1 //===-- AMDGPUISelDAGToDAG.cpp - A dag to dag inst selector for AMDGPU ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //==-----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// Defines an instruction selector for the AMDGPU target.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "AMDGPUISelDAGToDAG.h"
15 #include "AMDGPU.h"
16 #include "AMDGPUInstrInfo.h"
17 #include "AMDGPUSubtarget.h"
18 #include "AMDGPUTargetMachine.h"
19 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
20 #include "MCTargetDesc/R600MCTargetDesc.h"
21 #include "R600RegisterInfo.h"
22 #include "SIMachineFunctionInfo.h"
23 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/CodeGen/FunctionLoweringInfo.h"
26 #include "llvm/CodeGen/SelectionDAG.h"
27 #include "llvm/CodeGen/SelectionDAGISel.h"
28 #include "llvm/CodeGen/SelectionDAGNodes.h"
29 #include "llvm/IR/IntrinsicsAMDGPU.h"
30 #include "llvm/InitializePasses.h"
31 
32 #ifdef EXPENSIVE_CHECKS
33 #include "llvm/Analysis/LoopInfo.h"
34 #include "llvm/IR/Dominators.h"
35 #endif
36 
37 #define DEBUG_TYPE "amdgpu-isel"
38 
39 using namespace llvm;
40 
41 //===----------------------------------------------------------------------===//
42 // Instruction Selector Implementation
43 //===----------------------------------------------------------------------===//
44 
45 namespace {
46 static SDValue stripBitcast(SDValue Val) {
47   return Val.getOpcode() == ISD::BITCAST ? Val.getOperand(0) : Val;
48 }
49 
50 // Figure out if this is really an extract of the high 16-bits of a dword.
51 static bool isExtractHiElt(SDValue In, SDValue &Out) {
52   In = stripBitcast(In);
53 
54   if (In.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
55     if (ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(In.getOperand(1))) {
56       if (!Idx->isOne())
57         return false;
58       Out = In.getOperand(0);
59       return true;
60     }
61   }
62 
63   if (In.getOpcode() != ISD::TRUNCATE)
64     return false;
65 
66   SDValue Srl = In.getOperand(0);
67   if (Srl.getOpcode() == ISD::SRL) {
68     if (ConstantSDNode *ShiftAmt = dyn_cast<ConstantSDNode>(Srl.getOperand(1))) {
69       if (ShiftAmt->getZExtValue() == 16) {
70         Out = stripBitcast(Srl.getOperand(0));
71         return true;
72       }
73     }
74   }
75 
76   return false;
77 }
78 
79 // Look through operations that obscure just looking at the low 16-bits of the
80 // same register.
81 static SDValue stripExtractLoElt(SDValue In) {
82   if (In.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
83     if (ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(In.getOperand(1))) {
84       if (Idx->isZero() && In.getValueSizeInBits() <= 32)
85         return In.getOperand(0);
86     }
87   }
88 
89   if (In.getOpcode() == ISD::TRUNCATE) {
90     SDValue Src = In.getOperand(0);
91     if (Src.getValueType().getSizeInBits() == 32)
92       return stripBitcast(Src);
93   }
94 
95   return In;
96 }
97 
98 } // end anonymous namespace
99 
100 INITIALIZE_PASS_BEGIN(AMDGPUDAGToDAGISel, "amdgpu-isel",
101                       "AMDGPU DAG->DAG Pattern Instruction Selection", false, false)
102 INITIALIZE_PASS_DEPENDENCY(AMDGPUArgumentUsageInfo)
103 INITIALIZE_PASS_DEPENDENCY(AMDGPUPerfHintAnalysis)
104 INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis)
105 #ifdef EXPENSIVE_CHECKS
106 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
107 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
108 #endif
109 INITIALIZE_PASS_END(AMDGPUDAGToDAGISel, "amdgpu-isel",
110                     "AMDGPU DAG->DAG Pattern Instruction Selection", false, false)
111 
112 /// This pass converts a legalized DAG into a AMDGPU-specific
113 // DAG, ready for instruction scheduling.
114 FunctionPass *llvm::createAMDGPUISelDag(TargetMachine &TM,
115                                         CodeGenOpt::Level OptLevel) {
116   return new AMDGPUDAGToDAGISel(TM, OptLevel);
117 }
118 
119 AMDGPUDAGToDAGISel::AMDGPUDAGToDAGISel(TargetMachine &TM,
120                                        CodeGenOpt::Level OptLevel)
121     : SelectionDAGISel(ID, TM, OptLevel) {
122   EnableLateStructurizeCFG = AMDGPUTargetMachine::EnableLateStructurizeCFG;
123 }
124 
125 bool AMDGPUDAGToDAGISel::runOnMachineFunction(MachineFunction &MF) {
126 #ifdef EXPENSIVE_CHECKS
127   DominatorTree & DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
128   LoopInfo * LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
129   for (auto &L : LI->getLoopsInPreorder()) {
130     assert(L->isLCSSAForm(DT));
131   }
132 #endif
133   Subtarget = &MF.getSubtarget<GCNSubtarget>();
134   Mode = AMDGPU::SIModeRegisterDefaults(MF.getFunction());
135   return SelectionDAGISel::runOnMachineFunction(MF);
136 }
137 
138 bool AMDGPUDAGToDAGISel::fp16SrcZerosHighBits(unsigned Opc) const {
139   // XXX - only need to list legal operations.
140   switch (Opc) {
141   case ISD::FADD:
142   case ISD::FSUB:
143   case ISD::FMUL:
144   case ISD::FDIV:
145   case ISD::FREM:
146   case ISD::FCANONICALIZE:
147   case ISD::UINT_TO_FP:
148   case ISD::SINT_TO_FP:
149   case ISD::FABS:
150     // Fabs is lowered to a bit operation, but it's an and which will clear the
151     // high bits anyway.
152   case ISD::FSQRT:
153   case ISD::FSIN:
154   case ISD::FCOS:
155   case ISD::FPOWI:
156   case ISD::FPOW:
157   case ISD::FLOG:
158   case ISD::FLOG2:
159   case ISD::FLOG10:
160   case ISD::FEXP:
161   case ISD::FEXP2:
162   case ISD::FCEIL:
163   case ISD::FTRUNC:
164   case ISD::FRINT:
165   case ISD::FNEARBYINT:
166   case ISD::FROUND:
167   case ISD::FFLOOR:
168   case ISD::FMINNUM:
169   case ISD::FMAXNUM:
170   case AMDGPUISD::FRACT:
171   case AMDGPUISD::CLAMP:
172   case AMDGPUISD::COS_HW:
173   case AMDGPUISD::SIN_HW:
174   case AMDGPUISD::FMIN3:
175   case AMDGPUISD::FMAX3:
176   case AMDGPUISD::FMED3:
177   case AMDGPUISD::FMAD_FTZ:
178   case AMDGPUISD::RCP:
179   case AMDGPUISD::RSQ:
180   case AMDGPUISD::RCP_IFLAG:
181   case AMDGPUISD::LDEXP:
182     // On gfx10, all 16-bit instructions preserve the high bits.
183     return Subtarget->getGeneration() <= AMDGPUSubtarget::GFX9;
184   case ISD::FP_ROUND:
185     // We may select fptrunc (fma/mad) to mad_mixlo, which does not zero the
186     // high bits on gfx9.
187     // TODO: If we had the source node we could see if the source was fma/mad
188     return Subtarget->getGeneration() == AMDGPUSubtarget::VOLCANIC_ISLANDS;
189   case ISD::FMA:
190   case ISD::FMAD:
191   case AMDGPUISD::DIV_FIXUP:
192     return Subtarget->getGeneration() == AMDGPUSubtarget::VOLCANIC_ISLANDS;
193   default:
194     // fcopysign, select and others may be lowered to 32-bit bit operations
195     // which don't zero the high bits.
196     return false;
197   }
198 }
199 
200 void AMDGPUDAGToDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
201   AU.addRequired<AMDGPUArgumentUsageInfo>();
202   AU.addRequired<LegacyDivergenceAnalysis>();
203 #ifdef EXPENSIVE_CHECKS
204   AU.addRequired<DominatorTreeWrapperPass>();
205   AU.addRequired<LoopInfoWrapperPass>();
206 #endif
207   SelectionDAGISel::getAnalysisUsage(AU);
208 }
209 
210 bool AMDGPUDAGToDAGISel::matchLoadD16FromBuildVector(SDNode *N) const {
211   assert(Subtarget->d16PreservesUnusedBits());
212   MVT VT = N->getValueType(0).getSimpleVT();
213   if (VT != MVT::v2i16 && VT != MVT::v2f16)
214     return false;
215 
216   SDValue Lo = N->getOperand(0);
217   SDValue Hi = N->getOperand(1);
218 
219   LoadSDNode *LdHi = dyn_cast<LoadSDNode>(stripBitcast(Hi));
220 
221   // build_vector lo, (load ptr) -> load_d16_hi ptr, lo
222   // build_vector lo, (zextload ptr from i8) -> load_d16_hi_u8 ptr, lo
223   // build_vector lo, (sextload ptr from i8) -> load_d16_hi_i8 ptr, lo
224 
225   // Need to check for possible indirect dependencies on the other half of the
226   // vector to avoid introducing a cycle.
227   if (LdHi && Hi.hasOneUse() && !LdHi->isPredecessorOf(Lo.getNode())) {
228     SDVTList VTList = CurDAG->getVTList(VT, MVT::Other);
229 
230     SDValue TiedIn = CurDAG->getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), VT, Lo);
231     SDValue Ops[] = {
232       LdHi->getChain(), LdHi->getBasePtr(), TiedIn
233     };
234 
235     unsigned LoadOp = AMDGPUISD::LOAD_D16_HI;
236     if (LdHi->getMemoryVT() == MVT::i8) {
237       LoadOp = LdHi->getExtensionType() == ISD::SEXTLOAD ?
238         AMDGPUISD::LOAD_D16_HI_I8 : AMDGPUISD::LOAD_D16_HI_U8;
239     } else {
240       assert(LdHi->getMemoryVT() == MVT::i16);
241     }
242 
243     SDValue NewLoadHi =
244       CurDAG->getMemIntrinsicNode(LoadOp, SDLoc(LdHi), VTList,
245                                   Ops, LdHi->getMemoryVT(),
246                                   LdHi->getMemOperand());
247 
248     CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), NewLoadHi);
249     CurDAG->ReplaceAllUsesOfValueWith(SDValue(LdHi, 1), NewLoadHi.getValue(1));
250     return true;
251   }
252 
253   // build_vector (load ptr), hi -> load_d16_lo ptr, hi
254   // build_vector (zextload ptr from i8), hi -> load_d16_lo_u8 ptr, hi
255   // build_vector (sextload ptr from i8), hi -> load_d16_lo_i8 ptr, hi
256   LoadSDNode *LdLo = dyn_cast<LoadSDNode>(stripBitcast(Lo));
257   if (LdLo && Lo.hasOneUse()) {
258     SDValue TiedIn = getHi16Elt(Hi);
259     if (!TiedIn || LdLo->isPredecessorOf(TiedIn.getNode()))
260       return false;
261 
262     SDVTList VTList = CurDAG->getVTList(VT, MVT::Other);
263     unsigned LoadOp = AMDGPUISD::LOAD_D16_LO;
264     if (LdLo->getMemoryVT() == MVT::i8) {
265       LoadOp = LdLo->getExtensionType() == ISD::SEXTLOAD ?
266         AMDGPUISD::LOAD_D16_LO_I8 : AMDGPUISD::LOAD_D16_LO_U8;
267     } else {
268       assert(LdLo->getMemoryVT() == MVT::i16);
269     }
270 
271     TiedIn = CurDAG->getNode(ISD::BITCAST, SDLoc(N), VT, TiedIn);
272 
273     SDValue Ops[] = {
274       LdLo->getChain(), LdLo->getBasePtr(), TiedIn
275     };
276 
277     SDValue NewLoadLo =
278       CurDAG->getMemIntrinsicNode(LoadOp, SDLoc(LdLo), VTList,
279                                   Ops, LdLo->getMemoryVT(),
280                                   LdLo->getMemOperand());
281 
282     CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), NewLoadLo);
283     CurDAG->ReplaceAllUsesOfValueWith(SDValue(LdLo, 1), NewLoadLo.getValue(1));
284     return true;
285   }
286 
287   return false;
288 }
289 
290 void AMDGPUDAGToDAGISel::PreprocessISelDAG() {
291   if (!Subtarget->d16PreservesUnusedBits())
292     return;
293 
294   SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end();
295 
296   bool MadeChange = false;
297   while (Position != CurDAG->allnodes_begin()) {
298     SDNode *N = &*--Position;
299     if (N->use_empty())
300       continue;
301 
302     switch (N->getOpcode()) {
303     case ISD::BUILD_VECTOR:
304       MadeChange |= matchLoadD16FromBuildVector(N);
305       break;
306     default:
307       break;
308     }
309   }
310 
311   if (MadeChange) {
312     CurDAG->RemoveDeadNodes();
313     LLVM_DEBUG(dbgs() << "After PreProcess:\n";
314                CurDAG->dump(););
315   }
316 }
317 
318 bool AMDGPUDAGToDAGISel::isInlineImmediate(const SDNode *N,
319                                            bool Negated) const {
320   if (N->isUndef())
321     return true;
322 
323   const SIInstrInfo *TII = Subtarget->getInstrInfo();
324   if (Negated) {
325     if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N))
326       return TII->isInlineConstant(-C->getAPIntValue());
327 
328     if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N))
329       return TII->isInlineConstant(-C->getValueAPF().bitcastToAPInt());
330 
331   } else {
332     if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N))
333       return TII->isInlineConstant(C->getAPIntValue());
334 
335     if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N))
336       return TII->isInlineConstant(C->getValueAPF().bitcastToAPInt());
337   }
338 
339   return false;
340 }
341 
342 /// Determine the register class for \p OpNo
343 /// \returns The register class of the virtual register that will be used for
344 /// the given operand number \OpNo or NULL if the register class cannot be
345 /// determined.
346 const TargetRegisterClass *AMDGPUDAGToDAGISel::getOperandRegClass(SDNode *N,
347                                                           unsigned OpNo) const {
348   if (!N->isMachineOpcode()) {
349     if (N->getOpcode() == ISD::CopyToReg) {
350       Register Reg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
351       if (Reg.isVirtual()) {
352         MachineRegisterInfo &MRI = CurDAG->getMachineFunction().getRegInfo();
353         return MRI.getRegClass(Reg);
354       }
355 
356       const SIRegisterInfo *TRI
357         = static_cast<const GCNSubtarget *>(Subtarget)->getRegisterInfo();
358       return TRI->getPhysRegBaseClass(Reg);
359     }
360 
361     return nullptr;
362   }
363 
364   switch (N->getMachineOpcode()) {
365   default: {
366     const MCInstrDesc &Desc =
367         Subtarget->getInstrInfo()->get(N->getMachineOpcode());
368     unsigned OpIdx = Desc.getNumDefs() + OpNo;
369     if (OpIdx >= Desc.getNumOperands())
370       return nullptr;
371     int RegClass = Desc.operands()[OpIdx].RegClass;
372     if (RegClass == -1)
373       return nullptr;
374 
375     return Subtarget->getRegisterInfo()->getRegClass(RegClass);
376   }
377   case AMDGPU::REG_SEQUENCE: {
378     unsigned RCID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
379     const TargetRegisterClass *SuperRC =
380         Subtarget->getRegisterInfo()->getRegClass(RCID);
381 
382     SDValue SubRegOp = N->getOperand(OpNo + 1);
383     unsigned SubRegIdx = cast<ConstantSDNode>(SubRegOp)->getZExtValue();
384     return Subtarget->getRegisterInfo()->getSubClassWithSubReg(SuperRC,
385                                                               SubRegIdx);
386   }
387   }
388 }
389 
390 SDNode *AMDGPUDAGToDAGISel::glueCopyToOp(SDNode *N, SDValue NewChain,
391                                          SDValue Glue) const {
392   SmallVector <SDValue, 8> Ops;
393   Ops.push_back(NewChain); // Replace the chain.
394   for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
395     Ops.push_back(N->getOperand(i));
396 
397   Ops.push_back(Glue);
398   return CurDAG->MorphNodeTo(N, N->getOpcode(), N->getVTList(), Ops);
399 }
400 
401 SDNode *AMDGPUDAGToDAGISel::glueCopyToM0(SDNode *N, SDValue Val) const {
402   const SITargetLowering& Lowering =
403     *static_cast<const SITargetLowering*>(getTargetLowering());
404 
405   assert(N->getOperand(0).getValueType() == MVT::Other && "Expected chain");
406 
407   SDValue M0 = Lowering.copyToM0(*CurDAG, N->getOperand(0), SDLoc(N), Val);
408   return glueCopyToOp(N, M0, M0.getValue(1));
409 }
410 
411 SDNode *AMDGPUDAGToDAGISel::glueCopyToM0LDSInit(SDNode *N) const {
412   unsigned AS = cast<MemSDNode>(N)->getAddressSpace();
413   if (AS == AMDGPUAS::LOCAL_ADDRESS) {
414     if (Subtarget->ldsRequiresM0Init())
415       return glueCopyToM0(N, CurDAG->getTargetConstant(-1, SDLoc(N), MVT::i32));
416   } else if (AS == AMDGPUAS::REGION_ADDRESS) {
417     MachineFunction &MF = CurDAG->getMachineFunction();
418     unsigned Value = MF.getInfo<SIMachineFunctionInfo>()->getGDSSize();
419     return
420         glueCopyToM0(N, CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i32));
421   }
422   return N;
423 }
424 
425 MachineSDNode *AMDGPUDAGToDAGISel::buildSMovImm64(SDLoc &DL, uint64_t Imm,
426                                                   EVT VT) const {
427   SDNode *Lo = CurDAG->getMachineNode(
428       AMDGPU::S_MOV_B32, DL, MVT::i32,
429       CurDAG->getTargetConstant(Imm & 0xFFFFFFFF, DL, MVT::i32));
430   SDNode *Hi =
431       CurDAG->getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32,
432                              CurDAG->getTargetConstant(Imm >> 32, DL, MVT::i32));
433   const SDValue Ops[] = {
434       CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32),
435       SDValue(Lo, 0), CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
436       SDValue(Hi, 0), CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32)};
437 
438   return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL, VT, Ops);
439 }
440 
441 void AMDGPUDAGToDAGISel::SelectBuildVector(SDNode *N, unsigned RegClassID) {
442   EVT VT = N->getValueType(0);
443   unsigned NumVectorElts = VT.getVectorNumElements();
444   EVT EltVT = VT.getVectorElementType();
445   SDLoc DL(N);
446   SDValue RegClass = CurDAG->getTargetConstant(RegClassID, DL, MVT::i32);
447 
448   if (NumVectorElts == 1) {
449     CurDAG->SelectNodeTo(N, AMDGPU::COPY_TO_REGCLASS, EltVT, N->getOperand(0),
450                          RegClass);
451     return;
452   }
453 
454   assert(NumVectorElts <= 32 && "Vectors with more than 32 elements not "
455                                   "supported yet");
456   // 32 = Max Num Vector Elements
457   // 2 = 2 REG_SEQUENCE operands per element (value, subreg index)
458   // 1 = Vector Register Class
459   SmallVector<SDValue, 32 * 2 + 1> RegSeqArgs(NumVectorElts * 2 + 1);
460 
461   bool IsGCN = CurDAG->getSubtarget().getTargetTriple().getArch() ==
462                Triple::amdgcn;
463   RegSeqArgs[0] = CurDAG->getTargetConstant(RegClassID, DL, MVT::i32);
464   bool IsRegSeq = true;
465   unsigned NOps = N->getNumOperands();
466   for (unsigned i = 0; i < NOps; i++) {
467     // XXX: Why is this here?
