1 //===-- AArch64AsmBackend.cpp - AArch64 Assembler Backend -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "MCTargetDesc/AArch64FixupKinds.h"
10 #include "MCTargetDesc/AArch64MCExpr.h"
11 #include "MCTargetDesc/AArch64MCTargetDesc.h"
12 #include "Utils/AArch64BaseInfo.h"
13 #include "llvm/ADT/Triple.h"
14 #include "llvm/BinaryFormat/MachO.h"
15 #include "llvm/MC/MCAsmBackend.h"
16 #include "llvm/MC/MCAssembler.h"
17 #include "llvm/MC/MCContext.h"
18 #include "llvm/MC/MCDirectives.h"
19 #include "llvm/MC/MCELFObjectWriter.h"
20 #include "llvm/MC/MCFixupKindInfo.h"
21 #include "llvm/MC/MCObjectWriter.h"
22 #include "llvm/MC/MCRegisterInfo.h"
23 #include "llvm/MC/MCSectionELF.h"
24 #include "llvm/MC/MCSectionMachO.h"
25 #include "llvm/MC/MCTargetOptions.h"
26 #include "llvm/MC/MCValue.h"
27 #include "llvm/Support/EndianStream.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Support/TargetRegistry.h"
30 using namespace llvm;
31 
32 namespace {
33 
34 class AArch64AsmBackend : public MCAsmBackend {
35   static const unsigned PCRelFlagVal =
36       MCFixupKindInfo::FKF_IsAlignedDownTo32Bits | MCFixupKindInfo::FKF_IsPCRel;
37 protected:
38   Triple TheTriple;
39 
40 public:
41   AArch64AsmBackend(const Target &T, const Triple &TT, bool IsLittleEndian)
42       : MCAsmBackend(IsLittleEndian ? support::little : support::big),
43         TheTriple(TT) {}
44 
45   unsigned getNumFixupKinds() const override {
46     return AArch64::NumTargetFixupKinds;
47   }
48 
49   Optional<MCFixupKind> getFixupKind(StringRef Name) const override;
50 
51   const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const override {
52     const static MCFixupKindInfo Infos[AArch64::NumTargetFixupKinds] = {
53         // This table *must* be in the order that the fixup_* kinds are defined
54         // in AArch64FixupKinds.h.
55         //
56         // Name                           Offset (bits) Size (bits)     Flags
57         {"fixup_aarch64_pcrel_adr_imm21", 0, 32, PCRelFlagVal},
58         {"fixup_aarch64_pcrel_adrp_imm21", 0, 32, PCRelFlagVal},
59         {"fixup_aarch64_add_imm12", 10, 12, 0},
60         {"fixup_aarch64_ldst_imm12_scale1", 10, 12, 0},
61         {"fixup_aarch64_ldst_imm12_scale2", 10, 12, 0},
62         {"fixup_aarch64_ldst_imm12_scale4", 10, 12, 0},
63         {"fixup_aarch64_ldst_imm12_scale8", 10, 12, 0},
64         {"fixup_aarch64_ldst_imm12_scale16", 10, 12, 0},
65         {"fixup_aarch64_ldr_pcrel_imm19", 5, 19, PCRelFlagVal},
66         {"fixup_aarch64_movw", 5, 16, 0},
67         {"fixup_aarch64_pcrel_branch14", 5, 14, PCRelFlagVal},
68         {"fixup_aarch64_pcrel_branch19", 5, 19, PCRelFlagVal},
69         {"fixup_aarch64_pcrel_branch26", 0, 26, PCRelFlagVal},
70         {"fixup_aarch64_pcrel_call26", 0, 26, PCRelFlagVal}};
71 
72     // Fixup kinds from .reloc directive are like R_AARCH64_NONE. They do not
73     // require any extra processing.
74     if (Kind >= FirstLiteralRelocationKind)
75       return MCAsmBackend::getFixupKindInfo(FK_NONE);
76 
77     if (Kind < FirstTargetFixupKind)
78       return MCAsmBackend::getFixupKindInfo(Kind);
79 
80     assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
81            "Invalid kind!");
82     return Infos[Kind - FirstTargetFixupKind];
83   }
84 
85   void applyFixup(const MCAssembler &Asm, const MCFixup &Fixup,
86                   const MCValue &Target, MutableArrayRef<char> Data,
87                   uint64_t Value, bool IsResolved,
88                   const MCSubtargetInfo *STI) const override;
89 
90   bool fixupNeedsRelaxation(const MCFixup &Fixup, uint64_t Value,
91                             const MCRelaxableFragment *DF,
92                             const MCAsmLayout &Layout) const override;
93   void relaxInstruction(MCInst &Inst,
94                         const MCSubtargetInfo &STI) const override;
95   bool writeNopData(raw_ostream &OS, uint64_t Count) const override;
96 
97   unsigned getFixupKindContainereSizeInBytes(unsigned Kind) const;
98 
99   bool shouldForceRelocation(const MCAssembler &Asm, const MCFixup &Fixup,
100                              const MCValue &Target) override;
101 };
102 
103 } // end anonymous namespace
104 
105 /// The number of bytes the fixup may change.
