1 //===- AMDGPUTargetTransformInfo.cpp - AMDGPU specific TTI pass -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // \file
10 // This file implements a TargetTransformInfo analysis pass specific to the
11 // AMDGPU target machine. It uses the target's detailed information to provide
12 // more precise answers to certain TTI queries, while letting the target
13 // independent and default TTI implementations handle the rest.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "AMDGPUTargetTransformInfo.h"
18 #include "AMDGPUSubtarget.h"
19 #include "Utils/AMDGPUBaseInfo.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/Analysis/TargetTransformInfo.h"
23 #include "llvm/Analysis/ValueTracking.h"
24 #include "llvm/CodeGen/ISDOpcodes.h"
25 #include "llvm/CodeGen/ValueTypes.h"
26 #include "llvm/IR/Argument.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/CallingConv.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/DerivedTypes.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/Instruction.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/IntrinsicInst.h"
36 #include "llvm/IR/Module.h"
37 #include "llvm/IR/PatternMatch.h"
38 #include "llvm/IR/Type.h"
39 #include "llvm/IR/Value.h"
40 #include "llvm/MC/SubtargetFeature.h"
41 #include "llvm/Support/Casting.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/MachineValueType.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include "llvm/Target/TargetMachine.h"
48 #include <algorithm>
49 #include <cassert>
50 #include <limits>
51 #include <utility>
52 
53 using namespace llvm;
54 
55 #define DEBUG_TYPE "AMDGPUtti"
56 
57 static cl::opt<unsigned> UnrollThresholdPrivate(
58   "amdgpu-unroll-threshold-private",
59   cl::desc("Unroll threshold for AMDGPU if private memory used in a loop"),
60   cl::init(2700), cl::Hidden);
61 
62 static cl::opt<unsigned> UnrollThresholdLocal(
63   "amdgpu-unroll-threshold-local",
64   cl::desc("Unroll threshold for AMDGPU if local memory used in a loop"),
65   cl::init(1000), cl::Hidden);
66 
67 static cl::opt<unsigned> UnrollThresholdIf(
68   "amdgpu-unroll-threshold-if",
69   cl::desc("Unroll threshold increment for AMDGPU for each if statement inside loop"),
70   cl::init(150), cl::Hidden);
71 
72 static bool dependsOnLocalPhi(const Loop *L, const Value *Cond,
73                               unsigned Depth = 0) {
74   const Instruction *I = dyn_cast<Instruction>(Cond);
75   if (!I)
76     return false;
77 
78   for (const Value *V : I->operand_values()) {
79     if (!L->contains(I))
80       continue;
81     if (const PHINode *PHI = dyn_cast<PHINode>(V)) {
82       if (llvm::none_of(L->getSubLoops(), [PHI](const Loop* SubLoop) {
83                   return SubLoop->contains(PHI); }))
84         return true;
85     } else if (Depth < 10 && dependsOnLocalPhi(L, V, Depth+1))
86       return true;
87   }
88   return false;
89 }
90 
91 void AMDGPUTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
92                                             TTI::UnrollingPreferences &UP) {
93   const Function &F = *L->getHeader()->getParent();
94   UP.Threshold = AMDGPU::getIntegerAttribute(F, "amdgpu-unroll-threshold", 300);
95   UP.MaxCount = std::numeric_limits<unsigned>::max();
96   UP.Partial = true;
97 
98   // TODO: Do we want runtime unrolling?
99 
100   // Maximum alloca size than can fit registers. Reserve 16 registers.
101   const unsigned MaxAlloca = (256 - 16) * 4;
102   unsigned ThresholdPrivate = UnrollThresholdPrivate;
103   unsigned ThresholdLocal = UnrollThresholdLocal;
104   unsigned MaxBoost = std::max(ThresholdPrivate, ThresholdLocal);
105   for (const BasicBlock *BB : L->getBlocks()) {
106     const DataLayout &DL = BB->getModule()->getDataLayout();
107     unsigned LocalGEPsSeen = 0;
108 
109     if (llvm::any_of(L->getSubLoops(), [BB](const Loop* SubLoop) {
110                return SubLoop->contains(BB); }))
111         continue; // Block belongs to an inner loop.
112 
113     for (const Instruction &I : *BB) {
114       // Unroll a loop which contains an "if" statement whose condition
115       // defined by a PHI belonging to the loop. This may help to eliminate
116       // if region and potentially even PHI itself, saving on both divergence
117       // and registers used for the PHI.
118       // Add a small bonus for each of such "if" statements.
