1 //===-- R600ISelLowering.cpp - R600 DAG Lowering Implementation -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// Custom DAG lowering for R600
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "R600ISelLowering.h"
15 #include "AMDGPU.h"
16 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
17 #include "R600Defines.h"
18 #include "R600InstrInfo.h"
19 #include "R600MachineFunctionInfo.h"
20 #include "R600Subtarget.h"
21 #include "llvm/IR/IntrinsicsAMDGPU.h"
22 #include "llvm/IR/IntrinsicsR600.h"
23 
24 using namespace llvm;
25 
26 #include "R600GenCallingConv.inc"
27 
28 R600TargetLowering::R600TargetLowering(const TargetMachine &TM,
29                                        const R600Subtarget &STI)
30     : AMDGPUTargetLowering(TM, STI), Subtarget(&STI), Gen(STI.getGeneration()) {
31   addRegisterClass(MVT::f32, &R600::R600_Reg32RegClass);
32   addRegisterClass(MVT::i32, &R600::R600_Reg32RegClass);
33   addRegisterClass(MVT::v2f32, &R600::R600_Reg64RegClass);
34   addRegisterClass(MVT::v2i32, &R600::R600_Reg64RegClass);
35   addRegisterClass(MVT::v4f32, &R600::R600_Reg128RegClass);
36   addRegisterClass(MVT::v4i32, &R600::R600_Reg128RegClass);
37 
38   setBooleanContents(ZeroOrNegativeOneBooleanContent);
39   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
40 
41   computeRegisterProperties(Subtarget->getRegisterInfo());
42 
43   // Legalize loads and stores to the private address space.
44   setOperationAction(ISD::LOAD, MVT::i32, Custom);
45   setOperationAction(ISD::LOAD, MVT::v2i32, Custom);
46   setOperationAction(ISD::LOAD, MVT::v4i32, Custom);
47 
48   // EXTLOAD should be the same as ZEXTLOAD. It is legal for some address
49   // spaces, so it is custom lowered to handle those where it isn't.
50   for (MVT VT : MVT::integer_valuetypes()) {
51     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
52     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Custom);
53     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Custom);
54 
55     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
56     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Custom);
57     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Custom);
58 
59     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
60     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Custom);
61     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Custom);
62   }
63 
64   // Workaround for LegalizeDAG asserting on expansion of i1 vector loads.
65   setLoadExtAction(ISD::EXTLOAD, MVT::v2i32, MVT::v2i1, Expand);
66   setLoadExtAction(ISD::SEXTLOAD, MVT::v2i32, MVT::v2i1, Expand);
67   setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i32, MVT::v2i1, Expand);
68 
69   setLoadExtAction(ISD::EXTLOAD, MVT::v4i32, MVT::v4i1, Expand);
70   setLoadExtAction(ISD::SEXTLOAD, MVT::v4i32, MVT::v4i1, Expand);
71   setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i32, MVT::v4i1, Expand);
72 
73   setOperationAction(ISD::STORE, MVT::i8, Custom);
74   setOperationAction(ISD::STORE, MVT::i32, Custom);
75   setOperationAction(ISD::STORE, MVT::v2i32, Custom);
76   setOperationAction(ISD::STORE, MVT::v4i32, Custom);
77 
78   setTruncStoreAction(MVT::i32, MVT::i8, Custom);
79   setTruncStoreAction(MVT::i32, MVT::i16, Custom);
80   // We need to include these since trunc STORES to PRIVATE need
81   // special handling to accommodate RMW
82   setTruncStoreAction(MVT::v2i32, MVT::v2i16, Custom);
83   setTruncStoreAction(MVT::v4i32, MVT::v4i16, Custom);
84   setTruncStoreAction(MVT::v8i32, MVT::v8i16, Custom);
85   setTruncStoreAction(MVT::v16i32, MVT::v16i16, Custom);
86   setTruncStoreAction(MVT::v32i32, MVT::v32i16, Custom);
87   setTruncStoreAction(MVT::v2i32, MVT::v2i8, Custom);
88   setTruncStoreAction(MVT::v4i32, MVT::v4i8, Custom);
89   setTruncStoreAction(MVT::v8i32, MVT::v8i8, Custom);
90   setTruncStoreAction(MVT::v16i32, MVT::v16i8, Custom);
91   setTruncStoreAction(MVT::v32i32, MVT::v32i8, Custom);
92 
93   // Workaround for LegalizeDAG asserting on expansion of i1 vector stores.
94   setTruncStoreAction(MVT::v2i32, MVT::v2i1, Expand);
95   setTruncStoreAction(MVT::v4i32, MVT::v4i1, Expand);
96 
97   // Set condition code actions
98   setCondCodeAction(ISD::SETO,   MVT::f32, Expand);
99   setCondCodeAction(ISD::SETUO,  MVT::f32, Expand);
100   setCondCodeAction(ISD::SETLT,  MVT::f32, Expand);
101   setCondCodeAction(ISD::SETLE,  MVT::f32, Expand);
102   setCondCodeAction(ISD::SETOLT, MVT::f32, Expand);
103   setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
104   setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
105   setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
106   setCondCodeAction(ISD::SETUGE, MVT::f32, Expand);
107   setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
108   setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
109   setCondCodeAction(ISD::SETULE, MVT::f32, Expand);
110 
111   setCondCodeAction(ISD::SETLE, MVT::i32, Expand);
112   setCondCodeAction(ISD::SETLT, MVT::i32, Expand);
113   setCondCodeAction(ISD::SETULE, MVT::i32, Expand);
114   setCondCodeAction(ISD::SETULT, MVT::i32, Expand);
115 
116   setOperationAction(ISD::FCOS, MVT::f32, Custom);
117   setOperationAction(ISD::FSIN, MVT::f32, Custom);
118 
119   setOperationAction(ISD::SETCC, MVT::v4i32, Expand);
120   setOperationAction(ISD::SETCC, MVT::v2i32, Expand);
121 
122   setOperationAction(ISD::BR_CC, MVT::i32, Expand);
123   setOperationAction(ISD::BR_CC, MVT::f32, Expand);
124   setOperationAction(ISD::BRCOND, MVT::Other, Custom);
125 
126   setOperationAction(ISD::FSUB, MVT::f32, Expand);
127 
128   setOperationAction(ISD::FCEIL, MVT::f64, Custom);
129   setOperationAction(ISD::FTRUNC, MVT::f64, Custom);
130   setOperationAction(ISD::FRINT, MVT::f64, Custom);
131   setOperationAction(ISD::FFLOOR, MVT::f64, Custom);
132 
133   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
134   setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
135 
136   setOperationAction(ISD::SETCC, MVT::i32, Expand);
137   setOperationAction(ISD::SETCC, MVT::f32, Expand);
138   setOperationAction(ISD::FP_TO_UINT, MVT::i1, Custom);
139   setOperationAction(ISD::FP_TO_SINT, MVT::i1, Custom);
140   setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
141   setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
142 
143   setOperationAction(ISD::SELECT, MVT::i32, Expand);
144   setOperationAction(ISD::SELECT, MVT::f32, Expand);
145   setOperationAction(ISD::SELECT, MVT::v2i32, Expand);
146   setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
147 
148   // ADD, SUB overflow.
149   // TODO: turn these into Legal?
150   if (Subtarget->hasCARRY())
151     setOperationAction(ISD::UADDO, MVT::i32, Custom);
152 
153   if (Subtarget->hasBORROW())
154     setOperationAction(ISD::USUBO, MVT::i32, Custom);
155 
156   // Expand sign extension of vectors
157   if (!Subtarget->hasBFE())
158     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
159 
160   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i1, Expand);
161   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i1, Expand);
162 
163   if (!Subtarget->hasBFE())
164     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
165   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Expand);
166   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Expand);
167 
168   if (!Subtarget->hasBFE())
169     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
170   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Expand);
171   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Expand);
172 
173   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
174   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Expand);
175   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Expand);
176 
177   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Expand);
178 
179   setOperationAction(ISD::FrameIndex, MVT::i32, Custom);
180 
181   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i32, Custom);
182   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f32, Custom);
183   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
184   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
185 
186   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i32, Custom);
187   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f32, Custom);
188   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
189   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
190 
191   // We don't have 64-bit shifts. Thus we need either SHX i64 or SHX_PARTS i32
192   //  to be Legal/Custom in order to avoid library calls.
193   setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
194   setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
195   setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
196 
197   if (!Subtarget->hasFMA()) {
198     setOperationAction(ISD::FMA, MVT::f32, Expand);
199     setOperationAction(ISD::FMA, MVT::f64, Expand);
200   }
201 
202   // FIXME: May need no denormals check
203   setOperationAction(ISD::FMAD, MVT::f32, Legal);
204 
205   if (!Subtarget->hasBFI()) {
206     // fcopysign can be done in a single instruction with BFI.
207     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
208     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
209   }
210 
211   if (!Subtarget->hasBCNT(32))
212     setOperationAction(ISD::CTPOP, MVT::i32, Expand);
213 
214   if (!Subtarget->hasBCNT(64))
215     setOperationAction(ISD::CTPOP, MVT::i64, Expand);
216 
217   if (Subtarget->hasFFBH())
218     setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom);
219 
220   if (Subtarget->hasFFBL())
221     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom);
222 
223   // FIXME: This was moved from AMDGPUTargetLowering, I'm not sure if we
224   // need it for R600.
225   if (Subtarget->hasBFE())
226     setHasExtractBitsInsn(true);
227 
228   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
229 
230   const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
231   for (MVT VT : ScalarIntVTs) {
232     setOperationAction(ISD::ADDC, VT, Expand);
233     setOperationAction(ISD::SUBC, VT, Expand);
234     setOperationAction(ISD::ADDE, VT, Expand);
235     setOperationAction(ISD::SUBE, VT, Expand);
236   }
237 
238   // LLVM will expand these to atomic_cmp_swap(0)
239   // and atomic_swap, respectively.
240   setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Expand);
241   setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Expand);
242 
243   // We need to custom lower some of the intrinsics
244   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
245   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
246 
247   setSchedulingPreference(Sched::Source);
248 
249   setTargetDAGCombine(ISD::FP_ROUND);
250   setTargetDAGCombine(ISD::FP_TO_SINT);
251   setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
252   setTargetDAGCombine(ISD::SELECT_CC);
253   setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
254   setTargetDAGCombine(ISD::LOAD);
255 }
256 
257 static inline bool isEOP(MachineBasicBlock::iterator I) {
258   if (std::next(I) == I->getParent()->end())
259     return false;
260   return std::next(I)->getOpcode() == R600::RETURN;
261 }
262 
263 MachineBasicBlock *
264 R600TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
265                                                 MachineBasicBlock *BB) const {
266   MachineFunction *MF = BB->getParent();
267   MachineRegisterInfo &MRI = MF->getRegInfo();
268   MachineBasicBlock::iterator I = MI;
269   const R600InstrInfo *TII = Subtarget->getInstrInfo();
270 
271   switch (MI.getOpcode()) {
272   default:
273     // Replace LDS_*_RET instruction that don't have any uses with the
274     // equivalent LDS_*_NORET instruction.
275     if (TII->isLDSRetInstr(MI.getOpcode())) {
276       int DstIdx = TII->getOperandIdx(MI.getOpcode(), R600::OpName::dst);
277       assert(DstIdx != -1);
278       MachineInstrBuilder NewMI;
279       // FIXME: getLDSNoRetOp method only handles LDS_1A1D LDS ops. Add
280       //        LDS_1A2D support and remove this special case.