106 static unsigned getFixupKindNumBytes(unsigned Kind) {
107   switch (Kind) {
108   default:
109     llvm_unreachable("Unknown fixup kind!");
110 
111   case FK_Data_1:
112     return 1;
113 
114   case FK_Data_2:
115   case FK_SecRel_2:
116     return 2;
117 
118   case AArch64::fixup_aarch64_movw:
119   case AArch64::fixup_aarch64_pcrel_branch14:
120   case AArch64::fixup_aarch64_add_imm12:
121   case AArch64::fixup_aarch64_ldst_imm12_scale1:
122   case AArch64::fixup_aarch64_ldst_imm12_scale2:
123   case AArch64::fixup_aarch64_ldst_imm12_scale4:
124   case AArch64::fixup_aarch64_ldst_imm12_scale8:
125   case AArch64::fixup_aarch64_ldst_imm12_scale16:
126   case AArch64::fixup_aarch64_ldr_pcrel_imm19:
127   case AArch64::fixup_aarch64_pcrel_branch19:
128     return 3;
129 
130   case AArch64::fixup_aarch64_pcrel_adr_imm21:
131   case AArch64::fixup_aarch64_pcrel_adrp_imm21:
132   case AArch64::fixup_aarch64_pcrel_branch26:
133   case AArch64::fixup_aarch64_pcrel_call26:
134   case FK_Data_4:
135   case FK_SecRel_4:
136     return 4;
137 
138   case FK_Data_8:
139     return 8;
140   }
141 }
142 
143 static unsigned AdrImmBits(unsigned Value) {
144   unsigned lo2 = Value & 0x3;
145   unsigned hi19 = (Value & 0x1ffffc) >> 2;
146   return (hi19 << 5) | (lo2 << 29);
147 }
148 
149 static uint64_t adjustFixupValue(const MCFixup &Fixup, const MCValue &Target,
150                                  uint64_t Value, MCContext &Ctx,
151                                  const Triple &TheTriple, bool IsResolved) {
152   int64_t SignedValue = static_cast<int64_t>(Value);
153   switch (Fixup.getTargetKind()) {
154   default:
155     llvm_unreachable("Unknown fixup kind!");
156   case AArch64::fixup_aarch64_pcrel_adr_imm21:
157     if (SignedValue > 2097151 || SignedValue < -2097152)
158       Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
159     return AdrImmBits(Value & 0x1fffffULL);
160   case AArch64::fixup_aarch64_pcrel_adrp_imm21:
161     assert(!IsResolved);
162     if (TheTriple.isOSBinFormatCOFF())
163       return AdrImmBits(Value & 0x1fffffULL);
164     return AdrImmBits((Value & 0x1fffff000ULL) >> 12);
165   case AArch64::fixup_aarch64_ldr_pcrel_imm19:
166   case AArch64::fixup_aarch64_pcrel_branch19:
167     // Signed 21-bit immediate
168     if (SignedValue > 2097151 || SignedValue < -2097152)
169       Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
170     if (Value & 0x3)
171       Ctx.reportError(Fixup.getLoc(), "fixup not sufficiently aligned");
172     // Low two bits are not encoded.
