1 //===-- llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp - Call lowering -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the lowering of LLVM calls to machine code calls for
11 /// GlobalISel.
12 ///
13 //===----------------------------------------------------------------------===//
14 
15 #include "AMDGPUCallLowering.h"
16 #include "AMDGPU.h"
17 #include "AMDGPULegalizerInfo.h"
18 #include "AMDGPUTargetMachine.h"
19 #include "SIMachineFunctionInfo.h"
20 #include "SIRegisterInfo.h"
21 #include "llvm/CodeGen/Analysis.h"
22 #include "llvm/CodeGen/FunctionLoweringInfo.h"
23 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
24 #include "llvm/IR/IntrinsicsAMDGPU.h"
25 
26 #define DEBUG_TYPE "amdgpu-call-lowering"
27 
28 using namespace llvm;
29 
30 namespace {
31 
32 /// Wrapper around extendRegister to ensure we extend to a full 32-bit register.
33 static Register extendRegisterMin32(CallLowering::ValueHandler &Handler,
34                                     Register ValVReg, CCValAssign &VA) {
35   if (VA.getLocVT().getSizeInBits() < 32) {
36     // 16-bit types are reported as legal for 32-bit registers. We need to
37     // extend and do a 32-bit copy to avoid the verifier complaining about it.
38     return Handler.MIRBuilder.buildAnyExt(LLT::scalar(32), ValVReg).getReg(0);
39   }
40 
41   return Handler.extendRegister(ValVReg, VA);
42 }
43 
44 struct AMDGPUOutgoingValueHandler : public CallLowering::OutgoingValueHandler {
45   AMDGPUOutgoingValueHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI,
46                              MachineInstrBuilder MIB)
47       : OutgoingValueHandler(B, MRI), MIB(MIB) {}
48 
49   MachineInstrBuilder MIB;
50 
51   Register getStackAddress(uint64_t Size, int64_t Offset,
52                            MachinePointerInfo &MPO,
53                            ISD::ArgFlagsTy Flags) override {
54     llvm_unreachable("not implemented");
55   }
56 
57   void assignValueToAddress(Register ValVReg, Register Addr, LLT MemTy,
58                             MachinePointerInfo &MPO, CCValAssign &VA) override {
59     llvm_unreachable("not implemented");
60   }
61 
62   void assignValueToReg(Register ValVReg, Register PhysReg,
63                         CCValAssign &VA) override {
64     Register ExtReg = extendRegisterMin32(*this, ValVReg, VA);
65 
66     // If this is a scalar return, insert a readfirstlane just in case the value
67     // ends up in a VGPR.
68     // FIXME: Assert this is a shader return.
69     const SIRegisterInfo *TRI
70       = static_cast<const SIRegisterInfo *>(MRI.getTargetRegisterInfo());
71     if (TRI->isSGPRReg(MRI, PhysReg)) {
72       auto ToSGPR = MIRBuilder.buildIntrinsic(Intrinsic::amdgcn_readfirstlane,
73                                               {MRI.getType(ExtReg)}, false)
74         .addReg(ExtReg);
75       ExtReg = ToSGPR.getReg(0);
76     }
77 
78     MIRBuilder.buildCopy(PhysReg, ExtReg);
79     MIB.addUse(PhysReg, RegState::Implicit);
80   }
81 };
82 
83 struct AMDGPUIncomingArgHandler : public CallLowering::IncomingValueHandler {
84   uint64_t StackUsed = 0;
85 
86   AMDGPUIncomingArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI)
87       : IncomingValueHandler(B, MRI) {}
88 
89   Register getStackAddress(uint64_t Size, int64_t Offset,
90                            MachinePointerInfo &MPO,
91                            ISD::ArgFlagsTy Flags) override {
92     auto &MFI = MIRBuilder.getMF().getFrameInfo();
93 
94     // Byval is assumed to be writable memory, but other stack passed arguments
95     // are not.
96     const bool IsImmutable = !Flags.isByVal();
97     int FI = MFI.CreateFixedObject(Size, Offset, IsImmutable);
98     MPO = MachinePointerInfo::getFixedStack(MIRBuilder.getMF(), FI);
99     auto AddrReg = MIRBuilder.buildFrameIndex(
100         LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32), FI);
101     StackUsed = std::max(StackUsed, Size + Offset);
102     return AddrReg.getReg(0);
103   }
104 
105   void assignValueToReg(Register ValVReg, Register PhysReg,
106                         CCValAssign &VA) override {
107     markPhysRegUsed(PhysReg);
108 
109     if (VA.getLocVT().getSizeInBits() < 32) {
110       // 16-bit types are reported as legal for 32-bit registers. We need to do
111       // a 32-bit copy, and truncate to avoid the verifier complaining about it.
112       auto Copy = MIRBuilder.buildCopy(LLT::scalar(32), PhysReg);
113 
114       // If we have signext/zeroext, it applies to the whole 32-bit register
115       // before truncation.
116       auto Extended =
117           buildExtensionHint(VA, Copy.getReg(0), LLT(VA.getLocVT()));
118       MIRBuilder.buildTrunc(ValVReg, Extended);
119       return;
120     }
121 
122     IncomingValueHandler::assignValueToReg(ValVReg, PhysReg, VA);
123   }
124 
125   void assignValueToAddress(Register ValVReg, Register Addr, LLT MemTy,
126                             MachinePointerInfo &MPO, CCValAssign &VA) override {
127     MachineFunction &MF = MIRBuilder.getMF();
128 
129     auto MMO = MF.getMachineMemOperand(
130         MPO, MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant, MemTy,
131         inferAlignFromPtrInfo(MF, MPO));
132     MIRBuilder.buildLoad(ValVReg, Addr, *MMO);
133   }
134 
135   /// How the physical register gets marked varies between formal
136   /// parameters (it's a basic-block live-in), and a call instruction
137   /// (it's an implicit-def of the BL).
138   virtual void markPhysRegUsed(unsigned PhysReg) = 0;
139 };
140 
141 struct FormalArgHandler : public AMDGPUIncomingArgHandler {
142   FormalArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI)
143       : AMDGPUIncomingArgHandler(B, MRI) {}
144 
145   void markPhysRegUsed(unsigned PhysReg) override {
146     MIRBuilder.getMBB().addLiveIn(PhysReg);
147   }
148 };
149 
150 struct CallReturnHandler : public AMDGPUIncomingArgHandler {
151   CallReturnHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
152                     MachineInstrBuilder MIB)
153       : AMDGPUIncomingArgHandler(MIRBuilder, MRI), MIB(MIB) {}
154 
155   void markPhysRegUsed(unsigned PhysReg) override {
156     MIB.addDef(PhysReg, RegState::Implicit);
157   }
158 
159   MachineInstrBuilder MIB;
160 };
161 
162 struct AMDGPUOutgoingArgHandler : public AMDGPUOutgoingValueHandler {
163   /// For tail calls, the byte offset of the call's argument area from the
164   /// callee's. Unused elsewhere.
165   int FPDiff;
166 
167   // Cache the SP register vreg if we need it more than once in this call site.