119       if (const BranchInst *Br = dyn_cast<BranchInst>(&I)) {
120         if (UP.Threshold < MaxBoost && Br->isConditional()) {
121           BasicBlock *Succ0 = Br->getSuccessor(0);
122           BasicBlock *Succ1 = Br->getSuccessor(1);
123           if ((L->contains(Succ0) && L->isLoopExiting(Succ0)) ||
124               (L->contains(Succ1) && L->isLoopExiting(Succ1)))
125             continue;
126           if (dependsOnLocalPhi(L, Br->getCondition())) {
127             UP.Threshold += UnrollThresholdIf;
128             LLVM_DEBUG(dbgs() << "Set unroll threshold " << UP.Threshold
129                               << " for loop:\n"
130                               << *L << " due to " << *Br << '\n');
131             if (UP.Threshold >= MaxBoost)
132               return;
133           }
134         }
135         continue;
136       }
137 
138       const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I);
139       if (!GEP)
140         continue;
141 
142       unsigned AS = GEP->getAddressSpace();
143       unsigned Threshold = 0;
144       if (AS == AMDGPUAS::PRIVATE_ADDRESS)
145         Threshold = ThresholdPrivate;
146       else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS)
147         Threshold = ThresholdLocal;
148       else
149         continue;
150 
151       if (UP.Threshold >= Threshold)
152         continue;
153 
154       if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
155         const Value *Ptr = GEP->getPointerOperand();
156         const AllocaInst *Alloca =
157             dyn_cast<AllocaInst>(GetUnderlyingObject(Ptr, DL));
158         if (!Alloca || !Alloca->isStaticAlloca())
159           continue;
160         Type *Ty = Alloca->getAllocatedType();
161         unsigned AllocaSize = Ty->isSized() ? DL.getTypeAllocSize(Ty) : 0;
162         if (AllocaSize > MaxAlloca)
163           continue;
164       } else if (AS == AMDGPUAS::LOCAL_ADDRESS ||
165                  AS == AMDGPUAS::REGION_ADDRESS) {
166         LocalGEPsSeen++;
167         // Inhibit unroll for local memory if we have seen addressing not to
168         // a variable, most likely we will be unable to combine it.
169         // Do not unroll too deep inner loops for local memory to give a chance
170         // to unroll an outer loop for a more important reason.
171         if (LocalGEPsSeen > 1 || L->getLoopDepth() > 2 ||
172             (!isa<GlobalVariable>(GEP->getPointerOperand()) &&
173              !isa<Argument>(GEP->getPointerOperand())))
174           continue;
175       }
176 
177       // Check if GEP depends on a value defined by this loop itself.
178       bool HasLoopDef = false;
179       for (const Value *Op : GEP->operands()) {
180         const Instruction *Inst = dyn_cast<Instruction>(Op);
181         if (!Inst || L->isLoopInvariant(Op))
182           continue;
183 
184         if (llvm::any_of(L->getSubLoops(), [Inst](const Loop* SubLoop) {
185              return SubLoop->contains(Inst); }))
186           continue;
187         HasLoopDef = true;
188         break;
189       }
190       if (!HasLoopDef)
191         continue;
192 
193       // We want to do whatever we can to limit the number of alloca
194       // instructions that make it through to the code generator.  allocas
195       // require us to use indirect addressing, which is slow and prone to
196       // compiler bugs.  If this loop does an address calculation on an
197       // alloca ptr, then we want to use a higher than normal loop unroll
198       // threshold. This will give SROA a better chance to eliminate these
199       // allocas.
200       //
201       // We also want to have more unrolling for local memory to let ds
202       // instructions with different offsets combine.
203       //
204       // Don't use the maximum allowed value here as it will make some
205       // programs way too big.
206       UP.Threshold = Threshold;
207       LLVM_DEBUG(dbgs() << "Set unroll threshold " << Threshold
208                         << " for loop:\n"
209                         << *L << " due to " << *GEP << '\n');
210       if (UP.Threshold >= MaxBoost)
211         return;
212     }
213   }
214 }
215 
216 unsigned GCNTTIImpl::getHardwareNumberOfRegisters(bool Vec) const {
217   // The concept of vector registers doesn't really exist. Some packed vector
218   // operations operate on the normal 32-bit registers.
219   return 256;
220 }
221 
222 unsigned GCNTTIImpl::getNumberOfRegisters(bool Vec) const {
223   // This is really the number of registers to fill when vectorizing /
224   // interleaving loops, so we lie to avoid trying to use all registers.
225   return getHardwareNumberOfRegisters(Vec) >> 3;
226 }
227 
228 unsigned GCNTTIImpl::getRegisterBitWidth(bool Vector) const {
229   return 32;
230 }
231 
232 unsigned GCNTTIImpl::getMinVectorRegisterBitWidth() const {
233   return 32;
234 }
235 
236 unsigned GCNTTIImpl::getLoadVectorFactor(unsigned VF, unsigned LoadSize,
237                                             unsigned ChainSizeInBytes,
238                                             VectorType *VecTy) const {
239   unsigned VecRegBitWidth = VF * LoadSize;
240   if (VecRegBitWidth > 128 && VecTy->getScalarSizeInBits() < 32)
241     // TODO: Support element-size less than 32bit?