468     if (isa<RegisterSDNode>(N->getOperand(i))) {
469       IsRegSeq = false;
470       break;
471     }
472     unsigned Sub = IsGCN ? SIRegisterInfo::getSubRegFromChannel(i)
473                          : R600RegisterInfo::getSubRegFromChannel(i);
474     RegSeqArgs[1 + (2 * i)] = N->getOperand(i);
475     RegSeqArgs[1 + (2 * i) + 1] = CurDAG->getTargetConstant(Sub, DL, MVT::i32);
476   }
477   if (NOps != NumVectorElts) {
478     // Fill in the missing undef elements if this was a scalar_to_vector.
479     assert(N->getOpcode() == ISD::SCALAR_TO_VECTOR && NOps < NumVectorElts);
480     MachineSDNode *ImpDef = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
481                                                    DL, EltVT);
482     for (unsigned i = NOps; i < NumVectorElts; ++i) {
483       unsigned Sub = IsGCN ? SIRegisterInfo::getSubRegFromChannel(i)
484                            : R600RegisterInfo::getSubRegFromChannel(i);
485       RegSeqArgs[1 + (2 * i)] = SDValue(ImpDef, 0);
486       RegSeqArgs[1 + (2 * i) + 1] =
487           CurDAG->getTargetConstant(Sub, DL, MVT::i32);
488     }
489   }
490 
491   if (!IsRegSeq)
492     SelectCode(N);
493   CurDAG->SelectNodeTo(N, AMDGPU::REG_SEQUENCE, N->getVTList(), RegSeqArgs);
494 }
495 
496 void AMDGPUDAGToDAGISel::Select(SDNode *N) {
497   unsigned int Opc = N->getOpcode();
498   if (N->isMachineOpcode()) {
499     N->setNodeId(-1);
500     return;   // Already selected.
501   }
502 
503   // isa<MemSDNode> almost works but is slightly too permissive for some DS
504   // intrinsics.
505   if (Opc == ISD::LOAD || Opc == ISD::STORE || isa<AtomicSDNode>(N) ||
506       (Opc == AMDGPUISD::ATOMIC_INC || Opc == AMDGPUISD::ATOMIC_DEC ||
507        Opc == ISD::ATOMIC_LOAD_FADD ||
508        Opc == AMDGPUISD::ATOMIC_LOAD_FMIN ||
509        Opc == AMDGPUISD::ATOMIC_LOAD_FMAX)) {
510     N = glueCopyToM0LDSInit(N);
511     SelectCode(N);
512     return;
513   }
514 
515   switch (Opc) {
516   default:
517     break;
518   // We are selecting i64 ADD here instead of custom lower it during
519   // DAG legalization, so we can fold some i64 ADDs used for address
520   // calculation into the LOAD and STORE instructions.
521   case ISD::ADDC:
522   case ISD::ADDE:
523   case ISD::SUBC:
524   case ISD::SUBE: {
525     if (N->getValueType(0) != MVT::i64)
526       break;
527 
528     SelectADD_SUB_I64(N);
529     return;
530   }
531   case ISD::ADDCARRY:
532   case ISD::SUBCARRY:
533     if (N->getValueType(0) != MVT::i32)
534       break;
535 
536     SelectAddcSubb(N);
537     return;
538   case ISD::UADDO:
539   case ISD::USUBO: {
540     SelectUADDO_USUBO(N);
541     return;
542   }
543   case AMDGPUISD::FMUL_W_CHAIN: {
544     SelectFMUL_W_CHAIN(N);
545     return;
546   }
547   case AMDGPUISD::FMA_W_CHAIN: {
548     SelectFMA_W_CHAIN(N);
549     return;
550   }
551 
552   case ISD::SCALAR_TO_VECTOR:
553   case ISD::BUILD_VECTOR: {
554     EVT VT = N->getValueType(0);
555     unsigned NumVectorElts = VT.getVectorNumElements();
556     if (VT.getScalarSizeInBits() == 16) {
557       if (Opc == ISD::BUILD_VECTOR && NumVectorElts == 2) {
558         if (SDNode *Packed = packConstantV2I16(N, *CurDAG)) {
559           ReplaceNode(N, Packed);
560           return;
561         }
562       }
563 
564       break;
565     }
566 
567     assert(VT.getVectorElementType().bitsEq(MVT::i32));
568     unsigned RegClassID =
569         SIRegisterInfo::getSGPRClassForBitWidth(NumVectorElts * 32)->getID();
570     SelectBuildVector(N, RegClassID);
571     return;
572   }
573   case ISD::BUILD_PAIR: {
574     SDValue RC, SubReg0, SubReg1;
575     SDLoc DL(N);
576     if (N->getValueType(0) == MVT::i128) {
577       RC = CurDAG->getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32);
578       SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32);
579       SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32);
580     } else if (N->getValueType(0) == MVT::i64) {
581       RC = CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32);
582       SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32);
583       SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32);
584     } else {
585       llvm_unreachable("Unhandled value type for BUILD_PAIR");
586     }
587     const SDValue Ops[] = { RC, N->getOperand(0), SubReg0,
588                             N->getOperand(1), SubReg1 };
589     ReplaceNode(N, CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL,
590                                           N->getValueType(0), Ops));
591     return;
592   }
593 
594   case ISD::Constant:
595   case ISD::ConstantFP: {
596     if (N->getValueType(0).getSizeInBits() != 64 || isInlineImmediate(N))
597       break;
598 
599     uint64_t Imm;
600     if (ConstantFPSDNode *FP = dyn_cast<ConstantFPSDNode>(N))
601       Imm = FP->getValueAPF().bitcastToAPInt().getZExtValue();
602     else {
603       ConstantSDNode *C = cast<ConstantSDNode>(N);
604       Imm = C->getZExtValue();
605     }
606 
607     SDLoc DL(N);
608     ReplaceNode(N, buildSMovImm64(DL, Imm, N->getValueType(0)));
609     return;
610   }
611   case AMDGPUISD::BFE_I32:
612   case AMDGPUISD::BFE_U32: {
613     // There is a scalar version available, but unlike the vector version which
614     // has a separate operand for the offset and width, the scalar version packs
615     // the width and offset into a single operand. Try to move to the scalar
616     // version if the offsets are constant, so that we can try to keep extended
617     // loads of kernel arguments in SGPRs.
618 
619     // TODO: Technically we could try to pattern match scalar bitshifts of
620     // dynamic values, but it's probably not useful.
621     ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
622     if (!Offset)
623       break;
624 
625     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2));
626     if (!Width)
627       break;
628 
629     bool Signed = Opc == AMDGPUISD::BFE_I32;
630 
631     uint32_t OffsetVal = Offset->getZExtValue();
632     uint32_t WidthVal = Width->getZExtValue();
633 
634     ReplaceNode(N, getBFE32(Signed, SDLoc(N), N->getOperand(0), OffsetVal,
635                             WidthVal));
636     return;
637   }
638   case AMDGPUISD::DIV_SCALE: {
639     SelectDIV_SCALE(N);
640     return;
641   }
642   case AMDGPUISD::MAD_I64_I32:
643   case AMDGPUISD::MAD_U64_U32: {
644     SelectMAD_64_32(N);
645     return;
646   }
647   case ISD::SMUL_LOHI:
648   case ISD::UMUL_LOHI:
649     return SelectMUL_LOHI(N);
650   case ISD::CopyToReg: {
651     const SITargetLowering& Lowering =
652       *static_cast<const SITargetLowering*>(getTargetLowering());
653     N = Lowering.legalizeTargetIndependentNode(N, *CurDAG);
654     break;
655   }
656   case ISD::AND:
657   case ISD::SRL:
658   case ISD::SRA:
659   case ISD::SIGN_EXTEND_INREG:
660     if (N->getValueType(0) != MVT::i32)
661       break;
662 
663     SelectS_BFE(N);
664     return;
665   case ISD::BRCOND:
666     SelectBRCOND(N);
667     return;
668   case ISD::FMAD:
669   case ISD::FMA:
670     SelectFMAD_FMA(N);
671     return;
672   case AMDGPUISD::CVT_PKRTZ_F16_F32:
673   case AMDGPUISD::CVT_PKNORM_I16_F32:
674   case AMDGPUISD::CVT_PKNORM_U16_F32:
675   case AMDGPUISD::CVT_PK_U16_U32:
676   case AMDGPUISD::CVT_PK_I16_I32: {
677     // Hack around using a legal type if f16 is illegal.
678     if (N->getValueType(0) == MVT::i32) {
679       MVT NewVT = Opc == AMDGPUISD::CVT_PKRTZ_F16_F32 ? MVT::v2f16 : MVT::v2i16;
680       N = CurDAG->MorphNodeTo(N, N->getOpcode(), CurDAG->getVTList(NewVT),
681                               { N->getOperand(0), N->getOperand(1) });
682       SelectCode(N);
683       return;
684     }
685 
686     break;
687   }
688   case ISD::INTRINSIC_W_CHAIN: {
689     SelectINTRINSIC_W_CHAIN(N);
690     return;
691   }
692   case ISD::INTRINSIC_WO_CHAIN: {
693     SelectINTRINSIC_WO_CHAIN(N);
694     return;
695   }
696   case ISD::INTRINSIC_VOID: {
697     SelectINTRINSIC_VOID(N);
698     return;
699   }
700   }
701 
702   SelectCode(N);
703 }
704 
705 bool AMDGPUDAGToDAGISel::isUniformBr(const SDNode *N) const {
706   const BasicBlock *BB = FuncInfo->MBB->getBasicBlock();
707   const Instruction *Term = BB->getTerminator();
708   return Term->getMetadata("amdgpu.uniform") ||
709          Term->getMetadata("structurizecfg.uniform");
710 }
711 
712 bool AMDGPUDAGToDAGISel::isUnneededShiftMask(const SDNode *N,
713                                              unsigned ShAmtBits) const {
714   assert(N->getOpcode() == ISD::AND);
715 
716   const APInt &RHS = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
717   if (RHS.countTrailingOnes() >= ShAmtBits)
718     return true;
719 
720   const APInt &LHSKnownZeros = CurDAG->computeKnownBits(N->getOperand(0)).Zero;
721   return (LHSKnownZeros | RHS).countTrailingOnes() >= ShAmtBits;
722 }
723 
724 static bool getBaseWithOffsetUsingSplitOR(SelectionDAG &DAG, SDValue Addr,
725                                           SDValue &N0, SDValue &N1) {
726   if (Addr.getValueType() == MVT::i64 && Addr.getOpcode() == ISD::BITCAST &&
727       Addr.getOperand(0).getOpcode() == ISD::BUILD_VECTOR) {
728     // As we split 64-bit `or` earlier, it's complicated pattern to match, i.e.
729     // (i64 (bitcast (v2i32 (build_vector
730     //                        (or (extract_vector_elt V, 0), OFFSET),
731     //                        (extract_vector_elt V, 1)))))
732     SDValue Lo = Addr.getOperand(0).getOperand(0);
733     if (Lo.getOpcode() == ISD::OR && DAG.isBaseWithConstantOffset(Lo)) {
734       SDValue BaseLo = Lo.getOperand(0);
735       SDValue BaseHi = Addr.getOperand(0).getOperand(1);
736       // Check that split base (Lo and Hi) are extracted from the same one.
737       if (BaseLo.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
738           BaseHi.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
739           BaseLo.getOperand(0) == BaseHi.getOperand(0) &&
740           // Lo is statically extracted from index 0.
741           isa<ConstantSDNode>(BaseLo.getOperand(1)) &&
742           BaseLo.getConstantOperandVal(1) == 0 &&
743           // Hi is statically extracted from index 0.
744           isa<ConstantSDNode>(BaseHi.getOperand(1)) &&
745           BaseHi.getConstantOperandVal(1) == 1) {
746         N0 = BaseLo.getOperand(0).getOperand(0);
747         N1 = Lo.getOperand(1);
748         return true;
749       }
750     }
751   }
752   return false;
753 }
754 
755 bool AMDGPUDAGToDAGISel::isBaseWithConstantOffset64(SDValue Addr, SDValue &LHS,
756                                                     SDValue &RHS) const {
757   if (CurDAG->isBaseWithConstantOffset(Addr)) {
758     LHS = Addr.getOperand(0);
759     RHS = Addr.getOperand(1);
760     return true;
761   }
762 
763   if (getBaseWithOffsetUsingSplitOR(*CurDAG, Addr, LHS, RHS)) {
764     assert(LHS && RHS && isa<ConstantSDNode>(RHS));
765     return true;
766   }
767 
768   return false;
769 }
770 
771 StringRef AMDGPUDAGToDAGISel::getPassName() const {
772   return "AMDGPU DAG->DAG Pattern Instruction Selection";
773 }
774 
775 //===----------------------------------------------------------------------===//
776 // Complex Patterns
777 //===----------------------------------------------------------------------===//
778 
779 bool AMDGPUDAGToDAGISel::SelectADDRVTX_READ(SDValue Addr, SDValue &Base,
780                                             SDValue &Offset) {
781   return false;
782 }
783 
784 bool AMDGPUDAGToDAGISel::SelectADDRIndirect(SDValue Addr, SDValue &Base,
785                                             SDValue &Offset) {
786   ConstantSDNode *C;
787   SDLoc DL(Addr);
788 
789   if ((C = dyn_cast<ConstantSDNode>(Addr))) {
790     Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32);
791     Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32);
792   } else if ((Addr.getOpcode() == AMDGPUISD::DWORDADDR) &&
793              (C = dyn_cast<ConstantSDNode>(Addr.getOperand(0)))) {
794     Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32);
795     Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32);
796   } else if ((Addr.getOpcode() == ISD::ADD || Addr.getOpcode() == ISD::OR) &&
797             (C = dyn_cast<ConstantSDNode>(Addr.getOperand(1)))) {
798     Base = Addr.getOperand(0);
799     Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32);
800   } else {
801     Base = Addr;
802     Offset = CurDAG->getTargetConstant(0, DL, MVT::i32);
803   }
804 
805   return true;
806 }
807 
808 SDValue AMDGPUDAGToDAGISel::getMaterializedScalarImm32(int64_t Val,
809                                                        const SDLoc &DL) const {
810   SDNode *Mov = CurDAG->getMachineNode(
811     AMDGPU::S_MOV_B32, DL, MVT::i32,
812     CurDAG->getTargetConstant(Val, DL, MVT::i32));
813   return SDValue(Mov, 0);
814 }
815 
816 // FIXME: Should only handle addcarry/subcarry
817 void AMDGPUDAGToDAGISel::SelectADD_SUB_I64(SDNode *N) {
818   SDLoc DL(N);
819   SDValue LHS = N->getOperand(0);
820   SDValue RHS = N->getOperand(1);
821 
822   unsigned Opcode = N->getOpcode();
823   bool ConsumeCarry = (Opcode == ISD::ADDE || Opcode == ISD::SUBE);
824   bool ProduceCarry =
825       ConsumeCarry || Opcode == ISD::ADDC || Opcode == ISD::SUBC;
826   bool IsAdd = Opcode == ISD::ADD || Opcode == ISD::ADDC || Opcode == ISD::ADDE;
827 
828   SDValue Sub0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32);
829   SDValue Sub1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32);
830 
831   SDNode *Lo0 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
832                                        DL, MVT::i32, LHS, Sub0);
833   SDNode *Hi0 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
834                                        DL, MVT::i32, LHS, Sub1);
835 
836   SDNode *Lo1 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
837                                        DL, MVT::i32, RHS, Sub0);
838   SDNode *Hi1 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
839                                        DL, MVT::i32, RHS, Sub1);
840 
841   SDVTList VTList = CurDAG->getVTList(MVT::i32, MVT::Glue);
842 
843   static const unsigned OpcMap[2][2][2] = {
844       {{AMDGPU::S_SUB_U32, AMDGPU::S_ADD_U32},
845        {AMDGPU::V_SUB_CO_U32_e32, AMDGPU::V_ADD_CO_U32_e32}},
846       {{AMDGPU::S_SUBB_U32, AMDGPU::S_ADDC_U32},
847        {AMDGPU::V_SUBB_U32_e32, AMDGPU::V_ADDC_U32_e32}}};
848 
849   unsigned Opc = OpcMap[0][N->isDivergent()][IsAdd];
850   unsigned CarryOpc = OpcMap[1][N->isDivergent()][IsAdd];
851 
852   SDNode *AddLo;
853   if (!ConsumeCarry) {
854     SDValue Args[] = { SDValue(Lo0, 0), SDValue(Lo1, 0) };
855     AddLo = CurDAG->getMachineNode(Opc, DL, VTList, Args);
856   } else {
857     SDValue Args[] = { SDValue(Lo0, 0), SDValue(Lo1, 0), N->getOperand(2) };
858     AddLo = CurDAG->getMachineNode(CarryOpc, DL, VTList, Args);
859   }
860   SDValue AddHiArgs[] = {
861     SDValue(Hi0, 0),
862     SDValue(Hi1, 0),
863     SDValue(AddLo, 1)
864   };
865   SDNode *AddHi = CurDAG->getMachineNode(CarryOpc, DL, VTList, AddHiArgs);
866 
867   SDValue RegSequenceArgs[] = {
868     CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32),
869     SDValue(AddLo,0),
870     Sub0,
871     SDValue(AddHi,0),
872     Sub1,
873   };
874   SDNode *RegSequence = CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, DL,
875                                                MVT::i64, RegSequenceArgs);
876 
877   if (ProduceCarry) {
878     // Replace the carry-use
879     ReplaceUses(SDValue(N, 1), SDValue(AddHi, 1));
880   }
881 
882   // Replace the remaining uses.