168   Register SPReg;
169 
170   bool IsTailCall;
171 
172   AMDGPUOutgoingArgHandler(MachineIRBuilder &MIRBuilder,
173                            MachineRegisterInfo &MRI, MachineInstrBuilder MIB,
174                            bool IsTailCall = false, int FPDiff = 0)
175       : AMDGPUOutgoingValueHandler(MIRBuilder, MRI, MIB), FPDiff(FPDiff),
176         IsTailCall(IsTailCall) {}
177 
178   Register getStackAddress(uint64_t Size, int64_t Offset,
179                            MachinePointerInfo &MPO,
180                            ISD::ArgFlagsTy Flags) override {
181     MachineFunction &MF = MIRBuilder.getMF();
182     const LLT PtrTy = LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32);
183     const LLT S32 = LLT::scalar(32);
184 
185     if (IsTailCall) {
186       Offset += FPDiff;
187       int FI = MF.getFrameInfo().CreateFixedObject(Size, Offset, true);
188       auto FIReg = MIRBuilder.buildFrameIndex(PtrTy, FI);
189       MPO = MachinePointerInfo::getFixedStack(MF, FI);
190       return FIReg.getReg(0);
191     }
192 
193     const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
194 
195     if (!SPReg)
196       SPReg = MIRBuilder.buildCopy(PtrTy, MFI->getStackPtrOffsetReg()).getReg(0);
197 
198     auto OffsetReg = MIRBuilder.buildConstant(S32, Offset);
199 
200     auto AddrReg = MIRBuilder.buildPtrAdd(PtrTy, SPReg, OffsetReg);
201     MPO = MachinePointerInfo::getStack(MF, Offset);
202     return AddrReg.getReg(0);
203   }
204 
205   void assignValueToReg(Register ValVReg, Register PhysReg,
206                         CCValAssign &VA) override {
207     MIB.addUse(PhysReg, RegState::Implicit);
208     Register ExtReg = extendRegisterMin32(*this, ValVReg, VA);
209     MIRBuilder.buildCopy(PhysReg, ExtReg);
210   }
211 
212   void assignValueToAddress(Register ValVReg, Register Addr, LLT MemTy,
213                             MachinePointerInfo &MPO, CCValAssign &VA) override {
214     MachineFunction &MF = MIRBuilder.getMF();
215     uint64_t LocMemOffset = VA.getLocMemOffset();
216     const auto &ST = MF.getSubtarget<GCNSubtarget>();
217 
218     auto MMO = MF.getMachineMemOperand(
219         MPO, MachineMemOperand::MOStore, MemTy,
220         commonAlignment(ST.getStackAlignment(), LocMemOffset));
221     MIRBuilder.buildStore(ValVReg, Addr, *MMO);
222   }
223 
224   void assignValueToAddress(const CallLowering::ArgInfo &Arg,
225                             unsigned ValRegIndex, Register Addr, LLT MemTy,
226                             MachinePointerInfo &MPO, CCValAssign &VA) override {
227     Register ValVReg = VA.getLocInfo() != CCValAssign::LocInfo::FPExt
228                            ? extendRegister(Arg.Regs[ValRegIndex], VA)
229                            : Arg.Regs[ValRegIndex];
230     assignValueToAddress(ValVReg, Addr, MemTy, MPO, VA);
231   }
232 };
233 }
234 
235 AMDGPUCallLowering::AMDGPUCallLowering(const AMDGPUTargetLowering &TLI)
236   : CallLowering(&TLI) {
237 }
238 
239 // FIXME: Compatability shim
240 static ISD::NodeType extOpcodeToISDExtOpcode(unsigned MIOpc) {
241   switch (MIOpc) {
242   case TargetOpcode::G_SEXT:
243     return ISD::SIGN_EXTEND;
244   case TargetOpcode::G_ZEXT:
245     return ISD::ZERO_EXTEND;
246   case TargetOpcode::G_ANYEXT:
247     return ISD::ANY_EXTEND;
248   default:
249     llvm_unreachable("not an extend opcode");
250   }
251 }
252 
253 bool AMDGPUCallLowering::canLowerReturn(MachineFunction &MF,
254                                         CallingConv::ID CallConv,
255                                         SmallVectorImpl<BaseArgInfo> &Outs,
256                                         bool IsVarArg) const {
257   // For shaders. Vector types should be explicitly handled by CC.
258   if (AMDGPU::isEntryFunctionCC(CallConv))
259     return true;
260 
261   SmallVector<CCValAssign, 16> ArgLocs;
262   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
263   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs,
264                  MF.getFunction().getContext());
265 
266   return checkReturn(CCInfo, Outs, TLI.CCAssignFnForReturn(CallConv, IsVarArg));
267 }
268 
269 /// Lower the return value for the already existing \p Ret. This assumes that
270 /// \p B's insertion point is correct.
271 bool AMDGPUCallLowering::lowerReturnVal(MachineIRBuilder &B,
272                                         const Value *Val, ArrayRef<Register> VRegs,
273                                         MachineInstrBuilder &Ret) const {
274   if (!Val)
275     return true;
276 
277   auto &MF = B.getMF();
278   const auto &F = MF.getFunction();
279   const DataLayout &DL = MF.getDataLayout();
280   MachineRegisterInfo *MRI = B.getMRI();
281   LLVMContext &Ctx = F.getContext();
282 
283   CallingConv::ID CC = F.getCallingConv();
284   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
285 
286   SmallVector<EVT, 8> SplitEVTs;
287   ComputeValueVTs(TLI, DL, Val->getType(), SplitEVTs);
288   assert(VRegs.size() == SplitEVTs.size() &&
289          "For each split Type there should be exactly one VReg.");
290 
291   SmallVector<ArgInfo, 8> SplitRetInfos;
292 
293   for (unsigned i = 0; i < SplitEVTs.size(); ++i) {
294     EVT VT = SplitEVTs[i];
295     Register Reg = VRegs[i];
296     ArgInfo RetInfo(Reg, VT.getTypeForEVT(Ctx), 0);
297     setArgFlags(RetInfo, AttributeList::ReturnIndex, DL, F);
298 
299     if (VT.isScalarInteger()) {
300       unsigned ExtendOp = TargetOpcode::G_ANYEXT;
301       if (RetInfo.Flags[0].isSExt()) {
302         assert(RetInfo.Regs.size() == 1 && "expect only simple return values");
303         ExtendOp = TargetOpcode::G_SEXT;
304       } else if (RetInfo.Flags[0].isZExt()) {
305         assert(RetInfo.Regs.size() == 1 && "expect only simple return values");
306         ExtendOp = TargetOpcode::G_ZEXT;
307       }
308 
309       EVT ExtVT = TLI.getTypeForExtReturn(Ctx, VT,
310                                           extOpcodeToISDExtOpcode(ExtendOp));
311       if (ExtVT != VT) {
312         RetInfo.Ty = ExtVT.getTypeForEVT(Ctx);
313         LLT ExtTy = getLLTForType(*RetInfo.Ty, DL);
314         Reg = B.buildInstr(ExtendOp, {ExtTy}, {Reg}).getReg(0);
315       }
316     }
317 
318     if (Reg != RetInfo.Regs[0]) {
319       RetInfo.Regs[0] = Reg;
320       // Reset the arg flags after modifying Reg.
321       setArgFlags(RetInfo, AttributeList::ReturnIndex, DL, F);
322     }
323 
324     splitToValueTypes(RetInfo, SplitRetInfos, DL, CC);
325   }
326 
327   CCAssignFn *AssignFn = TLI.CCAssignFnForReturn(CC, F.isVarArg());
328 
329   OutgoingValueAssigner Assigner(AssignFn);
330   AMDGPUOutgoingValueHandler RetHandler(B, *MRI, Ret);
331   return determineAndHandleAssignments(RetHandler, Assigner, SplitRetInfos, B,
332                                        CC, F.isVarArg());
333 }
334 
335 bool AMDGPUCallLowering::lowerReturn(MachineIRBuilder &B, const Value *Val,
336                                      ArrayRef<Register> VRegs,
337                                      FunctionLoweringInfo &FLI) const {
338 
339   MachineFunction &MF = B.getMF();
340   MachineRegisterInfo &MRI = MF.getRegInfo();
341   SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
342   MFI->setIfReturnsVoid(!Val);
343 
344   assert(!Val == VRegs.empty() && "Return value without a vreg");
345 
346   CallingConv::ID CC = B.getMF().getFunction().getCallingConv();
347   const bool IsShader = AMDGPU::isShader(CC);
348   const bool IsWaveEnd =
349       (IsShader && MFI->returnsVoid()) || AMDGPU::isKernel(CC);
350   if (IsWaveEnd) {
351     B.buildInstr(AMDGPU::S_ENDPGM)
352       .addImm(0);
353     return true;
354   }
355 
356   auto const &ST = MF.getSubtarget<GCNSubtarget>();
357 
358   unsigned ReturnOpc =
359       IsShader ? AMDGPU::SI_RETURN_TO_EPILOG : AMDGPU::S_SETPC_B64_return;
360 
361   auto Ret = B.buildInstrNoInsert(ReturnOpc);
362   Register ReturnAddrVReg;
363   if (ReturnOpc == AMDGPU::S_SETPC_B64_return) {
364     ReturnAddrVReg = MRI.createVirtualRegister(&AMDGPU::CCR_SGPR_64RegClass);
365     Ret.addUse(ReturnAddrVReg);
366   }
367 
368   if (!FLI.CanLowerReturn)
369     insertSRetStores(B, Val->getType(), VRegs, FLI.DemoteRegister);
370   else if (!lowerReturnVal(B, Val, VRegs, Ret))
371     return false;
372 
373   if (ReturnOpc == AMDGPU::S_SETPC_B64_return) {
374     const SIRegisterInfo *TRI = ST.getRegisterInfo();
375     Register LiveInReturn = MF.addLiveIn(TRI->getReturnAddressReg(MF),
376                                          &AMDGPU::SGPR_64RegClass);
377     B.buildCopy(ReturnAddrVReg, LiveInReturn);
378   }
379 
380   // TODO: Handle CalleeSavedRegsViaCopy.
