1 //===-- AMDGPUPromoteAlloca.cpp - Promote Allocas -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass eliminates allocas by either converting them into vectors or
10 // by migrating them to local address space.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "AMDGPU.h"
15 #include "AMDGPUSubtarget.h"
16 #include "Utils/AMDGPUBaseInfo.h"
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Analysis/CaptureTracking.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/CodeGen/TargetPassConfig.h"
26 #include "llvm/IR/Attributes.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/Constant.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/DerivedTypes.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/GlobalValue.h"
34 #include "llvm/IR/GlobalVariable.h"
35 #include "llvm/IR/IRBuilder.h"
36 #include "llvm/IR/Instruction.h"
37 #include "llvm/IR/Instructions.h"
38 #include "llvm/IR/IntrinsicInst.h"
39 #include "llvm/IR/Intrinsics.h"
40 #include "llvm/IR/IntrinsicsAMDGPU.h"
41 #include "llvm/IR/IntrinsicsR600.h"
42 #include "llvm/IR/LLVMContext.h"
43 #include "llvm/IR/Metadata.h"
44 #include "llvm/IR/Module.h"
45 #include "llvm/IR/Type.h"
46 #include "llvm/IR/User.h"
47 #include "llvm/IR/Value.h"
48 #include "llvm/Pass.h"
49 #include "llvm/Support/Casting.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Support/MathExtras.h"
53 #include "llvm/Support/raw_ostream.h"
54 #include "llvm/Target/TargetMachine.h"
55 #include <algorithm>
56 #include <cassert>
57 #include <cstdint>
58 #include <map>
59 #include <tuple>
60 #include <utility>
61 #include <vector>
62 
63 #define DEBUG_TYPE "amdgpu-promote-alloca"
64 
65 using namespace llvm;
66 
67 namespace {
68 
69 static cl::opt<bool> DisablePromoteAllocaToVector(
70   "disable-promote-alloca-to-vector",
71   cl::desc("Disable promote alloca to vector"),
72   cl::init(false));
73 
74 static cl::opt<bool> DisablePromoteAllocaToLDS(
75   "disable-promote-alloca-to-lds",
76   cl::desc("Disable promote alloca to LDS"),
77   cl::init(false));
78 
79 // FIXME: This can create globals so should be a module pass.
80 class AMDGPUPromoteAlloca : public FunctionPass {
81 private:
82   const TargetMachine *TM;
83   Module *Mod = nullptr;
84   const DataLayout *DL = nullptr;
85 
86   // FIXME: This should be per-kernel.
87   uint32_t LocalMemLimit = 0;
88   uint32_t CurrentLocalMemUsage = 0;
89 
90   bool IsAMDGCN = false;
91   bool IsAMDHSA = false;
92 
93   std::pair<Value *, Value *> getLocalSizeYZ(IRBuilder<> &Builder);
94   Value *getWorkitemID(IRBuilder<> &Builder, unsigned N);
95 
96   /// BaseAlloca is the alloca root the search started from.
97   /// Val may be that alloca or a recursive user of it.
98   bool collectUsesWithPtrTypes(Value *BaseAlloca,
99                                Value *Val,
100                                std::vector<Value*> &WorkList) const;
101 
102   /// Val is a derived pointer from Alloca. OpIdx0/OpIdx1 are the operand
103   /// indices to an instruction with 2 pointer inputs (e.g. select, icmp).
104   /// Returns true if both operands are derived from the same alloca. Val should
105   /// be the same value as one of the input operands of UseInst.
106   bool binaryOpIsDerivedFromSameAlloca(Value *Alloca, Value *Val,
107                                        Instruction *UseInst,
108                                        int OpIdx0, int OpIdx1) const;
109 
110   /// Check whether we have enough local memory for promotion.
