1//===-- EvergreenInstructions.td - EG Instruction defs  ----*- tablegen -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// TableGen definitions for instructions which are:
10// - Available to Evergreen and newer VLIW4/VLIW5 GPUs
11// - Available only on Evergreen family GPUs.
12//
13//===----------------------------------------------------------------------===//
14
15def isEG : Predicate<
16  "Subtarget->getGeneration() >= AMDGPUSubtarget::EVERGREEN && "
17  "!Subtarget->hasCaymanISA()"
18>;
19
20def isEGorCayman : Predicate<
21  "Subtarget->getGeneration() == AMDGPUSubtarget::EVERGREEN ||"
22  "Subtarget->getGeneration() == AMDGPUSubtarget::NORTHERN_ISLANDS"
23>;
24
25class EGPat<dag pattern, dag result> : AMDGPUPat<pattern, result> {
26  let SubtargetPredicate = isEG;
27}
28
29class EGOrCaymanPat<dag pattern, dag result> : AMDGPUPat<pattern, result> {
30  let SubtargetPredicate = isEGorCayman;
31}
32
33def IMMZeroBasedBitfieldMask : ImmLeaf <i32, [{
34  return isMask_32(Imm);
35}]>;
36
37def IMMPopCount : SDNodeXForm<imm, [{
38  return CurDAG->getTargetConstant(countPopulation(N->getZExtValue()), SDLoc(N),
39                                   MVT::i32);
40}]>;
41
42//===----------------------------------------------------------------------===//
43// Evergreen / Cayman store instructions
44//===----------------------------------------------------------------------===//
45
46let SubtargetPredicate = isEGorCayman in {
47
48class CF_MEM_RAT_CACHELESS <bits<6> rat_inst, bits<4> rat_id, bits<4> mask, dag ins,
49                           string name, list<dag> pattern>
50    : EG_CF_RAT <0x57, rat_inst, rat_id, mask, (outs), ins,
51                 "MEM_RAT_CACHELESS "#name, pattern>;
52
53class CF_MEM_RAT <bits<6> rat_inst, bits<4> rat_id, bits<4> mask, dag ins,
54                  dag outs, string name, list<dag> pattern>
55    : EG_CF_RAT <0x56, rat_inst, rat_id, mask, outs, ins,
56                 "MEM_RAT "#name, pattern>;
57
58class CF_MEM_RAT_STORE_TYPED<bits<1> has_eop>
59    : CF_MEM_RAT <0x1, ?, 0xf, (ins R600_Reg128:$rw_gpr, R600_Reg128:$index_gpr,
60                           i32imm:$rat_id, InstFlag:$eop), (outs),
61                  "STORE_TYPED RAT($rat_id) $rw_gpr, $index_gpr"
62                               #!if(has_eop, ", $eop", ""),
63                  [(int_r600_rat_store_typed R600_Reg128:$rw_gpr,
64                                             R600_Reg128:$index_gpr,
65                                             (i32 imm:$rat_id))]>;
66
67def RAT_MSKOR : CF_MEM_RAT <0x11, 0, 0xf,
68  (ins R600_Reg128:$rw_gpr, R600_TReg32_X:$index_gpr), (outs),
69  "MSKOR $rw_gpr.XW, $index_gpr",
70  [(mskor_global v4i32:$rw_gpr, i32:$index_gpr)]
71> {
72  let eop = 0;
73}
74
75
76multiclass RAT_ATOMIC<bits<6> op_ret, bits<6> op_noret, string name> {
77  let Constraints = "$rw_gpr = $out_gpr", eop = 0, mayStore = 1 in {
78  def  _RTN: CF_MEM_RAT <op_ret, 0, 0xf,
79             (ins R600_Reg128:$rw_gpr, R600_TReg32_X:$index_gpr),
80             (outs R600_Reg128:$out_gpr),
81             name # "_RTN $rw_gpr, $index_gpr", [] >;
82  def _NORET: CF_MEM_RAT <op_noret, 0, 0xf,
83              (ins R600_Reg128:$rw_gpr, R600_TReg32_X:$index_gpr),
84              (outs R600_Reg128:$out_gpr),
85              name # " $rw_gpr, $index_gpr", [] >;
86  }
87}
88
89// Swap no-ret is just store. Raw store to cached target
90// can only store on dword, which exactly matches swap_no_ret.
91defm RAT_ATOMIC_XCHG_INT : RAT_ATOMIC<1, 34, "ATOMIC_XCHG_INT">;
92defm RAT_ATOMIC_CMPXCHG_INT : RAT_ATOMIC<4, 36, "ATOMIC_CMPXCHG_INT">;
93defm RAT_ATOMIC_ADD : RAT_ATOMIC<7, 39, "ATOMIC_ADD">;
94defm RAT_ATOMIC_SUB : RAT_ATOMIC<8, 40, "ATOMIC_SUB">;
95defm RAT_ATOMIC_RSUB : RAT_ATOMIC<9, 41, "ATOMIC_RSUB">;
96defm RAT_ATOMIC_MIN_INT : RAT_ATOMIC<10, 42, "ATOMIC_MIN_INT">;
97defm RAT_ATOMIC_MIN_UINT : RAT_ATOMIC<11, 43, "ATOMIC_MIN_UINT">;
98defm RAT_ATOMIC_MAX_INT : RAT_ATOMIC<12, 44, "ATOMIC_MAX_INT">;
99defm RAT_ATOMIC_MAX_UINT : RAT_ATOMIC<13, 45, "ATOMIC_MAX_UINT">;
100defm RAT_ATOMIC_AND : RAT_ATOMIC<14, 46, "ATOMIC_AND">;
101defm RAT_ATOMIC_OR : RAT_ATOMIC<15, 47, "ATOMIC_OR">;
102defm RAT_ATOMIC_XOR : RAT_ATOMIC<16, 48, "ATOMIC_XOR">;
103defm RAT_ATOMIC_INC_UINT : RAT_ATOMIC<18, 50, "ATOMIC_INC_UINT">;