173     return (Value >> 2) & 0x7ffff;
174   case AArch64::fixup_aarch64_add_imm12:
175   case AArch64::fixup_aarch64_ldst_imm12_scale1:
176     if (TheTriple.isOSBinFormatCOFF() && !IsResolved)
177       Value &= 0xfff;
178     // Unsigned 12-bit immediate
179     if (Value >= 0x1000)
180       Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
181     return Value;
182   case AArch64::fixup_aarch64_ldst_imm12_scale2:
183     if (TheTriple.isOSBinFormatCOFF() && !IsResolved)
184       Value &= 0xfff;
185     // Unsigned 12-bit immediate which gets multiplied by 2
186     if (Value >= 0x2000)
187       Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
188     if (Value & 0x1)
189       Ctx.reportError(Fixup.getLoc(), "fixup must be 2-byte aligned");
190     return Value >> 1;
191   case AArch64::fixup_aarch64_ldst_imm12_scale4:
192     if (TheTriple.isOSBinFormatCOFF() && !IsResolved)
193       Value &= 0xfff;
194     // Unsigned 12-bit immediate which gets multiplied by 4
195     if (Value >= 0x4000)
196       Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
197     if (Value & 0x3)
198       Ctx.reportError(Fixup.getLoc(), "fixup must be 4-byte aligned");
199     return Value >> 2;
200   case AArch64::fixup_aarch64_ldst_imm12_scale8:
201     if (TheTriple.isOSBinFormatCOFF() && !IsResolved)
202       Value &= 0xfff;
203     // Unsigned 12-bit immediate which gets multiplied by 8
204     if (Value >= 0x8000)
205       Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
206     if (Value & 0x7)
207       Ctx.reportError(Fixup.getLoc(), "fixup must be 8-byte aligned");
208     return Value >> 3;
209   case AArch64::fixup_aarch64_ldst_imm12_scale16:
210     if (TheTriple.isOSBinFormatCOFF() && !IsResolved)
211       Value &= 0xfff;
212     // Unsigned 12-bit immediate which gets multiplied by 16
213     if (Value >= 0x10000)
214       Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
215     if (Value & 0xf)
216       Ctx.reportError(Fixup.getLoc(), "fixup must be 16-byte aligned");
217     return Value >> 4;
218   case AArch64::fixup_aarch64_movw: {
219     AArch64MCExpr::VariantKind RefKind =
220         static_cast<AArch64MCExpr::VariantKind>(Target.getRefKind());
221     if (AArch64MCExpr::getSymbolLoc(RefKind) != AArch64MCExpr::VK_ABS &&
222         AArch64MCExpr::getSymbolLoc(RefKind) != AArch64MCExpr::VK_SABS) {
223       if (!RefKind) {
224         // The fixup is an expression
225         if (SignedValue > 0xFFFF || SignedValue < -0xFFFF)
226           Ctx.reportError(Fixup.getLoc(),
227                           "fixup value out of range [-0xFFFF, 0xFFFF]");
228 
229         // Invert the negative immediate because it will feed into a MOVN.
230         if (SignedValue < 0)
231           SignedValue = ~SignedValue;
232         Value = static_cast<uint64_t>(SignedValue);
233       } else
234         // VK_GOTTPREL, VK_TPREL, VK_DTPREL are movw fixups, but they can't
235         // ever be resolved in the assembler.
236         Ctx.reportError(Fixup.getLoc(),
237                         "relocation for a thread-local variable points to an "
238                         "absolute symbol");
239       return Value;
240     }
241 
242     if (!IsResolved) {
243       // FIXME: Figure out when this can actually happen, and verify our
244       // behavior.
245       Ctx.reportError(Fixup.getLoc(), "unresolved movw fixup not yet "
246                                       "implemented");
247       return Value;
248     }
249 
250     if (AArch64MCExpr::getSymbolLoc(RefKind) == AArch64MCExpr::VK_SABS) {
251       switch (AArch64MCExpr::getAddressFrag(RefKind)) {
252       case AArch64MCExpr::VK_G0:
253         break;
254       case AArch64MCExpr::VK_G1:
255         SignedValue = SignedValue >> 16;
256         break;
257       case AArch64MCExpr::VK_G2:
258         SignedValue = SignedValue >> 32;
259         break;
260       case AArch64MCExpr::VK_G3:
261         SignedValue = SignedValue >> 48;
262         break;
263       default:
264         llvm_unreachable("Variant kind doesn't correspond to fixup");
265       }
266 
267     } else {
268       switch (AArch64MCExpr::getAddressFrag(RefKind)) {
269       case AArch64MCExpr::VK_G0:
270         break;
271       case AArch64MCExpr::VK_G1:
272         Value = Value >> 16;
273         break;
274       case AArch64MCExpr::VK_G2:
275         Value = Value >> 32;
276         break;
277       case AArch64MCExpr::VK_G3:
278         Value = Value >> 48;
279         break;
280       default:
281         llvm_unreachable("Variant kind doesn't correspond to fixup");
282       }
283     }
284 
285     if (RefKind & AArch64MCExpr::VK_NC) {
286       Value &= 0xFFFF;
287     }
288     else if (AArch64MCExpr::getSymbolLoc(RefKind) == AArch64MCExpr::VK_SABS) {
289       if (SignedValue > 0xFFFF || SignedValue < -0xFFFF)
290         Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
291 
292       // Invert the negative immediate because it will feed into a MOVN.