883   ReplaceNode(N, RegSequence);
884 }
885 
886 void AMDGPUDAGToDAGISel::SelectAddcSubb(SDNode *N) {
887   SDLoc DL(N);
888   SDValue LHS = N->getOperand(0);
889   SDValue RHS = N->getOperand(1);
890   SDValue CI = N->getOperand(2);
891 
892   if (N->isDivergent()) {
893     unsigned Opc = N->getOpcode() == ISD::ADDCARRY ? AMDGPU::V_ADDC_U32_e64
894                                                    : AMDGPU::V_SUBB_U32_e64;
895     CurDAG->SelectNodeTo(
896         N, Opc, N->getVTList(),
897         {LHS, RHS, CI,
898          CurDAG->getTargetConstant(0, {}, MVT::i1) /*clamp bit*/});
899   } else {
900     unsigned Opc = N->getOpcode() == ISD::ADDCARRY ? AMDGPU::S_ADD_CO_PSEUDO
901                                                    : AMDGPU::S_SUB_CO_PSEUDO;
902     CurDAG->SelectNodeTo(N, Opc, N->getVTList(), {LHS, RHS, CI});
903   }
904 }
905 
906 void AMDGPUDAGToDAGISel::SelectUADDO_USUBO(SDNode *N) {
907   // The name of the opcodes are misleading. v_add_i32/v_sub_i32 have unsigned
908   // carry out despite the _i32 name. These were renamed in VI to _U32.
909   // FIXME: We should probably rename the opcodes here.
910   bool IsAdd = N->getOpcode() == ISD::UADDO;
911   bool IsVALU = N->isDivergent();
912 
913   for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); UI != E;
914        ++UI)
915     if (UI.getUse().getResNo() == 1) {
916       if ((IsAdd && (UI->getOpcode() != ISD::ADDCARRY)) ||
917           (!IsAdd && (UI->getOpcode() != ISD::SUBCARRY))) {
918         IsVALU = true;
919         break;
920       }
921     }
922 
923   if (IsVALU) {
924     unsigned Opc = IsAdd ? AMDGPU::V_ADD_CO_U32_e64 : AMDGPU::V_SUB_CO_U32_e64;
925 
926     CurDAG->SelectNodeTo(
927         N, Opc, N->getVTList(),
928         {N->getOperand(0), N->getOperand(1),
929          CurDAG->getTargetConstant(0, {}, MVT::i1) /*clamp bit*/});
930   } else {
931     unsigned Opc = N->getOpcode() == ISD::UADDO ? AMDGPU::S_UADDO_PSEUDO
932                                                 : AMDGPU::S_USUBO_PSEUDO;
933 
934     CurDAG->SelectNodeTo(N, Opc, N->getVTList(),
935                          {N->getOperand(0), N->getOperand(1)});
936   }
937 }
938 
939 void AMDGPUDAGToDAGISel::SelectFMA_W_CHAIN(SDNode *N) {
940   SDLoc SL(N);
941   //  src0_modifiers, src0,  src1_modifiers, src1, src2_modifiers, src2, clamp, omod
942   SDValue Ops[10];
943 
944   SelectVOP3Mods0(N->getOperand(1), Ops[1], Ops[0], Ops[6], Ops[7]);
945   SelectVOP3Mods(N->getOperand(2), Ops[3], Ops[2]);
946   SelectVOP3Mods(N->getOperand(3), Ops[5], Ops[4]);
947   Ops[8] = N->getOperand(0);
948   Ops[9] = N->getOperand(4);
949 
950   // If there are no source modifiers, prefer fmac over fma because it can use
951   // the smaller VOP2 encoding.
952   bool UseFMAC = Subtarget->hasDLInsts() &&
953                  cast<ConstantSDNode>(Ops[0])->isZero() &&
954                  cast<ConstantSDNode>(Ops[2])->isZero() &&
955                  cast<ConstantSDNode>(Ops[4])->isZero();
956   unsigned Opcode = UseFMAC ? AMDGPU::V_FMAC_F32_e64 : AMDGPU::V_FMA_F32_e64;
957   CurDAG->SelectNodeTo(N, Opcode, N->getVTList(), Ops);
958 }
959 
960 void AMDGPUDAGToDAGISel::SelectFMUL_W_CHAIN(SDNode *N) {
961   SDLoc SL(N);
962   //    src0_modifiers, src0,  src1_modifiers, src1, clamp, omod
963   SDValue Ops[8];
964 
965   SelectVOP3Mods0(N->getOperand(1), Ops[1], Ops[0], Ops[4], Ops[5]);
966   SelectVOP3Mods(N->getOperand(2), Ops[3], Ops[2]);
967   Ops[6] = N->getOperand(0);
968   Ops[7] = N->getOperand(3);
969 
970   CurDAG->SelectNodeTo(N, AMDGPU::V_MUL_F32_e64, N->getVTList(), Ops);
971 }
972 
973 // We need to handle this here because tablegen doesn't support matching
974 // instructions with multiple outputs.
975 void AMDGPUDAGToDAGISel::SelectDIV_SCALE(SDNode *N) {
976   SDLoc SL(N);
977   EVT VT = N->getValueType(0);
978 
979   assert(VT == MVT::f32 || VT == MVT::f64);
980 
981   unsigned Opc
982     = (VT == MVT::f64) ? AMDGPU::V_DIV_SCALE_F64_e64 : AMDGPU::V_DIV_SCALE_F32_e64;
983 
984   // src0_modifiers, src0, src1_modifiers, src1, src2_modifiers, src2, clamp,
985   // omod
986   SDValue Ops[8];
987   SelectVOP3BMods0(N->getOperand(0), Ops[1], Ops[0], Ops[6], Ops[7]);
988   SelectVOP3BMods(N->getOperand(1), Ops[3], Ops[2]);
989   SelectVOP3BMods(N->getOperand(2), Ops[5], Ops[4]);
990   CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops);
991 }
992 
993 // We need to handle this here because tablegen doesn't support matching
994 // instructions with multiple outputs.
995 void AMDGPUDAGToDAGISel::SelectMAD_64_32(SDNode *N) {
996   SDLoc SL(N);
997   bool Signed = N->getOpcode() == AMDGPUISD::MAD_I64_I32;
998   unsigned Opc;
999   if (Subtarget->hasMADIntraFwdBug())
1000     Opc = Signed ? AMDGPU::V_MAD_I64_I32_gfx11_e64
1001                  : AMDGPU::V_MAD_U64_U32_gfx11_e64;
1002   else
1003     Opc = Signed ? AMDGPU::V_MAD_I64_I32_e64 : AMDGPU::V_MAD_U64_U32_e64;
1004 
1005   SDValue Clamp = CurDAG->getTargetConstant(0, SL, MVT::i1);
1006   SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2),
1007                     Clamp };
1008   CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops);
1009 }
1010 
1011 // We need to handle this here because tablegen doesn't support matching
1012 // instructions with multiple outputs.
1013 void AMDGPUDAGToDAGISel::SelectMUL_LOHI(SDNode *N) {
1014   SDLoc SL(N);
1015   bool Signed = N->getOpcode() == ISD::SMUL_LOHI;
1016   unsigned Opc;
1017   if (Subtarget->hasMADIntraFwdBug())
1018     Opc = Signed ? AMDGPU::V_MAD_I64_I32_gfx11_e64
1019                  : AMDGPU::V_MAD_U64_U32_gfx11_e64;
1020   else
1021     Opc = Signed ? AMDGPU::V_MAD_I64_I32_e64 : AMDGPU::V_MAD_U64_U32_e64;
1022 
1023   SDValue Zero = CurDAG->getTargetConstant(0, SL, MVT::i64);
1024   SDValue Clamp = CurDAG->getTargetConstant(0, SL, MVT::i1);
1025   SDValue Ops[] = {N->getOperand(0), N->getOperand(1), Zero, Clamp};
1026   SDNode *Mad = CurDAG->getMachineNode(Opc, SL, N->getVTList(), Ops);
1027   if (!SDValue(N, 0).use_empty()) {
1028     SDValue Sub0 = CurDAG->getTargetConstant(AMDGPU::sub0, SL, MVT::i32);
1029     SDNode *Lo = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, SL,
1030                                         MVT::i32, SDValue(Mad, 0), Sub0);
1031     ReplaceUses(SDValue(N, 0), SDValue(Lo, 0));
1032   }
1033   if (!SDValue(N, 1).use_empty()) {
1034     SDValue Sub1 = CurDAG->getTargetConstant(AMDGPU::sub1, SL, MVT::i32);
1035     SDNode *Hi = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, SL,
1036                                         MVT::i32, SDValue(Mad, 0), Sub1);
1037     ReplaceUses(SDValue(N, 1), SDValue(Hi, 0));
1038   }
1039   CurDAG->RemoveDeadNode(N);
1040 }
1041 
1042 bool AMDGPUDAGToDAGISel::isDSOffsetLegal(SDValue Base, unsigned Offset) const {
1043   if (!isUInt<16>(Offset))
1044     return false;
1045 
1046   if (!Base || Subtarget->hasUsableDSOffset() ||
1047       Subtarget->unsafeDSOffsetFoldingEnabled())
1048     return true;
1049 
1050   // On Southern Islands instruction with a negative base value and an offset
1051   // don't seem to work.
1052   return CurDAG->SignBitIsZero(Base);
1053 }
1054 
1055 bool AMDGPUDAGToDAGISel::SelectDS1Addr1Offset(SDValue Addr, SDValue &Base,
1056                                               SDValue &Offset) const {
1057   SDLoc DL(Addr);
1058   if (CurDAG->isBaseWithConstantOffset(Addr)) {
1059     SDValue N0 = Addr.getOperand(0);
1060     SDValue N1 = Addr.getOperand(1);
1061     ConstantSDNode *C1 = cast<ConstantSDNode>(N1);
1062     if (isDSOffsetLegal(N0, C1->getSExtValue())) {
1063       // (add n0, c0)
1064       Base = N0;
1065       Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16);
1066       return true;
1067     }
1068   } else if (Addr.getOpcode() == ISD::SUB) {
1069     // sub C, x -> add (sub 0, x), C
1070     if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr.getOperand(0))) {
1071       int64_t ByteOffset = C->getSExtValue();
1072       if (isDSOffsetLegal(SDValue(), ByteOffset)) {
1073         SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32);
1074 
1075         // XXX - This is kind of hacky. Create a dummy sub node so we can check
1076         // the known bits in isDSOffsetLegal. We need to emit the selected node
1077         // here, so this is thrown away.
1078         SDValue Sub = CurDAG->getNode(ISD::SUB, DL, MVT::i32,
1079                                       Zero, Addr.getOperand(1));
1080 
1081         if (isDSOffsetLegal(Sub, ByteOffset)) {
1082           SmallVector<SDValue, 3> Opnds;
1083           Opnds.push_back(Zero);
1084           Opnds.push_back(Addr.getOperand(1));
1085 
1086           // FIXME: Select to VOP3 version for with-carry.
1087           unsigned SubOp = AMDGPU::V_SUB_CO_U32_e32;
1088           if (Subtarget->hasAddNoCarry()) {
1089             SubOp = AMDGPU::V_SUB_U32_e64;
1090             Opnds.push_back(
1091                 CurDAG->getTargetConstant(0, {}, MVT::i1)); // clamp bit
1092           }
1093 
1094           MachineSDNode *MachineSub =
1095               CurDAG->getMachineNode(SubOp, DL, MVT::i32, Opnds);
1096 
1097           Base = SDValue(MachineSub, 0);
1098           Offset = CurDAG->getTargetConstant(ByteOffset, DL, MVT::i16);
1099           return true;
1100         }
1101       }
1102     }
1103   } else if (const ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) {
1104     // If we have a constant address, prefer to put the constant into the
1105     // offset. This can save moves to load the constant address since multiple
1106     // operations can share the zero base address register, and enables merging
1107     // into read2 / write2 instructions.
1108 
1109     SDLoc DL(Addr);
1110 
1111     if (isDSOffsetLegal(SDValue(), CAddr->getZExtValue())) {
1112       SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32);
1113       MachineSDNode *MovZero = CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32,
1114                                  DL, MVT::i32, Zero);
1115       Base = SDValue(MovZero, 0);
1116       Offset = CurDAG->getTargetConstant(CAddr->getZExtValue(), DL, MVT::i16);
1117       return true;
1118     }
1119   }
1120 
1121   // default case
1122   Base = Addr;
1123   Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i16);
1124   return true;
1125 }
1126 
1127 bool AMDGPUDAGToDAGISel::isDSOffset2Legal(SDValue Base, unsigned Offset0,
1128                                           unsigned Offset1,
1129                                           unsigned Size) const {
1130   if (Offset0 % Size != 0 || Offset1 % Size != 0)
1131     return false;
1132   if (!isUInt<8>(Offset0 / Size) || !isUInt<8>(Offset1 / Size))
1133     return false;
1134 
1135   if (!Base || Subtarget->hasUsableDSOffset() ||
1136       Subtarget->unsafeDSOffsetFoldingEnabled())
1137     return true;
1138 
1139   // On Southern Islands instruction with a negative base value and an offset
1140   // don't seem to work.
1141   return CurDAG->SignBitIsZero(Base);
1142 }
1143 
1144 // TODO: If offset is too big, put low 16-bit into offset.
1145 bool AMDGPUDAGToDAGISel::SelectDS64Bit4ByteAligned(SDValue Addr, SDValue &Base,
1146                                                    SDValue &Offset0,
1147                                                    SDValue &Offset1) const {
1148   return SelectDSReadWrite2(Addr, Base, Offset0, Offset1, 4);
1149 }
1150 
1151 bool AMDGPUDAGToDAGISel::SelectDS128Bit8ByteAligned(SDValue Addr, SDValue &Base,
1152                                                     SDValue &Offset0,
1153                                                     SDValue &Offset1) const {
1154   return SelectDSReadWrite2(Addr, Base, Offset0, Offset1, 8);
1155 }
1156 
1157 bool AMDGPUDAGToDAGISel::SelectDSReadWrite2(SDValue Addr, SDValue &Base,
1158                                             SDValue &Offset0, SDValue &Offset1,
1159                                             unsigned Size) const {
1160   SDLoc DL(Addr);
1161 
1162   if (CurDAG->isBaseWithConstantOffset(Addr)) {
1163     SDValue N0 = Addr.getOperand(0);
1164     SDValue N1 = Addr.getOperand(1);
1165     ConstantSDNode *C1 = cast<ConstantSDNode>(N1);
1166     unsigned OffsetValue0 = C1->getZExtValue();
1167     unsigned OffsetValue1 = OffsetValue0 + Size;
1168 
1169     // (add n0, c0)
1170     if (isDSOffset2Legal(N0, OffsetValue0, OffsetValue1, Size)) {
1171       Base = N0;
1172       Offset0 = CurDAG->getTargetConstant(OffsetValue0 / Size, DL, MVT::i8);
1173       Offset1 = CurDAG->getTargetConstant(OffsetValue1 / Size, DL, MVT::i8);
1174       return true;
1175     }
1176   } else if (Addr.getOpcode() == ISD::SUB) {
1177     // sub C, x -> add (sub 0, x), C
1178     if (const ConstantSDNode *C =
1179             dyn_cast<ConstantSDNode>(Addr.getOperand(0))) {
1180       unsigned OffsetValue0 = C->getZExtValue();
1181       unsigned OffsetValue1 = OffsetValue0 + Size;
1182 
1183       if (isDSOffset2Legal(SDValue(), OffsetValue0, OffsetValue1, Size)) {
1184         SDLoc DL(Addr);
1185         SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32);
1186 
1187         // XXX - This is kind of hacky. Create a dummy sub node so we can check
1188         // the known bits in isDSOffsetLegal. We need to emit the selected node
1189         // here, so this is thrown away.
