1 //===-- llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp - Call lowering -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the lowering of LLVM calls to machine code calls for
11 /// GlobalISel.
12 ///
13 //===----------------------------------------------------------------------===//
14 
15 #include "AMDGPUCallLowering.h"
16 #include "AMDGPU.h"
17 #include "AMDGPULegalizerInfo.h"
18 #include "AMDGPUTargetMachine.h"
19 #include "SIMachineFunctionInfo.h"
20 #include "SIRegisterInfo.h"
21 #include "llvm/CodeGen/Analysis.h"
22 #include "llvm/CodeGen/FunctionLoweringInfo.h"
23 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/IR/IntrinsicsAMDGPU.h"
26 
27 #define DEBUG_TYPE "amdgpu-call-lowering"
28 
29 using namespace llvm;
30 
31 namespace {
32 
33 /// Wrapper around extendRegister to ensure we extend to a full 32-bit register.
34 static Register extendRegisterMin32(CallLowering::ValueHandler &Handler,
35                                     Register ValVReg, const CCValAssign &VA) {
36   if (VA.getLocVT().getSizeInBits() < 32) {
37     // 16-bit types are reported as legal for 32-bit registers. We need to
38     // extend and do a 32-bit copy to avoid the verifier complaining about it.
39     return Handler.MIRBuilder.buildAnyExt(LLT::scalar(32), ValVReg).getReg(0);
40   }
41 
42   return Handler.extendRegister(ValVReg, VA);
43 }
44 
45 struct AMDGPUOutgoingValueHandler : public CallLowering::OutgoingValueHandler {
46   AMDGPUOutgoingValueHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI,
47                              MachineInstrBuilder MIB)
48       : OutgoingValueHandler(B, MRI), MIB(MIB) {}
49 
50   MachineInstrBuilder MIB;
51 
52   Register getStackAddress(uint64_t Size, int64_t Offset,
53                            MachinePointerInfo &MPO,
54                            ISD::ArgFlagsTy Flags) override {
55     llvm_unreachable("not implemented");
56   }
57 
58   void assignValueToAddress(Register ValVReg, Register Addr, LLT MemTy,
59                             const MachinePointerInfo &MPO,
60                             const CCValAssign &VA) override {
61     llvm_unreachable("not implemented");
62   }
63 
64   void assignValueToReg(Register ValVReg, Register PhysReg,
65                         const CCValAssign &VA) override {
66     Register ExtReg = extendRegisterMin32(*this, ValVReg, VA);
67 
68     // If this is a scalar return, insert a readfirstlane just in case the value
69     // ends up in a VGPR.
70     // FIXME: Assert this is a shader return.
71     const SIRegisterInfo *TRI
72       = static_cast<const SIRegisterInfo *>(MRI.getTargetRegisterInfo());
73     if (TRI->isSGPRReg(MRI, PhysReg)) {
74       LLT Ty = MRI.getType(ExtReg);
75       LLT S32 = LLT::scalar(32);
76       if (Ty != S32) {
77         // FIXME: We should probably support readfirstlane intrinsics with all
78         // legal 32-bit types.
79         assert(Ty.getSizeInBits() == 32);
80         if (Ty.isPointer())
81           ExtReg = MIRBuilder.buildPtrToInt(S32, ExtReg).getReg(0);
82         else
83           ExtReg = MIRBuilder.buildBitcast(S32, ExtReg).getReg(0);
84       }
85 
86       auto ToSGPR = MIRBuilder
87                         .buildIntrinsic(Intrinsic::amdgcn_readfirstlane,
88                                         {MRI.getType(ExtReg)})
89                         .addReg(ExtReg);
90       ExtReg = ToSGPR.getReg(0);
91     }
92 
93     MIRBuilder.buildCopy(PhysReg, ExtReg);
94     MIB.addUse(PhysReg, RegState::Implicit);
95   }
96 };
97 
98 struct AMDGPUIncomingArgHandler : public CallLowering::IncomingValueHandler {
99   uint64_t StackUsed = 0;
100 
101   AMDGPUIncomingArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI)
102       : IncomingValueHandler(B, MRI) {}
103 
104   Register getStackAddress(uint64_t Size, int64_t Offset,
105                            MachinePointerInfo &MPO,
106                            ISD::ArgFlagsTy Flags) override {
107     auto &MFI = MIRBuilder.getMF().getFrameInfo();
108 
109     // Byval is assumed to be writable memory, but other stack passed arguments
110     // are not.
111     const bool IsImmutable = !Flags.isByVal();
112     int FI = MFI.CreateFixedObject(Size, Offset, IsImmutable);
113     MPO = MachinePointerInfo::getFixedStack(MIRBuilder.getMF(), FI);
114     auto AddrReg = MIRBuilder.buildFrameIndex(
115         LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32), FI);
116     StackUsed = std::max(StackUsed, Size + Offset);
117     return AddrReg.getReg(0);
118   }
119 
120   void assignValueToReg(Register ValVReg, Register PhysReg,
121                         const CCValAssign &VA) override {
122     markPhysRegUsed(PhysReg);
123 
124     if (VA.getLocVT().getSizeInBits() < 32) {
125       // 16-bit types are reported as legal for 32-bit registers. We need to do
126       // a 32-bit copy, and truncate to avoid the verifier complaining about it.
127       auto Copy = MIRBuilder.buildCopy(LLT::scalar(32), PhysReg);
128 
129       // If we have signext/zeroext, it applies to the whole 32-bit register
130       // before truncation.
131       auto Extended =
132           buildExtensionHint(VA, Copy.getReg(0), LLT(VA.getLocVT()));
133       MIRBuilder.buildTrunc(ValVReg, Extended);
134       return;
135     }
136 
137     IncomingValueHandler::assignValueToReg(ValVReg, PhysReg, VA);
138   }
139 
140   void assignValueToAddress(Register ValVReg, Register Addr, LLT MemTy,
141                             const MachinePointerInfo &MPO,
142                             const CCValAssign &VA) override {
143     MachineFunction &MF = MIRBuilder.getMF();
144 
145     auto MMO = MF.getMachineMemOperand(
146         MPO, MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant, MemTy,
147         inferAlignFromPtrInfo(MF, MPO));
148     MIRBuilder.buildLoad(ValVReg, Addr, *MMO);
149   }
150 
151   /// How the physical register gets marked varies between formal
152   /// parameters (it's a basic-block live-in), and a call instruction
153   /// (it's an implicit-def of the BL).
154   virtual void markPhysRegUsed(unsigned PhysReg) = 0;
155 };
156 
157 struct FormalArgHandler : public AMDGPUIncomingArgHandler {
158   FormalArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI)
159       : AMDGPUIncomingArgHandler(B, MRI) {}
160 
161   void markPhysRegUsed(unsigned PhysReg) override {
162     MIRBuilder.getMBB().addLiveIn(PhysReg);
163   }
164 };
165 
166 struct CallReturnHandler : public AMDGPUIncomingArgHandler {
167   CallReturnHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
168                     MachineInstrBuilder MIB)
169       : AMDGPUIncomingArgHandler(MIRBuilder, MRI), MIB(MIB) {}
170 
171   void markPhysRegUsed(unsigned PhysReg) override {
172     MIB.addDef(PhysReg, RegState::Implicit);
173   }
174 
175   MachineInstrBuilder MIB;
176 };
177 
178 struct AMDGPUOutgoingArgHandler : public AMDGPUOutgoingValueHandler {
179   /// For tail calls, the byte offset of the call's argument area from the
180   /// callee's. Unused elsewhere.
181   int FPDiff;
182 
183   // Cache the SP register vreg if we need it more than once in this call site.
184   Register SPReg;
185 
186   bool IsTailCall;
187 
188   AMDGPUOutgoingArgHandler(MachineIRBuilder &MIRBuilder,
189                            MachineRegisterInfo &MRI, MachineInstrBuilder MIB,
190                            bool IsTailCall = false, int FPDiff = 0)
191       : AMDGPUOutgoingValueHandler(MIRBuilder, MRI, MIB), FPDiff(FPDiff),
192         IsTailCall(IsTailCall) {}
193 
194   Register getStackAddress(uint64_t Size, int64_t Offset,
195                            MachinePointerInfo &MPO,
196                            ISD::ArgFlagsTy Flags) override {
197     MachineFunction &MF = MIRBuilder.getMF();
198     const LLT PtrTy = LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32);
199     const LLT S32 = LLT::scalar(32);
200 
201     if (IsTailCall) {
202       Offset += FPDiff;
203       int FI = MF.getFrameInfo().CreateFixedObject(Size, Offset, true);
204       auto FIReg = MIRBuilder.buildFrameIndex(PtrTy, FI);
205       MPO = MachinePointerInfo::getFixedStack(MF, FI);
206       return FIReg.getReg(0);
207     }
208 
209     const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
210 
211     if (!SPReg) {
212       const GCNSubtarget &ST = MIRBuilder.getMF().getSubtarget<GCNSubtarget>();
213       if (ST.enableFlatScratch()) {
214         // The stack is accessed unswizzled, so we can use a regular copy.
