1e8d8bef9SDimitry Andric //===- AMDGPInstCombineIntrinsic.cpp - AMDGPU specific InstCombine pass ---===//
2e8d8bef9SDimitry Andric //
3e8d8bef9SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4e8d8bef9SDimitry Andric // See https://llvm.org/LICENSE.txt for license information.
5e8d8bef9SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6e8d8bef9SDimitry Andric //
7e8d8bef9SDimitry Andric //===----------------------------------------------------------------------===//
8e8d8bef9SDimitry Andric //
9e8d8bef9SDimitry Andric // \file
10e8d8bef9SDimitry Andric // This file implements a TargetTransformInfo analysis pass specific to the
11e8d8bef9SDimitry Andric // AMDGPU target machine. It uses the target's detailed information to provide
12e8d8bef9SDimitry Andric // more precise answers to certain TTI queries, while letting the target
13e8d8bef9SDimitry Andric // independent and default TTI implementations handle the rest.
14e8d8bef9SDimitry Andric //
15e8d8bef9SDimitry Andric //===----------------------------------------------------------------------===//
16e8d8bef9SDimitry Andric 
17e8d8bef9SDimitry Andric #include "AMDGPUInstrInfo.h"
18e8d8bef9SDimitry Andric #include "AMDGPUTargetTransformInfo.h"
19e8d8bef9SDimitry Andric #include "GCNSubtarget.h"
20bdd1243dSDimitry Andric #include "llvm/ADT/FloatingPointMode.h"
21e8d8bef9SDimitry Andric #include "llvm/IR/IntrinsicsAMDGPU.h"
22e8d8bef9SDimitry Andric #include "llvm/Transforms/InstCombine/InstCombiner.h"
23bdd1243dSDimitry Andric #include <optional>
24e8d8bef9SDimitry Andric 
25e8d8bef9SDimitry Andric using namespace llvm;
2606c3fb27SDimitry Andric using namespace llvm::PatternMatch;
27e8d8bef9SDimitry Andric 
28e8d8bef9SDimitry Andric #define DEBUG_TYPE "AMDGPUtti"
29e8d8bef9SDimitry Andric 
30e8d8bef9SDimitry Andric namespace {
31e8d8bef9SDimitry Andric 
32e8d8bef9SDimitry Andric struct AMDGPUImageDMaskIntrinsic {
33e8d8bef9SDimitry Andric   unsigned Intr;
34e8d8bef9SDimitry Andric };
35e8d8bef9SDimitry Andric 
36e8d8bef9SDimitry Andric #define GET_AMDGPUImageDMaskIntrinsicTable_IMPL
37e8d8bef9SDimitry Andric #include "InstCombineTables.inc"
38e8d8bef9SDimitry Andric 
39e8d8bef9SDimitry Andric } // end anonymous namespace
40e8d8bef9SDimitry Andric 
41e8d8bef9SDimitry Andric // Constant fold llvm.amdgcn.fmed3 intrinsics for standard inputs.
42e8d8bef9SDimitry Andric //
43e8d8bef9SDimitry Andric // A single NaN input is folded to minnum, so we rely on that folding for
44e8d8bef9SDimitry Andric // handling NaNs.
fmed3AMDGCN(const APFloat & Src0,const APFloat & Src1,const APFloat & Src2)45e8d8bef9SDimitry Andric static APFloat fmed3AMDGCN(const APFloat &Src0, const APFloat &Src1,
46e8d8bef9SDimitry Andric                            const APFloat &Src2) {
47e8d8bef9SDimitry Andric   APFloat Max3 = maxnum(maxnum(Src0, Src1), Src2);
48e8d8bef9SDimitry Andric 
49e8d8bef9SDimitry Andric   APFloat::cmpResult Cmp0 = Max3.compare(Src0);
50e8d8bef9SDimitry Andric   assert(Cmp0 != APFloat::cmpUnordered && "nans handled separately");
51e8d8bef9SDimitry Andric   if (Cmp0 == APFloat::cmpEqual)
52e8d8bef9SDimitry Andric     return maxnum(Src1, Src2);
53e8d8bef9SDimitry Andric 
54e8d8bef9SDimitry Andric   APFloat::cmpResult Cmp1 = Max3.compare(Src1);
55e8d8bef9SDimitry Andric   assert(Cmp1 != APFloat::cmpUnordered && "nans handled separately");
56e8d8bef9SDimitry Andric   if (Cmp1 == APFloat::cmpEqual)
57e8d8bef9SDimitry Andric     return maxnum(Src0, Src2);
58e8d8bef9SDimitry Andric 
59e8d8bef9SDimitry Andric   return maxnum(Src0, Src1);
60e8d8bef9SDimitry Andric }
61e8d8bef9SDimitry Andric 
62e8d8bef9SDimitry Andric // Check if a value can be converted to a 16-bit value without losing
63e8d8bef9SDimitry Andric // precision.
6404eeddc0SDimitry Andric // The value is expected to be either a float (IsFloat = true) or an unsigned
6504eeddc0SDimitry Andric // integer (IsFloat = false).
canSafelyConvertTo16Bit(Value & V,bool IsFloat)6604eeddc0SDimitry Andric static bool canSafelyConvertTo16Bit(Value &V, bool IsFloat) {
67e8d8bef9SDimitry Andric   Type *VTy = V.getType();
68e8d8bef9SDimitry Andric   if (VTy->isHalfTy() || VTy->isIntegerTy(16)) {
69e8d8bef9SDimitry Andric     // The value is already 16-bit, so we don't want to convert to 16-bit again!
70e8d8bef9SDimitry Andric     return false;
71e8d8bef9SDimitry Andric   }
7204eeddc0SDimitry Andric   if (IsFloat) {
73e8d8bef9SDimitry Andric     if (ConstantFP *ConstFloat = dyn_cast<ConstantFP>(&V)) {
7404eeddc0SDimitry Andric       // We need to check that if we cast the index down to a half, we do not
7504eeddc0SDimitry Andric       // lose precision.
76e8d8bef9SDimitry Andric       APFloat FloatValue(ConstFloat->getValueAPF());
77e8d8bef9SDimitry Andric       bool LosesInfo = true;
7804eeddc0SDimitry Andric       FloatValue.convert(APFloat::IEEEhalf(), APFloat::rmTowardZero,
7904eeddc0SDimitry Andric                          &LosesInfo);
80e8d8bef9SDimitry Andric       return !LosesInfo;
81e8d8bef9SDimitry Andric     }
8204eeddc0SDimitry Andric   } else {
8304eeddc0SDimitry Andric     if (ConstantInt *ConstInt = dyn_cast<ConstantInt>(&V)) {
8404eeddc0SDimitry Andric       // We need to check that if we cast the index down to an i16, we do not
8504eeddc0SDimitry Andric       // lose precision.
8604eeddc0SDimitry Andric       APInt IntValue(ConstInt->getValue());
8704eeddc0SDimitry Andric       return IntValue.getActiveBits() <= 16;
8804eeddc0SDimitry Andric     }
8904eeddc0SDimitry Andric   }
9004eeddc0SDimitry Andric 
91e8d8bef9SDimitry Andric   Value *CastSrc;
9204eeddc0SDimitry Andric   bool IsExt = IsFloat ? match(&V, m_FPExt(PatternMatch::m_Value(CastSrc)))
9304eeddc0SDimitry Andric                        : match(&V, m_ZExt(PatternMatch::m_Value(CastSrc)));
9404eeddc0SDimitry Andric   if (IsExt) {
95e8d8bef9SDimitry Andric     Type *CastSrcTy = CastSrc->getType();
96e8d8bef9SDimitry Andric     if (CastSrcTy->isHalfTy() || CastSrcTy->isIntegerTy(16))
97e8d8bef9SDimitry Andric       return true;
98e8d8bef9SDimitry Andric   }
99e8d8bef9SDimitry Andric 
100e8d8bef9SDimitry Andric   return false;
101e8d8bef9SDimitry Andric }
102e8d8bef9SDimitry Andric 
103e8d8bef9SDimitry Andric // Convert a value to 16-bit.
convertTo16Bit(Value & V,InstCombiner::BuilderTy & Builder)104e8d8bef9SDimitry Andric static Value *convertTo16Bit(Value &V, InstCombiner::BuilderTy &Builder) {
105e8d8bef9SDimitry Andric   Type *VTy = V.getType();
106e8d8bef9SDimitry Andric   if (isa<FPExtInst>(&V) || isa<SExtInst>(&V) || isa<ZExtInst>(&V))
107e8d8bef9SDimitry Andric     return cast<Instruction>(&V)->getOperand(0);
108e8d8bef9SDimitry Andric   if (VTy->isIntegerTy())
109e8d8bef9SDimitry Andric     return Builder.CreateIntCast(&V, Type::getInt16Ty(V.getContext()), false);
110e8d8bef9SDimitry Andric   if (VTy->isFloatingPointTy())
111e8d8bef9SDimitry Andric     return Builder.CreateFPCast(&V, Type::getHalfTy(V.getContext()));
112e8d8bef9SDimitry Andric 
113e8d8bef9SDimitry Andric   llvm_unreachable("Should never be called!");
114e8d8bef9SDimitry Andric }
115e8d8bef9SDimitry Andric 
11681ad6265SDimitry Andric /// Applies Func(OldIntr.Args, OldIntr.ArgTys), creates intrinsic call with
11781ad6265SDimitry Andric /// modified arguments (based on OldIntr) and replaces InstToReplace with
11881ad6265SDimitry Andric /// this newly created intrinsic call.
modifyIntrinsicCall(IntrinsicInst & OldIntr,Instruction & InstToReplace,unsigned NewIntr,InstCombiner & IC,std::function<void (SmallVectorImpl<Value * > &,SmallVectorImpl<Type * > &)> Func)119bdd1243dSDimitry Andric static std::optional<Instruction *> modifyIntrinsicCall(
12081ad6265SDimitry Andric     IntrinsicInst &OldIntr, Instruction &InstToReplace, unsigned NewIntr,
12181ad6265SDimitry Andric     InstCombiner &IC,
12204eeddc0SDimitry Andric     std::function<void(SmallVectorImpl<Value *> &, SmallVectorImpl<Type *> &)>
12304eeddc0SDimitry Andric         Func) {
12404eeddc0SDimitry Andric   SmallVector<Type *, 4> ArgTys;
12581ad6265SDimitry Andric   if (!Intrinsic::getIntrinsicSignature(OldIntr.getCalledFunction(), ArgTys))
126bdd1243dSDimitry Andric     return std::nullopt;
12704eeddc0SDimitry Andric 
12881ad6265SDimitry Andric   SmallVector<Value *, 8> Args(OldIntr.args());
12904eeddc0SDimitry Andric 
13004eeddc0SDimitry Andric   // Modify arguments and types
13104eeddc0SDimitry Andric   Func(Args, ArgTys);
13204eeddc0SDimitry Andric 
13381ad6265SDimitry Andric   Function *I = Intrinsic::getDeclaration(OldIntr.getModule(), NewIntr, ArgTys);
13404eeddc0SDimitry Andric 
13504eeddc0SDimitry Andric   CallInst *NewCall = IC.Builder.CreateCall(I, Args);
13681ad6265SDimitry Andric   NewCall->takeName(&OldIntr);
13781ad6265SDimitry Andric   NewCall->copyMetadata(OldIntr);
13804eeddc0SDimitry Andric   if (isa<FPMathOperator>(NewCall))
13981ad6265SDimitry Andric     NewCall->copyFastMathFlags(&OldIntr);
14004eeddc0SDimitry Andric 
14104eeddc0SDimitry Andric   // Erase and replace uses
14281ad6265SDimitry Andric   if (!InstToReplace.getType()->isVoidTy())
14381ad6265SDimitry Andric     IC.replaceInstUsesWith(InstToReplace, NewCall);
14481ad6265SDimitry Andric 
14581ad6265SDimitry Andric   bool RemoveOldIntr = &OldIntr != &InstToReplace;
14681ad6265SDimitry Andric 
14781ad6265SDimitry Andric   auto RetValue = IC.eraseInstFromFunction(InstToReplace);
14881ad6265SDimitry Andric   if (RemoveOldIntr)
14981ad6265SDimitry Andric     IC.eraseInstFromFunction(OldIntr);
15081ad6265SDimitry Andric 
15181ad6265SDimitry Andric   return RetValue;
15204eeddc0SDimitry Andric }
15304eeddc0SDimitry Andric 
154bdd1243dSDimitry Andric static std::optional<Instruction *>
simplifyAMDGCNImageIntrinsic(const GCNSubtarget * ST,const AMDGPU::ImageDimIntrinsicInfo * ImageDimIntr,IntrinsicInst & II,InstCombiner & IC)155e8d8bef9SDimitry Andric simplifyAMDGCNImageIntrinsic(const GCNSubtarget *ST,
156e8d8bef9SDimitry Andric                              const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr,
157e8d8bef9SDimitry Andric                              IntrinsicInst &II, InstCombiner &IC) {
15804eeddc0SDimitry Andric   // Optimize _L to _LZ when _L is zero
15904eeddc0SDimitry Andric   if (const auto *LZMappingInfo =
16004eeddc0SDimitry Andric           AMDGPU::getMIMGLZMappingInfo(ImageDimIntr->BaseOpcode)) {
16104eeddc0SDimitry Andric     if (auto *ConstantLod =
16204eeddc0SDimitry Andric             dyn_cast<ConstantFP>(II.getOperand(ImageDimIntr->LodIndex))) {
16304eeddc0SDimitry Andric       if (ConstantLod->isZero() || ConstantLod->isNegative()) {
16404eeddc0SDimitry Andric         const AMDGPU::ImageDimIntrinsicInfo *NewImageDimIntr =
16504eeddc0SDimitry Andric             AMDGPU::getImageDimIntrinsicByBaseOpcode(LZMappingInfo->LZ,
16604eeddc0SDimitry Andric                                                      ImageDimIntr->Dim);
16704eeddc0SDimitry Andric         return modifyIntrinsicCall(
16881ad6265SDimitry Andric             II, II, NewImageDimIntr->Intr, IC, [&](auto &Args, auto &ArgTys) {
16904eeddc0SDimitry Andric               Args.erase(Args.begin() + ImageDimIntr->LodIndex);
17004eeddc0SDimitry Andric             });
17104eeddc0SDimitry Andric       }
17204eeddc0SDimitry Andric     }
17304eeddc0SDimitry Andric   }
17404eeddc0SDimitry Andric 
