1 //===- AMDGPULibCalls.cpp -------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This file does AMD library function optimizations.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "AMDGPU.h"
15 #include "AMDGPULibFunc.h"
16 #include "GCNSubtarget.h"
17 #include "llvm/Analysis/AliasAnalysis.h"
18 #include "llvm/Analysis/Loads.h"
19 #include "llvm/IR/IRBuilder.h"
20 #include "llvm/IR/IntrinsicInst.h"
21 #include "llvm/IR/IntrinsicsAMDGPU.h"
22 #include "llvm/InitializePasses.h"
23 #include "llvm/Target/TargetMachine.h"
24 
25 #define DEBUG_TYPE "amdgpu-simplifylib"
26 
27 using namespace llvm;
28 
29 static cl::opt<bool> EnablePreLink("amdgpu-prelink",
30   cl::desc("Enable pre-link mode optimizations"),
31   cl::init(false),
32   cl::Hidden);
33 
34 static cl::list<std::string> UseNative("amdgpu-use-native",
35   cl::desc("Comma separated list of functions to replace with native, or all"),
36   cl::CommaSeparated, cl::ValueOptional,
37   cl::Hidden);
38 
39 #define MATH_PI      numbers::pi
40 #define MATH_E       numbers::e
41 #define MATH_SQRT2   numbers::sqrt2
42 #define MATH_SQRT1_2 numbers::inv_sqrt2
43 
44 namespace llvm {
45 
46 class AMDGPULibCalls {
47 private:
48 
49   typedef llvm::AMDGPULibFunc FuncInfo;
50 
51   const TargetMachine *TM;
52 
53   // -fuse-native.
54   bool AllNative = false;
55 
56   bool useNativeFunc(const StringRef F) const;
57 
58   // Return a pointer (pointer expr) to the function if function definition with
59   // "FuncName" exists. It may create a new function prototype in pre-link mode.
60   FunctionCallee getFunction(Module *M, const FuncInfo &fInfo);
61 
62   bool parseFunctionName(const StringRef &FMangledName, FuncInfo &FInfo);
63 
64   bool TDOFold(CallInst *CI, const FuncInfo &FInfo);
65 
66   /* Specialized optimizations */
67 
68   // recip (half or native)
69   bool fold_recip(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
70 
71   // divide (half or native)
72   bool fold_divide(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
73 
74   // pow/powr/pown
75   bool fold_pow(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
76 
77   // rootn
78   bool fold_rootn(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
79 
80   // fma/mad
81   bool fold_fma_mad(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
82 
83   // -fuse-native for sincos
84   bool sincosUseNative(CallInst *aCI, const FuncInfo &FInfo);
85 
86   // evaluate calls if calls' arguments are constants.
87   bool evaluateScalarMathFunc(const FuncInfo &FInfo, double& Res0,
88     double& Res1, Constant *copr0, Constant *copr1, Constant *copr2);
89   bool evaluateCall(CallInst *aCI, const FuncInfo &FInfo);
90 
91   // sqrt
92   bool fold_sqrt(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
93 
94   // sin/cos
95   bool fold_sincos(CallInst * CI, IRBuilder<> &B, AliasAnalysis * AA);
96 
97   // __read_pipe/__write_pipe
98   bool fold_read_write_pipe(CallInst *CI, IRBuilder<> &B,
99                             const FuncInfo &FInfo);
100 
101   // llvm.amdgcn.wavefrontsize
102   bool fold_wavefrontsize(CallInst *CI, IRBuilder<> &B);
103 
104   // Get insertion point at entry.
105   BasicBlock::iterator getEntryIns(CallInst * UI);
106   // Insert an Alloc instruction.
107   AllocaInst* insertAlloca(CallInst * UI, IRBuilder<> &B, const char *prefix);
108   // Get a scalar native builtin single argument FP function
109   FunctionCallee getNativeFunction(Module *M, const FuncInfo &FInfo);
110 
111 protected:
112   CallInst *CI;
113 
114   bool isUnsafeMath(const CallInst *CI) const;
115 
116   void replaceCall(Value *With) {
117     CI->replaceAllUsesWith(With);
118     CI->eraseFromParent();
119   }
120 
121 public:
122   AMDGPULibCalls(const TargetMachine *TM_ = nullptr) : TM(TM_) {}
123 
124   bool fold(CallInst *CI, AliasAnalysis *AA = nullptr);
125 
126   void initNativeFuncs();
127 
128   // Replace a normal math function call with that native version
129   bool useNative(CallInst *CI);
130 };
131 
132 } // end llvm namespace
133 
134 namespace {
135 
136   class AMDGPUSimplifyLibCalls : public FunctionPass {
137 
138   AMDGPULibCalls Simplifier;
139 
140   public:
141     static char ID; // Pass identification
142 
143     AMDGPUSimplifyLibCalls(const TargetMachine *TM = nullptr)
144       : FunctionPass(ID), Simplifier(TM) {
145       initializeAMDGPUSimplifyLibCallsPass(*PassRegistry::getPassRegistry());
146     }
147 
148     void getAnalysisUsage(AnalysisUsage &AU) const override {
149       AU.addRequired<AAResultsWrapperPass>();
150     }
151 
152     bool runOnFunction(Function &M) override;
153   };
154 
155   class AMDGPUUseNativeCalls : public FunctionPass {
156 
157   AMDGPULibCalls Simplifier;
158 
159   public:
160     static char ID; // Pass identification
161 
162     AMDGPUUseNativeCalls() : FunctionPass(ID) {
163       initializeAMDGPUUseNativeCallsPass(*PassRegistry::getPassRegistry());
164       Simplifier.initNativeFuncs();
165     }
166 
167     bool runOnFunction(Function &F) override;
168   };
169 
170 } // end anonymous namespace.
171 
172 char AMDGPUSimplifyLibCalls::ID = 0;
173 char AMDGPUUseNativeCalls::ID = 0;
174 
175 INITIALIZE_PASS_BEGIN(AMDGPUSimplifyLibCalls, "amdgpu-simplifylib",
176                       "Simplify well-known AMD library calls", false, false)
177 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
178 INITIALIZE_PASS_END(AMDGPUSimplifyLibCalls, "amdgpu-simplifylib",
179                     "Simplify well-known AMD library calls", false, false)
180 
181 INITIALIZE_PASS(AMDGPUUseNativeCalls, "amdgpu-usenative",
182                 "Replace builtin math calls with that native versions.",
183                 false, false)
184 
185 template <typename IRB>
186 static CallInst *CreateCallEx(IRB &B, FunctionCallee Callee, Value *Arg,
187                               const Twine &Name = "") {
188   CallInst *R = B.CreateCall(Callee, Arg, Name);
189   if (Function *F = dyn_cast<Function>(Callee.getCallee()))
190     R->setCallingConv(F->getCallingConv());
191   return R;
192 }
193 
194 template <typename IRB>
195 static CallInst *CreateCallEx2(IRB &B, FunctionCallee Callee, Value *Arg1,
196                                Value *Arg2, const Twine &Name = "") {
197   CallInst *R = B.CreateCall(Callee, {Arg1, Arg2}, Name);
198   if (Function *F = dyn_cast<Function>(Callee.getCallee()))
199     R->setCallingConv(F->getCallingConv());
200   return R;
201 }
202 
203 //  Data structures for table-driven optimizations.