104defm RAT_ATOMIC_DEC_UINT : RAT_ATOMIC<19, 51, "ATOMIC_DEC_UINT">;
105
106} // End SubtargetPredicate = isEGorCayman
107
108//===----------------------------------------------------------------------===//
109// Evergreen Only instructions
110//===----------------------------------------------------------------------===//
111
112let SubtargetPredicate = isEG in {
113
114def RECIP_IEEE_eg : RECIP_IEEE_Common<0x86>;
115defm DIV_eg : DIV_Common<RECIP_IEEE_eg>;
116
117def MULLO_INT_eg : MULLO_INT_Common<0x8F>;
118def MULHI_INT_eg : MULHI_INT_Common<0x90>;
119def MULLO_UINT_eg : MULLO_UINT_Common<0x91>;
120def MULHI_UINT_eg : MULHI_UINT_Common<0x92>;
121def MULHI_UINT24_eg : MULHI_UINT24_Common<0xb2>;
122
123def RECIP_UINT_eg : RECIP_UINT_Common<0x94>;
124def RECIPSQRT_CLAMPED_eg : RECIPSQRT_CLAMPED_Common<0x87>;
125def EXP_IEEE_eg : EXP_IEEE_Common<0x81>;
126def LOG_IEEE_eg : LOG_IEEE_Common<0x83>;
127def RECIP_CLAMPED_eg : RECIP_CLAMPED_Common<0x84>;
128def RECIPSQRT_IEEE_eg : RECIPSQRT_IEEE_Common<0x89>;
129def : SqrtPat<RECIPSQRT_IEEE_eg, RECIP_IEEE_eg>;
130
131def SIN_eg : SIN_Common<0x8D>;
132def COS_eg : COS_Common<0x8E>;
133
134def : POW_Common <LOG_IEEE_eg, EXP_IEEE_eg, MUL>;
135} // End SubtargetPredicate = isEG
136
137//===----------------------------------------------------------------------===//
138// Memory read/write instructions
139//===----------------------------------------------------------------------===//
140
141let usesCustomInserter = 1 in {
142
143// 32-bit store
144def RAT_WRITE_CACHELESS_32_eg : CF_MEM_RAT_CACHELESS <0x2, 0, 0x1,
145  (ins R600_TReg32_X:$rw_gpr, R600_TReg32_X:$index_gpr, InstFlag:$eop),
146  "STORE_RAW $rw_gpr, $index_gpr, $eop",
147  [(store_global i32:$rw_gpr, i32:$index_gpr)]
148>;
149
150// 64-bit store
151def RAT_WRITE_CACHELESS_64_eg : CF_MEM_RAT_CACHELESS <0x2, 0, 0x3,
152  (ins R600_Reg64:$rw_gpr, R600_TReg32_X:$index_gpr, InstFlag:$eop),
153  "STORE_RAW $rw_gpr.XY, $index_gpr, $eop",
154  [(store_global v2i32:$rw_gpr, i32:$index_gpr)]
155>;
156
157//128-bit store
158def RAT_WRITE_CACHELESS_128_eg : CF_MEM_RAT_CACHELESS <0x2, 0, 0xf,
159  (ins R600_Reg128:$rw_gpr, R600_TReg32_X:$index_gpr, InstFlag:$eop),
160  "STORE_RAW $rw_gpr.XYZW, $index_gpr, $eop",
161  [(store_global v4i32:$rw_gpr, i32:$index_gpr)]
162>;
163
164def RAT_STORE_TYPED_eg: CF_MEM_RAT_STORE_TYPED<1>;
165
166} // End usesCustomInserter = 1
167
168class VTX_READ_eg <string name, dag outs>
169    : VTX_WORD0_eg, VTX_READ<name, outs, []> {
170
171  // Static fields
172  let VC_INST = 0;
173  let FETCH_TYPE = 2;
174  let FETCH_WHOLE_QUAD = 0;
175  let SRC_REL = 0;
176  // XXX: We can infer this field based on the SRC_GPR.  This would allow us
177  // to store vertex addresses in any channel, not just X.
178  let SRC_SEL_X = 0;
179
180  let Inst{31-0} = Word0;
181}
182
183def VTX_READ_8_eg
184    : VTX_READ_eg <"VTX_READ_8 $dst_gpr, $src_gpr",
185                   (outs R600_TReg32_X:$dst_gpr)> {
186
187  let MEGA_FETCH_COUNT = 1;
188  let DST_SEL_X = 0;
189  let DST_SEL_Y = 7;   // Masked
190  let DST_SEL_Z = 7;   // Masked
191  let DST_SEL_W = 7;   // Masked
192  let DATA_FORMAT = 1; // FMT_8
193}
194
195def VTX_READ_16_eg
196    : VTX_READ_eg <"VTX_READ_16 $dst_gpr, $src_gpr",
197                   (outs R600_TReg32_X:$dst_gpr)> {
198  let MEGA_FETCH_COUNT = 2;
199  let DST_SEL_X = 0;
200  let DST_SEL_Y = 7;   // Masked
201  let DST_SEL_Z = 7;   // Masked
202  let DST_SEL_W = 7;   // Masked
203  let DATA_FORMAT = 5; // FMT_16
204
205}
206
207def VTX_READ_32_eg
208    : VTX_READ_eg <"VTX_READ_32 $dst_gpr, $src_gpr",
209                   (outs R600_TReg32_X:$dst_gpr)> {
210
211  let MEGA_FETCH_COUNT = 4;
212  let DST_SEL_X        = 0;
213  let DST_SEL_Y        = 7;   // Masked
214  let DST_SEL_Z        = 7;   // Masked
215  let DST_SEL_W        = 7;   // Masked
216  let DATA_FORMAT      = 0xD; // COLOR_32
217
218  // This is not really necessary, but there were some GPU hangs that appeared
219  // to be caused by ALU instructions in the next instruction group that wrote
220  // to the $src_gpr registers of the VTX_READ.
221  // e.g.
222  // %t3_x = VTX_READ_PARAM_32_eg killed %t2_x, 24
223  // %t2_x = MOV %zero
224  //Adding this constraint prevents this from happening.