17504eeddc0SDimitry Andric   // Optimize _mip away, when 'lod' is zero
17604eeddc0SDimitry Andric   if (const auto *MIPMappingInfo =
17704eeddc0SDimitry Andric           AMDGPU::getMIMGMIPMappingInfo(ImageDimIntr->BaseOpcode)) {
17804eeddc0SDimitry Andric     if (auto *ConstantMip =
17904eeddc0SDimitry Andric             dyn_cast<ConstantInt>(II.getOperand(ImageDimIntr->MipIndex))) {
18004eeddc0SDimitry Andric       if (ConstantMip->isZero()) {
18104eeddc0SDimitry Andric         const AMDGPU::ImageDimIntrinsicInfo *NewImageDimIntr =
18204eeddc0SDimitry Andric             AMDGPU::getImageDimIntrinsicByBaseOpcode(MIPMappingInfo->NONMIP,
18304eeddc0SDimitry Andric                                                      ImageDimIntr->Dim);
18404eeddc0SDimitry Andric         return modifyIntrinsicCall(
18581ad6265SDimitry Andric             II, II, NewImageDimIntr->Intr, IC, [&](auto &Args, auto &ArgTys) {
18604eeddc0SDimitry Andric               Args.erase(Args.begin() + ImageDimIntr->MipIndex);
18704eeddc0SDimitry Andric             });
18804eeddc0SDimitry Andric       }
18904eeddc0SDimitry Andric     }
19004eeddc0SDimitry Andric   }
19104eeddc0SDimitry Andric 
19204eeddc0SDimitry Andric   // Optimize _bias away when 'bias' is zero
19304eeddc0SDimitry Andric   if (const auto *BiasMappingInfo =
19404eeddc0SDimitry Andric           AMDGPU::getMIMGBiasMappingInfo(ImageDimIntr->BaseOpcode)) {
19504eeddc0SDimitry Andric     if (auto *ConstantBias =
19604eeddc0SDimitry Andric             dyn_cast<ConstantFP>(II.getOperand(ImageDimIntr->BiasIndex))) {
19704eeddc0SDimitry Andric       if (ConstantBias->isZero()) {
19804eeddc0SDimitry Andric         const AMDGPU::ImageDimIntrinsicInfo *NewImageDimIntr =
19904eeddc0SDimitry Andric             AMDGPU::getImageDimIntrinsicByBaseOpcode(BiasMappingInfo->NoBias,
20004eeddc0SDimitry Andric                                                      ImageDimIntr->Dim);
20104eeddc0SDimitry Andric         return modifyIntrinsicCall(
20281ad6265SDimitry Andric             II, II, NewImageDimIntr->Intr, IC, [&](auto &Args, auto &ArgTys) {
20304eeddc0SDimitry Andric               Args.erase(Args.begin() + ImageDimIntr->BiasIndex);
20404eeddc0SDimitry Andric               ArgTys.erase(ArgTys.begin() + ImageDimIntr->BiasTyArg);
20504eeddc0SDimitry Andric             });
20604eeddc0SDimitry Andric       }
20704eeddc0SDimitry Andric     }
20804eeddc0SDimitry Andric   }
20904eeddc0SDimitry Andric 
21004eeddc0SDimitry Andric   // Optimize _offset away when 'offset' is zero
21104eeddc0SDimitry Andric   if (const auto *OffsetMappingInfo =
21204eeddc0SDimitry Andric           AMDGPU::getMIMGOffsetMappingInfo(ImageDimIntr->BaseOpcode)) {
21304eeddc0SDimitry Andric     if (auto *ConstantOffset =
21404eeddc0SDimitry Andric             dyn_cast<ConstantInt>(II.getOperand(ImageDimIntr->OffsetIndex))) {
21504eeddc0SDimitry Andric       if (ConstantOffset->isZero()) {
21604eeddc0SDimitry Andric         const AMDGPU::ImageDimIntrinsicInfo *NewImageDimIntr =
21704eeddc0SDimitry Andric             AMDGPU::getImageDimIntrinsicByBaseOpcode(
21804eeddc0SDimitry Andric                 OffsetMappingInfo->NoOffset, ImageDimIntr->Dim);
21904eeddc0SDimitry Andric         return modifyIntrinsicCall(
22081ad6265SDimitry Andric             II, II, NewImageDimIntr->Intr, IC, [&](auto &Args, auto &ArgTys) {
22104eeddc0SDimitry Andric               Args.erase(Args.begin() + ImageDimIntr->OffsetIndex);
22204eeddc0SDimitry Andric             });
22304eeddc0SDimitry Andric       }
22404eeddc0SDimitry Andric     }
22504eeddc0SDimitry Andric   }
22604eeddc0SDimitry Andric 
22781ad6265SDimitry Andric   // Try to use D16
22881ad6265SDimitry Andric   if (ST->hasD16Images()) {
22981ad6265SDimitry Andric 
23081ad6265SDimitry Andric     const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
23181ad6265SDimitry Andric         AMDGPU::getMIMGBaseOpcodeInfo(ImageDimIntr->BaseOpcode);
23281ad6265SDimitry Andric 
23381ad6265SDimitry Andric     if (BaseOpcode->HasD16) {
23481ad6265SDimitry Andric 
23581ad6265SDimitry Andric       // If the only use of image intrinsic is a fptrunc (with conversion to
23681ad6265SDimitry Andric       // half) then both fptrunc and image intrinsic will be replaced with image
23781ad6265SDimitry Andric       // intrinsic with D16 flag.
23881ad6265SDimitry Andric       if (II.hasOneUse()) {
23981ad6265SDimitry Andric         Instruction *User = II.user_back();
24081ad6265SDimitry Andric 
24181ad6265SDimitry Andric         if (User->getOpcode() == Instruction::FPTrunc &&
24281ad6265SDimitry Andric             User->getType()->getScalarType()->isHalfTy()) {
24381ad6265SDimitry Andric 
24481ad6265SDimitry Andric           return modifyIntrinsicCall(II, *User, ImageDimIntr->Intr, IC,
24581ad6265SDimitry Andric                                      [&](auto &Args, auto &ArgTys) {
24681ad6265SDimitry Andric                                        // Change return type of image intrinsic.
24781ad6265SDimitry Andric                                        // Set it to return type of fptrunc.
24881ad6265SDimitry Andric                                        ArgTys[0] = User->getType();
24981ad6265SDimitry Andric                                      });
25081ad6265SDimitry Andric         }
25181ad6265SDimitry Andric       }
25281ad6265SDimitry Andric     }
25381ad6265SDimitry Andric   }
25481ad6265SDimitry Andric 
25504eeddc0SDimitry Andric   // Try to use A16 or G16
256e8d8bef9SDimitry Andric   if (!ST->hasA16() && !ST->hasG16())
257bdd1243dSDimitry Andric     return std::nullopt;
258e8d8bef9SDimitry Andric 
25904eeddc0SDimitry Andric   // Address is interpreted as float if the instruction has a sampler or as
26004eeddc0SDimitry Andric   // unsigned int if there is no sampler.
26104eeddc0SDimitry Andric   bool HasSampler =
26204eeddc0SDimitry Andric       AMDGPU::getMIMGBaseOpcodeInfo(ImageDimIntr->BaseOpcode)->Sampler;
263e8d8bef9SDimitry Andric   bool FloatCoord = false;
264e8d8bef9SDimitry Andric   // true means derivatives can be converted to 16 bit, coordinates not
265e8d8bef9SDimitry Andric   bool OnlyDerivatives = false;
266e8d8bef9SDimitry Andric 
267e8d8bef9SDimitry Andric   for (unsigned OperandIndex = ImageDimIntr->GradientStart;
268e8d8bef9SDimitry Andric        OperandIndex < ImageDimIntr->VAddrEnd; OperandIndex++) {
269e8d8bef9SDimitry Andric     Value *Coord = II.getOperand(OperandIndex);
270e8d8bef9SDimitry Andric     // If the values are not derived from 16-bit values, we cannot optimize.
27104eeddc0SDimitry Andric     if (!canSafelyConvertTo16Bit(*Coord, HasSampler)) {
272e8d8bef9SDimitry Andric       if (OperandIndex < ImageDimIntr->CoordStart ||
273e8d8bef9SDimitry Andric           ImageDimIntr->GradientStart == ImageDimIntr->CoordStart) {
274bdd1243dSDimitry Andric         return std::nullopt;
275e8d8bef9SDimitry Andric       }
276e8d8bef9SDimitry Andric       // All gradients can be converted, so convert only them
277e8d8bef9SDimitry Andric       OnlyDerivatives = true;
278e8d8bef9SDimitry Andric       break;
279e8d8bef9SDimitry Andric     }
280e8d8bef9SDimitry Andric 
281e8d8bef9SDimitry Andric     assert(OperandIndex == ImageDimIntr->GradientStart ||
282e8d8bef9SDimitry Andric            FloatCoord == Coord->getType()->isFloatingPointTy());
283e8d8bef9SDimitry Andric     FloatCoord = Coord->getType()->isFloatingPointTy();
284e8d8bef9SDimitry Andric   }
285e8d8bef9SDimitry Andric 
28604eeddc0SDimitry Andric   if (!OnlyDerivatives && !ST->hasA16())
287e8d8bef9SDimitry Andric     OnlyDerivatives = true; // Only supports G16
28804eeddc0SDimitry Andric 
28904eeddc0SDimitry Andric   // Check if there is a bias parameter and if it can be converted to f16
29004eeddc0SDimitry Andric   if (!OnlyDerivatives && ImageDimIntr->NumBiasArgs != 0) {
29104eeddc0SDimitry Andric     Value *Bias = II.getOperand(ImageDimIntr->BiasIndex);
29204eeddc0SDimitry Andric     assert(HasSampler &&
29304eeddc0SDimitry Andric            "Only image instructions with a sampler can have a bias");
29404eeddc0SDimitry Andric     if (!canSafelyConvertTo16Bit(*Bias, HasSampler))
29504eeddc0SDimitry Andric       OnlyDerivatives = true;
296e8d8bef9SDimitry Andric   }
297e8d8bef9SDimitry Andric 
29804eeddc0SDimitry Andric   if (OnlyDerivatives && (!ST->hasG16() || ImageDimIntr->GradientStart ==
29904eeddc0SDimitry Andric                                                ImageDimIntr->CoordStart))
300bdd1243dSDimitry Andric     return std::nullopt;
30104eeddc0SDimitry Andric 
302e8d8bef9SDimitry Andric   Type *CoordType = FloatCoord ? Type::getHalfTy(II.getContext())
303e8d8bef9SDimitry Andric                                : Type::getInt16Ty(II.getContext());
304e8d8bef9SDimitry Andric 
30504eeddc0SDimitry Andric   return modifyIntrinsicCall(
30681ad6265SDimitry Andric       II, II, II.getIntrinsicID(), IC, [&](auto &Args, auto &ArgTys) {
307e8d8bef9SDimitry Andric         ArgTys[ImageDimIntr->GradientTyArg] = CoordType;
30804eeddc0SDimitry Andric         if (!OnlyDerivatives) {
309e8d8bef9SDimitry Andric           ArgTys[ImageDimIntr->CoordTyArg] = CoordType;
310e8d8bef9SDimitry Andric 
31104eeddc0SDimitry Andric           // Change the bias type
31204eeddc0SDimitry Andric           if (ImageDimIntr->NumBiasArgs != 0)
31304eeddc0SDimitry Andric             ArgTys[ImageDimIntr->BiasTyArg] = Type::getHalfTy(II.getContext());
31404eeddc0SDimitry Andric         }
315e8d8bef9SDimitry Andric 
316e8d8bef9SDimitry Andric         unsigned EndIndex =
317e8d8bef9SDimitry Andric             OnlyDerivatives ? ImageDimIntr->CoordStart : ImageDimIntr->VAddrEnd;
318e8d8bef9SDimitry Andric         for (unsigned OperandIndex = ImageDimIntr->GradientStart;
319e8d8bef9SDimitry Andric              OperandIndex < EndIndex; OperandIndex++) {
320e8d8bef9SDimitry Andric           Args[OperandIndex] =
321e8d8bef9SDimitry Andric               convertTo16Bit(*II.getOperand(OperandIndex), IC.Builder);
322e8d8bef9SDimitry Andric         }
323e8d8bef9SDimitry Andric 
32404eeddc0SDimitry Andric         // Convert the bias
32504eeddc0SDimitry Andric         if (!OnlyDerivatives && ImageDimIntr->NumBiasArgs != 0) {
32604eeddc0SDimitry Andric           Value *Bias = II.getOperand(ImageDimIntr->BiasIndex);
32704eeddc0SDimitry Andric           Args[ImageDimIntr->BiasIndex] = convertTo16Bit(*Bias, IC.Builder);
32804eeddc0SDimitry Andric         }
32904eeddc0SDimitry Andric       });
330e8d8bef9SDimitry Andric }
331e8d8bef9SDimitry Andric 
canSimplifyLegacyMulToMul(const Instruction & I,const Value * Op0,const Value * Op1,InstCombiner & IC) const33206c3fb27SDimitry Andric bool GCNTTIImpl::canSimplifyLegacyMulToMul(const Instruction &I,
33306c3fb27SDimitry Andric                                            const Value *Op0, const Value *Op1,
334e8d8bef9SDimitry Andric                                            InstCombiner &IC) const {
335e8d8bef9SDimitry Andric   // The legacy behaviour is that multiplying +/-0.0 by anything, even NaN or
336e8d8bef9SDimitry Andric   // infinity, gives +0.0. If we can prove we don't have one of the special
337e8d8bef9SDimitry Andric   // cases then we can use a normal multiply instead.
338e8d8bef9SDimitry Andric   // TODO: Create and use isKnownFiniteNonZero instead of just matching
339e8d8bef9SDimitry Andric   // constants here.
