G_UNMERGE_VALUES: {
858     // If the first operand belongs to a FPR register bank, then make sure that
859     // we preserve that.
860     if (OpRegBankIdx[0] != PMI_FirstGPR)
861       break;
862 
863     LLT SrcTy = MRI.getType(MI.getOperand(MI.getNumOperands()-1).getReg());
864     // UNMERGE into scalars from a vector should always use FPR.
865     // Likewise if any of the uses are FP instructions.
866     if (SrcTy.isVector() || SrcTy == LLT::scalar(128) ||
867         any_of(MRI.use_nodbg_instructions(MI.getOperand(0).getReg()),
868                [&](MachineInstr &MI) { return onlyUsesFP(MI, MRI, TRI); })) {
869       // Set the register bank of every operand to FPR.
870       for (unsigned Idx = 0, NumOperands = MI.getNumOperands();
871            Idx < NumOperands; ++Idx)
872         OpRegBankIdx[Idx] = PMI_FirstFPR;
873     }
874     break;
875   }
876   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
877     // Destination and source need to be FPRs.
878     OpRegBankIdx[0] = PMI_FirstFPR;
879     OpRegBankIdx[1] = PMI_FirstFPR;
880 
881     // Index needs to be a GPR.
882     OpRegBankIdx[2] = PMI_FirstGPR;
883     break;
884   case TargetOpcode::G_INSERT_VECTOR_ELT:
885     OpRegBankIdx[0] = PMI_FirstFPR;
886     OpRegBankIdx[1] = PMI_FirstFPR;
887 
888     // The element may be either a GPR or FPR. Preserve that behaviour.
889     if (getRegBank(MI.getOperand(2).getReg(), MRI, TRI) == &AArch64::FPRRegBank)
890       OpRegBankIdx[2] = PMI_FirstFPR;
891     else
892       OpRegBankIdx[2] = PMI_FirstGPR;
893 
894     // Index needs to be a GPR.
895     OpRegBankIdx[3] = PMI_FirstGPR;
896     break;
897   case TargetOpcode::G_EXTRACT: {
898     // For s128 sources we have to use fpr unless we know otherwise.
899     auto Src = MI.getOperand(1).getReg();
900     LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
901     if (SrcTy.getSizeInBits() != 128)
902       break;
903     auto Idx = MRI.getRegClassOrNull(Src) == &AArch64::XSeqPairsClassRegClass
904                    ? PMI_FirstGPR
905                    : PMI_FirstFPR;
906     OpRegBankIdx[0] = Idx;
907     OpRegBankIdx[1] = Idx;
908     break;
909   }
910   case TargetOpcode::G_BUILD_VECTOR: {
911     // If the first source operand belongs to a FPR register bank, then make
912     // sure that we preserve that.
913     if (OpRegBankIdx[1] != PMI_FirstGPR)
914       break;
915     Register VReg = MI.getOperand(1).getReg();
916     if (!VReg)
917       break;
918 
919     // Get the instruction that defined the source operand reg, and check if
920     // it's a floating point operation. Or, if it's a type like s16 which
921     // doesn't have a exact size gpr register class. The exception is if the
922     // build_vector has all constant operands, which may be better to leave as
923     // gpr without copies, so it can be matched in imported patterns.
924     MachineInstr *DefMI = MRI.getVRegDef(VReg);
925     unsigned DefOpc = DefMI->getOpcode();
926     const LLT SrcTy = MRI.getType(VReg);
927     if (all_of(MI.operands(), [&](const MachineOperand &Op) {
928           return Op.isDef() || MRI.getVRegDef(Op.getReg())->getOpcode() ==
929                                    TargetOpcode::G_CONSTANT;
930         }))
931       break;
932     if (isPreISelGenericFloatingPointOpcode(DefOpc) ||
933         SrcTy.getSizeInBits() < 32 ||
934         getRegBank(VReg, MRI, TRI) == &AArch64::FPRRegBank) {
935       // Have a floating point op.
936       // Make sure every operand gets mapped to a FPR register class.
937       unsigned NumOperands = MI.getNumOperands();
938       for (unsigned Idx = 0; Idx < NumOperands; ++Idx)
939         OpRegBankIdx[Idx] = PMI_FirstFPR;
940     }
941     break;
942   }
943   case TargetOpcode::G_VECREDUCE_FADD:
944   case TargetOpcode::G_VECREDUCE_FMUL:
945   case TargetOpcode::G_VECREDUCE_FMAX:
946   case TargetOpcode::G_VECREDUCE_FMIN:
947   case TargetOpcode::G_VECREDUCE_ADD:
948   case TargetOpcode::G_VECREDUCE_MUL:
949   case TargetOpcode::G_VECREDUCE_AND:
950   case TargetOpcode::G_VECREDUCE_OR:
951   case TargetOpcode::G_VECREDUCE_XOR:
952   case TargetOpcode::G_VECREDUCE_SMAX:
953   case TargetOpcode::G_VECREDUCE_SMIN:
954   case TargetOpcode::G_VECREDUCE_UMAX:
955   case TargetOpcode::G_VECREDUCE_UMIN:
956     // Reductions produce a scalar value from a vector, the scalar should be on
957     // FPR bank.
958     OpRegBankIdx = {PMI_FirstFPR, PMI_FirstFPR};
959     break;
960   case TargetOpcode::G_VECREDUCE_SEQ_FADD:
961   case TargetOpcode::G_VECREDUCE_SEQ_FMUL:
962     // These reductions also take a scalar accumulator input.
963     // Assign them FPR for now.
964     OpRegBankIdx = {PMI_FirstFPR, PMI_FirstFPR, PMI_FirstFPR};
965     break;
966   case TargetOpcode::G_INTRINSIC: {
967     // Check if we know that the intrinsic has any constraints on its register
968     // banks. If it does, then update the mapping accordingly.
969     unsigned ID = MI.getIntrinsicID();
970     unsigned Idx = 0;
971     if (!isFPIntrinsic(ID))
972       break;
973     for (const auto &Op : MI.explicit_operands()) {
974       if (Op.isReg())
975         OpRegBankIdx[Idx] = PMI_FirstFPR;
976       ++Idx;
977     }
978     break;
979   }
980   case TargetOpcode::G_LROUND:
981   case TargetOpcode::G_LLROUND: {
982     // Source is always floating point and destination is always integer.
983     OpRegBankIdx = {PMI_FirstGPR, PMI_FirstFPR};
984     break;
985   }
986   }
987 
988   // Finally construct the computed mapping.
989   SmallVector<const ValueMapping *, 8> OpdsMapping(NumOperands);
990   for (unsigned Idx = 0; Idx < NumOperands; ++Idx) {
991     if (MI.getOperand(Idx).isReg() && MI.getOperand(Idx).getReg()) {
992       auto Mapping = getValueMapping(OpRegBankIdx[Idx], OpSize[Idx]);
993       if (!Mapping->isValid())
994         return getInvalidInstructionMapping();
995 
996       OpdsMapping[Idx] = Mapping;
997     }
998   }
999 
1000   return getInstructionMapping(DefaultMappingID, Cost,
1001                                getOperandsMapping(OpdsMapping), NumOperands);
1002 }
1003