225  let Constraints = "$src_gpr.ptr = $dst_gpr";
226}
227
228def VTX_READ_64_eg
229    : VTX_READ_eg <"VTX_READ_64 $dst_gpr.XY, $src_gpr",
230                   (outs R600_Reg64:$dst_gpr)> {
231
232  let MEGA_FETCH_COUNT = 8;
233  let DST_SEL_X        = 0;
234  let DST_SEL_Y        = 1;
235  let DST_SEL_Z        = 7;
236  let DST_SEL_W        = 7;
237  let DATA_FORMAT      = 0x1D; // COLOR_32_32
238}
239
240def VTX_READ_128_eg
241    : VTX_READ_eg <"VTX_READ_128 $dst_gpr.XYZW, $src_gpr",
242                   (outs R600_Reg128:$dst_gpr)> {
243
244  let MEGA_FETCH_COUNT = 16;
245  let DST_SEL_X        =  0;
246  let DST_SEL_Y        =  1;
247  let DST_SEL_Z        =  2;
248  let DST_SEL_W        =  3;
249  let DATA_FORMAT      =  0x22; // COLOR_32_32_32_32
250
251  // XXX: Need to force VTX_READ_128 instructions to write to the same register
252  // that holds its buffer address to avoid potential hangs.  We can't use
253  // the same constraint as VTX_READ_32_eg, because the $src_gpr.ptr and $dst
254  // registers are different sizes.
255}
256
257//===----------------------------------------------------------------------===//
258// VTX Read from parameter memory space
259//===----------------------------------------------------------------------===//
260def : EGPat<(i32:$dst_gpr (vtx_id3_az_extloadi8 ADDRVTX_READ:$src_gpr)),
261          (VTX_READ_8_eg MEMxi:$src_gpr, 3)>;
262def : EGPat<(i32:$dst_gpr (vtx_id3_az_extloadi16 ADDRVTX_READ:$src_gpr)),
263          (VTX_READ_16_eg MEMxi:$src_gpr, 3)>;
264def : EGPat<(i32:$dst_gpr (vtx_id3_load ADDRVTX_READ:$src_gpr)),
265          (VTX_READ_32_eg MEMxi:$src_gpr, 3)>;
266def : EGPat<(v2i32:$dst_gpr (vtx_id3_load ADDRVTX_READ:$src_gpr)),
267          (VTX_READ_64_eg MEMxi:$src_gpr, 3)>;
268def : EGPat<(v4i32:$dst_gpr (vtx_id3_load ADDRVTX_READ:$src_gpr)),
269          (VTX_READ_128_eg MEMxi:$src_gpr, 3)>;
270
271//===----------------------------------------------------------------------===//
272// VTX Read from constant memory space
273//===----------------------------------------------------------------------===//
274def : EGPat<(i32:$dst_gpr (vtx_id2_az_extloadi8 ADDRVTX_READ:$src_gpr)),
275          (VTX_READ_8_eg MEMxi:$src_gpr, 2)>;
276def : EGPat<(i32:$dst_gpr (vtx_id2_az_extloadi16 ADDRVTX_READ:$src_gpr)),
277          (VTX_READ_16_eg MEMxi:$src_gpr, 2)>;
278def : EGPat<(i32:$dst_gpr (vtx_id2_load ADDRVTX_READ:$src_gpr)),
279          (VTX_READ_32_eg MEMxi:$src_gpr, 2)>;
280def : EGPat<(v2i32:$dst_gpr (vtx_id2_load ADDRVTX_READ:$src_gpr)),
281          (VTX_READ_64_eg MEMxi:$src_gpr, 2)>;
282def : EGPat<(v4i32:$dst_gpr (vtx_id2_load ADDRVTX_READ:$src_gpr)),
283          (VTX_READ_128_eg MEMxi:$src_gpr, 2)>;
284
285//===----------------------------------------------------------------------===//
286// VTX Read from global memory space
287//===----------------------------------------------------------------------===//
288def : EGPat<(i32:$dst_gpr (vtx_id1_az_extloadi8 ADDRVTX_READ:$src_gpr)),
289          (VTX_READ_8_eg MEMxi:$src_gpr, 1)>;
290def : EGPat<(i32:$dst_gpr (vtx_id1_az_extloadi16 ADDRVTX_READ:$src_gpr)),
291          (VTX_READ_16_eg MEMxi:$src_gpr, 1)>;
292def : EGPat<(i32:$dst_gpr (vtx_id1_load ADDRVTX_READ:$src_gpr)),
293          (VTX_READ_32_eg MEMxi:$src_gpr, 1)>;
294def : EGPat<(v2i32:$dst_gpr (vtx_id1_load ADDRVTX_READ:$src_gpr)),
295          (VTX_READ_64_eg MEMxi:$src_gpr, 1)>;
296def : EGPat<(v4i32:$dst_gpr (vtx_id1_load ADDRVTX_READ:$src_gpr)),
297          (VTX_READ_128_eg MEMxi:$src_gpr, 1)>;
298
299//===----------------------------------------------------------------------===//
300// Evergreen / Cayman Instructions
301//===----------------------------------------------------------------------===//
302
303let SubtargetPredicate = isEGorCayman in {
304
305multiclass AtomicPat<Instruction inst_noret,
306                     SDPatternOperator node_noret> {
307  // FIXME: Add _RTN version. We need per WI scratch location to store the old value
308  // EXTRACT_SUBREG here is dummy, we know the node has no uses
309  def : EGOrCaymanPat<(i32 (node_noret i32:$ptr, i32:$data)),
310            (EXTRACT_SUBREG (inst_noret
311              (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), $data, sub0), $ptr), sub1)>;
312}
313multiclass AtomicIncDecPat<Instruction inst_noret,