242     return 128 / LoadSize;
243 
244   return VF;
245 }
246 
247 unsigned GCNTTIImpl::getStoreVectorFactor(unsigned VF, unsigned StoreSize,
248                                              unsigned ChainSizeInBytes,
249                                              VectorType *VecTy) const {
250   unsigned VecRegBitWidth = VF * StoreSize;
251   if (VecRegBitWidth > 128)
252     return 128 / StoreSize;
253 
254   return VF;
255 }
256 
257 unsigned GCNTTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const {
258   if (AddrSpace == AMDGPUAS::GLOBAL_ADDRESS ||
259       AddrSpace == AMDGPUAS::CONSTANT_ADDRESS ||
260       AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
261       AddrSpace == AMDGPUAS::BUFFER_FAT_POINTER) {
262     return 512;
263   }
264 
265   if (AddrSpace == AMDGPUAS::FLAT_ADDRESS ||
266       AddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
267       AddrSpace == AMDGPUAS::REGION_ADDRESS)
268     return 128;
269 
270   if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS)
271     return 8 * ST->getMaxPrivateElementSize();
272 
273   llvm_unreachable("unhandled address space");
274 }
275 
276 bool GCNTTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes,
277                                                unsigned Alignment,
278                                                unsigned AddrSpace) const {
279   // We allow vectorization of flat stores, even though we may need to decompose
280   // them later if they may access private memory. We don't have enough context
281   // here, and legalization can handle it.
282   if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) {
283     return (Alignment >= 4 || ST->hasUnalignedScratchAccess()) &&
284       ChainSizeInBytes <= ST->getMaxPrivateElementSize();
285   }
286   return true;
287 }
288 
289 bool GCNTTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
290                                                 unsigned Alignment,
291                                                 unsigned AddrSpace) const {
292   return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
293 }
294 
295 bool GCNTTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
296                                                  unsigned Alignment,
297                                                  unsigned AddrSpace) const {
298   return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
299 }
300 
301 unsigned GCNTTIImpl::getMaxInterleaveFactor(unsigned VF) {
302   // Disable unrolling if the loop is not vectorized.
303   // TODO: Enable this again.
304   if (VF == 1)
305     return 1;
306 
307   return 8;
308 }
309 
310 bool GCNTTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst,
311                                        MemIntrinsicInfo &Info) const {
312   switch (Inst->getIntrinsicID()) {
313   case Intrinsic::amdgcn_atomic_inc:
314   case Intrinsic::amdgcn_atomic_dec:
315   case Intrinsic::amdgcn_ds_ordered_add:
316   case Intrinsic::amdgcn_ds_ordered_swap:
317   case Intrinsic::amdgcn_ds_fadd:
318   case Intrinsic::amdgcn_ds_fmin:
319   case Intrinsic::amdgcn_ds_fmax: {
320     auto *Ordering = dyn_cast<ConstantInt>(Inst->getArgOperand(2));
321     auto *Volatile = dyn_cast<ConstantInt>(Inst->getArgOperand(4));
322     if (!Ordering || !Volatile)
323       return false; // Invalid.
324 
325     unsigned OrderingVal = Ordering->getZExtValue();
326     if (OrderingVal > static_cast<unsigned>(AtomicOrdering::SequentiallyConsistent))
327       return false;
328 
329     Info.PtrVal = Inst->getArgOperand(0);
330     Info.Ordering = static_cast<AtomicOrdering>(OrderingVal);
331     Info.ReadMem = true;
332     Info.WriteMem = true;
333     Info.IsVolatile = !Volatile->isNullValue();
334     return true;
335   }
336   default:
337     return false;
338   }
339 }
340 
341 int GCNTTIImpl::getArithmeticInstrCost(unsigned Opcode, Type *Ty,
342                                        TTI::OperandValueKind Opd1Info,
343                                        TTI::OperandValueKind Opd2Info,
344                                        TTI::OperandValueProperties Opd1PropInfo,
345                                        TTI::OperandValueProperties Opd2PropInfo,
346                                        ArrayRef<const Value *> Args,
347                                        const Instruction *CxtI) {
348   EVT OrigTy = TLI->getValueType(DL, Ty);
349   if (!OrigTy.isSimple()) {
350     return BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
351                                          Opd1PropInfo, Opd2PropInfo);
352   }
353 
354   // Legalize the type.
355   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
356   int ISD = TLI->InstructionOpcodeToISD(Opcode);
357 
358   // Because we don't have any legal vector operations, but the legal types, we
359   // need to account for split vectors.