281       if (!MRI.use_empty(MI.getOperand(DstIdx).getReg()) ||
282           MI.getOpcode() == R600::LDS_CMPST_RET)
283         return BB;
284 
285       NewMI = BuildMI(*BB, I, BB->findDebugLoc(I),
286                       TII->get(R600::getLDSNoRetOp(MI.getOpcode())));
287       for (unsigned i = 1, e = MI.getNumOperands(); i < e; ++i) {
288         NewMI.add(MI.getOperand(i));
289       }
290     } else {
291       return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB);
292     }
293     break;
294 
295   case R600::FABS_R600: {
296     MachineInstr *NewMI = TII->buildDefaultInstruction(
297         *BB, I, R600::MOV, MI.getOperand(0).getReg(),
298         MI.getOperand(1).getReg());
299     TII->addFlag(*NewMI, 0, MO_FLAG_ABS);
300     break;
301   }
302 
303   case R600::FNEG_R600: {
304     MachineInstr *NewMI = TII->buildDefaultInstruction(
305         *BB, I, R600::MOV, MI.getOperand(0).getReg(),
306         MI.getOperand(1).getReg());
307     TII->addFlag(*NewMI, 0, MO_FLAG_NEG);
308     break;
309   }
310 
311   case R600::MASK_WRITE: {
312     Register maskedRegister = MI.getOperand(0).getReg();
313     assert(maskedRegister.isVirtual());
314     MachineInstr * defInstr = MRI.getVRegDef(maskedRegister);
315     TII->addFlag(*defInstr, 0, MO_FLAG_MASK);
316     break;
317   }
318 
319   case R600::MOV_IMM_F32:
320     TII->buildMovImm(*BB, I, MI.getOperand(0).getReg(), MI.getOperand(1)
321                                                             .getFPImm()
322                                                             ->getValueAPF()
323                                                             .bitcastToAPInt()
324                                                             .getZExtValue());
325     break;
326 
327   case R600::MOV_IMM_I32:
328     TII->buildMovImm(*BB, I, MI.getOperand(0).getReg(),
329                      MI.getOperand(1).getImm());
330     break;
331 
332   case R600::MOV_IMM_GLOBAL_ADDR: {
333     //TODO: Perhaps combine this instruction with the next if possible
334     auto MIB = TII->buildDefaultInstruction(
335         *BB, MI, R600::MOV, MI.getOperand(0).getReg(), R600::ALU_LITERAL_X);
336     int Idx = TII->getOperandIdx(*MIB, R600::OpName::literal);
337     //TODO: Ugh this is rather ugly
338     MIB->getOperand(Idx) = MI.getOperand(1);
339     break;
340   }
341 
342   case R600::CONST_COPY: {
343     MachineInstr *NewMI = TII->buildDefaultInstruction(
344         *BB, MI, R600::MOV, MI.getOperand(0).getReg(), R600::ALU_CONST);
345     TII->setImmOperand(*NewMI, R600::OpName::src0_sel,
346                        MI.getOperand(1).getImm());
347     break;
348   }
349 
350   case R600::RAT_WRITE_CACHELESS_32_eg:
351   case R600::RAT_WRITE_CACHELESS_64_eg:
352   case R600::RAT_WRITE_CACHELESS_128_eg:
353     BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(MI.getOpcode()))
354         .add(MI.getOperand(0))
355         .add(MI.getOperand(1))
356         .addImm(isEOP(I)); // Set End of program bit
357     break;
358 
359   case R600::RAT_STORE_TYPED_eg:
360     BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(MI.getOpcode()))
361         .add(MI.getOperand(0))
362         .add(MI.getOperand(1))
363         .add(MI.getOperand(2))
364         .addImm(isEOP(I)); // Set End of program bit
365     break;
366 
367   case R600::BRANCH:
368     BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(R600::JUMP))
369         .add(MI.getOperand(0));
370     break;
371 
372   case R600::BRANCH_COND_f32: {
373     MachineInstr *NewMI =
374         BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(R600::PRED_X),
375                 R600::PREDICATE_BIT)
376             .add(MI.getOperand(1))
377             .addImm(R600::PRED_SETNE)
378             .addImm(0); // Flags
379     TII->addFlag(*NewMI, 0, MO_FLAG_PUSH);
380     BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(R600::JUMP_COND))
381         .add(MI.getOperand(0))
382         .addReg(R600::PREDICATE_BIT, RegState::Kill);
383     break;
384   }
385 
386   case R600::BRANCH_COND_i32: {
387     MachineInstr *NewMI =
388         BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(R600::PRED_X),
389                 R600::PREDICATE_BIT)
390             .add(MI.getOperand(1))
391             .addImm(R600::PRED_SETNE_INT)
392             .addImm(0); // Flags
393     TII->addFlag(*NewMI, 0, MO_FLAG_PUSH);
394     BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(R600::JUMP_COND))
395         .add(MI.getOperand(0))
396         .addReg(R600::PREDICATE_BIT, RegState::Kill);
397     break;
398   }
399 
400   case R600::EG_ExportSwz:
401   case R600::R600_ExportSwz: {
402     // Instruction is left unmodified if its not the last one of its type
403     bool isLastInstructionOfItsType = true;
404     unsigned InstExportType = MI.getOperand(1).getImm();
405     for (MachineBasicBlock::iterator NextExportInst = std::next(I),
406          EndBlock = BB->end(); NextExportInst != EndBlock;
407          NextExportInst = std::next(NextExportInst)) {
408       if (NextExportInst->getOpcode() == R600::EG_ExportSwz ||
409           NextExportInst->getOpcode() == R600::R600_ExportSwz) {
410         unsigned CurrentInstExportType = NextExportInst->getOperand(1)
411             .getImm();
412         if (CurrentInstExportType == InstExportType) {
413           isLastInstructionOfItsType = false;
414           break;
415         }
416       }
417     }
418     bool EOP = isEOP(I);
419     if (!EOP && !isLastInstructionOfItsType)
420       return BB;
421     unsigned CfInst = (MI.getOpcode() == R600::EG_ExportSwz) ? 84 : 40;
422     BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(MI.getOpcode()))
423         .add(MI.getOperand(0))
424         .add(MI.getOperand(1))
425         .add(MI.getOperand(2))
426         .add(MI.getOperand(3))
427         .add(MI.getOperand(4))
428         .add(MI.getOperand(5))
429         .add(MI.getOperand(6))
430         .addImm(CfInst)
431         .addImm(EOP);
432     break;
433   }
434   case R600::RETURN: {
435     return BB;
436   }
437   }
438 
439   MI.eraseFromParent();
440   return BB;
441 }
442 
443 //===----------------------------------------------------------------------===//
444 // Custom DAG Lowering Operations
445 //===----------------------------------------------------------------------===//
446 
447 SDValue R600TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
448   MachineFunction &MF = DAG.getMachineFunction();
449   R600MachineFunctionInfo *MFI = MF.getInfo<R600MachineFunctionInfo>();
450   switch (Op.getOpcode()) {
451   default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
452   case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
453   case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
454   case ISD::SHL_PARTS:
455   case ISD::SRA_PARTS:
456   case ISD::SRL_PARTS: return LowerShiftParts(Op, DAG);
457   case ISD::UADDO: return LowerUADDSUBO(Op, DAG, ISD::ADD, AMDGPUISD::CARRY);
458   case ISD::USUBO: return LowerUADDSUBO(Op, DAG, ISD::SUB, AMDGPUISD::BORROW);
459   case ISD::FCOS:
460   case ISD::FSIN: return LowerTrig(Op, DAG);
461   case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
462   case ISD::STORE: return LowerSTORE(Op, DAG);
463   case ISD::LOAD: {
464     SDValue Result = LowerLOAD(Op, DAG);
465     assert((!Result.getNode() ||
466             Result.getNode()->getNumValues() == 2) &&
467            "Load should return a value and a chain");
468     return Result;
469   }
470 
471   case ISD::BRCOND: return LowerBRCOND(Op, DAG);
472   case ISD::GlobalAddress: return LowerGlobalAddress(MFI, Op, DAG);
473   case ISD::FrameIndex: return lowerFrameIndex(Op, DAG);
474   case ISD::INTRINSIC_VOID: {
475     SDValue Chain = Op.getOperand(0);
476     unsigned IntrinsicID =
477                          cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
478     switch (IntrinsicID) {
479     case Intrinsic::r600_store_swizzle: {
480       SDLoc DL(Op);
481       const SDValue Args[8] = {
482         Chain,
483         Op.getOperand(2), // Export Value
484         Op.getOperand(3), // ArrayBase
485         Op.getOperand(4), // Type
486         DAG.getConstant(0, DL, MVT::i32), // SWZ_X
487         DAG.getConstant(1, DL, MVT::i32), // SWZ_Y
488         DAG.getConstant(2, DL, MVT::i32), // SWZ_Z
489         DAG.getConstant(3, DL, MVT::i32) // SWZ_W
490       };
491       return DAG.getNode(AMDGPUISD::R600_EXPORT, DL, Op.getValueType(), Args);
492     }
493 
494     // default for switch(IntrinsicID)
495     default: break;
496     }
497     // break out of case ISD::INTRINSIC_VOID in switch(Op.getOpcode())
498     break;
499   }
500   case ISD::INTRINSIC_WO_CHAIN: {
501     unsigned IntrinsicID =
502                          cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
503     EVT VT = Op.getValueType();
504     SDLoc DL(Op);
505     switch (IntrinsicID) {
506     case Intrinsic::r600_tex:
507     case Intrinsic::r600_texc: {
508       unsigned TextureOp;
509       switch (IntrinsicID) {
510       case Intrinsic::r600_tex:
511         TextureOp = 0;
512         break;
513       case Intrinsic::r600_texc:
514         TextureOp = 1;
515         break;
516       default:
517         llvm_unreachable("unhandled texture operation");
518       }
519 
520       SDValue TexArgs[19] = {
521         DAG.getConstant(TextureOp, DL, MVT::i32),
522         Op.getOperand(1),
523         DAG.getConstant(0, DL, MVT::i32),
524         DAG.getConstant(1, DL, MVT::i32),
525         DAG.getConstant(2, DL, MVT::i32),
526         DAG.getConstant(3, DL, MVT::i32),
527         Op.getOperand(2),
528         Op.getOperand(3),
529         Op.getOperand(4),
530         DAG.getConstant(0, DL, MVT::i32),
531         DAG.getConstant(1, DL, MVT::i32),
532         DAG.getConstant(2, DL, MVT::i32),
533         DAG.getConstant(3, DL, MVT::i32),
534         Op.getOperand(5),
535         Op.getOperand(6),
536         Op.getOperand(7),
537         Op.getOperand(8),
538         Op.getOperand(9),
539         Op.getOperand(10)
540       };
541       return DAG.getNode(AMDGPUISD::TEXTURE_FETCH, DL, MVT::v4f32, TexArgs);
542     }
543     case Intrinsic::r600_dot4: {
544       SDValue Args[8] = {
545       DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1),
546           DAG.getConstant(0, DL, MVT::i32)),
547       DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2),
548           DAG.getConstant(0, DL, MVT::i32)),
549       DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1),
550           DAG.getConstant(1, DL, MVT::i32)),
551       DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2),
552           DAG.getConstant(1, DL, MVT::i32)),
553       DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1),
554           DAG.getConstant(2, DL, MVT::i32)),
555       DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2),
556           DAG.getConstant(2, DL, MVT::i32)),
557       DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1),
558           DAG.getConstant(3, DL, MVT::i32)),
559       DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2),
560           DAG.getConstant(3, DL, MVT::i32))
561       };
562       return DAG.getNode(AMDGPUISD::DOT4, DL, MVT::f32, Args);
563     }
564 
565     case Intrinsic::r600_implicitarg_ptr: {
566       MVT PtrVT = getPointerTy(DAG.getDataLayout(), AMDGPUAS::PARAM_I_ADDRESS);
567       uint32_t ByteOffset = getImplicitParameterOffset(MF, FIRST_IMPLICIT);
568       return DAG.getConstant(ByteOffset, DL, PtrVT);
569     }
570     case Intrinsic::r600_read_ngroups_x:
571       return LowerImplicitParameter(DAG, VT, DL, 0);
572     case Intrinsic::r600_read_ngroups_y:
573       return LowerImplicitParameter(DAG, VT, DL, 1);
574     case Intrinsic::r600_read_ngroups_z:
575       return LowerImplicitParameter(DAG, VT, DL, 2);
576     case Intrinsic::r600_read_global_size_x:
577       return LowerImplicitParameter(DAG, VT, DL, 3);
578     case Intrinsic::r600_read_global_size_y:
579       return LowerImplicitParameter(DAG, VT, DL, 4);
580     case Intrinsic::r600_read_global_size_z:
581       return LowerImplicitParameter(DAG, VT, DL, 5);
582     case Intrinsic::r600_read_local_size_x:
583       return LowerImplicitParameter(DAG, VT, DL, 6);
584     case Intrinsic::r600_read_local_size_y:
585       return LowerImplicitParameter(DAG, VT, DL, 7);
586     case Intrinsic::r600_read_local_size_z:
587       return LowerImplicitParameter(DAG, VT, DL, 8);
588 
589     case Intrinsic::r600_read_tgid_x:
590     case Intrinsic::amdgcn_workgroup_id_x:
591       return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass,
592                                      R600::T1_X, VT);
593     case Intrinsic::r600_read_tgid_y:
594     case Intrinsic::amdgcn_workgroup_id_y:
595       return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass,
596                                      R600::T1_Y, VT);
597     case Intrinsic::r600_read_tgid_z:
598     case Intrinsic::amdgcn_workgroup_id_z:
599       return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass,
600                                      R600::T1_Z, VT);
601     case Intrinsic::r600_read_tidig_x:
602     case Intrinsic::amdgcn_workitem_id_x:
603       return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass,
604                                      R600::T0_X, VT);
605     case Intrinsic::r600_read_tidig_y:
606     case Intrinsic::amdgcn_workitem_id_y:
607       return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass,
608                                      R600::T0_Y, VT);
609     case Intrinsic::r600_read_tidig_z:
610     case Intrinsic::amdgcn_workitem_id_z:
611       return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass,
612                                      R600::T0_Z, VT);
613 
614     case Intrinsic::r600_recipsqrt_ieee:
615       return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
616 
617     case Intrinsic::r600_recipsqrt_clamped:
618       return DAG.getNode(AMDGPUISD::RSQ_CLAMP, DL, VT, Op.getOperand(1));
619     default:
620       return Op;
621     }
622 
623     // break out of case ISD::INTRINSIC_WO_CHAIN in switch(Op.getOpcode())
624     break;
625   }
626   } // end switch(Op.getOpcode())
627   return SDValue();
628 }
629 
630 void R600TargetLowering::ReplaceNodeResults(SDNode *N,
631                                             SmallVectorImpl<SDValue> &Results,
632                                             SelectionDAG &DAG) const {
633   switch (N->getOpcode()) {
634   default:
635     AMDGPUTargetLowering::ReplaceNodeResults(N, Results, DAG);
636     return;
637   case ISD::FP_TO_UINT:
638     if (N->getValueType(0) == MVT::i1) {
639       Results.push_back(lowerFP_TO_UINT(N->getOperand(0), DAG));
640       return;
641     }
642     // Since we don't care about out of bounds values we can use FP_TO_SINT for
643     // uints too. The DAGLegalizer code for uint considers some extra cases
644     // which are not necessary here.