204 //  FuncTbl works for both f32 and f64 functions with 1 input argument
205 
206 struct TableEntry {
207   double   result;
208   double   input;
209 };
210 
211 /* a list of {result, input} */
212 static const TableEntry tbl_acos[] = {
213   {MATH_PI / 2.0, 0.0},
214   {MATH_PI / 2.0, -0.0},
215   {0.0, 1.0},
216   {MATH_PI, -1.0}
217 };
218 static const TableEntry tbl_acosh[] = {
219   {0.0, 1.0}
220 };
221 static const TableEntry tbl_acospi[] = {
222   {0.5, 0.0},
223   {0.5, -0.0},
224   {0.0, 1.0},
225   {1.0, -1.0}
226 };
227 static const TableEntry tbl_asin[] = {
228   {0.0, 0.0},
229   {-0.0, -0.0},
230   {MATH_PI / 2.0, 1.0},
231   {-MATH_PI / 2.0, -1.0}
232 };
233 static const TableEntry tbl_asinh[] = {
234   {0.0, 0.0},
235   {-0.0, -0.0}
236 };
237 static const TableEntry tbl_asinpi[] = {
238   {0.0, 0.0},
239   {-0.0, -0.0},
240   {0.5, 1.0},
241   {-0.5, -1.0}
242 };
243 static const TableEntry tbl_atan[] = {
244   {0.0, 0.0},
245   {-0.0, -0.0},
246   {MATH_PI / 4.0, 1.0},
247   {-MATH_PI / 4.0, -1.0}
248 };
249 static const TableEntry tbl_atanh[] = {
250   {0.0, 0.0},
251   {-0.0, -0.0}
252 };
253 static const TableEntry tbl_atanpi[] = {
254   {0.0, 0.0},
255   {-0.0, -0.0},
256   {0.25, 1.0},
257   {-0.25, -1.0}
258 };
259 static const TableEntry tbl_cbrt[] = {
260   {0.0, 0.0},
261   {-0.0, -0.0},
262   {1.0, 1.0},
263   {-1.0, -1.0},
264 };
265 static const TableEntry tbl_cos[] = {
266   {1.0, 0.0},
267   {1.0, -0.0}
268 };
269 static const TableEntry tbl_cosh[] = {
270   {1.0, 0.0},
271   {1.0, -0.0}
272 };
273 static const TableEntry tbl_cospi[] = {
274   {1.0, 0.0},
275   {1.0, -0.0}
276 };
277 static const TableEntry tbl_erfc[] = {
278   {1.0, 0.0},
279   {1.0, -0.0}
280 };
281 static const TableEntry tbl_erf[] = {
282   {0.0, 0.0},
283   {-0.0, -0.0}
284 };
285 static const TableEntry tbl_exp[] = {
286   {1.0, 0.0},
287   {1.0, -0.0},
288   {MATH_E, 1.0}
289 };
290 static const TableEntry tbl_exp2[] = {
291   {1.0, 0.0},
292   {1.0, -0.0},
293   {2.0, 1.0}
294 };
295 static const TableEntry tbl_exp10[] = {
296   {1.0, 0.0},
297   {1.0, -0.0},
298   {10.0, 1.0}
299 };
300 static const TableEntry tbl_expm1[] = {
301   {0.0, 0.0},
302   {-0.0, -0.0}
303 };
304 static const TableEntry tbl_log[] = {
305   {0.0, 1.0},
306   {1.0, MATH_E}
307 };
308 static const TableEntry tbl_log2[] = {
309   {0.0, 1.0},
310   {1.0, 2.0}
311 };
312 static const TableEntry tbl_log10[] = {
313   {0.0, 1.0},
314   {1.0, 10.0}
315 };
316 static const TableEntry tbl_rsqrt[] = {
317   {1.0, 1.0},
318   {MATH_SQRT1_2, 2.0}
319 };
320 static const TableEntry tbl_sin[] = {
321   {0.0, 0.0},
322   {-0.0, -0.0}
323 };
324 static const TableEntry tbl_sinh[] = {
325   {0.0, 0.0},
326   {-0.0, -0.0}
327 };
328 static const TableEntry tbl_sinpi[] = {
329   {0.0, 0.0},
330   {-0.0, -0.0}
331 };
332 static const TableEntry tbl_sqrt[] = {
333   {0.0, 0.0},
334   {1.0, 1.0},
335   {MATH_SQRT2, 2.0}
336 };
337 static const TableEntry tbl_tan[] = {
338   {0.0, 0.0},
339   {-0.0, -0.0}
340 };
341 static const TableEntry tbl_tanh[] = {
342   {0.0, 0.0},
343   {-0.0, -0.0}
344 };
345 static const TableEntry tbl_tanpi[] = {
346   {0.0, 0.0},
347   {-0.0, -0.0}
348 };
349 static const TableEntry tbl_tgamma[] = {
350   {1.0, 1.0},
351   {1.0, 2.0},
352   {2.0, 3.0},
353   {6.0, 4.0}
354 };
355 
356 static bool HasNative(AMDGPULibFunc::EFuncId id) {
357   switch(id) {
358   case AMDGPULibFunc::EI_DIVIDE:
359   case AMDGPULibFunc::EI_COS:
360   case AMDGPULibFunc::EI_EXP:
361   case AMDGPULibFunc::EI_EXP2:
362   case AMDGPULibFunc::EI_EXP10:
363   case AMDGPULibFunc::EI_LOG:
364   case AMDGPULibFunc::EI_LOG2:
365   case AMDGPULibFunc::EI_LOG10:
366   case AMDGPULibFunc::EI_POWR:
367   case AMDGPULibFunc::EI_RECIP:
368   case AMDGPULibFunc::EI_RSQRT:
369   case AMDGPULibFunc::EI_SIN:
370   case AMDGPULibFunc::EI_SINCOS:
371   case AMDGPULibFunc::EI_SQRT:
372   case AMDGPULibFunc::EI_TAN:
373     return true;
374   default:;
375   }
376   return false;
377 }
378 
379 using TableRef = ArrayRef<TableEntry>;
380 
381 static TableRef getOptTable(AMDGPULibFunc::EFuncId id) {
382   switch(id) {
383   case AMDGPULibFunc::EI_ACOS:    return TableRef(tbl_acos);
384   case AMDGPULibFunc::EI_ACOSH:   return TableRef(tbl_acosh);
385   case AMDGPULibFunc::EI_ACOSPI:  return TableRef(tbl_acospi);
386   case AMDGPULibFunc::EI_ASIN:    return TableRef(tbl_asin);
387   case AMDGPULibFunc::EI_ASINH:   return TableRef(tbl_asinh);
388   case AMDGPULibFunc::EI_ASINPI:  return TableRef(tbl_asinpi);
389   case AMDGPULibFunc::EI_ATAN:    return TableRef(tbl_atan);
390   case AMDGPULibFunc::EI_ATANH:   return TableRef(tbl_atanh);
391   case AMDGPULibFunc::EI_ATANPI:  return TableRef(tbl_atanpi);
392   case AMDGPULibFunc::EI_CBRT:    return TableRef(tbl_cbrt);
393   case AMDGPULibFunc::EI_NCOS:
394   case AMDGPULibFunc::EI_COS:     return TableRef(tbl_cos);
395   case AMDGPULibFunc::EI_COSH:    return TableRef(tbl_cosh);
396   case AMDGPULibFunc::EI_COSPI:   return TableRef(tbl_cospi);
397   case AMDGPULibFunc::EI_ERFC:    return TableRef(tbl_erfc);
398   case AMDGPULibFunc::EI_ERF:     return TableRef(tbl_erf);
399   case AMDGPULibFunc::EI_EXP:     return TableRef(tbl_exp);
400   case AMDGPULibFunc::EI_NEXP2:
401   case AMDGPULibFunc::EI_EXP2:    return TableRef(tbl_exp2);
402   case AMDGPULibFunc::EI_EXP10:   return TableRef(tbl_exp10);
403   case AMDGPULibFunc::EI_EXPM1:   return TableRef(tbl_expm1);
404   case AMDGPULibFunc::EI_LOG:     return TableRef(tbl_log);
405   case AMDGPULibFunc::EI_NLOG2:
406   case AMDGPULibFunc::EI_LOG2:    return TableRef(tbl_log2);
407   case AMDGPULibFunc::EI_LOG10:   return TableRef(tbl_log10);
408   case AMDGPULibFunc::EI_NRSQRT:
409   case AMDGPULibFunc::EI_RSQRT:   return TableRef(tbl_rsqrt);
410   case AMDGPULibFunc::EI_NSIN:
411   case AMDGPULibFunc::EI_SIN:     return TableRef(tbl_sin);
412   case AMDGPULibFunc::EI_SINH:    return TableRef(tbl_sinh);
413   case AMDGPULibFunc::EI_SINPI:   return TableRef(tbl_sinpi);
414   case AMDGPULibFunc::EI_NSQRT:
415   case AMDGPULibFunc::EI_SQRT:    return TableRef(tbl_sqrt);
416   case AMDGPULibFunc::EI_TAN:     return TableRef(tbl_tan);
417   case AMDGPULibFunc::EI_TANH:    return TableRef(tbl_tanh);
418   case AMDGPULibFunc::EI_TANPI:   return TableRef(tbl_tanpi);
419   case AMDGPULibFunc::EI_TGAMMA:  return TableRef(tbl_tgamma);
420   default:;
421   }
422   return TableRef();
423 }
424 
425 static inline int getVecSize(const AMDGPULibFunc& FInfo) {
426   return FInfo.getLeads()[0].VectorSize;
427 }
428 
429 static inline AMDGPULibFunc::EType getArgType(const AMDGPULibFunc& FInfo) {
430   return (AMDGPULibFunc::EType)FInfo.getLeads()[0].ArgType;
431 }
432 
433 FunctionCallee AMDGPULibCalls::getFunction(Module *M, const FuncInfo &fInfo) {
434   // If we are doing PreLinkOpt, the function is external. So it is safe to
435   // use getOrInsertFunction() at this stage.