111   bool hasSufficientLocalMem(const Function &F);
112 
113 public:
114   static char ID;
115 
116   AMDGPUPromoteAlloca() : FunctionPass(ID) {}
117 
118   bool doInitialization(Module &M) override;
119   bool runOnFunction(Function &F) override;
120 
121   StringRef getPassName() const override { return "AMDGPU Promote Alloca"; }
122 
123   bool handleAlloca(AllocaInst &I, bool SufficientLDS);
124 
125   void getAnalysisUsage(AnalysisUsage &AU) const override {
126     AU.setPreservesCFG();
127     FunctionPass::getAnalysisUsage(AU);
128   }
129 };
130 
131 } // end anonymous namespace
132 
133 char AMDGPUPromoteAlloca::ID = 0;
134 
135 INITIALIZE_PASS(AMDGPUPromoteAlloca, DEBUG_TYPE,
136                 "AMDGPU promote alloca to vector or LDS", false, false)
137 
138 char &llvm::AMDGPUPromoteAllocaID = AMDGPUPromoteAlloca::ID;
139 
140 bool AMDGPUPromoteAlloca::doInitialization(Module &M) {
141   Mod = &M;
142   DL = &Mod->getDataLayout();
143 
144   return false;
145 }
146 
147 bool AMDGPUPromoteAlloca::runOnFunction(Function &F) {
148   if (skipFunction(F))
149     return false;
150 
151   if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>())
152     TM = &TPC->getTM<TargetMachine>();
153   else
154     return false;
155 
156   const Triple &TT = TM->getTargetTriple();
157   IsAMDGCN = TT.getArch() == Triple::amdgcn;
158   IsAMDHSA = TT.getOS() == Triple::AMDHSA;
159 
160   const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(*TM, F);
161   if (!ST.isPromoteAllocaEnabled())
162     return false;
163 
164   bool SufficientLDS = hasSufficientLocalMem(F);
165   bool Changed = false;
166   BasicBlock &EntryBB = *F.begin();
167 
168   SmallVector<AllocaInst *, 16> Allocas;
169   for (Instruction &I : EntryBB) {
170     if (AllocaInst *AI = dyn_cast<AllocaInst>(&I))
171       Allocas.push_back(AI);
172   }
173 
174   for (AllocaInst *AI : Allocas) {
175     if (handleAlloca(*AI, SufficientLDS))
176       Changed = true;
177   }
178 
179   return Changed;
180 }
181 
182 std::pair<Value *, Value *>
183 AMDGPUPromoteAlloca::getLocalSizeYZ(IRBuilder<> &Builder) {
184   const Function &F = *Builder.GetInsertBlock()->getParent();
185   const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(*TM, F);
186 
187   if (!IsAMDHSA) {
188     Function *LocalSizeYFn
189       = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_y);
190     Function *LocalSizeZFn
191       = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_z);
192 
193     CallInst *LocalSizeY = Builder.CreateCall(LocalSizeYFn, {});
194     CallInst *LocalSizeZ = Builder.CreateCall(LocalSizeZFn, {});
195 
196     ST.makeLIDRangeMetadata(LocalSizeY);
197     ST.makeLIDRangeMetadata(LocalSizeZ);
198 
199     return std::make_pair(LocalSizeY, LocalSizeZ);
200   }
201 
202   // We must read the size out of the dispatch pointer.
203   assert(IsAMDGCN);
204 
205   // We are indexing into this struct, and want to extract the workgroup_size_*
206   // fields.
207   //
208   //   typedef struct hsa_kernel_dispatch_packet_s {
209   //     uint16_t header;
210   //     uint16_t setup;
211   //     uint16_t workgroup_size_x ;
212   //     uint16_t workgroup_size_y;
213   //     uint16_t workgroup_size_z;
214   //     uint16_t reserved0;
215   //     uint32_t grid_size_x ;
216   //     uint32_t grid_size_y ;
217   //     uint32_t grid_size_z;
218   //
219   //     uint32_t private_segment_size;
220   //     uint32_t group_segment_size;
221   //     uint64_t kernel_object;
222   //
223   // #ifdef HSA_LARGE_MODEL
224   //     void *kernarg_address;
225   // #elif defined HSA_LITTLE_ENDIAN
226   //     void *kernarg_address;
227   //     uint32_t reserved1;
228   // #else
229   //     uint32_t reserved1;
230   //     void *kernarg_address;
231   // #endif
232   //     uint64_t reserved2;
233   //     hsa_signal_t completion_signal; // uint64_t wrapper
234   //   } hsa_kernel_dispatch_packet_t
235   //
236   Function *DispatchPtrFn
237     = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_dispatch_ptr);
238 
239   CallInst *DispatchPtr = Builder.CreateCall(DispatchPtrFn, {});
240   DispatchPtr->addAttribute(AttributeList::ReturnIndex, Attribute::NoAlias);
241   DispatchPtr->addAttribute(AttributeList::ReturnIndex, Attribute::NonNull);
242 
243   // Size of the dispatch packet struct.
244   DispatchPtr->addDereferenceableAttr(AttributeList::ReturnIndex, 64);
245 
246   Type *I32Ty = Type::getInt32Ty(Mod->getContext());
247   Value *CastDispatchPtr = Builder.CreateBitCast(
248     DispatchPtr, PointerType::get(I32Ty, AMDGPUAS::CONSTANT_ADDRESS));
249 
250   // We could do a single 64-bit load here, but it's likely that the basic
251   // 32-bit and extract sequence is already present, and it is probably easier
252   // to CSE this. The loads should be mergable later anyway.