360   unsigned NElts = LT.second.isVector() ?
361     LT.second.getVectorNumElements() : 1;
362 
363   MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy;
364 
365   switch (ISD) {
366   case ISD::SHL:
367   case ISD::SRL:
368   case ISD::SRA:
369     if (SLT == MVT::i64)
370       return get64BitInstrCost() * LT.first * NElts;
371 
372     if (ST->has16BitInsts() && SLT == MVT::i16)
373       NElts = (NElts + 1) / 2;
374 
375     // i32
376     return getFullRateInstrCost() * LT.first * NElts;
377   case ISD::ADD:
378   case ISD::SUB:
379   case ISD::AND:
380   case ISD::OR:
381   case ISD::XOR:
382     if (SLT == MVT::i64) {
383       // and, or and xor are typically split into 2 VALU instructions.
384       return 2 * getFullRateInstrCost() * LT.first * NElts;
385     }
386 
387     if (ST->has16BitInsts() && SLT == MVT::i16)
388       NElts = (NElts + 1) / 2;
389 
390     return LT.first * NElts * getFullRateInstrCost();
391   case ISD::MUL: {
392     const int QuarterRateCost = getQuarterRateInstrCost();
393     if (SLT == MVT::i64) {
394       const int FullRateCost = getFullRateInstrCost();
395       return (4 * QuarterRateCost + (2 * 2) * FullRateCost) * LT.first * NElts;
396     }
397 
398     if (ST->has16BitInsts() && SLT == MVT::i16)
399       NElts = (NElts + 1) / 2;
400 
401     // i32
402     return QuarterRateCost * NElts * LT.first;
403   }
404   case ISD::FADD:
405   case ISD::FSUB:
406   case ISD::FMUL:
407     if (SLT == MVT::f64)
408       return LT.first * NElts * get64BitInstrCost();
409 
410     if (ST->has16BitInsts() && SLT == MVT::f16)
411       NElts = (NElts + 1) / 2;
412 
413     if (SLT == MVT::f32 || SLT == MVT::f16)
414       return LT.first * NElts * getFullRateInstrCost();
415     break;
416   case ISD::FDIV:
417   case ISD::FREM:
418     // FIXME: frem should be handled separately. The fdiv in it is most of it,
419     // but the current lowering is also not entirely correct.
420     if (SLT == MVT::f64) {
421       int Cost = 4 * get64BitInstrCost() + 7 * getQuarterRateInstrCost();
422       // Add cost of workaround.
423       if (!ST->hasUsableDivScaleConditionOutput())
424         Cost += 3 * getFullRateInstrCost();
425 
426       return LT.first * Cost * NElts;
427     }
428 
429     if (!Args.empty() && match(Args[0], PatternMatch::m_FPOne())) {
430       // TODO: This is more complicated, unsafe flags etc.
431       if ((SLT == MVT::f32 && !HasFP32Denormals) ||
432           (SLT == MVT::f16 && ST->has16BitInsts())) {
433         return LT.first * getQuarterRateInstrCost() * NElts;
434       }
435     }
436 
437     if (SLT == MVT::f16 && ST->has16BitInsts()) {
438       // 2 x v_cvt_f32_f16
439       // f32 rcp
440       // f32 fmul
441       // v_cvt_f16_f32
442       // f16 div_fixup
443       int Cost = 4 * getFullRateInstrCost() + 2 * getQuarterRateInstrCost();
444       return LT.first * Cost * NElts;
445     }
446 
447     if (SLT == MVT::f32 || SLT == MVT::f16) {
448       int Cost = 7 * getFullRateInstrCost() + 1 * getQuarterRateInstrCost();
449 
450       if (!HasFP32Denormals) {
451         // FP mode switches.
452         Cost += 2 * getFullRateInstrCost();
453       }
454 
455       return LT.first * NElts * Cost;
456     }
457     break;
458   default:
459     break;
460   }
461 
462   return BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
463                                        Opd1PropInfo, Opd2PropInfo);
464 }
465 
466 template <typename T>
467 int GCNTTIImpl::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
468                                       ArrayRef<T *> Args,
469                                       FastMathFlags FMF, unsigned VF) {
470   if (ID != Intrinsic::fma)
471     return BaseT::getIntrinsicInstrCost(ID, RetTy, Args, FMF, VF);
472 
473   EVT OrigTy = TLI->getValueType(DL, RetTy);
474   if (!OrigTy.isSimple()) {
475     return BaseT::getIntrinsicInstrCost(ID, RetTy, Args, FMF, VF);
476   }
477 
478   // Legalize the type.
479   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, RetTy);
480 
481   unsigned NElts = LT.second.isVector() ?