436 
437   return EnablePreLink ? AMDGPULibFunc::getOrInsertFunction(M, fInfo)
438                        : AMDGPULibFunc::getFunction(M, fInfo);
439 }
440 
441 bool AMDGPULibCalls::parseFunctionName(const StringRef &FMangledName,
442                                        FuncInfo &FInfo) {
443   return AMDGPULibFunc::parse(FMangledName, FInfo);
444 }
445 
446 bool AMDGPULibCalls::isUnsafeMath(const CallInst *CI) const {
447   if (auto Op = dyn_cast<FPMathOperator>(CI))
448     if (Op->isFast())
449       return true;
450   const Function *F = CI->getParent()->getParent();
451   Attribute Attr = F->getFnAttribute("unsafe-fp-math");
452   return Attr.getValueAsBool();
453 }
454 
455 bool AMDGPULibCalls::useNativeFunc(const StringRef F) const {
456   return AllNative || llvm::is_contained(UseNative, F);
457 }
458 
459 void AMDGPULibCalls::initNativeFuncs() {
460   AllNative = useNativeFunc("all") ||
461               (UseNative.getNumOccurrences() && UseNative.size() == 1 &&
462                UseNative.begin()->empty());
463 }
464 
465 bool AMDGPULibCalls::sincosUseNative(CallInst *aCI, const FuncInfo &FInfo) {
466   bool native_sin = useNativeFunc("sin");
467   bool native_cos = useNativeFunc("cos");
468 
469   if (native_sin && native_cos) {
470     Module *M = aCI->getModule();
471     Value *opr0 = aCI->getArgOperand(0);
472 
473     AMDGPULibFunc nf;
474     nf.getLeads()[0].ArgType = FInfo.getLeads()[0].ArgType;
475     nf.getLeads()[0].VectorSize = FInfo.getLeads()[0].VectorSize;
476 
477     nf.setPrefix(AMDGPULibFunc::NATIVE);
478     nf.setId(AMDGPULibFunc::EI_SIN);
479     FunctionCallee sinExpr = getFunction(M, nf);
480 
481     nf.setPrefix(AMDGPULibFunc::NATIVE);
482     nf.setId(AMDGPULibFunc::EI_COS);
483     FunctionCallee cosExpr = getFunction(M, nf);
484     if (sinExpr && cosExpr) {
485       Value *sinval = CallInst::Create(sinExpr, opr0, "splitsin", aCI);
486       Value *cosval = CallInst::Create(cosExpr, opr0, "splitcos", aCI);
487       new StoreInst(cosval, aCI->getArgOperand(1), aCI);
488 
489       DEBUG_WITH_TYPE("usenative", dbgs() << "<useNative> replace " << *aCI
490                                           << " with native version of sin/cos");
491 
492       replaceCall(sinval);
493       return true;
494     }
495   }
496   return false;
497 }
498 
499 bool AMDGPULibCalls::useNative(CallInst *aCI) {
500   CI = aCI;
501   Function *Callee = aCI->getCalledFunction();
502 
503   FuncInfo FInfo;
504   if (!parseFunctionName(Callee->getName(), FInfo) || !FInfo.isMangled() ||
505       FInfo.getPrefix() != AMDGPULibFunc::NOPFX ||
506       getArgType(FInfo) == AMDGPULibFunc::F64 || !HasNative(FInfo.getId()) ||
507       !(AllNative || useNativeFunc(FInfo.getName()))) {
508     return false;
509   }
510 
511   if (FInfo.getId() == AMDGPULibFunc::EI_SINCOS)
512     return sincosUseNative(aCI, FInfo);
513 
514   FInfo.setPrefix(AMDGPULibFunc::NATIVE);
515   FunctionCallee F = getFunction(aCI->getModule(), FInfo);
516   if (!F)
517     return false;
518 
519   aCI->setCalledFunction(F);
520   DEBUG_WITH_TYPE("usenative", dbgs() << "<useNative> replace " << *aCI
521                                       << " with native version");
522   return true;
523 }
524 
525 // Clang emits call of __read_pipe_2 or __read_pipe_4 for OpenCL read_pipe
526 // builtin, with appended type size and alignment arguments, where 2 or 4
527 // indicates the original number of arguments. The library has optimized version
528 // of __read_pipe_2/__read_pipe_4 when the type size and alignment has the same
529 // power of 2 value. This function transforms __read_pipe_2 to __read_pipe_2_N
530 // for such cases where N is the size in bytes of the type (N = 1, 2, 4, 8, ...,
531 // 128). The same for __read_pipe_4, write_pipe_2, and write_pipe_4.
532 bool AMDGPULibCalls::fold_read_write_pipe(CallInst *CI, IRBuilder<> &B,
533                                           const FuncInfo &FInfo) {
534   auto *Callee = CI->getCalledFunction();
535   if (!Callee->isDeclaration())
536     return false;
537 
538   assert(Callee->hasName() && "Invalid read_pipe/write_pipe function");
539   auto *M = Callee->getParent();
540   auto &Ctx = M->getContext();
541   std::string Name = std::string(Callee->getName());
542   auto NumArg = CI->arg_size();
543   if (NumArg != 4 && NumArg != 6)
544     return false;
545   auto *PacketSize = CI->getArgOperand(NumArg - 2);
546   auto *PacketAlign = CI->getArgOperand(NumArg - 1);
547   if (!isa<ConstantInt>(PacketSize) || !isa<ConstantInt>(PacketAlign))
548     return false;
549   unsigned Size = cast<ConstantInt>(PacketSize)->getZExtValue();
550   Align Alignment = cast<ConstantInt>(PacketAlign)->getAlignValue();
551   if (Alignment != Size)
552     return false;
553 
554   Type *PtrElemTy;
555   if (Size <= 8)
556     PtrElemTy = Type::getIntNTy(Ctx, Size * 8);
557   else
558     PtrElemTy = FixedVectorType::get(Type::getInt64Ty(Ctx), Size / 8);
559   unsigned PtrArgLoc = CI->arg_size() - 3;
560   auto PtrArg = CI->getArgOperand(PtrArgLoc);
561   unsigned PtrArgAS = PtrArg->getType()->getPointerAddressSpace();
562   auto *PtrTy = llvm::PointerType::get(PtrElemTy, PtrArgAS);
563 
564   SmallVector<llvm::Type *, 6> ArgTys;
565   for (unsigned I = 0; I != PtrArgLoc; ++I)
566     ArgTys.push_back(CI->getArgOperand(I)->getType());
567   ArgTys.push_back(PtrTy);
568 
569   Name = Name + "_" + std::to_string(Size);
570   auto *FTy = FunctionType::get(Callee->getReturnType(),
571                                 ArrayRef<Type *>(ArgTys), false);
572   AMDGPULibFunc NewLibFunc(Name, FTy);
573   FunctionCallee F = AMDGPULibFunc::getOrInsertFunction(M, NewLibFunc);
574   if (!F)
575     return false;
576 
577   auto *BCast = B.CreatePointerCast(PtrArg, PtrTy);
578   SmallVector<Value *, 6> Args;
579   for (unsigned I = 0; I != PtrArgLoc; ++I)
580     Args.push_back(CI->getArgOperand(I));
581   Args.push_back(BCast);
582 
583   auto *NCI = B.CreateCall(F, Args);
584   NCI->setAttributes(CI->getAttributes());
585   CI->replaceAllUsesWith(NCI);
586   CI->dropAllReferences();
587   CI->eraseFromParent();
588 
589   return true;
590 }
591 
592 // This function returns false if no change; return true otherwise.
593 bool AMDGPULibCalls::fold(CallInst *CI, AliasAnalysis *AA) {
594   this->CI = CI;
595   Function *Callee = CI->getCalledFunction();
596 
597   // Ignore indirect calls.
598   if (Callee == nullptr)
599     return false;
600 
601   BasicBlock *BB = CI->getParent();
602   LLVMContext &Context = CI->getParent()->getContext();
603   IRBuilder<> B(Context);
604 
605   // Set the builder to the instruction after the call.
606   B.SetInsertPoint(BB, CI->getIterator());
607 
608   // Copy fast flags from the original call.
609   if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(CI))
610     B.setFastMathFlags(FPOp->getFastMathFlags());
611 
612   switch (Callee->getIntrinsicID()) {
613   default:
614     break;
615   case Intrinsic::amdgcn_wavefrontsize:
616     return !EnablePreLink && fold_wavefrontsize(CI, B);
617   }
618 
619   FuncInfo FInfo;
620   if (!parseFunctionName(Callee->getName(), FInfo))
621     return false;
622 
623   // Further check the number of arguments to see if they match.
624   if (CI->arg_size() != FInfo.getNumArgs())
625     return false;
626 
627   if (TDOFold(CI, FInfo))
628     return true;
629 
630   // Under unsafe-math, evaluate calls if possible.
631   // According to Brian Sumner, we can do this for all f32 function calls
632   // using host's double function calls.