215         SPReg = MIRBuilder.buildCopy(PtrTy,
216                                      MFI->getStackPtrOffsetReg()).getReg(0);
217       } else {
218         // The address we produce here, without knowing the use context, is going
219         // to be interpreted as a vector address, so we need to convert to a
220         // swizzled address.
221         SPReg = MIRBuilder.buildInstr(AMDGPU::G_AMDGPU_WAVE_ADDRESS, {PtrTy},
222                                       {MFI->getStackPtrOffsetReg()}).getReg(0);
223       }
224     }
225 
226     auto OffsetReg = MIRBuilder.buildConstant(S32, Offset);
227 
228     auto AddrReg = MIRBuilder.buildPtrAdd(PtrTy, SPReg, OffsetReg);
229     MPO = MachinePointerInfo::getStack(MF, Offset);
230     return AddrReg.getReg(0);
231   }
232 
233   void assignValueToReg(Register ValVReg, Register PhysReg,
234                         const CCValAssign &VA) override {
235     MIB.addUse(PhysReg, RegState::Implicit);
236     Register ExtReg = extendRegisterMin32(*this, ValVReg, VA);
237     MIRBuilder.buildCopy(PhysReg, ExtReg);
238   }
239 
240   void assignValueToAddress(Register ValVReg, Register Addr, LLT MemTy,
241                             const MachinePointerInfo &MPO,
242                             const CCValAssign &VA) override {
243     MachineFunction &MF = MIRBuilder.getMF();
244     uint64_t LocMemOffset = VA.getLocMemOffset();
245     const auto &ST = MF.getSubtarget<GCNSubtarget>();
246 
247     auto MMO = MF.getMachineMemOperand(
248         MPO, MachineMemOperand::MOStore, MemTy,
249         commonAlignment(ST.getStackAlignment(), LocMemOffset));
250     MIRBuilder.buildStore(ValVReg, Addr, *MMO);
251   }
252 
253   void assignValueToAddress(const CallLowering::ArgInfo &Arg,
254                             unsigned ValRegIndex, Register Addr, LLT MemTy,
255                             const MachinePointerInfo &MPO,
256                             const CCValAssign &VA) override {
257     Register ValVReg = VA.getLocInfo() != CCValAssign::LocInfo::FPExt
258                            ? extendRegister(Arg.Regs[ValRegIndex], VA)
259                            : Arg.Regs[ValRegIndex];
260     assignValueToAddress(ValVReg, Addr, MemTy, MPO, VA);
261   }
262 };
263 }
264 
265 AMDGPUCallLowering::AMDGPUCallLowering(const AMDGPUTargetLowering &TLI)
266   : CallLowering(&TLI) {
267 }
268 
269 // FIXME: Compatibility shim
270 static ISD::NodeType extOpcodeToISDExtOpcode(unsigned MIOpc) {
271   switch (MIOpc) {
272   case TargetOpcode::G_SEXT:
273     return ISD::SIGN_EXTEND;
274   case TargetOpcode::G_ZEXT:
275     return ISD::ZERO_EXTEND;
276   case TargetOpcode::G_ANYEXT:
277     return ISD::ANY_EXTEND;
278   default:
279     llvm_unreachable("not an extend opcode");
280   }
281 }
282 
283 bool AMDGPUCallLowering::canLowerReturn(MachineFunction &MF,
284                                         CallingConv::ID CallConv,
285                                         SmallVectorImpl<BaseArgInfo> &Outs,
286                                         bool IsVarArg) const {
287   // For shaders. Vector types should be explicitly handled by CC.
288   if (AMDGPU::isEntryFunctionCC(CallConv))
289     return true;
290 
291   SmallVector<CCValAssign, 16> ArgLocs;
292   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
293   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs,
294                  MF.getFunction().getContext());
295 
296   return checkReturn(CCInfo, Outs, TLI.CCAssignFnForReturn(CallConv, IsVarArg));
297 }
298 
299 /// Lower the return value for the already existing \p Ret. This assumes that
300 /// \p B's insertion point is correct.
301 bool AMDGPUCallLowering::lowerReturnVal(MachineIRBuilder &B,
302                                         const Value *Val, ArrayRef<Register> VRegs,
303                                         MachineInstrBuilder &Ret) const {
304   if (!Val)
305     return true;
306 
307   auto &MF = B.getMF();
308   const auto &F = MF.getFunction();
309   const DataLayout &DL = MF.getDataLayout();
310   MachineRegisterInfo *MRI = B.getMRI();
311   LLVMContext &Ctx = F.getContext();
312 
313   CallingConv::ID CC = F.getCallingConv();
314   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
315 
316   SmallVector<EVT, 8> SplitEVTs;
317   ComputeValueVTs(TLI, DL, Val->getType(), SplitEVTs);
318   assert(VRegs.size() == SplitEVTs.size() &&
319          "For each split Type there should be exactly one VReg.");
320 
321   SmallVector<ArgInfo, 8> SplitRetInfos;
322 
323   for (unsigned i = 0; i < SplitEVTs.size(); ++i) {
324     EVT VT = SplitEVTs[i];
325     Register Reg = VRegs[i];
326     ArgInfo RetInfo(Reg, VT.getTypeForEVT(Ctx), 0);
327     setArgFlags(RetInfo, AttributeList::ReturnIndex, DL, F);
328 
329     if (VT.isScalarInteger()) {
330       unsigned ExtendOp = TargetOpcode::G_ANYEXT;
331       if (RetInfo.Flags[0].isSExt()) {
332         assert(RetInfo.Regs.size() == 1 && "expect only simple return values");
333         ExtendOp = TargetOpcode::G_SEXT;
334       } else if (RetInfo.Flags[0].isZExt()) {
335         assert(RetInfo.Regs.size() == 1 && "expect only simple return values");
336         ExtendOp = TargetOpcode::G_ZEXT;
337       }
338 
339       EVT ExtVT = TLI.getTypeForExtReturn(Ctx, VT,
340                                           extOpcodeToISDExtOpcode(ExtendOp));
341       if (ExtVT != VT) {
342         RetInfo.Ty = ExtVT.getTypeForEVT(Ctx);
343         LLT ExtTy = getLLTForType(*RetInfo.Ty, DL);
344         Reg = B.buildInstr(ExtendOp, {ExtTy}, {Reg}).getReg(0);
345       }
346     }
347 
348     if (Reg != RetInfo.Regs[0]) {
349       RetInfo.Regs[0] = Reg;
350       // Reset the arg flags after modifying Reg.
351       setArgFlags(RetInfo, AttributeList::ReturnIndex, DL, F);
352     }
353 
354     splitToValueTypes(RetInfo, SplitRetInfos, DL, CC);
355   }
356 
357   CCAssignFn *AssignFn = TLI.CCAssignFnForReturn(CC, F.isVarArg());
358 
359   OutgoingValueAssigner Assigner(AssignFn);
360   AMDGPUOutgoingValueHandler RetHandler(B, *MRI, Ret);
361   return determineAndHandleAssignments(RetHandler, Assigner, SplitRetInfos, B,
362                                        CC, F.isVarArg());
363 }
364 
365 bool AMDGPUCallLowering::lowerReturn(MachineIRBuilder &B, const Value *Val,
366                                      ArrayRef<Register> VRegs,
367                                      FunctionLoweringInfo &FLI) const {
368 
369   MachineFunction &MF = B.getMF();
370   SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
371   MFI->setIfReturnsVoid(!Val);
372 
373   assert(!Val == VRegs.empty() && "Return value without a vreg");
374 
375   CallingConv::ID CC = B.getMF().getFunction().getCallingConv();
376   const bool IsShader = AMDGPU::isShader(CC);
377   const bool IsWaveEnd =
378       (IsShader && MFI->returnsVoid()) || AMDGPU::isKernel(CC);
379   if (IsWaveEnd) {
380     B.buildInstr(AMDGPU::S_ENDPGM)
381       .addImm(0);
382     return true;
383   }
384 
385   unsigned ReturnOpc =
386       IsShader ? AMDGPU::SI_RETURN_TO_EPILOG : AMDGPU::SI_RETURN;
387   auto Ret = B.buildInstrNoInsert(ReturnOpc);
388 
389   if (!FLI.CanLowerReturn)
390     insertSRetStores(B, Val->getType(), VRegs, FLI.DemoteRegister);
391   else if (!lowerReturnVal(B, Val, VRegs, Ret))
392     return false;
393 
394   // TODO: Handle CalleeSavedRegsViaCopy.