293       if (SignedValue < 0)
294         SignedValue = ~SignedValue;
295       Value = static_cast<uint64_t>(SignedValue);
296     }
297     else if (Value > 0xFFFF) {
298       Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
299     }
300     return Value;
301   }
302   case AArch64::fixup_aarch64_pcrel_branch14:
303     // Signed 16-bit immediate
304     if (SignedValue > 32767 || SignedValue < -32768)
305       Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
306     // Low two bits are not encoded (4-byte alignment assumed).
307     if (Value & 0x3)
308       Ctx.reportError(Fixup.getLoc(), "fixup not sufficiently aligned");
309     return (Value >> 2) & 0x3fff;
310   case AArch64::fixup_aarch64_pcrel_branch26:
311   case AArch64::fixup_aarch64_pcrel_call26:
312     // Signed 28-bit immediate
313     if (SignedValue > 134217727 || SignedValue < -134217728)
314       Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
315     // Low two bits are not encoded (4-byte alignment assumed).
316     if (Value & 0x3)
317       Ctx.reportError(Fixup.getLoc(), "fixup not sufficiently aligned");
318     return (Value >> 2) & 0x3ffffff;
319   case FK_Data_1:
320   case FK_Data_2:
321   case FK_Data_4:
322   case FK_Data_8:
323   case FK_SecRel_2:
324   case FK_SecRel_4:
325     return Value;
326   }
327 }
328 
329 Optional<MCFixupKind> AArch64AsmBackend::getFixupKind(StringRef Name) const {
330   if (!TheTriple.isOSBinFormatELF())
331     return None;
332 
333   unsigned Type = llvm::StringSwitch<unsigned>(Name)
334 #define ELF_RELOC(X, Y)  .Case(#X, Y)
335 #include "llvm/BinaryFormat/ELFRelocs/AArch64.def"
336 #undef ELF_RELOC
337                       .Case("BFD_RELOC_NONE", ELF::R_AARCH64_NONE)
338                       .Case("BFD_RELOC_16", ELF::R_AARCH64_ABS16)
339                       .Case("BFD_RELOC_32", ELF::R_AARCH64_ABS32)
340                       .Case("BFD_RELOC_64", ELF::R_AARCH64_ABS64)
341                       .Default(-1u);
342   if (Type == -1u)
343     return None;
344   return static_cast<MCFixupKind>(FirstLiteralRelocationKind + Type);
345 }
346 
347 /// getFixupKindContainereSizeInBytes - The number of bytes of the
348 /// container involved in big endian or 0 if the item is little endian
349 unsigned AArch64AsmBackend::getFixupKindContainereSizeInBytes(unsigned Kind) const {
350   if (Endian == support::little)
351     return 0;
352 
353   switch (Kind) {
354   default:
355     llvm_unreachable("Unknown fixup kind!");
356 
357   case FK_Data_1:
358     return 1;
359   case FK_Data_2:
360     return 2;
361   case FK_Data_4:
362     return 4;
363   case FK_Data_8:
364     return 8;
365 
366   case AArch64::fixup_aarch64_movw:
367   case AArch64::fixup_aarch64_pcrel_branch14:
368   case AArch64::fixup_aarch64_add_imm12:
369   case AArch64::fixup_aarch64_ldst_imm12_scale1:
370   case AArch64::fixup_aarch64_ldst_imm12_scale2:
371   case AArch64::fixup_aarch64_ldst_imm12_scale4:
372   case AArch64::fixup_aarch64_ldst_imm12_scale8:
373   case AArch64::fixup_aarch64_ldst_imm12_scale16:
374   case AArch64::fixup_aarch64_ldr_pcrel_imm19:
375   case AArch64::fixup_aarch64_pcrel_branch19:
376   case AArch64::fixup_aarch64_pcrel_adr_imm21:
377   case AArch64::fixup_aarch64_pcrel_adrp_imm21:
378   case AArch64::fixup_aarch64_pcrel_branch26:
379   case AArch64::fixup_aarch64_pcrel_call26:
380     // Instructions are always little endian
381     return 0;
382   }
383 }
384 
385 void AArch64AsmBackend::applyFixup(const MCAssembler &Asm, const MCFixup &Fixup,
386                                    const MCValue &Target,
387                                    MutableArrayRef<char> Data, uint64_t Value,
388                                    bool IsResolved,
389                                    const MCSubtargetInfo *STI) const {
390   if (!Value)
391     return; // Doesn't change encoding.
392   unsigned Kind = Fixup.getKind();
393   if (Kind >= FirstLiteralRelocationKind)
394     return;
395   unsigned NumBytes = getFixupKindNumBytes(Kind);
396   MCFixupKindInfo Info = getFixupKindInfo(Fixup.getKind());
397   MCContext &Ctx = Asm.getContext();
398   int64_t SignedValue = static_cast<int64_t>(Value);
399   // Apply any target-specific value adjustments.