381 
382   B.insertInstr(Ret);
383   return true;
384 }
385 
386 void AMDGPUCallLowering::lowerParameterPtr(Register DstReg, MachineIRBuilder &B,
387                                            uint64_t Offset) const {
388   MachineFunction &MF = B.getMF();
389   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
390   MachineRegisterInfo &MRI = MF.getRegInfo();
391   Register KernArgSegmentPtr =
392     MFI->getPreloadedReg(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
393   Register KernArgSegmentVReg = MRI.getLiveInVirtReg(KernArgSegmentPtr);
394 
395   auto OffsetReg = B.buildConstant(LLT::scalar(64), Offset);
396 
397   B.buildPtrAdd(DstReg, KernArgSegmentVReg, OffsetReg);
398 }
399 
400 void AMDGPUCallLowering::lowerParameter(MachineIRBuilder &B, ArgInfo &OrigArg,
401                                         uint64_t Offset,
402                                         Align Alignment) const {
403   MachineFunction &MF = B.getMF();
404   const Function &F = MF.getFunction();
405   const DataLayout &DL = F.getParent()->getDataLayout();
406   MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
407 
408   LLT PtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
409 
410   SmallVector<ArgInfo, 32> SplitArgs;
411   SmallVector<uint64_t> FieldOffsets;
412   splitToValueTypes(OrigArg, SplitArgs, DL, F.getCallingConv(), &FieldOffsets);
413 
414   unsigned Idx = 0;
415   for (ArgInfo &SplitArg : SplitArgs) {
416     Register PtrReg = B.getMRI()->createGenericVirtualRegister(PtrTy);
417     lowerParameterPtr(PtrReg, B, Offset + FieldOffsets[Idx]);
418 
419     LLT ArgTy = getLLTForType(*SplitArg.Ty, DL);
420     if (SplitArg.Flags[0].isPointer()) {
421       // Compensate for losing pointeriness in splitValueTypes.
422       LLT PtrTy = LLT::pointer(SplitArg.Flags[0].getPointerAddrSpace(),
423                                ArgTy.getScalarSizeInBits());
424       ArgTy = ArgTy.isVector() ? LLT::vector(ArgTy.getElementCount(), PtrTy)
425                                : PtrTy;
426     }
427 
428     MachineMemOperand *MMO = MF.getMachineMemOperand(
429         PtrInfo,
430         MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
431             MachineMemOperand::MOInvariant,
432         ArgTy, commonAlignment(Alignment, FieldOffsets[Idx]));
433 
434     assert(SplitArg.Regs.size() == 1);
435 
436     B.buildLoad(SplitArg.Regs[0], PtrReg, *MMO);
437     ++Idx;
438   }
439 }
440 
441 // Allocate special inputs passed in user SGPRs.
442 static void allocateHSAUserSGPRs(CCState &CCInfo,
443                                  MachineIRBuilder &B,
444                                  MachineFunction &MF,
445                                  const SIRegisterInfo &TRI,
446                                  SIMachineFunctionInfo &Info) {
447   // FIXME: How should these inputs interact with inreg / custom SGPR inputs?
448   if (Info.hasPrivateSegmentBuffer()) {
449     Register PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI);
450     MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass);
451     CCInfo.AllocateReg(PrivateSegmentBufferReg);
452   }
453 
454   if (Info.hasDispatchPtr()) {
455     Register DispatchPtrReg = Info.addDispatchPtr(TRI);
456     MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass);
457     CCInfo.AllocateReg(DispatchPtrReg);
458   }
459 
460   if (Info.hasQueuePtr()) {
461     Register QueuePtrReg = Info.addQueuePtr(TRI);
462     MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass);
463     CCInfo.AllocateReg(QueuePtrReg);
464   }
465 
466   if (Info.hasKernargSegmentPtr()) {
467     MachineRegisterInfo &MRI = MF.getRegInfo();
468     Register InputPtrReg = Info.addKernargSegmentPtr(TRI);
469     const LLT P4 = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
470     Register VReg = MRI.createGenericVirtualRegister(P4);
471     MRI.addLiveIn(InputPtrReg, VReg);
472     B.getMBB().addLiveIn(InputPtrReg);
473     B.buildCopy(VReg, InputPtrReg);
474     CCInfo.AllocateReg(InputPtrReg);
475   }
476 
477   if (Info.hasDispatchID()) {
478     Register DispatchIDReg = Info.addDispatchID(TRI);
479     MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass);
480     CCInfo.AllocateReg(DispatchIDReg);
481   }
482 
483   if (Info.hasFlatScratchInit()) {
484     Register FlatScratchInitReg = Info.addFlatScratchInit(TRI);
485     MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass);
486     CCInfo.AllocateReg(FlatScratchInitReg);
487   }
488 
489   // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read
490   // these from the dispatch pointer.
491 }
492 
493 bool AMDGPUCallLowering::lowerFormalArgumentsKernel(
494     MachineIRBuilder &B, const Function &F,
495     ArrayRef<ArrayRef<Register>> VRegs) const {
496   MachineFunction &MF = B.getMF();
497   const GCNSubtarget *Subtarget = &MF.getSubtarget<GCNSubtarget>();
498   MachineRegisterInfo &MRI = MF.getRegInfo();
499   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
500   const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
501   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
502   const DataLayout &DL = F.getParent()->getDataLayout();
503 
504   Info->allocateModuleLDSGlobal(F.getParent());
505 
506   SmallVector<CCValAssign, 16> ArgLocs;
507   CCState CCInfo(F.getCallingConv(), F.isVarArg(), MF, ArgLocs, F.getContext());
508 
509   allocateHSAUserSGPRs(CCInfo, B, MF, *TRI, *Info);
510 
511   unsigned i = 0;
512   const Align KernArgBaseAlign(16);
513   const unsigned BaseOffset = Subtarget->getExplicitKernelArgOffset(F);
514   uint64_t ExplicitArgOffset = 0;
515 
516   // TODO: Align down to dword alignment and extract bits for extending loads.