1190         SDValue Sub =
1191             CurDAG->getNode(ISD::SUB, DL, MVT::i32, Zero, Addr.getOperand(1));
1192 
1193         if (isDSOffset2Legal(Sub, OffsetValue0, OffsetValue1, Size)) {
1194           SmallVector<SDValue, 3> Opnds;
1195           Opnds.push_back(Zero);
1196           Opnds.push_back(Addr.getOperand(1));
1197           unsigned SubOp = AMDGPU::V_SUB_CO_U32_e32;
1198           if (Subtarget->hasAddNoCarry()) {
1199             SubOp = AMDGPU::V_SUB_U32_e64;
1200             Opnds.push_back(
1201                 CurDAG->getTargetConstant(0, {}, MVT::i1)); // clamp bit
1202           }
1203 
1204           MachineSDNode *MachineSub = CurDAG->getMachineNode(
1205               SubOp, DL, MVT::getIntegerVT(Size * 8), Opnds);
1206 
1207           Base = SDValue(MachineSub, 0);
1208           Offset0 = CurDAG->getTargetConstant(OffsetValue0 / Size, DL, MVT::i8);
1209           Offset1 = CurDAG->getTargetConstant(OffsetValue1 / Size, DL, MVT::i8);
1210           return true;
1211         }
1212       }
1213     }
1214   } else if (const ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) {
1215     unsigned OffsetValue0 = CAddr->getZExtValue();
1216     unsigned OffsetValue1 = OffsetValue0 + Size;
1217 
1218     if (isDSOffset2Legal(SDValue(), OffsetValue0, OffsetValue1, Size)) {
1219       SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32);
1220       MachineSDNode *MovZero =
1221           CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32, DL, MVT::i32, Zero);
1222       Base = SDValue(MovZero, 0);
1223       Offset0 = CurDAG->getTargetConstant(OffsetValue0 / Size, DL, MVT::i8);
1224       Offset1 = CurDAG->getTargetConstant(OffsetValue1 / Size, DL, MVT::i8);
1225       return true;
1226     }
1227   }
1228 
1229   // default case
1230 
1231   Base = Addr;
1232   Offset0 = CurDAG->getTargetConstant(0, DL, MVT::i8);
1233   Offset1 = CurDAG->getTargetConstant(1, DL, MVT::i8);
1234   return true;
1235 }
1236 
1237 bool AMDGPUDAGToDAGISel::SelectMUBUF(SDValue Addr, SDValue &Ptr, SDValue &VAddr,
1238                                      SDValue &SOffset, SDValue &Offset,
1239                                      SDValue &Offen, SDValue &Idxen,
1240                                      SDValue &Addr64) const {
1241   // Subtarget prefers to use flat instruction
1242   // FIXME: This should be a pattern predicate and not reach here
1243   if (Subtarget->useFlatForGlobal())
1244     return false;
1245 
1246   SDLoc DL(Addr);
1247 
1248   Idxen = CurDAG->getTargetConstant(0, DL, MVT::i1);
1249   Offen = CurDAG->getTargetConstant(0, DL, MVT::i1);
1250   Addr64 = CurDAG->getTargetConstant(0, DL, MVT::i1);
1251   SOffset = CurDAG->getTargetConstant(0, DL, MVT::i32);
1252 
1253   ConstantSDNode *C1 = nullptr;
1254   SDValue N0 = Addr;
1255   if (CurDAG->isBaseWithConstantOffset(Addr)) {
1256     C1 = cast<ConstantSDNode>(Addr.getOperand(1));
1257     if (isUInt<32>(C1->getZExtValue()))
1258       N0 = Addr.getOperand(0);
1259     else
1260       C1 = nullptr;
1261   }
1262 
1263   if (N0.getOpcode() == ISD::ADD) {
1264     // (add N2, N3) -> addr64, or
1265     // (add (add N2, N3), C1) -> addr64
1266     SDValue N2 = N0.getOperand(0);
1267     SDValue N3 = N0.getOperand(1);
1268     Addr64 = CurDAG->getTargetConstant(1, DL, MVT::i1);
1269 
1270     if (N2->isDivergent()) {
1271       if (N3->isDivergent()) {
1272         // Both N2 and N3 are divergent. Use N0 (the result of the add) as the
1273         // addr64, and construct the resource from a 0 address.
1274         Ptr = SDValue(buildSMovImm64(DL, 0, MVT::v2i32), 0);
1275         VAddr = N0;
1276       } else {
1277         // N2 is divergent, N3 is not.
1278         Ptr = N3;
1279         VAddr = N2;
1280       }
1281     } else {
1282       // N2 is not divergent.
1283       Ptr = N2;
1284       VAddr = N3;
1285     }
1286     Offset = CurDAG->getTargetConstant(0, DL, MVT::i16);
1287   } else if (N0->isDivergent()) {
1288     // N0 is divergent. Use it as the addr64, and construct the resource from a
1289     // 0 address.
1290     Ptr = SDValue(buildSMovImm64(DL, 0, MVT::v2i32), 0);
1291     VAddr = N0;
1292     Addr64 = CurDAG->getTargetConstant(1, DL, MVT::i1);
1293   } else {
1294     // N0 -> offset, or
1295     // (N0 + C1) -> offset
1296     VAddr = CurDAG->getTargetConstant(0, DL, MVT::i32);
1297     Ptr = N0;
1298   }
1299 
1300   if (!C1) {
1301     // No offset.
1302     Offset = CurDAG->getTargetConstant(0, DL, MVT::i16);
1303     return true;
1304   }
1305 
1306   if (SIInstrInfo::isLegalMUBUFImmOffset(C1->getZExtValue())) {
1307     // Legal offset for instruction.
1308     Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16);
1309     return true;
1310   }
1311 
1312   // Illegal offset, store it in soffset.
1313   Offset = CurDAG->getTargetConstant(0, DL, MVT::i16);
1314   SOffset =
1315       SDValue(CurDAG->getMachineNode(
1316                   AMDGPU::S_MOV_B32, DL, MVT::i32,
1317                   CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i32)),
1318               0);
1319   return true;
1320 }
1321 
1322 bool AMDGPUDAGToDAGISel::SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc,
1323                                            SDValue &VAddr, SDValue &SOffset,
1324                                            SDValue &Offset) const {
1325   SDValue Ptr, Offen, Idxen, Addr64;
1326 
1327   // addr64 bit was removed for volcanic islands.
1328   // FIXME: This should be a pattern predicate and not reach here
1329   if (!Subtarget->hasAddr64())
1330     return false;
1331 
1332   if (!SelectMUBUF(Addr, Ptr, VAddr, SOffset, Offset, Offen, Idxen, Addr64))
1333     return false;
1334 
1335   ConstantSDNode *C = cast<ConstantSDNode>(Addr64);
1336   if (C->getSExtValue()) {
1337     SDLoc DL(Addr);
1338 
1339     const SITargetLowering& Lowering =
1340       *static_cast<const SITargetLowering*>(getTargetLowering());
1341 
1342     SRsrc = SDValue(Lowering.wrapAddr64Rsrc(*CurDAG, DL, Ptr), 0);
1343     return true;
1344   }
1345 
1346   return false;
1347 }
1348 
1349 std::pair<SDValue, SDValue> AMDGPUDAGToDAGISel::foldFrameIndex(SDValue N) const {
1350   SDLoc DL(N);
1351 
1352   auto *FI = dyn_cast<FrameIndexSDNode>(N);
1353   SDValue TFI =
1354       FI ? CurDAG->getTargetFrameIndex(FI->getIndex(), FI->getValueType(0)) : N;
1355 
1356   // We rebase the base address into an absolute stack address and hence
1357   // use constant 0 for soffset. This value must be retained until
1358   // frame elimination and eliminateFrameIndex will choose the appropriate
1359   // frame register if need be.
1360   return std::pair(TFI, CurDAG->getTargetConstant(0, DL, MVT::i32));
1361 }
1362 
1363 bool AMDGPUDAGToDAGISel::SelectMUBUFScratchOffen(SDNode *Parent,
1364                                                  SDValue Addr, SDValue &Rsrc,
1365                                                  SDValue &VAddr, SDValue &SOffset,
1366                                                  SDValue &ImmOffset) const {
1367 
1368   SDLoc DL(Addr);
1369   MachineFunction &MF = CurDAG->getMachineFunction();
1370   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1371 
1372   Rsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32);
1373 
1374   if (ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) {
1375     int64_t Imm = CAddr->getSExtValue();
1376     const int64_t NullPtr =
1377         AMDGPUTargetMachine::getNullPointerValue(AMDGPUAS::PRIVATE_ADDRESS);
1378     // Don't fold null pointer.
1379     if (Imm != NullPtr) {
1380       SDValue HighBits = CurDAG->getTargetConstant(Imm & ~4095, DL, MVT::i32);
1381       MachineSDNode *MovHighBits = CurDAG->getMachineNode(
1382         AMDGPU::V_MOV_B32_e32, DL, MVT::i32, HighBits);
1383       VAddr = SDValue(MovHighBits, 0);
1384 
1385       SOffset = CurDAG->getTargetConstant(0, DL, MVT::i32);
1386       ImmOffset = CurDAG->getTargetConstant(Imm & 4095, DL, MVT::i16);
1387       return true;
1388     }
1389   }
1390 
1391   if (CurDAG->isBaseWithConstantOffset(Addr)) {
1392     // (add n0, c1)
1393 
1394     SDValue N0 = Addr.getOperand(0);
1395     SDValue N1 = Addr.getOperand(1);
1396 
1397     // Offsets in vaddr must be positive if range checking is enabled.
1398     //
1399     // The total computation of vaddr + soffset + offset must not overflow.  If
1400     // vaddr is negative, even if offset is 0 the sgpr offset add will end up
1401     // overflowing.
1402     //
1403     // Prior to gfx9, MUBUF instructions with the vaddr offset enabled would
1404     // always perform a range check. If a negative vaddr base index was used,
1405     // this would fail the range check. The overall address computation would
1406     // compute a valid address, but this doesn't happen due to the range
1407     // check. For out-of-bounds MUBUF loads, a 0 is returned.
1408     //
1409     // Therefore it should be safe to fold any VGPR offset on gfx9 into the
1410     // MUBUF vaddr, but not on older subtargets which can only do this if the
1411     // sign bit is known 0.
1412     ConstantSDNode *C1 = cast<ConstantSDNode>(N1);
1413     if (SIInstrInfo::isLegalMUBUFImmOffset(C1->getZExtValue()) &&
1414         (!Subtarget->privateMemoryResourceIsRangeChecked() ||
1415          CurDAG->SignBitIsZero(N0))) {
1416       std::tie(VAddr, SOffset) = foldFrameIndex(N0);
1417       ImmOffset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16);
1418       return true;
1419     }
1420   }
1421 
1422   // (node)
1423   std::tie(VAddr, SOffset) = foldFrameIndex(Addr);
1424   ImmOffset = CurDAG->getTargetConstant(0, DL, MVT::i16);
1425   return true;
1426 }
1427 
1428 static bool IsCopyFromSGPR(const SIRegisterInfo &TRI, SDValue Val) {
1429   if (Val.getOpcode() != ISD::CopyFromReg)
1430     return false;
1431   auto Reg = cast<RegisterSDNode>(Val.getOperand(1))->getReg();
1432   if (!Reg.isPhysical())
1433     return false;
1434   auto RC = TRI.getPhysRegBaseClass(Reg);
1435   return RC && TRI.isSGPRClass(RC);
1436 }
1437 
1438 bool AMDGPUDAGToDAGISel::SelectMUBUFScratchOffset(SDNode *Parent,
1439                                                   SDValue Addr,
1440                                                   SDValue &SRsrc,
1441                                                   SDValue &SOffset,
1442                                                   SDValue &Offset) const {
1443   const SIRegisterInfo *TRI =
1444       static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo());
1445   MachineFunction &MF = CurDAG->getMachineFunction();
1446   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1447   SDLoc DL(Addr);
1448 
1449   // CopyFromReg <sgpr>
1450   if (IsCopyFromSGPR(*TRI, Addr)) {
1451     SRsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32);
1452     SOffset = Addr;
1453     Offset = CurDAG->getTargetConstant(0, DL, MVT::i16);
1454     return true;
1455   }
1456 
1457   ConstantSDNode *CAddr;
1458   if (Addr.getOpcode() == ISD::ADD) {
1459     // Add (CopyFromReg <sgpr>) <constant>
1460     CAddr = dyn_cast<ConstantSDNode>(Addr.getOperand(1));
1461     if (!CAddr || !SIInstrInfo::isLegalMUBUFImmOffset(CAddr->getZExtValue()))
1462       return false;
1463     if (!IsCopyFromSGPR(*TRI, Addr.getOperand(0)))
1464       return false;
1465 
1466     SOffset = Addr.getOperand(0);
1467   } else if ((CAddr = dyn_cast<ConstantSDNode>(Addr)) &&
1468              SIInstrInfo::isLegalMUBUFImmOffset(CAddr->getZExtValue())) {
1469     // <constant>
1470     SOffset = CurDAG->getTargetConstant(0, DL, MVT::i32);
1471   } else {
1472     return false;
1473   }
1474 
1475   SRsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32);
1476 
1477   Offset = CurDAG->getTargetConstant(CAddr->getZExtValue(), DL, MVT::i16);
1478   return true;
1479 }
1480 
1481 bool AMDGPUDAGToDAGISel::SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc,
1482                                            SDValue &SOffset, SDValue &Offset
1483                                            ) const {
1484   SDValue Ptr, VAddr, Offen, Idxen, Addr64;
1485   const SIInstrInfo *TII =
1486     static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
1487 
1488   if (!SelectMUBUF(Addr, Ptr, VAddr, SOffset, Offset, Offen, Idxen, Addr64))
1489     return false;
1490 
1491   if (!cast<ConstantSDNode>(Offen)->getSExtValue() &&
1492       !cast<ConstantSDNode>(Idxen)->getSExtValue() &&
1493       !cast<ConstantSDNode>(Addr64)->getSExtValue()) {
1494     uint64_t Rsrc = TII->getDefaultRsrcDataFormat() |
1495                     APInt::getAllOnes(32).getZExtValue(); // Size
1496     SDLoc DL(Addr);
1497 
1498     const SITargetLowering& Lowering =
1499       *static_cast<const SITargetLowering*>(getTargetLowering());
1500 
1501     SRsrc = SDValue(Lowering.buildRSRC(*CurDAG, DL, Ptr, 0, Rsrc), 0);
1502     return true;
1503   }
1504   return false;
1505 }
1506 
1507 // Find a load or store from corresponding pattern root.
1508 // Roots may be build_vector, bitconvert or their combinations.
1509 static MemSDNode* findMemSDNode(SDNode *N) {
1510   N = AMDGPUTargetLowering::stripBitcast(SDValue(N,0)).getNode();
1511   if (MemSDNode *MN = dyn_cast<MemSDNode>(N))
1512     return MN;
1513   assert(isa<BuildVectorSDNode>(N));
1514   for (SDValue V : N->op_values())
1515     if (MemSDNode *MN =
1516           dyn_cast<MemSDNode>(AMDGPUTargetLowering::stripBitcast(V)))
1517       return MN;
1518   llvm_unreachable("cannot find MemSDNode in the pattern!");
1519 }
1520 
1521 bool AMDGPUDAGToDAGISel::SelectFlatOffsetImpl(SDNode *N, SDValue Addr,
1522                                               SDValue &VAddr, SDValue &Offset,
1523                                               uint64_t FlatVariant) const {
1524   int64_t OffsetVal = 0;
1525 
1526   unsigned AS = findMemSDNode(N)->getAddressSpace();
1527 
1528   bool CanHaveFlatSegmentOffsetBug =
1529       Subtarget->hasFlatSegmentOffsetBug() &&
1530       FlatVariant == SIInstrFlags::FLAT &&
1531       (AS == AMDGPUAS::FLAT_ADDRESS || AS == AMDGPUAS::GLOBAL_ADDRESS);
1532 
1533   if (Subtarget->hasFlatInstOffsets() && !CanHaveFlatSegmentOffsetBug) {
1534     SDValue N0, N1;
1535     if (isBaseWithConstantOffset64(Addr, N0, N1)) {
1536       int64_t COffsetVal = cast<ConstantSDNode>(N1)->getSExtValue();
1537 
1538       const SIInstrInfo *TII = Subtarget->getInstrInfo();
1539       if (TII->isLegalFLATOffset(COffsetVal, AS, FlatVariant)) {
1540         Addr = N0;
1541         OffsetVal = COffsetVal;
1542       } else {
1543         // If the offset doesn't fit, put the low bits into the offset field and
1544         // add the rest.