633   if (isUnsafeMath(CI) && evaluateCall(CI, FInfo))
634     return true;
635 
636   // Specialized optimizations for each function call
637   switch (FInfo.getId()) {
638   case AMDGPULibFunc::EI_RECIP:
639     // skip vector function
640     assert ((FInfo.getPrefix() == AMDGPULibFunc::NATIVE ||
641              FInfo.getPrefix() == AMDGPULibFunc::HALF) &&
642             "recip must be an either native or half function");
643     return (getVecSize(FInfo) != 1) ? false : fold_recip(CI, B, FInfo);
644 
645   case AMDGPULibFunc::EI_DIVIDE:
646     // skip vector function
647     assert ((FInfo.getPrefix() == AMDGPULibFunc::NATIVE ||
648              FInfo.getPrefix() == AMDGPULibFunc::HALF) &&
649             "divide must be an either native or half function");
650     return (getVecSize(FInfo) != 1) ? false : fold_divide(CI, B, FInfo);
651 
652   case AMDGPULibFunc::EI_POW:
653   case AMDGPULibFunc::EI_POWR:
654   case AMDGPULibFunc::EI_POWN:
655     return fold_pow(CI, B, FInfo);
656 
657   case AMDGPULibFunc::EI_ROOTN:
658     // skip vector function
659     return (getVecSize(FInfo) != 1) ? false : fold_rootn(CI, B, FInfo);
660 
661   case AMDGPULibFunc::EI_FMA:
662   case AMDGPULibFunc::EI_MAD:
663   case AMDGPULibFunc::EI_NFMA:
664     // skip vector function
665     return (getVecSize(FInfo) != 1) ? false : fold_fma_mad(CI, B, FInfo);
666 
667   case AMDGPULibFunc::EI_SQRT:
668     return isUnsafeMath(CI) && fold_sqrt(CI, B, FInfo);
669   case AMDGPULibFunc::EI_COS:
670   case AMDGPULibFunc::EI_SIN:
671     if ((getArgType(FInfo) == AMDGPULibFunc::F32 ||
672          getArgType(FInfo) == AMDGPULibFunc::F64)
673         && (FInfo.getPrefix() == AMDGPULibFunc::NOPFX))
674       return fold_sincos(CI, B, AA);
675 
676     break;
677   case AMDGPULibFunc::EI_READ_PIPE_2:
678   case AMDGPULibFunc::EI_READ_PIPE_4:
679   case AMDGPULibFunc::EI_WRITE_PIPE_2:
680   case AMDGPULibFunc::EI_WRITE_PIPE_4:
681     return fold_read_write_pipe(CI, B, FInfo);
682 
683   default:
684     break;
685   }
686 
687   return false;
688 }
689 
690 bool AMDGPULibCalls::TDOFold(CallInst *CI, const FuncInfo &FInfo) {
691   // Table-Driven optimization
692   const TableRef tr = getOptTable(FInfo.getId());
693   if (tr.empty())
694     return false;
695 
696   int const sz = (int)tr.size();
697   Value *opr0 = CI->getArgOperand(0);
698 
699   if (getVecSize(FInfo) > 1) {
700     if (ConstantDataVector *CV = dyn_cast<ConstantDataVector>(opr0)) {
701       SmallVector<double, 0> DVal;
702       for (int eltNo = 0; eltNo < getVecSize(FInfo); ++eltNo) {
703         ConstantFP *eltval = dyn_cast<ConstantFP>(
704                                CV->getElementAsConstant((unsigned)eltNo));
705         assert(eltval && "Non-FP arguments in math function!");
706         bool found = false;
707         for (int i=0; i < sz; ++i) {
708           if (eltval->isExactlyValue(tr[i].input)) {
709             DVal.push_back(tr[i].result);
710             found = true;
711             break;
712           }
713         }
714         if (!found) {
715           // This vector constants not handled yet.
716           return false;
717         }
718       }
719       LLVMContext &context = CI->getParent()->getParent()->getContext();
720       Constant *nval;
721       if (getArgType(FInfo) == AMDGPULibFunc::F32) {
722         SmallVector<float, 0> FVal;
723         for (unsigned i = 0; i < DVal.size(); ++i) {
724           FVal.push_back((float)DVal[i]);
725         }
726         ArrayRef<float> tmp(FVal);
727         nval = ConstantDataVector::get(context, tmp);
728       } else { // F64
729         ArrayRef<double> tmp(DVal);
730         nval = ConstantDataVector::get(context, tmp);
731       }
732       LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n");
733       replaceCall(nval);
734       return true;
735     }
736   } else {
737     // Scalar version
738     if (ConstantFP *CF = dyn_cast<ConstantFP>(opr0)) {
739       for (int i = 0; i < sz; ++i) {
740         if (CF->isExactlyValue(tr[i].input)) {
741           Value *nval = ConstantFP::get(CF->getType(), tr[i].result);
742           LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n");
743           replaceCall(nval);
744           return true;
745         }
746       }
747     }
748   }
749 
750   return false;
751 }
752 
753 //  [native_]half_recip(c) ==> 1.0/c
754 bool AMDGPULibCalls::fold_recip(CallInst *CI, IRBuilder<> &B,
755                                 const FuncInfo &FInfo) {
756   Value *opr0 = CI->getArgOperand(0);
757   if (ConstantFP *CF = dyn_cast<ConstantFP>(opr0)) {
758     // Just create a normal div. Later, InstCombine will be able
759     // to compute the divide into a constant (avoid check float infinity
760     // or subnormal at this point).
761     Value *nval = B.CreateFDiv(ConstantFP::get(CF->getType(), 1.0),
762                                opr0,
763                                "recip2div");
764     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n");
765     replaceCall(nval);
766     return true;
767   }
768   return false;
769 }
770 
771 //  [native_]half_divide(x, c) ==> x/c
772 bool AMDGPULibCalls::fold_divide(CallInst *CI, IRBuilder<> &B,
773                                  const FuncInfo &FInfo) {
774   Value *opr0 = CI->getArgOperand(0);
775   Value *opr1 = CI->getArgOperand(1);
776   ConstantFP *CF0 = dyn_cast<ConstantFP>(opr0);
777   ConstantFP *CF1 = dyn_cast<ConstantFP>(opr1);
778 
779   if ((CF0 && CF1) ||  // both are constants
780       (CF1 && (getArgType(FInfo) == AMDGPULibFunc::F32)))
781       // CF1 is constant && f32 divide
782   {
783     Value *nval1 = B.CreateFDiv(ConstantFP::get(opr1->getType(), 1.0),
784                                 opr1, "__div2recip");
785     Value *nval  = B.CreateFMul(opr0, nval1, "__div2mul");
786     replaceCall(nval);
787     return true;
788   }
789   return false;
790 }
791 
792 namespace llvm {
793 static double log2(double V) {
794 #if _XOPEN_SOURCE >= 600 || defined(_ISOC99_SOURCE) || _POSIX_C_SOURCE >= 200112L
795   return ::log2(V);
796 #else
797   return log(V) / numbers::ln2;
798 #endif
799 }
800 }
801 
802 bool AMDGPULibCalls::fold_pow(CallInst *CI, IRBuilder<> &B,
803                               const FuncInfo &FInfo) {
804   assert((FInfo.getId() == AMDGPULibFunc::EI_POW ||
805           FInfo.getId() == AMDGPULibFunc::EI_POWR ||
806           FInfo.getId() == AMDGPULibFunc::EI_POWN) &&
807          "fold_pow: encounter a wrong function call");
808 
809   Value *opr0, *opr1;
810   ConstantFP *CF;
811   ConstantInt *CINT;
812   ConstantAggregateZero *CZero;
813   Type *eltType;
814 
815   opr0 = CI->getArgOperand(0);
816   opr1 = CI->getArgOperand(1);
817   CZero = dyn_cast<ConstantAggregateZero>(opr1);
818   if (getVecSize(FInfo) == 1) {
819     eltType = opr0->getType();
820     CF = dyn_cast<ConstantFP>(opr1);
821     CINT = dyn_cast<ConstantInt>(opr1);
822   } else {
823     VectorType *VTy = dyn_cast<VectorType>(opr0->getType());
824     assert(VTy && "Oprand of vector function should be of vectortype");
825     eltType = VTy->getElementType();
826     ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr1);
827 
828     // Now, only Handle vector const whose elements have the same value.
829     CF = CDV ? dyn_cast_or_null<ConstantFP>(CDV->getSplatValue()) : nullptr;
830     CINT = CDV ? dyn_cast_or_null<ConstantInt>(CDV->getSplatValue()) : nullptr;
831   }
832 
833   // No unsafe math , no constant argument, do nothing
834   if (!isUnsafeMath(CI) && !CF && !CINT && !CZero)
835     return false;
836 
837   // 0x1111111 means that we don't do anything for this call.