517   for (auto &Arg : F.args()) {
518     const bool IsByRef = Arg.hasByRefAttr();
519     Type *ArgTy = IsByRef ? Arg.getParamByRefType() : Arg.getType();
520     unsigned AllocSize = DL.getTypeAllocSize(ArgTy);
521     if (AllocSize == 0)
522       continue;
523 
524     MaybeAlign ABIAlign = IsByRef ? Arg.getParamAlign() : None;
525     if (!ABIAlign)
526       ABIAlign = DL.getABITypeAlign(ArgTy);
527 
528     uint64_t ArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + BaseOffset;
529     ExplicitArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + AllocSize;
530 
531     if (Arg.use_empty()) {
532       ++i;
533       continue;
534     }
535 
536     Align Alignment = commonAlignment(KernArgBaseAlign, ArgOffset);
537 
538     if (IsByRef) {
539       unsigned ByRefAS = cast<PointerType>(Arg.getType())->getAddressSpace();
540 
541       assert(VRegs[i].size() == 1 &&
542              "expected only one register for byval pointers");
543       if (ByRefAS == AMDGPUAS::CONSTANT_ADDRESS) {
544         lowerParameterPtr(VRegs[i][0], B, ArgOffset);
545       } else {
546         const LLT ConstPtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
547         Register PtrReg = MRI.createGenericVirtualRegister(ConstPtrTy);
548         lowerParameterPtr(PtrReg, B, ArgOffset);
549 
550         B.buildAddrSpaceCast(VRegs[i][0], PtrReg);
551       }
552     } else {
553       ArgInfo OrigArg(VRegs[i], Arg, i);
554       const unsigned OrigArgIdx = i + AttributeList::FirstArgIndex;
555       setArgFlags(OrigArg, OrigArgIdx, DL, F);
556       lowerParameter(B, OrigArg, ArgOffset, Alignment);
557     }
558 
559     ++i;
560   }
561 
562   TLI.allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info);
563   TLI.allocateSystemSGPRs(CCInfo, MF, *Info, F.getCallingConv(), false);
564   return true;
565 }
566 
567 bool AMDGPUCallLowering::lowerFormalArguments(
568     MachineIRBuilder &B, const Function &F, ArrayRef<ArrayRef<Register>> VRegs,
569     FunctionLoweringInfo &FLI) const {
570   CallingConv::ID CC = F.getCallingConv();
571 
572   // The infrastructure for normal calling convention lowering is essentially
573   // useless for kernels. We want to avoid any kind of legalization or argument
574   // splitting.
575   if (CC == CallingConv::AMDGPU_KERNEL)
576     return lowerFormalArgumentsKernel(B, F, VRegs);
577 
578   const bool IsGraphics = AMDGPU::isGraphics(CC);
579   const bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CC);
580 
581   MachineFunction &MF = B.getMF();
582   MachineBasicBlock &MBB = B.getMBB();
583   MachineRegisterInfo &MRI = MF.getRegInfo();
584   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
585   const GCNSubtarget &Subtarget = MF.getSubtarget<GCNSubtarget>();
586   const SIRegisterInfo *TRI = Subtarget.getRegisterInfo();
587   const DataLayout &DL = F.getParent()->getDataLayout();
588 
589   Info->allocateModuleLDSGlobal(F.getParent());
590 
591   SmallVector<CCValAssign, 16> ArgLocs;
592   CCState CCInfo(CC, F.isVarArg(), MF, ArgLocs, F.getContext());
593 
594   if (!IsEntryFunc) {
595     Register ReturnAddrReg = TRI->getReturnAddressReg(MF);
596     Register LiveInReturn = MF.addLiveIn(ReturnAddrReg,
597                                          &AMDGPU::SGPR_64RegClass);
598     MBB.addLiveIn(ReturnAddrReg);
599     B.buildCopy(LiveInReturn, ReturnAddrReg);
600   }
601 
602   if (Info->hasImplicitBufferPtr()) {
603     Register ImplicitBufferPtrReg = Info->addImplicitBufferPtr(*TRI);
604     MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass);
605     CCInfo.AllocateReg(ImplicitBufferPtrReg);
606   }
607 
608   SmallVector<ArgInfo, 32> SplitArgs;
609   unsigned Idx = 0;
610   unsigned PSInputNum = 0;
611 
612   // Insert the hidden sret parameter if the return value won't fit in the
613   // return registers.
614   if (!FLI.CanLowerReturn)
615     insertSRetIncomingArgument(F, SplitArgs, FLI.DemoteRegister, MRI, DL);
616 
617   for (auto &Arg : F.args()) {
618     if (DL.getTypeStoreSize(Arg.getType()) == 0)
619       continue;
620 
621     const bool InReg = Arg.hasAttribute(Attribute::InReg);
622 
623     // SGPR arguments to functions not implemented.
624     if (!IsGraphics && InReg)
625       return false;
626 
627     if (Arg.hasAttribute(Attribute::SwiftSelf) ||
628         Arg.hasAttribute(Attribute::SwiftError) ||
629         Arg.hasAttribute(Attribute::Nest))
630       return false;
631 
632     if (CC == CallingConv::AMDGPU_PS && !InReg && PSInputNum <= 15) {
633       const bool ArgUsed = !Arg.use_empty();
634       bool SkipArg = !ArgUsed && !Info->isPSInputAllocated(PSInputNum);
635 
636       if (!SkipArg) {
637         Info->markPSInputAllocated(PSInputNum);
638         if (ArgUsed)
639           Info->markPSInputEnabled(PSInputNum);
640       }
641 
642       ++PSInputNum;
643 
644       if (SkipArg) {
645         for (int I = 0, E = VRegs[Idx].size(); I != E; ++I)
646           B.buildUndef(VRegs[Idx][I]);
647 
648         ++Idx;
649         continue;
650       }
651     }
652 
653     ArgInfo OrigArg(VRegs[Idx], Arg, Idx);
654     const unsigned OrigArgIdx = Idx + AttributeList::FirstArgIndex;
655     setArgFlags(OrigArg, OrigArgIdx, DL, F);
656 
657     splitToValueTypes(OrigArg, SplitArgs, DL, CC);
658     ++Idx;
659   }
660 
661   // At least one interpolation mode must be enabled or else the GPU will
662   // hang.
663   //
664   // Check PSInputAddr instead of PSInputEnable. The idea is that if the user
665   // set PSInputAddr, the user wants to enable some bits after the compilation
666   // based on run-time states. Since we can't know what the final PSInputEna
667   // will look like, so we shouldn't do anything here and the user should take
668   // responsibility for the correct programming.
669   //
670   // Otherwise, the following restrictions apply:
671   // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled.
672   // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be
673   //   enabled too.
674   if (CC == CallingConv::AMDGPU_PS) {
675     if ((Info->getPSInputAddr() & 0x7F) == 0 ||
676         ((Info->getPSInputAddr() & 0xF) == 0 &&
677          Info->isPSInputAllocated(11))) {
678       CCInfo.AllocateReg(AMDGPU::VGPR0);
679       CCInfo.AllocateReg(AMDGPU::VGPR1);
680       Info->markPSInputAllocated(0);
681       Info->markPSInputEnabled(0);
682     }
683 
684     if (Subtarget.isAmdPalOS()) {
685       // For isAmdPalOS, the user does not enable some bits after compilation
686       // based on run-time states; the register values being generated here are
687       // the final ones set in hardware. Therefore we need to apply the
688       // workaround to PSInputAddr and PSInputEnable together.  (The case where
689       // a bit is set in PSInputAddr but not PSInputEnable is where the frontend
690       // set up an input arg for a particular interpolation mode, but nothing
691       // uses that input arg. Really we should have an earlier pass that removes
692       // such an arg.)
693       unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable();
694       if ((PsInputBits & 0x7F) == 0 ||
695           ((PsInputBits & 0xF) == 0 &&
696            (PsInputBits >> 11 & 1)))
697         Info->markPSInputEnabled(
698           countTrailingZeros(Info->getPSInputAddr(), ZB_Undefined));
699     }
700   }
701 
702   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
703   CCAssignFn *AssignFn = TLI.CCAssignFnForCall(CC, F.isVarArg());
704 
705   if (!MBB.empty())
706     B.setInstr(*MBB.begin());
707 
708   if (!IsEntryFunc) {
709     // For the fixed ABI, pass workitem IDs in the last argument register.