253   Value *GEPXY = Builder.CreateConstInBoundsGEP1_64(I32Ty, CastDispatchPtr, 1);
254   LoadInst *LoadXY = Builder.CreateAlignedLoad(I32Ty, GEPXY, 4);
255 
256   Value *GEPZU = Builder.CreateConstInBoundsGEP1_64(I32Ty, CastDispatchPtr, 2);
257   LoadInst *LoadZU = Builder.CreateAlignedLoad(I32Ty, GEPZU, 4);
258 
259   MDNode *MD = MDNode::get(Mod->getContext(), None);
260   LoadXY->setMetadata(LLVMContext::MD_invariant_load, MD);
261   LoadZU->setMetadata(LLVMContext::MD_invariant_load, MD);
262   ST.makeLIDRangeMetadata(LoadZU);
263 
264   // Extract y component. Upper half of LoadZU should be zero already.
265   Value *Y = Builder.CreateLShr(LoadXY, 16);
266 
267   return std::make_pair(Y, LoadZU);
268 }
269 
270 Value *AMDGPUPromoteAlloca::getWorkitemID(IRBuilder<> &Builder, unsigned N) {
271   const AMDGPUSubtarget &ST =
272       AMDGPUSubtarget::get(*TM, *Builder.GetInsertBlock()->getParent());
273   Intrinsic::ID IntrID = Intrinsic::not_intrinsic;
274 
275   switch (N) {
276   case 0:
277     IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_x
278                       : (Intrinsic::ID)Intrinsic::r600_read_tidig_x;
279     break;
280   case 1:
281     IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_y
282                       : (Intrinsic::ID)Intrinsic::r600_read_tidig_y;
283     break;
284 
285   case 2:
286     IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_z
287                       : (Intrinsic::ID)Intrinsic::r600_read_tidig_z;
288     break;
289   default:
290     llvm_unreachable("invalid dimension");
291   }
292 
293   Function *WorkitemIdFn = Intrinsic::getDeclaration(Mod, IntrID);
294   CallInst *CI = Builder.CreateCall(WorkitemIdFn);
295   ST.makeLIDRangeMetadata(CI);
296 
297   return CI;
298 }
299 
300 static VectorType *arrayTypeToVecType(ArrayType *ArrayTy) {
301   return VectorType::get(ArrayTy->getElementType(),
302                          ArrayTy->getNumElements());
303 }
304 
305 static Value *
306 calculateVectorIndex(Value *Ptr,
307                      const std::map<GetElementPtrInst *, Value *> &GEPIdx) {
308   GetElementPtrInst *GEP = cast<GetElementPtrInst>(Ptr);
309 
310   auto I = GEPIdx.find(GEP);
311   return I == GEPIdx.end() ? nullptr : I->second;
312 }
313 
314 static Value* GEPToVectorIndex(GetElementPtrInst *GEP) {
315   // FIXME we only support simple cases
316   if (GEP->getNumOperands() != 3)
317     return nullptr;
318 
319   ConstantInt *I0 = dyn_cast<ConstantInt>(GEP->getOperand(1));
320   if (!I0 || !I0->isZero())
321     return nullptr;
322 
323   return GEP->getOperand(2);
324 }
325 
326 // Not an instruction handled below to turn into a vector.
327 //
328 // TODO: Check isTriviallyVectorizable for calls and handle other
329 // instructions.
330 static bool canVectorizeInst(Instruction *Inst, User *User) {
331   switch (Inst->getOpcode()) {
332   case Instruction::Load: {
333     // Currently only handle the case where the Pointer Operand is a GEP.
334     // Also we could not vectorize volatile or atomic loads.
335     LoadInst *LI = cast<LoadInst>(Inst);
336     if (isa<AllocaInst>(User) &&
337         LI->getPointerOperandType() == User->getType() &&
338         isa<VectorType>(LI->getType()))
339       return true;
340     return isa<GetElementPtrInst>(LI->getPointerOperand()) && LI->isSimple();
341   }
342   case Instruction::BitCast:
343     return true;
344   case Instruction::Store: {
345     // Must be the stored pointer operand, not a stored value, plus
346     // since it should be canonical form, the User should be a GEP.
347     // Also we could not vectorize volatile or atomic stores.