395 
396   B.insertInstr(Ret);
397   return true;
398 }
399 
400 void AMDGPUCallLowering::lowerParameterPtr(Register DstReg, MachineIRBuilder &B,
401                                            uint64_t Offset) const {
402   MachineFunction &MF = B.getMF();
403   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
404   MachineRegisterInfo &MRI = MF.getRegInfo();
405   Register KernArgSegmentPtr =
406     MFI->getPreloadedReg(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
407   Register KernArgSegmentVReg = MRI.getLiveInVirtReg(KernArgSegmentPtr);
408 
409   auto OffsetReg = B.buildConstant(LLT::scalar(64), Offset);
410 
411   B.buildPtrAdd(DstReg, KernArgSegmentVReg, OffsetReg);
412 }
413 
414 void AMDGPUCallLowering::lowerParameter(MachineIRBuilder &B, ArgInfo &OrigArg,
415                                         uint64_t Offset,
416                                         Align Alignment) const {
417   MachineFunction &MF = B.getMF();
418   const Function &F = MF.getFunction();
419   const DataLayout &DL = F.getParent()->getDataLayout();
420   MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
421 
422   LLT PtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
423 
424   SmallVector<ArgInfo, 32> SplitArgs;
425   SmallVector<uint64_t> FieldOffsets;
426   splitToValueTypes(OrigArg, SplitArgs, DL, F.getCallingConv(), &FieldOffsets);
427 
428   unsigned Idx = 0;
429   for (ArgInfo &SplitArg : SplitArgs) {
430     Register PtrReg = B.getMRI()->createGenericVirtualRegister(PtrTy);
431     lowerParameterPtr(PtrReg, B, Offset + FieldOffsets[Idx]);
432 
433     LLT ArgTy = getLLTForType(*SplitArg.Ty, DL);
434     if (SplitArg.Flags[0].isPointer()) {
435       // Compensate for losing pointeriness in splitValueTypes.
436       LLT PtrTy = LLT::pointer(SplitArg.Flags[0].getPointerAddrSpace(),
437                                ArgTy.getScalarSizeInBits());
438       ArgTy = ArgTy.isVector() ? LLT::vector(ArgTy.getElementCount(), PtrTy)
439                                : PtrTy;
440     }
441 
442     MachineMemOperand *MMO = MF.getMachineMemOperand(
443         PtrInfo,
444         MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
445             MachineMemOperand::MOInvariant,
446         ArgTy, commonAlignment(Alignment, FieldOffsets[Idx]));
447 
448     assert(SplitArg.Regs.size() == 1);
449 
450     B.buildLoad(SplitArg.Regs[0], PtrReg, *MMO);
451     ++Idx;
452   }
453 }
454 
455 // Allocate special inputs passed in user SGPRs.
456 static void allocateHSAUserSGPRs(CCState &CCInfo,
457                                  MachineIRBuilder &B,
458                                  MachineFunction &MF,
459                                  const SIRegisterInfo &TRI,
460                                  SIMachineFunctionInfo &Info) {
461   // FIXME: How should these inputs interact with inreg / custom SGPR inputs?
462   const GCNUserSGPRUsageInfo &UserSGPRInfo = Info.getUserSGPRInfo();
463   if (UserSGPRInfo.hasPrivateSegmentBuffer()) {
464     Register PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI);
465     MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass);
466     CCInfo.AllocateReg(PrivateSegmentBufferReg);
467   }
468 
469   if (UserSGPRInfo.hasDispatchPtr()) {
470     Register DispatchPtrReg = Info.addDispatchPtr(TRI);
471     MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass);
472     CCInfo.AllocateReg(DispatchPtrReg);
473   }
474 
475   const Module *M = MF.getFunction().getParent();
476   if (UserSGPRInfo.hasQueuePtr() &&
477       AMDGPU::getCodeObjectVersion(*M) < AMDGPU::AMDHSA_COV5) {
478     Register QueuePtrReg = Info.addQueuePtr(TRI);
479     MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass);
480     CCInfo.AllocateReg(QueuePtrReg);
481   }
482 
483   if (UserSGPRInfo.hasKernargSegmentPtr()) {
484     MachineRegisterInfo &MRI = MF.getRegInfo();
485     Register InputPtrReg = Info.addKernargSegmentPtr(TRI);
486     const LLT P4 = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
487     Register VReg = MRI.createGenericVirtualRegister(P4);
488     MRI.addLiveIn(InputPtrReg, VReg);
489     B.getMBB().addLiveIn(InputPtrReg);
490     B.buildCopy(VReg, InputPtrReg);
491     CCInfo.AllocateReg(InputPtrReg);
492   }
493 
494   if (UserSGPRInfo.hasDispatchID()) {
495     Register DispatchIDReg = Info.addDispatchID(TRI);
496     MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass);
497     CCInfo.AllocateReg(DispatchIDReg);
498   }
499 
500   if (UserSGPRInfo.hasFlatScratchInit()) {
501     Register FlatScratchInitReg = Info.addFlatScratchInit(TRI);
502     MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass);
503     CCInfo.AllocateReg(FlatScratchInitReg);
504   }
505 
506   // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read
507   // these from the dispatch pointer.
508 }
509 
510 bool AMDGPUCallLowering::lowerFormalArgumentsKernel(
511     MachineIRBuilder &B, const Function &F,
512     ArrayRef<ArrayRef<Register>> VRegs) const {
513   MachineFunction &MF = B.getMF();
514   const GCNSubtarget *Subtarget = &MF.getSubtarget<GCNSubtarget>();
515   MachineRegisterInfo &MRI = MF.getRegInfo();
516   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
517   const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
518   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
519   const DataLayout &DL = F.getParent()->getDataLayout();
520 
521   SmallVector<CCValAssign, 16> ArgLocs;
522   CCState CCInfo(F.getCallingConv(), F.isVarArg(), MF, ArgLocs, F.getContext());
523 
524   allocateHSAUserSGPRs(CCInfo, B, MF, *TRI, *Info);
525 
526   unsigned i = 0;
527   const Align KernArgBaseAlign(16);
528   const unsigned BaseOffset = Subtarget->getExplicitKernelArgOffset();
529   uint64_t ExplicitArgOffset = 0;
530 
531   // TODO: Align down to dword alignment and extract bits for extending loads.
532   for (auto &Arg : F.args()) {
533     const bool IsByRef = Arg.hasByRefAttr();
534     Type *ArgTy = IsByRef ? Arg.getParamByRefType() : Arg.getType();
535     unsigned AllocSize = DL.getTypeAllocSize(ArgTy);
536     if (AllocSize == 0)
537       continue;
538 
539     MaybeAlign ParamAlign = IsByRef ? Arg.getParamAlign() : std::nullopt;
540     Align ABIAlign = DL.getValueOrABITypeAlignment(ParamAlign, ArgTy);
541 
542     uint64_t ArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + BaseOffset;
543     ExplicitArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + AllocSize;
544 
545     if (Arg.use_empty()) {
546       ++i;
547       continue;
548     }
549 
550     Align Alignment = commonAlignment(KernArgBaseAlign, ArgOffset);
551 
552     if (IsByRef) {
553       unsigned ByRefAS = cast<PointerType>(Arg.getType())->getAddressSpace();
554 
555       assert(VRegs[i].size() == 1 &&
556              "expected only one register for byval pointers");
557       if (ByRefAS == AMDGPUAS::CONSTANT_ADDRESS) {
558         lowerParameterPtr(VRegs[i][0], B, ArgOffset);
559       } else {
560         const LLT ConstPtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
561         Register PtrReg = MRI.createGenericVirtualRegister(ConstPtrTy);
562         lowerParameterPtr(PtrReg, B, ArgOffset);
563 
564         B.buildAddrSpaceCast(VRegs[i][0], PtrReg);
565       }
566     } else {
567       ArgInfo OrigArg(VRegs[i], Arg, i);
568       const unsigned OrigArgIdx = i + AttributeList::FirstArgIndex;
569       setArgFlags(OrigArg, OrigArgIdx, DL, F);
570       lowerParameter(B, OrigArg, ArgOffset, Alignment);
571     }
572 
573     ++i;
574   }
575 
576   TLI.allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info);
577   TLI.allocateSystemSGPRs(CCInfo, MF, *Info, F.getCallingConv(), false);
578   return true;
579 }
580 
581 bool AMDGPUCallLowering::lowerFormalArguments(
582     MachineIRBuilder &B, const Function &F, ArrayRef<ArrayRef<Register>> VRegs,
583     FunctionLoweringInfo &FLI) const {
584   CallingConv::ID CC = F.getCallingConv();
585 
586   // The infrastructure for normal calling convention lowering is essentially
587   // useless for kernels. We want to avoid any kind of legalization or argument
588   // splitting.