400   Value = adjustFixupValue(Fixup, Target, Value, Ctx, TheTriple, IsResolved);
401 
402   // Shift the value into position.
403   Value <<= Info.TargetOffset;
404 
405   unsigned Offset = Fixup.getOffset();
406   assert(Offset + NumBytes <= Data.size() && "Invalid fixup offset!");
407 
408   // Used to point to big endian bytes.
409   unsigned FulleSizeInBytes = getFixupKindContainereSizeInBytes(Fixup.getKind());
410 
411   // For each byte of the fragment that the fixup touches, mask in the
412   // bits from the fixup value.
413   if (FulleSizeInBytes == 0) {
414     // Handle as little-endian
415     for (unsigned i = 0; i != NumBytes; ++i) {
416       Data[Offset + i] |= uint8_t((Value >> (i * 8)) & 0xff);
417     }
418   } else {
419     // Handle as big-endian
420     assert((Offset + FulleSizeInBytes) <= Data.size() && "Invalid fixup size!");
421     assert(NumBytes <= FulleSizeInBytes && "Invalid fixup size!");
422     for (unsigned i = 0; i != NumBytes; ++i) {
423       unsigned Idx = FulleSizeInBytes - 1 - i;
424       Data[Offset + Idx] |= uint8_t((Value >> (i * 8)) & 0xff);
425     }
426   }
427 
428   // FIXME: getFixupKindInfo() and getFixupKindNumBytes() could be fixed to
429   // handle this more cleanly. This may affect the output of -show-mc-encoding.
430   AArch64MCExpr::VariantKind RefKind =
431       static_cast<AArch64MCExpr::VariantKind>(Target.getRefKind());
432   if (AArch64MCExpr::getSymbolLoc(RefKind) == AArch64MCExpr::VK_SABS ||
433       (!RefKind && Fixup.getTargetKind() == AArch64::fixup_aarch64_movw)) {
434     // If the immediate is negative, generate MOVN else MOVZ.
435     // (Bit 30 = 0) ==> MOVN, (Bit 30 = 1) ==> MOVZ.
436     if (SignedValue < 0)
437       Data[Offset + 3] &= ~(1 << 6);
438     else
439       Data[Offset + 3] |= (1 << 6);
440   }
441 }
442 
443 bool AArch64AsmBackend::fixupNeedsRelaxation(const MCFixup &Fixup,
444                                              uint64_t Value,
445                                              const MCRelaxableFragment *DF,
446                                              const MCAsmLayout &Layout) const {
447   // FIXME:  This isn't correct for AArch64. Just moving the "generic" logic
448   // into the targets for now.
449   //
450   // Relax if the value is too big for a (signed) i8.
451   return int64_t(Value) != int64_t(int8_t(Value));
452 }
453 
454 void AArch64AsmBackend::relaxInstruction(MCInst &Inst,
455                                          const MCSubtargetInfo &STI) const {
456   llvm_unreachable("AArch64AsmBackend::relaxInstruction() unimplemented");
457 }
458 
459 bool AArch64AsmBackend::writeNopData(raw_ostream &OS, uint64_t Count) const {
460   // If the count is not 4-byte aligned, we must be writing data into the text
461   // section (otherwise we have unaligned instructions, and thus have far
462   // bigger problems), so just write zeros instead.
463   OS.write_zeros(Count % 4);
464 
465   // We are properly aligned, so write NOPs as requested.
466   Count /= 4;
467   for (uint64_t i = 0; i != Count; ++i)
468     support::endian::write<uint32_t>(OS, 0xd503201f, Endian);
469   return true;
470 }
471 
472 bool AArch64AsmBackend::shouldForceRelocation(const MCAssembler &Asm,
473                                               const MCFixup &Fixup,
474                                               const MCValue &Target) {
475   unsigned Kind = Fixup.getKind();
476   if (Kind >= FirstLiteralRelocationKind)
477     return true;
478 
479   // The ADRP instruction adds some multiple of 0x1000 to the current PC &
480   // ~0xfff. This means that the required offset to reach a symbol can vary by
481   // up to one step depending on where the ADRP is in memory. For example:
482   //
483   //     ADRP x0, there
484   //  there:
485   //
486   // If the ADRP occurs at address 0xffc then "there" will be at 0x1000 and
487   // we'll need that as an offset. At any other address "there" will be in the
488   // same page as the ADRP and the instruction should encode 0x0. Assuming the
489   // section isn't 0x1000-aligned, we therefore need to delegate this decision
490   // to the linker -- a relocation!