348     StoreInst *SI = cast<StoreInst>(Inst);
349     if (isa<AllocaInst>(User) &&
350         SI->getPointerOperandType() == User->getType() &&
351         isa<VectorType>(SI->getValueOperand()->getType()))
352       return true;
353     return (SI->getPointerOperand() == User) && isa<GetElementPtrInst>(User) && SI->isSimple();
354   }
355   default:
356     return false;
357   }
358 }
359 
360 static bool tryPromoteAllocaToVector(AllocaInst *Alloca) {
361 
362   if (DisablePromoteAllocaToVector) {
363     LLVM_DEBUG(dbgs() << "  Promotion alloca to vector is disabled\n");
364     return false;
365   }
366 
367   Type *AT = Alloca->getAllocatedType();
368   SequentialType *AllocaTy = dyn_cast<SequentialType>(AT);
369 
370   LLVM_DEBUG(dbgs() << "Alloca candidate for vectorization\n");
371 
372   // FIXME: There is no reason why we can't support larger arrays, we
373   // are just being conservative for now.
374   // FIXME: We also reject alloca's of the form [ 2 x [ 2 x i32 ]] or equivalent. Potentially these
375   // could also be promoted but we don't currently handle this case
376   if (!AllocaTy ||
377       AllocaTy->getNumElements() > 16 ||
378       AllocaTy->getNumElements() < 2 ||
379       !VectorType::isValidElementType(AllocaTy->getElementType())) {
380     LLVM_DEBUG(dbgs() << "  Cannot convert type to vector\n");
381     return false;
382   }
383 
384   std::map<GetElementPtrInst*, Value*> GEPVectorIdx;
385   std::vector<Value*> WorkList;
386   for (User *AllocaUser : Alloca->users()) {
387     GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(AllocaUser);
388     if (!GEP) {
389       if (!canVectorizeInst(cast<Instruction>(AllocaUser), Alloca))
390         return false;
391 
392       WorkList.push_back(AllocaUser);
393       continue;
394     }
395 
396     Value *Index = GEPToVectorIndex(GEP);
397 
398     // If we can't compute a vector index from this GEP, then we can't
399     // promote this alloca to vector.
400     if (!Index) {
401       LLVM_DEBUG(dbgs() << "  Cannot compute vector index for GEP " << *GEP
402                         << '\n');
403       return false;
404     }
405 
406     GEPVectorIdx[GEP] = Index;
407     for (User *GEPUser : AllocaUser->users()) {
408       if (!canVectorizeInst(cast<Instruction>(GEPUser), AllocaUser))
409         return false;
410 
411       WorkList.push_back(GEPUser);
412     }
413   }
414 
415   VectorType *VectorTy = dyn_cast<VectorType>(AllocaTy);
416   if (!VectorTy)
417     VectorTy = arrayTypeToVecType(cast<ArrayType>(AllocaTy));
418 
419   LLVM_DEBUG(dbgs() << "  Converting alloca to vector " << *AllocaTy << " -> "
420                     << *VectorTy << '\n');
421 
422   for (Value *V : WorkList) {
423     Instruction *Inst = cast<Instruction>(V);
424     IRBuilder<> Builder(Inst);
425     switch (Inst->getOpcode()) {
426     case Instruction::Load: {
427       if (Inst->getType() == AT)
428         break;
429 
430       Type *VecPtrTy = VectorTy->getPointerTo(AMDGPUAS::PRIVATE_ADDRESS);
431       Value *Ptr = cast<LoadInst>(Inst)->getPointerOperand();
432       Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx);
433 
434       Value *BitCast = Builder.CreateBitCast(Alloca, VecPtrTy);
435       Value *VecValue = Builder.CreateLoad(VectorTy, BitCast);
436       Value *ExtractElement = Builder.CreateExtractElement(VecValue, Index);
437       Inst->replaceAllUsesWith(ExtractElement);
438       Inst->eraseFromParent();
439       break;
440     }
441     case Instruction::Store: {
442       StoreInst *SI = cast<StoreInst>(Inst);
443       if (SI->getValueOperand()->getType() == AT)
444         break;
445 
446       Type *VecPtrTy = VectorTy->getPointerTo(AMDGPUAS::PRIVATE_ADDRESS);
447       Value *Ptr = SI->getPointerOperand();
448       Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx);
449       Value *BitCast = Builder.CreateBitCast(Alloca, VecPtrTy);
450       Value *VecValue = Builder.CreateLoad(VectorTy, BitCast);
451       Value *NewVecValue = Builder.CreateInsertElement(VecValue,
452                                                        SI->getValueOperand(),
453                                                        Index);
454       Builder.CreateStore(NewVecValue, BitCast);
455       Inst->eraseFromParent();
456       break;
457     }
458     case Instruction::BitCast:
459     case Instruction::AddrSpaceCast:
460       break;
461 
462     default:
463       llvm_unreachable("Inconsistency in instructions promotable to vector");
464     }
465   }
466   return true;
467 }
468 
469 static bool isCallPromotable(CallInst *CI) {
470   IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
471   if (!II)
472     return false;
473 
474   switch (II->getIntrinsicID()) {
475   case Intrinsic::memcpy:
476   case Intrinsic::memmove:
477   case Intrinsic::memset:
478   case Intrinsic::lifetime_start:
479   case Intrinsic::lifetime_end:
480   case Intrinsic::invariant_start:
481   case Intrinsic::invariant_end:
482   case Intrinsic::launder_invariant_group:
483   case Intrinsic::strip_invariant_group:
484   case Intrinsic::objectsize:
485     return true;
486   default:
487     return false;
488   }
489 }
490 
491 bool AMDGPUPromoteAlloca::binaryOpIsDerivedFromSameAlloca(Value *BaseAlloca,
492                                                           Value *Val,
493                                                           Instruction *Inst,
494                                                           int OpIdx0,
495                                                           int OpIdx1) const {
496   // Figure out which operand is the one we might not be promoting.