589   if (CC == CallingConv::AMDGPU_KERNEL)
590     return lowerFormalArgumentsKernel(B, F, VRegs);
591 
592   const bool IsGraphics = AMDGPU::isGraphics(CC);
593   const bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CC);
594 
595   MachineFunction &MF = B.getMF();
596   MachineBasicBlock &MBB = B.getMBB();
597   MachineRegisterInfo &MRI = MF.getRegInfo();
598   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
599   const GCNSubtarget &Subtarget = MF.getSubtarget<GCNSubtarget>();
600   const SIRegisterInfo *TRI = Subtarget.getRegisterInfo();
601   const DataLayout &DL = F.getParent()->getDataLayout();
602 
603   SmallVector<CCValAssign, 16> ArgLocs;
604   CCState CCInfo(CC, F.isVarArg(), MF, ArgLocs, F.getContext());
605   const GCNUserSGPRUsageInfo &UserSGPRInfo = Info->getUserSGPRInfo();
606 
607   if (UserSGPRInfo.hasImplicitBufferPtr()) {
608     Register ImplicitBufferPtrReg = Info->addImplicitBufferPtr(*TRI);
609     MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass);
610     CCInfo.AllocateReg(ImplicitBufferPtrReg);
611   }
612 
613   // FIXME: This probably isn't defined for mesa
614   if (UserSGPRInfo.hasFlatScratchInit() && !Subtarget.isAmdPalOS()) {
615     Register FlatScratchInitReg = Info->addFlatScratchInit(*TRI);
616     MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass);
617     CCInfo.AllocateReg(FlatScratchInitReg);
618   }
619 
620   SmallVector<ArgInfo, 32> SplitArgs;
621   unsigned Idx = 0;
622   unsigned PSInputNum = 0;
623 
624   // Insert the hidden sret parameter if the return value won't fit in the
625   // return registers.
626   if (!FLI.CanLowerReturn)
627     insertSRetIncomingArgument(F, SplitArgs, FLI.DemoteRegister, MRI, DL);
628 
629   for (auto &Arg : F.args()) {
630     if (DL.getTypeStoreSize(Arg.getType()) == 0)
631       continue;
632 
633     const bool InReg = Arg.hasAttribute(Attribute::InReg);
634 
635     // SGPR arguments to functions not implemented.
636     if (!IsGraphics && InReg)
637       return false;
638 
639     if (Arg.hasAttribute(Attribute::SwiftSelf) ||
640         Arg.hasAttribute(Attribute::SwiftError) ||
641         Arg.hasAttribute(Attribute::Nest))
642       return false;
643 
644     if (CC == CallingConv::AMDGPU_PS && !InReg && PSInputNum <= 15) {
645       const bool ArgUsed = !Arg.use_empty();
646       bool SkipArg = !ArgUsed && !Info->isPSInputAllocated(PSInputNum);
647 
648       if (!SkipArg) {
649         Info->markPSInputAllocated(PSInputNum);
650         if (ArgUsed)
651           Info->markPSInputEnabled(PSInputNum);
652       }
653 
654       ++PSInputNum;
655 
656       if (SkipArg) {
657         for (Register R : VRegs[Idx])
658           B.buildUndef(R);
659 
660         ++Idx;
661         continue;
662       }
663     }
664 
665     ArgInfo OrigArg(VRegs[Idx], Arg, Idx);
666     const unsigned OrigArgIdx = Idx + AttributeList::FirstArgIndex;
667     setArgFlags(OrigArg, OrigArgIdx, DL, F);
668 
669     splitToValueTypes(OrigArg, SplitArgs, DL, CC);
670     ++Idx;
671   }
672 
673   // At least one interpolation mode must be enabled or else the GPU will
674   // hang.
675   //
676   // Check PSInputAddr instead of PSInputEnable. The idea is that if the user
677   // set PSInputAddr, the user wants to enable some bits after the compilation
678   // based on run-time states. Since we can't know what the final PSInputEna
679   // will look like, so we shouldn't do anything here and the user should take
680   // responsibility for the correct programming.
681   //
682   // Otherwise, the following restrictions apply:
683   // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled.
684   // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be
685   //   enabled too.
686   if (CC == CallingConv::AMDGPU_PS) {
687     if ((Info->getPSInputAddr() & 0x7F) == 0 ||
688         ((Info->getPSInputAddr() & 0xF) == 0 &&
689          Info->isPSInputAllocated(11))) {
690       CCInfo.AllocateReg(AMDGPU::VGPR0);
691       CCInfo.AllocateReg(AMDGPU::VGPR1);
692       Info->markPSInputAllocated(0);
693       Info->markPSInputEnabled(0);
694     }
695 
696     if (Subtarget.isAmdPalOS()) {
697       // For isAmdPalOS, the user does not enable some bits after compilation
698       // based on run-time states; the register values being generated here are
699       // the final ones set in hardware. Therefore we need to apply the
700       // workaround to PSInputAddr and PSInputEnable together.  (The case where
701       // a bit is set in PSInputAddr but not PSInputEnable is where the frontend
702       // set up an input arg for a particular interpolation mode, but nothing
703       // uses that input arg. Really we should have an earlier pass that removes
704       // such an arg.)
705       unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable();
706       if ((PsInputBits & 0x7F) == 0 ||
707           ((PsInputBits & 0xF) == 0 &&
708            (PsInputBits >> 11 & 1)))
709         Info->markPSInputEnabled(llvm::countr_zero(Info->getPSInputAddr()));
710     }
711   }
712 
713   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
714   CCAssignFn *AssignFn = TLI.CCAssignFnForCall(CC, F.isVarArg());
715 
716   if (!MBB.empty())
717     B.setInstr(*MBB.begin());
718 
719   if (!IsEntryFunc && !IsGraphics) {
720     // For the fixed ABI, pass workitem IDs in the last argument register.
721     TLI.allocateSpecialInputVGPRsFixed(CCInfo, MF, *TRI, *Info);
722   }
723 
724   IncomingValueAssigner Assigner(AssignFn);
725   if (!determineAssignments(Assigner, SplitArgs, CCInfo))
726     return false;
727 
728   FormalArgHandler Handler(B, MRI);
729   if (!handleAssignments(Handler, SplitArgs, CCInfo, ArgLocs, B))
730     return false;
731 
732   uint64_t StackSize = Assigner.StackSize;
733 
734   // Start adding system SGPRs.
735   if (IsEntryFunc) {
736     TLI.allocateSystemSGPRs(CCInfo, MF, *Info, CC, IsGraphics);
737   } else {
738     if (!Subtarget.enableFlatScratch())
739       CCInfo.AllocateReg(Info->getScratchRSrcReg());
740     TLI.allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info);
741   }
742 
743   // When we tail call, we need to check if the callee's arguments will fit on
744   // the caller's stack. So, whenever we lower formal arguments, we should keep
745   // track of this information, since we might lower a tail call in this
746   // function later.
747   Info->setBytesInStackArgArea(StackSize);
748 
749   // Move back to the end of the basic block.
750   B.setMBB(MBB);
751 
752   return true;
753 }
754 
755 bool AMDGPUCallLowering::passSpecialInputs(MachineIRBuilder &MIRBuilder,
756                                            CCState &CCInfo,
757                                            SmallVectorImpl<std::pair<MCRegister, Register>> &ArgRegs,
758                                            CallLoweringInfo &Info) const {
759   MachineFunction &MF = MIRBuilder.getMF();
760 
761   // If there's no call site, this doesn't correspond to a call from the IR and
762   // doesn't need implicit inputs.
763   if (!Info.CB)
764     return true;
765 
766   const AMDGPUFunctionArgInfo *CalleeArgInfo
767     = &AMDGPUArgumentUsageInfo::FixedABIFunctionInfo;
768 
769   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
770   const AMDGPUFunctionArgInfo &CallerArgInfo = MFI->getArgInfo();
771 
772 
773   // TODO: Unify with private memory register handling. This is complicated by
774   // the fact that at least in kernels, the input argument is not necessarily
775   // in the same location as the input.
776   AMDGPUFunctionArgInfo::PreloadedValue InputRegs[] = {
777     AMDGPUFunctionArgInfo::DISPATCH_PTR,
778     AMDGPUFunctionArgInfo::QUEUE_PTR,
779     AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR,
780     AMDGPUFunctionArgInfo::DISPATCH_ID,
781     AMDGPUFunctionArgInfo::WORKGROUP_ID_X,
782     AMDGPUFunctionArgInfo::WORKGROUP_ID_Y,
783     AMDGPUFunctionArgInfo::WORKGROUP_ID_Z,
784     AMDGPUFunctionArgInfo::LDS_KERNEL_ID,
785   };
786 
787   static constexpr StringLiteral ImplicitAttrNames[] = {
788     "amdgpu-no-dispatch-ptr",
789     "amdgpu-no-queue-ptr",
790     "amdgpu-no-implicitarg-ptr",
791     "amdgpu-no-dispatch-id",
792     "amdgpu-no-workgroup-id-x",
793     "amdgpu-no-workgroup-id-y",
794     "amdgpu-no-workgroup-id-z",
795     "amdgpu-no-lds-kernel-id",
796   };
797 
798   MachineRegisterInfo &MRI = MF.getRegInfo();
799 
800   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
801   const AMDGPULegalizerInfo *LI
802     = static_cast<const AMDGPULegalizerInfo*>(ST.getLegalizerInfo());
803 
804   unsigned I = 0;
805   for (auto InputID : InputRegs) {
806     const ArgDescriptor *OutgoingArg;
807     const TargetRegisterClass *ArgRC;
808     LLT ArgTy;
809 
810     // If the callee does not use the attribute value, skip copying the value.