645     LLVM_FALLTHROUGH;
646   case ISD::FP_TO_SINT: {
647     if (N->getValueType(0) == MVT::i1) {
648       Results.push_back(lowerFP_TO_SINT(N->getOperand(0), DAG));
649       return;
650     }
651 
652     SDValue Result;
653     if (expandFP_TO_SINT(N, Result, DAG))
654       Results.push_back(Result);
655     return;
656   }
657   case ISD::SDIVREM: {
658     SDValue Op = SDValue(N, 1);
659     SDValue RES = LowerSDIVREM(Op, DAG);
660     Results.push_back(RES);
661     Results.push_back(RES.getValue(1));
662     break;
663   }
664   case ISD::UDIVREM: {
665     SDValue Op = SDValue(N, 0);
666     LowerUDIVREM64(Op, DAG, Results);
667     break;
668   }
669   }
670 }
671 
672 SDValue R600TargetLowering::vectorToVerticalVector(SelectionDAG &DAG,
673                                                    SDValue Vector) const {
674   SDLoc DL(Vector);
675   EVT VecVT = Vector.getValueType();
676   EVT EltVT = VecVT.getVectorElementType();
677   SmallVector<SDValue, 8> Args;
678 
679   for (unsigned i = 0, e = VecVT.getVectorNumElements(); i != e; ++i) {
680     Args.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vector,
681                                DAG.getVectorIdxConstant(i, DL)));
682   }
683 
684   return DAG.getNode(AMDGPUISD::BUILD_VERTICAL_VECTOR, DL, VecVT, Args);
685 }
686 
687 SDValue R600TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
688                                                     SelectionDAG &DAG) const {
689   SDLoc DL(Op);
690   SDValue Vector = Op.getOperand(0);
691   SDValue Index = Op.getOperand(1);
692 
693   if (isa<ConstantSDNode>(Index) ||
694       Vector.getOpcode() == AMDGPUISD::BUILD_VERTICAL_VECTOR)
695     return Op;
696 
697   Vector = vectorToVerticalVector(DAG, Vector);
698   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, Op.getValueType(),
699                      Vector, Index);
700 }
701 
702 SDValue R600TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
703                                                    SelectionDAG &DAG) const {
704   SDLoc DL(Op);
705   SDValue Vector = Op.getOperand(0);
706   SDValue Value = Op.getOperand(1);
707   SDValue Index = Op.getOperand(2);
708 
709   if (isa<ConstantSDNode>(Index) ||
710       Vector.getOpcode() == AMDGPUISD::BUILD_VERTICAL_VECTOR)
711     return Op;
712 
713   Vector = vectorToVerticalVector(DAG, Vector);
714   SDValue Insert = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, Op.getValueType(),
715                                Vector, Value, Index);
716   return vectorToVerticalVector(DAG, Insert);
717 }
718 
719 SDValue R600TargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI,
720                                                SDValue Op,
721                                                SelectionDAG &DAG) const {
722   GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op);
723   if (GSD->getAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS)
724     return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG);
725 
726   const DataLayout &DL = DAG.getDataLayout();
727   const GlobalValue *GV = GSD->getGlobal();
728   MVT ConstPtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS);
729 
730   SDValue GA = DAG.getTargetGlobalAddress(GV, SDLoc(GSD), ConstPtrVT);
731   return DAG.getNode(AMDGPUISD::CONST_DATA_PTR, SDLoc(GSD), ConstPtrVT, GA);
732 }
733 
734 SDValue R600TargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const {
735   // On hw >= R700, COS/SIN input must be between -1. and 1.
736   // Thus we lower them to TRIG ( FRACT ( x / 2Pi + 0.5) - 0.5)
737   EVT VT = Op.getValueType();
738   SDValue Arg = Op.getOperand(0);
739   SDLoc DL(Op);
740 
741   // TODO: Should this propagate fast-math-flags?
742   SDValue FractPart = DAG.getNode(AMDGPUISD::FRACT, DL, VT,
743       DAG.getNode(ISD::FADD, DL, VT,
744         DAG.getNode(ISD::FMUL, DL, VT, Arg,
745           DAG.getConstantFP(0.15915494309, DL, MVT::f32)),
746         DAG.getConstantFP(0.5, DL, MVT::f32)));
747   unsigned TrigNode;
748   switch (Op.getOpcode()) {
749   case ISD::FCOS:
750     TrigNode = AMDGPUISD::COS_HW;
751     break;
752   case ISD::FSIN:
753     TrigNode = AMDGPUISD::SIN_HW;
754     break;
755   default:
756     llvm_unreachable("Wrong trig opcode");
757   }
758   SDValue TrigVal = DAG.getNode(TrigNode, DL, VT,
759       DAG.getNode(ISD::FADD, DL, VT, FractPart,
760         DAG.getConstantFP(-0.5, DL, MVT::f32)));
761   if (Gen >= AMDGPUSubtarget::R700)
762     return TrigVal;
763   // On R600 hw, COS/SIN input must be between -Pi and Pi.
764   return DAG.getNode(ISD::FMUL, DL, VT, TrigVal,
765       DAG.getConstantFP(numbers::pif, DL, MVT::f32));
766 }
767 
768 SDValue R600TargetLowering::LowerShiftParts(SDValue Op,
769                                             SelectionDAG &DAG) const {
770   SDValue Lo, Hi;
771   expandShiftParts(Op.getNode(), Lo, Hi, DAG);
772   return DAG.getMergeValues({Lo, Hi}, SDLoc(Op));
773 }
774 
775 SDValue R600TargetLowering::LowerUADDSUBO(SDValue Op, SelectionDAG &DAG,
776                                           unsigned mainop, unsigned ovf) const {
777   SDLoc DL(Op);
778   EVT VT = Op.getValueType();
779 
780   SDValue Lo = Op.getOperand(0);
781   SDValue Hi = Op.getOperand(1);
782 
783   SDValue OVF = DAG.getNode(ovf, DL, VT, Lo, Hi);
784   // Extend sign.
785   OVF = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, OVF,
786                     DAG.getValueType(MVT::i1));
787 
788   SDValue Res = DAG.getNode(mainop, DL, VT, Lo, Hi);
789 
790   return DAG.getNode(ISD::MERGE_VALUES, DL, DAG.getVTList(VT, VT), Res, OVF);
791 }
792 
793 SDValue R600TargetLowering::lowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) const {
794   SDLoc DL(Op);
795   return DAG.getNode(
796       ISD::SETCC,
797       DL,
798       MVT::i1,
799       Op, DAG.getConstantFP(1.0f, DL, MVT::f32),
800       DAG.getCondCode(ISD::SETEQ));
801 }
802 
803 SDValue R600TargetLowering::lowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) const {
804   SDLoc DL(Op);
805   return DAG.getNode(
806       ISD::SETCC,
807       DL,
808       MVT::i1,
809       Op, DAG.getConstantFP(-1.0f, DL, MVT::f32),
810       DAG.getCondCode(ISD::SETEQ));
811 }
812 
813 SDValue R600TargetLowering::LowerImplicitParameter(SelectionDAG &DAG, EVT VT,
814                                                    const SDLoc &DL,
815                                                    unsigned DwordOffset) const {
816   unsigned ByteOffset = DwordOffset * 4;
817   PointerType * PtrType = PointerType::get(VT.getTypeForEVT(*DAG.getContext()),
818                                       AMDGPUAS::PARAM_I_ADDRESS);
819 
820   // We shouldn't be using an offset wider than 16-bits for implicit parameters.
821   assert(isInt<16>(ByteOffset));
822 
823   return DAG.getLoad(VT, DL, DAG.getEntryNode(),
824                      DAG.getConstant(ByteOffset, DL, MVT::i32), // PTR
825                      MachinePointerInfo(ConstantPointerNull::get(PtrType)));
826 }
827 
828 bool R600TargetLowering::isZero(SDValue Op) const {
829   if(ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Op)) {
830     return Cst->isNullValue();
831   } else if(ConstantFPSDNode *CstFP = dyn_cast<ConstantFPSDNode>(Op)){
832     return CstFP->isZero();
833   } else {
834     return false;
835   }
836 }
837 
838 bool R600TargetLowering::isHWTrueValue(SDValue Op) const {
839   if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Op)) {
840     return CFP->isExactlyValue(1.0);
841   }
842   return isAllOnesConstant(Op);
843 }
844 
845 bool R600TargetLowering::isHWFalseValue(SDValue Op) const {
846   if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Op)) {
847     return CFP->getValueAPF().isZero();
848   }
849   return isNullConstant(Op);
850 }
851 
852 SDValue R600TargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
853   SDLoc DL(Op);
854   EVT VT = Op.getValueType();
855 
856   SDValue LHS = Op.getOperand(0);
857   SDValue RHS = Op.getOperand(1);
858   SDValue True = Op.getOperand(2);
859   SDValue False = Op.getOperand(3);
860   SDValue CC = Op.getOperand(4);
861   SDValue Temp;
862 
863   if (VT == MVT::f32) {
864     DAGCombinerInfo DCI(DAG, AfterLegalizeVectorOps, true, nullptr);
865     SDValue MinMax = combineFMinMaxLegacy(DL, VT, LHS, RHS, True, False, CC, DCI);
866     if (MinMax)
867       return MinMax;
868   }
869 
870   // LHS and RHS are guaranteed to be the same value type
871   EVT CompareVT = LHS.getValueType();
872 
873   // Check if we can lower this to a native operation.