838   int ci_opr1 = (CINT ? (int)CINT->getSExtValue() : 0x1111111);
839 
840   if ((CF && CF->isZero()) || (CINT && ci_opr1 == 0) || CZero) {
841     //  pow/powr/pown(x, 0) == 1
842     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> 1\n");
843     Constant *cnval = ConstantFP::get(eltType, 1.0);
844     if (getVecSize(FInfo) > 1) {
845       cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval);
846     }
847     replaceCall(cnval);
848     return true;
849   }
850   if ((CF && CF->isExactlyValue(1.0)) || (CINT && ci_opr1 == 1)) {
851     // pow/powr/pown(x, 1.0) = x
852     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << "\n");
853     replaceCall(opr0);
854     return true;
855   }
856   if ((CF && CF->isExactlyValue(2.0)) || (CINT && ci_opr1 == 2)) {
857     // pow/powr/pown(x, 2.0) = x*x
858     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << " * " << *opr0
859                       << "\n");
860     Value *nval = B.CreateFMul(opr0, opr0, "__pow2");
861     replaceCall(nval);
862     return true;
863   }
864   if ((CF && CF->isExactlyValue(-1.0)) || (CINT && ci_opr1 == -1)) {
865     // pow/powr/pown(x, -1.0) = 1.0/x
866     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> 1 / " << *opr0 << "\n");
867     Constant *cnval = ConstantFP::get(eltType, 1.0);
868     if (getVecSize(FInfo) > 1) {
869       cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval);
870     }
871     Value *nval = B.CreateFDiv(cnval, opr0, "__powrecip");
872     replaceCall(nval);
873     return true;
874   }
875 
876   Module *M = CI->getModule();
877   if (CF && (CF->isExactlyValue(0.5) || CF->isExactlyValue(-0.5))) {
878     // pow[r](x, [-]0.5) = sqrt(x)
879     bool issqrt = CF->isExactlyValue(0.5);
880     if (FunctionCallee FPExpr =
881             getFunction(M, AMDGPULibFunc(issqrt ? AMDGPULibFunc::EI_SQRT
882                                                 : AMDGPULibFunc::EI_RSQRT,
883                                          FInfo))) {
884       LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> "
885                         << FInfo.getName().c_str() << "(" << *opr0 << ")\n");
886       Value *nval = CreateCallEx(B,FPExpr, opr0, issqrt ? "__pow2sqrt"
887                                                         : "__pow2rsqrt");
888       replaceCall(nval);
889       return true;
890     }
891   }
892 
893   if (!isUnsafeMath(CI))
894     return false;
895 
896   // Unsafe Math optimization
897 
898   // Remember that ci_opr1 is set if opr1 is integral
899   if (CF) {
900     double dval = (getArgType(FInfo) == AMDGPULibFunc::F32)
901                     ? (double)CF->getValueAPF().convertToFloat()
902                     : CF->getValueAPF().convertToDouble();
903     int ival = (int)dval;
904     if ((double)ival == dval) {
905       ci_opr1 = ival;
906     } else
907       ci_opr1 = 0x11111111;
908   }
909 
910   // pow/powr/pown(x, c) = [1/](x*x*..x); where
911   //   trunc(c) == c && the number of x == c && |c| <= 12
912   unsigned abs_opr1 = (ci_opr1 < 0) ? -ci_opr1 : ci_opr1;
913   if (abs_opr1 <= 12) {
914     Constant *cnval;
915     Value *nval;
916     if (abs_opr1 == 0) {
917       cnval = ConstantFP::get(eltType, 1.0);
918       if (getVecSize(FInfo) > 1) {
919         cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval);
920       }
921       nval = cnval;
922     } else {
923       Value *valx2 = nullptr;
924       nval = nullptr;
925       while (abs_opr1 > 0) {
926         valx2 = valx2 ? B.CreateFMul(valx2, valx2, "__powx2") : opr0;
927         if (abs_opr1 & 1) {
928           nval = nval ? B.CreateFMul(nval, valx2, "__powprod") : valx2;
929         }
930         abs_opr1 >>= 1;
931       }
932     }
933 
934     if (ci_opr1 < 0) {
935       cnval = ConstantFP::get(eltType, 1.0);
936       if (getVecSize(FInfo) > 1) {
937         cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval);
938       }
939       nval = B.CreateFDiv(cnval, nval, "__1powprod");
940     }
941     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> "
942                       << ((ci_opr1 < 0) ? "1/prod(" : "prod(") << *opr0
943                       << ")\n");
944     replaceCall(nval);
945     return true;
946   }
947 
948   // powr ---> exp2(y * log2(x))
949   // pown/pow ---> powr(fabs(x), y) | (x & ((int)y << 31))
950   FunctionCallee ExpExpr =
951       getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_EXP2, FInfo));
952   if (!ExpExpr)
953     return false;
954 
955   bool needlog = false;
956   bool needabs = false;
957   bool needcopysign = false;
958   Constant *cnval = nullptr;
959   if (getVecSize(FInfo) == 1) {
960     CF = dyn_cast<ConstantFP>(opr0);
961 
962     if (CF) {
963       double V = (getArgType(FInfo) == AMDGPULibFunc::F32)
964                    ? (double)CF->getValueAPF().convertToFloat()
965                    : CF->getValueAPF().convertToDouble();
966 
967       V = log2(std::abs(V));
968       cnval = ConstantFP::get(eltType, V);
969       needcopysign = (FInfo.getId() != AMDGPULibFunc::EI_POWR) &&
970                      CF->isNegative();
971     } else {
972       needlog = true;
973       needcopysign = needabs = FInfo.getId() != AMDGPULibFunc::EI_POWR &&
974                                (!CF || CF->isNegative());
975     }
976   } else {
977     ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr0);
978 
979     if (!CDV) {
980       needlog = true;
981       needcopysign = needabs = FInfo.getId() != AMDGPULibFunc::EI_POWR;
982     } else {
983       assert ((int)CDV->getNumElements() == getVecSize(FInfo) &&
984               "Wrong vector size detected");
985 
986       SmallVector<double, 0> DVal;
987       for (int i=0; i < getVecSize(FInfo); ++i) {
988         double V = (getArgType(FInfo) == AMDGPULibFunc::F32)
989                      ? (double)CDV->getElementAsFloat(i)
990                      : CDV->getElementAsDouble(i);
991         if (V < 0.0) needcopysign = true;
992         V = log2(std::abs(V));
993         DVal.push_back(V);
994       }
995       if (getArgType(FInfo) == AMDGPULibFunc::F32) {
996         SmallVector<float, 0> FVal;
997         for (unsigned i=0; i < DVal.size(); ++i) {
998           FVal.push_back((float)DVal[i]);
999         }
1000         ArrayRef<float> tmp(FVal);
1001         cnval = ConstantDataVector::get(M->getContext(), tmp);
1002       } else {
1003         ArrayRef<double> tmp(DVal);
1004         cnval = ConstantDataVector::get(M->getContext(), tmp);
1005       }
1006     }
1007   }
1008 
1009   if (needcopysign && (FInfo.getId() == AMDGPULibFunc::EI_POW)) {
1010     // We cannot handle corner cases for a general pow() function, give up
1011     // unless y is a constant integral value. Then proceed as if it were pown.
1012     if (getVecSize(FInfo) == 1) {
1013       if (const ConstantFP *CF = dyn_cast<ConstantFP>(opr1)) {
1014         double y = (getArgType(FInfo) == AMDGPULibFunc::F32)
1015                    ? (double)CF->getValueAPF().convertToFloat()
1016                    : CF->getValueAPF().convertToDouble();
1017         if (y != (double)(int64_t)y)
1018           return false;
1019       } else
1020         return false;
1021     } else {
1022       if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr1)) {
1023         for (int i=0; i < getVecSize(FInfo); ++i) {
1024           double y = (getArgType(FInfo) == AMDGPULibFunc::F32)
1025                      ? (double)CDV->getElementAsFloat(i)
1026                      : CDV->getElementAsDouble(i);
1027           if (y != (double)(int64_t)y)
1028             return false;
1029         }
1030       } else
1031         return false;
1032     }
1033   }
1034 
1035   Value *nval;
1036   if (needabs) {
1037     FunctionCallee AbsExpr =
1038         getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_FABS, FInfo));
1039     if (!AbsExpr)
1040       return false;
1041     nval = CreateCallEx(B, AbsExpr, opr0, "__fabs");
1042   } else {
1043     nval = cnval ? cnval : opr0;
1044   }
1045   if (needlog) {
1046     FunctionCallee LogExpr =
1047         getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_LOG2, FInfo));
1048     if (!LogExpr)
1049       return false;
1050     nval = CreateCallEx(B,LogExpr, nval, "__log2");
1051   }
1052 
1053   if (FInfo.getId() == AMDGPULibFunc::EI_POWN) {
1054     // convert int(32) to fp(f32 or f64)
1055     opr1 = B.CreateSIToFP(opr1, nval->getType(), "pownI2F");
1056   }
1057   nval = B.CreateFMul(opr1, nval, "__ylogx");
1058   nval = CreateCallEx(B,ExpExpr, nval, "__exp2");
1059 
1060   if (needcopysign) {
1061     Value *opr_n;
1062     Type* rTy = opr0->getType();
1063     Type* nTyS = eltType->isDoubleTy() ? B.getInt64Ty() : B.getInt32Ty();
1064     Type *nTy = nTyS;
1065     if (const auto *vTy = dyn_cast<FixedVectorType>(rTy))
1066       nTy = FixedVectorType::get(nTyS, vTy);
1067     unsigned size = nTy->getScalarSizeInBits();
1068     opr_n = CI->getArgOperand(1);
1069     if (opr_n->getType()->isIntegerTy())
1070       opr_n = B.CreateZExtOrBitCast(opr_n, nTy, "__ytou");
1071     else
1072       opr_n = B.CreateFPToSI(opr1, nTy, "__ytou");
1073 
1074     Value *sign = B.CreateShl(opr_n, size-1, "__yeven");
1075     sign = B.CreateAnd(B.CreateBitCast(opr0, nTy), sign, "__pow_sign");
1076     nval = B.CreateOr(B.CreateBitCast(nval, nTy), sign);
1077     nval = B.CreateBitCast(nval, opr0->getType());
1078   }
1079 
1080   LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> "
1081                     << "exp2(" << *opr1 << " * log2(" << *opr0 << "))\n");
1082   replaceCall(nval);
1083 
1084   return true;
1085 }
1086 
1087 bool AMDGPULibCalls::fold_rootn(CallInst *CI, IRBuilder<> &B,
1088                                 const FuncInfo &FInfo) {
1089   Value *opr0 = CI->getArgOperand(0);
1090   Value *opr1 = CI->getArgOperand(1);
1091 