710     if (AMDGPUTargetMachine::EnableFixedFunctionABI)
711       TLI.allocateSpecialInputVGPRsFixed(CCInfo, MF, *TRI, *Info);
712   }
713 
714   IncomingValueAssigner Assigner(AssignFn);
715   if (!determineAssignments(Assigner, SplitArgs, CCInfo))
716     return false;
717 
718   FormalArgHandler Handler(B, MRI);
719   if (!handleAssignments(Handler, SplitArgs, CCInfo, ArgLocs, B))
720     return false;
721 
722   uint64_t StackOffset = Assigner.StackOffset;
723 
724   if (!IsEntryFunc && !AMDGPUTargetMachine::EnableFixedFunctionABI) {
725     // Special inputs come after user arguments.
726     TLI.allocateSpecialInputVGPRs(CCInfo, MF, *TRI, *Info);
727   }
728 
729   // Start adding system SGPRs.
730   if (IsEntryFunc) {
731     TLI.allocateSystemSGPRs(CCInfo, MF, *Info, CC, IsGraphics);
732   } else {
733     if (!Subtarget.enableFlatScratch())
734       CCInfo.AllocateReg(Info->getScratchRSrcReg());
735     TLI.allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info);
736   }
737 
738   // When we tail call, we need to check if the callee's arguments will fit on
739   // the caller's stack. So, whenever we lower formal arguments, we should keep
740   // track of this information, since we might lower a tail call in this
741   // function later.
742   Info->setBytesInStackArgArea(StackOffset);
743 
744   // Move back to the end of the basic block.
745   B.setMBB(MBB);
746 
747   return true;
748 }
749 
750 bool AMDGPUCallLowering::passSpecialInputs(MachineIRBuilder &MIRBuilder,
751                                            CCState &CCInfo,
752                                            SmallVectorImpl<std::pair<MCRegister, Register>> &ArgRegs,
753                                            CallLoweringInfo &Info) const {
754   MachineFunction &MF = MIRBuilder.getMF();
755 
756   const AMDGPUFunctionArgInfo *CalleeArgInfo
757     = &AMDGPUArgumentUsageInfo::FixedABIFunctionInfo;
758 
759   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
760   const AMDGPUFunctionArgInfo &CallerArgInfo = MFI->getArgInfo();
761 
762 
763   // TODO: Unify with private memory register handling. This is complicated by
764   // the fact that at least in kernels, the input argument is not necessarily
765   // in the same location as the input.
766   AMDGPUFunctionArgInfo::PreloadedValue InputRegs[] = {
767     AMDGPUFunctionArgInfo::DISPATCH_PTR,
768     AMDGPUFunctionArgInfo::QUEUE_PTR,
769     AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR,
770     AMDGPUFunctionArgInfo::DISPATCH_ID,
771     AMDGPUFunctionArgInfo::WORKGROUP_ID_X,
772     AMDGPUFunctionArgInfo::WORKGROUP_ID_Y,
773     AMDGPUFunctionArgInfo::WORKGROUP_ID_Z
774   };
775 
776   MachineRegisterInfo &MRI = MF.getRegInfo();
777 
778   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
779   const AMDGPULegalizerInfo *LI
780     = static_cast<const AMDGPULegalizerInfo*>(ST.getLegalizerInfo());
781 
782   for (auto InputID : InputRegs) {
783     const ArgDescriptor *OutgoingArg;
784     const TargetRegisterClass *ArgRC;
785     LLT ArgTy;
786 
787     std::tie(OutgoingArg, ArgRC, ArgTy) =
788         CalleeArgInfo->getPreloadedValue(InputID);
789     if (!OutgoingArg)
790       continue;
791 
792     const ArgDescriptor *IncomingArg;
793     const TargetRegisterClass *IncomingArgRC;
794     std::tie(IncomingArg, IncomingArgRC, ArgTy) =
795         CallerArgInfo.getPreloadedValue(InputID);
796     assert(IncomingArgRC == ArgRC);
797 
798     Register InputReg = MRI.createGenericVirtualRegister(ArgTy);
799 
800     if (IncomingArg) {
801       LI->loadInputValue(InputReg, MIRBuilder, IncomingArg, ArgRC, ArgTy);
802     } else {
803       assert(InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR);
804       LI->getImplicitArgPtr(InputReg, MRI, MIRBuilder);
805     }
806 
807     if (OutgoingArg->isRegister()) {
808       ArgRegs.emplace_back(OutgoingArg->getRegister(), InputReg);
809       if (!CCInfo.AllocateReg(OutgoingArg->getRegister()))
810         report_fatal_error("failed to allocate implicit input argument");
811     } else {
812       LLVM_DEBUG(dbgs() << "Unhandled stack passed implicit input argument\n");
813       return false;
814     }
815   }
816 
817   // Pack workitem IDs into a single register or pass it as is if already
818   // packed.
819   const ArgDescriptor *OutgoingArg;
820   const TargetRegisterClass *ArgRC;
821   LLT ArgTy;
822 
823   std::tie(OutgoingArg, ArgRC, ArgTy) =
824       CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X);
825   if (!OutgoingArg)
826     std::tie(OutgoingArg, ArgRC, ArgTy) =
827         CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y);
828   if (!OutgoingArg)
829     std::tie(OutgoingArg, ArgRC, ArgTy) =
830         CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z);
831   if (!OutgoingArg)
832     return false;
833 
834   auto WorkitemIDX =
835       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X);
836   auto WorkitemIDY =
837       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y);
838   auto WorkitemIDZ =
839       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z);
840 
841   const ArgDescriptor *IncomingArgX = std::get<0>(WorkitemIDX);
842   const ArgDescriptor *IncomingArgY = std::get<0>(WorkitemIDY);
843   const ArgDescriptor *IncomingArgZ = std::get<0>(WorkitemIDZ);
844   const LLT S32 = LLT::scalar(32);
845 
846   // If incoming ids are not packed we need to pack them.
847   // FIXME: Should consider known workgroup size to eliminate known 0 cases.
848   Register InputReg;
849   if (IncomingArgX && !IncomingArgX->isMasked() && CalleeArgInfo->WorkItemIDX) {
850     InputReg = MRI.createGenericVirtualRegister(S32);
851     LI->loadInputValue(InputReg, MIRBuilder, IncomingArgX,
852                        std::get<1>(WorkitemIDX), std::get<2>(WorkitemIDX));
853   }
854 
855   if (IncomingArgY && !IncomingArgY->isMasked() && CalleeArgInfo->WorkItemIDY) {
856     Register Y = MRI.createGenericVirtualRegister(S32);
857     LI->loadInputValue(Y, MIRBuilder, IncomingArgY, std::get<1>(WorkitemIDY),
858                        std::get<2>(WorkitemIDY));
859 
860     Y = MIRBuilder.buildShl(S32, Y, MIRBuilder.buildConstant(S32, 10)).getReg(0);
861     InputReg = InputReg ? MIRBuilder.buildOr(S32, InputReg, Y).getReg(0) : Y;
862   }
863 
864   if (IncomingArgZ && !IncomingArgZ->isMasked() && CalleeArgInfo->WorkItemIDZ) {
865     Register Z = MRI.createGenericVirtualRegister(S32);
866     LI->loadInputValue(Z, MIRBuilder, IncomingArgZ, std::get<1>(WorkitemIDZ),
867                        std::get<2>(WorkitemIDZ));
868 
869     Z = MIRBuilder.buildShl(S32, Z, MIRBuilder.buildConstant(S32, 20)).getReg(0);
870     InputReg = InputReg ? MIRBuilder.buildOr(S32, InputReg, Z).getReg(0) : Z;
871   }
872 
873   if (!InputReg) {
874     InputReg = MRI.createGenericVirtualRegister(S32);
875 
876     // Workitem ids are already packed, any of present incoming arguments will
877     // carry all required fields.