497   Value *OtherOp = Inst->getOperand(OpIdx0);
498   if (Val == OtherOp)
499     OtherOp = Inst->getOperand(OpIdx1);
500 
501   if (isa<ConstantPointerNull>(OtherOp))
502     return true;
503 
504   Value *OtherObj = GetUnderlyingObject(OtherOp, *DL);
505   if (!isa<AllocaInst>(OtherObj))
506     return false;
507 
508   // TODO: We should be able to replace undefs with the right pointer type.
509 
510   // TODO: If we know the other base object is another promotable
511   // alloca, not necessarily this alloca, we can do this. The
512   // important part is both must have the same address space at
513   // the end.
514   if (OtherObj != BaseAlloca) {
515     LLVM_DEBUG(
516         dbgs() << "Found a binary instruction with another alloca object\n");
517     return false;
518   }
519 
520   return true;
521 }
522 
523 bool AMDGPUPromoteAlloca::collectUsesWithPtrTypes(
524   Value *BaseAlloca,
525   Value *Val,
526   std::vector<Value*> &WorkList) const {
527 
528   for (User *User : Val->users()) {
529     if (is_contained(WorkList, User))
530       continue;
531 
532     if (CallInst *CI = dyn_cast<CallInst>(User)) {
533       if (!isCallPromotable(CI))
534         return false;
535 
536       WorkList.push_back(User);
537       continue;
538     }
539 
540     Instruction *UseInst = cast<Instruction>(User);
541     if (UseInst->getOpcode() == Instruction::PtrToInt)
542       return false;
543 
544     if (LoadInst *LI = dyn_cast<LoadInst>(UseInst)) {
545       if (LI->isVolatile())
546         return false;
547 
548       continue;
549     }
550 
551     if (StoreInst *SI = dyn_cast<StoreInst>(UseInst)) {
552       if (SI->isVolatile())
553         return false;
554 
555       // Reject if the stored value is not the pointer operand.
556       if (SI->getPointerOperand() != Val)
557         return false;
558     } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UseInst)) {
559       if (RMW->isVolatile())
560         return false;
561     } else if (AtomicCmpXchgInst *CAS = dyn_cast<AtomicCmpXchgInst>(UseInst)) {
562       if (CAS->isVolatile())
563         return false;
564     }
565 
566     // Only promote a select if we know that the other select operand
567     // is from another pointer that will also be promoted.
568     if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) {
569       if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, ICmp, 0, 1))
570         return false;
571 
572       // May need to rewrite constant operands.
573       WorkList.push_back(ICmp);
574     }
575 
576     if (UseInst->getOpcode() == Instruction::AddrSpaceCast) {
577       // Give up if the pointer may be captured.
578       if (PointerMayBeCaptured(UseInst, true, true))
579         return false;
580       // Don't collect the users of this.
581       WorkList.push_back(User);
582       continue;
583     }
584 
585     if (!User->getType()->isPointerTy())
586       continue;
587 
588     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UseInst)) {
589       // Be conservative if an address could be computed outside the bounds of
590       // the alloca.
591       if (!GEP->isInBounds())
592         return false;
593     }
594 
595     // Only promote a select if we know that the other select operand is from
596     // another pointer that will also be promoted.
597     if (SelectInst *SI = dyn_cast<SelectInst>(UseInst)) {
598       if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, SI, 1, 2))
599         return false;
600     }
601 
602     // Repeat for phis.
603     if (PHINode *Phi = dyn_cast<PHINode>(UseInst)) {
604       // TODO: Handle more complex cases. We should be able to replace loops
605       // over arrays.