482     LT.second.getVectorNumElements() : 1;
483 
484   MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy;
485 
486   if (SLT == MVT::f64)
487     return LT.first * NElts * get64BitInstrCost();
488 
489   if (ST->has16BitInsts() && SLT == MVT::f16)
490     NElts = (NElts + 1) / 2;
491 
492   return LT.first * NElts * (ST->hasFastFMAF32() ? getHalfRateInstrCost()
493                                                  : getQuarterRateInstrCost());
494 }
495 
496 int GCNTTIImpl::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
497                                       ArrayRef<Value*> Args, FastMathFlags FMF,
498                                       unsigned VF) {
499   return getIntrinsicInstrCost<Value>(ID, RetTy, Args, FMF, VF);
500 }
501 
502 int GCNTTIImpl::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
503                                       ArrayRef<Type *> Tys, FastMathFlags FMF,
504                                       unsigned ScalarizationCostPassed) {
505   return getIntrinsicInstrCost<Type>(ID, RetTy, Tys, FMF,
506                                      ScalarizationCostPassed);
507 }
508 
509 unsigned GCNTTIImpl::getCFInstrCost(unsigned Opcode) {
510   // XXX - For some reason this isn't called for switch.
511   switch (Opcode) {
512   case Instruction::Br:
513   case Instruction::Ret:
514     return 10;
515   default:
516     return BaseT::getCFInstrCost(Opcode);
517   }
518 }
519 
520 int GCNTTIImpl::getArithmeticReductionCost(unsigned Opcode, Type *Ty,
521                                               bool IsPairwise) {
522   EVT OrigTy = TLI->getValueType(DL, Ty);
523 
524   // Computes cost on targets that have packed math instructions(which support
525   // 16-bit types only).
526   if (IsPairwise ||
527       !ST->hasVOP3PInsts() ||
528       OrigTy.getScalarSizeInBits() != 16)
529     return BaseT::getArithmeticReductionCost(Opcode, Ty, IsPairwise);
530 
531   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
532   return LT.first * getFullRateInstrCost();
533 }
534 
535 int GCNTTIImpl::getMinMaxReductionCost(Type *Ty, Type *CondTy,
536                                           bool IsPairwise,
537                                           bool IsUnsigned) {
538   EVT OrigTy = TLI->getValueType(DL, Ty);
539 
540   // Computes cost on targets that have packed math instructions(which support
541   // 16-bit types only).
542   if (IsPairwise ||
543       !ST->hasVOP3PInsts() ||
544       OrigTy.getScalarSizeInBits() != 16)
545     return BaseT::getMinMaxReductionCost(Ty, CondTy, IsPairwise, IsUnsigned);
546 
547   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
548   return LT.first * getHalfRateInstrCost();
549 }
550 
551 int GCNTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy,
552                                       unsigned Index) {
553   switch (Opcode) {
554   case Instruction::ExtractElement:
555   case Instruction::InsertElement: {
556     unsigned EltSize
557       = DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType());
558     if (EltSize < 32) {
559       if (EltSize == 16 && Index == 0 && ST->has16BitInsts())
560         return 0;
561       return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
562     }
563 
564     // Extracts are just reads of a subregister, so are free. Inserts are
565     // considered free because we don't want to have any cost for scalarizing
566     // operations, and we don't have to copy into a different register class.
567 
568     // Dynamic indexing isn't free and is best avoided.
569     return Index == ~0u ? 2 : 0;
570   }
571   default:
572     return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
573   }
574 }
575 
576 
577 
578 static bool isArgPassedInSGPR(const Argument *A) {
579   const Function *F = A->getParent();
580 
581   // Arguments to compute shaders are never a source of divergence.
582   CallingConv::ID CC = F->getCallingConv();
583   switch (CC) {
584   case CallingConv::AMDGPU_KERNEL:
585   case CallingConv::SPIR_KERNEL:
586     return true;
587   case CallingConv::AMDGPU_VS:
588   case CallingConv::AMDGPU_LS:
589   case CallingConv::AMDGPU_HS:
590   case CallingConv::AMDGPU_ES:
591   case CallingConv::AMDGPU_GS:
592   case CallingConv::AMDGPU_PS:
593   case CallingConv::AMDGPU_CS:
594     // For non-compute shaders, SGPR inputs are marked with either inreg or byval.
595     // Everything else is in VGPRs.
596     return F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::InReg) ||
597            F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::ByVal);
598   default:
599     // TODO: Should calls support inreg for SGPR inputs?
600     return false;
601   }
602 }
603 
604 /// \returns true if the result of the value could potentially be
605 /// different across workitems in a wavefront.
606 bool GCNTTIImpl::isSourceOfDivergence(const Value *V) const {
607   if (const Argument *A = dyn_cast<Argument>(V))
608     return !isArgPassedInSGPR(A);
609 
610   // Loads from the private and flat address spaces are divergent, because
611   // threads can execute the load instruction with the same inputs and get
612   // different results.