1545         //
1546         // For a FLAT instruction the hardware decides whether to access
1547         // global/scratch/shared memory based on the high bits of vaddr,
1548         // ignoring the offset field, so we have to ensure that when we add
1549         // remainder to vaddr it still points into the same underlying object.
1550         // The easiest way to do that is to make sure that we split the offset
1551         // into two pieces that are both >= 0 or both <= 0.
1552 
1553         SDLoc DL(N);
1554         uint64_t RemainderOffset;
1555 
1556         std::tie(OffsetVal, RemainderOffset) =
1557             TII->splitFlatOffset(COffsetVal, AS, FlatVariant);
1558 
1559         SDValue AddOffsetLo =
1560             getMaterializedScalarImm32(Lo_32(RemainderOffset), DL);
1561         SDValue Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1);
1562 
1563         if (Addr.getValueType().getSizeInBits() == 32) {
1564           SmallVector<SDValue, 3> Opnds;
1565           Opnds.push_back(N0);
1566           Opnds.push_back(AddOffsetLo);
1567           unsigned AddOp = AMDGPU::V_ADD_CO_U32_e32;
1568           if (Subtarget->hasAddNoCarry()) {
1569             AddOp = AMDGPU::V_ADD_U32_e64;
1570             Opnds.push_back(Clamp);
1571           }
1572           Addr = SDValue(CurDAG->getMachineNode(AddOp, DL, MVT::i32, Opnds), 0);
1573         } else {
1574           // TODO: Should this try to use a scalar add pseudo if the base address
1575           // is uniform and saddr is usable?
1576           SDValue Sub0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32);
1577           SDValue Sub1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32);
1578 
1579           SDNode *N0Lo = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
1580                                                 DL, MVT::i32, N0, Sub0);
1581           SDNode *N0Hi = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
1582                                                 DL, MVT::i32, N0, Sub1);
1583 
1584           SDValue AddOffsetHi =
1585               getMaterializedScalarImm32(Hi_32(RemainderOffset), DL);
1586 
1587           SDVTList VTs = CurDAG->getVTList(MVT::i32, MVT::i1);
1588 
1589           SDNode *Add =
1590               CurDAG->getMachineNode(AMDGPU::V_ADD_CO_U32_e64, DL, VTs,
1591                                      {AddOffsetLo, SDValue(N0Lo, 0), Clamp});
1592 
1593           SDNode *Addc = CurDAG->getMachineNode(
1594               AMDGPU::V_ADDC_U32_e64, DL, VTs,
1595               {AddOffsetHi, SDValue(N0Hi, 0), SDValue(Add, 1), Clamp});
1596 
1597           SDValue RegSequenceArgs[] = {
1598               CurDAG->getTargetConstant(AMDGPU::VReg_64RegClassID, DL, MVT::i32),
1599               SDValue(Add, 0), Sub0, SDValue(Addc, 0), Sub1};
1600 
1601           Addr = SDValue(CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, DL,
1602                                                 MVT::i64, RegSequenceArgs),
1603                          0);
1604         }
1605       }
1606     }
1607   }
1608 
1609   VAddr = Addr;
1610   Offset = CurDAG->getTargetConstant(OffsetVal, SDLoc(), MVT::i16);
1611   return true;
1612 }
1613 
1614 bool AMDGPUDAGToDAGISel::SelectFlatOffset(SDNode *N, SDValue Addr,
1615                                           SDValue &VAddr,
1616                                           SDValue &Offset) const {
1617   return SelectFlatOffsetImpl(N, Addr, VAddr, Offset, SIInstrFlags::FLAT);
1618 }
1619 
1620 bool AMDGPUDAGToDAGISel::SelectGlobalOffset(SDNode *N, SDValue Addr,
1621                                             SDValue &VAddr,
1622                                             SDValue &Offset) const {
1623   return SelectFlatOffsetImpl(N, Addr, VAddr, Offset, SIInstrFlags::FlatGlobal);
1624 }
1625 
1626 bool AMDGPUDAGToDAGISel::SelectScratchOffset(SDNode *N, SDValue Addr,
1627                                              SDValue &VAddr,
1628                                              SDValue &Offset) const {
1629   return SelectFlatOffsetImpl(N, Addr, VAddr, Offset,
1630                               SIInstrFlags::FlatScratch);
1631 }
1632 
1633 // If this matches zero_extend i32:x, return x
1634 static SDValue matchZExtFromI32(SDValue Op) {
1635   if (Op.getOpcode() != ISD::ZERO_EXTEND)
1636     return SDValue();
1637 
1638   SDValue ExtSrc = Op.getOperand(0);
1639   return (ExtSrc.getValueType() == MVT::i32) ? ExtSrc : SDValue();
1640 }
1641 
1642 // Match (64-bit SGPR base) + (zext vgpr offset) + sext(imm offset)
1643 bool AMDGPUDAGToDAGISel::SelectGlobalSAddr(SDNode *N,
1644                                            SDValue Addr,
1645                                            SDValue &SAddr,
1646                                            SDValue &VOffset,
1647                                            SDValue &Offset) const {
1648   int64_t ImmOffset = 0;
1649 
1650   // Match the immediate offset first, which canonically is moved as low as
1651   // possible.
1652 
1653   SDValue LHS, RHS;
1654   if (isBaseWithConstantOffset64(Addr, LHS, RHS)) {
1655     int64_t COffsetVal = cast<ConstantSDNode>(RHS)->getSExtValue();
1656     const SIInstrInfo *TII = Subtarget->getInstrInfo();
1657 
1658     if (TII->isLegalFLATOffset(COffsetVal, AMDGPUAS::GLOBAL_ADDRESS,
1659                                SIInstrFlags::FlatGlobal)) {
1660       Addr = LHS;
1661       ImmOffset = COffsetVal;
1662     } else if (!LHS->isDivergent()) {
1663       if (COffsetVal > 0) {
1664         SDLoc SL(N);
1665         // saddr + large_offset -> saddr +
1666         //                         (voffset = large_offset & ~MaxOffset) +
1667         //                         (large_offset & MaxOffset);
1668         int64_t SplitImmOffset, RemainderOffset;
1669         std::tie(SplitImmOffset, RemainderOffset) = TII->splitFlatOffset(
1670             COffsetVal, AMDGPUAS::GLOBAL_ADDRESS, SIInstrFlags::FlatGlobal);
1671 
1672         if (isUInt<32>(RemainderOffset)) {
1673           SDNode *VMov = CurDAG->getMachineNode(
1674               AMDGPU::V_MOV_B32_e32, SL, MVT::i32,
1675               CurDAG->getTargetConstant(RemainderOffset, SDLoc(), MVT::i32));
1676           VOffset = SDValue(VMov, 0);
1677           SAddr = LHS;
1678           Offset = CurDAG->getTargetConstant(SplitImmOffset, SDLoc(), MVT::i16);
1679           return true;
1680         }
1681       }
1682 
1683       // We are adding a 64 bit SGPR and a constant. If constant bus limit
1684       // is 1 we would need to perform 1 or 2 extra moves for each half of
1685       // the constant and it is better to do a scalar add and then issue a
1686       // single VALU instruction to materialize zero. Otherwise it is less
1687       // instructions to perform VALU adds with immediates or inline literals.
1688       unsigned NumLiterals =
1689           !TII->isInlineConstant(APInt(32, COffsetVal & 0xffffffff)) +
1690           !TII->isInlineConstant(APInt(32, COffsetVal >> 32));
1691       if (Subtarget->getConstantBusLimit(AMDGPU::V_ADD_U32_e64) > NumLiterals)
1692         return false;
1693     }
1694   }
1695 
1696   // Match the variable offset.
1697   if (Addr.getOpcode() == ISD::ADD) {
1698     LHS = Addr.getOperand(0);
1699     RHS = Addr.getOperand(1);
1700 
1701     if (!LHS->isDivergent()) {
1702       // add (i64 sgpr), (zero_extend (i32 vgpr))
1703       if (SDValue ZextRHS = matchZExtFromI32(RHS)) {
1704         SAddr = LHS;
1705         VOffset = ZextRHS;
1706       }
1707     }
1708 
1709     if (!SAddr && !RHS->isDivergent()) {
1710       // add (zero_extend (i32 vgpr)), (i64 sgpr)
1711       if (SDValue ZextLHS = matchZExtFromI32(LHS)) {
1712         SAddr = RHS;
1713         VOffset = ZextLHS;
1714       }
1715     }
1716 
1717     if (SAddr) {
1718       Offset = CurDAG->getTargetConstant(ImmOffset, SDLoc(), MVT::i16);
1719       return true;
1720     }
1721   }
1722 
1723   if (Addr->isDivergent() || Addr.getOpcode() == ISD::UNDEF ||
1724       isa<ConstantSDNode>(Addr))
1725     return false;
1726 
1727   // It's cheaper to materialize a single 32-bit zero for vaddr than the two
1728   // moves required to copy a 64-bit SGPR to VGPR.
1729   SAddr = Addr;
1730   SDNode *VMov =
1731       CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32, SDLoc(Addr), MVT::i32,
1732                              CurDAG->getTargetConstant(0, SDLoc(), MVT::i32));
1733   VOffset = SDValue(VMov, 0);
1734   Offset = CurDAG->getTargetConstant(ImmOffset, SDLoc(), MVT::i16);
1735   return true;
1736 }
1737 
1738 static SDValue SelectSAddrFI(SelectionDAG *CurDAG, SDValue SAddr) {
1739   if (auto FI = dyn_cast<FrameIndexSDNode>(SAddr)) {
1740     SAddr = CurDAG->getTargetFrameIndex(FI->getIndex(), FI->getValueType(0));
1741   } else if (SAddr.getOpcode() == ISD::ADD &&
1742              isa<FrameIndexSDNode>(SAddr.getOperand(0))) {
1743     // Materialize this into a scalar move for scalar address to avoid
1744     // readfirstlane.
1745     auto FI = cast<FrameIndexSDNode>(SAddr.getOperand(0));
1746     SDValue TFI = CurDAG->getTargetFrameIndex(FI->getIndex(),
1747                                               FI->getValueType(0));
1748     SAddr = SDValue(CurDAG->getMachineNode(AMDGPU::S_ADD_I32, SDLoc(SAddr),
1749                                            MVT::i32, TFI, SAddr.getOperand(1)),
1750                     0);
1751   }
1752 
1753   return SAddr;
1754 }
1755 
1756 // Match (32-bit SGPR base) + sext(imm offset)
1757 bool AMDGPUDAGToDAGISel::SelectScratchSAddr(SDNode *Parent, SDValue Addr,
1758                                             SDValue &SAddr,
1759                                             SDValue &Offset) const {
1760   if (Addr->isDivergent())
1761     return false;
1762 
1763   SDLoc DL(Addr);
1764 
1765   int64_t COffsetVal = 0;
1766 
1767   if (CurDAG->isBaseWithConstantOffset(Addr)) {
1768     COffsetVal = cast<ConstantSDNode>(Addr.getOperand(1))->getSExtValue();
1769     SAddr = Addr.getOperand(0);
1770   } else {
1771     SAddr = Addr;
1772   }
1773 
1774   SAddr = SelectSAddrFI(CurDAG, SAddr);
1775 
1776   const SIInstrInfo *TII = Subtarget->getInstrInfo();
1777 
1778   if (!TII->isLegalFLATOffset(COffsetVal, AMDGPUAS::PRIVATE_ADDRESS,
1779                               SIInstrFlags::FlatScratch)) {
1780     int64_t SplitImmOffset, RemainderOffset;
1781     std::tie(SplitImmOffset, RemainderOffset) = TII->splitFlatOffset(
1782         COffsetVal, AMDGPUAS::PRIVATE_ADDRESS, SIInstrFlags::FlatScratch);
1783 
1784     COffsetVal = SplitImmOffset;
1785 
1786     SDValue AddOffset =
1787         SAddr.getOpcode() == ISD::TargetFrameIndex
1788             ? getMaterializedScalarImm32(Lo_32(RemainderOffset), DL)
1789             : CurDAG->getTargetConstant(RemainderOffset, DL, MVT::i32);
1790     SAddr = SDValue(CurDAG->getMachineNode(AMDGPU::S_ADD_I32, DL, MVT::i32,
1791                                            SAddr, AddOffset),
1792                     0);
1793   }
1794 
1795   Offset = CurDAG->getTargetConstant(COffsetVal, DL, MVT::i16);
1796 
1797   return true;
1798 }
1799 
1800 // Check whether the flat scratch SVS swizzle bug affects this access.
1801 bool AMDGPUDAGToDAGISel::checkFlatScratchSVSSwizzleBug(
1802     SDValue VAddr, SDValue SAddr, uint64_t ImmOffset) const {
1803   if (!Subtarget->hasFlatScratchSVSSwizzleBug())
1804     return false;
1805 
1806   // The bug affects the swizzling of SVS accesses if there is any carry out
1807   // from the two low order bits (i.e. from bit 1 into bit 2) when adding
1808   // voffset to (soffset + inst_offset).
1809   KnownBits VKnown = CurDAG->computeKnownBits(VAddr);
1810   KnownBits SKnown = KnownBits::computeForAddSub(
1811       true, false, CurDAG->computeKnownBits(SAddr),
1812       KnownBits::makeConstant(APInt(32, ImmOffset)));
1813   uint64_t VMax = VKnown.getMaxValue().getZExtValue();
1814   uint64_t SMax = SKnown.getMaxValue().getZExtValue();
1815   return (VMax & 3) + (SMax & 3) >= 4;
1816 }
1817 
1818 bool AMDGPUDAGToDAGISel::SelectScratchSVAddr(SDNode *N, SDValue Addr,
1819                                              SDValue &VAddr, SDValue &SAddr,
1820                                              SDValue &Offset) const  {
1821   int64_t ImmOffset = 0;
1822 
1823   SDValue LHS, RHS;
1824   if (isBaseWithConstantOffset64(Addr, LHS, RHS)) {
1825     int64_t COffsetVal = cast<ConstantSDNode>(RHS)->getSExtValue();
1826     const SIInstrInfo *TII = Subtarget->getInstrInfo();
1827 
1828     if (TII->isLegalFLATOffset(COffsetVal, AMDGPUAS::PRIVATE_ADDRESS, true)) {
1829       Addr = LHS;
1830       ImmOffset = COffsetVal;
1831     } else if (!LHS->isDivergent() && COffsetVal > 0) {
1832       SDLoc SL(N);
1833       // saddr + large_offset -> saddr + (vaddr = large_offset & ~MaxOffset) +
1834       //                         (large_offset & MaxOffset);
1835       int64_t SplitImmOffset, RemainderOffset;
1836       std::tie(SplitImmOffset, RemainderOffset)
1837         = TII->splitFlatOffset(COffsetVal, AMDGPUAS::PRIVATE_ADDRESS, true);
1838 
1839       if (isUInt<32>(RemainderOffset)) {
1840         SDNode *VMov = CurDAG->getMachineNode(
1841           AMDGPU::V_MOV_B32_e32, SL, MVT::i32,
1842           CurDAG->getTargetConstant(RemainderOffset, SDLoc(), MVT::i32));
1843         VAddr = SDValue(VMov, 0);
1844         SAddr = LHS;
1845         if (checkFlatScratchSVSSwizzleBug(VAddr, SAddr, SplitImmOffset))
1846           return false;
1847         Offset = CurDAG->getTargetConstant(SplitImmOffset, SDLoc(), MVT::i16);
1848         return true;
1849       }
1850     }
1851   }
1852 
1853   if (Addr.getOpcode() != ISD::ADD)
1854     return false;
1855 
1856   LHS = Addr.getOperand(0);
1857   RHS = Addr.getOperand(1);
1858 
1859   if (!LHS->isDivergent() && RHS->isDivergent()) {
1860     SAddr = LHS;
1861     VAddr = RHS;
1862   } else if (!RHS->isDivergent() && LHS->isDivergent()) {
1863     SAddr = RHS;
1864     VAddr = LHS;
1865   } else {
1866     return false;
1867   }
1868 
1869   if (checkFlatScratchSVSSwizzleBug(VAddr, SAddr, ImmOffset))
1870     return false;
1871   SAddr = SelectSAddrFI(CurDAG, SAddr);
1872   Offset = CurDAG->getTargetConstant(ImmOffset, SDLoc(), MVT::i16);
1873   return true;
1874 }
1875 
1876 // Match an immediate (if Offset is not null) or an SGPR (if SOffset is
1877 // not null) offset. If Imm32Only is true, match only 32-bit immediate
1878 // offsets available on CI.
1879 bool AMDGPUDAGToDAGISel::SelectSMRDOffset(SDValue ByteOffsetNode,
1880                                           SDValue *SOffset, SDValue *Offset,
1881                                           bool Imm32Only, bool IsBuffer) const {
1882   assert((!SOffset || !Offset) &&
1883          "Cannot match both soffset and offset at the same time!");
1884 
1885   ConstantSDNode *C = dyn_cast<ConstantSDNode>(ByteOffsetNode);
1886   if (!C) {
1887     if (!SOffset)
1888       return false;
1889     if (ByteOffsetNode.getValueType().isScalarInteger() &&
1890         ByteOffsetNode.getValueType().getSizeInBits() == 32) {
1891       *SOffset = ByteOffsetNode;
1892       return true;
1893     }
1894     if (ByteOffsetNode.getOpcode() == ISD::ZERO_EXTEND) {
1895       if (ByteOffsetNode.getOperand(0).getValueType().getSizeInBits() == 32) {
1896         *SOffset = ByteOffsetNode.getOperand(0);
1897         return true;
1898       }
1899     }
1900     return false;
1901   }
1902 
1903   SDLoc SL(ByteOffsetNode);
1904 
1905   // GFX9 and GFX10 have signed byte immediate offsets. The immediate
1906   // offset for S_BUFFER instructions is unsigned.