606       switch (Phi->getNumIncomingValues()) {
607       case 1:
608         break;
609       case 2:
610         if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, Phi, 0, 1))
611           return false;
612         break;
613       default:
614         return false;
615       }
616     }
617 
618     WorkList.push_back(User);
619     if (!collectUsesWithPtrTypes(BaseAlloca, User, WorkList))
620       return false;
621   }
622 
623   return true;
624 }
625 
626 bool AMDGPUPromoteAlloca::hasSufficientLocalMem(const Function &F) {
627 
628   FunctionType *FTy = F.getFunctionType();
629   const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(*TM, F);
630 
631   // If the function has any arguments in the local address space, then it's
632   // possible these arguments require the entire local memory space, so
633   // we cannot use local memory in the pass.
634   for (Type *ParamTy : FTy->params()) {
635     PointerType *PtrTy = dyn_cast<PointerType>(ParamTy);
636     if (PtrTy && PtrTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) {
637       LocalMemLimit = 0;
638       LLVM_DEBUG(dbgs() << "Function has local memory argument. Promoting to "
639                            "local memory disabled.\n");
640       return false;
641     }
642   }
643 
644   LocalMemLimit = ST.getLocalMemorySize();
645   if (LocalMemLimit == 0)
646     return false;
647 
648   const DataLayout &DL = Mod->getDataLayout();
649 
650   // Check how much local memory is being used by global objects
651   CurrentLocalMemUsage = 0;
652   for (GlobalVariable &GV : Mod->globals()) {
653     if (GV.getAddressSpace() != AMDGPUAS::LOCAL_ADDRESS)
654       continue;
655 
656     for (const User *U : GV.users()) {
657       const Instruction *Use = dyn_cast<Instruction>(U);
658       if (!Use)
659         continue;
660 
661       if (Use->getParent()->getParent() == &F) {
662         unsigned Align = GV.getAlignment();
663         if (Align == 0)
664           Align = DL.getABITypeAlignment(GV.getValueType());
665 
666         // FIXME: Try to account for padding here. The padding is currently
667         // determined from the inverse order of uses in the function. I'm not
668         // sure if the use list order is in any way connected to this, so the
669         // total reported size is likely incorrect.
670         uint64_t AllocSize = DL.getTypeAllocSize(GV.getValueType());
671         CurrentLocalMemUsage = alignTo(CurrentLocalMemUsage, Align);
672         CurrentLocalMemUsage += AllocSize;
673         break;
674       }
675     }
676   }
677 
678   unsigned MaxOccupancy = ST.getOccupancyWithLocalMemSize(CurrentLocalMemUsage,
679                                                           F);
680 
681   // Restrict local memory usage so that we don't drastically reduce occupancy,
682   // unless it is already significantly reduced.
683 
684   // TODO: Have some sort of hint or other heuristics to guess occupancy based
685   // on other factors..
686   unsigned OccupancyHint = ST.getWavesPerEU(F).second;
687   if (OccupancyHint == 0)
688     OccupancyHint = 7;
689 
690   // Clamp to max value.
691   OccupancyHint = std::min(OccupancyHint, ST.getMaxWavesPerEU());
692 
693   // Check the hint but ignore it if it's obviously wrong from the existing LDS
694   // usage.
695   MaxOccupancy = std::min(OccupancyHint, MaxOccupancy);
696 
697 
698   // Round up to the next tier of usage.
699   unsigned MaxSizeWithWaveCount
700     = ST.getMaxLocalMemSizeWithWaveCount(MaxOccupancy, F);
701 
702   // Program is possibly broken by using more local mem than available.
703   if (CurrentLocalMemUsage > MaxSizeWithWaveCount)
704     return false;
705 
706   LocalMemLimit = MaxSizeWithWaveCount;
707 
708   LLVM_DEBUG(dbgs() << F.getName() << " uses " << CurrentLocalMemUsage
709                     << " bytes of LDS\n"
710                     << "  Rounding size to " << MaxSizeWithWaveCount
711                     << " with a maximum occupancy of " << MaxOccupancy << '\n'
712                     << " and " << (LocalMemLimit - CurrentLocalMemUsage)
713                     << " available for promotion\n");
714 
715   return true;
716 }
717 
718 // FIXME: Should try to pick the most likely to be profitable allocas first.
719 bool AMDGPUPromoteAlloca::handleAlloca(AllocaInst &I, bool SufficientLDS) {
720   // Array allocations are probably not worth handling, since an allocation of
721   // the array type is the canonical form.
722   if (!I.isStaticAlloca() || I.isArrayAllocation())
723     return false;
724 
725   IRBuilder<> Builder(&I);
726 
727   // First try to replace the alloca with a vector
728   Type *AllocaTy = I.getAllocatedType();
729 
730   LLVM_DEBUG(dbgs() << "Trying to promote " << I << '\n');
731 
732   if (tryPromoteAllocaToVector(&I))
733     return true; // Promoted to vector.