314                           SDPatternOperator node_noret, int C> {
315  // FIXME: Add _RTN version. We need per WI scratch location to store the old value
316  // EXTRACT_SUBREG here is dummy, we know the node has no uses
317  def : EGOrCaymanPat<(i32 (node_noret i32:$ptr, C)),
318            (EXTRACT_SUBREG (inst_noret
319              (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), (MOV_IMM_I32 -1), sub0), $ptr), sub1)>;
320}
321
322// CMPSWAP is pattern is special
323// EXTRACT_SUBREG here is dummy, we know the node has no uses
324// FIXME: Add _RTN version. We need per WI scratch location to store the old value
325def : EGOrCaymanPat<(i32 (atomic_cmp_swap_global_noret i32:$ptr, i32:$cmp, i32:$data)),
326          (EXTRACT_SUBREG (RAT_ATOMIC_CMPXCHG_INT_NORET
327            (INSERT_SUBREG
328              (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), $cmp, sub3),
329            $data, sub0),
330          $ptr), sub1)>;
331
332defm AtomicSwapPat : AtomicPat <RAT_ATOMIC_XCHG_INT_NORET,
333                                atomic_swap_global_noret_32>;
334defm AtomicAddPat : AtomicPat <RAT_ATOMIC_ADD_NORET,
335                               atomic_load_add_global_noret_32>;
336defm AtomicSubPat : AtomicPat <RAT_ATOMIC_SUB_NORET,
337                               atomic_load_sub_global_noret_32>;
338defm AtomicMinPat : AtomicPat <RAT_ATOMIC_MIN_INT_NORET,
339                               atomic_load_min_global_noret_32>;
340defm AtomicUMinPat : AtomicPat <RAT_ATOMIC_MIN_UINT_NORET,
341                                atomic_load_umin_global_noret_32>;
342defm AtomicMaxPat : AtomicPat <RAT_ATOMIC_MAX_INT_NORET,
343                               atomic_load_max_global_noret_32>;
344defm AtomicUMaxPat : AtomicPat <RAT_ATOMIC_MAX_UINT_NORET,
345                                atomic_load_umax_global_noret_32>;
346defm AtomicAndPat : AtomicPat <RAT_ATOMIC_AND_NORET,
347                               atomic_load_and_global_noret_32>;
348defm AtomicOrPat : AtomicPat <RAT_ATOMIC_OR_NORET,
349                              atomic_load_or_global_noret_32>;
350defm AtomicXorPat : AtomicPat <RAT_ATOMIC_XOR_NORET,
351                               atomic_load_xor_global_noret_32>;
352defm AtomicIncAddPat : AtomicIncDecPat <RAT_ATOMIC_INC_UINT_NORET,
353                                        atomic_load_add_global_noret_32, 1>;
354defm AtomicIncSubPat : AtomicIncDecPat <RAT_ATOMIC_INC_UINT_NORET,
355                                        atomic_load_sub_global_noret_32, -1>;
356defm AtomicDecAddPat : AtomicIncDecPat <RAT_ATOMIC_DEC_UINT_NORET,
357                                        atomic_load_add_global_noret_32, -1>;
358defm AtomicDecSubPat : AtomicIncDecPat <RAT_ATOMIC_DEC_UINT_NORET,
359                                        atomic_load_sub_global_noret_32, 1>;
360
361// Should be predicated on FeatureFP64
362// def FMA_64 : R600_3OP <
363//   0xA, "FMA_64",
364//   [(set f64:$dst, (fma f64:$src0, f64:$src1, f64:$src2))]
365// >;
366
367// BFE_UINT - bit_extract, an optimization for mask and shift
368// Src0 = Input
369// Src1 = Offset
370// Src2 = Width
371//
372// bit_extract = (Input << (32 - Offset - Width)) >> (32 - Width)
373//
374// Example Usage:
375// (Offset, Width)
376//
377// (0, 8)  = (Input << 24) >> 24 = (Input &  0xff)       >> 0
378// (8, 8)  = (Input << 16) >> 24 = (Input &  0xffff)     >> 8
379// (16, 8) = (Input <<  8) >> 24 = (Input &  0xffffff)   >> 16
380// (24, 8) = (Input <<  0) >> 24 = (Input &  0xffffffff) >> 24
381def BFE_UINT_eg : R600_3OP <0x4, "BFE_UINT",
382  [(set i32:$dst, (AMDGPUbfe_u32 i32:$src0, i32:$src1, i32:$src2))],
383  VecALU
384>;
385
386def BFE_INT_eg : R600_3OP <0x5, "BFE_INT",
387  [(set i32:$dst, (AMDGPUbfe_i32 i32:$src0, i32:$src1, i32:$src2))],
388  VecALU
389>;
390
391// Bitfield extract patterns
392
393def : AMDGPUPat <
394  (and (i32 (srl i32:$src, i32:$rshift)), IMMZeroBasedBitfieldMask:$mask),
395  (BFE_UINT_eg $src, $rshift, (MOV_IMM_I32 (i32 (IMMPopCount $mask))))
396>;
397
398// x & ((1 << y) - 1)
399def : AMDGPUPat <
400  (and i32:$src, (add_oneuse (shl_oneuse 1, i32:$width), -1)),
401  (BFE_UINT_eg $src, (MOV_IMM_I32 (i32 0)), $width)
402>;
403
404// x & ~(-1 << y)
405def : AMDGPUPat <
406  (and i32:$src, (xor_oneuse (shl_oneuse -1, i32:$width), -1)),
407  (BFE_UINT_eg $src, (MOV_IMM_I32 (i32 0)), $width)
408>;
409