878     ArgDescriptor IncomingArg = ArgDescriptor::createArg(
879       IncomingArgX ? *IncomingArgX :
880         IncomingArgY ? *IncomingArgY : *IncomingArgZ, ~0u);
881     LI->loadInputValue(InputReg, MIRBuilder, &IncomingArg,
882                        &AMDGPU::VGPR_32RegClass, S32);
883   }
884 
885   if (OutgoingArg->isRegister()) {
886     ArgRegs.emplace_back(OutgoingArg->getRegister(), InputReg);
887     if (!CCInfo.AllocateReg(OutgoingArg->getRegister()))
888       report_fatal_error("failed to allocate implicit input argument");
889   } else {
890     LLVM_DEBUG(dbgs() << "Unhandled stack passed implicit input argument\n");
891     return false;
892   }
893 
894   return true;
895 }
896 
897 /// Returns a pair containing the fixed CCAssignFn and the vararg CCAssignFn for
898 /// CC.
899 static std::pair<CCAssignFn *, CCAssignFn *>
900 getAssignFnsForCC(CallingConv::ID CC, const SITargetLowering &TLI) {
901   return {TLI.CCAssignFnForCall(CC, false), TLI.CCAssignFnForCall(CC, true)};
902 }
903 
904 static unsigned getCallOpcode(const MachineFunction &CallerF, bool IsIndirect,
905                               bool IsTailCall) {
906   return IsTailCall ? AMDGPU::SI_TCRETURN : AMDGPU::SI_CALL;
907 }
908 
909 // Add operands to call instruction to track the callee.
910 static bool addCallTargetOperands(MachineInstrBuilder &CallInst,
911                                   MachineIRBuilder &MIRBuilder,
912                                   AMDGPUCallLowering::CallLoweringInfo &Info) {
913   if (Info.Callee.isReg()) {
914     CallInst.addReg(Info.Callee.getReg());
915     CallInst.addImm(0);
916   } else if (Info.Callee.isGlobal() && Info.Callee.getOffset() == 0) {
917     // The call lowering lightly assumed we can directly encode a call target in
918     // the instruction, which is not the case. Materialize the address here.
919     const GlobalValue *GV = Info.Callee.getGlobal();
920     auto Ptr = MIRBuilder.buildGlobalValue(
921       LLT::pointer(GV->getAddressSpace(), 64), GV);
922     CallInst.addReg(Ptr.getReg(0));
923     CallInst.add(Info.Callee);
924   } else
925     return false;
926 
927   return true;
928 }
929 
930 bool AMDGPUCallLowering::doCallerAndCalleePassArgsTheSameWay(
931     CallLoweringInfo &Info, MachineFunction &MF,
932     SmallVectorImpl<ArgInfo> &InArgs) const {
933   const Function &CallerF = MF.getFunction();
934   CallingConv::ID CalleeCC = Info.CallConv;
935   CallingConv::ID CallerCC = CallerF.getCallingConv();
936 
937   // If the calling conventions match, then everything must be the same.
938   if (CalleeCC == CallerCC)
939     return true;
940 
941   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
942 
943   // Make sure that the caller and callee preserve all of the same registers.
944   auto TRI = ST.getRegisterInfo();
945 
946   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
947   const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
948   if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
949     return false;
950 
951   // Check if the caller and callee will handle arguments in the same way.
952   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
953   CCAssignFn *CalleeAssignFnFixed;
954   CCAssignFn *CalleeAssignFnVarArg;
955   std::tie(CalleeAssignFnFixed, CalleeAssignFnVarArg) =
956       getAssignFnsForCC(CalleeCC, TLI);
957 
958   CCAssignFn *CallerAssignFnFixed;
959   CCAssignFn *CallerAssignFnVarArg;
960   std::tie(CallerAssignFnFixed, CallerAssignFnVarArg) =
961       getAssignFnsForCC(CallerCC, TLI);
962 
963   // FIXME: We are not accounting for potential differences in implicitly passed
964   // inputs, but only the fixed ABI is supported now anyway.
965   IncomingValueAssigner CalleeAssigner(CalleeAssignFnFixed,
966                                        CalleeAssignFnVarArg);
967   IncomingValueAssigner CallerAssigner(CallerAssignFnFixed,
968                                        CallerAssignFnVarArg);
969   return resultsCompatible(Info, MF, InArgs, CalleeAssigner, CallerAssigner);
970 }
971 
972 bool AMDGPUCallLowering::areCalleeOutgoingArgsTailCallable(
973     CallLoweringInfo &Info, MachineFunction &MF,
974     SmallVectorImpl<ArgInfo> &OutArgs) const {
975   // If there are no outgoing arguments, then we are done.
976   if (OutArgs.empty())
977     return true;
978 
979   const Function &CallerF = MF.getFunction();
980   CallingConv::ID CalleeCC = Info.CallConv;
981   CallingConv::ID CallerCC = CallerF.getCallingConv();
982   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
983 
984   CCAssignFn *AssignFnFixed;
985   CCAssignFn *AssignFnVarArg;
986   std::tie(AssignFnFixed, AssignFnVarArg) = getAssignFnsForCC(CalleeCC, TLI);
987 
988   // We have outgoing arguments. Make sure that we can tail call with them.
989   SmallVector<CCValAssign, 16> OutLocs;
990   CCState OutInfo(CalleeCC, false, MF, OutLocs, CallerF.getContext());
991   OutgoingValueAssigner Assigner(AssignFnFixed, AssignFnVarArg);
992 
993   if (!determineAssignments(Assigner, OutArgs, OutInfo)) {
994     LLVM_DEBUG(dbgs() << "... Could not analyze call operands.\n");
995     return false;
996   }
997 
998   // Make sure that they can fit on the caller's stack.
999   const SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>();
1000   if (OutInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea()) {
1001     LLVM_DEBUG(dbgs() << "... Cannot fit call operands on caller's stack.\n");
1002     return false;
1003   }
1004 
1005   // Verify that the parameters in callee-saved registers match.
1006   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
1007   const SIRegisterInfo *TRI = ST.getRegisterInfo();
1008   const uint32_t *CallerPreservedMask = TRI->getCallPreservedMask(MF, CallerCC);
1009   MachineRegisterInfo &MRI = MF.getRegInfo();
1010   return parametersInCSRMatch(MRI, CallerPreservedMask, OutLocs, OutArgs);
1011 }
1012 
1013 /// Return true if the calling convention is one that we can guarantee TCO for.
1014 static bool canGuaranteeTCO(CallingConv::ID CC) {
1015   return CC == CallingConv::Fast;
1016 }
1017 
1018 /// Return true if we might ever do TCO for calls with this calling convention.
1019 static bool mayTailCallThisCC(CallingConv::ID CC) {
1020   switch (CC) {
1021   case CallingConv::C:
1022   case CallingConv::AMDGPU_Gfx:
1023     return true;
1024   default:
1025     return canGuaranteeTCO(CC);
1026   }
1027 }
1028 
1029 bool AMDGPUCallLowering::isEligibleForTailCallOptimization(
1030     MachineIRBuilder &B, CallLoweringInfo &Info,
1031     SmallVectorImpl<ArgInfo> &InArgs, SmallVectorImpl<ArgInfo> &OutArgs) const {
1032   // Must pass all target-independent checks in order to tail call optimize.
1033   if (!Info.IsTailCall)
1034     return false;
1035 
1036   MachineFunction &MF = B.getMF();
1037   const Function &CallerF = MF.getFunction();
1038   CallingConv::ID CalleeCC = Info.CallConv;
1039   CallingConv::ID CallerCC = CallerF.getCallingConv();
1040 
1041   const SIRegisterInfo *TRI = MF.getSubtarget<GCNSubtarget>().getRegisterInfo();
1042   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
1043   // Kernels aren't callable, and don't have a live in return address so it
1044   // doesn't make sense to do a tail call with entry functions.
1045   if (!CallerPreserved)
1046     return false;
1047 
1048   if (!mayTailCallThisCC(CalleeCC)) {
1049     LLVM_DEBUG(dbgs() << "... Calling convention cannot be tail called.\n");
1050     return false;
1051   }
1052 
1053   if (any_of(CallerF.args(), [](const Argument &A) {
1054         return A.hasByValAttr() || A.hasSwiftErrorAttr();
1055       })) {
1056     LLVM_DEBUG(dbgs() << "... Cannot tail call from callers with byval "
1057                          "or swifterror arguments\n");
1058     return false;
1059   }
1060 
1061   // If we have -tailcallopt, then we're done.