1907   int64_t ByteOffset = IsBuffer ? C->getZExtValue() : C->getSExtValue();
1908   std::optional<int64_t> EncodedOffset =
1909       AMDGPU::getSMRDEncodedOffset(*Subtarget, ByteOffset, IsBuffer);
1910   if (EncodedOffset && Offset && !Imm32Only) {
1911     *Offset = CurDAG->getTargetConstant(*EncodedOffset, SL, MVT::i32);
1912     return true;
1913   }
1914 
1915   // SGPR and literal offsets are unsigned.
1916   if (ByteOffset < 0)
1917     return false;
1918 
1919   EncodedOffset = AMDGPU::getSMRDEncodedLiteralOffset32(*Subtarget, ByteOffset);
1920   if (EncodedOffset && Offset && Imm32Only) {
1921     *Offset = CurDAG->getTargetConstant(*EncodedOffset, SL, MVT::i32);
1922     return true;
1923   }
1924 
1925   if (!isUInt<32>(ByteOffset) && !isInt<32>(ByteOffset))
1926     return false;
1927 
1928   if (SOffset) {
1929     SDValue C32Bit = CurDAG->getTargetConstant(ByteOffset, SL, MVT::i32);
1930     *SOffset = SDValue(
1931         CurDAG->getMachineNode(AMDGPU::S_MOV_B32, SL, MVT::i32, C32Bit), 0);
1932     return true;
1933   }
1934 
1935   return false;
1936 }
1937 
1938 SDValue AMDGPUDAGToDAGISel::Expand32BitAddress(SDValue Addr) const {
1939   if (Addr.getValueType() != MVT::i32)
1940     return Addr;
1941 
1942   // Zero-extend a 32-bit address.
1943   SDLoc SL(Addr);
1944 
1945   const MachineFunction &MF = CurDAG->getMachineFunction();
1946   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1947   unsigned AddrHiVal = Info->get32BitAddressHighBits();
1948   SDValue AddrHi = CurDAG->getTargetConstant(AddrHiVal, SL, MVT::i32);
1949 
1950   const SDValue Ops[] = {
1951     CurDAG->getTargetConstant(AMDGPU::SReg_64_XEXECRegClassID, SL, MVT::i32),
1952     Addr,
1953     CurDAG->getTargetConstant(AMDGPU::sub0, SL, MVT::i32),
1954     SDValue(CurDAG->getMachineNode(AMDGPU::S_MOV_B32, SL, MVT::i32, AddrHi),
1955             0),
1956     CurDAG->getTargetConstant(AMDGPU::sub1, SL, MVT::i32),
1957   };
1958 
1959   return SDValue(CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, SL, MVT::i64,
1960                                         Ops), 0);
1961 }
1962 
1963 // Match a base and an immediate (if Offset is not null) or an SGPR (if
1964 // SOffset is not null) or an immediate+SGPR offset. If Imm32Only is
1965 // true, match only 32-bit immediate offsets available on CI.
1966 bool AMDGPUDAGToDAGISel::SelectSMRDBaseOffset(SDValue Addr, SDValue &SBase,
1967                                               SDValue *SOffset, SDValue *Offset,
1968                                               bool Imm32Only,
1969                                               bool IsBuffer) const {
1970   if (SOffset && Offset) {
1971     assert(!Imm32Only && !IsBuffer);
1972     SDValue B;
1973     return SelectSMRDBaseOffset(Addr, B, nullptr, Offset) &&
1974            SelectSMRDBaseOffset(B, SBase, SOffset, nullptr);
1975   }
1976 
1977   // A 32-bit (address + offset) should not cause unsigned 32-bit integer
1978   // wraparound, because s_load instructions perform the addition in 64 bits.
1979   if (Addr.getValueType() == MVT::i32 && Addr.getOpcode() == ISD::ADD &&
1980       !Addr->getFlags().hasNoUnsignedWrap())
1981     return false;
1982 
1983   SDValue N0, N1;
1984   // Extract the base and offset if possible.
1985   if (CurDAG->isBaseWithConstantOffset(Addr) || Addr.getOpcode() == ISD::ADD) {
1986     N0 = Addr.getOperand(0);
1987     N1 = Addr.getOperand(1);
1988   } else if (getBaseWithOffsetUsingSplitOR(*CurDAG, Addr, N0, N1)) {
1989     assert(N0 && N1 && isa<ConstantSDNode>(N1));
1990   }
1991   if (!N0 || !N1)
1992     return false;
1993   if (SelectSMRDOffset(N1, SOffset, Offset, Imm32Only, IsBuffer)) {
1994     SBase = N0;
1995     return true;
1996   }
1997   if (SelectSMRDOffset(N0, SOffset, Offset, Imm32Only, IsBuffer)) {
1998     SBase = N1;
1999     return true;
2000   }
2001   return false;
2002 }
2003 
2004 bool AMDGPUDAGToDAGISel::SelectSMRD(SDValue Addr, SDValue &SBase,
2005                                     SDValue *SOffset, SDValue *Offset,
2006                                     bool Imm32Only) const {
2007   if (SelectSMRDBaseOffset(Addr, SBase, SOffset, Offset, Imm32Only)) {
2008     SBase = Expand32BitAddress(SBase);
2009     return true;
2010   }
2011 
2012   if (Addr.getValueType() == MVT::i32 && Offset && !SOffset) {
2013     SBase = Expand32BitAddress(Addr);
2014     *Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i32);
2015     return true;
2016   }
2017 
2018   return false;
2019 }
2020 
2021 bool AMDGPUDAGToDAGISel::SelectSMRDImm(SDValue Addr, SDValue &SBase,
2022                                        SDValue &Offset) const {
2023   return SelectSMRD(Addr, SBase, /* SOffset */ nullptr, &Offset);
2024 }
2025 
2026 bool AMDGPUDAGToDAGISel::SelectSMRDImm32(SDValue Addr, SDValue &SBase,
2027                                          SDValue &Offset) const {
2028   assert(Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS);
2029   return SelectSMRD(Addr, SBase, /* SOffset */ nullptr, &Offset,
2030                     /* Imm32Only */ true);
2031 }
2032 
2033 bool AMDGPUDAGToDAGISel::SelectSMRDSgpr(SDValue Addr, SDValue &SBase,
2034                                         SDValue &SOffset) const {
2035   return SelectSMRD(Addr, SBase, &SOffset, /* Offset */ nullptr);
2036 }
2037 
2038 bool AMDGPUDAGToDAGISel::SelectSMRDSgprImm(SDValue Addr, SDValue &SBase,
2039                                            SDValue &SOffset,
2040                                            SDValue &Offset) const {
2041   return SelectSMRD(Addr, SBase, &SOffset, &Offset);
2042 }
2043 
2044 bool AMDGPUDAGToDAGISel::SelectSMRDBufferImm(SDValue N, SDValue &Offset) const {
2045   return SelectSMRDOffset(N, /* SOffset */ nullptr, &Offset,
2046                           /* Imm32Only */ false, /* IsBuffer */ true);
2047 }
2048 
2049 bool AMDGPUDAGToDAGISel::SelectSMRDBufferImm32(SDValue N,
2050                                                SDValue &Offset) const {
2051   assert(Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS);
2052   return SelectSMRDOffset(N, /* SOffset */ nullptr, &Offset,
2053                           /* Imm32Only */ true, /* IsBuffer */ true);
2054 }
2055 
2056 bool AMDGPUDAGToDAGISel::SelectSMRDBufferSgprImm(SDValue N, SDValue &SOffset,
2057                                                  SDValue &Offset) const {
2058   // Match the (soffset + offset) pair as a 32-bit register base and
2059   // an immediate offset.
2060   return N.getValueType() == MVT::i32 &&
2061          SelectSMRDBaseOffset(N, /* SBase */ SOffset, /* SOffset*/ nullptr,
2062                               &Offset, /* Imm32Only */ false,
2063                               /* IsBuffer */ true);
2064 }
2065 
2066 bool AMDGPUDAGToDAGISel::SelectMOVRELOffset(SDValue Index,
2067                                             SDValue &Base,
2068                                             SDValue &Offset) const {
2069   SDLoc DL(Index);
2070 
2071   if (CurDAG->isBaseWithConstantOffset(Index)) {
2072     SDValue N0 = Index.getOperand(0);
2073     SDValue N1 = Index.getOperand(1);
2074     ConstantSDNode *C1 = cast<ConstantSDNode>(N1);
2075 
2076     // (add n0, c0)
2077     // Don't peel off the offset (c0) if doing so could possibly lead
2078     // the base (n0) to be negative.
2079     // (or n0, |c0|) can never change a sign given isBaseWithConstantOffset.
2080     if (C1->getSExtValue() <= 0 || CurDAG->SignBitIsZero(N0) ||
2081         (Index->getOpcode() == ISD::OR && C1->getSExtValue() >= 0)) {
2082       Base = N0;
2083       Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i32);
2084       return true;
2085     }
2086   }
2087 
2088   if (isa<ConstantSDNode>(Index))
2089     return false;
2090 
2091   Base = Index;
2092   Offset = CurDAG->getTargetConstant(0, DL, MVT::i32);
2093   return true;
2094 }
2095 
2096 SDNode *AMDGPUDAGToDAGISel::getBFE32(bool IsSigned, const SDLoc &DL,
2097                                      SDValue Val, uint32_t Offset,
2098                                      uint32_t Width) {
2099   if (Val->isDivergent()) {
2100     unsigned Opcode = IsSigned ? AMDGPU::V_BFE_I32_e64 : AMDGPU::V_BFE_U32_e64;
2101     SDValue Off = CurDAG->getTargetConstant(Offset, DL, MVT::i32);
2102     SDValue W = CurDAG->getTargetConstant(Width, DL, MVT::i32);
2103 
2104     return CurDAG->getMachineNode(Opcode, DL, MVT::i32, Val, Off, W);
2105   }
2106   unsigned Opcode = IsSigned ? AMDGPU::S_BFE_I32 : AMDGPU::S_BFE_U32;
2107   // Transformation function, pack the offset and width of a BFE into
2108   // the format expected by the S_BFE_I32 / S_BFE_U32. In the second
2109   // source, bits [5:0] contain the offset and bits [22:16] the width.
2110   uint32_t PackedVal = Offset | (Width << 16);
2111   SDValue PackedConst = CurDAG->getTargetConstant(PackedVal, DL, MVT::i32);
2112 
2113   return CurDAG->getMachineNode(Opcode, DL, MVT::i32, Val, PackedConst);
2114 }
2115 
2116 void AMDGPUDAGToDAGISel::SelectS_BFEFromShifts(SDNode *N) {
2117   // "(a << b) srl c)" ---> "BFE_U32 a, (c-b), (32-c)
2118   // "(a << b) sra c)" ---> "BFE_I32 a, (c-b), (32-c)
2119   // Predicate: 0 < b <= c < 32
2120 
2121   const SDValue &Shl = N->getOperand(0);
2122   ConstantSDNode *B = dyn_cast<ConstantSDNode>(Shl->getOperand(1));
2123   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2124 
2125   if (B && C) {
2126     uint32_t BVal = B->getZExtValue();
2127     uint32_t CVal = C->getZExtValue();
2128 
2129     if (0 < BVal && BVal <= CVal && CVal < 32) {
2130       bool Signed = N->getOpcode() == ISD::SRA;
2131       ReplaceNode(N, getBFE32(Signed, SDLoc(N), Shl.getOperand(0), CVal - BVal,
2132                   32 - CVal));
2133       return;
2134     }
2135   }
2136   SelectCode(N);
2137 }
2138 
2139 void AMDGPUDAGToDAGISel::SelectS_BFE(SDNode *N) {
2140   switch (N->getOpcode()) {
2141   case ISD::AND:
2142     if (N->getOperand(0).getOpcode() == ISD::SRL) {
2143       // "(a srl b) & mask" ---> "BFE_U32 a, b, popcount(mask)"
2144       // Predicate: isMask(mask)
2145       const SDValue &Srl = N->getOperand(0);
2146       ConstantSDNode *Shift = dyn_cast<ConstantSDNode>(Srl.getOperand(1));
2147       ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(N->getOperand(1));
2148 
2149       if (Shift && Mask) {
2150         uint32_t ShiftVal = Shift->getZExtValue();
2151         uint32_t MaskVal = Mask->getZExtValue();
2152 
2153         if (isMask_32(MaskVal)) {
2154           uint32_t WidthVal = llvm::popcount(MaskVal);
2155           ReplaceNode(N, getBFE32(false, SDLoc(N), Srl.getOperand(0), ShiftVal,
2156                                   WidthVal));
2157           return;
2158         }
2159       }
2160     }
2161     break;
2162   case ISD::SRL:
2163     if (N->getOperand(0).getOpcode() == ISD::AND) {
2164       // "(a & mask) srl b)" ---> "BFE_U32 a, b, popcount(mask >> b)"
2165       // Predicate: isMask(mask >> b)
2166       const SDValue &And = N->getOperand(0);
2167       ConstantSDNode *Shift = dyn_cast<ConstantSDNode>(N->getOperand(1));
2168       ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(And->getOperand(1));
2169 
2170       if (Shift && Mask) {
2171         uint32_t ShiftVal = Shift->getZExtValue();
2172         uint32_t MaskVal = Mask->getZExtValue() >> ShiftVal;
2173 
2174         if (isMask_32(MaskVal)) {
2175           uint32_t WidthVal = llvm::popcount(MaskVal);
2176           ReplaceNode(N, getBFE32(false, SDLoc(N), And.getOperand(0), ShiftVal,
2177                       WidthVal));
2178           return;
2179         }
2180       }
2181     } else if (N->getOperand(0).getOpcode() == ISD::SHL) {
2182       SelectS_BFEFromShifts(N);
2183       return;
2184     }
2185     break;
2186   case ISD::SRA:
2187     if (N->getOperand(0).getOpcode() == ISD::SHL) {
2188       SelectS_BFEFromShifts(N);
2189       return;
2190     }
2191     break;
2192 
2193   case ISD::SIGN_EXTEND_INREG: {
2194     // sext_inreg (srl x, 16), i8 -> bfe_i32 x, 16, 8
2195     SDValue Src = N->getOperand(0);
2196     if (Src.getOpcode() != ISD::SRL)
2197       break;
2198 
2199     const ConstantSDNode *Amt = dyn_cast<ConstantSDNode>(Src.getOperand(1));
2200     if (!Amt)
2201       break;
2202 
2203     unsigned Width = cast<VTSDNode>(N->getOperand(1))->getVT().getSizeInBits();
2204     ReplaceNode(N, getBFE32(true, SDLoc(N), Src.getOperand(0),
2205                             Amt->getZExtValue(), Width));
2206     return;
2207   }
2208   }
2209 
2210   SelectCode(N);
2211 }
2212 
2213 bool AMDGPUDAGToDAGISel::isCBranchSCC(const SDNode *N) const {
2214   assert(N->getOpcode() == ISD::BRCOND);
2215   if (!N->hasOneUse())
2216     return false;
2217 
2218   SDValue Cond = N->getOperand(1);
2219   if (Cond.getOpcode() == ISD::CopyToReg)
2220     Cond = Cond.getOperand(2);
2221 
2222   if (Cond.getOpcode() != ISD::SETCC || !Cond.hasOneUse())
2223     return false;
2224 
2225   MVT VT = Cond.getOperand(0).getSimpleValueType();
2226   if (VT == MVT::i32)
2227     return true;
2228 
2229   if (VT == MVT::i64) {
2230     auto ST = static_cast<const GCNSubtarget *>(Subtarget);
2231 
2232     ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
2233     return (CC == ISD::SETEQ || CC == ISD::SETNE) && ST->hasScalarCompareEq64();
2234   }
2235 
2236   return false;
2237 }
2238 
2239 void AMDGPUDAGToDAGISel::SelectBRCOND(SDNode *N) {
2240   SDValue Cond = N->getOperand(1);
2241 
2242   if (Cond.isUndef()) {
2243     CurDAG->SelectNodeTo(N, AMDGPU::SI_BR_UNDEF, MVT::Other,
2244                          N->getOperand(2), N->getOperand(0));
2245     return;
2246   }
2247 
2248   const GCNSubtarget *ST = static_cast<const GCNSubtarget *>(Subtarget);
2249   const SIRegisterInfo *TRI = ST->getRegisterInfo();
2250 
2251   bool UseSCCBr = isCBranchSCC(N) && isUniformBr(N);
2252   unsigned BrOp = UseSCCBr ? AMDGPU::S_CBRANCH_SCC1 : AMDGPU::S_CBRANCH_VCCNZ;
2253   Register CondReg = UseSCCBr ? AMDGPU::SCC : TRI->getVCC();
2254   SDLoc SL(N);
2255 
2256   if (!UseSCCBr) {
2257     // This is the case that we are selecting to S_CBRANCH_VCCNZ.  We have not
2258     // analyzed what generates the vcc value, so we do not know whether vcc
2259     // bits for disabled lanes are 0.  Thus we need to mask out bits for
2260     // disabled lanes.