410// x & (-1 >> (bitwidth - y))
411def : AMDGPUPat <
412  (and i32:$src, (srl_oneuse -1, (sub 32, i32:$width))),
413  (BFE_UINT_eg $src, (MOV_IMM_I32 (i32 0)), $width)
414>;
415
416// x << (bitwidth - y) >> (bitwidth - y)
417def : AMDGPUPat <
418  (srl (shl_oneuse i32:$src, (sub 32, i32:$width)), (sub 32, i32:$width)),
419  (BFE_UINT_eg $src, (MOV_IMM_I32 (i32 0)), $width)
420>;
421
422def : AMDGPUPat <
423  (sra (shl_oneuse i32:$src, (sub 32, i32:$width)), (sub 32, i32:$width)),
424  (BFE_INT_eg $src, (MOV_IMM_I32 (i32 0)), $width)
425>;
426
427def BFI_INT_eg : R600_3OP <0x06, "BFI_INT",
428  [(set i32:$dst, (AMDGPUbfi i32:$src0, i32:$src1, i32:$src2))],
429  VecALU
430>;
431
432def : EGOrCaymanPat<(i32 (sext_inreg i32:$src, i1)),
433  (BFE_INT_eg i32:$src, (i32 ZERO), (i32 ONE_INT))>;
434def : EGOrCaymanPat<(i32 (sext_inreg i32:$src, i8)),
435  (BFE_INT_eg i32:$src, (i32 ZERO), (MOV_IMM_I32 8))>;
436def : EGOrCaymanPat<(i32 (sext_inreg i32:$src, i16)),
437  (BFE_INT_eg i32:$src, (i32 ZERO), (MOV_IMM_I32 16))>;
438
439// BFI patterns
440
441// Definition from ISA doc:
442// (y & x) | (z & ~x)
443def : AMDGPUPat <
444  (or (and i32:$y, i32:$x), (and i32:$z, (not i32:$x))),
445  (BFI_INT_eg $x, $y, $z)
446>;
447
448// 64-bit version
449def : AMDGPUPat <
450  (or (and i64:$y, i64:$x), (and i64:$z, (not i64:$x))),
451  (REG_SEQUENCE R600_Reg64,
452    (BFI_INT_eg (i32 (EXTRACT_SUBREG R600_Reg64:$x, sub0)),
453                (i32 (EXTRACT_SUBREG R600_Reg64:$y, sub0)),
454                (i32 (EXTRACT_SUBREG R600_Reg64:$z, sub0))), sub0,
455    (BFI_INT_eg (i32 (EXTRACT_SUBREG R600_Reg64:$x, sub1)),
456                (i32 (EXTRACT_SUBREG R600_Reg64:$y, sub1)),
457                (i32 (EXTRACT_SUBREG R600_Reg64:$z, sub1))), sub1)
458>;
459
460// SHA-256 Ch function
461// z ^ (x & (y ^ z))
462def : AMDGPUPat <
463  (xor i32:$z, (and i32:$x, (xor i32:$y, i32:$z))),
464  (BFI_INT_eg $x, $y, $z)
465>;
466
467// 64-bit version
468def : AMDGPUPat <
469  (xor i64:$z, (and i64:$x, (xor i64:$y, i64:$z))),
470  (REG_SEQUENCE R600_Reg64,
471    (BFI_INT_eg (i32 (EXTRACT_SUBREG R600_Reg64:$x, sub0)),
472                (i32 (EXTRACT_SUBREG R600_Reg64:$y, sub0)),
473                (i32 (EXTRACT_SUBREG R600_Reg64:$z, sub0))), sub0,
474    (BFI_INT_eg (i32 (EXTRACT_SUBREG R600_Reg64:$x, sub1)),
475                (i32 (EXTRACT_SUBREG R600_Reg64:$y, sub1)),
476                (i32 (EXTRACT_SUBREG R600_Reg64:$z, sub1))), sub1)
477>;
478
479def : AMDGPUPat <
480  (fcopysign f32:$src0, f32:$src1),
481  (BFI_INT_eg (MOV_IMM_I32 (i32 0x7fffffff)), $src0, $src1)
482>;
483
484def : AMDGPUPat <
485  (fcopysign f32:$src0, f64:$src1),
486  (BFI_INT_eg (MOV_IMM_I32 (i32 0x7fffffff)), $src0,
487              (i32 (EXTRACT_SUBREG R600_Reg64:$src1, sub1)))
488>;
489
490def : AMDGPUPat <
491  (fcopysign f64:$src0, f64:$src1),
492  (REG_SEQUENCE R600_Reg64,
493    (i32 (EXTRACT_SUBREG $src0, sub0)), sub0,
494    (BFI_INT_eg (MOV_IMM_I32 (i32 0x7fffffff)),
495                (i32 (EXTRACT_SUBREG R600_Reg64:$src0, sub1)),
496                (i32 (EXTRACT_SUBREG R600_Reg64:$src1, sub1))), sub1)
497>;
498
499def : AMDGPUPat <
500  (fcopysign f64:$src0, f32:$src1),
501  (REG_SEQUENCE R600_Reg64,
502    (i32 (EXTRACT_SUBREG $src0, sub0)), sub0,
503    (BFI_INT_eg (MOV_IMM_I32 (i32 0x7fffffff)),
504                (i32 (EXTRACT_SUBREG R600_Reg64:$src0, sub1)),
505                $src1), sub1)
506>;
507
508def BFM_INT_eg : R600_2OP <0xA0, "BFM_INT",
509  [(set i32:$dst, (AMDGPUbfm i32:$src0, i32:$src1))],
510  VecALU
511>;
512
513def MULADD_UINT24_eg : R600_3OP <0x10, "MULADD_UINT24",
514  [(set i32:$dst, (AMDGPUmad_u24 i32:$src0, i32:$src1, i32:$src2))], VecALU
515>;
516
517def : UMad24Pat<MULADD_UINT24_eg>;
518
519def BIT_ALIGN_INT_eg : R600_3OP <0xC, "BIT_ALIGN_INT", [], VecALU>;
520def : AMDGPUPat <
521  (fshr i32:$src0, i32:$src1, i32:$src2),
522  (BIT_ALIGN_INT_eg $src0, $src1, $src2)
523>;
524def : ROTRPattern <BIT_ALIGN_INT_eg>;
525def MULADD_eg : MULADD_Common<0x14>;
526def MULADD_IEEE_eg : MULADD_IEEE_Common<0x18>;
527def FMA_eg : FMA_Common<0x7>;
528def ASHR_eg : ASHR_Common<0x15>;
529def LSHR_eg : LSHR_Common<0x16>;
530def LSHL_eg : LSHL_Common<0x17>;
531def CNDE_eg : CNDE_Common<0x19>;
532def CNDGT_eg : CNDGT_Common<0x1A>;
533def CNDGE_eg : CNDGE_Common<0x1B>;
534def MUL_LIT_eg : MUL_LIT_Common<0x1F>;