874 
875   // Try to lower to a SET* instruction:
876   //
877   // SET* can match the following patterns:
878   //
879   // select_cc f32, f32, -1,  0, cc_supported
880   // select_cc f32, f32, 1.0f, 0.0f, cc_supported
881   // select_cc i32, i32, -1,  0, cc_supported
882   //
883 
884   // Move hardware True/False values to the correct operand.
885   if (isHWTrueValue(False) && isHWFalseValue(True)) {
886     ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
887     ISD::CondCode InverseCC = ISD::getSetCCInverse(CCOpcode, CompareVT);
888     if (isCondCodeLegal(InverseCC, CompareVT.getSimpleVT())) {
889       std::swap(False, True);
890       CC = DAG.getCondCode(InverseCC);
891     } else {
892       ISD::CondCode SwapInvCC = ISD::getSetCCSwappedOperands(InverseCC);
893       if (isCondCodeLegal(SwapInvCC, CompareVT.getSimpleVT())) {
894         std::swap(False, True);
895         std::swap(LHS, RHS);
896         CC = DAG.getCondCode(SwapInvCC);
897       }
898     }
899   }
900 
901   if (isHWTrueValue(True) && isHWFalseValue(False) &&
902       (CompareVT == VT || VT == MVT::i32)) {
903     // This can be matched by a SET* instruction.
904     return DAG.getNode(ISD::SELECT_CC, DL, VT, LHS, RHS, True, False, CC);
905   }
906 
907   // Try to lower to a CND* instruction:
908   //
909   // CND* can match the following patterns:
910   //
911   // select_cc f32, 0.0, f32, f32, cc_supported
912   // select_cc f32, 0.0, i32, i32, cc_supported
913   // select_cc i32, 0,   f32, f32, cc_supported
914   // select_cc i32, 0,   i32, i32, cc_supported
915   //
916 
917   // Try to move the zero value to the RHS
918   if (isZero(LHS)) {
919     ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
920     // Try swapping the operands
921     ISD::CondCode CCSwapped = ISD::getSetCCSwappedOperands(CCOpcode);
922     if (isCondCodeLegal(CCSwapped, CompareVT.getSimpleVT())) {
923       std::swap(LHS, RHS);
924       CC = DAG.getCondCode(CCSwapped);
925     } else {
926       // Try inverting the conditon and then swapping the operands
927       ISD::CondCode CCInv = ISD::getSetCCInverse(CCOpcode, CompareVT);
928       CCSwapped = ISD::getSetCCSwappedOperands(CCInv);
929       if (isCondCodeLegal(CCSwapped, CompareVT.getSimpleVT())) {
930         std::swap(True, False);
931         std::swap(LHS, RHS);
932         CC = DAG.getCondCode(CCSwapped);
933       }
934     }
935   }
936   if (isZero(RHS)) {
937     SDValue Cond = LHS;
938     SDValue Zero = RHS;
939     ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
940     if (CompareVT != VT) {
941       // Bitcast True / False to the correct types.  This will end up being
942       // a nop, but it allows us to define only a single pattern in the
943       // .TD files for each CND* instruction rather than having to have
944       // one pattern for integer True/False and one for fp True/False
945       True = DAG.getNode(ISD::BITCAST, DL, CompareVT, True);
946       False = DAG.getNode(ISD::BITCAST, DL, CompareVT, False);
947     }
948 
949     switch (CCOpcode) {
950     case ISD::SETONE:
951     case ISD::SETUNE:
952     case ISD::SETNE:
953       CCOpcode = ISD::getSetCCInverse(CCOpcode, CompareVT);
954       Temp = True;
955       True = False;
956       False = Temp;
957       break;
958     default:
959       break;
960     }
961     SDValue SelectNode = DAG.getNode(ISD::SELECT_CC, DL, CompareVT,
962         Cond, Zero,
963         True, False,
964         DAG.getCondCode(CCOpcode));
965     return DAG.getNode(ISD::BITCAST, DL, VT, SelectNode);
966   }
967 
968   // If we make it this for it means we have no native instructions to handle
969   // this SELECT_CC, so we must lower it.
970   SDValue HWTrue, HWFalse;
971 
972   if (CompareVT == MVT::f32) {
973     HWTrue = DAG.getConstantFP(1.0f, DL, CompareVT);
974     HWFalse = DAG.getConstantFP(0.0f, DL, CompareVT);
975   } else if (CompareVT == MVT::i32) {
976     HWTrue = DAG.getConstant(-1, DL, CompareVT);
977     HWFalse = DAG.getConstant(0, DL, CompareVT);
978   }
979   else {
980     llvm_unreachable("Unhandled value type in LowerSELECT_CC");
981   }
982 
983   // Lower this unsupported SELECT_CC into a combination of two supported
984   // SELECT_CC operations.
985   SDValue Cond = DAG.getNode(ISD::SELECT_CC, DL, CompareVT, LHS, RHS, HWTrue, HWFalse, CC);
986 
987   return DAG.getNode(ISD::SELECT_CC, DL, VT,
988       Cond, HWFalse,
989       True, False,
990       DAG.getCondCode(ISD::SETNE));
991 }
992 
993 /// LLVM generates byte-addressed pointers.  For indirect addressing, we need to
994 /// convert these pointers to a register index.  Each register holds
995 /// 16 bytes, (4 x 32bit sub-register), but we need to take into account the
996 /// \p StackWidth, which tells us how many of the 4 sub-registrers will be used
997 /// for indirect addressing.
998 SDValue R600TargetLowering::stackPtrToRegIndex(SDValue Ptr,
999                                                unsigned StackWidth,
1000                                                SelectionDAG &DAG) const {
1001   unsigned SRLPad;
1002   switch(StackWidth) {
1003   case 1:
1004     SRLPad = 2;
1005     break;
1006   case 2:
1007     SRLPad = 3;
1008     break;
1009   case 4:
1010     SRLPad = 4;
1011     break;
1012   default: llvm_unreachable("Invalid stack width");
1013   }
1014 
1015   SDLoc DL(Ptr);
1016   return DAG.getNode(ISD::SRL, DL, Ptr.getValueType(), Ptr,
1017                      DAG.getConstant(SRLPad, DL, MVT::i32));
1018 }
1019 
1020 void R600TargetLowering::getStackAddress(unsigned StackWidth,
1021                                          unsigned ElemIdx,
1022                                          unsigned &Channel,
1023                                          unsigned &PtrIncr) const {
1024   switch (StackWidth) {
1025   default:
1026   case 1:
1027     Channel = 0;
1028     if (ElemIdx > 0) {
1029       PtrIncr = 1;
1030     } else {
1031       PtrIncr = 0;
1032     }
1033     break;
1034   case 2:
1035     Channel = ElemIdx % 2;
1036     if (ElemIdx == 2) {
1037       PtrIncr = 1;
1038     } else {
1039       PtrIncr = 0;
1040     }
1041     break;
1042   case 4:
1043     Channel = ElemIdx;
1044     PtrIncr = 0;
1045     break;
1046   }
1047 }
1048 
1049 SDValue R600TargetLowering::lowerPrivateTruncStore(StoreSDNode *Store,
1050                                                    SelectionDAG &DAG) const {
1051   SDLoc DL(Store);
1052   //TODO: Who creates the i8 stores?
1053   assert(Store->isTruncatingStore()
1054          || Store->getValue().getValueType() == MVT::i8);
1055   assert(Store->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS);
1056 
1057   SDValue Mask;
1058   if (Store->getMemoryVT() == MVT::i8) {
1059     assert(Store->getAlignment() >= 1);
1060     Mask = DAG.getConstant(0xff, DL, MVT::i32);
1061   } else if (Store->getMemoryVT() == MVT::i16) {
1062     assert(Store->getAlignment() >= 2);
1063     Mask = DAG.getConstant(0xffff, DL, MVT::i32);
1064   } else {
1065     llvm_unreachable("Unsupported private trunc store");
1066   }
1067 
1068   SDValue OldChain = Store->getChain();
1069   bool VectorTrunc = (OldChain.getOpcode() == AMDGPUISD::DUMMY_CHAIN);
1070   // Skip dummy
1071   SDValue Chain = VectorTrunc ? OldChain->getOperand(0) : OldChain;
1072   SDValue BasePtr = Store->getBasePtr();
1073   SDValue Offset = Store->getOffset();
1074   EVT MemVT = Store->getMemoryVT();
1075 
1076   SDValue LoadPtr = BasePtr;
1077   if (!Offset.isUndef()) {
1078     LoadPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr, Offset);
1079   }
1080 
1081   // Get dword location
1082   // TODO: this should be eliminated by the future SHR ptr, 2
1083   SDValue Ptr = DAG.getNode(ISD::AND, DL, MVT::i32, LoadPtr,
1084                             DAG.getConstant(0xfffffffc, DL, MVT::i32));
1085 
1086   // Load dword
1087   // TODO: can we be smarter about machine pointer info?
1088   MachinePointerInfo PtrInfo(AMDGPUAS::PRIVATE_ADDRESS);
1089   SDValue Dst = DAG.getLoad(MVT::i32, DL, Chain, Ptr, PtrInfo);
1090 
1091   Chain = Dst.getValue(1);
1092 
1093   // Get offset in dword
1094   SDValue ByteIdx = DAG.getNode(ISD::AND, DL, MVT::i32, LoadPtr,
1095                                 DAG.getConstant(0x3, DL, MVT::i32));
1096 
1097   // Convert byte offset to bit shift
1098   SDValue ShiftAmt = DAG.getNode(ISD::SHL, DL, MVT::i32, ByteIdx,
1099                                  DAG.getConstant(3, DL, MVT::i32));
1100 
1101   // TODO: Contrary to the name of the functiom,
1102   // it also handles sub i32 non-truncating stores (like i1)
1103   SDValue SExtValue = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i32,
1104                                   Store->getValue());
1105 
1106   // Mask the value to the right type
1107   SDValue MaskedValue = DAG.getZeroExtendInReg(SExtValue, DL, MemVT);
1108 
1109   // Shift the value in place
1110   SDValue ShiftedValue = DAG.getNode(ISD::SHL, DL, MVT::i32,
1111                                      MaskedValue, ShiftAmt);
1112 
1113   // Shift the mask in place
1114   SDValue DstMask = DAG.getNode(ISD::SHL, DL, MVT::i32, Mask, ShiftAmt);
1115 
1116   // Invert the mask. NOTE: if we had native ROL instructions we could
1117   // use inverted mask
1118   DstMask = DAG.getNOT(DL, DstMask, MVT::i32);
1119 
1120   // Cleanup the target bits
1121   Dst = DAG.getNode(ISD::AND, DL, MVT::i32, Dst, DstMask);
1122 
1123   // Add the new bits
1124   SDValue Value = DAG.getNode(ISD::OR, DL, MVT::i32, Dst, ShiftedValue);
1125 
1126   // Store dword
1127   // TODO: Can we be smarter about MachinePointerInfo?