613   //
614   // All other loads are not divergent, because if threads issue loads with the
615   // same arguments, they will always get the same result.
616   if (const LoadInst *Load = dyn_cast<LoadInst>(V))
617     return Load->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS ||
618            Load->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS;
619 
620   // Atomics are divergent because they are executed sequentially: when an
621   // atomic operation refers to the same address in each thread, then each
622   // thread after the first sees the value written by the previous thread as
623   // original value.
624   if (isa<AtomicRMWInst>(V) || isa<AtomicCmpXchgInst>(V))
625     return true;
626 
627   if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V))
628     return AMDGPU::isIntrinsicSourceOfDivergence(Intrinsic->getIntrinsicID());
629 
630   // Assume all function calls are a source of divergence.
631   if (isa<CallInst>(V) || isa<InvokeInst>(V))
632     return true;
633 
634   return false;
635 }
636 
637 bool GCNTTIImpl::isAlwaysUniform(const Value *V) const {
638   if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) {
639     switch (Intrinsic->getIntrinsicID()) {
640     default:
641       return false;
642     case Intrinsic::amdgcn_readfirstlane:
643     case Intrinsic::amdgcn_readlane:
644     case Intrinsic::amdgcn_icmp:
645     case Intrinsic::amdgcn_fcmp:
646       return true;
647     }
648   }
649   return false;
650 }
651 
652 bool GCNTTIImpl::collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes,
653                                             Intrinsic::ID IID) const {
654   switch (IID) {
655   case Intrinsic::amdgcn_atomic_inc:
656   case Intrinsic::amdgcn_atomic_dec:
657   case Intrinsic::amdgcn_ds_fadd:
658   case Intrinsic::amdgcn_ds_fmin:
659   case Intrinsic::amdgcn_ds_fmax:
660   case Intrinsic::amdgcn_is_shared:
661   case Intrinsic::amdgcn_is_private:
662     OpIndexes.push_back(0);
663     return true;
664   default:
665     return false;
666   }
667 }
668 
669 bool GCNTTIImpl::rewriteIntrinsicWithAddressSpace(
670   IntrinsicInst *II, Value *OldV, Value *NewV) const {
671   auto IntrID = II->getIntrinsicID();
672   switch (IntrID) {
673   case Intrinsic::amdgcn_atomic_inc:
674   case Intrinsic::amdgcn_atomic_dec:
675   case Intrinsic::amdgcn_ds_fadd:
676   case Intrinsic::amdgcn_ds_fmin:
677   case Intrinsic::amdgcn_ds_fmax: {
678     const ConstantInt *IsVolatile = cast<ConstantInt>(II->getArgOperand(4));
679     if (!IsVolatile->isZero())
680       return false;
681     Module *M = II->getParent()->getParent()->getParent();
682     Type *DestTy = II->getType();
683     Type *SrcTy = NewV->getType();
684     Function *NewDecl =
685         Intrinsic::getDeclaration(M, II->getIntrinsicID(), {DestTy, SrcTy});
686     II->setArgOperand(0, NewV);
687     II->setCalledFunction(NewDecl);
688     return true;
689   }
690   case Intrinsic::amdgcn_is_shared:
691   case Intrinsic::amdgcn_is_private: {
692     unsigned TrueAS = IntrID == Intrinsic::amdgcn_is_shared ?
693       AMDGPUAS::LOCAL_ADDRESS : AMDGPUAS::PRIVATE_ADDRESS;
694     unsigned NewAS = NewV->getType()->getPointerAddressSpace();
695     LLVMContext &Ctx = NewV->getType()->getContext();
696     ConstantInt *NewVal = (TrueAS == NewAS) ?
697       ConstantInt::getTrue(Ctx) : ConstantInt::getFalse(Ctx);
698     II->replaceAllUsesWith(NewVal);
699     II->eraseFromParent();
700     return true;
701   }
702   default:
703     return false;
704   }
705 }
706 
707 unsigned GCNTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
708                                        Type *SubTp) {
709   if (ST->hasVOP3PInsts()) {
710     VectorType *VT = cast<VectorType>(Tp);
711     if (VT->getNumElements() == 2 &&
712         DL.getTypeSizeInBits(VT->getElementType()) == 16) {
713       // With op_sel VOP3P instructions freely can access the low half or high
714       // half of a register, so any swizzle is free.