734 
735   if (DisablePromoteAllocaToLDS)
736     return false;
737 
738   const Function &ContainingFunction = *I.getParent()->getParent();
739   CallingConv::ID CC = ContainingFunction.getCallingConv();
740 
741   // Don't promote the alloca to LDS for shader calling conventions as the work
742   // item ID intrinsics are not supported for these calling conventions.
743   // Furthermore not all LDS is available for some of the stages.
744   switch (CC) {
745   case CallingConv::AMDGPU_KERNEL:
746   case CallingConv::SPIR_KERNEL:
747     break;
748   default:
749     LLVM_DEBUG(
750         dbgs()
751         << " promote alloca to LDS not supported with calling convention.\n");
752     return false;
753   }
754 
755   // Not likely to have sufficient local memory for promotion.
756   if (!SufficientLDS)
757     return false;
758 
759   const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(*TM, ContainingFunction);
760   unsigned WorkGroupSize = ST.getFlatWorkGroupSizes(ContainingFunction).second;
761 
762   const DataLayout &DL = Mod->getDataLayout();
763 
764   unsigned Align = I.getAlignment();
765   if (Align == 0)
766     Align = DL.getABITypeAlignment(I.getAllocatedType());
767 
768   // FIXME: This computed padding is likely wrong since it depends on inverse
769   // usage order.
770   //
771   // FIXME: It is also possible that if we're allowed to use all of the memory
772   // could could end up using more than the maximum due to alignment padding.
773 
774   uint32_t NewSize = alignTo(CurrentLocalMemUsage, Align);
775   uint32_t AllocSize = WorkGroupSize * DL.getTypeAllocSize(AllocaTy);
776   NewSize += AllocSize;
777 
778   if (NewSize > LocalMemLimit) {
779     LLVM_DEBUG(dbgs() << "  " << AllocSize
780                       << " bytes of local memory not available to promote\n");
781     return false;
782   }
783 
784   CurrentLocalMemUsage = NewSize;
785 
786   std::vector<Value*> WorkList;
787 
788   if (!collectUsesWithPtrTypes(&I, &I, WorkList)) {
789     LLVM_DEBUG(dbgs() << " Do not know how to convert all uses\n");
790     return false;
791   }
792 
793   LLVM_DEBUG(dbgs() << "Promoting alloca to local memory\n");
794 
795   Function *F = I.getParent()->getParent();
796 
797   Type *GVTy = ArrayType::get(I.getAllocatedType(), WorkGroupSize);
798   GlobalVariable *GV = new GlobalVariable(
799       *Mod, GVTy, false, GlobalValue::InternalLinkage,
800       UndefValue::get(GVTy),
801       Twine(F->getName()) + Twine('.') + I.getName(),
802       nullptr,
803       GlobalVariable::NotThreadLocal,
804       AMDGPUAS::LOCAL_ADDRESS);
805   GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
806   GV->setAlignment(MaybeAlign(I.getAlignment()));
807 
808   Value *TCntY, *TCntZ;
809 
810   std::tie(TCntY, TCntZ) = getLocalSizeYZ(Builder);
811   Value *TIdX = getWorkitemID(Builder, 0);
812   Value *TIdY = getWorkitemID(Builder, 1);
813   Value *TIdZ = getWorkitemID(Builder, 2);
814 
815   Value *Tmp0 = Builder.CreateMul(TCntY, TCntZ, "", true, true);
816   Tmp0 = Builder.CreateMul(Tmp0, TIdX);
817   Value *Tmp1 = Builder.CreateMul(TIdY, TCntZ, "", true, true);
818   Value *TID = Builder.CreateAdd(Tmp0, Tmp1);
819   TID = Builder.CreateAdd(TID, TIdZ);
820 
821   Value *Indices[] = {
822     Constant::getNullValue(Type::getInt32Ty(Mod->getContext())),
823     TID
824   };
825 
826   Value *Offset = Builder.CreateInBoundsGEP(GVTy, GV, Indices);
827   I.mutateType(Offset->getType());
828   I.replaceAllUsesWith(Offset);
829   I.eraseFromParent();
830 
831   for (Value *V : WorkList) {
832     CallInst *Call = dyn_cast<CallInst>(V);
833     if (!Call) {
834       if (ICmpInst *CI = dyn_cast<ICmpInst>(V)) {
835         Value *Src0 = CI->getOperand(0);
836         Type *EltTy = Src0->getType()->getPointerElementType();
837         PointerType *NewTy = PointerType::get(EltTy, AMDGPUAS::LOCAL_ADDRESS);
838 
839         if (isa<ConstantPointerNull>(CI->getOperand(0)))
840           CI->setOperand(0, ConstantPointerNull::get(NewTy));
841 
842         if (isa<ConstantPointerNull>(CI->getOperand(1)))
843           CI->setOperand(1, ConstantPointerNull::get(NewTy));
844 
845         continue;
846       }
847 
848       // The operand's value should be corrected on its own and we don't want to
849       // touch the users.