1092   ConstantInt *CINT = dyn_cast<ConstantInt>(opr1);
1093   if (!CINT) {
1094     return false;
1095   }
1096   int ci_opr1 = (int)CINT->getSExtValue();
1097   if (ci_opr1 == 1) {  // rootn(x, 1) = x
1098     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << "\n");
1099     replaceCall(opr0);
1100     return true;
1101   }
1102   if (ci_opr1 == 2) {  // rootn(x, 2) = sqrt(x)
1103     Module *M = CI->getModule();
1104     if (FunctionCallee FPExpr =
1105             getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_SQRT, FInfo))) {
1106       LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> sqrt(" << *opr0 << ")\n");
1107       Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2sqrt");
1108       replaceCall(nval);
1109       return true;
1110     }
1111   } else if (ci_opr1 == 3) { // rootn(x, 3) = cbrt(x)
1112     Module *M = CI->getModule();
1113     if (FunctionCallee FPExpr =
1114             getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_CBRT, FInfo))) {
1115       LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> cbrt(" << *opr0 << ")\n");
1116       Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2cbrt");
1117       replaceCall(nval);
1118       return true;
1119     }
1120   } else if (ci_opr1 == -1) { // rootn(x, -1) = 1.0/x
1121     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> 1.0 / " << *opr0 << "\n");
1122     Value *nval = B.CreateFDiv(ConstantFP::get(opr0->getType(), 1.0),
1123                                opr0,
1124                                "__rootn2div");
1125     replaceCall(nval);
1126     return true;
1127   } else if (ci_opr1 == -2) {  // rootn(x, -2) = rsqrt(x)
1128     Module *M = CI->getModule();
1129     if (FunctionCallee FPExpr =
1130             getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_RSQRT, FInfo))) {
1131       LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> rsqrt(" << *opr0
1132                         << ")\n");
1133       Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2rsqrt");
1134       replaceCall(nval);
1135       return true;
1136     }
1137   }
1138   return false;
1139 }
1140 
1141 bool AMDGPULibCalls::fold_fma_mad(CallInst *CI, IRBuilder<> &B,
1142                                   const FuncInfo &FInfo) {
1143   Value *opr0 = CI->getArgOperand(0);
1144   Value *opr1 = CI->getArgOperand(1);
1145   Value *opr2 = CI->getArgOperand(2);
1146 
1147   ConstantFP *CF0 = dyn_cast<ConstantFP>(opr0);
1148   ConstantFP *CF1 = dyn_cast<ConstantFP>(opr1);
1149   if ((CF0 && CF0->isZero()) || (CF1 && CF1->isZero())) {
1150     // fma/mad(a, b, c) = c if a=0 || b=0
1151     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr2 << "\n");
1152     replaceCall(opr2);
1153     return true;
1154   }
1155   if (CF0 && CF0->isExactlyValue(1.0f)) {
1156     // fma/mad(a, b, c) = b+c if a=1
1157     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr1 << " + " << *opr2
1158                       << "\n");
1159     Value *nval = B.CreateFAdd(opr1, opr2, "fmaadd");
1160     replaceCall(nval);
1161     return true;
1162   }
1163   if (CF1 && CF1->isExactlyValue(1.0f)) {
1164     // fma/mad(a, b, c) = a+c if b=1
1165     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << " + " << *opr2
1166                       << "\n");
1167     Value *nval = B.CreateFAdd(opr0, opr2, "fmaadd");
1168     replaceCall(nval);
1169     return true;
1170   }
1171   if (ConstantFP *CF = dyn_cast<ConstantFP>(opr2)) {
1172     if (CF->isZero()) {
1173       // fma/mad(a, b, c) = a*b if c=0
1174       LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << " * "
1175                         << *opr1 << "\n");
1176       Value *nval = B.CreateFMul(opr0, opr1, "fmamul");
1177       replaceCall(nval);
1178       return true;
1179     }
1180   }
1181 
1182   return false;
1183 }
1184 
1185 // Get a scalar native builtin single argument FP function
1186 FunctionCallee AMDGPULibCalls::getNativeFunction(Module *M,
1187                                                  const FuncInfo &FInfo) {
1188   if (getArgType(FInfo) == AMDGPULibFunc::F64 || !HasNative(FInfo.getId()))
1189     return nullptr;
1190   FuncInfo nf = FInfo;
1191   nf.setPrefix(AMDGPULibFunc::NATIVE);
1192   return getFunction(M, nf);
1193 }
1194 
1195 // fold sqrt -> native_sqrt (x)
1196 bool AMDGPULibCalls::fold_sqrt(CallInst *CI, IRBuilder<> &B,
1197                                const FuncInfo &FInfo) {
1198   if (getArgType(FInfo) == AMDGPULibFunc::F32 && (getVecSize(FInfo) == 1) &&
1199       (FInfo.getPrefix() != AMDGPULibFunc::NATIVE)) {
1200     if (FunctionCallee FPExpr = getNativeFunction(
1201             CI->getModule(), AMDGPULibFunc(AMDGPULibFunc::EI_SQRT, FInfo))) {
1202       Value *opr0 = CI->getArgOperand(0);
1203       LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> "
1204                         << "sqrt(" << *opr0 << ")\n");
1205       Value *nval = CreateCallEx(B,FPExpr, opr0, "__sqrt");
1206       replaceCall(nval);
1207       return true;
1208     }
1209   }
1210   return false;
1211 }
1212 
1213 // fold sin, cos -> sincos.
1214 bool AMDGPULibCalls::fold_sincos(CallInst *CI, IRBuilder<> &B,
1215                                  AliasAnalysis *AA) {
1216   AMDGPULibFunc fInfo;
1217   if (!AMDGPULibFunc::parse(CI->getCalledFunction()->getName(), fInfo))
1218     return false;
1219 
1220   assert(fInfo.getId() == AMDGPULibFunc::EI_SIN ||
1221          fInfo.getId() == AMDGPULibFunc::EI_COS);
1222   bool const isSin = fInfo.getId() == AMDGPULibFunc::EI_SIN;
1223 
1224   Value *CArgVal = CI->getArgOperand(0);
1225   BasicBlock * const CBB = CI->getParent();
1226 
1227   int const MaxScan = 30;
1228   bool Changed = false;
1229 
1230   { // fold in load value.
1231     LoadInst *LI = dyn_cast<LoadInst>(CArgVal);
1232     if (LI && LI->getParent() == CBB) {
1233       BasicBlock::iterator BBI = LI->getIterator();
1234       Value *AvailableVal = FindAvailableLoadedValue(LI, CBB, BBI, MaxScan, AA);
1235       if (AvailableVal) {
1236         Changed = true;
1237         CArgVal->replaceAllUsesWith(AvailableVal);
1238         if (CArgVal->getNumUses() == 0)
1239           LI->eraseFromParent();
1240         CArgVal = CI->getArgOperand(0);
1241       }
1242     }
1243   }
1244 
1245   Module *M = CI->getModule();
1246   fInfo.setId(isSin ? AMDGPULibFunc::EI_COS : AMDGPULibFunc::EI_SIN);
1247   std::string const PairName = fInfo.mangle();
1248 
1249   CallInst *UI = nullptr;
1250   for (User* U : CArgVal->users()) {
1251     CallInst *XI = dyn_cast_or_null<CallInst>(U);
1252     if (!XI || XI == CI || XI->getParent() != CBB)
1253       continue;
1254 
1255     Function *UCallee = XI->getCalledFunction();
1256     if (!UCallee || !UCallee->getName().equals(PairName))
1257       continue;
1258 
1259     BasicBlock::iterator BBI = CI->getIterator();
1260     if (BBI == CI->getParent()->begin())
1261       break;
1262     --BBI;
1263     for (int I = MaxScan; I > 0 && BBI != CBB->begin(); --BBI, --I) {
1264       if (cast<Instruction>(BBI) == XI) {
1265         UI = XI;
1266         break;
1267       }
1268     }
1269     if (UI) break;
1270   }
1271 
1272   if (!UI)
1273     return Changed;
1274 
1275   // Merge the sin and cos.
1276 
1277   // for OpenCL 2.0 we have only generic implementation of sincos
1278   // function.
1279   AMDGPULibFunc nf(AMDGPULibFunc::EI_SINCOS, fInfo);
1280   nf.getLeads()[0].PtrKind = AMDGPULibFunc::getEPtrKindFromAddrSpace(AMDGPUAS::FLAT_ADDRESS);
1281   FunctionCallee Fsincos = getFunction(M, nf);
1282   if (!Fsincos)
1283     return Changed;
1284 
1285   BasicBlock::iterator ItOld = B.GetInsertPoint();
1286   AllocaInst *Alloc = insertAlloca(UI, B, "__sincos_");
1287   B.SetInsertPoint(UI);
1288 
1289   Value *P = Alloc;
1290   Type *PTy = Fsincos.getFunctionType()->getParamType(1);
1291   // The allocaInst allocates the memory in private address space. This need
1292   // to be bitcasted to point to the address space of cos pointer type.
1293   // In OpenCL 2.0 this is generic, while in 1.2 that is private.
1294   if (PTy->getPointerAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS)
1295     P = B.CreateAddrSpaceCast(Alloc, PTy);
1296   CallInst *Call = CreateCallEx2(B, Fsincos, UI->getArgOperand(0), P);
1297 
1298   LLVM_DEBUG(errs() << "AMDIC: fold_sincos (" << *CI << ", " << *UI << ") with "
1299                     << *Call << "\n");
1300 
1301   if (!isSin) { // CI->cos, UI->sin
1302     B.SetInsertPoint(&*ItOld);
1303     UI->replaceAllUsesWith(&*Call);
1304     Instruction *Reload = B.CreateLoad(Alloc->getAllocatedType(), Alloc);
1305     CI->replaceAllUsesWith(Reload);
1306     UI->eraseFromParent();
1307     CI->eraseFromParent();
1308   } else { // CI->sin, UI->cos
1309     Instruction *Reload = B.CreateLoad(Alloc->getAllocatedType(), Alloc);
1310     UI->replaceAllUsesWith(Reload);
1311     CI->replaceAllUsesWith(Call);
1312     UI->eraseFromParent();
1313     CI->eraseFromParent();
1314   }
1315   return true;
1316 }
1317 
1318 bool AMDGPULibCalls::fold_wavefrontsize(CallInst *CI, IRBuilder<> &B) {
1319   if (!TM)
1320     return false;
1321 
1322   StringRef CPU = TM->getTargetCPU();
1323   StringRef Features = TM->getTargetFeatureString();
1324   if ((CPU.empty() || CPU.equals_insensitive("generic")) &&
1325       (Features.empty() || !Features.contains_insensitive("wavefrontsize")))
1326     return false;
1327 
1328   Function *F = CI->getParent()->getParent();
1329   const GCNSubtarget &ST = TM->getSubtarget<GCNSubtarget>(*F);
1330   unsigned N = ST.getWavefrontSize();
1331 
1332   LLVM_DEBUG(errs() << "AMDIC: fold_wavefrontsize (" << *CI << ") with "
1333                << N << "\n");
1334 
1335   CI->replaceAllUsesWith(ConstantInt::get(B.getInt32Ty(), N));
1336   CI->eraseFromParent();
1337   return true;
1338 }
1339 
1340 // Get insertion point at entry.