535def LOG_CLAMPED_eg : LOG_CLAMPED_Common<0x82>;
536def MUL_UINT24_eg : R600_2OP <0xB5, "MUL_UINT24",
537  [(set i32:$dst, (AMDGPUmul_u24 i32:$src0, i32:$src1))], VecALU
538>;
539def DOT4_eg : DOT4_Common<0xBE>;
540defm CUBE_eg : CUBE_Common<0xC0>;
541
542
543def ADDC_UINT : R600_2OP_Helper <0x52, "ADDC_UINT", AMDGPUcarry>;
544def SUBB_UINT : R600_2OP_Helper <0x53, "SUBB_UINT", AMDGPUborrow>;
545
546def FLT32_TO_FLT16 : R600_1OP_Helper <0xA2, "FLT32_TO_FLT16", AMDGPUfp_to_f16, VecALU>;
547def FLT16_TO_FLT32 : R600_1OP_Helper <0xA3, "FLT16_TO_FLT32", f16_to_fp, VecALU>;
548def BCNT_INT : R600_1OP_Helper <0xAA, "BCNT_INT", ctpop, VecALU>;
549def FFBH_UINT : R600_1OP_Helper <0xAB, "FFBH_UINT", AMDGPUffbh_u32, VecALU>;
550def FFBL_INT : R600_1OP_Helper <0xAC, "FFBL_INT", AMDGPUffbl_b32, VecALU>;
551
552let hasSideEffects = 1 in {
553  def MOVA_INT_eg : R600_1OP <0xCC, "MOVA_INT", [], VecALU>;
554}
555
556def FLT_TO_INT_eg : FLT_TO_INT_Common<0x50> {
557  let Pattern = [];
558  let Itinerary = AnyALU;
559}
560
561def INT_TO_FLT_eg : INT_TO_FLT_Common<0x9B>;
562
563def FLT_TO_UINT_eg : FLT_TO_UINT_Common<0x9A> {
564  let Pattern = [];
565}
566
567def UINT_TO_FLT_eg : UINT_TO_FLT_Common<0x9C>;
568
569def GROUP_BARRIER : InstR600 <
570    (outs), (ins), "  GROUP_BARRIER", [(int_r600_group_barrier)], AnyALU>,
571    R600ALU_Word0,
572    R600ALU_Word1_OP2 <0x54> {
573
574  let dst = 0;
575  let dst_rel = 0;
576  let src0 = 0;
577  let src0_rel = 0;
578  let src0_neg = 0;
579  let src0_abs = 0;
580  let src1 = 0;
581  let src1_rel = 0;
582  let src1_neg = 0;
583  let src1_abs = 0;
584  let write = 0;
585  let omod = 0;
586  let clamp = 0;
587  let last = 1;
588  let bank_swizzle = 0;
589  let pred_sel = 0;
590  let update_exec_mask = 0;
591  let update_pred = 0;
592
593  let Inst{31-0}  = Word0;
594  let Inst{63-32} = Word1;
595
596  let ALUInst = 1;
597}
598
599//===----------------------------------------------------------------------===//
600// LDS Instructions
601//===----------------------------------------------------------------------===//
602class R600_LDS  <bits<6> op, dag outs, dag ins, string asm,
603                 list<dag> pattern = []> :
604
605    InstR600 <outs, ins, asm, pattern, XALU>,
606    R600_ALU_LDS_Word0,
607    R600LDS_Word1 {
608
609  bits<6>  offset = 0;
610  let lds_op = op;
611
612  let Word1{27} = offset{0};
613  let Word1{12} = offset{1};
614  let Word1{28} = offset{2};
615  let Word1{31} = offset{3};
616  let Word0{12} = offset{4};
617  let Word0{25} = offset{5};
618
619
620  let Inst{31-0}  = Word0;
621  let Inst{63-32} = Word1;
622
623  let ALUInst = 1;
624  let HasNativeOperands = 1;
625  let UseNamedOperandTable = 1;
626}
627
628class R600_LDS_1A <bits<6> lds_op, string name, list<dag> pattern> : R600_LDS <
629  lds_op,
630  (outs R600_Reg32:$dst),
631  (ins R600_Reg32:$src0, REL:$src0_rel, SEL:$src0_sel,
632       LAST:$last, R600_Pred:$pred_sel,
633       BANK_SWIZZLE:$bank_swizzle),
634  "  "#name#" $last OQAP, $src0$src0_rel $pred_sel",
635  pattern
636  > {
637
638  let src1 = 0;
639  let src1_rel = 0;
640  let src2 = 0;
641  let src2_rel = 0;
642
643  let usesCustomInserter = 1;
644  let LDS_1A = 1;
645  let DisableEncoding = "$dst";
646}
647
648class R600_LDS_1A1D <bits<6> lds_op, dag outs, string name, list<dag> pattern,
649                     string dst =""> :
650    R600_LDS <
651  lds_op, outs,
652  (ins R600_Reg32:$src0, REL:$src0_rel, SEL:$src0_sel,
653       R600_Reg32:$src1, REL:$src1_rel, SEL:$src1_sel,
654       LAST:$last, R600_Pred:$pred_sel,
655       BANK_SWIZZLE:$bank_swizzle),
656  "  "#name#" $last "#dst#"$src0$src0_rel, $src1$src1_rel, $pred_sel",
657  pattern
658  > {
659
660  field string BaseOp;
661
662  let src2 = 0;
663  let src2_rel = 0;
664  let LDS_1A1D = 1;
665}
666
667class R600_LDS_1A1D_NORET <bits<6> lds_op, string name, list<dag> pattern> :
668    R600_LDS_1A1D <lds_op, (outs), name, pattern> {
669  let BaseOp = name;
670}
671
672class R600_LDS_1A1D_RET <bits<6> lds_op, string name, list<dag> pattern> :
673    R600_LDS_1A1D <lds_op,  (outs R600_Reg32:$dst), name#"_RET", pattern, "OQAP, "> {
674
675  let BaseOp = name;
676  let usesCustomInserter = 1;
677  let DisableEncoding = "$dst";
678}
679
680class R600_LDS_1A2D <bits<6> lds_op, dag outs, string name, list<dag> pattern,
681                     string dst =""> :