1128   SDValue NewStore = DAG.getStore(Chain, DL, Value, Ptr, PtrInfo);
1129 
1130   // If we are part of expanded vector, make our neighbors depend on this store
1131   if (VectorTrunc) {
1132     // Make all other vector elements depend on this store
1133     Chain = DAG.getNode(AMDGPUISD::DUMMY_CHAIN, DL, MVT::Other, NewStore);
1134     DAG.ReplaceAllUsesOfValueWith(OldChain, Chain);
1135   }
1136   return NewStore;
1137 }
1138 
1139 SDValue R600TargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
1140   StoreSDNode *StoreNode = cast<StoreSDNode>(Op);
1141   unsigned AS = StoreNode->getAddressSpace();
1142 
1143   SDValue Chain = StoreNode->getChain();
1144   SDValue Ptr = StoreNode->getBasePtr();
1145   SDValue Value = StoreNode->getValue();
1146 
1147   EVT VT = Value.getValueType();
1148   EVT MemVT = StoreNode->getMemoryVT();
1149   EVT PtrVT = Ptr.getValueType();
1150 
1151   SDLoc DL(Op);
1152 
1153   const bool TruncatingStore = StoreNode->isTruncatingStore();
1154 
1155   // Neither LOCAL nor PRIVATE can do vectors at the moment
1156   if ((AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::PRIVATE_ADDRESS ||
1157        TruncatingStore) &&
1158       VT.isVector()) {
1159     if ((AS == AMDGPUAS::PRIVATE_ADDRESS) && TruncatingStore) {
1160       // Add an extra level of chain to isolate this vector
1161       SDValue NewChain = DAG.getNode(AMDGPUISD::DUMMY_CHAIN, DL, MVT::Other, Chain);
1162       // TODO: can the chain be replaced without creating a new store?
1163       SDValue NewStore = DAG.getTruncStore(
1164           NewChain, DL, Value, Ptr, StoreNode->getPointerInfo(),
1165           MemVT, StoreNode->getAlignment(),
1166           StoreNode->getMemOperand()->getFlags(), StoreNode->getAAInfo());
1167       StoreNode = cast<StoreSDNode>(NewStore);
1168     }
1169 
1170     return scalarizeVectorStore(StoreNode, DAG);
1171   }
1172 
1173   Align Alignment = StoreNode->getAlign();
1174   if (Alignment < MemVT.getStoreSize() &&
1175       !allowsMisalignedMemoryAccesses(MemVT, AS, Alignment,
1176                                       StoreNode->getMemOperand()->getFlags(),
1177                                       nullptr)) {
1178     return expandUnalignedStore(StoreNode, DAG);
1179   }
1180 
1181   SDValue DWordAddr = DAG.getNode(ISD::SRL, DL, PtrVT, Ptr,
1182                                   DAG.getConstant(2, DL, PtrVT));
1183 
1184   if (AS == AMDGPUAS::GLOBAL_ADDRESS) {
1185     // It is beneficial to create MSKOR here instead of combiner to avoid
1186     // artificial dependencies introduced by RMW
1187     if (TruncatingStore) {
1188       assert(VT.bitsLE(MVT::i32));
1189       SDValue MaskConstant;
1190       if (MemVT == MVT::i8) {
1191         MaskConstant = DAG.getConstant(0xFF, DL, MVT::i32);
1192       } else {
1193         assert(MemVT == MVT::i16);
1194         assert(StoreNode->getAlignment() >= 2);
1195         MaskConstant = DAG.getConstant(0xFFFF, DL, MVT::i32);
1196       }
1197 
1198       SDValue ByteIndex = DAG.getNode(ISD::AND, DL, PtrVT, Ptr,
1199                                       DAG.getConstant(0x00000003, DL, PtrVT));
1200       SDValue BitShift = DAG.getNode(ISD::SHL, DL, VT, ByteIndex,
1201                                      DAG.getConstant(3, DL, VT));
1202 
1203       // Put the mask in correct place
1204       SDValue Mask = DAG.getNode(ISD::SHL, DL, VT, MaskConstant, BitShift);
1205 
1206       // Put the value bits in correct place
1207       SDValue TruncValue = DAG.getNode(ISD::AND, DL, VT, Value, MaskConstant);
1208       SDValue ShiftedValue = DAG.getNode(ISD::SHL, DL, VT, TruncValue, BitShift);
1209 
1210       // XXX: If we add a 64-bit ZW register class, then we could use a 2 x i32
1211       // vector instead.
1212       SDValue Src[4] = {
1213         ShiftedValue,
1214         DAG.getConstant(0, DL, MVT::i32),
1215         DAG.getConstant(0, DL, MVT::i32),
1216         Mask
1217       };
1218       SDValue Input = DAG.getBuildVector(MVT::v4i32, DL, Src);
1219       SDValue Args[3] = { Chain, Input, DWordAddr };
1220       return DAG.getMemIntrinsicNode(AMDGPUISD::STORE_MSKOR, DL,
1221                                      Op->getVTList(), Args, MemVT,
1222                                      StoreNode->getMemOperand());
1223     } else if (Ptr->getOpcode() != AMDGPUISD::DWORDADDR && VT.bitsGE(MVT::i32)) {
1224       // Convert pointer from byte address to dword address.
1225       Ptr = DAG.getNode(AMDGPUISD::DWORDADDR, DL, PtrVT, DWordAddr);
1226 
1227       if (StoreNode->isIndexed()) {
1228         llvm_unreachable("Indexed stores not supported yet");
1229       } else {
1230         Chain = DAG.getStore(Chain, DL, Value, Ptr, StoreNode->getMemOperand());
1231       }
1232       return Chain;
1233     }
1234   }
1235 
1236   // GLOBAL_ADDRESS has been handled above, LOCAL_ADDRESS allows all sizes
1237   if (AS != AMDGPUAS::PRIVATE_ADDRESS)
1238     return SDValue();
1239 
1240   if (MemVT.bitsLT(MVT::i32))
1241     return lowerPrivateTruncStore(StoreNode, DAG);
1242 
1243   // Standard i32+ store, tag it with DWORDADDR to note that the address
1244   // has been shifted
1245   if (Ptr.getOpcode() != AMDGPUISD::DWORDADDR) {
1246     Ptr = DAG.getNode(AMDGPUISD::DWORDADDR, DL, PtrVT, DWordAddr);
1247     return DAG.getStore(Chain, DL, Value, Ptr, StoreNode->getMemOperand());
1248   }
1249 
1250   // Tagged i32+ stores will be matched by patterns
1251   return SDValue();
1252 }
1253 
1254 // return (512 + (kc_bank << 12)
1255 static int
1256 ConstantAddressBlock(unsigned AddressSpace) {
1257   switch (AddressSpace) {
1258   case AMDGPUAS::CONSTANT_BUFFER_0:
1259     return 512;
1260   case AMDGPUAS::CONSTANT_BUFFER_1:
1261     return 512 + 4096;
1262   case AMDGPUAS::CONSTANT_BUFFER_2:
1263     return 512 + 4096 * 2;
1264   case AMDGPUAS::CONSTANT_BUFFER_3:
1265     return 512 + 4096 * 3;
1266   case AMDGPUAS::CONSTANT_BUFFER_4:
1267     return 512 + 4096 * 4;
1268   case AMDGPUAS::CONSTANT_BUFFER_5:
1269     return 512 + 4096 * 5;
1270   case AMDGPUAS::CONSTANT_BUFFER_6:
1271     return 512 + 4096 * 6;
1272   case AMDGPUAS::CONSTANT_BUFFER_7:
1273     return 512 + 4096 * 7;
1274   case AMDGPUAS::CONSTANT_BUFFER_8:
1275     return 512 + 4096 * 8;
1276   case AMDGPUAS::CONSTANT_BUFFER_9:
1277     return 512 + 4096 * 9;
1278   case AMDGPUAS::CONSTANT_BUFFER_10:
1279     return 512 + 4096 * 10;
1280   case AMDGPUAS::CONSTANT_BUFFER_11:
1281     return 512 + 4096 * 11;
1282   case AMDGPUAS::CONSTANT_BUFFER_12:
1283     return 512 + 4096 * 12;
1284   case AMDGPUAS::CONSTANT_BUFFER_13:
1285     return 512 + 4096 * 13;
1286   case AMDGPUAS::CONSTANT_BUFFER_14:
1287     return 512 + 4096 * 14;
1288   case AMDGPUAS::CONSTANT_BUFFER_15:
1289     return 512 + 4096 * 15;
1290   default:
1291     return -1;
1292   }
1293 }
1294 
1295 SDValue R600TargetLowering::lowerPrivateExtLoad(SDValue Op,
1296                                                 SelectionDAG &DAG) const {
1297   SDLoc DL(Op);
1298   LoadSDNode *Load = cast<LoadSDNode>(Op);
1299   ISD::LoadExtType ExtType = Load->getExtensionType();
1300   EVT MemVT = Load->getMemoryVT();
1301   assert(Load->getAlignment() >= MemVT.getStoreSize());
1302 
1303   SDValue BasePtr = Load->getBasePtr();
1304   SDValue Chain = Load->getChain();
1305   SDValue Offset = Load->getOffset();
1306 
1307   SDValue LoadPtr = BasePtr;
1308   if (!Offset.isUndef()) {
1309     LoadPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr, Offset);
1310   }
1311 
1312   // Get dword location
1313   // NOTE: this should be eliminated by the future SHR ptr, 2
1314   SDValue Ptr = DAG.getNode(ISD::AND, DL, MVT::i32, LoadPtr,
1315                             DAG.getConstant(0xfffffffc, DL, MVT::i32));
1316 
1317   // Load dword
1318   // TODO: can we be smarter about machine pointer info?
1319   MachinePointerInfo PtrInfo(AMDGPUAS::PRIVATE_ADDRESS);
1320   SDValue Read = DAG.getLoad(MVT::i32, DL, Chain, Ptr, PtrInfo);
1321 
1322   // Get offset within the register.
1323   SDValue ByteIdx = DAG.getNode(ISD::AND, DL, MVT::i32,
1324                                 LoadPtr, DAG.getConstant(0x3, DL, MVT::i32));
1325 
1326   // Bit offset of target byte (byteIdx * 8).
1327   SDValue ShiftAmt = DAG.getNode(ISD::SHL, DL, MVT::i32, ByteIdx,
1328                                  DAG.getConstant(3, DL, MVT::i32));
1329 
1330   // Shift to the right.
1331   SDValue Ret = DAG.getNode(ISD::SRL, DL, MVT::i32, Read, ShiftAmt);
1332 
1333   // Eliminate the upper bits by setting them to ...
1334   EVT MemEltVT = MemVT.getScalarType();
1335 
1336   if (ExtType == ISD::SEXTLOAD) { // ... ones.
1337     SDValue MemEltVTNode = DAG.getValueType(MemEltVT);
1338     Ret = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, Ret, MemEltVTNode);
1339   } else { // ... or zeros.
1340     Ret = DAG.getZeroExtendInReg(Ret, DL, MemEltVT);
1341   }
1342 
1343   SDValue Ops[] = {
1344     Ret,
1345     Read.getValue(1) // This should be our output chain
1346   };
1347 
1348   return DAG.getMergeValues(Ops, DL);
1349 }
1350 
1351 SDValue R600TargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
1352   LoadSDNode *LoadNode = cast<LoadSDNode>(Op);
1353   unsigned AS = LoadNode->getAddressSpace();
1354   EVT MemVT = LoadNode->getMemoryVT();
1355   ISD::LoadExtType ExtType = LoadNode->getExtensionType();
1356 
1357   if (AS == AMDGPUAS::PRIVATE_ADDRESS &&
1358       ExtType != ISD::NON_EXTLOAD && MemVT.bitsLT(MVT::i32)) {
1359     return lowerPrivateExtLoad(Op, DAG);
1360   }
1361 
1362   SDLoc DL(Op);
1363   EVT VT = Op.getValueType();
1364   SDValue Chain = LoadNode->getChain();
1365   SDValue Ptr = LoadNode->getBasePtr();
1366 
1367   if ((LoadNode->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
1368       LoadNode->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) &&
1369       VT.isVector()) {
1370     SDValue Ops[2];
1371     std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(LoadNode, DAG);
1372     return DAG.getMergeValues(Ops, DL);
1373   }
1374 
1375   // This is still used for explicit load from addrspace(8)
1376   int ConstantBlock = ConstantAddressBlock(LoadNode->getAddressSpace());
1377   if (ConstantBlock > -1 &&
1378       ((LoadNode->getExtensionType() == ISD::NON_EXTLOAD) ||
1379        (LoadNode->getExtensionType() == ISD::ZEXTLOAD))) {
1380     SDValue Result;
1381     if (isa<Constant>(LoadNode->getMemOperand()->getValue()) ||
1382         isa<ConstantSDNode>(Ptr)) {
1383       return constBufferLoad(LoadNode, LoadNode->getAddressSpace(), DAG);
1384     } else {
1385       //TODO: Does this even work?