340e8d8bef9SDimitry Andric   if (match(Op0, PatternMatch::m_FiniteNonZero()) ||
341e8d8bef9SDimitry Andric       match(Op1, PatternMatch::m_FiniteNonZero())) {
342e8d8bef9SDimitry Andric     // One operand is not zero or infinity or NaN.
343e8d8bef9SDimitry Andric     return true;
344e8d8bef9SDimitry Andric   }
34506c3fb27SDimitry Andric 
346e8d8bef9SDimitry Andric   auto *TLI = &IC.getTargetLibraryInfo();
34706c3fb27SDimitry Andric   if (isKnownNeverInfOrNaN(Op0, IC.getDataLayout(), TLI, 0,
34806c3fb27SDimitry Andric                            &IC.getAssumptionCache(), &I,
34906c3fb27SDimitry Andric                            &IC.getDominatorTree()) &&
35006c3fb27SDimitry Andric       isKnownNeverInfOrNaN(Op1, IC.getDataLayout(), TLI, 0,
35106c3fb27SDimitry Andric                            &IC.getAssumptionCache(), &I,
35206c3fb27SDimitry Andric                            &IC.getDominatorTree())) {
353e8d8bef9SDimitry Andric     // Neither operand is infinity or NaN.
354e8d8bef9SDimitry Andric     return true;
355e8d8bef9SDimitry Andric   }
356e8d8bef9SDimitry Andric   return false;
357e8d8bef9SDimitry Andric }
358e8d8bef9SDimitry Andric 
35906c3fb27SDimitry Andric /// Match an fpext from half to float, or a constant we can convert.
matchFPExtFromF16(Value * Arg,Value * & FPExtSrc)36006c3fb27SDimitry Andric static bool matchFPExtFromF16(Value *Arg, Value *&FPExtSrc) {
36106c3fb27SDimitry Andric   if (match(Arg, m_OneUse(m_FPExt(m_Value(FPExtSrc)))))
36206c3fb27SDimitry Andric     return FPExtSrc->getType()->isHalfTy();
36306c3fb27SDimitry Andric 
36406c3fb27SDimitry Andric   ConstantFP *CFP;
36506c3fb27SDimitry Andric   if (match(Arg, m_ConstantFP(CFP))) {
36606c3fb27SDimitry Andric     bool LosesInfo;
36706c3fb27SDimitry Andric     APFloat Val(CFP->getValueAPF());
36806c3fb27SDimitry Andric     Val.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &LosesInfo);
36906c3fb27SDimitry Andric     if (LosesInfo)
37006c3fb27SDimitry Andric       return false;
37106c3fb27SDimitry Andric 
37206c3fb27SDimitry Andric     FPExtSrc = ConstantFP::get(Type::getHalfTy(Arg->getContext()), Val);
37306c3fb27SDimitry Andric     return true;
37406c3fb27SDimitry Andric   }
37506c3fb27SDimitry Andric 
37606c3fb27SDimitry Andric   return false;
37706c3fb27SDimitry Andric }
37806c3fb27SDimitry Andric 
37906c3fb27SDimitry Andric // Trim all zero components from the end of the vector \p UseV and return
38006c3fb27SDimitry Andric // an appropriate bitset with known elements.
trimTrailingZerosInVector(InstCombiner & IC,Value * UseV,Instruction * I)38106c3fb27SDimitry Andric static APInt trimTrailingZerosInVector(InstCombiner &IC, Value *UseV,
38206c3fb27SDimitry Andric                                        Instruction *I) {
38306c3fb27SDimitry Andric   auto *VTy = cast<FixedVectorType>(UseV->getType());
38406c3fb27SDimitry Andric   unsigned VWidth = VTy->getNumElements();
38506c3fb27SDimitry Andric   APInt DemandedElts = APInt::getAllOnes(VWidth);
38606c3fb27SDimitry Andric 
38706c3fb27SDimitry Andric   for (int i = VWidth - 1; i > 0; --i) {
38806c3fb27SDimitry Andric     auto *Elt = findScalarElement(UseV, i);
38906c3fb27SDimitry Andric     if (!Elt)
39006c3fb27SDimitry Andric       break;
39106c3fb27SDimitry Andric 
39206c3fb27SDimitry Andric     if (auto *ConstElt = dyn_cast<Constant>(Elt)) {
39306c3fb27SDimitry Andric       if (!ConstElt->isNullValue() && !isa<UndefValue>(Elt))
39406c3fb27SDimitry Andric         break;
39506c3fb27SDimitry Andric     } else {
39606c3fb27SDimitry Andric       break;
39706c3fb27SDimitry Andric     }
39806c3fb27SDimitry Andric 
39906c3fb27SDimitry Andric     DemandedElts.clearBit(i);
40006c3fb27SDimitry Andric   }
40106c3fb27SDimitry Andric 
40206c3fb27SDimitry Andric   return DemandedElts;
40306c3fb27SDimitry Andric }
40406c3fb27SDimitry Andric 
405*7a6dacacSDimitry Andric // Trim elements of the end of the vector \p V, if they are
406*7a6dacacSDimitry Andric // equal to the first element of the vector.
defaultComponentBroadcast(Value * V)407*7a6dacacSDimitry Andric static APInt defaultComponentBroadcast(Value *V) {
408*7a6dacacSDimitry Andric   auto *VTy = cast<FixedVectorType>(V->getType());
409*7a6dacacSDimitry Andric   unsigned VWidth = VTy->getNumElements();
410*7a6dacacSDimitry Andric   APInt DemandedElts = APInt::getAllOnes(VWidth);
411*7a6dacacSDimitry Andric   Value *FirstComponent = findScalarElement(V, 0);
412*7a6dacacSDimitry Andric 
413*7a6dacacSDimitry Andric   SmallVector<int> ShuffleMask;
414*7a6dacacSDimitry Andric   if (auto *SVI = dyn_cast<ShuffleVectorInst>(V))
415*7a6dacacSDimitry Andric     SVI->getShuffleMask(ShuffleMask);
416*7a6dacacSDimitry Andric 
417*7a6dacacSDimitry Andric   for (int I = VWidth - 1; I > 0; --I) {
418*7a6dacacSDimitry Andric     if (ShuffleMask.empty()) {
419*7a6dacacSDimitry Andric       auto *Elt = findScalarElement(V, I);
420*7a6dacacSDimitry Andric       if (!Elt || (Elt != FirstComponent && !isa<UndefValue>(Elt)))
421*7a6dacacSDimitry Andric         break;
422*7a6dacacSDimitry Andric     } else {
423*7a6dacacSDimitry Andric       // Detect identical elements in the shufflevector result, even though
424*7a6dacacSDimitry Andric       // findScalarElement cannot tell us what that element is.
425*7a6dacacSDimitry Andric       if (ShuffleMask[I] != ShuffleMask[0] && ShuffleMask[I] != PoisonMaskElem)
426*7a6dacacSDimitry Andric         break;
427*7a6dacacSDimitry Andric     }
428*7a6dacacSDimitry Andric     DemandedElts.clearBit(I);
429*7a6dacacSDimitry Andric   }
430*7a6dacacSDimitry Andric 
431*7a6dacacSDimitry Andric   return DemandedElts;
432*7a6dacacSDimitry Andric }
433*7a6dacacSDimitry Andric 
43406c3fb27SDimitry Andric static Value *simplifyAMDGCNMemoryIntrinsicDemanded(InstCombiner &IC,
43506c3fb27SDimitry Andric                                                     IntrinsicInst &II,
43606c3fb27SDimitry Andric                                                     APInt DemandedElts,
43706c3fb27SDimitry Andric                                                     int DMaskIdx = -1,
43806c3fb27SDimitry Andric                                                     bool IsLoad = true);
43906c3fb27SDimitry Andric 
4405f757f3fSDimitry Andric /// Return true if it's legal to contract llvm.amdgcn.rcp(llvm.sqrt)
canContractSqrtToRsq(const FPMathOperator * SqrtOp)4415f757f3fSDimitry Andric static bool canContractSqrtToRsq(const FPMathOperator *SqrtOp) {
4425f757f3fSDimitry Andric   return (SqrtOp->getType()->isFloatTy() &&
4435f757f3fSDimitry Andric           (SqrtOp->hasApproxFunc() || SqrtOp->getFPAccuracy() >= 1.0f)) ||
4445f757f3fSDimitry Andric          SqrtOp->getType()->isHalfTy();
4455f757f3fSDimitry Andric }
4465f757f3fSDimitry Andric 
447bdd1243dSDimitry Andric std::optional<Instruction *>
instCombineIntrinsic(InstCombiner & IC,IntrinsicInst & II) const448e8d8bef9SDimitry Andric GCNTTIImpl::instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) const {
449e8d8bef9SDimitry Andric   Intrinsic::ID IID = II.getIntrinsicID();
450e8d8bef9SDimitry Andric   switch (IID) {
451e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_rcp: {
452e8d8bef9SDimitry Andric     Value *Src = II.getArgOperand(0);
453e8d8bef9SDimitry Andric 
454e8d8bef9SDimitry Andric     // TODO: Move to ConstantFolding/InstSimplify?
455e8d8bef9SDimitry Andric     if (isa<UndefValue>(Src)) {
456e8d8bef9SDimitry Andric       Type *Ty = II.getType();
457e8d8bef9SDimitry Andric       auto *QNaN = ConstantFP::get(Ty, APFloat::getQNaN(Ty->getFltSemantics()));
458e8d8bef9SDimitry Andric       return IC.replaceInstUsesWith(II, QNaN);
459e8d8bef9SDimitry Andric     }
460e8d8bef9SDimitry Andric 
461e8d8bef9SDimitry Andric     if (II.isStrictFP())
462e8d8bef9SDimitry Andric       break;
463e8d8bef9SDimitry Andric 
464e8d8bef9SDimitry Andric     if (const ConstantFP *C = dyn_cast<ConstantFP>(Src)) {
465e8d8bef9SDimitry Andric       const APFloat &ArgVal = C->getValueAPF();
466e8d8bef9SDimitry Andric       APFloat Val(ArgVal.getSemantics(), 1);
467e8d8bef9SDimitry Andric       Val.divide(ArgVal, APFloat::rmNearestTiesToEven);
468e8d8bef9SDimitry Andric 
469e8d8bef9SDimitry Andric       // This is more precise than the instruction may give.
470e8d8bef9SDimitry Andric       //
471e8d8bef9SDimitry Andric       // TODO: The instruction always flushes denormal results (except for f16),
472e8d8bef9SDimitry Andric       // should this also?
473e8d8bef9SDimitry Andric       return IC.replaceInstUsesWith(II, ConstantFP::get(II.getContext(), Val));
474e8d8bef9SDimitry Andric     }
475e8d8bef9SDimitry Andric 
4765f757f3fSDimitry Andric     FastMathFlags FMF = cast<FPMathOperator>(II).getFastMathFlags();
4775f757f3fSDimitry Andric     if (!FMF.allowContract())
4785f757f3fSDimitry Andric       break;
4795f757f3fSDimitry Andric     auto *SrcCI = dyn_cast<IntrinsicInst>(Src);
4805f757f3fSDimitry Andric     if (!SrcCI)
4815f757f3fSDimitry Andric       break;
4825f757f3fSDimitry Andric 
4835f757f3fSDimitry Andric     auto IID = SrcCI->getIntrinsicID();
4845f757f3fSDimitry Andric     // llvm.amdgcn.rcp(llvm.amdgcn.sqrt(x)) -> llvm.amdgcn.rsq(x) if contractable
4855f757f3fSDimitry Andric     //
4865f757f3fSDimitry Andric     // llvm.amdgcn.rcp(llvm.sqrt(x)) -> llvm.amdgcn.rsq(x) if contractable and
4875f757f3fSDimitry Andric     // relaxed.
4885f757f3fSDimitry Andric     if (IID == Intrinsic::amdgcn_sqrt || IID == Intrinsic::sqrt) {
4895f757f3fSDimitry Andric       const FPMathOperator *SqrtOp = cast<FPMathOperator>(SrcCI);
4905f757f3fSDimitry Andric       FastMathFlags InnerFMF = SqrtOp->getFastMathFlags();
4915f757f3fSDimitry Andric       if (!InnerFMF.allowContract() || !SrcCI->hasOneUse())
4925f757f3fSDimitry Andric         break;
4935f757f3fSDimitry Andric 
4945f757f3fSDimitry Andric       if (IID == Intrinsic::sqrt && !canContractSqrtToRsq(SqrtOp))
4955f757f3fSDimitry Andric         break;
4965f757f3fSDimitry Andric 
4975f757f3fSDimitry Andric       Function *NewDecl = Intrinsic::getDeclaration(
4985f757f3fSDimitry Andric           SrcCI->getModule(), Intrinsic::amdgcn_rsq, {SrcCI->getType()});
4995f757f3fSDimitry Andric 
5005f757f3fSDimitry Andric       InnerFMF |= FMF;
5015f757f3fSDimitry Andric       II.setFastMathFlags(InnerFMF);
5025f757f3fSDimitry Andric 
5035f757f3fSDimitry Andric       II.setCalledFunction(NewDecl);
5045f757f3fSDimitry Andric       return IC.replaceOperand(II, 0, SrcCI->getArgOperand(0));
5055f757f3fSDimitry Andric     }
5065f757f3fSDimitry Andric 
507e8d8bef9SDimitry Andric     break;
508e8d8bef9SDimitry Andric   }
509bdd1243dSDimitry Andric   case Intrinsic::amdgcn_sqrt:
510e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_rsq: {
511e8d8bef9SDimitry Andric     Value *Src = II.getArgOperand(0);
512e8d8bef9SDimitry Andric 
513e8d8bef9SDimitry Andric     // TODO: Move to ConstantFolding/InstSimplify?
514e8d8bef9SDimitry Andric     if (isa<UndefValue>(Src)) {
515e8d8bef9SDimitry Andric       Type *Ty = II.getType();
516e8d8bef9SDimitry Andric       auto *QNaN = ConstantFP::get(Ty, APFloat::getQNaN(Ty->getFltSemantics()));
517e8d8bef9SDimitry Andric       return IC.replaceInstUsesWith(II, QNaN);
518e8d8bef9SDimitry Andric     }
519e8d8bef9SDimitry Andric 
5205f757f3fSDimitry Andric     // f16 amdgcn.sqrt is identical to regular sqrt.