2261     //
2262     // For the case that we select S_CBRANCH_SCC1 and it gets
2263     // changed to S_CBRANCH_VCCNZ in SIFixSGPRCopies, SIFixSGPRCopies calls
2264     // SIInstrInfo::moveToVALU which inserts the S_AND).
2265     //
2266     // We could add an analysis of what generates the vcc value here and omit
2267     // the S_AND when is unnecessary. But it would be better to add a separate
2268     // pass after SIFixSGPRCopies to do the unnecessary S_AND removal, so it
2269     // catches both cases.
2270     Cond = SDValue(CurDAG->getMachineNode(ST->isWave32() ? AMDGPU::S_AND_B32
2271                                                          : AMDGPU::S_AND_B64,
2272                      SL, MVT::i1,
2273                      CurDAG->getRegister(ST->isWave32() ? AMDGPU::EXEC_LO
2274                                                         : AMDGPU::EXEC,
2275                                          MVT::i1),
2276                     Cond),
2277                    0);
2278   }
2279 
2280   SDValue VCC = CurDAG->getCopyToReg(N->getOperand(0), SL, CondReg, Cond);
2281   CurDAG->SelectNodeTo(N, BrOp, MVT::Other,
2282                        N->getOperand(2), // Basic Block
2283                        VCC.getValue(0));
2284 }
2285 
2286 void AMDGPUDAGToDAGISel::SelectFMAD_FMA(SDNode *N) {
2287   MVT VT = N->getSimpleValueType(0);
2288   bool IsFMA = N->getOpcode() == ISD::FMA;
2289   if (VT != MVT::f32 || (!Subtarget->hasMadMixInsts() &&
2290                          !Subtarget->hasFmaMixInsts()) ||
2291       ((IsFMA && Subtarget->hasMadMixInsts()) ||
2292        (!IsFMA && Subtarget->hasFmaMixInsts()))) {
2293     SelectCode(N);
2294     return;
2295   }
2296 
2297   SDValue Src0 = N->getOperand(0);
2298   SDValue Src1 = N->getOperand(1);
2299   SDValue Src2 = N->getOperand(2);
2300   unsigned Src0Mods, Src1Mods, Src2Mods;
2301 
2302   // Avoid using v_mad_mix_f32/v_fma_mix_f32 unless there is actually an operand
2303   // using the conversion from f16.
2304   bool Sel0 = SelectVOP3PMadMixModsImpl(Src0, Src0, Src0Mods);
2305   bool Sel1 = SelectVOP3PMadMixModsImpl(Src1, Src1, Src1Mods);
2306   bool Sel2 = SelectVOP3PMadMixModsImpl(Src2, Src2, Src2Mods);
2307 
2308   assert((IsFMA || !Mode.allFP32Denormals()) &&
2309          "fmad selected with denormals enabled");
2310   // TODO: We can select this with f32 denormals enabled if all the sources are
2311   // converted from f16 (in which case fmad isn't legal).
2312 
2313   if (Sel0 || Sel1 || Sel2) {
2314     // For dummy operands.
2315     SDValue Zero = CurDAG->getTargetConstant(0, SDLoc(), MVT::i32);
2316     SDValue Ops[] = {
2317       CurDAG->getTargetConstant(Src0Mods, SDLoc(), MVT::i32), Src0,
2318       CurDAG->getTargetConstant(Src1Mods, SDLoc(), MVT::i32), Src1,
2319       CurDAG->getTargetConstant(Src2Mods, SDLoc(), MVT::i32), Src2,
2320       CurDAG->getTargetConstant(0, SDLoc(), MVT::i1),
2321       Zero, Zero
2322     };
2323 
2324     CurDAG->SelectNodeTo(N,
2325                          IsFMA ? AMDGPU::V_FMA_MIX_F32 : AMDGPU::V_MAD_MIX_F32,
2326                          MVT::f32, Ops);
2327   } else {
2328     SelectCode(N);
2329   }
2330 }
2331 
2332 void AMDGPUDAGToDAGISel::SelectDSAppendConsume(SDNode *N, unsigned IntrID) {
2333   // The address is assumed to be uniform, so if it ends up in a VGPR, it will
2334   // be copied to an SGPR with readfirstlane.
2335   unsigned Opc = IntrID == Intrinsic::amdgcn_ds_append ?
2336     AMDGPU::DS_APPEND : AMDGPU::DS_CONSUME;
2337 
2338   SDValue Chain = N->getOperand(0);
2339   SDValue Ptr = N->getOperand(2);
2340   MemIntrinsicSDNode *M = cast<MemIntrinsicSDNode>(N);
2341   MachineMemOperand *MMO = M->getMemOperand();
2342   bool IsGDS = M->getAddressSpace() == AMDGPUAS::REGION_ADDRESS;
2343 
2344   SDValue Offset;
2345   if (CurDAG->isBaseWithConstantOffset(Ptr)) {
2346     SDValue PtrBase = Ptr.getOperand(0);
2347     SDValue PtrOffset = Ptr.getOperand(1);
2348 
2349     const APInt &OffsetVal = cast<ConstantSDNode>(PtrOffset)->getAPIntValue();
2350     if (isDSOffsetLegal(PtrBase, OffsetVal.getZExtValue())) {
2351       N = glueCopyToM0(N, PtrBase);
2352       Offset = CurDAG->getTargetConstant(OffsetVal, SDLoc(), MVT::i32);
2353     }
2354   }
2355 
2356   if (!Offset) {
2357     N = glueCopyToM0(N, Ptr);
2358     Offset = CurDAG->getTargetConstant(0, SDLoc(), MVT::i32);
2359   }
2360 
2361   SDValue Ops[] = {
2362     Offset,
2363     CurDAG->getTargetConstant(IsGDS, SDLoc(), MVT::i32),
2364     Chain,
2365     N->getOperand(N->getNumOperands() - 1) // New glue
2366   };
2367 
2368   SDNode *Selected = CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops);
2369   CurDAG->setNodeMemRefs(cast<MachineSDNode>(Selected), {MMO});
2370 }
2371 
2372 // We need to handle this here because tablegen doesn't support matching
2373 // instructions with multiple outputs.
2374 void AMDGPUDAGToDAGISel::SelectDSBvhStackIntrinsic(SDNode *N) {
2375   unsigned Opc = AMDGPU::DS_BVH_STACK_RTN_B32;
2376   SDValue Ops[] = {N->getOperand(2), N->getOperand(3), N->getOperand(4),
2377                    N->getOperand(5), N->getOperand(0)};
2378 
2379   MemIntrinsicSDNode *M = cast<MemIntrinsicSDNode>(N);
2380   MachineMemOperand *MMO = M->getMemOperand();
2381   SDNode *Selected = CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops);
2382   CurDAG->setNodeMemRefs(cast<MachineSDNode>(Selected), {MMO});
2383 }
2384 
2385 static unsigned gwsIntrinToOpcode(unsigned IntrID) {
2386   switch (IntrID) {
2387   case Intrinsic::amdgcn_ds_gws_init:
2388     return AMDGPU::DS_GWS_INIT;
2389   case Intrinsic::amdgcn_ds_gws_barrier:
2390     return AMDGPU::DS_GWS_BARRIER;
2391   case Intrinsic::amdgcn_ds_gws_sema_v:
2392     return AMDGPU::DS_GWS_SEMA_V;
2393   case Intrinsic::amdgcn_ds_gws_sema_br:
2394     return AMDGPU::DS_GWS_SEMA_BR;
2395   case Intrinsic::amdgcn_ds_gws_sema_p:
2396     return AMDGPU::DS_GWS_SEMA_P;
2397   case Intrinsic::amdgcn_ds_gws_sema_release_all:
2398     return AMDGPU::DS_GWS_SEMA_RELEASE_ALL;
2399   default:
2400     llvm_unreachable("not a gws intrinsic");
2401   }
2402 }
2403 
2404 void AMDGPUDAGToDAGISel::SelectDS_GWS(SDNode *N, unsigned IntrID) {
2405   if (IntrID == Intrinsic::amdgcn_ds_gws_sema_release_all &&
2406       !Subtarget->hasGWSSemaReleaseAll()) {
2407     // Let this error.
2408     SelectCode(N);
2409     return;
2410   }
2411 
2412   // Chain, intrinsic ID, vsrc, offset
2413   const bool HasVSrc = N->getNumOperands() == 4;
2414   assert(HasVSrc || N->getNumOperands() == 3);
2415 
2416   SDLoc SL(N);
2417   SDValue BaseOffset = N->getOperand(HasVSrc ? 3 : 2);
2418   int ImmOffset = 0;
2419   MemIntrinsicSDNode *M = cast<MemIntrinsicSDNode>(N);
2420   MachineMemOperand *MMO = M->getMemOperand();
2421 
2422   // Don't worry if the offset ends up in a VGPR. Only one lane will have
2423   // effect, so SIFixSGPRCopies will validly insert readfirstlane.
2424 
2425   // The resource id offset is computed as (<isa opaque base> + M0[21:16] +
2426   // offset field) % 64. Some versions of the programming guide omit the m0
2427   // part, or claim it's from offset 0.
2428   if (ConstantSDNode *ConstOffset = dyn_cast<ConstantSDNode>(BaseOffset)) {
2429     // If we have a constant offset, try to use the 0 in m0 as the base.
2430     // TODO: Look into changing the default m0 initialization value. If the
2431     // default -1 only set the low 16-bits, we could leave it as-is and add 1 to
2432     // the immediate offset.
2433     glueCopyToM0(N, CurDAG->getTargetConstant(0, SL, MVT::i32));
2434     ImmOffset = ConstOffset->getZExtValue();
2435   } else {
2436     if (CurDAG->isBaseWithConstantOffset(BaseOffset)) {
2437       ImmOffset = BaseOffset.getConstantOperandVal(1);
2438       BaseOffset = BaseOffset.getOperand(0);
2439     }
2440 
2441     // Prefer to do the shift in an SGPR since it should be possible to use m0
2442     // as the result directly. If it's already an SGPR, it will be eliminated
2443     // later.
2444     SDNode *SGPROffset
2445       = CurDAG->getMachineNode(AMDGPU::V_READFIRSTLANE_B32, SL, MVT::i32,
2446                                BaseOffset);
2447     // Shift to offset in m0
2448     SDNode *M0Base
2449       = CurDAG->getMachineNode(AMDGPU::S_LSHL_B32, SL, MVT::i32,
2450                                SDValue(SGPROffset, 0),
2451                                CurDAG->getTargetConstant(16, SL, MVT::i32));
2452     glueCopyToM0(N, SDValue(M0Base, 0));
2453   }
2454 
2455   SDValue Chain = N->getOperand(0);
2456   SDValue OffsetField = CurDAG->getTargetConstant(ImmOffset, SL, MVT::i32);
2457 
2458   const unsigned Opc = gwsIntrinToOpcode(IntrID);
2459   SmallVector<SDValue, 5> Ops;
2460   if (HasVSrc)
2461     Ops.push_back(N->getOperand(2));
2462   Ops.push_back(OffsetField);
2463   Ops.push_back(Chain);
2464 
2465   SDNode *Selected = CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops);
2466   CurDAG->setNodeMemRefs(cast<MachineSDNode>(Selected), {MMO});
2467 }
2468 
2469 void AMDGPUDAGToDAGISel::SelectInterpP1F16(SDNode *N) {
2470   if (Subtarget->getLDSBankCount() != 16) {
2471     // This is a single instruction with a pattern.
2472     SelectCode(N);
2473     return;
2474   }
2475 
2476   SDLoc DL(N);
2477 
2478   // This requires 2 instructions. It is possible to write a pattern to support
2479   // this, but the generated isel emitter doesn't correctly deal with multiple
2480   // output instructions using the same physical register input. The copy to m0
2481   // is incorrectly placed before the second instruction.
2482   //
2483   // TODO: Match source modifiers.
2484   //
2485   // def : Pat <
2486   //   (int_amdgcn_interp_p1_f16
2487   //    (VOP3Mods f32:$src0, i32:$src0_modifiers),
2488   //                             (i32 timm:$attrchan), (i32 timm:$attr),
2489   //                             (i1 timm:$high), M0),
2490   //   (V_INTERP_P1LV_F16 $src0_modifiers, VGPR_32:$src0, timm:$attr,
2491   //       timm:$attrchan, 0,
2492   //       (V_INTERP_MOV_F32 2, timm:$attr, timm:$attrchan), timm:$high)> {
2493   //   let Predicates = [has16BankLDS];
2494   // }
2495 
2496   // 16 bank LDS
2497   SDValue ToM0 = CurDAG->getCopyToReg(CurDAG->getEntryNode(), DL, AMDGPU::M0,
2498                                       N->getOperand(5), SDValue());
2499 
2500   SDVTList VTs = CurDAG->getVTList(MVT::f32, MVT::Other);
2501 
2502   SDNode *InterpMov =
2503     CurDAG->getMachineNode(AMDGPU::V_INTERP_MOV_F32, DL, VTs, {
2504         CurDAG->getTargetConstant(2, DL, MVT::i32), // P0
2505         N->getOperand(3),  // Attr
2506         N->getOperand(2),  // Attrchan
2507         ToM0.getValue(1) // In glue
2508   });
2509 
2510   SDNode *InterpP1LV =
2511     CurDAG->getMachineNode(AMDGPU::V_INTERP_P1LV_F16, DL, MVT::f32, {
2512         CurDAG->getTargetConstant(0, DL, MVT::i32), // $src0_modifiers
2513         N->getOperand(1), // Src0
2514         N->getOperand(3), // Attr
2515         N->getOperand(2), // Attrchan
2516         CurDAG->getTargetConstant(0, DL, MVT::i32), // $src2_modifiers
2517         SDValue(InterpMov, 0), // Src2 - holds two f16 values selected by high
2518         N->getOperand(4), // high
2519         CurDAG->getTargetConstant(0, DL, MVT::i1), // $clamp
2520         CurDAG->getTargetConstant(0, DL, MVT::i32), // $omod
2521         SDValue(InterpMov, 1)
2522   });
2523 
2524   CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), SDValue(InterpP1LV, 0));
2525 }
2526 
2527 void AMDGPUDAGToDAGISel::SelectINTRINSIC_W_CHAIN(SDNode *N) {
2528   unsigned IntrID = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
2529   switch (IntrID) {
2530   case Intrinsic::amdgcn_ds_append:
2531   case Intrinsic::amdgcn_ds_consume: {
2532     if (N->getValueType(0) != MVT::i32)
2533       break;
2534     SelectDSAppendConsume(N, IntrID);
2535     return;
2536   }
2537   case Intrinsic::amdgcn_ds_bvh_stack_rtn:
2538     SelectDSBvhStackIntrinsic(N);
2539     return;
2540   }
2541 
2542   SelectCode(N);
2543 }
2544 
2545 void AMDGPUDAGToDAGISel::SelectINTRINSIC_WO_CHAIN(SDNode *N) {
2546   unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
2547   unsigned Opcode;
2548   switch (IntrID) {
2549   case Intrinsic::amdgcn_wqm:
2550     Opcode = AMDGPU::WQM;
2551     break;
2552   case Intrinsic::amdgcn_softwqm:
2553     Opcode = AMDGPU::SOFT_WQM;
2554     break;
2555   case Intrinsic::amdgcn_wwm:
2556   case Intrinsic::amdgcn_strict_wwm:
2557     Opcode = AMDGPU::STRICT_WWM;
2558     break;
2559   case Intrinsic::amdgcn_strict_wqm:
2560     Opcode = AMDGPU::STRICT_WQM;
2561     break;
2562   case Intrinsic::amdgcn_interp_p1_f16:
2563     SelectInterpP1F16(N);
2564     return;
2565   default:
2566     SelectCode(N);
2567     return;
2568   }
2569 
2570   SDValue Src = N->getOperand(1);
2571   CurDAG->SelectNodeTo(N, Opcode, N->getVTList(), {Src});
2572 }
2573 
2574 void AMDGPUDAGToDAGISel::SelectINTRINSIC_VOID(SDNode *N) {
2575   unsigned IntrID = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
2576   switch (IntrID) {
2577   case Intrinsic::amdgcn_ds_gws_init:
2578   case Intrinsic::amdgcn_ds_gws_barrier:
2579   case Intrinsic::amdgcn_ds_gws_sema_v:
2580   case Intrinsic::amdgcn_ds_gws_sema_br:
2581   case Intrinsic::amdgcn_ds_gws_sema_p:
2582   case Intrinsic::amdgcn_ds_gws_sema_release_all:
2583     SelectDS_GWS(N, IntrID);
2584     return;
2585   default:
2586     break;
2587   }
2588 
2589   SelectCode(N);
2590 }
2591 
2592 bool AMDGPUDAGToDAGISel::SelectVOP3ModsImpl(SDValue In, SDValue &Src,
2593                                             unsigned &Mods,
2594                                             bool AllowAbs) const {
2595   Mods = 0;
2596   Src = In;
2597 
2598   if (Src.getOpcode() == ISD::FNEG) {
2599     Mods |= SISrcMods::NEG;
2600     Src = Src.getOperand(0);
2601   }
2602 
2603   if (AllowAbs && Src.getOpcode() == ISD::FABS) {
2604     Mods |= SISrcMods::ABS;
2605     Src = Src.getOperand(0);
2606   }
2607 
2608   return true;
2609 }
2610 
2611 bool AMDGPUDAGToDAGISel::SelectVOP3Mods(SDValue In, SDValue &Src,
2612                                         SDValue &SrcMods) const {
2613   unsigned Mods;
2614   if (SelectVOP3ModsImpl(In, Src, Mods)) {
2615     SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
2616     return true;
2617   }
2618 
2619   return false;
2620 }
2621 
2622 bool AMDGPUDAGToDAGISel::SelectVOP3BMods(SDValue In, SDValue &Src,
2623                                          SDValue &SrcMods) const {
2624   unsigned Mods;
2625   if (SelectVOP3ModsImpl(In, Src, Mods, /* AllowAbs */ false)) {
2626     SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