1386       // non-constant ptr can't be folded, keeps it as a v4f32 load
1387       Result = DAG.getNode(AMDGPUISD::CONST_ADDRESS, DL, MVT::v4i32,
1388           DAG.getNode(ISD::SRL, DL, MVT::i32, Ptr,
1389                       DAG.getConstant(4, DL, MVT::i32)),
1390                       DAG.getConstant(LoadNode->getAddressSpace() -
1391                                       AMDGPUAS::CONSTANT_BUFFER_0, DL, MVT::i32)
1392           );
1393     }
1394 
1395     if (!VT.isVector()) {
1396       Result = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, Result,
1397                            DAG.getConstant(0, DL, MVT::i32));
1398     }
1399 
1400     SDValue MergedValues[2] = {
1401       Result,
1402       Chain
1403     };
1404     return DAG.getMergeValues(MergedValues, DL);
1405   }
1406 
1407   // For most operations returning SDValue() will result in the node being
1408   // expanded by the DAG Legalizer. This is not the case for ISD::LOAD, so we
1409   // need to manually expand loads that may be legal in some address spaces and
1410   // illegal in others. SEXT loads from CONSTANT_BUFFER_0 are supported for
1411   // compute shaders, since the data is sign extended when it is uploaded to the
1412   // buffer. However SEXT loads from other address spaces are not supported, so
1413   // we need to expand them here.
1414   if (LoadNode->getExtensionType() == ISD::SEXTLOAD) {
1415     assert(!MemVT.isVector() && (MemVT == MVT::i16 || MemVT == MVT::i8));
1416     SDValue NewLoad = DAG.getExtLoad(
1417         ISD::EXTLOAD, DL, VT, Chain, Ptr, LoadNode->getPointerInfo(), MemVT,
1418         LoadNode->getAlignment(), LoadNode->getMemOperand()->getFlags());
1419     SDValue Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, NewLoad,
1420                               DAG.getValueType(MemVT));
1421 
1422     SDValue MergedValues[2] = { Res, Chain };
1423     return DAG.getMergeValues(MergedValues, DL);
1424   }
1425 
1426   if (LoadNode->getAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS) {
1427     return SDValue();
1428   }
1429 
1430   // DWORDADDR ISD marks already shifted address
1431   if (Ptr.getOpcode() != AMDGPUISD::DWORDADDR) {
1432     assert(VT == MVT::i32);
1433     Ptr = DAG.getNode(ISD::SRL, DL, MVT::i32, Ptr, DAG.getConstant(2, DL, MVT::i32));
1434     Ptr = DAG.getNode(AMDGPUISD::DWORDADDR, DL, MVT::i32, Ptr);
1435     return DAG.getLoad(MVT::i32, DL, Chain, Ptr, LoadNode->getMemOperand());
1436   }
1437   return SDValue();
1438 }
1439 
1440 SDValue R600TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
1441   SDValue Chain = Op.getOperand(0);
1442   SDValue Cond  = Op.getOperand(1);
1443   SDValue Jump  = Op.getOperand(2);
1444 
1445   return DAG.getNode(AMDGPUISD::BRANCH_COND, SDLoc(Op), Op.getValueType(),
1446                      Chain, Jump, Cond);
1447 }
1448 
1449 SDValue R600TargetLowering::lowerFrameIndex(SDValue Op,
1450                                             SelectionDAG &DAG) const {
1451   MachineFunction &MF = DAG.getMachineFunction();
1452   const R600FrameLowering *TFL = Subtarget->getFrameLowering();
1453 
1454   FrameIndexSDNode *FIN = cast<FrameIndexSDNode>(Op);
1455 
1456   unsigned FrameIndex = FIN->getIndex();
1457   Register IgnoredFrameReg;
1458   StackOffset Offset =
1459       TFL->getFrameIndexReference(MF, FrameIndex, IgnoredFrameReg);
1460   return DAG.getConstant(Offset.getFixed() * 4 * TFL->getStackWidth(MF),
1461                          SDLoc(Op), Op.getValueType());
1462 }
1463 
1464 CCAssignFn *R600TargetLowering::CCAssignFnForCall(CallingConv::ID CC,
1465                                                   bool IsVarArg) const {
1466   switch (CC) {
1467   case CallingConv::AMDGPU_KERNEL:
1468   case CallingConv::SPIR_KERNEL:
1469   case CallingConv::C:
1470   case CallingConv::Fast:
1471   case CallingConv::Cold:
1472     llvm_unreachable("kernels should not be handled here");
1473   case CallingConv::AMDGPU_VS:
1474   case CallingConv::AMDGPU_GS:
1475   case CallingConv::AMDGPU_PS:
1476   case CallingConv::AMDGPU_CS:
1477   case CallingConv::AMDGPU_HS:
1478   case CallingConv::AMDGPU_ES:
1479   case CallingConv::AMDGPU_LS:
1480     return CC_R600;
1481   default:
1482     report_fatal_error("Unsupported calling convention.");
1483   }
1484 }
1485 
1486 /// XXX Only kernel functions are supported, so we can assume for now that
1487 /// every function is a kernel function, but in the future we should use
1488 /// separate calling conventions for kernel and non-kernel functions.
1489 SDValue R600TargetLowering::LowerFormalArguments(
1490     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1491     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1492     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1493   SmallVector<CCValAssign, 16> ArgLocs;
1494   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1495                  *DAG.getContext());
1496   MachineFunction &MF = DAG.getMachineFunction();
1497   SmallVector<ISD::InputArg, 8> LocalIns;
1498 
1499   if (AMDGPU::isShader(CallConv)) {
1500     CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForCall(CallConv, isVarArg));
1501   } else {
1502     analyzeFormalArgumentsCompute(CCInfo, Ins);
1503   }
1504 
1505   for (unsigned i = 0, e = Ins.size(); i < e; ++i) {
1506     CCValAssign &VA = ArgLocs[i];
1507     const ISD::InputArg &In = Ins[i];
1508     EVT VT = In.VT;
1509     EVT MemVT = VA.getLocVT();
1510     if (!VT.isVector() && MemVT.isVector()) {
1511       // Get load source type if scalarized.
1512       MemVT = MemVT.getVectorElementType();
1513     }
1514 
1515     if (AMDGPU::isShader(CallConv)) {
1516       Register Reg = MF.addLiveIn(VA.getLocReg(), &R600::R600_Reg128RegClass);
1517       SDValue Register = DAG.getCopyFromReg(Chain, DL, Reg, VT);
1518       InVals.push_back(Register);
1519       continue;
1520     }
1521 
1522     // i64 isn't a legal type, so the register type used ends up as i32, which
1523     // isn't expected here. It attempts to create this sextload, but it ends up
1524     // being invalid. Somehow this seems to work with i64 arguments, but breaks
1525     // for <1 x i64>.
1526 
1527     // The first 36 bytes of the input buffer contains information about
1528     // thread group and global sizes.
1529     ISD::LoadExtType Ext = ISD::NON_EXTLOAD;
1530     if (MemVT.getScalarSizeInBits() != VT.getScalarSizeInBits()) {
1531       // FIXME: This should really check the extload type, but the handling of
1532       // extload vector parameters seems to be broken.
1533 
1534       // Ext = In.Flags.isSExt() ? ISD::SEXTLOAD : ISD::ZEXTLOAD;
1535       Ext = ISD::SEXTLOAD;
1536     }
1537 
1538     // Compute the offset from the value.
1539     // XXX - I think PartOffset should give you this, but it seems to give the
1540     // size of the register which isn't useful.
1541 
1542     unsigned PartOffset = VA.getLocMemOffset();
1543     unsigned Alignment = MinAlign(VT.getStoreSize(), PartOffset);
1544 
1545     MachinePointerInfo PtrInfo(AMDGPUAS::PARAM_I_ADDRESS);
1546     SDValue Arg = DAG.getLoad(
1547         ISD::UNINDEXED, Ext, VT, DL, Chain,
1548         DAG.getConstant(PartOffset, DL, MVT::i32), DAG.getUNDEF(MVT::i32),
1549         PtrInfo,
1550         MemVT, Alignment, MachineMemOperand::MONonTemporal |
1551                                         MachineMemOperand::MODereferenceable |
1552                                         MachineMemOperand::MOInvariant);
1553 
1554     InVals.push_back(Arg);
1555   }
1556   return Chain;
1557 }
1558 
1559 EVT R600TargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &,
1560                                            EVT VT) const {
1561    if (!VT.isVector())
1562      return MVT::i32;
1563    return VT.changeVectorElementTypeToInteger();
1564 }
1565 
1566 bool R600TargetLowering::canMergeStoresTo(unsigned AS, EVT MemVT,
1567                                           const SelectionDAG &DAG) const {
1568   // Local and Private addresses do not handle vectors. Limit to i32
1569   if ((AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::PRIVATE_ADDRESS)) {
1570     return (MemVT.getSizeInBits() <= 32);
1571   }
1572   return true;
1573 }
1574 
1575 bool R600TargetLowering::allowsMisalignedMemoryAccesses(
1576     EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
1577     bool *IsFast) const {
1578   if (IsFast)
1579     *IsFast = false;
1580 
1581   if (!VT.isSimple() || VT == MVT::Other)
1582     return false;
1583 
1584   if (VT.bitsLT(MVT::i32))
1585     return false;
1586 
1587   // TODO: This is a rough estimate.
1588   if (IsFast)
1589     *IsFast = true;
1590 
1591   return VT.bitsGT(MVT::i32) && Alignment >= Align(4);
1592 }
1593 
1594 static SDValue CompactSwizzlableVector(
1595   SelectionDAG &DAG, SDValue VectorEntry,
1596   DenseMap<unsigned, unsigned> &RemapSwizzle) {
1597   assert(RemapSwizzle.empty());
1598 
1599   SDLoc DL(VectorEntry);
1600   EVT EltTy = VectorEntry.getValueType().getVectorElementType();
1601 
1602   SDValue NewBldVec[4];
1603   for (unsigned i = 0; i < 4; i++)
1604     NewBldVec[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltTy, VectorEntry,
1605                                DAG.getIntPtrConstant(i, DL));
1606 
1607   for (unsigned i = 0; i < 4; i++) {
1608     if (NewBldVec[i].isUndef())
1609       // We mask write here to teach later passes that the ith element of this
1610       // vector is undef. Thus we can use it to reduce 128 bits reg usage,
1611       // break false dependencies and additionnaly make assembly easier to read.