5215f757f3fSDimitry Andric     if (IID == Intrinsic::amdgcn_sqrt && Src->getType()->isHalfTy()) {
5225f757f3fSDimitry Andric       Function *NewDecl = Intrinsic::getDeclaration(
5235f757f3fSDimitry Andric           II.getModule(), Intrinsic::sqrt, {II.getType()});
5245f757f3fSDimitry Andric       II.setCalledFunction(NewDecl);
5255f757f3fSDimitry Andric       return &II;
5265f757f3fSDimitry Andric     }
5275f757f3fSDimitry Andric 
528e8d8bef9SDimitry Andric     break;
529e8d8bef9SDimitry Andric   }
53006c3fb27SDimitry Andric   case Intrinsic::amdgcn_log:
53106c3fb27SDimitry Andric   case Intrinsic::amdgcn_exp2: {
53206c3fb27SDimitry Andric     const bool IsLog = IID == Intrinsic::amdgcn_log;
53306c3fb27SDimitry Andric     const bool IsExp = IID == Intrinsic::amdgcn_exp2;
53406c3fb27SDimitry Andric     Value *Src = II.getArgOperand(0);
53506c3fb27SDimitry Andric     Type *Ty = II.getType();
53606c3fb27SDimitry Andric 
53706c3fb27SDimitry Andric     if (isa<PoisonValue>(Src))
53806c3fb27SDimitry Andric       return IC.replaceInstUsesWith(II, Src);
53906c3fb27SDimitry Andric 
54006c3fb27SDimitry Andric     if (IC.getSimplifyQuery().isUndefValue(Src))
54106c3fb27SDimitry Andric       return IC.replaceInstUsesWith(II, ConstantFP::getNaN(Ty));
54206c3fb27SDimitry Andric 
54306c3fb27SDimitry Andric     if (ConstantFP *C = dyn_cast<ConstantFP>(Src)) {
54406c3fb27SDimitry Andric       if (C->isInfinity()) {
54506c3fb27SDimitry Andric         // exp2(+inf) -> +inf
54606c3fb27SDimitry Andric         // log2(+inf) -> +inf
54706c3fb27SDimitry Andric         if (!C->isNegative())
54806c3fb27SDimitry Andric           return IC.replaceInstUsesWith(II, C);
54906c3fb27SDimitry Andric 
55006c3fb27SDimitry Andric         // exp2(-inf) -> 0
55106c3fb27SDimitry Andric         if (IsExp && C->isNegative())
55206c3fb27SDimitry Andric           return IC.replaceInstUsesWith(II, ConstantFP::getZero(Ty));
55306c3fb27SDimitry Andric       }
55406c3fb27SDimitry Andric 
55506c3fb27SDimitry Andric       if (II.isStrictFP())
55606c3fb27SDimitry Andric         break;
55706c3fb27SDimitry Andric 
55806c3fb27SDimitry Andric       if (C->isNaN()) {
55906c3fb27SDimitry Andric         Constant *Quieted = ConstantFP::get(Ty, C->getValue().makeQuiet());
56006c3fb27SDimitry Andric         return IC.replaceInstUsesWith(II, Quieted);
56106c3fb27SDimitry Andric       }
56206c3fb27SDimitry Andric 
56306c3fb27SDimitry Andric       // f32 instruction doesn't handle denormals, f16 does.
56406c3fb27SDimitry Andric       if (C->isZero() || (C->getValue().isDenormal() && Ty->isFloatTy())) {
56506c3fb27SDimitry Andric         Constant *FoldedValue = IsLog ? ConstantFP::getInfinity(Ty, true)
56606c3fb27SDimitry Andric                                       : ConstantFP::get(Ty, 1.0);
56706c3fb27SDimitry Andric         return IC.replaceInstUsesWith(II, FoldedValue);
56806c3fb27SDimitry Andric       }
56906c3fb27SDimitry Andric 
57006c3fb27SDimitry Andric       if (IsLog && C->isNegative())
57106c3fb27SDimitry Andric         return IC.replaceInstUsesWith(II, ConstantFP::getNaN(Ty));
57206c3fb27SDimitry Andric 
57306c3fb27SDimitry Andric       // TODO: Full constant folding matching hardware behavior.
57406c3fb27SDimitry Andric     }
57506c3fb27SDimitry Andric 
57606c3fb27SDimitry Andric     break;
57706c3fb27SDimitry Andric   }
578e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_frexp_mant:
579e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_frexp_exp: {
580e8d8bef9SDimitry Andric     Value *Src = II.getArgOperand(0);
581e8d8bef9SDimitry Andric     if (const ConstantFP *C = dyn_cast<ConstantFP>(Src)) {
582e8d8bef9SDimitry Andric       int Exp;
583e8d8bef9SDimitry Andric       APFloat Significand =
584e8d8bef9SDimitry Andric           frexp(C->getValueAPF(), Exp, APFloat::rmNearestTiesToEven);
585e8d8bef9SDimitry Andric 
586e8d8bef9SDimitry Andric       if (IID == Intrinsic::amdgcn_frexp_mant) {
587e8d8bef9SDimitry Andric         return IC.replaceInstUsesWith(
588e8d8bef9SDimitry Andric             II, ConstantFP::get(II.getContext(), Significand));
589e8d8bef9SDimitry Andric       }
590e8d8bef9SDimitry Andric 
591e8d8bef9SDimitry Andric       // Match instruction special case behavior.
592e8d8bef9SDimitry Andric       if (Exp == APFloat::IEK_NaN || Exp == APFloat::IEK_Inf)
593e8d8bef9SDimitry Andric         Exp = 0;
594e8d8bef9SDimitry Andric 
595e8d8bef9SDimitry Andric       return IC.replaceInstUsesWith(II, ConstantInt::get(II.getType(), Exp));
596e8d8bef9SDimitry Andric     }
597e8d8bef9SDimitry Andric 
598e8d8bef9SDimitry Andric     if (isa<UndefValue>(Src)) {
599e8d8bef9SDimitry Andric       return IC.replaceInstUsesWith(II, UndefValue::get(II.getType()));
600e8d8bef9SDimitry Andric     }
601e8d8bef9SDimitry Andric 
602e8d8bef9SDimitry Andric     break;
603e8d8bef9SDimitry Andric   }
604e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_class: {
605e8d8bef9SDimitry Andric     Value *Src0 = II.getArgOperand(0);
606e8d8bef9SDimitry Andric     Value *Src1 = II.getArgOperand(1);
607e8d8bef9SDimitry Andric     const ConstantInt *CMask = dyn_cast<ConstantInt>(Src1);
60806c3fb27SDimitry Andric     if (CMask) {
60906c3fb27SDimitry Andric       II.setCalledOperand(Intrinsic::getDeclaration(
61006c3fb27SDimitry Andric           II.getModule(), Intrinsic::is_fpclass, Src0->getType()));
61106c3fb27SDimitry Andric 
61206c3fb27SDimitry Andric       // Clamp any excess bits, as they're illegal for the generic intrinsic.
61306c3fb27SDimitry Andric       II.setArgOperand(1, ConstantInt::get(Src1->getType(),
61406c3fb27SDimitry Andric                                            CMask->getZExtValue() & fcAllFlags));
61506c3fb27SDimitry Andric       return &II;
616e8d8bef9SDimitry Andric     }
617e8d8bef9SDimitry Andric 
61806c3fb27SDimitry Andric     // Propagate poison.
61906c3fb27SDimitry Andric     if (isa<PoisonValue>(Src0) || isa<PoisonValue>(Src1))
62006c3fb27SDimitry Andric       return IC.replaceInstUsesWith(II, PoisonValue::get(II.getType()));
621e8d8bef9SDimitry Andric 
62206c3fb27SDimitry Andric     // llvm.amdgcn.class(_, undef) -> false
62306c3fb27SDimitry Andric     if (IC.getSimplifyQuery().isUndefValue(Src1))
624e8d8bef9SDimitry Andric       return IC.replaceInstUsesWith(II, ConstantInt::get(II.getType(), false));
62506c3fb27SDimitry Andric 
62606c3fb27SDimitry Andric     // llvm.amdgcn.class(undef, mask) -> mask != 0
62706c3fb27SDimitry Andric     if (IC.getSimplifyQuery().isUndefValue(Src0)) {
62806c3fb27SDimitry Andric       Value *CmpMask = IC.Builder.CreateICmpNE(
62906c3fb27SDimitry Andric           Src1, ConstantInt::getNullValue(Src1->getType()));
63006c3fb27SDimitry Andric       return IC.replaceInstUsesWith(II, CmpMask);
631e8d8bef9SDimitry Andric     }
632e8d8bef9SDimitry Andric     break;
633e8d8bef9SDimitry Andric   }
634e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_cvt_pkrtz: {
635e8d8bef9SDimitry Andric     Value *Src0 = II.getArgOperand(0);
636e8d8bef9SDimitry Andric     Value *Src1 = II.getArgOperand(1);
637e8d8bef9SDimitry Andric     if (const ConstantFP *C0 = dyn_cast<ConstantFP>(Src0)) {
638e8d8bef9SDimitry Andric       if (const ConstantFP *C1 = dyn_cast<ConstantFP>(Src1)) {
639e8d8bef9SDimitry Andric         const fltSemantics &HalfSem =
640e8d8bef9SDimitry Andric             II.getType()->getScalarType()->getFltSemantics();
641e8d8bef9SDimitry Andric         bool LosesInfo;
642e8d8bef9SDimitry Andric         APFloat Val0 = C0->getValueAPF();
643e8d8bef9SDimitry Andric         APFloat Val1 = C1->getValueAPF();
644e8d8bef9SDimitry Andric         Val0.convert(HalfSem, APFloat::rmTowardZero, &LosesInfo);
645e8d8bef9SDimitry Andric         Val1.convert(HalfSem, APFloat::rmTowardZero, &LosesInfo);
646e8d8bef9SDimitry Andric 
647e8d8bef9SDimitry Andric         Constant *Folded =
648e8d8bef9SDimitry Andric             ConstantVector::get({ConstantFP::get(II.getContext(), Val0),
649e8d8bef9SDimitry Andric                                  ConstantFP::get(II.getContext(), Val1)});
650e8d8bef9SDimitry Andric         return IC.replaceInstUsesWith(II, Folded);
651e8d8bef9SDimitry Andric       }
652e8d8bef9SDimitry Andric     }
653e8d8bef9SDimitry Andric 
654e8d8bef9SDimitry Andric     if (isa<UndefValue>(Src0) && isa<UndefValue>(Src1)) {
655e8d8bef9SDimitry Andric       return IC.replaceInstUsesWith(II, UndefValue::get(II.getType()));
656e8d8bef9SDimitry Andric     }
657e8d8bef9SDimitry Andric 
658e8d8bef9SDimitry Andric     break;
659e8d8bef9SDimitry Andric   }
660e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_cvt_pknorm_i16:
661e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_cvt_pknorm_u16:
662e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_cvt_pk_i16:
663e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_cvt_pk_u16: {
664e8d8bef9SDimitry Andric     Value *Src0 = II.getArgOperand(0);
665e8d8bef9SDimitry Andric     Value *Src1 = II.getArgOperand(1);
666e8d8bef9SDimitry Andric 
667e8d8bef9SDimitry Andric     if (isa<UndefValue>(Src0) && isa<UndefValue>(Src1)) {
668e8d8bef9SDimitry Andric       return IC.replaceInstUsesWith(II, UndefValue::get(II.getType()));
669e8d8bef9SDimitry Andric     }
670e8d8bef9SDimitry Andric 
671e8d8bef9SDimitry Andric     break;
672e8d8bef9SDimitry Andric   }
673e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_ubfe:
674e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_sbfe: {
675e8d8bef9SDimitry Andric     // Decompose simple cases into standard shifts.
676e8d8bef9SDimitry Andric     Value *Src = II.getArgOperand(0);
677e8d8bef9SDimitry Andric     if (isa<UndefValue>(Src)) {
678e8d8bef9SDimitry Andric       return IC.replaceInstUsesWith(II, Src);
679e8d8bef9SDimitry Andric     }
680e8d8bef9SDimitry Andric 
681e8d8bef9SDimitry Andric     unsigned Width;
682e8d8bef9SDimitry Andric     Type *Ty = II.getType();
683e8d8bef9SDimitry Andric     unsigned IntSize = Ty->getIntegerBitWidth();
684e8d8bef9SDimitry Andric 
685e8d8bef9SDimitry Andric     ConstantInt *CWidth = dyn_cast<ConstantInt>(II.getArgOperand(2));
686e8d8bef9SDimitry Andric     if (CWidth) {
687e8d8bef9SDimitry Andric       Width = CWidth->getZExtValue();
688e8d8bef9SDimitry Andric       if ((Width & (IntSize - 1)) == 0) {
689e8d8bef9SDimitry Andric         return IC.replaceInstUsesWith(II, ConstantInt::getNullValue(Ty));
690e8d8bef9SDimitry Andric       }
691e8d8bef9SDimitry Andric 
692e8d8bef9SDimitry Andric       // Hardware ignores high bits, so remove those.
693e8d8bef9SDimitry Andric       if (Width >= IntSize) {
694e8d8bef9SDimitry Andric         return IC.replaceOperand(
695e8d8bef9SDimitry Andric             II, 2, ConstantInt::get(CWidth->getType(), Width & (IntSize - 1)));
696e8d8bef9SDimitry Andric       }
697e8d8bef9SDimitry Andric     }
698e8d8bef9SDimitry Andric 
699e8d8bef9SDimitry Andric     unsigned Offset;
700e8d8bef9SDimitry Andric     ConstantInt *COffset = dyn_cast<ConstantInt>(II.getArgOperand(1));
701e8d8bef9SDimitry Andric     if (COffset) {
702e8d8bef9SDimitry Andric       Offset = COffset->getZExtValue();
703e8d8bef9SDimitry Andric       if (Offset >= IntSize) {
704e8d8bef9SDimitry Andric         return IC.replaceOperand(
705e8d8bef9SDimitry Andric             II, 1,
706e8d8bef9SDimitry Andric             ConstantInt::get(COffset->getType(), Offset & (IntSize - 1)));
707e8d8bef9SDimitry Andric       }
708e8d8bef9SDimitry Andric     }
709e8d8bef9SDimitry Andric 
710e8d8bef9SDimitry Andric     bool Signed = IID == Intrinsic::amdgcn_sbfe;
711e8d8bef9SDimitry Andric 
712e8d8bef9SDimitry Andric     if (!CWidth || !COffset)
713e8d8bef9SDimitry Andric       break;
714e8d8bef9SDimitry Andric 
715349cc55cSDimitry Andric     // The case of Width == 0 is handled above, which makes this transformation
716e8d8bef9SDimitry Andric     // safe.  If Width == 0, then the ashr and lshr instructions become poison
717e8d8bef9SDimitry Andric     // value since the shift amount would be equal to the bit size.