682    R600_LDS <
683  lds_op, outs,
684  (ins R600_Reg32:$src0, REL:$src0_rel, SEL:$src0_sel,
685       R600_Reg32:$src1, REL:$src1_rel, SEL:$src1_sel,
686       R600_Reg32:$src2, REL:$src2_rel, SEL:$src2_sel,
687       LAST:$last, R600_Pred:$pred_sel, BANK_SWIZZLE:$bank_swizzle),
688  "  "#name# "$last "#dst#"$src0$src0_rel, $src1$src1_rel, $src2$src2_rel, $pred_sel",
689  pattern> {
690
691  field string BaseOp;
692
693  let LDS_1A1D = 0;
694  let LDS_1A2D = 1;
695}
696
697class R600_LDS_1A2D_NORET <bits<6> lds_op, string name, list<dag> pattern> :
698    R600_LDS_1A2D <lds_op, (outs), name, pattern> {
699  let BaseOp = name;
700}
701
702class R600_LDS_1A2D_RET <bits<6> lds_op, string name, list<dag> pattern> :
703    R600_LDS_1A2D <lds_op, (outs R600_Reg32:$dst), name, pattern> {
704
705  let BaseOp = name;
706  let usesCustomInserter = 1;
707  let DisableEncoding = "$dst";
708}
709
710def LDS_ADD : R600_LDS_1A1D_NORET <0x0, "LDS_ADD", [] >;
711def LDS_SUB : R600_LDS_1A1D_NORET <0x1, "LDS_SUB", [] >;
712def LDS_AND : R600_LDS_1A1D_NORET <0x9, "LDS_AND", [] >;
713def LDS_OR : R600_LDS_1A1D_NORET <0xa, "LDS_OR", [] >;
714def LDS_XOR : R600_LDS_1A1D_NORET <0xb, "LDS_XOR", [] >;
715def LDS_WRXCHG: R600_LDS_1A1D_NORET <0xd, "LDS_WRXCHG", [] >;
716def LDS_CMPST: R600_LDS_1A2D_NORET <0x10, "LDS_CMPST", [] >;
717def LDS_MIN_INT : R600_LDS_1A1D_NORET <0x5, "LDS_MIN_INT", [] >;
718def LDS_MAX_INT : R600_LDS_1A1D_NORET <0x6, "LDS_MAX_INT", [] >;
719def LDS_MIN_UINT : R600_LDS_1A1D_NORET <0x7, "LDS_MIN_UINT", [] >;
720def LDS_MAX_UINT : R600_LDS_1A1D_NORET <0x8, "LDS_MAX_UINT", [] >;
721def LDS_WRITE : R600_LDS_1A1D_NORET <0xD, "LDS_WRITE",
722  [(store_local (i32 R600_Reg32:$src1), R600_Reg32:$src0)]
723>;
724def LDS_BYTE_WRITE : R600_LDS_1A1D_NORET<0x12, "LDS_BYTE_WRITE",
725  [(truncstorei8_local i32:$src1, i32:$src0)]
726>;
727def LDS_SHORT_WRITE : R600_LDS_1A1D_NORET<0x13, "LDS_SHORT_WRITE",
728  [(truncstorei16_local i32:$src1, i32:$src0)]
729>;
730def LDS_ADD_RET : R600_LDS_1A1D_RET <0x20, "LDS_ADD",
731  [(set i32:$dst, (atomic_load_add_local_32 i32:$src0, i32:$src1))]
732>;
733def LDS_SUB_RET : R600_LDS_1A1D_RET <0x21, "LDS_SUB",
734  [(set i32:$dst, (atomic_load_sub_local_32 i32:$src0, i32:$src1))]
735>;
736def LDS_AND_RET : R600_LDS_1A1D_RET <0x29, "LDS_AND",
737  [(set i32:$dst, (atomic_load_and_local_32 i32:$src0, i32:$src1))]
738>;
739def LDS_OR_RET : R600_LDS_1A1D_RET <0x2a, "LDS_OR",
740  [(set i32:$dst, (atomic_load_or_local_32 i32:$src0, i32:$src1))]
741>;
742def LDS_XOR_RET : R600_LDS_1A1D_RET <0x2b, "LDS_XOR",
743  [(set i32:$dst, (atomic_load_xor_local_32 i32:$src0, i32:$src1))]
744>;
745def LDS_MIN_INT_RET : R600_LDS_1A1D_RET <0x25, "LDS_MIN_INT",
746  [(set i32:$dst, (atomic_load_min_local_32 i32:$src0, i32:$src1))]
747>;
748def LDS_MAX_INT_RET : R600_LDS_1A1D_RET <0x26, "LDS_MAX_INT",
749  [(set i32:$dst, (atomic_load_max_local_32 i32:$src0, i32:$src1))]
750>;
751def LDS_MIN_UINT_RET : R600_LDS_1A1D_RET <0x27, "LDS_MIN_UINT",
752  [(set i32:$dst, (atomic_load_umin_local_32 i32:$src0, i32:$src1))]
753>;
754def LDS_MAX_UINT_RET : R600_LDS_1A1D_RET <0x28, "LDS_MAX_UINT",
755  [(set i32:$dst, (atomic_load_umax_local_32 i32:$src0, i32:$src1))]
756>;
757def LDS_WRXCHG_RET : R600_LDS_1A1D_RET <0x2d, "LDS_WRXCHG",
758  [(set i32:$dst, (atomic_swap_local_32 i32:$src0, i32:$src1))]
759>;
760def LDS_CMPST_RET : R600_LDS_1A2D_RET <0x30, "LDS_CMPST",
761  [(set i32:$dst, (atomic_cmp_swap_local_32 i32:$src0, i32:$src1, i32:$src2))]
762>;
763def LDS_READ_RET : R600_LDS_1A <0x32, "LDS_READ_RET",
764  [(set (i32 R600_Reg32:$dst), (load_local R600_Reg32:$src0))]
765>;
766def LDS_BYTE_READ_RET : R600_LDS_1A <0x36, "LDS_BYTE_READ_RET",
767  [(set i32:$dst, (sextloadi8_local i32:$src0))]
768>;
769def LDS_UBYTE_READ_RET : R600_LDS_1A <0x37, "LDS_UBYTE_READ_RET",
770  [(set i32:$dst, (az_extloadi8_local i32:$src0))]
771>;
772def LDS_SHORT_READ_RET : R600_LDS_1A <0x38, "LDS_SHORT_READ_RET",
773  [(set i32:$dst, (sextloadi16_local i32:$src0))]
774>;
775def LDS_USHORT_READ_RET : R600_LDS_1A <0x39, "LDS_USHORT_READ_RET",
776  [(set i32:$dst, (az_extloadi16_local i32:$src0))]
777>;
778
779// TRUNC is used for the FLT_TO_INT instructions to work around a
780// perceived problem where the rounding modes are applied differently
781// depending on the instruction and the slot they are in.