715 
716       switch (Kind) {
717       case TTI::SK_Broadcast:
718       case TTI::SK_Reverse:
719       case TTI::SK_PermuteSingleSrc:
720         return 0;
721       default:
722         break;
723       }
724     }
725   }
726 
727   return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
728 }
729 
730 bool GCNTTIImpl::areInlineCompatible(const Function *Caller,
731                                      const Function *Callee) const {
732   const TargetMachine &TM = getTLI()->getTargetMachine();
733   const GCNSubtarget *CallerST
734     = static_cast<const GCNSubtarget *>(TM.getSubtargetImpl(*Caller));
735   const GCNSubtarget *CalleeST
736     = static_cast<const GCNSubtarget *>(TM.getSubtargetImpl(*Callee));
737 
738   const FeatureBitset &CallerBits = CallerST->getFeatureBits();
739   const FeatureBitset &CalleeBits = CalleeST->getFeatureBits();
740 
741   FeatureBitset RealCallerBits = CallerBits & ~InlineFeatureIgnoreList;
742   FeatureBitset RealCalleeBits = CalleeBits & ~InlineFeatureIgnoreList;
743   if ((RealCallerBits & RealCalleeBits) != RealCalleeBits)
744     return false;
745 
746   // FIXME: dx10_clamp can just take the caller setting, but there seems to be
747   // no way to support merge for backend defined attributes.
748   AMDGPU::SIModeRegisterDefaults CallerMode(*Caller, *CallerST);
749   AMDGPU::SIModeRegisterDefaults CalleeMode(*Callee, *CalleeST);
750   return CallerMode.isInlineCompatible(CalleeMode);
751 }
752 
753 void GCNTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
754                                          TTI::UnrollingPreferences &UP) {
755   CommonTTI.getUnrollingPreferences(L, SE, UP);
756 }
757 
758 unsigned GCNTTIImpl::getUserCost(const User *U,
759                                  ArrayRef<const Value *> Operands) {
760   const Instruction *I = dyn_cast<Instruction>(U);
761   if (!I)
762     return BaseT::getUserCost(U, Operands);
763 
764   // Estimate different operations to be optimized out
765   switch (I->getOpcode()) {
766   case Instruction::ExtractElement: {
767     ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
768     unsigned Idx = -1;
769     if (CI)
770       Idx = CI->getZExtValue();
771     return getVectorInstrCost(I->getOpcode(), I->getOperand(0)->getType(), Idx);
772   }
773   case Instruction::InsertElement: {
774     ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2));
775     unsigned Idx = -1;
776     if (CI)
777       Idx = CI->getZExtValue();
778     return getVectorInstrCost(I->getOpcode(), I->getType(), Idx);
779   }
780   case Instruction::Call: {
781     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
782       SmallVector<Value *, 4> Args(II->arg_operands());
783       FastMathFlags FMF;
784       if (auto *FPMO = dyn_cast<FPMathOperator>(II))
785         FMF = FPMO->getFastMathFlags();
786       return getIntrinsicInstrCost(II->getIntrinsicID(), II->getType(), Args,
787                                    FMF);
788     } else {
789       return BaseT::getUserCost(U, Operands);
790     }
791   }
792   case Instruction::ShuffleVector: {
793     const ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
794     Type *Ty = Shuffle->getType();
795     Type *SrcTy = Shuffle->getOperand(0)->getType();
796 
797     // TODO: Identify and add costs for insert subvector, etc.
798     int SubIndex;
799     if (Shuffle->isExtractSubvectorMask(SubIndex))
800       return getShuffleCost(TTI::SK_ExtractSubvector, SrcTy, SubIndex, Ty);
801 
802     if (Shuffle->changesLength())
803       return BaseT::getUserCost(U, Operands);
804 
805     if (Shuffle->isIdentity())
806       return 0;
807 
808     if (Shuffle->isReverse())
809       return getShuffleCost(TTI::SK_Reverse, Ty, 0, nullptr);
810 
811     if (Shuffle->isSelect())
812       return getShuffleCost(TTI::SK_Select, Ty, 0, nullptr);
813 
814     if (Shuffle->isTranspose())
815       return getShuffleCost(TTI::SK_Transpose, Ty, 0, nullptr);
816 
817     if (Shuffle->isZeroEltSplat())
818       return getShuffleCost(TTI::SK_Broadcast, Ty, 0, nullptr);
819 
820     if (Shuffle->isSingleSource())
821       return getShuffleCost(TTI::SK_PermuteSingleSrc, Ty, 0, nullptr);
822 
823     return getShuffleCost(TTI::SK_PermuteTwoSrc, Ty, 0, nullptr);
824   }
825   case Instruction::ZExt:
826   case Instruction::SExt:
827   case Instruction::FPToUI:
828   case Instruction::FPToSI:
829   case Instruction::FPExt:
830   case Instruction::PtrToInt:
831   case Instruction::IntToPtr:
832   case Instruction::SIToFP:
833   case Instruction::UIToFP:
834   case Instruction::Trunc:
835   case Instruction::FPTrunc:
836   case Instruction::BitCast:
837   case Instruction::AddrSpaceCast: {
838     return getCastInstrCost(I->getOpcode(), I->getType(),
839                             I->getOperand(0)->getType(), I);