1062   if (MF.getTarget().Options.GuaranteedTailCallOpt)
1063     return canGuaranteeTCO(CalleeCC) && CalleeCC == CallerF.getCallingConv();
1064 
1065   // Verify that the incoming and outgoing arguments from the callee are
1066   // safe to tail call.
1067   if (!doCallerAndCalleePassArgsTheSameWay(Info, MF, InArgs)) {
1068     LLVM_DEBUG(
1069         dbgs()
1070         << "... Caller and callee have incompatible calling conventions.\n");
1071     return false;
1072   }
1073 
1074   if (!areCalleeOutgoingArgsTailCallable(Info, MF, OutArgs))
1075     return false;
1076 
1077   LLVM_DEBUG(dbgs() << "... Call is eligible for tail call optimization.\n");
1078   return true;
1079 }
1080 
1081 // Insert outgoing implicit arguments for a call, by inserting copies to the
1082 // implicit argument registers and adding the necessary implicit uses to the
1083 // call instruction.
1084 void AMDGPUCallLowering::handleImplicitCallArguments(
1085     MachineIRBuilder &MIRBuilder, MachineInstrBuilder &CallInst,
1086     const GCNSubtarget &ST, const SIMachineFunctionInfo &FuncInfo,
1087     ArrayRef<std::pair<MCRegister, Register>> ImplicitArgRegs) const {
1088   if (!ST.enableFlatScratch()) {
1089     // Insert copies for the SRD. In the HSA case, this should be an identity
1090     // copy.
1091     auto ScratchRSrcReg = MIRBuilder.buildCopy(LLT::fixed_vector(4, 32),
1092                                                FuncInfo.getScratchRSrcReg());
1093     MIRBuilder.buildCopy(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, ScratchRSrcReg);
1094     CallInst.addReg(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, RegState::Implicit);
1095   }
1096 
1097   for (std::pair<MCRegister, Register> ArgReg : ImplicitArgRegs) {
1098     MIRBuilder.buildCopy((Register)ArgReg.first, ArgReg.second);
1099     CallInst.addReg(ArgReg.first, RegState::Implicit);
1100   }
1101 }
1102 
1103 bool AMDGPUCallLowering::lowerTailCall(
1104     MachineIRBuilder &MIRBuilder, CallLoweringInfo &Info,
1105     SmallVectorImpl<ArgInfo> &OutArgs) const {
1106   MachineFunction &MF = MIRBuilder.getMF();
1107   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
1108   SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>();
1109   const Function &F = MF.getFunction();
1110   MachineRegisterInfo &MRI = MF.getRegInfo();
1111   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
1112 
1113   // True when we're tail calling, but without -tailcallopt.
1114   bool IsSibCall = !MF.getTarget().Options.GuaranteedTailCallOpt;
1115 
1116   // Find out which ABI gets to decide where things go.
1117   CallingConv::ID CalleeCC = Info.CallConv;
1118   CCAssignFn *AssignFnFixed;
1119   CCAssignFn *AssignFnVarArg;
1120   std::tie(AssignFnFixed, AssignFnVarArg) = getAssignFnsForCC(CalleeCC, TLI);
1121 
1122   MachineInstrBuilder CallSeqStart;
1123   if (!IsSibCall)
1124     CallSeqStart = MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKUP);
1125 
1126   unsigned Opc = getCallOpcode(MF, Info.Callee.isReg(), true);
1127   auto MIB = MIRBuilder.buildInstrNoInsert(Opc);
1128   if (!addCallTargetOperands(MIB, MIRBuilder, Info))
1129     return false;
1130 
1131   // Byte offset for the tail call. When we are sibcalling, this will always
1132   // be 0.
1133   MIB.addImm(0);
1134 
1135   // Tell the call which registers are clobbered.
1136   const SIRegisterInfo *TRI = ST.getRegisterInfo();
1137   const uint32_t *Mask = TRI->getCallPreservedMask(MF, CalleeCC);
1138   MIB.addRegMask(Mask);
1139 
1140   // FPDiff is the byte offset of the call's argument area from the callee's.
1141   // Stores to callee stack arguments will be placed in FixedStackSlots offset
1142   // by this amount for a tail call. In a sibling call it must be 0 because the
1143   // caller will deallocate the entire stack and the callee still expects its
1144   // arguments to begin at SP+0.
1145   int FPDiff = 0;
1146 
1147   // This will be 0 for sibcalls, potentially nonzero for tail calls produced
1148   // by -tailcallopt. For sibcalls, the memory operands for the call are
1149   // already available in the caller's incoming argument space.
1150   unsigned NumBytes = 0;
1151   if (!IsSibCall) {
1152     // We aren't sibcalling, so we need to compute FPDiff. We need to do this
1153     // before handling assignments, because FPDiff must be known for memory
1154     // arguments.
1155     unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea();
1156     SmallVector<CCValAssign, 16> OutLocs;
1157     CCState OutInfo(CalleeCC, false, MF, OutLocs, F.getContext());
1158 
1159     // FIXME: Not accounting for callee implicit inputs
1160     OutgoingValueAssigner CalleeAssigner(AssignFnFixed, AssignFnVarArg);
1161     if (!determineAssignments(CalleeAssigner, OutArgs, OutInfo))
1162       return false;
1163 
1164     // The callee will pop the argument stack as a tail call. Thus, we must
1165     // keep it 16-byte aligned.
1166     NumBytes = alignTo(OutInfo.getNextStackOffset(), ST.getStackAlignment());
1167 
1168     // FPDiff will be negative if this tail call requires more space than we
1169     // would automatically have in our incoming argument space. Positive if we
1170     // actually shrink the stack.
1171     FPDiff = NumReusableBytes - NumBytes;
1172 
1173     // The stack pointer must be 16-byte aligned at all times it's used for a
1174     // memory operation, which in practice means at *all* times and in
1175     // particular across call boundaries. Therefore our own arguments started at
1176     // a 16-byte aligned SP and the delta applied for the tail call should
1177     // satisfy the same constraint.
1178     assert(isAligned(ST.getStackAlignment(), FPDiff) &&
1179            "unaligned stack on tail call");
1180   }
1181 
1182   SmallVector<CCValAssign, 16> ArgLocs;
1183   CCState CCInfo(Info.CallConv, Info.IsVarArg, MF, ArgLocs, F.getContext());
1184 
1185   // We could pass MIB and directly add the implicit uses to the call
1186   // now. However, as an aesthetic choice, place implicit argument operands
1187   // after the ordinary user argument registers.
1188   SmallVector<std::pair<MCRegister, Register>, 12> ImplicitArgRegs;
1189 
1190   if (AMDGPUTargetMachine::EnableFixedFunctionABI &&
1191       Info.CallConv != CallingConv::AMDGPU_Gfx) {
1192     // With a fixed ABI, allocate fixed registers before user arguments.
1193     if (!passSpecialInputs(MIRBuilder, CCInfo, ImplicitArgRegs, Info))
1194       return false;
1195   }
1196 
1197   OutgoingValueAssigner Assigner(AssignFnFixed, AssignFnVarArg);
1198 
1199   if (!determineAssignments(Assigner, OutArgs, CCInfo))
1200     return false;
1201 
1202   // Do the actual argument marshalling.
1203   AMDGPUOutgoingArgHandler Handler(MIRBuilder, MRI, MIB, true, FPDiff);
1204   if (!handleAssignments(Handler, OutArgs, CCInfo, ArgLocs, MIRBuilder))
1205     return false;
1206 
1207   handleImplicitCallArguments(MIRBuilder, MIB, ST, *FuncInfo, ImplicitArgRegs);
1208 
1209   // If we have -tailcallopt, we need to adjust the stack. We'll do the call
1210   // sequence start and end here.