811     if (Info.CB->hasFnAttr(ImplicitAttrNames[I++]))
812       continue;
813 
814     std::tie(OutgoingArg, ArgRC, ArgTy) =
815         CalleeArgInfo->getPreloadedValue(InputID);
816     if (!OutgoingArg)
817       continue;
818 
819     const ArgDescriptor *IncomingArg;
820     const TargetRegisterClass *IncomingArgRC;
821     std::tie(IncomingArg, IncomingArgRC, ArgTy) =
822         CallerArgInfo.getPreloadedValue(InputID);
823     assert(IncomingArgRC == ArgRC);
824 
825     Register InputReg = MRI.createGenericVirtualRegister(ArgTy);
826 
827     if (IncomingArg) {
828       LI->loadInputValue(InputReg, MIRBuilder, IncomingArg, ArgRC, ArgTy);
829     } else if (InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR) {
830       LI->getImplicitArgPtr(InputReg, MRI, MIRBuilder);
831     } else if (InputID == AMDGPUFunctionArgInfo::LDS_KERNEL_ID) {
832       std::optional<uint32_t> Id =
833           AMDGPUMachineFunction::getLDSKernelIdMetadata(MF.getFunction());
834       if (Id) {
835         MIRBuilder.buildConstant(InputReg, *Id);
836       } else {
837         MIRBuilder.buildUndef(InputReg);
838       }
839     } else {
840       // We may have proven the input wasn't needed, although the ABI is
841       // requiring it. We just need to allocate the register appropriately.
842       MIRBuilder.buildUndef(InputReg);
843     }
844 
845     if (OutgoingArg->isRegister()) {
846       ArgRegs.emplace_back(OutgoingArg->getRegister(), InputReg);
847       if (!CCInfo.AllocateReg(OutgoingArg->getRegister()))
848         report_fatal_error("failed to allocate implicit input argument");
849     } else {
850       LLVM_DEBUG(dbgs() << "Unhandled stack passed implicit input argument\n");
851       return false;
852     }
853   }
854 
855   // Pack workitem IDs into a single register or pass it as is if already
856   // packed.
857   const ArgDescriptor *OutgoingArg;
858   const TargetRegisterClass *ArgRC;
859   LLT ArgTy;
860 
861   std::tie(OutgoingArg, ArgRC, ArgTy) =
862       CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X);
863   if (!OutgoingArg)
864     std::tie(OutgoingArg, ArgRC, ArgTy) =
865         CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y);
866   if (!OutgoingArg)
867     std::tie(OutgoingArg, ArgRC, ArgTy) =
868         CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z);
869   if (!OutgoingArg)
870     return false;
871 
872   auto WorkitemIDX =
873       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X);
874   auto WorkitemIDY =
875       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y);
876   auto WorkitemIDZ =
877       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z);
878 
879   const ArgDescriptor *IncomingArgX = std::get<0>(WorkitemIDX);
880   const ArgDescriptor *IncomingArgY = std::get<0>(WorkitemIDY);
881   const ArgDescriptor *IncomingArgZ = std::get<0>(WorkitemIDZ);
882   const LLT S32 = LLT::scalar(32);
883 
884   const bool NeedWorkItemIDX = !Info.CB->hasFnAttr("amdgpu-no-workitem-id-x");
885   const bool NeedWorkItemIDY = !Info.CB->hasFnAttr("amdgpu-no-workitem-id-y");
886   const bool NeedWorkItemIDZ = !Info.CB->hasFnAttr("amdgpu-no-workitem-id-z");
887 
888   // If incoming ids are not packed we need to pack them.
889   // FIXME: Should consider known workgroup size to eliminate known 0 cases.
890   Register InputReg;
891   if (IncomingArgX && !IncomingArgX->isMasked() && CalleeArgInfo->WorkItemIDX &&
892       NeedWorkItemIDX) {
893     if (ST.getMaxWorkitemID(MF.getFunction(), 0) != 0) {
894       InputReg = MRI.createGenericVirtualRegister(S32);
895       LI->loadInputValue(InputReg, MIRBuilder, IncomingArgX,
896                          std::get<1>(WorkitemIDX), std::get<2>(WorkitemIDX));
897     } else {
898       InputReg = MIRBuilder.buildConstant(S32, 0).getReg(0);
899     }
900   }
901 
902   if (IncomingArgY && !IncomingArgY->isMasked() && CalleeArgInfo->WorkItemIDY &&
903       NeedWorkItemIDY && ST.getMaxWorkitemID(MF.getFunction(), 1) != 0) {
904     Register Y = MRI.createGenericVirtualRegister(S32);
905     LI->loadInputValue(Y, MIRBuilder, IncomingArgY, std::get<1>(WorkitemIDY),
906                        std::get<2>(WorkitemIDY));
907 
908     Y = MIRBuilder.buildShl(S32, Y, MIRBuilder.buildConstant(S32, 10)).getReg(0);
909     InputReg = InputReg ? MIRBuilder.buildOr(S32, InputReg, Y).getReg(0) : Y;
910   }
911 
912   if (IncomingArgZ && !IncomingArgZ->isMasked() && CalleeArgInfo->WorkItemIDZ &&
913       NeedWorkItemIDZ && ST.getMaxWorkitemID(MF.getFunction(), 2) != 0) {
914     Register Z = MRI.createGenericVirtualRegister(S32);
915     LI->loadInputValue(Z, MIRBuilder, IncomingArgZ, std::get<1>(WorkitemIDZ),
916                        std::get<2>(WorkitemIDZ));
917 
918     Z = MIRBuilder.buildShl(S32, Z, MIRBuilder.buildConstant(S32, 20)).getReg(0);
919     InputReg = InputReg ? MIRBuilder.buildOr(S32, InputReg, Z).getReg(0) : Z;
920   }
921 
922   if (!InputReg &&
923       (NeedWorkItemIDX || NeedWorkItemIDY || NeedWorkItemIDZ)) {
924     InputReg = MRI.createGenericVirtualRegister(S32);
925     if (!IncomingArgX && !IncomingArgY && !IncomingArgZ) {
926       // We're in a situation where the outgoing function requires the workitem
927       // ID, but the calling function does not have it (e.g a graphics function
928       // calling a C calling convention function). This is illegal, but we need
929       // to produce something.
930       MIRBuilder.buildUndef(InputReg);
931     } else {
932       // Workitem ids are already packed, any of present incoming arguments will
933       // carry all required fields.
934       ArgDescriptor IncomingArg = ArgDescriptor::createArg(
935         IncomingArgX ? *IncomingArgX :
936         IncomingArgY ? *IncomingArgY : *IncomingArgZ, ~0u);
937       LI->loadInputValue(InputReg, MIRBuilder, &IncomingArg,
938                          &AMDGPU::VGPR_32RegClass, S32);
939     }
940   }
941 
942   if (OutgoingArg->isRegister()) {
943     if (InputReg)
944       ArgRegs.emplace_back(OutgoingArg->getRegister(), InputReg);
945 
946     if (!CCInfo.AllocateReg(OutgoingArg->getRegister()))
947       report_fatal_error("failed to allocate implicit input argument");
948   } else {
949     LLVM_DEBUG(dbgs() << "Unhandled stack passed implicit input argument\n");
950     return false;
951   }
952 
953   return true;
954 }
955 
956 /// Returns a pair containing the fixed CCAssignFn and the vararg CCAssignFn for
957 /// CC.
958 static std::pair<CCAssignFn *, CCAssignFn *>
959 getAssignFnsForCC(CallingConv::ID CC, const SITargetLowering &TLI) {
960   return {TLI.CCAssignFnForCall(CC, false), TLI.CCAssignFnForCall(CC, true)};
961 }
962 
963 static unsigned getCallOpcode(const MachineFunction &CallerF, bool IsIndirect,
964                               bool IsTailCall, bool isWave32,
965                               CallingConv::ID CC) {
966   // For calls to amdgpu_cs_chain functions, the address is known to be uniform.
967   assert((AMDGPU::isChainCC(CC) || !IsIndirect || !IsTailCall) &&
968          "Indirect calls can't be tail calls, "
969          "because the address can be divergent");
970   if (!IsTailCall)
971     return AMDGPU::G_SI_CALL;
972 
973   if (AMDGPU::isChainCC(CC))
974     return isWave32 ? AMDGPU::SI_CS_CHAIN_TC_W32 : AMDGPU::SI_CS_CHAIN_TC_W64;
975 
976   return CC == CallingConv::AMDGPU_Gfx ? AMDGPU::SI_TCRETURN_GFX :
977                                          AMDGPU::SI_TCRETURN;
978 }
979 
980 // Add operands to call instruction to track the callee.
981 static bool addCallTargetOperands(MachineInstrBuilder &CallInst,
982                                   MachineIRBuilder &MIRBuilder,
983                                   AMDGPUCallLowering::CallLoweringInfo &Info) {
984   if (Info.Callee.isReg()) {
985     CallInst.addReg(Info.Callee.getReg());
986     CallInst.addImm(0);
987   } else if (Info.Callee.isGlobal() && Info.Callee.getOffset() == 0) {
988     // The call lowering lightly assumed we can directly encode a call target in
989     // the instruction, which is not the case. Materialize the address here.