718e8d8bef9SDimitry Andric     assert(Width != 0);
719e8d8bef9SDimitry Andric 
720e8d8bef9SDimitry Andric     // TODO: This allows folding to undef when the hardware has specific
721e8d8bef9SDimitry Andric     // behavior?
722e8d8bef9SDimitry Andric     if (Offset + Width < IntSize) {
723e8d8bef9SDimitry Andric       Value *Shl = IC.Builder.CreateShl(Src, IntSize - Offset - Width);
724e8d8bef9SDimitry Andric       Value *RightShift = Signed ? IC.Builder.CreateAShr(Shl, IntSize - Width)
725e8d8bef9SDimitry Andric                                  : IC.Builder.CreateLShr(Shl, IntSize - Width);
726e8d8bef9SDimitry Andric       RightShift->takeName(&II);
727e8d8bef9SDimitry Andric       return IC.replaceInstUsesWith(II, RightShift);
728e8d8bef9SDimitry Andric     }
729e8d8bef9SDimitry Andric 
730e8d8bef9SDimitry Andric     Value *RightShift = Signed ? IC.Builder.CreateAShr(Src, Offset)
731e8d8bef9SDimitry Andric                                : IC.Builder.CreateLShr(Src, Offset);
732e8d8bef9SDimitry Andric 
733e8d8bef9SDimitry Andric     RightShift->takeName(&II);
734e8d8bef9SDimitry Andric     return IC.replaceInstUsesWith(II, RightShift);
735e8d8bef9SDimitry Andric   }
736e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_exp:
73781ad6265SDimitry Andric   case Intrinsic::amdgcn_exp_row:
738e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_exp_compr: {
739e8d8bef9SDimitry Andric     ConstantInt *En = cast<ConstantInt>(II.getArgOperand(1));
740e8d8bef9SDimitry Andric     unsigned EnBits = En->getZExtValue();
741e8d8bef9SDimitry Andric     if (EnBits == 0xf)
742e8d8bef9SDimitry Andric       break; // All inputs enabled.
743e8d8bef9SDimitry Andric 
744e8d8bef9SDimitry Andric     bool IsCompr = IID == Intrinsic::amdgcn_exp_compr;
745e8d8bef9SDimitry Andric     bool Changed = false;
746e8d8bef9SDimitry Andric     for (int I = 0; I < (IsCompr ? 2 : 4); ++I) {
747e8d8bef9SDimitry Andric       if ((!IsCompr && (EnBits & (1 << I)) == 0) ||
748e8d8bef9SDimitry Andric           (IsCompr && ((EnBits & (0x3 << (2 * I))) == 0))) {
749e8d8bef9SDimitry Andric         Value *Src = II.getArgOperand(I + 2);
750e8d8bef9SDimitry Andric         if (!isa<UndefValue>(Src)) {
751e8d8bef9SDimitry Andric           IC.replaceOperand(II, I + 2, UndefValue::get(Src->getType()));
752e8d8bef9SDimitry Andric           Changed = true;
753e8d8bef9SDimitry Andric         }
754e8d8bef9SDimitry Andric       }
755e8d8bef9SDimitry Andric     }
756e8d8bef9SDimitry Andric 
757e8d8bef9SDimitry Andric     if (Changed) {
758e8d8bef9SDimitry Andric       return &II;
759e8d8bef9SDimitry Andric     }
760e8d8bef9SDimitry Andric 
761e8d8bef9SDimitry Andric     break;
762e8d8bef9SDimitry Andric   }
763e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_fmed3: {
764e8d8bef9SDimitry Andric     // Note this does not preserve proper sNaN behavior if IEEE-mode is enabled
765e8d8bef9SDimitry Andric     // for the shader.
766e8d8bef9SDimitry Andric 
767e8d8bef9SDimitry Andric     Value *Src0 = II.getArgOperand(0);
768e8d8bef9SDimitry Andric     Value *Src1 = II.getArgOperand(1);
769e8d8bef9SDimitry Andric     Value *Src2 = II.getArgOperand(2);
770e8d8bef9SDimitry Andric 
771e8d8bef9SDimitry Andric     // Checking for NaN before canonicalization provides better fidelity when
772e8d8bef9SDimitry Andric     // mapping other operations onto fmed3 since the order of operands is
773e8d8bef9SDimitry Andric     // unchanged.
774e8d8bef9SDimitry Andric     CallInst *NewCall = nullptr;
775e8d8bef9SDimitry Andric     if (match(Src0, PatternMatch::m_NaN()) || isa<UndefValue>(Src0)) {
776e8d8bef9SDimitry Andric       NewCall = IC.Builder.CreateMinNum(Src1, Src2);
777e8d8bef9SDimitry Andric     } else if (match(Src1, PatternMatch::m_NaN()) || isa<UndefValue>(Src1)) {
778e8d8bef9SDimitry Andric       NewCall = IC.Builder.CreateMinNum(Src0, Src2);
779e8d8bef9SDimitry Andric     } else if (match(Src2, PatternMatch::m_NaN()) || isa<UndefValue>(Src2)) {
780e8d8bef9SDimitry Andric       NewCall = IC.Builder.CreateMaxNum(Src0, Src1);
781e8d8bef9SDimitry Andric     }
782e8d8bef9SDimitry Andric 
783e8d8bef9SDimitry Andric     if (NewCall) {
784e8d8bef9SDimitry Andric       NewCall->copyFastMathFlags(&II);
785e8d8bef9SDimitry Andric       NewCall->takeName(&II);
786e8d8bef9SDimitry Andric       return IC.replaceInstUsesWith(II, NewCall);
787e8d8bef9SDimitry Andric     }
788e8d8bef9SDimitry Andric 
789e8d8bef9SDimitry Andric     bool Swap = false;
790e8d8bef9SDimitry Andric     // Canonicalize constants to RHS operands.
791e8d8bef9SDimitry Andric     //
792e8d8bef9SDimitry Andric     // fmed3(c0, x, c1) -> fmed3(x, c0, c1)
793e8d8bef9SDimitry Andric     if (isa<Constant>(Src0) && !isa<Constant>(Src1)) {
794e8d8bef9SDimitry Andric       std::swap(Src0, Src1);
795e8d8bef9SDimitry Andric       Swap = true;
796e8d8bef9SDimitry Andric     }
797e8d8bef9SDimitry Andric 
798e8d8bef9SDimitry Andric     if (isa<Constant>(Src1) && !isa<Constant>(Src2)) {
799e8d8bef9SDimitry Andric       std::swap(Src1, Src2);
800e8d8bef9SDimitry Andric       Swap = true;
801e8d8bef9SDimitry Andric     }
802e8d8bef9SDimitry Andric 
803e8d8bef9SDimitry Andric     if (isa<Constant>(Src0) && !isa<Constant>(Src1)) {
804e8d8bef9SDimitry Andric       std::swap(Src0, Src1);
805e8d8bef9SDimitry Andric       Swap = true;
806e8d8bef9SDimitry Andric     }
807e8d8bef9SDimitry Andric 
808e8d8bef9SDimitry Andric     if (Swap) {
809e8d8bef9SDimitry Andric       II.setArgOperand(0, Src0);
810e8d8bef9SDimitry Andric       II.setArgOperand(1, Src1);
811e8d8bef9SDimitry Andric       II.setArgOperand(2, Src2);
812e8d8bef9SDimitry Andric       return &II;
813e8d8bef9SDimitry Andric     }
814e8d8bef9SDimitry Andric 
815e8d8bef9SDimitry Andric     if (const ConstantFP *C0 = dyn_cast<ConstantFP>(Src0)) {
816e8d8bef9SDimitry Andric       if (const ConstantFP *C1 = dyn_cast<ConstantFP>(Src1)) {
817e8d8bef9SDimitry Andric         if (const ConstantFP *C2 = dyn_cast<ConstantFP>(Src2)) {
818e8d8bef9SDimitry Andric           APFloat Result = fmed3AMDGCN(C0->getValueAPF(), C1->getValueAPF(),
819e8d8bef9SDimitry Andric                                        C2->getValueAPF());
820e8d8bef9SDimitry Andric           return IC.replaceInstUsesWith(
821e8d8bef9SDimitry Andric               II, ConstantFP::get(IC.Builder.getContext(), Result));
822e8d8bef9SDimitry Andric         }
823e8d8bef9SDimitry Andric       }
824e8d8bef9SDimitry Andric     }
825e8d8bef9SDimitry Andric 
82606c3fb27SDimitry Andric     if (!ST->hasMed3_16())
82706c3fb27SDimitry Andric       break;
82806c3fb27SDimitry Andric 
82906c3fb27SDimitry Andric     Value *X, *Y, *Z;
83006c3fb27SDimitry Andric 
83106c3fb27SDimitry Andric     // Repeat floating-point width reduction done for minnum/maxnum.
83206c3fb27SDimitry Andric     // fmed3((fpext X), (fpext Y), (fpext Z)) -> fpext (fmed3(X, Y, Z))
83306c3fb27SDimitry Andric     if (matchFPExtFromF16(Src0, X) && matchFPExtFromF16(Src1, Y) &&
83406c3fb27SDimitry Andric         matchFPExtFromF16(Src2, Z)) {
83506c3fb27SDimitry Andric       Value *NewCall = IC.Builder.CreateIntrinsic(IID, {X->getType()},
83606c3fb27SDimitry Andric                                                   {X, Y, Z}, &II, II.getName());
83706c3fb27SDimitry Andric       return new FPExtInst(NewCall, II.getType());
83806c3fb27SDimitry Andric     }
83906c3fb27SDimitry Andric 
840e8d8bef9SDimitry Andric     break;
841e8d8bef9SDimitry Andric   }
842e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_icmp:
843e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_fcmp: {
844e8d8bef9SDimitry Andric     const ConstantInt *CC = cast<ConstantInt>(II.getArgOperand(2));
845e8d8bef9SDimitry Andric     // Guard against invalid arguments.
846e8d8bef9SDimitry Andric     int64_t CCVal = CC->getZExtValue();
847e8d8bef9SDimitry Andric     bool IsInteger = IID == Intrinsic::amdgcn_icmp;
848e8d8bef9SDimitry Andric     if ((IsInteger && (CCVal < CmpInst::FIRST_ICMP_PREDICATE ||
849e8d8bef9SDimitry Andric                        CCVal > CmpInst::LAST_ICMP_PREDICATE)) ||
850e8d8bef9SDimitry Andric         (!IsInteger && (CCVal < CmpInst::FIRST_FCMP_PREDICATE ||
851e8d8bef9SDimitry Andric                         CCVal > CmpInst::LAST_FCMP_PREDICATE)))
852e8d8bef9SDimitry Andric       break;
853e8d8bef9SDimitry Andric 
854e8d8bef9SDimitry Andric     Value *Src0 = II.getArgOperand(0);
855e8d8bef9SDimitry Andric     Value *Src1 = II.getArgOperand(1);
856e8d8bef9SDimitry Andric 
857e8d8bef9SDimitry Andric     if (auto *CSrc0 = dyn_cast<Constant>(Src0)) {
858e8d8bef9SDimitry Andric       if (auto *CSrc1 = dyn_cast<Constant>(Src1)) {
859e8d8bef9SDimitry Andric         Constant *CCmp = ConstantExpr::getCompare(CCVal, CSrc0, CSrc1);
860e8d8bef9SDimitry Andric         if (CCmp->isNullValue()) {
861e8d8bef9SDimitry Andric           return IC.replaceInstUsesWith(
8625f757f3fSDimitry Andric               II, IC.Builder.CreateSExt(CCmp, II.getType()));
863e8d8bef9SDimitry Andric         }
864e8d8bef9SDimitry Andric 
865e8d8bef9SDimitry Andric         // The result of V_ICMP/V_FCMP assembly instructions (which this
866e8d8bef9SDimitry Andric         // intrinsic exposes) is one bit per thread, masked with the EXEC
867e8d8bef9SDimitry Andric         // register (which contains the bitmask of live threads). So a
868e8d8bef9SDimitry Andric         // comparison that always returns true is the same as a read of the
869e8d8bef9SDimitry Andric         // EXEC register.
870e8d8bef9SDimitry Andric         Function *NewF = Intrinsic::getDeclaration(
871e8d8bef9SDimitry Andric             II.getModule(), Intrinsic::read_register, II.getType());
872e8d8bef9SDimitry Andric         Metadata *MDArgs[] = {MDString::get(II.getContext(), "exec")};
873e8d8bef9SDimitry Andric         MDNode *MD = MDNode::get(II.getContext(), MDArgs);
874e8d8bef9SDimitry Andric         Value *Args[] = {MetadataAsValue::get(II.getContext(), MD)};
875e8d8bef9SDimitry Andric         CallInst *NewCall = IC.Builder.CreateCall(NewF, Args);
876349cc55cSDimitry Andric         NewCall->addFnAttr(Attribute::Convergent);
877e8d8bef9SDimitry Andric         NewCall->takeName(&II);
878e8d8bef9SDimitry Andric         return IC.replaceInstUsesWith(II, NewCall);
879e8d8bef9SDimitry Andric       }
880e8d8bef9SDimitry Andric 
881e8d8bef9SDimitry Andric       // Canonicalize constants to RHS.