491   if (Kind == AArch64::fixup_aarch64_pcrel_adrp_imm21)
492     return true;
493 
494   return false;
495 }
496 
497 namespace {
498 
499 namespace CU {
500 
501 /// Compact unwind encoding values.
502 enum CompactUnwindEncodings {
503   /// A "frameless" leaf function, where no non-volatile registers are
504   /// saved. The return remains in LR throughout the function.
505   UNWIND_ARM64_MODE_FRAMELESS = 0x02000000,
506 
507   /// No compact unwind encoding available. Instead the low 23-bits of
508   /// the compact unwind encoding is the offset of the DWARF FDE in the
509   /// __eh_frame section. This mode is never used in object files. It is only
510   /// generated by the linker in final linked images, which have only DWARF info
511   /// for a function.
512   UNWIND_ARM64_MODE_DWARF = 0x03000000,
513 
514   /// This is a standard arm64 prologue where FP/LR are immediately
515   /// pushed on the stack, then SP is copied to FP. If there are any
516   /// non-volatile register saved, they are copied into the stack fame in pairs
517   /// in a contiguous ranger right below the saved FP/LR pair. Any subset of the
518   /// five X pairs and four D pairs can be saved, but the memory layout must be
519   /// in register number order.
520   UNWIND_ARM64_MODE_FRAME = 0x04000000,
521 
522   /// Frame register pair encodings.
523   UNWIND_ARM64_FRAME_X19_X20_PAIR = 0x00000001,
524   UNWIND_ARM64_FRAME_X21_X22_PAIR = 0x00000002,
525   UNWIND_ARM64_FRAME_X23_X24_PAIR = 0x00000004,
526   UNWIND_ARM64_FRAME_X25_X26_PAIR = 0x00000008,
527   UNWIND_ARM64_FRAME_X27_X28_PAIR = 0x00000010,
528   UNWIND_ARM64_FRAME_D8_D9_PAIR = 0x00000100,
529   UNWIND_ARM64_FRAME_D10_D11_PAIR = 0x00000200,
530   UNWIND_ARM64_FRAME_D12_D13_PAIR = 0x00000400,
531   UNWIND_ARM64_FRAME_D14_D15_PAIR = 0x00000800
532 };
533 
534 } // end CU namespace
535 
536 // FIXME: This should be in a separate file.
537 class DarwinAArch64AsmBackend : public AArch64AsmBackend {
538   const MCRegisterInfo &MRI;
539 
540   /// Encode compact unwind stack adjustment for frameless functions.
541   /// See UNWIND_ARM64_FRAMELESS_STACK_SIZE_MASK in compact_unwind_encoding.h.
542   /// The stack size always needs to be 16 byte aligned.
543   uint32_t encodeStackAdjustment(uint32_t StackSize) const {
544     return (StackSize / 16) << 12;
545   }
546 
547 public:
548   DarwinAArch64AsmBackend(const Target &T, const Triple &TT,
549                           const MCRegisterInfo &MRI)
550       : AArch64AsmBackend(T, TT, /*IsLittleEndian*/ true), MRI(MRI) {}
551 
552   std::unique_ptr<MCObjectTargetWriter>
553   createObjectTargetWriter() const override {
554     uint32_t CPUType = cantFail(MachO::getCPUType(TheTriple));
555     uint32_t CPUSubType = cantFail(MachO::getCPUSubType(TheTriple));
556     return createAArch64MachObjectWriter(CPUType, CPUSubType,
557                                          TheTriple.isArch32Bit());
558   }
559 
560   /// Generate the compact unwind encoding from the CFI directives.
561   uint32_t generateCompactUnwindEncoding(
562                              ArrayRef<MCCFIInstruction> Instrs) const override {
563     if (Instrs.empty())
564       return CU::UNWIND_ARM64_MODE_FRAMELESS;
565 
566     bool HasFP = false;
567     unsigned StackSize = 0;
568 
569     uint32_t CompactUnwindEncoding = 0;
570     int CurOffset = 0;
571     for (size_t i = 0, e = Instrs.size(); i != e; ++i) {
572       const MCCFIInstruction &Inst = Instrs[i];
573 
574       switch (Inst.getOperation()) {
575       default:
576         // Cannot handle this directive:  bail out.
577         return CU::UNWIND_ARM64_MODE_DWARF;
578       case MCCFIInstruction::OpDefCfa: {
579         // Defines a frame pointer.