1612       RemapSwizzle[i] = 7; // SEL_MASK_WRITE
1613     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(NewBldVec[i])) {
1614       if (C->isZero()) {
1615         RemapSwizzle[i] = 4; // SEL_0
1616         NewBldVec[i] = DAG.getUNDEF(MVT::f32);
1617       } else if (C->isExactlyValue(1.0)) {
1618         RemapSwizzle[i] = 5; // SEL_1
1619         NewBldVec[i] = DAG.getUNDEF(MVT::f32);
1620       }
1621     }
1622 
1623     if (NewBldVec[i].isUndef())
1624       continue;
1625 
1626     for (unsigned j = 0; j < i; j++) {
1627       if (NewBldVec[i] == NewBldVec[j]) {
1628         NewBldVec[i] = DAG.getUNDEF(NewBldVec[i].getValueType());
1629         RemapSwizzle[i] = j;
1630         break;
1631       }
1632     }
1633   }
1634 
1635   return DAG.getBuildVector(VectorEntry.getValueType(), SDLoc(VectorEntry),
1636                             NewBldVec);
1637 }
1638 
1639 static SDValue ReorganizeVector(SelectionDAG &DAG, SDValue VectorEntry,
1640                                 DenseMap<unsigned, unsigned> &RemapSwizzle) {
1641   assert(RemapSwizzle.empty());
1642 
1643   SDLoc DL(VectorEntry);
1644   EVT EltTy = VectorEntry.getValueType().getVectorElementType();
1645 
1646   SDValue NewBldVec[4];
1647   bool isUnmovable[4] = {false, false, false, false};
1648   for (unsigned i = 0; i < 4; i++)
1649     NewBldVec[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltTy, VectorEntry,
1650                                DAG.getIntPtrConstant(i, DL));
1651 
1652   for (unsigned i = 0; i < 4; i++) {
1653     RemapSwizzle[i] = i;
1654     if (NewBldVec[i].getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
1655       unsigned Idx = cast<ConstantSDNode>(NewBldVec[i].getOperand(1))
1656           ->getZExtValue();
1657       if (i == Idx)
1658         isUnmovable[Idx] = true;
1659     }
1660   }
1661 
1662   for (unsigned i = 0; i < 4; i++) {
1663     if (NewBldVec[i].getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
1664       unsigned Idx = cast<ConstantSDNode>(NewBldVec[i].getOperand(1))
1665           ->getZExtValue();
1666       if (isUnmovable[Idx])
1667         continue;
1668       // Swap i and Idx
1669       std::swap(NewBldVec[Idx], NewBldVec[i]);
1670       std::swap(RemapSwizzle[i], RemapSwizzle[Idx]);
1671       break;
1672     }
1673   }
1674 
1675   return DAG.getBuildVector(VectorEntry.getValueType(), SDLoc(VectorEntry),
1676                             NewBldVec);
1677 }
1678 
1679 SDValue R600TargetLowering::OptimizeSwizzle(SDValue BuildVector, SDValue Swz[4],
1680                                             SelectionDAG &DAG,
1681                                             const SDLoc &DL) const {
1682   // Old -> New swizzle values
1683   DenseMap<unsigned, unsigned> SwizzleRemap;
1684 
1685   BuildVector = CompactSwizzlableVector(DAG, BuildVector, SwizzleRemap);
1686   for (unsigned i = 0; i < 4; i++) {
1687     unsigned Idx = cast<ConstantSDNode>(Swz[i])->getZExtValue();
1688     if (SwizzleRemap.find(Idx) != SwizzleRemap.end())
1689       Swz[i] = DAG.getConstant(SwizzleRemap[Idx], DL, MVT::i32);
1690   }
1691 
1692   SwizzleRemap.clear();
1693   BuildVector = ReorganizeVector(DAG, BuildVector, SwizzleRemap);
1694   for (unsigned i = 0; i < 4; i++) {
1695     unsigned Idx = cast<ConstantSDNode>(Swz[i])->getZExtValue();
1696     if (SwizzleRemap.find(Idx) != SwizzleRemap.end())
1697       Swz[i] = DAG.getConstant(SwizzleRemap[Idx], DL, MVT::i32);
1698   }
1699 
1700   return BuildVector;
1701 }
1702 
1703 SDValue R600TargetLowering::constBufferLoad(LoadSDNode *LoadNode, int Block,
1704                                             SelectionDAG &DAG) const {
1705   SDLoc DL(LoadNode);
1706   EVT VT = LoadNode->getValueType(0);
1707   SDValue Chain = LoadNode->getChain();
1708   SDValue Ptr = LoadNode->getBasePtr();
1709   assert (isa<ConstantSDNode>(Ptr));
1710 
1711   //TODO: Support smaller loads
1712   if (LoadNode->getMemoryVT().getScalarType() != MVT::i32 || !ISD::isNON_EXTLoad(LoadNode))
1713     return SDValue();
1714 
1715   if (LoadNode->getAlignment() < 4)
1716     return SDValue();
1717 
1718   int ConstantBlock = ConstantAddressBlock(Block);
1719 
1720   SDValue Slots[4];
1721   for (unsigned i = 0; i < 4; i++) {
1722     // We want Const position encoded with the following formula :
1723     // (((512 + (kc_bank << 12) + const_index) << 2) + chan)
1724     // const_index is Ptr computed by llvm using an alignment of 16.
1725     // Thus we add (((512 + (kc_bank << 12)) + chan ) * 4 here and
1726     // then div by 4 at the ISel step
1727     SDValue NewPtr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr,
1728         DAG.getConstant(4 * i + ConstantBlock * 16, DL, MVT::i32));
1729     Slots[i] = DAG.getNode(AMDGPUISD::CONST_ADDRESS, DL, MVT::i32, NewPtr);
1730   }
1731   EVT NewVT = MVT::v4i32;
1732   unsigned NumElements = 4;
1733   if (VT.isVector()) {
1734     NewVT = VT;
1735     NumElements = VT.getVectorNumElements();
1736   }
1737   SDValue Result = DAG.getBuildVector(NewVT, DL, makeArrayRef(Slots, NumElements));
1738   if (!VT.isVector()) {
1739     Result = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, Result,
1740                          DAG.getConstant(0, DL, MVT::i32));
1741   }
1742   SDValue MergedValues[2] = {
1743     Result,
1744     Chain
1745   };
1746   return DAG.getMergeValues(MergedValues, DL);
1747 }
1748 
1749 //===----------------------------------------------------------------------===//
1750 // Custom DAG Optimizations
1751 //===----------------------------------------------------------------------===//
1752 
1753 SDValue R600TargetLowering::PerformDAGCombine(SDNode *N,
1754                                               DAGCombinerInfo &DCI) const {
1755   SelectionDAG &DAG = DCI.DAG;
1756   SDLoc DL(N);
1757 
1758   switch (N->getOpcode()) {
1759   // (f32 fp_round (f64 uint_to_fp a)) -> (f32 uint_to_fp a)
1760   case ISD::FP_ROUND: {
1761       SDValue Arg = N->getOperand(0);
1762       if (Arg.getOpcode() == ISD::UINT_TO_FP && Arg.getValueType() == MVT::f64) {
1763         return DAG.getNode(ISD::UINT_TO_FP, DL, N->getValueType(0),
1764                            Arg.getOperand(0));
1765       }
1766       break;
1767     }
1768 
1769   // (i32 fp_to_sint (fneg (select_cc f32, f32, 1.0, 0.0 cc))) ->
1770   // (i32 select_cc f32, f32, -1, 0 cc)
1771   //
1772   // Mesa's GLSL frontend generates the above pattern a lot and we can lower
1773   // this to one of the SET*_DX10 instructions.
1774   case ISD::FP_TO_SINT: {
1775     SDValue FNeg = N->getOperand(0);
1776     if (FNeg.getOpcode() != ISD::FNEG) {
1777       return SDValue();
1778     }
1779     SDValue SelectCC = FNeg.getOperand(0);
1780     if (SelectCC.getOpcode() != ISD::SELECT_CC ||
1781         SelectCC.getOperand(0).getValueType() != MVT::f32 || // LHS
1782         SelectCC.getOperand(2).getValueType() != MVT::f32 || // True
1783         !isHWTrueValue(SelectCC.getOperand(2)) ||
1784         !isHWFalseValue(SelectCC.getOperand(3))) {
1785       return SDValue();
1786     }
1787 
1788     return DAG.getNode(ISD::SELECT_CC, DL, N->getValueType(0),
1789                            SelectCC.getOperand(0), // LHS
1790                            SelectCC.getOperand(1), // RHS
1791                            DAG.getConstant(-1, DL, MVT::i32), // True
1792                            DAG.getConstant(0, DL, MVT::i32),  // False
1793                            SelectCC.getOperand(4)); // CC
1794   }
1795 
1796   // insert_vector_elt (build_vector elt0, ... , eltN), NewEltIdx, idx
1797   // => build_vector elt0, ... , NewEltIdx, ... , eltN
1798   case ISD::INSERT_VECTOR_ELT: {
1799     SDValue InVec = N->getOperand(0);
1800     SDValue InVal = N->getOperand(1);
1801     SDValue EltNo = N->getOperand(2);
1802 
1803     // If the inserted element is an UNDEF, just use the input vector.
1804     if (InVal.isUndef())
1805       return InVec;
1806 
1807     EVT VT = InVec.getValueType();
1808 
1809     // If we can't generate a legal BUILD_VECTOR, exit
1810     if (!isOperationLegal(ISD::BUILD_VECTOR, VT))
1811       return SDValue();
1812 
1813     // Check that we know which element is being inserted
1814     if (!isa<ConstantSDNode>(EltNo))
1815       return SDValue();
1816     unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
1817 
1818     // Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially
1819     // be converted to a BUILD_VECTOR).  Fill in the Ops vector with the
1820     // vector elements.
1821     SmallVector<SDValue, 8> Ops;
1822     if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
1823       Ops.append(InVec.getNode()->op_begin(),
1824                  InVec.getNode()->op_end());
1825     } else if (InVec.isUndef()) {
1826       unsigned NElts = VT.getVectorNumElements();
1827       Ops.append(NElts, DAG.getUNDEF(InVal.getValueType()));
1828     } else {
1829       return SDValue();
1830     }
1831 
1832     // Insert the element
1833     if (Elt < Ops.size()) {
1834       // All the operands of BUILD_VECTOR must have the same type;
1835       // we enforce that here.
1836       EVT OpVT = Ops[0].getValueType();
1837       if (InVal.getValueType() != OpVT)