1211   if (!IsSibCall) {
1212     MIB->getOperand(1).setImm(FPDiff);
1213     CallSeqStart.addImm(NumBytes).addImm(0);
1214     // End the call sequence *before* emitting the call. Normally, we would
1215     // tidy the frame up after the call. However, here, we've laid out the
1216     // parameters so that when SP is reset, they will be in the correct
1217     // location.
1218     MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKDOWN).addImm(NumBytes).addImm(0);
1219   }
1220 
1221   // Now we can add the actual call instruction to the correct basic block.
1222   MIRBuilder.insertInstr(MIB);
1223 
1224   // If Callee is a reg, since it is used by a target specific
1225   // instruction, it must have a register class matching the
1226   // constraint of that instruction.
1227 
1228   // FIXME: We should define regbankselectable call instructions to handle
1229   // divergent call targets.
1230   if (MIB->getOperand(0).isReg()) {
1231     MIB->getOperand(0).setReg(constrainOperandRegClass(
1232         MF, *TRI, MRI, *ST.getInstrInfo(), *ST.getRegBankInfo(), *MIB,
1233         MIB->getDesc(), MIB->getOperand(0), 0));
1234   }
1235 
1236   MF.getFrameInfo().setHasTailCall();
1237   Info.LoweredTailCall = true;
1238   return true;
1239 }
1240 
1241 bool AMDGPUCallLowering::lowerCall(MachineIRBuilder &MIRBuilder,
1242                                    CallLoweringInfo &Info) const {
1243   if (Info.IsVarArg) {
1244     LLVM_DEBUG(dbgs() << "Variadic functions not implemented\n");
1245     return false;
1246   }
1247 
1248   MachineFunction &MF = MIRBuilder.getMF();
1249   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
1250   const SIRegisterInfo *TRI = ST.getRegisterInfo();
1251 
1252   const Function &F = MF.getFunction();
1253   MachineRegisterInfo &MRI = MF.getRegInfo();
1254   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
1255   const DataLayout &DL = F.getParent()->getDataLayout();
1256 
1257   if (!AMDGPUTargetMachine::EnableFixedFunctionABI &&
1258       Info.CallConv != CallingConv::AMDGPU_Gfx) {
1259     LLVM_DEBUG(dbgs() << "Variable function ABI not implemented\n");
1260     return false;
1261   }
1262 
1263   SmallVector<ArgInfo, 8> OutArgs;
1264   for (auto &OrigArg : Info.OrigArgs)
1265     splitToValueTypes(OrigArg, OutArgs, DL, Info.CallConv);
1266 
1267   SmallVector<ArgInfo, 8> InArgs;
1268   if (Info.CanLowerReturn && !Info.OrigRet.Ty->isVoidTy())
1269     splitToValueTypes(Info.OrigRet, InArgs, DL, Info.CallConv);
1270 
1271   // If we can lower as a tail call, do that instead.
1272   bool CanTailCallOpt =
1273       isEligibleForTailCallOptimization(MIRBuilder, Info, InArgs, OutArgs);
1274 
1275   // We must emit a tail call if we have musttail.
1276   if (Info.IsMustTailCall && !CanTailCallOpt) {
1277     LLVM_DEBUG(dbgs() << "Failed to lower musttail call as tail call\n");
1278     return false;
1279   }
1280 
1281   if (CanTailCallOpt)
1282     return lowerTailCall(MIRBuilder, Info, OutArgs);
1283 
1284   // Find out which ABI gets to decide where things go.
1285   CCAssignFn *AssignFnFixed;
1286   CCAssignFn *AssignFnVarArg;
1287   std::tie(AssignFnFixed, AssignFnVarArg) =
1288       getAssignFnsForCC(Info.CallConv, TLI);
1289 
1290   MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKUP)
1291     .addImm(0)
1292     .addImm(0);
1293 
1294   // Create a temporarily-floating call instruction so we can add the implicit
1295   // uses of arg registers.
1296   unsigned Opc = getCallOpcode(MF, Info.Callee.isReg(), false);
1297 
1298   auto MIB = MIRBuilder.buildInstrNoInsert(Opc);
1299   MIB.addDef(TRI->getReturnAddressReg(MF));
1300 
1301   if (!addCallTargetOperands(MIB, MIRBuilder, Info))
1302     return false;
1303 
1304   // Tell the call which registers are clobbered.
1305   const uint32_t *Mask = TRI->getCallPreservedMask(MF, Info.CallConv);
1306   MIB.addRegMask(Mask);
1307 
1308   SmallVector<CCValAssign, 16> ArgLocs;
1309   CCState CCInfo(Info.CallConv, Info.IsVarArg, MF, ArgLocs, F.getContext());
1310 
1311   // We could pass MIB and directly add the implicit uses to the call
1312   // now. However, as an aesthetic choice, place implicit argument operands
1313   // after the ordinary user argument registers.
1314   SmallVector<std::pair<MCRegister, Register>, 12> ImplicitArgRegs;
1315 
1316   if (AMDGPUTargetMachine::EnableFixedFunctionABI &&
1317       Info.CallConv != CallingConv::AMDGPU_Gfx) {
1318     // With a fixed ABI, allocate fixed registers before user arguments.
1319     if (!passSpecialInputs(MIRBuilder, CCInfo, ImplicitArgRegs, Info))
1320       return false;
1321   }
1322 
1323   // Do the actual argument marshalling.
1324   SmallVector<Register, 8> PhysRegs;
1325 
1326   OutgoingValueAssigner Assigner(AssignFnFixed, AssignFnVarArg);
1327   if (!determineAssignments(Assigner, OutArgs, CCInfo))
1328     return false;
1329 
1330   AMDGPUOutgoingArgHandler Handler(MIRBuilder, MRI, MIB, false);
1331   if (!handleAssignments(Handler, OutArgs, CCInfo, ArgLocs, MIRBuilder))
1332     return false;
1333 
1334   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1335 
1336   handleImplicitCallArguments(MIRBuilder, MIB, ST, *MFI, ImplicitArgRegs);
1337 
1338   // Get a count of how many bytes are to be pushed on the stack.
1339   unsigned NumBytes = CCInfo.getNextStackOffset();
1340 
1341   // If Callee is a reg, since it is used by a target specific
1342   // instruction, it must have a register class matching the
1343   // constraint of that instruction.
1344 
1345   // FIXME: We should define regbankselectable call instructions to handle
1346   // divergent call targets.
1347   if (MIB->getOperand(1).isReg()) {
1348     MIB->getOperand(1).setReg(constrainOperandRegClass(
1349         MF, *TRI, MRI, *ST.getInstrInfo(),
1350         *ST.getRegBankInfo(), *MIB, MIB->getDesc(), MIB->getOperand(1),
1351         1));
1352   }
1353 
1354   // Now we can add the actual call instruction to the correct position.
1355   MIRBuilder.insertInstr(MIB);
1356 
1357   // Finally we can copy the returned value back into its virtual-register. In
1358   // symmetry with the arguments, the physical register must be an
1359   // implicit-define of the call instruction.
1360   if (Info.CanLowerReturn && !Info.OrigRet.Ty->isVoidTy()) {
1361     CCAssignFn *RetAssignFn = TLI.CCAssignFnForReturn(Info.CallConv,
1362                                                       Info.IsVarArg);
1363     IncomingValueAssigner Assigner(RetAssignFn);
1364     CallReturnHandler Handler(MIRBuilder, MRI, MIB);
1365     if (!determineAndHandleAssignments(Handler, Assigner, InArgs, MIRBuilder,
1366                                        Info.CallConv, Info.IsVarArg))
1367       return false;
1368   }
1369 
1370   uint64_t CalleePopBytes = NumBytes;
1371 
1372   MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKDOWN)
1373             .addImm(0)
1374             .addImm(CalleePopBytes);
1375 
1376   if (!Info.CanLowerReturn) {
1377     insertSRetLoads(MIRBuilder, Info.OrigRet.Ty, Info.OrigRet.Regs,
1378                     Info.DemoteRegister, Info.DemoteStackIndex);
1379   }
1380 
1381   return true;
1382 }
1383