2627     return true;
2628   }
2629 
2630   return false;
2631 }
2632 
2633 bool AMDGPUDAGToDAGISel::SelectVOP3NoMods(SDValue In, SDValue &Src) const {
2634   if (In.getOpcode() == ISD::FABS || In.getOpcode() == ISD::FNEG)
2635     return false;
2636 
2637   Src = In;
2638   return true;
2639 }
2640 
2641 bool AMDGPUDAGToDAGISel::SelectVINTERPModsImpl(SDValue In, SDValue &Src,
2642                                                SDValue &SrcMods,
2643                                                bool OpSel) const {
2644   unsigned Mods;
2645   if (SelectVOP3ModsImpl(In, Src, Mods, /* AllowAbs */ false)) {
2646     if (OpSel)
2647       Mods |= SISrcMods::OP_SEL_0;
2648     SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
2649     return true;
2650   }
2651 
2652   return false;
2653 }
2654 
2655 bool AMDGPUDAGToDAGISel::SelectVINTERPMods(SDValue In, SDValue &Src,
2656                                            SDValue &SrcMods) const {
2657   return SelectVINTERPModsImpl(In, Src, SrcMods, /* OpSel */ false);
2658 }
2659 
2660 bool AMDGPUDAGToDAGISel::SelectVINTERPModsHi(SDValue In, SDValue &Src,
2661                                              SDValue &SrcMods) const {
2662   return SelectVINTERPModsImpl(In, Src, SrcMods, /* OpSel */ true);
2663 }
2664 
2665 bool AMDGPUDAGToDAGISel::SelectVOP3Mods0(SDValue In, SDValue &Src,
2666                                          SDValue &SrcMods, SDValue &Clamp,
2667                                          SDValue &Omod) const {
2668   SDLoc DL(In);
2669   Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1);
2670   Omod = CurDAG->getTargetConstant(0, DL, MVT::i1);
2671 
2672   return SelectVOP3Mods(In, Src, SrcMods);
2673 }
2674 
2675 bool AMDGPUDAGToDAGISel::SelectVOP3BMods0(SDValue In, SDValue &Src,
2676                                           SDValue &SrcMods, SDValue &Clamp,
2677                                           SDValue &Omod) const {
2678   SDLoc DL(In);
2679   Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1);
2680   Omod = CurDAG->getTargetConstant(0, DL, MVT::i1);
2681 
2682   return SelectVOP3BMods(In, Src, SrcMods);
2683 }
2684 
2685 bool AMDGPUDAGToDAGISel::SelectVOP3OMods(SDValue In, SDValue &Src,
2686                                          SDValue &Clamp, SDValue &Omod) const {
2687   Src = In;
2688 
2689   SDLoc DL(In);
2690   Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1);
2691   Omod = CurDAG->getTargetConstant(0, DL, MVT::i1);
2692 
2693   return true;
2694 }
2695 
2696 bool AMDGPUDAGToDAGISel::SelectVOP3PMods(SDValue In, SDValue &Src,
2697                                          SDValue &SrcMods, bool IsDOT) const {
2698   unsigned Mods = 0;
2699   Src = In;
2700 
2701   if (Src.getOpcode() == ISD::FNEG) {
2702     Mods ^= (SISrcMods::NEG | SISrcMods::NEG_HI);
2703     Src = Src.getOperand(0);
2704   }
2705 
2706   if (Src.getOpcode() == ISD::BUILD_VECTOR && Src.getNumOperands() == 2 &&
2707       (!IsDOT || !Subtarget->hasDOTOpSelHazard())) {
2708     unsigned VecMods = Mods;
2709 
2710     SDValue Lo = stripBitcast(Src.getOperand(0));
2711     SDValue Hi = stripBitcast(Src.getOperand(1));
2712 
2713     if (Lo.getOpcode() == ISD::FNEG) {
2714       Lo = stripBitcast(Lo.getOperand(0));
2715       Mods ^= SISrcMods::NEG;
2716     }
2717 
2718     if (Hi.getOpcode() == ISD::FNEG) {
2719       Hi = stripBitcast(Hi.getOperand(0));
2720       Mods ^= SISrcMods::NEG_HI;
2721     }
2722 
2723     if (isExtractHiElt(Lo, Lo))
2724       Mods |= SISrcMods::OP_SEL_0;
2725 
2726     if (isExtractHiElt(Hi, Hi))
2727       Mods |= SISrcMods::OP_SEL_1;
2728 
2729     unsigned VecSize = Src.getValueSizeInBits();
2730     Lo = stripExtractLoElt(Lo);
2731     Hi = stripExtractLoElt(Hi);
2732 
2733     if (Lo.getValueSizeInBits() > VecSize) {
2734       Lo = CurDAG->getTargetExtractSubreg(
2735         (VecSize > 32) ? AMDGPU::sub0_sub1 : AMDGPU::sub0, SDLoc(In),
2736         MVT::getIntegerVT(VecSize), Lo);
2737     }
2738 
2739     if (Hi.getValueSizeInBits() > VecSize) {
2740       Hi = CurDAG->getTargetExtractSubreg(
2741         (VecSize > 32) ? AMDGPU::sub0_sub1 : AMDGPU::sub0, SDLoc(In),
2742         MVT::getIntegerVT(VecSize), Hi);
2743     }
2744 
2745     assert(Lo.getValueSizeInBits() <= VecSize &&
2746            Hi.getValueSizeInBits() <= VecSize);
2747 
2748     if (Lo == Hi && !isInlineImmediate(Lo.getNode())) {
2749       // Really a scalar input. Just select from the low half of the register to
2750       // avoid packing.
2751 
2752       if (VecSize == 32 || VecSize == Lo.getValueSizeInBits()) {
2753         Src = Lo;
2754       } else {
2755         assert(Lo.getValueSizeInBits() == 32 && VecSize == 64);
2756 
2757         SDLoc SL(In);
2758         SDValue Undef = SDValue(
2759           CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, SL,
2760                                  Lo.getValueType()), 0);
2761         auto RC = Lo->isDivergent() ? AMDGPU::VReg_64RegClassID
2762                                     : AMDGPU::SReg_64RegClassID;
2763         const SDValue Ops[] = {
2764           CurDAG->getTargetConstant(RC, SL, MVT::i32),
2765           Lo, CurDAG->getTargetConstant(AMDGPU::sub0, SL, MVT::i32),
2766           Undef, CurDAG->getTargetConstant(AMDGPU::sub1, SL, MVT::i32) };
2767 
2768         Src = SDValue(CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, SL,
2769                                              Src.getValueType(), Ops), 0);
2770       }
2771       SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
2772       return true;
2773     }
2774 
2775     if (VecSize == 64 && Lo == Hi && isa<ConstantFPSDNode>(Lo)) {
2776       uint64_t Lit = cast<ConstantFPSDNode>(Lo)->getValueAPF()
2777                       .bitcastToAPInt().getZExtValue();
2778       if (AMDGPU::isInlinableLiteral32(Lit, Subtarget->hasInv2PiInlineImm())) {
2779         Src = CurDAG->getTargetConstant(Lit, SDLoc(In), MVT::i64);;
2780         SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
2781         return true;
2782       }
2783     }
2784 
2785     Mods = VecMods;
2786   }
2787 
2788   // Packed instructions do not have abs modifiers.
2789   Mods |= SISrcMods::OP_SEL_1;
2790 
2791   SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
2792   return true;
2793 }
2794 
2795 bool AMDGPUDAGToDAGISel::SelectVOP3PModsDOT(SDValue In, SDValue &Src,
2796                                             SDValue &SrcMods) const {
2797   return SelectVOP3PMods(In, Src, SrcMods, true);
2798 }
2799 
2800 bool AMDGPUDAGToDAGISel::SelectDotIUVOP3PMods(SDValue In, SDValue &Src) const {
2801   const ConstantSDNode *C = cast<ConstantSDNode>(In);
2802   // Literal i1 value set in intrinsic, represents SrcMods for the next operand.
2803   // 1 promotes packed values to signed, 0 treats them as unsigned.
2804   assert(C->getAPIntValue().getBitWidth() == 1 && "expected i1 value");
2805 
2806   unsigned Mods = SISrcMods::OP_SEL_1;
2807   unsigned SrcSign = C->getAPIntValue().getZExtValue();
2808   if (SrcSign == 1)
2809     Mods ^= SISrcMods::NEG;
2810 
2811   Src = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
2812   return true;
2813 }
2814 
2815 bool AMDGPUDAGToDAGISel::SelectWMMAOpSelVOP3PMods(SDValue In,
2816                                                   SDValue &Src) const {
2817   const ConstantSDNode *C = cast<ConstantSDNode>(In);
2818   assert(C->getAPIntValue().getBitWidth() == 1 && "expected i1 value");
2819 
2820   unsigned Mods = SISrcMods::OP_SEL_1;
2821   unsigned SrcVal = C->getAPIntValue().getZExtValue();
2822   if (SrcVal == 1)
2823     Mods |= SISrcMods::OP_SEL_0;
2824 
2825   Src = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
2826   return true;
2827 }
2828 
2829 bool AMDGPUDAGToDAGISel::SelectVOP3OpSel(SDValue In, SDValue &Src,
2830                                          SDValue &SrcMods) const {
2831   Src = In;
2832   // FIXME: Handle op_sel
2833   SrcMods = CurDAG->getTargetConstant(0, SDLoc(In), MVT::i32);
2834   return true;
2835 }
2836 
2837 bool AMDGPUDAGToDAGISel::SelectVOP3OpSelMods(SDValue In, SDValue &Src,
2838                                              SDValue &SrcMods) const {
2839   // FIXME: Handle op_sel
2840   return SelectVOP3Mods(In, Src, SrcMods);
2841 }
2842 
2843 // The return value is not whether the match is possible (which it always is),
2844 // but whether or not it a conversion is really used.
2845 bool AMDGPUDAGToDAGISel::SelectVOP3PMadMixModsImpl(SDValue In, SDValue &Src,
2846                                                    unsigned &Mods) const {
2847   Mods = 0;
2848   SelectVOP3ModsImpl(In, Src, Mods);
2849 
2850   if (Src.getOpcode() == ISD::FP_EXTEND) {
2851     Src = Src.getOperand(0);
2852     assert(Src.getValueType() == MVT::f16);
2853     Src = stripBitcast(Src);
2854 
2855     // Be careful about folding modifiers if we already have an abs. fneg is
2856     // applied last, so we don't want to apply an earlier fneg.
2857     if ((Mods & SISrcMods::ABS) == 0) {
2858       unsigned ModsTmp;
2859       SelectVOP3ModsImpl(Src, Src, ModsTmp);
2860 
2861       if ((ModsTmp & SISrcMods::NEG) != 0)
2862         Mods ^= SISrcMods::NEG;
2863 
2864       if ((ModsTmp & SISrcMods::ABS) != 0)
2865         Mods |= SISrcMods::ABS;
2866     }
2867 
2868     // op_sel/op_sel_hi decide the source type and source.
2869     // If the source's op_sel_hi is set, it indicates to do a conversion from fp16.
2870     // If the sources's op_sel is set, it picks the high half of the source
2871     // register.
2872 
2873     Mods |= SISrcMods::OP_SEL_1;
2874     if (isExtractHiElt(Src, Src)) {
2875       Mods |= SISrcMods::OP_SEL_0;
2876 
2877       // TODO: Should we try to look for neg/abs here?
2878     }
2879 
2880     return true;
2881   }
2882 
2883   return false;
2884 }
2885 
2886 bool AMDGPUDAGToDAGISel::SelectVOP3PMadMixMods(SDValue In, SDValue &Src,
2887                                                SDValue &SrcMods) const {
2888   unsigned Mods = 0;
2889   SelectVOP3PMadMixModsImpl(In, Src, Mods);
2890   SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
2891   return true;
2892 }
2893 
2894 SDValue AMDGPUDAGToDAGISel::getHi16Elt(SDValue In) const {
2895   if (In.isUndef())
2896     return CurDAG->getUNDEF(MVT::i32);
2897 
2898   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(In)) {
2899     SDLoc SL(In);
2900     return CurDAG->getConstant(C->getZExtValue() << 16, SL, MVT::i32);
2901   }
2902 
2903   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(In)) {
2904     SDLoc SL(In);
2905     return CurDAG->getConstant(
2906       C->getValueAPF().bitcastToAPInt().getZExtValue() << 16, SL, MVT::i32);
2907   }
2908 
2909   SDValue Src;
2910   if (isExtractHiElt(In, Src))
2911     return Src;
2912 
2913   return SDValue();
2914 }
2915 
2916 bool AMDGPUDAGToDAGISel::isVGPRImm(const SDNode * N) const {
2917   assert(CurDAG->getTarget().getTargetTriple().getArch() == Triple::amdgcn);
2918 
2919   const SIRegisterInfo *SIRI =
2920     static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo());
2921   const SIInstrInfo * SII =
2922     static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
2923 
2924   unsigned Limit = 0;
2925   bool AllUsesAcceptSReg = true;
2926   for (SDNode::use_iterator U = N->use_begin(), E = SDNode::use_end();
2927     Limit < 10 && U != E; ++U, ++Limit) {
2928     const TargetRegisterClass *RC = getOperandRegClass(*U, U.getOperandNo());
2929 
2930     // If the register class is unknown, it could be an unknown
2931     // register class that needs to be an SGPR, e.g. an inline asm
2932     // constraint
2933     if (!RC || SIRI->isSGPRClass(RC))
2934       return false;
2935 
2936     if (RC != &AMDGPU::VS_32RegClass) {
2937       AllUsesAcceptSReg = false;
2938       SDNode * User = *U;
2939       if (User->isMachineOpcode()) {
2940         unsigned Opc = User->getMachineOpcode();
2941         const MCInstrDesc &Desc = SII->get(Opc);
2942         if (Desc.isCommutable()) {
2943           unsigned OpIdx = Desc.getNumDefs() + U.getOperandNo();
2944           unsigned CommuteIdx1 = TargetInstrInfo::CommuteAnyOperandIndex;
2945           if (SII->findCommutedOpIndices(Desc, OpIdx, CommuteIdx1)) {
2946             unsigned CommutedOpNo = CommuteIdx1 - Desc.getNumDefs();
2947             const TargetRegisterClass *CommutedRC = getOperandRegClass(*U, CommutedOpNo);
2948             if (CommutedRC == &AMDGPU::VS_32RegClass)
2949               AllUsesAcceptSReg = true;
2950           }
2951         }
2952       }
2953       // If "AllUsesAcceptSReg == false" so far we haven't succeeded
2954       // commuting current user. This means have at least one use
2955       // that strictly require VGPR. Thus, we will not attempt to commute
2956       // other user instructions.
2957       if (!AllUsesAcceptSReg)
2958         break;
2959     }
2960   }
2961   return !AllUsesAcceptSReg && (Limit < 10);
2962 }
2963 
2964 bool AMDGPUDAGToDAGISel::isUniformLoad(const SDNode * N) const {
2965   auto Ld = cast<LoadSDNode>(N);
2966 
2967   if (N->isDivergent() && !AMDGPUInstrInfo::isUniformMMO(Ld->getMemOperand()))
2968     return false;
2969 
2970   return Ld->getAlign() >= Align(4) &&
2971          ((Ld->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
2972            Ld->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) ||
2973           (Subtarget->getScalarizeGlobalBehavior() &&
2974            Ld->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS &&
2975            Ld->isSimple() &&
2976            static_cast<const SITargetLowering *>(getTargetLowering())
2977                ->isMemOpHasNoClobberedMemOperand(N)));
2978 }
2979 
2980 void AMDGPUDAGToDAGISel::PostprocessISelDAG() {
2981   const AMDGPUTargetLowering& Lowering =
2982     *static_cast<const AMDGPUTargetLowering*>(getTargetLowering());
2983   bool IsModified = false;
2984   do {
2985     IsModified = false;
2986 
2987     // Go over all selected nodes and try to fold them a bit more
2988     SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_begin();
2989     while (Position != CurDAG->allnodes_end()) {
2990       SDNode *Node = &*Position++;
2991       MachineSDNode *MachineNode = dyn_cast<MachineSDNode>(Node);
2992       if (!MachineNode)
2993         continue;
2994 
2995       SDNode *ResNode = Lowering.PostISelFolding(MachineNode, *CurDAG);
2996       if (ResNode != Node) {
2997         if (ResNode)
2998           ReplaceUses(Node, ResNode);
2999         IsModified = true;
3000       }
3001     }
3002     CurDAG->RemoveDeadNodes();
3003   } while (IsModified);
3004 }
3005 
3006 char AMDGPUDAGToDAGISel::ID = 0;
3007