882e8d8bef9SDimitry Andric       CmpInst::Predicate SwapPred =
883e8d8bef9SDimitry Andric           CmpInst::getSwappedPredicate(static_cast<CmpInst::Predicate>(CCVal));
884e8d8bef9SDimitry Andric       II.setArgOperand(0, Src1);
885e8d8bef9SDimitry Andric       II.setArgOperand(1, Src0);
886e8d8bef9SDimitry Andric       II.setArgOperand(
887e8d8bef9SDimitry Andric           2, ConstantInt::get(CC->getType(), static_cast<int>(SwapPred)));
888e8d8bef9SDimitry Andric       return &II;
889e8d8bef9SDimitry Andric     }
890e8d8bef9SDimitry Andric 
891e8d8bef9SDimitry Andric     if (CCVal != CmpInst::ICMP_EQ && CCVal != CmpInst::ICMP_NE)
892e8d8bef9SDimitry Andric       break;
893e8d8bef9SDimitry Andric 
894e8d8bef9SDimitry Andric     // Canonicalize compare eq with true value to compare != 0
895e8d8bef9SDimitry Andric     // llvm.amdgcn.icmp(zext (i1 x), 1, eq)
896e8d8bef9SDimitry Andric     //   -> llvm.amdgcn.icmp(zext (i1 x), 0, ne)
897e8d8bef9SDimitry Andric     // llvm.amdgcn.icmp(sext (i1 x), -1, eq)
898e8d8bef9SDimitry Andric     //   -> llvm.amdgcn.icmp(sext (i1 x), 0, ne)
899e8d8bef9SDimitry Andric     Value *ExtSrc;
900e8d8bef9SDimitry Andric     if (CCVal == CmpInst::ICMP_EQ &&
901e8d8bef9SDimitry Andric         ((match(Src1, PatternMatch::m_One()) &&
902e8d8bef9SDimitry Andric           match(Src0, m_ZExt(PatternMatch::m_Value(ExtSrc)))) ||
903e8d8bef9SDimitry Andric          (match(Src1, PatternMatch::m_AllOnes()) &&
904e8d8bef9SDimitry Andric           match(Src0, m_SExt(PatternMatch::m_Value(ExtSrc))))) &&
905e8d8bef9SDimitry Andric         ExtSrc->getType()->isIntegerTy(1)) {
906e8d8bef9SDimitry Andric       IC.replaceOperand(II, 1, ConstantInt::getNullValue(Src1->getType()));
907e8d8bef9SDimitry Andric       IC.replaceOperand(II, 2,
908e8d8bef9SDimitry Andric                         ConstantInt::get(CC->getType(), CmpInst::ICMP_NE));
909e8d8bef9SDimitry Andric       return &II;
910e8d8bef9SDimitry Andric     }
911e8d8bef9SDimitry Andric 
912e8d8bef9SDimitry Andric     CmpInst::Predicate SrcPred;
913e8d8bef9SDimitry Andric     Value *SrcLHS;
914e8d8bef9SDimitry Andric     Value *SrcRHS;
915e8d8bef9SDimitry Andric 
916e8d8bef9SDimitry Andric     // Fold compare eq/ne with 0 from a compare result as the predicate to the
917e8d8bef9SDimitry Andric     // intrinsic. The typical use is a wave vote function in the library, which
918e8d8bef9SDimitry Andric     // will be fed from a user code condition compared with 0. Fold in the
919e8d8bef9SDimitry Andric     // redundant compare.
920e8d8bef9SDimitry Andric 
921e8d8bef9SDimitry Andric     // llvm.amdgcn.icmp([sz]ext ([if]cmp pred a, b), 0, ne)
922e8d8bef9SDimitry Andric     //   -> llvm.amdgcn.[if]cmp(a, b, pred)
923e8d8bef9SDimitry Andric     //
924e8d8bef9SDimitry Andric     // llvm.amdgcn.icmp([sz]ext ([if]cmp pred a, b), 0, eq)
925e8d8bef9SDimitry Andric     //   -> llvm.amdgcn.[if]cmp(a, b, inv pred)
926e8d8bef9SDimitry Andric     if (match(Src1, PatternMatch::m_Zero()) &&
927e8d8bef9SDimitry Andric         match(Src0, PatternMatch::m_ZExtOrSExt(
928e8d8bef9SDimitry Andric                         m_Cmp(SrcPred, PatternMatch::m_Value(SrcLHS),
929e8d8bef9SDimitry Andric                               PatternMatch::m_Value(SrcRHS))))) {
930e8d8bef9SDimitry Andric       if (CCVal == CmpInst::ICMP_EQ)
931e8d8bef9SDimitry Andric         SrcPred = CmpInst::getInversePredicate(SrcPred);
932e8d8bef9SDimitry Andric 
933e8d8bef9SDimitry Andric       Intrinsic::ID NewIID = CmpInst::isFPPredicate(SrcPred)
934e8d8bef9SDimitry Andric                                  ? Intrinsic::amdgcn_fcmp
935e8d8bef9SDimitry Andric                                  : Intrinsic::amdgcn_icmp;
936e8d8bef9SDimitry Andric 
937e8d8bef9SDimitry Andric       Type *Ty = SrcLHS->getType();
938e8d8bef9SDimitry Andric       if (auto *CmpType = dyn_cast<IntegerType>(Ty)) {
939e8d8bef9SDimitry Andric         // Promote to next legal integer type.
940e8d8bef9SDimitry Andric         unsigned Width = CmpType->getBitWidth();
941e8d8bef9SDimitry Andric         unsigned NewWidth = Width;
942e8d8bef9SDimitry Andric 
943e8d8bef9SDimitry Andric         // Don't do anything for i1 comparisons.
944e8d8bef9SDimitry Andric         if (Width == 1)
945e8d8bef9SDimitry Andric           break;
946e8d8bef9SDimitry Andric 
947e8d8bef9SDimitry Andric         if (Width <= 16)
948e8d8bef9SDimitry Andric           NewWidth = 16;
949e8d8bef9SDimitry Andric         else if (Width <= 32)
950e8d8bef9SDimitry Andric           NewWidth = 32;
951e8d8bef9SDimitry Andric         else if (Width <= 64)
952e8d8bef9SDimitry Andric           NewWidth = 64;
953e8d8bef9SDimitry Andric         else if (Width > 64)
954e8d8bef9SDimitry Andric           break; // Can't handle this.
955e8d8bef9SDimitry Andric 
956e8d8bef9SDimitry Andric         if (Width != NewWidth) {
957e8d8bef9SDimitry Andric           IntegerType *CmpTy = IC.Builder.getIntNTy(NewWidth);
958e8d8bef9SDimitry Andric           if (CmpInst::isSigned(SrcPred)) {
959e8d8bef9SDimitry Andric             SrcLHS = IC.Builder.CreateSExt(SrcLHS, CmpTy);
960e8d8bef9SDimitry Andric             SrcRHS = IC.Builder.CreateSExt(SrcRHS, CmpTy);
961e8d8bef9SDimitry Andric           } else {
962e8d8bef9SDimitry Andric             SrcLHS = IC.Builder.CreateZExt(SrcLHS, CmpTy);
963e8d8bef9SDimitry Andric             SrcRHS = IC.Builder.CreateZExt(SrcRHS, CmpTy);
964e8d8bef9SDimitry Andric           }
965e8d8bef9SDimitry Andric         }
966e8d8bef9SDimitry Andric       } else if (!Ty->isFloatTy() && !Ty->isDoubleTy() && !Ty->isHalfTy())
967e8d8bef9SDimitry Andric         break;
968e8d8bef9SDimitry Andric 
969e8d8bef9SDimitry Andric       Function *NewF = Intrinsic::getDeclaration(
970e8d8bef9SDimitry Andric           II.getModule(), NewIID, {II.getType(), SrcLHS->getType()});
971e8d8bef9SDimitry Andric       Value *Args[] = {SrcLHS, SrcRHS,
972e8d8bef9SDimitry Andric                        ConstantInt::get(CC->getType(), SrcPred)};
973e8d8bef9SDimitry Andric       CallInst *NewCall = IC.Builder.CreateCall(NewF, Args);
974e8d8bef9SDimitry Andric       NewCall->takeName(&II);
975e8d8bef9SDimitry Andric       return IC.replaceInstUsesWith(II, NewCall);
976e8d8bef9SDimitry Andric     }
977e8d8bef9SDimitry Andric 
978e8d8bef9SDimitry Andric     break;
979e8d8bef9SDimitry Andric   }
98006c3fb27SDimitry Andric   case Intrinsic::amdgcn_mbcnt_hi: {
98106c3fb27SDimitry Andric     // exec_hi is all 0, so this is just a copy.
98206c3fb27SDimitry Andric     if (ST->isWave32())
98306c3fb27SDimitry Andric       return IC.replaceInstUsesWith(II, II.getArgOperand(1));
98406c3fb27SDimitry Andric     break;
98506c3fb27SDimitry Andric   }
986e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_ballot: {
987e8d8bef9SDimitry Andric     if (auto *Src = dyn_cast<ConstantInt>(II.getArgOperand(0))) {
988e8d8bef9SDimitry Andric       if (Src->isZero()) {
989e8d8bef9SDimitry Andric         // amdgcn.ballot(i1 0) is zero.
990e8d8bef9SDimitry Andric         return IC.replaceInstUsesWith(II, Constant::getNullValue(II.getType()));
991e8d8bef9SDimitry Andric       }
992e8d8bef9SDimitry Andric     }
993e8d8bef9SDimitry Andric     break;
994e8d8bef9SDimitry Andric   }
995e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_wqm_vote: {
996e8d8bef9SDimitry Andric     // wqm_vote is identity when the argument is constant.
997e8d8bef9SDimitry Andric     if (!isa<Constant>(II.getArgOperand(0)))
998e8d8bef9SDimitry Andric       break;
999e8d8bef9SDimitry Andric 
1000e8d8bef9SDimitry Andric     return IC.replaceInstUsesWith(II, II.getArgOperand(0));
1001e8d8bef9SDimitry Andric   }
1002e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_kill: {
1003e8d8bef9SDimitry Andric     const ConstantInt *C = dyn_cast<ConstantInt>(II.getArgOperand(0));
1004e8d8bef9SDimitry Andric     if (!C || !C->getZExtValue())
1005e8d8bef9SDimitry Andric       break;
1006e8d8bef9SDimitry Andric 
1007e8d8bef9SDimitry Andric     // amdgcn.kill(i1 1) is a no-op
1008e8d8bef9SDimitry Andric     return IC.eraseInstFromFunction(II);
1009e8d8bef9SDimitry Andric   }
1010e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_update_dpp: {
1011e8d8bef9SDimitry Andric     Value *Old = II.getArgOperand(0);
1012e8d8bef9SDimitry Andric 
1013e8d8bef9SDimitry Andric     auto *BC = cast<ConstantInt>(II.getArgOperand(5));
1014e8d8bef9SDimitry Andric     auto *RM = cast<ConstantInt>(II.getArgOperand(3));
1015e8d8bef9SDimitry Andric     auto *BM = cast<ConstantInt>(II.getArgOperand(4));
1016e8d8bef9SDimitry Andric     if (BC->isZeroValue() || RM->getZExtValue() != 0xF ||
1017e8d8bef9SDimitry Andric         BM->getZExtValue() != 0xF || isa<UndefValue>(Old))
1018e8d8bef9SDimitry Andric       break;
1019e8d8bef9SDimitry Andric 
1020e8d8bef9SDimitry Andric     // If bound_ctrl = 1, row mask = bank mask = 0xf we can omit old value.
1021e8d8bef9SDimitry Andric     return IC.replaceOperand(II, 0, UndefValue::get(Old->getType()));
1022e8d8bef9SDimitry Andric   }
1023e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_permlane16:
10245f757f3fSDimitry Andric   case Intrinsic::amdgcn_permlane16_var:
10255f757f3fSDimitry Andric   case Intrinsic::amdgcn_permlanex16:
10265f757f3fSDimitry Andric   case Intrinsic::amdgcn_permlanex16_var: {
1027e8d8bef9SDimitry Andric     // Discard vdst_in if it's not going to be read.
1028e8d8bef9SDimitry Andric     Value *VDstIn = II.getArgOperand(0);
1029e8d8bef9SDimitry Andric     if (isa<UndefValue>(VDstIn))
1030e8d8bef9SDimitry Andric       break;
1031e8d8bef9SDimitry Andric 
10325f757f3fSDimitry Andric     // FetchInvalid operand idx.
10335f757f3fSDimitry Andric     unsigned int FiIdx = (IID == Intrinsic::amdgcn_permlane16 ||
10345f757f3fSDimitry Andric                           IID == Intrinsic::amdgcn_permlanex16)
10355f757f3fSDimitry Andric                              ? 4  /* for permlane16 and permlanex16 */
10365f757f3fSDimitry Andric                              : 3; /* for permlane16_var and permlanex16_var */
10375f757f3fSDimitry Andric 
10385f757f3fSDimitry Andric     // BoundCtrl operand idx.
10395f757f3fSDimitry Andric     // For permlane16 and permlanex16 it should be 5
10405f757f3fSDimitry Andric     // For Permlane16_var and permlanex16_var it should be 4
10415f757f3fSDimitry Andric     unsigned int BcIdx = FiIdx + 1;
10425f757f3fSDimitry Andric 
10435f757f3fSDimitry Andric     ConstantInt *FetchInvalid = cast<ConstantInt>(II.getArgOperand(FiIdx));
10445f757f3fSDimitry Andric     ConstantInt *BoundCtrl = cast<ConstantInt>(II.getArgOperand(BcIdx));
1045e8d8bef9SDimitry Andric     if (!FetchInvalid->getZExtValue() && !BoundCtrl->getZExtValue())
1046e8d8bef9SDimitry Andric       break;
1047e8d8bef9SDimitry Andric 
1048e8d8bef9SDimitry Andric     return IC.replaceOperand(II, 0, UndefValue::get(VDstIn->getType()));
1049e8d8bef9SDimitry Andric   }
105081ad6265SDimitry Andric   case Intrinsic::amdgcn_permlane64:
105181ad6265SDimitry Andric     // A constant value is trivially uniform.