782// See:
783// https://bugs.freedesktop.org/show_bug.cgi?id=50232
784// Mesa commit: a1a0974401c467cb86ef818f22df67c21774a38c
785//
786// XXX: Lowering SELECT_CC will sometimes generate fp_to_[su]int nodes,
787// which do not need to be truncated since the fp values are 0.0f or 1.0f.
788// We should look into handling these cases separately.
789def : EGOrCaymanPat<(fp_to_sint f32:$src0), (FLT_TO_INT_eg (TRUNC $src0))>;
790
791def : EGOrCaymanPat<(fp_to_uint f32:$src0), (FLT_TO_UINT_eg (TRUNC $src0))>;
792
793// SHA-256 Ma patterns
794
795// ((x & z) | (y & (x | z))) -> BFI (XOR x, y), z, y
796def : AMDGPUPat <
797  (or (and i32:$x, i32:$z), (and i32:$y, (or i32:$x, i32:$z))),
798  (BFI_INT_eg (XOR_INT i32:$x, i32:$y), i32:$z, i32:$y)
799>;
800
801def : AMDGPUPat <
802  (or (and i64:$x, i64:$z), (and i64:$y, (or i64:$x, i64:$z))),
803  (REG_SEQUENCE R600_Reg64,
804    (BFI_INT_eg (XOR_INT (i32 (EXTRACT_SUBREG R600_Reg64:$x, sub0)),
805                     (i32 (EXTRACT_SUBREG R600_Reg64:$y, sub0))),
806                (i32 (EXTRACT_SUBREG R600_Reg64:$z, sub0)),
807                (i32 (EXTRACT_SUBREG R600_Reg64:$y, sub0))), sub0,
808    (BFI_INT_eg (XOR_INT (i32 (EXTRACT_SUBREG R600_Reg64:$x, sub1)),
809                     (i32 (EXTRACT_SUBREG R600_Reg64:$y, sub1))),
810                (i32 (EXTRACT_SUBREG R600_Reg64:$z, sub1)),
811                (i32 (EXTRACT_SUBREG R600_Reg64:$y, sub1))), sub1)
812>;
813
814def EG_ExportSwz : ExportSwzInst {
815  let Word1{19-16} = 0; // BURST_COUNT
816  let Word1{20} = 0; // VALID_PIXEL_MODE
817  let Word1{21} = eop;
818  let Word1{29-22} = inst;
819  let Word1{30} = 0; // MARK
820  let Word1{31} = 1; // BARRIER
821}
822defm : ExportPattern<EG_ExportSwz, 83>;
823
824def EG_ExportBuf : ExportBufInst {
825  let Word1{19-16} = 0; // BURST_COUNT
826  let Word1{20} = 0; // VALID_PIXEL_MODE
827  let Word1{21} = eop;
828  let Word1{29-22} = inst;
829  let Word1{30} = 0; // MARK
830  let Word1{31} = 1; // BARRIER
831}
832defm : SteamOutputExportPattern<EG_ExportBuf, 0x40, 0x41, 0x42, 0x43>;
833
834def CF_TC_EG : CF_CLAUSE_EG<1, (ins i32imm:$ADDR, i32imm:$COUNT),
835  "TEX $COUNT @$ADDR"> {
836  let POP_COUNT = 0;
837}
838def CF_VC_EG : CF_CLAUSE_EG<2, (ins i32imm:$ADDR, i32imm:$COUNT),
839  "VTX $COUNT @$ADDR"> {
840  let POP_COUNT = 0;
841}
842def WHILE_LOOP_EG : CF_CLAUSE_EG<6, (ins i32imm:$ADDR),
843  "LOOP_START_DX10 @$ADDR"> {
844  let POP_COUNT = 0;
845  let COUNT = 0;
846}
847def END_LOOP_EG : CF_CLAUSE_EG<5, (ins i32imm:$ADDR), "END_LOOP @$ADDR"> {
848  let POP_COUNT = 0;
849  let COUNT = 0;
850}
851def LOOP_BREAK_EG : CF_CLAUSE_EG<9, (ins i32imm:$ADDR),
852  "LOOP_BREAK @$ADDR"> {
853  let POP_COUNT = 0;
854  let COUNT = 0;
855}
856def CF_CONTINUE_EG : CF_CLAUSE_EG<8, (ins i32imm:$ADDR),
857  "CONTINUE @$ADDR"> {
858  let POP_COUNT = 0;
859  let COUNT = 0;
860}
861def CF_JUMP_EG : CF_CLAUSE_EG<10, (ins i32imm:$ADDR, i32imm:$POP_COUNT),
862  "JUMP @$ADDR POP:$POP_COUNT"> {
863  let COUNT = 0;
864}
865def CF_PUSH_EG : CF_CLAUSE_EG<11, (ins i32imm:$ADDR, i32imm:$POP_COUNT),
866                              "PUSH @$ADDR POP:$POP_COUNT"> {
867  let COUNT = 0;
868}
869def CF_ELSE_EG : CF_CLAUSE_EG<13, (ins i32imm:$ADDR, i32imm:$POP_COUNT),
870  "ELSE @$ADDR POP:$POP_COUNT"> {
871  let COUNT = 0;
872}
873def CF_CALL_FS_EG : CF_CLAUSE_EG<19, (ins), "CALL_FS"> {
874  let ADDR = 0;
875  let COUNT = 0;
876  let POP_COUNT = 0;
877}
878def POP_EG : CF_CLAUSE_EG<14, (ins i32imm:$ADDR, i32imm:$POP_COUNT),
879  "POP @$ADDR POP:$POP_COUNT"> {
880  let COUNT = 0;
881}
882def CF_END_EG :  CF_CLAUSE_EG<0, (ins), "CF_END"> {
883  let COUNT = 0;
884  let POP_COUNT = 0;
885  let ADDR = 0;
886  let END_OF_PROGRAM = 1;
887}
888
889} // End Predicates = [isEGorCayman]
890