1341 BasicBlock::iterator AMDGPULibCalls::getEntryIns(CallInst * UI) {
1342   Function * Func = UI->getParent()->getParent();
1343   BasicBlock * BB = &Func->getEntryBlock();
1344   assert(BB && "Entry block not found!");
1345   BasicBlock::iterator ItNew = BB->begin();
1346   return ItNew;
1347 }
1348 
1349 // Insert a AllocsInst at the beginning of function entry block.
1350 AllocaInst* AMDGPULibCalls::insertAlloca(CallInst *UI, IRBuilder<> &B,
1351                                          const char *prefix) {
1352   BasicBlock::iterator ItNew = getEntryIns(UI);
1353   Function *UCallee = UI->getCalledFunction();
1354   Type *RetType = UCallee->getReturnType();
1355   B.SetInsertPoint(&*ItNew);
1356   AllocaInst *Alloc =
1357       B.CreateAlloca(RetType, nullptr, std::string(prefix) + UI->getName());
1358   Alloc->setAlignment(
1359       Align(UCallee->getParent()->getDataLayout().getTypeAllocSize(RetType)));
1360   return Alloc;
1361 }
1362 
1363 bool AMDGPULibCalls::evaluateScalarMathFunc(const FuncInfo &FInfo,
1364                                             double& Res0, double& Res1,
1365                                             Constant *copr0, Constant *copr1,
1366                                             Constant *copr2) {
1367   // By default, opr0/opr1/opr3 holds values of float/double type.
1368   // If they are not float/double, each function has to its
1369   // operand separately.
1370   double opr0=0.0, opr1=0.0, opr2=0.0;
1371   ConstantFP *fpopr0 = dyn_cast_or_null<ConstantFP>(copr0);
1372   ConstantFP *fpopr1 = dyn_cast_or_null<ConstantFP>(copr1);
1373   ConstantFP *fpopr2 = dyn_cast_or_null<ConstantFP>(copr2);
1374   if (fpopr0) {
1375     opr0 = (getArgType(FInfo) == AMDGPULibFunc::F64)
1376              ? fpopr0->getValueAPF().convertToDouble()
1377              : (double)fpopr0->getValueAPF().convertToFloat();
1378   }
1379 
1380   if (fpopr1) {
1381     opr1 = (getArgType(FInfo) == AMDGPULibFunc::F64)
1382              ? fpopr1->getValueAPF().convertToDouble()
1383              : (double)fpopr1->getValueAPF().convertToFloat();
1384   }
1385 
1386   if (fpopr2) {
1387     opr2 = (getArgType(FInfo) == AMDGPULibFunc::F64)
1388              ? fpopr2->getValueAPF().convertToDouble()
1389              : (double)fpopr2->getValueAPF().convertToFloat();
1390   }
1391 
1392   switch (FInfo.getId()) {
1393   default : return false;
1394 
1395   case AMDGPULibFunc::EI_ACOS:
1396     Res0 = acos(opr0);
1397     return true;
1398 
1399   case AMDGPULibFunc::EI_ACOSH:
1400     // acosh(x) == log(x + sqrt(x*x - 1))
1401     Res0 = log(opr0 + sqrt(opr0*opr0 - 1.0));
1402     return true;
1403 
1404   case AMDGPULibFunc::EI_ACOSPI:
1405     Res0 = acos(opr0) / MATH_PI;
1406     return true;
1407 
1408   case AMDGPULibFunc::EI_ASIN:
1409     Res0 = asin(opr0);
1410     return true;
1411 
1412   case AMDGPULibFunc::EI_ASINH:
1413     // asinh(x) == log(x + sqrt(x*x + 1))
1414     Res0 = log(opr0 + sqrt(opr0*opr0 + 1.0));
1415     return true;
1416 
1417   case AMDGPULibFunc::EI_ASINPI:
1418     Res0 = asin(opr0) / MATH_PI;
1419     return true;
1420 
1421   case AMDGPULibFunc::EI_ATAN:
1422     Res0 = atan(opr0);
1423     return true;
1424 
1425   case AMDGPULibFunc::EI_ATANH:
1426     // atanh(x) == (log(x+1) - log(x-1))/2;
1427     Res0 = (log(opr0 + 1.0) - log(opr0 - 1.0))/2.0;
1428     return true;
1429 
1430   case AMDGPULibFunc::EI_ATANPI:
1431     Res0 = atan(opr0) / MATH_PI;
1432     return true;
1433 
1434   case AMDGPULibFunc::EI_CBRT:
1435     Res0 = (opr0 < 0.0) ? -pow(-opr0, 1.0/3.0) : pow(opr0, 1.0/3.0);
1436     return true;
1437 
1438   case AMDGPULibFunc::EI_COS:
1439     Res0 = cos(opr0);
1440     return true;
1441 
1442   case AMDGPULibFunc::EI_COSH:
1443     Res0 = cosh(opr0);
1444     return true;
1445 
1446   case AMDGPULibFunc::EI_COSPI:
1447     Res0 = cos(MATH_PI * opr0);
1448     return true;
1449 
1450   case AMDGPULibFunc::EI_EXP:
1451     Res0 = exp(opr0);
1452     return true;
1453 
1454   case AMDGPULibFunc::EI_EXP2:
1455     Res0 = pow(2.0, opr0);
1456     return true;
1457 
1458   case AMDGPULibFunc::EI_EXP10:
1459     Res0 = pow(10.0, opr0);
1460     return true;
1461 
1462   case AMDGPULibFunc::EI_EXPM1:
1463     Res0 = exp(opr0) - 1.0;
1464     return true;
1465 
1466   case AMDGPULibFunc::EI_LOG:
1467     Res0 = log(opr0);
1468     return true;
1469 
1470   case AMDGPULibFunc::EI_LOG2:
1471     Res0 = log(opr0) / log(2.0);
1472     return true;
1473 
1474   case AMDGPULibFunc::EI_LOG10:
1475     Res0 = log(opr0) / log(10.0);
1476     return true;
1477 
1478   case AMDGPULibFunc::EI_RSQRT:
1479     Res0 = 1.0 / sqrt(opr0);
1480     return true;
1481 
1482   case AMDGPULibFunc::EI_SIN:
1483     Res0 = sin(opr0);
1484     return true;
1485 
1486   case AMDGPULibFunc::EI_SINH:
1487     Res0 = sinh(opr0);
1488     return true;
1489 
1490   case AMDGPULibFunc::EI_SINPI:
1491     Res0 = sin(MATH_PI * opr0);
1492     return true;
1493 
1494   case AMDGPULibFunc::EI_SQRT:
1495     Res0 = sqrt(opr0);
1496     return true;
1497 
1498   case AMDGPULibFunc::EI_TAN:
1499     Res0 = tan(opr0);
1500     return true;
1501 
1502   case AMDGPULibFunc::EI_TANH:
1503     Res0 = tanh(opr0);
1504     return true;
1505 
1506   case AMDGPULibFunc::EI_TANPI:
1507     Res0 = tan(MATH_PI * opr0);
1508     return true;
1509 
1510   case AMDGPULibFunc::EI_RECIP:
1511     Res0 = 1.0 / opr0;
1512     return true;
1513 
1514   // two-arg functions
1515   case AMDGPULibFunc::EI_DIVIDE:
1516     Res0 = opr0 / opr1;
1517     return true;
1518 
1519   case AMDGPULibFunc::EI_POW:
1520   case AMDGPULibFunc::EI_POWR:
1521     Res0 = pow(opr0, opr1);
1522     return true;
1523 
1524   case AMDGPULibFunc::EI_POWN: {
1525     if (ConstantInt *iopr1 = dyn_cast_or_null<ConstantInt>(copr1)) {
1526       double val = (double)iopr1->getSExtValue();
1527       Res0 = pow(opr0, val);
1528       return true;
1529     }
1530     return false;
1531   }
1532 
1533   case AMDGPULibFunc::EI_ROOTN: {
1534     if (ConstantInt *iopr1 = dyn_cast_or_null<ConstantInt>(copr1)) {
1535       double val = (double)iopr1->getSExtValue();
1536       Res0 = pow(opr0, 1.0 / val);
1537       return true;
1538     }
1539     return false;
1540   }
1541 
1542   // with ptr arg
1543   case AMDGPULibFunc::EI_SINCOS:
1544     Res0 = sin(opr0);
1545     Res1 = cos(opr0);
1546     return true;
1547 
1548   // three-arg functions
1549   case AMDGPULibFunc::EI_FMA:
1550   case AMDGPULibFunc::EI_MAD:
1551     Res0 = opr0 * opr1 + opr2;
1552     return true;
1553   }
1554 
1555   return false;
1556 }
1557 
1558 bool AMDGPULibCalls::evaluateCall(CallInst *aCI, const FuncInfo &FInfo) {
1559   int numArgs = (int)aCI->arg_size();
1560   if (numArgs > 3)
1561     return false;
1562 
1563   Constant *copr0 = nullptr;
1564   Constant *copr1 = nullptr;
1565   Constant *copr2 = nullptr;
1566   if (numArgs > 0) {
1567     if ((copr0 = dyn_cast<Constant>(aCI->getArgOperand(0))) == nullptr)
1568       return false;
1569   }
1570 
1571   if (numArgs > 1) {
1572     if ((copr1 = dyn_cast<Constant>(aCI->getArgOperand(1))) == nullptr) {
1573       if (FInfo.getId() != AMDGPULibFunc::EI_SINCOS)
1574         return false;
1575     }
1576   }
1577 
1578   if (numArgs > 2) {
1579     if ((copr2 = dyn_cast<Constant>(aCI->getArgOperand(2))) == nullptr)
1580       return false;
1581   }
1582 
1583   // At this point, all arguments to aCI are constants.