580         unsigned XReg =
581             getXRegFromWReg(*MRI.getLLVMRegNum(Inst.getRegister(), true));
582 
583         // Other CFA registers than FP are not supported by compact unwind.
584         // Fallback on DWARF.
585         // FIXME: When opt-remarks are supported in MC, add a remark to notify
586         // the user.
587         if (XReg != AArch64::FP)
588           return CU::UNWIND_ARM64_MODE_DWARF;
589 
590         assert(XReg == AArch64::FP && "Invalid frame pointer!");
591         assert(i + 2 < e && "Insufficient CFI instructions to define a frame!");
592 
593         const MCCFIInstruction &LRPush = Instrs[++i];
594         assert(LRPush.getOperation() == MCCFIInstruction::OpOffset &&
595                "Link register not pushed!");
596         const MCCFIInstruction &FPPush = Instrs[++i];
597         assert(FPPush.getOperation() == MCCFIInstruction::OpOffset &&
598                "Frame pointer not pushed!");
599 
600         assert(FPPush.getOffset() + 8 == LRPush.getOffset());
601         CurOffset = FPPush.getOffset();
602 
603         unsigned LRReg = *MRI.getLLVMRegNum(LRPush.getRegister(), true);
604         unsigned FPReg = *MRI.getLLVMRegNum(FPPush.getRegister(), true);
605 
606         LRReg = getXRegFromWReg(LRReg);
607         FPReg = getXRegFromWReg(FPReg);
608 
609         assert(LRReg == AArch64::LR && FPReg == AArch64::FP &&
610                "Pushing invalid registers for frame!");
611 
612         // Indicate that the function has a frame.
613         CompactUnwindEncoding |= CU::UNWIND_ARM64_MODE_FRAME;
614         HasFP = true;
615         break;
616       }
617       case MCCFIInstruction::OpDefCfaOffset: {
618         assert(StackSize == 0 && "We already have the CFA offset!");
619         StackSize = std::abs(Inst.getOffset());
620         break;
621       }
622       case MCCFIInstruction::OpOffset: {
623         // Registers are saved in pairs. We expect there to be two consecutive
624         // `.cfi_offset' instructions with the appropriate registers specified.
625         unsigned Reg1 = *MRI.getLLVMRegNum(Inst.getRegister(), true);
626         if (i + 1 == e)
627           return CU::UNWIND_ARM64_MODE_DWARF;
628 
629         if (CurOffset != 0 && Inst.getOffset() != CurOffset - 8)
630           return CU::UNWIND_ARM64_MODE_DWARF;
631         CurOffset = Inst.getOffset();
632 
633         const MCCFIInstruction &Inst2 = Instrs[++i];
634         if (Inst2.getOperation() != MCCFIInstruction::OpOffset)
635           return CU::UNWIND_ARM64_MODE_DWARF;
636         unsigned Reg2 = *MRI.getLLVMRegNum(Inst2.getRegister(), true);
637 
638         if (Inst2.getOffset() != CurOffset - 8)
639           return CU::UNWIND_ARM64_MODE_DWARF;
640         CurOffset = Inst2.getOffset();
641 
642         // N.B. The encodings must be in register number order, and the X
643         // registers before the D registers.
644 
645         // X19/X20 pair = 0x00000001,
646         // X21/X22 pair = 0x00000002,
647         // X23/X24 pair = 0x00000004,
648         // X25/X26 pair = 0x00000008,
649         // X27/X28 pair = 0x00000010
650         Reg1 = getXRegFromWReg(Reg1);
651         Reg2 = getXRegFromWReg(Reg2);
652 
653         if (Reg1 == AArch64::X19 && Reg2 == AArch64::X20 &&
654             (CompactUnwindEncoding & 0xF1E) == 0)
655           CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_X19_X20_PAIR;
656         else if (Reg1 == AArch64::X21 && Reg2 == AArch64::X22 &&
657                  (CompactUnwindEncoding & 0xF1C) == 0)
658           CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_X21_X22_PAIR;
659         else if (Reg1 == AArch64::X23 && Reg2 == AArch64::X24 &&
660                  (CompactUnwindEncoding & 0xF18) == 0)
661           CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_X23_X24_PAIR;
662         else if (Reg1 == AArch64::X25 && Reg2 == AArch64::X26 &&
663                  (CompactUnwindEncoding & 0xF10) == 0)
664           CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_X25_X26_PAIR;
665         else if (Reg1 == AArch64::X27 && Reg2 == AArch64::X28 &&
666                  (CompactUnwindEncoding & 0xF00) == 0)
667           CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_X27_X28_PAIR;
668         else {
669           Reg1 = getDRegFromBReg(Reg1);
670           Reg2 = getDRegFromBReg(Reg2);
671 
672           // D8/D9 pair   = 0x00000100,
673           // D10/D11 pair = 0x00000200,
674           // D12/D13 pair = 0x00000400,
675           // D14/D15 pair = 0x00000800
676           if (Reg1 == AArch64::D8 && Reg2 == AArch64::D9 &&
677               (CompactUnwindEncoding & 0xE00) == 0)
678             CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_D8_D9_PAIR;
679           else if (Reg1 == AArch64::D10 && Reg2 == AArch64::D11 &&
680                    (CompactUnwindEncoding & 0xC00) == 0)
681             CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_D10_D11_PAIR;
682           else if (Reg1 == AArch64::D12 && Reg2 == AArch64::D13 &&
683                    (CompactUnwindEncoding & 0x800) == 0)
684             CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_D12_D13_PAIR;
685           else if (Reg1 == AArch64::D14 && Reg2 == AArch64::D15)
686             CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_D14_D15_PAIR;
687           else
688             // A pair was pushed which we cannot handle.