850       if (isa<AddrSpaceCastInst>(V))
851         continue;
852 
853       Type *EltTy = V->getType()->getPointerElementType();
854       PointerType *NewTy = PointerType::get(EltTy, AMDGPUAS::LOCAL_ADDRESS);
855 
856       // FIXME: It doesn't really make sense to try to do this for all
857       // instructions.
858       V->mutateType(NewTy);
859 
860       // Adjust the types of any constant operands.
861       if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
862         if (isa<ConstantPointerNull>(SI->getOperand(1)))
863           SI->setOperand(1, ConstantPointerNull::get(NewTy));
864 
865         if (isa<ConstantPointerNull>(SI->getOperand(2)))
866           SI->setOperand(2, ConstantPointerNull::get(NewTy));
867       } else if (PHINode *Phi = dyn_cast<PHINode>(V)) {
868         for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) {
869           if (isa<ConstantPointerNull>(Phi->getIncomingValue(I)))
870             Phi->setIncomingValue(I, ConstantPointerNull::get(NewTy));
871         }
872       }
873 
874       continue;
875     }
876 
877     IntrinsicInst *Intr = cast<IntrinsicInst>(Call);
878     Builder.SetInsertPoint(Intr);
879     switch (Intr->getIntrinsicID()) {
880     case Intrinsic::lifetime_start:
881     case Intrinsic::lifetime_end:
882       // These intrinsics are for address space 0 only
883       Intr->eraseFromParent();
884       continue;
885     case Intrinsic::memcpy: {
886       MemCpyInst *MemCpy = cast<MemCpyInst>(Intr);
887       Builder.CreateMemCpy(MemCpy->getRawDest(), MemCpy->getDestAlign(),
888                            MemCpy->getRawSource(), MemCpy->getSourceAlign(),
889                            MemCpy->getLength(), MemCpy->isVolatile());
890       Intr->eraseFromParent();
891       continue;
892     }
893     case Intrinsic::memmove: {
894       MemMoveInst *MemMove = cast<MemMoveInst>(Intr);
895       Builder.CreateMemMove(MemMove->getRawDest(), MemMove->getDestAlign(),
896                             MemMove->getRawSource(), MemMove->getSourceAlign(),
897                             MemMove->getLength(), MemMove->isVolatile());
898       Intr->eraseFromParent();
899       continue;
900     }
901     case Intrinsic::memset: {
902       MemSetInst *MemSet = cast<MemSetInst>(Intr);
903       Builder.CreateMemSet(
904           MemSet->getRawDest(), MemSet->getValue(), MemSet->getLength(),
905           MaybeAlign(MemSet->getDestAlignment()), MemSet->isVolatile());
906       Intr->eraseFromParent();
907       continue;
908     }
909     case Intrinsic::invariant_start:
910     case Intrinsic::invariant_end:
911     case Intrinsic::launder_invariant_group:
912     case Intrinsic::strip_invariant_group:
913       Intr->eraseFromParent();
914       // FIXME: I think the invariant marker should still theoretically apply,
915       // but the intrinsics need to be changed to accept pointers with any
916       // address space.
917       continue;
918     case Intrinsic::objectsize: {
919       Value *Src = Intr->getOperand(0);
920       Type *SrcTy = Src->getType()->getPointerElementType();
921       Function *ObjectSize = Intrinsic::getDeclaration(Mod,
922         Intrinsic::objectsize,
923         { Intr->getType(), PointerType::get(SrcTy, AMDGPUAS::LOCAL_ADDRESS) }
924       );
925 
926       CallInst *NewCall = Builder.CreateCall(
927           ObjectSize,
928           {Src, Intr->getOperand(1), Intr->getOperand(2), Intr->getOperand(3)});
929       Intr->replaceAllUsesWith(NewCall);
930       Intr->eraseFromParent();
931       continue;
932     }
933     default:
934       Intr->print(errs());
935       llvm_unreachable("Don't know how to promote alloca intrinsic use.");
936     }
937   }
938   return true;
939 }
940 
941 FunctionPass *llvm::createAMDGPUPromoteAlloca() {
942   return new AMDGPUPromoteAlloca();
943 }
944