105281ad6265SDimitry Andric     if (Constant *C = dyn_cast<Constant>(II.getArgOperand(0))) {
105381ad6265SDimitry Andric       return IC.replaceInstUsesWith(II, C);
105481ad6265SDimitry Andric     }
105581ad6265SDimitry Andric     break;
1056e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_readfirstlane:
1057e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_readlane: {
1058e8d8bef9SDimitry Andric     // A constant value is trivially uniform.
1059e8d8bef9SDimitry Andric     if (Constant *C = dyn_cast<Constant>(II.getArgOperand(0))) {
1060e8d8bef9SDimitry Andric       return IC.replaceInstUsesWith(II, C);
1061e8d8bef9SDimitry Andric     }
1062e8d8bef9SDimitry Andric 
1063e8d8bef9SDimitry Andric     // The rest of these may not be safe if the exec may not be the same between
1064e8d8bef9SDimitry Andric     // the def and use.
1065e8d8bef9SDimitry Andric     Value *Src = II.getArgOperand(0);
1066e8d8bef9SDimitry Andric     Instruction *SrcInst = dyn_cast<Instruction>(Src);
1067e8d8bef9SDimitry Andric     if (SrcInst && SrcInst->getParent() != II.getParent())
1068e8d8bef9SDimitry Andric       break;
1069e8d8bef9SDimitry Andric 
1070e8d8bef9SDimitry Andric     // readfirstlane (readfirstlane x) -> readfirstlane x
1071e8d8bef9SDimitry Andric     // readlane (readfirstlane x), y -> readfirstlane x
1072e8d8bef9SDimitry Andric     if (match(Src,
1073e8d8bef9SDimitry Andric               PatternMatch::m_Intrinsic<Intrinsic::amdgcn_readfirstlane>())) {
1074e8d8bef9SDimitry Andric       return IC.replaceInstUsesWith(II, Src);
1075e8d8bef9SDimitry Andric     }
1076e8d8bef9SDimitry Andric 
1077e8d8bef9SDimitry Andric     if (IID == Intrinsic::amdgcn_readfirstlane) {
1078e8d8bef9SDimitry Andric       // readfirstlane (readlane x, y) -> readlane x, y
1079e8d8bef9SDimitry Andric       if (match(Src, PatternMatch::m_Intrinsic<Intrinsic::amdgcn_readlane>())) {
1080e8d8bef9SDimitry Andric         return IC.replaceInstUsesWith(II, Src);
1081e8d8bef9SDimitry Andric       }
1082e8d8bef9SDimitry Andric     } else {
1083e8d8bef9SDimitry Andric       // readlane (readlane x, y), y -> readlane x, y
1084e8d8bef9SDimitry Andric       if (match(Src, PatternMatch::m_Intrinsic<Intrinsic::amdgcn_readlane>(
1085e8d8bef9SDimitry Andric                          PatternMatch::m_Value(),
1086e8d8bef9SDimitry Andric                          PatternMatch::m_Specific(II.getArgOperand(1))))) {
1087e8d8bef9SDimitry Andric         return IC.replaceInstUsesWith(II, Src);
1088e8d8bef9SDimitry Andric       }
1089e8d8bef9SDimitry Andric     }
1090e8d8bef9SDimitry Andric 
1091e8d8bef9SDimitry Andric     break;
1092e8d8bef9SDimitry Andric   }
1093e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_fmul_legacy: {
1094e8d8bef9SDimitry Andric     Value *Op0 = II.getArgOperand(0);
1095e8d8bef9SDimitry Andric     Value *Op1 = II.getArgOperand(1);
1096e8d8bef9SDimitry Andric 
1097e8d8bef9SDimitry Andric     // The legacy behaviour is that multiplying +/-0.0 by anything, even NaN or
1098e8d8bef9SDimitry Andric     // infinity, gives +0.0.
1099e8d8bef9SDimitry Andric     // TODO: Move to InstSimplify?
1100e8d8bef9SDimitry Andric     if (match(Op0, PatternMatch::m_AnyZeroFP()) ||
1101e8d8bef9SDimitry Andric         match(Op1, PatternMatch::m_AnyZeroFP()))
110206c3fb27SDimitry Andric       return IC.replaceInstUsesWith(II, ConstantFP::getZero(II.getType()));
1103e8d8bef9SDimitry Andric 
1104e8d8bef9SDimitry Andric     // If we can prove we don't have one of the special cases then we can use a
1105e8d8bef9SDimitry Andric     // normal fmul instruction instead.
110606c3fb27SDimitry Andric     if (canSimplifyLegacyMulToMul(II, Op0, Op1, IC)) {
1107e8d8bef9SDimitry Andric       auto *FMul = IC.Builder.CreateFMulFMF(Op0, Op1, &II);
1108e8d8bef9SDimitry Andric       FMul->takeName(&II);
1109e8d8bef9SDimitry Andric       return IC.replaceInstUsesWith(II, FMul);
1110e8d8bef9SDimitry Andric     }
1111e8d8bef9SDimitry Andric     break;
1112e8d8bef9SDimitry Andric   }
1113e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_fma_legacy: {
1114e8d8bef9SDimitry Andric     Value *Op0 = II.getArgOperand(0);
1115e8d8bef9SDimitry Andric     Value *Op1 = II.getArgOperand(1);
1116e8d8bef9SDimitry Andric     Value *Op2 = II.getArgOperand(2);
1117e8d8bef9SDimitry Andric 
1118e8d8bef9SDimitry Andric     // The legacy behaviour is that multiplying +/-0.0 by anything, even NaN or
1119e8d8bef9SDimitry Andric     // infinity, gives +0.0.
1120e8d8bef9SDimitry Andric     // TODO: Move to InstSimplify?
1121e8d8bef9SDimitry Andric     if (match(Op0, PatternMatch::m_AnyZeroFP()) ||
1122e8d8bef9SDimitry Andric         match(Op1, PatternMatch::m_AnyZeroFP())) {
1123e8d8bef9SDimitry Andric       // It's tempting to just return Op2 here, but that would give the wrong
1124e8d8bef9SDimitry Andric       // result if Op2 was -0.0.
112506c3fb27SDimitry Andric       auto *Zero = ConstantFP::getZero(II.getType());
1126e8d8bef9SDimitry Andric       auto *FAdd = IC.Builder.CreateFAddFMF(Zero, Op2, &II);
1127e8d8bef9SDimitry Andric       FAdd->takeName(&II);
1128e8d8bef9SDimitry Andric       return IC.replaceInstUsesWith(II, FAdd);
1129e8d8bef9SDimitry Andric     }
1130e8d8bef9SDimitry Andric 
1131e8d8bef9SDimitry Andric     // If we can prove we don't have one of the special cases then we can use a
1132e8d8bef9SDimitry Andric     // normal fma instead.
113306c3fb27SDimitry Andric     if (canSimplifyLegacyMulToMul(II, Op0, Op1, IC)) {
1134e8d8bef9SDimitry Andric       II.setCalledOperand(Intrinsic::getDeclaration(
1135e8d8bef9SDimitry Andric           II.getModule(), Intrinsic::fma, II.getType()));
1136e8d8bef9SDimitry Andric       return &II;
1137e8d8bef9SDimitry Andric     }
1138e8d8bef9SDimitry Andric     break;
1139e8d8bef9SDimitry Andric   }
11400eae32dcSDimitry Andric   case Intrinsic::amdgcn_is_shared:
11410eae32dcSDimitry Andric   case Intrinsic::amdgcn_is_private: {
11420eae32dcSDimitry Andric     if (isa<UndefValue>(II.getArgOperand(0)))
11430eae32dcSDimitry Andric       return IC.replaceInstUsesWith(II, UndefValue::get(II.getType()));
11440eae32dcSDimitry Andric 
11450eae32dcSDimitry Andric     if (isa<ConstantPointerNull>(II.getArgOperand(0)))
11460eae32dcSDimitry Andric       return IC.replaceInstUsesWith(II, ConstantInt::getFalse(II.getType()));
11470eae32dcSDimitry Andric     break;
11480eae32dcSDimitry Andric   }
114906c3fb27SDimitry Andric   case Intrinsic::amdgcn_buffer_store_format:
115006c3fb27SDimitry Andric   case Intrinsic::amdgcn_raw_buffer_store_format:
115106c3fb27SDimitry Andric   case Intrinsic::amdgcn_struct_buffer_store_format:
115206c3fb27SDimitry Andric   case Intrinsic::amdgcn_raw_tbuffer_store:
115306c3fb27SDimitry Andric   case Intrinsic::amdgcn_struct_tbuffer_store:
115406c3fb27SDimitry Andric   case Intrinsic::amdgcn_tbuffer_store:
115506c3fb27SDimitry Andric   case Intrinsic::amdgcn_image_store_1d:
115606c3fb27SDimitry Andric   case Intrinsic::amdgcn_image_store_1darray:
115706c3fb27SDimitry Andric   case Intrinsic::amdgcn_image_store_2d:
115806c3fb27SDimitry Andric   case Intrinsic::amdgcn_image_store_2darray:
115906c3fb27SDimitry Andric   case Intrinsic::amdgcn_image_store_2darraymsaa:
116006c3fb27SDimitry Andric   case Intrinsic::amdgcn_image_store_2dmsaa:
116106c3fb27SDimitry Andric   case Intrinsic::amdgcn_image_store_3d:
116206c3fb27SDimitry Andric   case Intrinsic::amdgcn_image_store_cube:
116306c3fb27SDimitry Andric   case Intrinsic::amdgcn_image_store_mip_1d:
116406c3fb27SDimitry Andric   case Intrinsic::amdgcn_image_store_mip_1darray:
116506c3fb27SDimitry Andric   case Intrinsic::amdgcn_image_store_mip_2d:
116606c3fb27SDimitry Andric   case Intrinsic::amdgcn_image_store_mip_2darray:
116706c3fb27SDimitry Andric   case Intrinsic::amdgcn_image_store_mip_3d:
116806c3fb27SDimitry Andric   case Intrinsic::amdgcn_image_store_mip_cube: {
116906c3fb27SDimitry Andric     if (!isa<FixedVectorType>(II.getArgOperand(0)->getType()))
117006c3fb27SDimitry Andric       break;
117106c3fb27SDimitry Andric 
1172*7a6dacacSDimitry Andric     APInt DemandedElts;
1173*7a6dacacSDimitry Andric     if (ST->hasDefaultComponentBroadcast())
1174*7a6dacacSDimitry Andric       DemandedElts = defaultComponentBroadcast(II.getArgOperand(0));
1175*7a6dacacSDimitry Andric     else if (ST->hasDefaultComponentZero())
1176*7a6dacacSDimitry Andric       DemandedElts = trimTrailingZerosInVector(IC, II.getArgOperand(0), &II);
1177*7a6dacacSDimitry Andric     else
1178*7a6dacacSDimitry Andric       break;
117906c3fb27SDimitry Andric 
118006c3fb27SDimitry Andric     int DMaskIdx = getAMDGPUImageDMaskIntrinsic(II.getIntrinsicID()) ? 1 : -1;
118106c3fb27SDimitry Andric     if (simplifyAMDGCNMemoryIntrinsicDemanded(IC, II, DemandedElts, DMaskIdx,
118206c3fb27SDimitry Andric                                               false)) {
118306c3fb27SDimitry Andric       return IC.eraseInstFromFunction(II);
118406c3fb27SDimitry Andric     }
118506c3fb27SDimitry Andric 
118606c3fb27SDimitry Andric     break;
118706c3fb27SDimitry Andric   }
118806c3fb27SDimitry Andric   }
1189e8d8bef9SDimitry Andric   if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
1190e8d8bef9SDimitry Andric             AMDGPU::getImageDimIntrinsicInfo(II.getIntrinsicID())) {
1191e8d8bef9SDimitry Andric     return simplifyAMDGCNImageIntrinsic(ST, ImageDimIntr, II, IC);
1192e8d8bef9SDimitry Andric   }
1193bdd1243dSDimitry Andric   return std::nullopt;
1194e8d8bef9SDimitry Andric }
1195e8d8bef9SDimitry Andric 
1196e8d8bef9SDimitry Andric /// Implement SimplifyDemandedVectorElts for amdgcn buffer and image intrinsics.
1197e8d8bef9SDimitry Andric ///
119806c3fb27SDimitry Andric /// The result of simplifying amdgcn image and buffer store intrinsics is updating
119906c3fb27SDimitry Andric /// definitions of the intrinsics vector argument, not Uses of the result like
120006c3fb27SDimitry Andric /// image and buffer loads.
1201e8d8bef9SDimitry Andric /// Note: This only supports non-TFE/LWE image intrinsic calls; those have
1202e8d8bef9SDimitry Andric ///       struct returns.
simplifyAMDGCNMemoryIntrinsicDemanded(InstCombiner & IC,IntrinsicInst & II,APInt DemandedElts,int DMaskIdx,bool IsLoad)1203e8d8bef9SDimitry Andric static Value *simplifyAMDGCNMemoryIntrinsicDemanded(InstCombiner &IC,
1204e8d8bef9SDimitry Andric                                                     IntrinsicInst &II,
1205e8d8bef9SDimitry Andric                                                     APInt DemandedElts,
120606c3fb27SDimitry Andric                                                     int DMaskIdx, bool IsLoad) {
1207e8d8bef9SDimitry Andric 
120806c3fb27SDimitry Andric   auto *IIVTy = cast<FixedVectorType>(IsLoad ? II.getType()
120906c3fb27SDimitry Andric                                              : II.getOperand(0)->getType());
1210e8d8bef9SDimitry Andric   unsigned VWidth = IIVTy->getNumElements();
1211e8d8bef9SDimitry Andric   if (VWidth == 1)
1212e8d8bef9SDimitry Andric     return nullptr;
1213bdd1243dSDimitry Andric   Type *EltTy = IIVTy->getElementType();
1214e8d8bef9SDimitry Andric 
1215e8d8bef9SDimitry Andric   IRBuilderBase::InsertPointGuard Guard(IC.Builder);
1216e8d8bef9SDimitry Andric   IC.Builder.SetInsertPoint(&II);
1217e8d8bef9SDimitry Andric 
1218e8d8bef9SDimitry Andric   // Assume the arguments are unchanged and later override them, if needed.