990     const GlobalValue *GV = Info.Callee.getGlobal();
991     auto Ptr = MIRBuilder.buildGlobalValue(
992       LLT::pointer(GV->getAddressSpace(), 64), GV);
993     CallInst.addReg(Ptr.getReg(0));
994     CallInst.add(Info.Callee);
995   } else
996     return false;
997 
998   return true;
999 }
1000 
1001 bool AMDGPUCallLowering::doCallerAndCalleePassArgsTheSameWay(
1002     CallLoweringInfo &Info, MachineFunction &MF,
1003     SmallVectorImpl<ArgInfo> &InArgs) const {
1004   const Function &CallerF = MF.getFunction();
1005   CallingConv::ID CalleeCC = Info.CallConv;
1006   CallingConv::ID CallerCC = CallerF.getCallingConv();
1007 
1008   // If the calling conventions match, then everything must be the same.
1009   if (CalleeCC == CallerCC)
1010     return true;
1011 
1012   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
1013 
1014   // Make sure that the caller and callee preserve all of the same registers.
1015   auto TRI = ST.getRegisterInfo();
1016 
1017   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
1018   const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
1019   if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
1020     return false;
1021 
1022   // Check if the caller and callee will handle arguments in the same way.
1023   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
1024   CCAssignFn *CalleeAssignFnFixed;
1025   CCAssignFn *CalleeAssignFnVarArg;
1026   std::tie(CalleeAssignFnFixed, CalleeAssignFnVarArg) =
1027       getAssignFnsForCC(CalleeCC, TLI);
1028 
1029   CCAssignFn *CallerAssignFnFixed;
1030   CCAssignFn *CallerAssignFnVarArg;
1031   std::tie(CallerAssignFnFixed, CallerAssignFnVarArg) =
1032       getAssignFnsForCC(CallerCC, TLI);
1033 
1034   // FIXME: We are not accounting for potential differences in implicitly passed
1035   // inputs, but only the fixed ABI is supported now anyway.
1036   IncomingValueAssigner CalleeAssigner(CalleeAssignFnFixed,
1037                                        CalleeAssignFnVarArg);
1038   IncomingValueAssigner CallerAssigner(CallerAssignFnFixed,
1039                                        CallerAssignFnVarArg);
1040   return resultsCompatible(Info, MF, InArgs, CalleeAssigner, CallerAssigner);
1041 }
1042 
1043 bool AMDGPUCallLowering::areCalleeOutgoingArgsTailCallable(
1044     CallLoweringInfo &Info, MachineFunction &MF,
1045     SmallVectorImpl<ArgInfo> &OutArgs) const {
1046   // If there are no outgoing arguments, then we are done.
1047   if (OutArgs.empty())
1048     return true;
1049 
1050   const Function &CallerF = MF.getFunction();
1051   CallingConv::ID CalleeCC = Info.CallConv;
1052   CallingConv::ID CallerCC = CallerF.getCallingConv();
1053   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
1054 
1055   CCAssignFn *AssignFnFixed;
1056   CCAssignFn *AssignFnVarArg;
1057   std::tie(AssignFnFixed, AssignFnVarArg) = getAssignFnsForCC(CalleeCC, TLI);
1058 
1059   // We have outgoing arguments. Make sure that we can tail call with them.
1060   SmallVector<CCValAssign, 16> OutLocs;
1061   CCState OutInfo(CalleeCC, false, MF, OutLocs, CallerF.getContext());
1062   OutgoingValueAssigner Assigner(AssignFnFixed, AssignFnVarArg);
1063 
1064   if (!determineAssignments(Assigner, OutArgs, OutInfo)) {
1065     LLVM_DEBUG(dbgs() << "... Could not analyze call operands.\n");
1066     return false;
1067   }
1068 
1069   // Make sure that they can fit on the caller's stack.
1070   const SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>();
1071   if (OutInfo.getStackSize() > FuncInfo->getBytesInStackArgArea()) {
1072     LLVM_DEBUG(dbgs() << "... Cannot fit call operands on caller's stack.\n");
1073     return false;
1074   }
1075 
1076   // Verify that the parameters in callee-saved registers match.
1077   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
1078   const SIRegisterInfo *TRI = ST.getRegisterInfo();
1079   const uint32_t *CallerPreservedMask = TRI->getCallPreservedMask(MF, CallerCC);
1080   MachineRegisterInfo &MRI = MF.getRegInfo();
1081   return parametersInCSRMatch(MRI, CallerPreservedMask, OutLocs, OutArgs);
1082 }
1083 
1084 /// Return true if the calling convention is one that we can guarantee TCO for.
1085 static bool canGuaranteeTCO(CallingConv::ID CC) {
1086   return CC == CallingConv::Fast;
1087 }
1088 
1089 /// Return true if we might ever do TCO for calls with this calling convention.
1090 static bool mayTailCallThisCC(CallingConv::ID CC) {
1091   switch (CC) {
1092   case CallingConv::C:
1093   case CallingConv::AMDGPU_Gfx:
1094     return true;
1095   default:
1096     return canGuaranteeTCO(CC);
1097   }
1098 }
1099 
1100 bool AMDGPUCallLowering::isEligibleForTailCallOptimization(
1101     MachineIRBuilder &B, CallLoweringInfo &Info,
1102     SmallVectorImpl<ArgInfo> &InArgs, SmallVectorImpl<ArgInfo> &OutArgs) const {
1103   // Must pass all target-independent checks in order to tail call optimize.
1104   if (!Info.IsTailCall)
1105     return false;
1106 
1107   // Indirect calls can't be tail calls, because the address can be divergent.
1108   // TODO Check divergence info if the call really is divergent.
1109   if (Info.Callee.isReg())
1110     return false;
1111 
1112   MachineFunction &MF = B.getMF();
1113   const Function &CallerF = MF.getFunction();
1114   CallingConv::ID CalleeCC = Info.CallConv;
1115   CallingConv::ID CallerCC = CallerF.getCallingConv();
1116 
1117   const SIRegisterInfo *TRI = MF.getSubtarget<GCNSubtarget>().getRegisterInfo();
1118   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
1119   // Kernels aren't callable, and don't have a live in return address so it
1120   // doesn't make sense to do a tail call with entry functions.
1121   if (!CallerPreserved)
1122     return false;
1123 
1124   if (!mayTailCallThisCC(CalleeCC)) {
1125     LLVM_DEBUG(dbgs() << "... Calling convention cannot be tail called.\n");
1126     return false;
1127   }
1128 
1129   if (any_of(CallerF.args(), [](const Argument &A) {
1130         return A.hasByValAttr() || A.hasSwiftErrorAttr();
1131       })) {
1132     LLVM_DEBUG(dbgs() << "... Cannot tail call from callers with byval "
1133                          "or swifterror arguments\n");
1134     return false;
1135   }
1136 
1137   // If we have -tailcallopt, then we're done.
1138   if (MF.getTarget().Options.GuaranteedTailCallOpt)
1139     return canGuaranteeTCO(CalleeCC) && CalleeCC == CallerF.getCallingConv();
1140 
1141   // Verify that the incoming and outgoing arguments from the callee are
1142   // safe to tail call.
1143   if (!doCallerAndCalleePassArgsTheSameWay(Info, MF, InArgs)) {
1144     LLVM_DEBUG(
1145         dbgs()
1146         << "... Caller and callee have incompatible calling conventions.\n");
1147     return false;
1148   }
1149 
1150   if (!areCalleeOutgoingArgsTailCallable(Info, MF, OutArgs))
1151     return false;
1152 
1153   LLVM_DEBUG(dbgs() << "... Call is eligible for tail call optimization.\n");
1154   return true;
1155 }
1156 
1157 // Insert outgoing implicit arguments for a call, by inserting copies to the
1158 // implicit argument registers and adding the necessary implicit uses to the
1159 // call instruction.
1160 void AMDGPUCallLowering::handleImplicitCallArguments(
1161     MachineIRBuilder &MIRBuilder, MachineInstrBuilder &CallInst,
1162     const GCNSubtarget &ST, const SIMachineFunctionInfo &FuncInfo,
1163     CallingConv::ID CalleeCC,
1164     ArrayRef<std::pair<MCRegister, Register>> ImplicitArgRegs) const {
1165   if (!ST.enableFlatScratch()) {
1166     // Insert copies for the SRD. In the HSA case, this should be an identity
1167     // copy.