1584 
1585   // max vector size is 16, and sincos will generate two results.
1586   double DVal0[16], DVal1[16];
1587   int FuncVecSize = getVecSize(FInfo);
1588   bool hasTwoResults = (FInfo.getId() == AMDGPULibFunc::EI_SINCOS);
1589   if (FuncVecSize == 1) {
1590     if (!evaluateScalarMathFunc(FInfo, DVal0[0],
1591                                 DVal1[0], copr0, copr1, copr2)) {
1592       return false;
1593     }
1594   } else {
1595     ConstantDataVector *CDV0 = dyn_cast_or_null<ConstantDataVector>(copr0);
1596     ConstantDataVector *CDV1 = dyn_cast_or_null<ConstantDataVector>(copr1);
1597     ConstantDataVector *CDV2 = dyn_cast_or_null<ConstantDataVector>(copr2);
1598     for (int i = 0; i < FuncVecSize; ++i) {
1599       Constant *celt0 = CDV0 ? CDV0->getElementAsConstant(i) : nullptr;
1600       Constant *celt1 = CDV1 ? CDV1->getElementAsConstant(i) : nullptr;
1601       Constant *celt2 = CDV2 ? CDV2->getElementAsConstant(i) : nullptr;
1602       if (!evaluateScalarMathFunc(FInfo, DVal0[i],
1603                                   DVal1[i], celt0, celt1, celt2)) {
1604         return false;
1605       }
1606     }
1607   }
1608 
1609   LLVMContext &context = CI->getParent()->getParent()->getContext();
1610   Constant *nval0, *nval1;
1611   if (FuncVecSize == 1) {
1612     nval0 = ConstantFP::get(CI->getType(), DVal0[0]);
1613     if (hasTwoResults)
1614       nval1 = ConstantFP::get(CI->getType(), DVal1[0]);
1615   } else {
1616     if (getArgType(FInfo) == AMDGPULibFunc::F32) {
1617       SmallVector <float, 0> FVal0, FVal1;
1618       for (int i = 0; i < FuncVecSize; ++i)
1619         FVal0.push_back((float)DVal0[i]);
1620       ArrayRef<float> tmp0(FVal0);
1621       nval0 = ConstantDataVector::get(context, tmp0);
1622       if (hasTwoResults) {
1623         for (int i = 0; i < FuncVecSize; ++i)
1624           FVal1.push_back((float)DVal1[i]);
1625         ArrayRef<float> tmp1(FVal1);
1626         nval1 = ConstantDataVector::get(context, tmp1);
1627       }
1628     } else {
1629       ArrayRef<double> tmp0(DVal0);
1630       nval0 = ConstantDataVector::get(context, tmp0);
1631       if (hasTwoResults) {
1632         ArrayRef<double> tmp1(DVal1);
1633         nval1 = ConstantDataVector::get(context, tmp1);
1634       }
1635     }
1636   }
1637 
1638   if (hasTwoResults) {
1639     // sincos
1640     assert(FInfo.getId() == AMDGPULibFunc::EI_SINCOS &&
1641            "math function with ptr arg not supported yet");
1642     new StoreInst(nval1, aCI->getArgOperand(1), aCI);
1643   }
1644 
1645   replaceCall(nval0);
1646   return true;
1647 }
1648 
1649 // Public interface to the Simplify LibCalls pass.
1650 FunctionPass *llvm::createAMDGPUSimplifyLibCallsPass(const TargetMachine *TM) {
1651   return new AMDGPUSimplifyLibCalls(TM);
1652 }
1653 
1654 FunctionPass *llvm::createAMDGPUUseNativeCallsPass() {
1655   return new AMDGPUUseNativeCalls();
1656 }
1657 
1658 bool AMDGPUSimplifyLibCalls::runOnFunction(Function &F) {
1659   if (skipFunction(F))
1660     return false;
1661 
1662   bool Changed = false;
1663   auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
1664 
1665   LLVM_DEBUG(dbgs() << "AMDIC: process function ";
1666              F.printAsOperand(dbgs(), false, F.getParent()); dbgs() << '\n';);
1667 
1668   for (auto &BB : F) {
1669     for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ) {
1670       // Ignore non-calls.
1671       CallInst *CI = dyn_cast<CallInst>(I);
1672       ++I;
1673       // Ignore intrinsics that do not become real instructions.
1674       if (!CI || isa<DbgInfoIntrinsic>(CI) || CI->isLifetimeStartOrEnd())
1675         continue;
1676 
1677       // Ignore indirect calls.
1678       Function *Callee = CI->getCalledFunction();
1679       if (Callee == nullptr)
1680         continue;
1681 
1682       LLVM_DEBUG(dbgs() << "AMDIC: try folding " << *CI << "\n";
1683                  dbgs().flush());
1684       if(Simplifier.fold(CI, AA))
1685         Changed = true;
1686     }
1687   }
1688   return Changed;
1689 }
1690 
1691 PreservedAnalyses AMDGPUSimplifyLibCallsPass::run(Function &F,
1692                                                   FunctionAnalysisManager &AM) {
1693   AMDGPULibCalls Simplifier(&TM);
1694   Simplifier.initNativeFuncs();
1695 
1696   bool Changed = false;
1697   auto AA = &AM.getResult<AAManager>(F);
1698 
1699   LLVM_DEBUG(dbgs() << "AMDIC: process function ";
1700              F.printAsOperand(dbgs(), false, F.getParent()); dbgs() << '\n';);
1701 
1702   for (auto &BB : F) {
1703     for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E;) {
1704       // Ignore non-calls.
1705       CallInst *CI = dyn_cast<CallInst>(I);
1706       ++I;
1707       // Ignore intrinsics that do not become real instructions.
1708       if (!CI || isa<DbgInfoIntrinsic>(CI) || CI->isLifetimeStartOrEnd())
1709         continue;
1710 
1711       // Ignore indirect calls.
1712       Function *Callee = CI->getCalledFunction();
1713       if (Callee == nullptr)
1714         continue;
1715 
1716       LLVM_DEBUG(dbgs() << "AMDIC: try folding " << *CI << "\n";
1717                  dbgs().flush());
1718       if (Simplifier.fold(CI, AA))
1719         Changed = true;
1720     }
1721   }
1722   return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all();
1723 }
1724 
1725 bool AMDGPUUseNativeCalls::runOnFunction(Function &F) {
1726   if (skipFunction(F) || UseNative.empty())
1727     return false;
1728 
1729   bool Changed = false;
1730   for (auto &BB : F) {
1731     for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ) {
1732       // Ignore non-calls.
1733       CallInst *CI = dyn_cast<CallInst>(I);
1734       ++I;
1735       if (!CI) continue;
1736 
1737       // Ignore indirect calls.
1738       Function *Callee = CI->getCalledFunction();
1739       if (Callee == nullptr)
1740         continue;
1741 
1742       if (Simplifier.useNative(CI))
1743         Changed = true;
1744     }
1745   }
1746   return Changed;
1747 }
1748 
1749 PreservedAnalyses AMDGPUUseNativeCallsPass::run(Function &F,
1750                                                 FunctionAnalysisManager &AM) {
1751   if (UseNative.empty())
1752     return PreservedAnalyses::all();
1753 
1754   AMDGPULibCalls Simplifier;
1755   Simplifier.initNativeFuncs();
1756 
1757   bool Changed = false;
1758   for (auto &BB : F) {
1759     for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E;) {
1760       // Ignore non-calls.
1761       CallInst *CI = dyn_cast<CallInst>(I);
1762       ++I;
1763       if (!CI)
1764         continue;
1765 
1766       // Ignore indirect calls.
1767       Function *Callee = CI->getCalledFunction();
1768       if (Callee == nullptr)
1769         continue;
1770 
1771       if (Simplifier.useNative(CI))
1772         Changed = true;
1773     }
1774   }
1775   return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all();
1776 }
1777