840   }
841   case Instruction::Add:
842   case Instruction::FAdd:
843   case Instruction::Sub:
844   case Instruction::FSub:
845   case Instruction::Mul:
846   case Instruction::FMul:
847   case Instruction::UDiv:
848   case Instruction::SDiv:
849   case Instruction::FDiv:
850   case Instruction::URem:
851   case Instruction::SRem:
852   case Instruction::FRem:
853   case Instruction::Shl:
854   case Instruction::LShr:
855   case Instruction::AShr:
856   case Instruction::And:
857   case Instruction::Or:
858   case Instruction::Xor:
859   case Instruction::FNeg: {
860     return getArithmeticInstrCost(I->getOpcode(), I->getType(),
861                                   TTI::OK_AnyValue, TTI::OK_AnyValue,
862                                   TTI::OP_None, TTI::OP_None, Operands, I);
863   }
864   default:
865     break;
866   }
867 
868   return BaseT::getUserCost(U, Operands);
869 }
870 
871 unsigned R600TTIImpl::getHardwareNumberOfRegisters(bool Vec) const {
872   return 4 * 128; // XXX - 4 channels. Should these count as vector instead?
873 }
874 
875 unsigned R600TTIImpl::getNumberOfRegisters(bool Vec) const {
876   return getHardwareNumberOfRegisters(Vec);
877 }
878 
879 unsigned R600TTIImpl::getRegisterBitWidth(bool Vector) const {
880   return 32;
881 }
882 
883 unsigned R600TTIImpl::getMinVectorRegisterBitWidth() const {
884   return 32;
885 }
886 
887 unsigned R600TTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const {
888   if (AddrSpace == AMDGPUAS::GLOBAL_ADDRESS ||
889       AddrSpace == AMDGPUAS::CONSTANT_ADDRESS)
890     return 128;
891   if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
892       AddrSpace == AMDGPUAS::REGION_ADDRESS)
893     return 64;
894   if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS)
895     return 32;
896 
897   if ((AddrSpace == AMDGPUAS::PARAM_D_ADDRESS ||
898       AddrSpace == AMDGPUAS::PARAM_I_ADDRESS ||
899       (AddrSpace >= AMDGPUAS::CONSTANT_BUFFER_0 &&
900       AddrSpace <= AMDGPUAS::CONSTANT_BUFFER_15)))
901     return 128;
902   llvm_unreachable("unhandled address space");
903 }
904 
905 bool R600TTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes,
906                                              unsigned Alignment,
907                                              unsigned AddrSpace) const {
908   // We allow vectorization of flat stores, even though we may need to decompose
909   // them later if they may access private memory. We don't have enough context
910   // here, and legalization can handle it.
911   return (AddrSpace != AMDGPUAS::PRIVATE_ADDRESS);
912 }
913 
914 bool R600TTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
915                                               unsigned Alignment,
916                                               unsigned AddrSpace) const {
917   return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
918 }
919 
920 bool R600TTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
921                                                unsigned Alignment,
922                                                unsigned AddrSpace) const {
923   return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
924 }
925 
926 unsigned R600TTIImpl::getMaxInterleaveFactor(unsigned VF) {
927   // Disable unrolling if the loop is not vectorized.
928   // TODO: Enable this again.
929   if (VF == 1)
930     return 1;
931 
932   return 8;
933 }
934 
935 unsigned R600TTIImpl::getCFInstrCost(unsigned Opcode) {
936   // XXX - For some reason this isn't called for switch.
937   switch (Opcode) {
938   case Instruction::Br:
939   case Instruction::Ret:
940     return 10;
941   default:
942     return BaseT::getCFInstrCost(Opcode);
943   }
944 }
945 
946 int R600TTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy,
947                                     unsigned Index) {
948   switch (Opcode) {
949   case Instruction::ExtractElement:
950   case Instruction::InsertElement: {
951     unsigned EltSize
952       = DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType());
953     if (EltSize < 32) {
954       return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
955     }
956 
957     // Extracts are just reads of a subregister, so are free. Inserts are
958     // considered free because we don't want to have any cost for scalarizing
959     // operations, and we don't have to copy into a different register class.
960 
961     // Dynamic indexing isn't free and is best avoided.
962     return Index == ~0u ? 2 : 0;
963   }
964   default:
965     return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
966   }
967 }
968 
969 void R600TTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
970                                           TTI::UnrollingPreferences &UP) {
971   CommonTTI.getUnrollingPreferences(L, SE, UP);
972 }
973