1168     auto ScratchRSrcReg = MIRBuilder.buildCopy(LLT::fixed_vector(4, 32),
1169                                                FuncInfo.getScratchRSrcReg());
1170 
1171     auto CalleeRSrcReg = AMDGPU::isChainCC(CalleeCC)
1172                              ? AMDGPU::SGPR48_SGPR49_SGPR50_SGPR51
1173                              : AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3;
1174 
1175     MIRBuilder.buildCopy(CalleeRSrcReg, ScratchRSrcReg);
1176     CallInst.addReg(CalleeRSrcReg, RegState::Implicit);
1177   }
1178 
1179   for (std::pair<MCRegister, Register> ArgReg : ImplicitArgRegs) {
1180     MIRBuilder.buildCopy((Register)ArgReg.first, ArgReg.second);
1181     CallInst.addReg(ArgReg.first, RegState::Implicit);
1182   }
1183 }
1184 
1185 bool AMDGPUCallLowering::lowerTailCall(
1186     MachineIRBuilder &MIRBuilder, CallLoweringInfo &Info,
1187     SmallVectorImpl<ArgInfo> &OutArgs) const {
1188   MachineFunction &MF = MIRBuilder.getMF();
1189   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
1190   SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>();
1191   const Function &F = MF.getFunction();
1192   MachineRegisterInfo &MRI = MF.getRegInfo();
1193   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
1194 
1195   // True when we're tail calling, but without -tailcallopt.
1196   bool IsSibCall = !MF.getTarget().Options.GuaranteedTailCallOpt;
1197 
1198   // Find out which ABI gets to decide where things go.
1199   CallingConv::ID CalleeCC = Info.CallConv;
1200   CCAssignFn *AssignFnFixed;
1201   CCAssignFn *AssignFnVarArg;
1202   std::tie(AssignFnFixed, AssignFnVarArg) = getAssignFnsForCC(CalleeCC, TLI);
1203 
1204   MachineInstrBuilder CallSeqStart;
1205   if (!IsSibCall)
1206     CallSeqStart = MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKUP);
1207 
1208   unsigned Opc =
1209       getCallOpcode(MF, Info.Callee.isReg(), true, ST.isWave32(), CalleeCC);
1210   auto MIB = MIRBuilder.buildInstrNoInsert(Opc);
1211   if (!addCallTargetOperands(MIB, MIRBuilder, Info))
1212     return false;
1213 
1214   // Byte offset for the tail call. When we are sibcalling, this will always
1215   // be 0.
1216   MIB.addImm(0);
1217 
1218   // If this is a chain call, we need to pass in the EXEC mask.
1219   const SIRegisterInfo *TRI = ST.getRegisterInfo();
1220   if (AMDGPU::isChainCC(Info.CallConv)) {
1221     ArgInfo ExecArg = Info.OrigArgs[1];
1222     assert(ExecArg.Regs.size() == 1 && "Too many regs for EXEC");
1223 
1224     if (!ExecArg.Ty->isIntegerTy(ST.getWavefrontSize()))
1225       return false;
1226 
1227     if (auto CI = dyn_cast<ConstantInt>(ExecArg.OrigValue)) {
1228       MIB.addImm(CI->getSExtValue());
1229     } else {
1230       MIB.addReg(ExecArg.Regs[0]);
1231       unsigned Idx = MIB->getNumOperands() - 1;
1232       MIB->getOperand(Idx).setReg(constrainOperandRegClass(
1233           MF, *TRI, MRI, *ST.getInstrInfo(), *ST.getRegBankInfo(), *MIB,
1234           MIB->getDesc(), MIB->getOperand(Idx), Idx));
1235     }
1236   }
1237 
1238   // Tell the call which registers are clobbered.
1239   const uint32_t *Mask = TRI->getCallPreservedMask(MF, CalleeCC);
1240   MIB.addRegMask(Mask);
1241 
1242   // FPDiff is the byte offset of the call's argument area from the callee's.
1243   // Stores to callee stack arguments will be placed in FixedStackSlots offset
1244   // by this amount for a tail call. In a sibling call it must be 0 because the
1245   // caller will deallocate the entire stack and the callee still expects its
1246   // arguments to begin at SP+0.
1247   int FPDiff = 0;
1248 
1249   // This will be 0 for sibcalls, potentially nonzero for tail calls produced
1250   // by -tailcallopt. For sibcalls, the memory operands for the call are
1251   // already available in the caller's incoming argument space.
1252   unsigned NumBytes = 0;
1253   if (!IsSibCall) {
1254     // We aren't sibcalling, so we need to compute FPDiff. We need to do this
1255     // before handling assignments, because FPDiff must be known for memory
1256     // arguments.
1257     unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea();
1258     SmallVector<CCValAssign, 16> OutLocs;
1259     CCState OutInfo(CalleeCC, false, MF, OutLocs, F.getContext());
1260 
1261     // FIXME: Not accounting for callee implicit inputs
1262     OutgoingValueAssigner CalleeAssigner(AssignFnFixed, AssignFnVarArg);
1263     if (!determineAssignments(CalleeAssigner, OutArgs, OutInfo))
1264       return false;
1265 
1266     // The callee will pop the argument stack as a tail call. Thus, we must
1267     // keep it 16-byte aligned.
1268     NumBytes = alignTo(OutInfo.getStackSize(), ST.getStackAlignment());
1269 
1270     // FPDiff will be negative if this tail call requires more space than we
1271     // would automatically have in our incoming argument space. Positive if we
1272     // actually shrink the stack.
1273     FPDiff = NumReusableBytes - NumBytes;
1274 
1275     // The stack pointer must be 16-byte aligned at all times it's used for a
1276     // memory operation, which in practice means at *all* times and in
1277     // particular across call boundaries. Therefore our own arguments started at
1278     // a 16-byte aligned SP and the delta applied for the tail call should
1279     // satisfy the same constraint.
1280     assert(isAligned(ST.getStackAlignment(), FPDiff) &&
1281            "unaligned stack on tail call");
1282   }
1283 
1284   SmallVector<CCValAssign, 16> ArgLocs;
1285   CCState CCInfo(Info.CallConv, Info.IsVarArg, MF, ArgLocs, F.getContext());
1286 
1287   // We could pass MIB and directly add the implicit uses to the call
1288   // now. However, as an aesthetic choice, place implicit argument operands
1289   // after the ordinary user argument registers.
1290   SmallVector<std::pair<MCRegister, Register>, 12> ImplicitArgRegs;
1291 
1292   if (Info.CallConv != CallingConv::AMDGPU_Gfx &&
1293       !AMDGPU::isChainCC(Info.CallConv)) {
1294     // With a fixed ABI, allocate fixed registers before user arguments.
1295     if (!passSpecialInputs(MIRBuilder, CCInfo, ImplicitArgRegs, Info))
1296       return false;
1297   }
1298 
1299   OutgoingValueAssigner Assigner(AssignFnFixed, AssignFnVarArg);
1300 
1301   if (!determineAssignments(Assigner, OutArgs, CCInfo))
1302     return false;
1303 
1304   // Do the actual argument marshalling.
1305   AMDGPUOutgoingArgHandler Handler(MIRBuilder, MRI, MIB, true, FPDiff);
1306   if (!handleAssignments(Handler, OutArgs, CCInfo, ArgLocs, MIRBuilder))
1307     return false;
1308 
1309   handleImplicitCallArguments(MIRBuilder, MIB, ST, *FuncInfo, CalleeCC,
1310                               ImplicitArgRegs);
1311 
1312   // If we have -tailcallopt, we need to adjust the stack. We'll do the call
1313   // sequence start and end here.
1314   if (!IsSibCall) {
1315     MIB->getOperand(1).setImm(FPDiff);
1316     CallSeqStart.addImm(NumBytes).addImm(0);
1317     // End the call sequence *before* emitting the call. Normally, we would
1318     // tidy the frame up after the call. However, here, we've laid out the
1319     // parameters so that when SP is reset, they will be in the correct
1320     // location.
1321     MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKDOWN).addImm(NumBytes).addImm(0);
1322   }
1323 
1324   // Now we can add the actual call instruction to the correct basic block.
1325   MIRBuilder.insertInstr(MIB);
1326 
1327   // If Callee is a reg, since it is used by a target specific
1328   // instruction, it must have a register class matching the
1329   // constraint of that instruction.
1330 
1331   // FIXME: We should define regbankselectable call instructions to handle
1332   // divergent call targets.
1333   if (MIB->getOperand(0).isReg()) {
1334     MIB->getOperand(0).setReg(constrainOperandRegClass(
1335         MF, *TRI, MRI, *ST.getInstrInfo(), *ST.getRegBankInfo(), *MIB,
1336         MIB->getDesc(), MIB->getOperand(0), 0));
1337   }
1338 
1339   MF.getFrameInfo().setHasTailCall();
1340   Info.LoweredTailCall = true;
1341   return true;
1342 }
1343 
1344 /// Lower a call to the @llvm.amdgcn.cs.chain intrinsic.
1345 bool AMDGPUCallLowering::lowerChainCall(MachineIRBuilder &MIRBuilder,
1346                                         CallLoweringInfo &Info) const {
1347   ArgInfo Callee = Info.OrigArgs[0];
1348   ArgInfo SGPRArgs = Info.OrigArgs[2];
1349   ArgInfo VGPRArgs = Info.OrigArgs[3];
1350   ArgInfo Flags = Info.OrigArgs[4];
1351 
1352   assert(cast<ConstantInt>(Flags.OrigValue)->isZero() &&
1353          "Non-zero flags aren't supported yet.");
1354   assert(Info.OrigArgs.size() == 5 && "Additional args aren't supported yet.");
1355 
1356   MachineFunction &MF = MIRBuilder.getMF();
1357   const Function &F = MF.getFunction();
1358   const DataLayout &DL = F.getParent()->getDataLayout();
1359 
1360   // The function to jump to is actually the first argument, so we'll change the
1361   // Callee and other info to match that before using our existing helper.