1219e8d8bef9SDimitry Andric   SmallVector<Value *, 16> Args(II.args());
1220e8d8bef9SDimitry Andric 
1221e8d8bef9SDimitry Andric   if (DMaskIdx < 0) {
1222e8d8bef9SDimitry Andric     // Buffer case.
1223e8d8bef9SDimitry Andric 
1224e8d8bef9SDimitry Andric     const unsigned ActiveBits = DemandedElts.getActiveBits();
122506c3fb27SDimitry Andric     const unsigned UnusedComponentsAtFront = DemandedElts.countr_zero();
1226e8d8bef9SDimitry Andric 
1227e8d8bef9SDimitry Andric     // Start assuming the prefix of elements is demanded, but possibly clear
1228e8d8bef9SDimitry Andric     // some other bits if there are trailing zeros (unused components at front)
1229e8d8bef9SDimitry Andric     // and update offset.
1230e8d8bef9SDimitry Andric     DemandedElts = (1 << ActiveBits) - 1;
1231e8d8bef9SDimitry Andric 
1232e8d8bef9SDimitry Andric     if (UnusedComponentsAtFront > 0) {
1233e8d8bef9SDimitry Andric       static const unsigned InvalidOffsetIdx = 0xf;
1234e8d8bef9SDimitry Andric 
1235e8d8bef9SDimitry Andric       unsigned OffsetIdx;
1236e8d8bef9SDimitry Andric       switch (II.getIntrinsicID()) {
1237e8d8bef9SDimitry Andric       case Intrinsic::amdgcn_raw_buffer_load:
123806c3fb27SDimitry Andric       case Intrinsic::amdgcn_raw_ptr_buffer_load:
1239e8d8bef9SDimitry Andric         OffsetIdx = 1;
1240e8d8bef9SDimitry Andric         break;
1241e8d8bef9SDimitry Andric       case Intrinsic::amdgcn_s_buffer_load:
1242e8d8bef9SDimitry Andric         // If resulting type is vec3, there is no point in trimming the
1243e8d8bef9SDimitry Andric         // load with updated offset, as the vec3 would most likely be widened to
1244e8d8bef9SDimitry Andric         // vec4 anyway during lowering.
1245e8d8bef9SDimitry Andric         if (ActiveBits == 4 && UnusedComponentsAtFront == 1)
1246e8d8bef9SDimitry Andric           OffsetIdx = InvalidOffsetIdx;
1247e8d8bef9SDimitry Andric         else
1248e8d8bef9SDimitry Andric           OffsetIdx = 1;
1249e8d8bef9SDimitry Andric         break;
1250e8d8bef9SDimitry Andric       case Intrinsic::amdgcn_struct_buffer_load:
125106c3fb27SDimitry Andric       case Intrinsic::amdgcn_struct_ptr_buffer_load:
1252e8d8bef9SDimitry Andric         OffsetIdx = 2;
1253e8d8bef9SDimitry Andric         break;
1254e8d8bef9SDimitry Andric       default:
1255e8d8bef9SDimitry Andric         // TODO: handle tbuffer* intrinsics.
1256e8d8bef9SDimitry Andric         OffsetIdx = InvalidOffsetIdx;
1257e8d8bef9SDimitry Andric         break;
1258e8d8bef9SDimitry Andric       }
1259e8d8bef9SDimitry Andric 
1260e8d8bef9SDimitry Andric       if (OffsetIdx != InvalidOffsetIdx) {
1261e8d8bef9SDimitry Andric         // Clear demanded bits and update the offset.
1262e8d8bef9SDimitry Andric         DemandedElts &= ~((1 << UnusedComponentsAtFront) - 1);
1263bdd1243dSDimitry Andric         auto *Offset = Args[OffsetIdx];
1264e8d8bef9SDimitry Andric         unsigned SingleComponentSizeInBits =
1265bdd1243dSDimitry Andric             IC.getDataLayout().getTypeSizeInBits(EltTy);
1266e8d8bef9SDimitry Andric         unsigned OffsetAdd =
1267e8d8bef9SDimitry Andric             UnusedComponentsAtFront * SingleComponentSizeInBits / 8;
1268e8d8bef9SDimitry Andric         auto *OffsetAddVal = ConstantInt::get(Offset->getType(), OffsetAdd);
1269e8d8bef9SDimitry Andric         Args[OffsetIdx] = IC.Builder.CreateAdd(Offset, OffsetAddVal);
1270e8d8bef9SDimitry Andric       }
1271e8d8bef9SDimitry Andric     }
1272e8d8bef9SDimitry Andric   } else {
1273e8d8bef9SDimitry Andric     // Image case.
1274e8d8bef9SDimitry Andric 
1275bdd1243dSDimitry Andric     ConstantInt *DMask = cast<ConstantInt>(Args[DMaskIdx]);
1276e8d8bef9SDimitry Andric     unsigned DMaskVal = DMask->getZExtValue() & 0xf;
1277e8d8bef9SDimitry Andric 
1278cb14a3feSDimitry Andric     // dmask 0 has special semantics, do not simplify.
1279cb14a3feSDimitry Andric     if (DMaskVal == 0)
1280cb14a3feSDimitry Andric       return nullptr;
1281cb14a3feSDimitry Andric 
1282e8d8bef9SDimitry Andric     // Mask off values that are undefined because the dmask doesn't cover them
1283bdd1243dSDimitry Andric     DemandedElts &= (1 << llvm::popcount(DMaskVal)) - 1;
1284e8d8bef9SDimitry Andric 
1285e8d8bef9SDimitry Andric     unsigned NewDMaskVal = 0;
128606c3fb27SDimitry Andric     unsigned OrigLdStIdx = 0;
1287e8d8bef9SDimitry Andric     for (unsigned SrcIdx = 0; SrcIdx < 4; ++SrcIdx) {
1288e8d8bef9SDimitry Andric       const unsigned Bit = 1 << SrcIdx;
1289e8d8bef9SDimitry Andric       if (!!(DMaskVal & Bit)) {
129006c3fb27SDimitry Andric         if (!!DemandedElts[OrigLdStIdx])
1291e8d8bef9SDimitry Andric           NewDMaskVal |= Bit;
129206c3fb27SDimitry Andric         OrigLdStIdx++;
1293e8d8bef9SDimitry Andric       }
1294e8d8bef9SDimitry Andric     }
1295e8d8bef9SDimitry Andric 
1296e8d8bef9SDimitry Andric     if (DMaskVal != NewDMaskVal)
1297e8d8bef9SDimitry Andric       Args[DMaskIdx] = ConstantInt::get(DMask->getType(), NewDMaskVal);
1298e8d8bef9SDimitry Andric   }
1299e8d8bef9SDimitry Andric 
130006c3fb27SDimitry Andric   unsigned NewNumElts = DemandedElts.popcount();
1301e8d8bef9SDimitry Andric   if (!NewNumElts)
1302cb14a3feSDimitry Andric     return PoisonValue::get(IIVTy);
1303e8d8bef9SDimitry Andric 
1304e8d8bef9SDimitry Andric   if (NewNumElts >= VWidth && DemandedElts.isMask()) {
1305e8d8bef9SDimitry Andric     if (DMaskIdx >= 0)
1306e8d8bef9SDimitry Andric       II.setArgOperand(DMaskIdx, Args[DMaskIdx]);
1307e8d8bef9SDimitry Andric     return nullptr;
1308e8d8bef9SDimitry Andric   }
1309e8d8bef9SDimitry Andric 
1310e8d8bef9SDimitry Andric   // Validate function argument and return types, extracting overloaded types
1311e8d8bef9SDimitry Andric   // along the way.
1312e8d8bef9SDimitry Andric   SmallVector<Type *, 6> OverloadTys;
1313e8d8bef9SDimitry Andric   if (!Intrinsic::getIntrinsicSignature(II.getCalledFunction(), OverloadTys))
1314e8d8bef9SDimitry Andric     return nullptr;
1315e8d8bef9SDimitry Andric 
1316e8d8bef9SDimitry Andric   Type *NewTy =
1317e8d8bef9SDimitry Andric       (NewNumElts == 1) ? EltTy : FixedVectorType::get(EltTy, NewNumElts);
1318e8d8bef9SDimitry Andric   OverloadTys[0] = NewTy;
1319e8d8bef9SDimitry Andric 
132006c3fb27SDimitry Andric   if (!IsLoad) {
132106c3fb27SDimitry Andric     SmallVector<int, 8> EltMask;
132206c3fb27SDimitry Andric     for (unsigned OrigStoreIdx = 0; OrigStoreIdx < VWidth; ++OrigStoreIdx)
132306c3fb27SDimitry Andric       if (DemandedElts[OrigStoreIdx])
132406c3fb27SDimitry Andric         EltMask.push_back(OrigStoreIdx);
132506c3fb27SDimitry Andric 
132606c3fb27SDimitry Andric     if (NewNumElts == 1)
132706c3fb27SDimitry Andric       Args[0] = IC.Builder.CreateExtractElement(II.getOperand(0), EltMask[0]);
132806c3fb27SDimitry Andric     else
132906c3fb27SDimitry Andric       Args[0] = IC.Builder.CreateShuffleVector(II.getOperand(0), EltMask);
133006c3fb27SDimitry Andric   }
133106c3fb27SDimitry Andric 
1332bdd1243dSDimitry Andric   Function *NewIntrin = Intrinsic::getDeclaration(
1333bdd1243dSDimitry Andric       II.getModule(), II.getIntrinsicID(), OverloadTys);
1334e8d8bef9SDimitry Andric   CallInst *NewCall = IC.Builder.CreateCall(NewIntrin, Args);
1335e8d8bef9SDimitry Andric   NewCall->takeName(&II);
1336e8d8bef9SDimitry Andric   NewCall->copyMetadata(II);
1337e8d8bef9SDimitry Andric 
133806c3fb27SDimitry Andric   if (IsLoad) {
1339e8d8bef9SDimitry Andric     if (NewNumElts == 1) {
1340cb14a3feSDimitry Andric       return IC.Builder.CreateInsertElement(PoisonValue::get(IIVTy), NewCall,
134106c3fb27SDimitry Andric                                             DemandedElts.countr_zero());
1342e8d8bef9SDimitry Andric     }
1343e8d8bef9SDimitry Andric 
1344e8d8bef9SDimitry Andric     SmallVector<int, 8> EltMask;
1345e8d8bef9SDimitry Andric     unsigned NewLoadIdx = 0;
1346e8d8bef9SDimitry Andric     for (unsigned OrigLoadIdx = 0; OrigLoadIdx < VWidth; ++OrigLoadIdx) {
1347e8d8bef9SDimitry Andric       if (!!DemandedElts[OrigLoadIdx])
1348e8d8bef9SDimitry Andric         EltMask.push_back(NewLoadIdx++);
1349e8d8bef9SDimitry Andric       else
1350e8d8bef9SDimitry Andric         EltMask.push_back(NewNumElts);
1351e8d8bef9SDimitry Andric     }
1352e8d8bef9SDimitry Andric 
135306c3fb27SDimitry Andric     auto *Shuffle = IC.Builder.CreateShuffleVector(NewCall, EltMask);
1354e8d8bef9SDimitry Andric 
1355e8d8bef9SDimitry Andric     return Shuffle;
1356e8d8bef9SDimitry Andric   }
1357e8d8bef9SDimitry Andric 
135806c3fb27SDimitry Andric   return NewCall;
135906c3fb27SDimitry Andric }
136006c3fb27SDimitry Andric 
simplifyDemandedVectorEltsIntrinsic(InstCombiner & IC,IntrinsicInst & II,APInt DemandedElts,APInt & UndefElts,APInt & UndefElts2,APInt & UndefElts3,std::function<void (Instruction *,unsigned,APInt,APInt &)> SimplifyAndSetOp) const1361bdd1243dSDimitry Andric std::optional<Value *> GCNTTIImpl::simplifyDemandedVectorEltsIntrinsic(
1362e8d8bef9SDimitry Andric     InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts,
1363e8d8bef9SDimitry Andric     APInt &UndefElts2, APInt &UndefElts3,
1364e8d8bef9SDimitry Andric     std::function<void(Instruction *, unsigned, APInt, APInt &)>
1365e8d8bef9SDimitry Andric         SimplifyAndSetOp) const {
1366e8d8bef9SDimitry Andric   switch (II.getIntrinsicID()) {
1367e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_buffer_load:
1368e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_buffer_load_format:
1369e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_raw_buffer_load:
137006c3fb27SDimitry Andric   case Intrinsic::amdgcn_raw_ptr_buffer_load:
1371e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_raw_buffer_load_format:
137206c3fb27SDimitry Andric   case Intrinsic::amdgcn_raw_ptr_buffer_load_format:
1373e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_raw_tbuffer_load:
137406c3fb27SDimitry Andric   case Intrinsic::amdgcn_raw_ptr_tbuffer_load:
1375e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_s_buffer_load:
1376e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_struct_buffer_load:
137706c3fb27SDimitry Andric   case Intrinsic::amdgcn_struct_ptr_buffer_load:
1378e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_struct_buffer_load_format:
137906c3fb27SDimitry Andric   case Intrinsic::amdgcn_struct_ptr_buffer_load_format:
1380e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_struct_tbuffer_load:
138106c3fb27SDimitry Andric   case Intrinsic::amdgcn_struct_ptr_tbuffer_load:
1382e8d8bef9SDimitry Andric   case Intrinsic::amdgcn_tbuffer_load:
1383e8d8bef9SDimitry Andric     return simplifyAMDGCNMemoryIntrinsicDemanded(IC, II, DemandedElts);
1384e8d8bef9SDimitry Andric   default: {
1385e8d8bef9SDimitry Andric     if (getAMDGPUImageDMaskIntrinsic(II.getIntrinsicID())) {
1386e8d8bef9SDimitry Andric       return simplifyAMDGCNMemoryIntrinsicDemanded(IC, II, DemandedElts, 0);
1387e8d8bef9SDimitry Andric     }
1388e8d8bef9SDimitry Andric     break;
1389e8d8bef9SDimitry Andric   }
1390e8d8bef9SDimitry Andric   }
1391bdd1243dSDimitry Andric   return std::nullopt;
1392e8d8bef9SDimitry Andric }
1393