689             return CU::UNWIND_ARM64_MODE_DWARF;
690         }
691 
692         break;
693       }
694       }
695     }
696 
697     if (!HasFP) {
698       // With compact unwind info we can only represent stack adjustments of up
699       // to 65520 bytes.
700       if (StackSize > 65520)
701         return CU::UNWIND_ARM64_MODE_DWARF;
702 
703       CompactUnwindEncoding |= CU::UNWIND_ARM64_MODE_FRAMELESS;
704       CompactUnwindEncoding |= encodeStackAdjustment(StackSize);
705     }
706 
707     return CompactUnwindEncoding;
708   }
709 };
710 
711 } // end anonymous namespace
712 
713 namespace {
714 
715 class ELFAArch64AsmBackend : public AArch64AsmBackend {
716 public:
717   uint8_t OSABI;
718   bool IsILP32;
719 
720   ELFAArch64AsmBackend(const Target &T, const Triple &TT, uint8_t OSABI,
721                        bool IsLittleEndian, bool IsILP32)
722       : AArch64AsmBackend(T, TT, IsLittleEndian), OSABI(OSABI),
723         IsILP32(IsILP32) {}
724 
725   std::unique_ptr<MCObjectTargetWriter>
726   createObjectTargetWriter() const override {
727     return createAArch64ELFObjectWriter(OSABI, IsILP32);
728   }
729 };
730 
731 }
732 
733 namespace {
734 class COFFAArch64AsmBackend : public AArch64AsmBackend {
735 public:
736   COFFAArch64AsmBackend(const Target &T, const Triple &TheTriple)
737       : AArch64AsmBackend(T, TheTriple, /*IsLittleEndian*/ true) {}
738 
739   std::unique_ptr<MCObjectTargetWriter>
740   createObjectTargetWriter() const override {
741     return createAArch64WinCOFFObjectWriter();
742   }
743 };
744 }
745 
746 MCAsmBackend *llvm::createAArch64leAsmBackend(const Target &T,
747                                               const MCSubtargetInfo &STI,
748                                               const MCRegisterInfo &MRI,
749                                               const MCTargetOptions &Options) {
750   const Triple &TheTriple = STI.getTargetTriple();
751   if (TheTriple.isOSBinFormatMachO()) {
752     return new DarwinAArch64AsmBackend(T, TheTriple, MRI);
753   }
754 
755   if (TheTriple.isOSBinFormatCOFF())
756     return new COFFAArch64AsmBackend(T, TheTriple);
757 
758   assert(TheTriple.isOSBinFormatELF() && "Invalid target");
759 
760   uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
761   bool IsILP32 = STI.getTargetTriple().getEnvironment() == Triple::GNUILP32;
762   return new ELFAArch64AsmBackend(T, TheTriple, OSABI, /*IsLittleEndian=*/true,
763                                   IsILP32);
764 }
765 
766 MCAsmBackend *llvm::createAArch64beAsmBackend(const Target &T,
767                                               const MCSubtargetInfo &STI,
768                                               const MCRegisterInfo &MRI,
769                                               const MCTargetOptions &Options) {
770   const Triple &TheTriple = STI.getTargetTriple();
771   assert(TheTriple.isOSBinFormatELF() &&
772          "Big endian is only supported for ELF targets!");
773   uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
774   bool IsILP32 = STI.getTargetTriple().getEnvironment() == Triple::GNUILP32;
775   return new ELFAArch64AsmBackend(T, TheTriple, OSABI, /*IsLittleEndian=*/false,
776                                   IsILP32);
777 }
778