1362   const Value *CalleeV = Callee.OrigValue->stripPointerCasts();
1363   if (const Function *F = dyn_cast<Function>(CalleeV)) {
1364     Info.Callee = MachineOperand::CreateGA(F, 0);
1365     Info.CallConv = F->getCallingConv();
1366   } else {
1367     assert(Callee.Regs.size() == 1 && "Too many regs for the callee");
1368     Info.Callee = MachineOperand::CreateReg(Callee.Regs[0], false);
1369     Info.CallConv = CallingConv::AMDGPU_CS_Chain; // amdgpu_cs_chain_preserve
1370                                                   // behaves the same here.
1371   }
1372 
1373   // The function that we're calling cannot be vararg (only the intrinsic is).
1374   Info.IsVarArg = false;
1375 
1376   assert(std::all_of(SGPRArgs.Flags.begin(), SGPRArgs.Flags.end(),
1377                      [](ISD::ArgFlagsTy F) { return F.isInReg(); }) &&
1378          "SGPR arguments should be marked inreg");
1379   assert(std::none_of(VGPRArgs.Flags.begin(), VGPRArgs.Flags.end(),
1380                       [](ISD::ArgFlagsTy F) { return F.isInReg(); }) &&
1381          "VGPR arguments should not be marked inreg");
1382 
1383   SmallVector<ArgInfo, 8> OutArgs;
1384   splitToValueTypes(SGPRArgs, OutArgs, DL, Info.CallConv);
1385   splitToValueTypes(VGPRArgs, OutArgs, DL, Info.CallConv);
1386 
1387   Info.IsMustTailCall = true;
1388   return lowerTailCall(MIRBuilder, Info, OutArgs);
1389 }
1390 
1391 bool AMDGPUCallLowering::lowerCall(MachineIRBuilder &MIRBuilder,
1392                                    CallLoweringInfo &Info) const {
1393   if (Function *F = Info.CB->getCalledFunction())
1394     if (F->isIntrinsic()) {
1395       assert(F->getIntrinsicID() == Intrinsic::amdgcn_cs_chain &&
1396              "Unexpected intrinsic");
1397       return lowerChainCall(MIRBuilder, Info);
1398     }
1399 
1400   if (Info.IsVarArg) {
1401     LLVM_DEBUG(dbgs() << "Variadic functions not implemented\n");
1402     return false;
1403   }
1404 
1405   MachineFunction &MF = MIRBuilder.getMF();
1406   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
1407   const SIRegisterInfo *TRI = ST.getRegisterInfo();
1408 
1409   const Function &F = MF.getFunction();
1410   MachineRegisterInfo &MRI = MF.getRegInfo();
1411   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
1412   const DataLayout &DL = F.getParent()->getDataLayout();
1413 
1414   SmallVector<ArgInfo, 8> OutArgs;
1415   for (auto &OrigArg : Info.OrigArgs)
1416     splitToValueTypes(OrigArg, OutArgs, DL, Info.CallConv);
1417 
1418   SmallVector<ArgInfo, 8> InArgs;
1419   if (Info.CanLowerReturn && !Info.OrigRet.Ty->isVoidTy())
1420     splitToValueTypes(Info.OrigRet, InArgs, DL, Info.CallConv);
1421 
1422   // If we can lower as a tail call, do that instead.
1423   bool CanTailCallOpt =
1424       isEligibleForTailCallOptimization(MIRBuilder, Info, InArgs, OutArgs);
1425 
1426   // We must emit a tail call if we have musttail.
1427   if (Info.IsMustTailCall && !CanTailCallOpt) {
1428     LLVM_DEBUG(dbgs() << "Failed to lower musttail call as tail call\n");
1429     return false;
1430   }
1431 
1432   Info.IsTailCall = CanTailCallOpt;
1433   if (CanTailCallOpt)
1434     return lowerTailCall(MIRBuilder, Info, OutArgs);
1435 
1436   // Find out which ABI gets to decide where things go.
1437   CCAssignFn *AssignFnFixed;
1438   CCAssignFn *AssignFnVarArg;
1439   std::tie(AssignFnFixed, AssignFnVarArg) =
1440       getAssignFnsForCC(Info.CallConv, TLI);
1441 
1442   MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKUP)
1443     .addImm(0)
1444     .addImm(0);
1445 
1446   // Create a temporarily-floating call instruction so we can add the implicit
1447   // uses of arg registers.
1448   unsigned Opc = getCallOpcode(MF, Info.Callee.isReg(), false, ST.isWave32(),
1449                                Info.CallConv);
1450 
1451   auto MIB = MIRBuilder.buildInstrNoInsert(Opc);
1452   MIB.addDef(TRI->getReturnAddressReg(MF));
1453 
1454   if (!Info.IsConvergent)
1455     MIB.setMIFlag(MachineInstr::NoConvergent);
1456 
1457   if (!addCallTargetOperands(MIB, MIRBuilder, Info))
1458     return false;
1459 
1460   // Tell the call which registers are clobbered.
1461   const uint32_t *Mask = TRI->getCallPreservedMask(MF, Info.CallConv);
1462   MIB.addRegMask(Mask);
1463 
1464   SmallVector<CCValAssign, 16> ArgLocs;
1465   CCState CCInfo(Info.CallConv, Info.IsVarArg, MF, ArgLocs, F.getContext());
1466 
1467   // We could pass MIB and directly add the implicit uses to the call
1468   // now. However, as an aesthetic choice, place implicit argument operands
1469   // after the ordinary user argument registers.
1470   SmallVector<std::pair<MCRegister, Register>, 12> ImplicitArgRegs;
1471 
1472   if (Info.CallConv != CallingConv::AMDGPU_Gfx) {
1473     // With a fixed ABI, allocate fixed registers before user arguments.
1474     if (!passSpecialInputs(MIRBuilder, CCInfo, ImplicitArgRegs, Info))
1475       return false;
1476   }
1477 
1478   // Do the actual argument marshalling.
1479   SmallVector<Register, 8> PhysRegs;
1480 
1481   OutgoingValueAssigner Assigner(AssignFnFixed, AssignFnVarArg);
1482   if (!determineAssignments(Assigner, OutArgs, CCInfo))
1483     return false;
1484 
1485   AMDGPUOutgoingArgHandler Handler(MIRBuilder, MRI, MIB, false);
1486   if (!handleAssignments(Handler, OutArgs, CCInfo, ArgLocs, MIRBuilder))
1487     return false;
1488 
1489   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1490 
1491   handleImplicitCallArguments(MIRBuilder, MIB, ST, *MFI, Info.CallConv,
1492                               ImplicitArgRegs);
1493 
1494   // Get a count of how many bytes are to be pushed on the stack.
1495   unsigned NumBytes = CCInfo.getStackSize();
1496 
1497   // If Callee is a reg, since it is used by a target specific
1498   // instruction, it must have a register class matching the
1499   // constraint of that instruction.
1500 
1501   // FIXME: We should define regbankselectable call instructions to handle
1502   // divergent call targets.
1503   if (MIB->getOperand(1).isReg()) {
1504     MIB->getOperand(1).setReg(constrainOperandRegClass(
1505         MF, *TRI, MRI, *ST.getInstrInfo(),
1506         *ST.getRegBankInfo(), *MIB, MIB->getDesc(), MIB->getOperand(1),
1507         1));
1508   }
1509 
1510   // Now we can add the actual call instruction to the correct position.
1511   MIRBuilder.insertInstr(MIB);
1512 
1513   // Finally we can copy the returned value back into its virtual-register. In
1514   // symmetry with the arguments, the physical register must be an
1515   // implicit-define of the call instruction.
1516   if (Info.CanLowerReturn && !Info.OrigRet.Ty->isVoidTy()) {
1517     CCAssignFn *RetAssignFn = TLI.CCAssignFnForReturn(Info.CallConv,
1518                                                       Info.IsVarArg);
1519     IncomingValueAssigner Assigner(RetAssignFn);
1520     CallReturnHandler Handler(MIRBuilder, MRI, MIB);
1521     if (!determineAndHandleAssignments(Handler, Assigner, InArgs, MIRBuilder,
1522                                        Info.CallConv, Info.IsVarArg))
1523       return false;
1524   }
1525 
1526   uint64_t CalleePopBytes = NumBytes;
1527 
1528   MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKDOWN)
1529             .addImm(0)
1530             .addImm(CalleePopBytes);
1531 
1532   if (!Info.CanLowerReturn) {
1533     insertSRetLoads(MIRBuilder, Info.OrigRet.Ty, Info.OrigRet.Regs,
1534                     Info.DemoteRegister, Info.DemoteStackIndex);
1535   }
1536 
1537   return true;
1538 }
1539