1838         InVal = OpVT.bitsGT(InVal.getValueType()) ?
1839           DAG.getNode(ISD::ANY_EXTEND, DL, OpVT, InVal) :
1840           DAG.getNode(ISD::TRUNCATE, DL, OpVT, InVal);
1841       Ops[Elt] = InVal;
1842     }
1843 
1844     // Return the new vector
1845     return DAG.getBuildVector(VT, DL, Ops);
1846   }
1847 
1848   // Extract_vec (Build_vector) generated by custom lowering
1849   // also needs to be customly combined
1850   case ISD::EXTRACT_VECTOR_ELT: {
1851     SDValue Arg = N->getOperand(0);
1852     if (Arg.getOpcode() == ISD::BUILD_VECTOR) {
1853       if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
1854         unsigned Element = Const->getZExtValue();
1855         return Arg->getOperand(Element);
1856       }
1857     }
1858     if (Arg.getOpcode() == ISD::BITCAST &&
1859         Arg.getOperand(0).getOpcode() == ISD::BUILD_VECTOR &&
1860         (Arg.getOperand(0).getValueType().getVectorNumElements() ==
1861          Arg.getValueType().getVectorNumElements())) {
1862       if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
1863         unsigned Element = Const->getZExtValue();
1864         return DAG.getNode(ISD::BITCAST, DL, N->getVTList(),
1865                            Arg->getOperand(0).getOperand(Element));
1866       }
1867     }
1868     break;
1869   }
1870 
1871   case ISD::SELECT_CC: {
1872     // Try common optimizations
1873     if (SDValue Ret = AMDGPUTargetLowering::PerformDAGCombine(N, DCI))
1874       return Ret;
1875 
1876     // fold selectcc (selectcc x, y, a, b, cc), b, a, b, seteq ->
1877     //      selectcc x, y, a, b, inv(cc)
1878     //
1879     // fold selectcc (selectcc x, y, a, b, cc), b, a, b, setne ->
1880     //      selectcc x, y, a, b, cc
1881     SDValue LHS = N->getOperand(0);
1882     if (LHS.getOpcode() != ISD::SELECT_CC) {
1883       return SDValue();
1884     }
1885 
1886     SDValue RHS = N->getOperand(1);
1887     SDValue True = N->getOperand(2);
1888     SDValue False = N->getOperand(3);
1889     ISD::CondCode NCC = cast<CondCodeSDNode>(N->getOperand(4))->get();
1890 
1891     if (LHS.getOperand(2).getNode() != True.getNode() ||
1892         LHS.getOperand(3).getNode() != False.getNode() ||
1893         RHS.getNode() != False.getNode()) {
1894       return SDValue();
1895     }
1896 
1897     switch (NCC) {
1898     default: return SDValue();
1899     case ISD::SETNE: return LHS;
1900     case ISD::SETEQ: {
1901       ISD::CondCode LHSCC = cast<CondCodeSDNode>(LHS.getOperand(4))->get();
1902       LHSCC = ISD::getSetCCInverse(LHSCC, LHS.getOperand(0).getValueType());
1903       if (DCI.isBeforeLegalizeOps() ||
1904           isCondCodeLegal(LHSCC, LHS.getOperand(0).getSimpleValueType()))
1905         return DAG.getSelectCC(DL,
1906                                LHS.getOperand(0),
1907                                LHS.getOperand(1),
1908                                LHS.getOperand(2),
1909                                LHS.getOperand(3),
1910                                LHSCC);
1911       break;
1912     }
1913     }
1914     return SDValue();
1915   }
1916 
1917   case AMDGPUISD::R600_EXPORT: {
1918     SDValue Arg = N->getOperand(1);
1919     if (Arg.getOpcode() != ISD::BUILD_VECTOR)
1920       break;
1921 
1922     SDValue NewArgs[8] = {
1923       N->getOperand(0), // Chain
1924       SDValue(),
1925       N->getOperand(2), // ArrayBase
1926       N->getOperand(3), // Type
1927       N->getOperand(4), // SWZ_X
1928       N->getOperand(5), // SWZ_Y
1929       N->getOperand(6), // SWZ_Z
1930       N->getOperand(7) // SWZ_W
1931     };
1932     NewArgs[1] = OptimizeSwizzle(N->getOperand(1), &NewArgs[4], DAG, DL);
1933     return DAG.getNode(AMDGPUISD::R600_EXPORT, DL, N->getVTList(), NewArgs);
1934   }
1935   case AMDGPUISD::TEXTURE_FETCH: {
1936     SDValue Arg = N->getOperand(1);
1937     if (Arg.getOpcode() != ISD::BUILD_VECTOR)
1938       break;
1939 
1940     SDValue NewArgs[19] = {
1941       N->getOperand(0),
1942       N->getOperand(1),
1943       N->getOperand(2),
1944       N->getOperand(3),
1945       N->getOperand(4),
1946       N->getOperand(5),
1947       N->getOperand(6),
1948       N->getOperand(7),
1949       N->getOperand(8),
1950       N->getOperand(9),
1951       N->getOperand(10),
1952       N->getOperand(11),
1953       N->getOperand(12),
1954       N->getOperand(13),
1955       N->getOperand(14),
1956       N->getOperand(15),
1957       N->getOperand(16),
1958       N->getOperand(17),
1959       N->getOperand(18),
1960     };
1961     NewArgs[1] = OptimizeSwizzle(N->getOperand(1), &NewArgs[2], DAG, DL);
1962     return DAG.getNode(AMDGPUISD::TEXTURE_FETCH, DL, N->getVTList(), NewArgs);
1963   }
1964 
1965   case ISD::LOAD: {
1966     LoadSDNode *LoadNode = cast<LoadSDNode>(N);
1967     SDValue Ptr = LoadNode->getBasePtr();
1968     if (LoadNode->getAddressSpace() == AMDGPUAS::PARAM_I_ADDRESS &&
1969          isa<ConstantSDNode>(Ptr))
1970       return constBufferLoad(LoadNode, AMDGPUAS::CONSTANT_BUFFER_0, DAG);
1971     break;
1972   }
1973 
1974   default: break;
1975   }
1976 
1977   return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
1978 }
1979 
1980 bool R600TargetLowering::FoldOperand(SDNode *ParentNode, unsigned SrcIdx,
1981                                      SDValue &Src, SDValue &Neg, SDValue &Abs,
1982                                      SDValue &Sel, SDValue &Imm,
1983                                      SelectionDAG &DAG) const {
1984   const R600InstrInfo *TII = Subtarget->getInstrInfo();
1985   if (!Src.isMachineOpcode())
1986     return false;
1987 
1988   switch (Src.getMachineOpcode()) {
1989   case R600::FNEG_R600:
1990     if (!Neg.getNode())
1991       return false;
1992     Src = Src.getOperand(0);
1993     Neg = DAG.getTargetConstant(1, SDLoc(ParentNode), MVT::i32);
1994     return true;
1995   case R600::FABS_R600:
1996     if (!Abs.getNode())
1997       return false;
1998     Src = Src.getOperand(0);
1999     Abs = DAG.getTargetConstant(1, SDLoc(ParentNode), MVT::i32);
2000     return true;
2001   case R600::CONST_COPY: {
2002     unsigned Opcode = ParentNode->getMachineOpcode();
2003     bool HasDst = TII->getOperandIdx(Opcode, R600::OpName::dst) > -1;
2004 
2005     if (!Sel.getNode())
2006       return false;
2007 
2008     SDValue CstOffset = Src.getOperand(0);
2009     if (ParentNode->getValueType(0).isVector())
2010       return false;
2011 
2012     // Gather constants values
2013     int SrcIndices[] = {
2014       TII->getOperandIdx(Opcode, R600::OpName::src0),
2015       TII->getOperandIdx(Opcode, R600::OpName::src1),
2016       TII->getOperandIdx(Opcode, R600::OpName::src2),
2017       TII->getOperandIdx(Opcode, R600::OpName::src0_X),
2018       TII->getOperandIdx(Opcode, R600::OpName::src0_Y),
2019       TII->getOperandIdx(Opcode, R600::OpName::src0_Z),
2020       TII->getOperandIdx(Opcode, R600::OpName::src0_W),
2021       TII->getOperandIdx(Opcode, R600::OpName::src1_X),
2022       TII->getOperandIdx(Opcode, R600::OpName::src1_Y),
2023       TII->getOperandIdx(Opcode, R600::OpName::src1_Z),
2024       TII->getOperandIdx(Opcode, R600::OpName::src1_W)
2025     };
2026     std::vector<unsigned> Consts;
2027     for (int OtherSrcIdx : SrcIndices) {
2028       int OtherSelIdx = TII->getSelIdx(Opcode, OtherSrcIdx);
2029       if (OtherSrcIdx < 0 || OtherSelIdx < 0)
2030         continue;
2031       if (HasDst) {
2032         OtherSrcIdx--;
2033         OtherSelIdx--;
2034       }
2035       if (RegisterSDNode *Reg =
2036           dyn_cast<RegisterSDNode>(ParentNode->getOperand(OtherSrcIdx))) {
2037         if (Reg->getReg() == R600::ALU_CONST) {
2038           ConstantSDNode *Cst
2039             = cast<ConstantSDNode>(ParentNode->getOperand(OtherSelIdx));
2040           Consts.push_back(Cst->getZExtValue());
2041         }
2042       }
2043     }
2044 
2045     ConstantSDNode *Cst = cast<ConstantSDNode>(CstOffset);
2046     Consts.push_back(Cst->getZExtValue());
2047     if (!TII->fitsConstReadLimitations(Consts)) {
2048       return false;
2049     }
2050 
2051     Sel = CstOffset;
2052     Src = DAG.getRegister(R600::ALU_CONST, MVT::f32);
2053     return true;
2054   }
2055   case R600::MOV_IMM_GLOBAL_ADDR:
2056     // Check if the Imm slot is used. Taken from below.
2057     if (cast<ConstantSDNode>(Imm)->getZExtValue())
2058       return false;
2059     Imm = Src.getOperand(0);
2060     Src = DAG.getRegister(R600::ALU_LITERAL_X, MVT::i32);
2061     return true;
2062   case R600::MOV_IMM_I32:
2063   case R600::MOV_IMM_F32: {
2064     unsigned ImmReg = R600::ALU_LITERAL_X;
2065     uint64_t ImmValue = 0;
2066 
2067     if (Src.getMachineOpcode() == R600::MOV_IMM_F32) {
2068       ConstantFPSDNode *FPC = cast<ConstantFPSDNode>(Src.getOperand(0));
2069       float FloatValue = FPC->getValueAPF().convertToFloat();
2070       if (FloatValue == 0.0) {
2071         ImmReg = R600::ZERO;
2072       } else if (FloatValue == 0.5) {
2073         ImmReg = R600::HALF;
2074       } else if (FloatValue == 1.0) {
2075         ImmReg = R600::ONE;
2076       } else {
2077         ImmValue = FPC->getValueAPF().bitcastToAPInt().getZExtValue();
2078       }
2079     } else {
2080       ConstantSDNode *C = cast<ConstantSDNode>(Src.getOperand(0));
2081       uint64_t Value = C->getZExtValue();
2082       if (Value == 0) {
2083         ImmReg = R600::ZERO;
2084       } else if (Value == 1) {
2085         ImmReg = R600::ONE_INT;
2086       } else {
2087         ImmValue = Value;
2088       }
2089     }
2090 
2091     // Check that we aren't already using an immediate.
2092     // XXX: It's possible for an instruction to have more than one
2093     // immediate operand, but this is not supported yet.
2094     if (ImmReg == R600::ALU_LITERAL_X) {
2095       if (!Imm.getNode())
2096         return false;
2097       ConstantSDNode *C = cast<ConstantSDNode>(Imm);
2098       if (C->getZExtValue())
2099         return false;
2100       Imm = DAG.getTargetConstant(ImmValue, SDLoc(ParentNode), MVT::i32);
2101     }
2102     Src = DAG.getRegister(ImmReg, MVT::i32);
2103     return true;
2104   }
2105   default:
2106     return false;
2107   }
2108 }
2109 
2110 /// Fold the instructions after selecting them
2111 SDNode *R600TargetLowering::PostISelFolding(MachineSDNode *Node,
2112                                             SelectionDAG &DAG) const {
2113   const R600InstrInfo *TII = Subtarget->getInstrInfo();
2114   if (!Node->isMachineOpcode())
2115     return Node;
2116 
2117   unsigned Opcode = Node->getMachineOpcode();
2118   SDValue FakeOp;
2119 
2120   std::vector<SDValue> Ops(Node->op_begin(), Node->op_end());
2121 
2122   if (Opcode == R600::DOT_4) {
2123     int OperandIdx[] = {
2124       TII->getOperandIdx(Opcode, R600::OpName::src0_X),
2125       TII->getOperandIdx(Opcode, R600::OpName::src0_Y),
2126       TII->getOperandIdx(Opcode, R600::OpName::src0_Z),
2127       TII->getOperandIdx(Opcode, R600::OpName::src0_W),
2128       TII->getOperandIdx(Opcode, R600::OpName::src1_X),
2129       TII->getOperandIdx(Opcode, R600::OpName::src1_Y),
2130       TII->getOperandIdx(Opcode, R600::OpName::src1_Z),
2131       TII->getOperandIdx(Opcode, R600::OpName::src1_W)
2132         };
2133     int NegIdx[] = {
2134       TII->getOperandIdx(Opcode, R600::OpName::src0_neg_X),
2135       TII->getOperandIdx(Opcode, R600::OpName::src0_neg_Y),
2136       TII->getOperandIdx(Opcode, R600::OpName::src0_neg_Z),
2137       TII->getOperandIdx(Opcode, R600::OpName::src0_neg_W),
2138       TII->getOperandIdx(Opcode, R600::OpName::src1_neg_X),
2139       TII->getOperandIdx(Opcode, R600::OpName::src1_neg_Y),
2140       TII->getOperandIdx(Opcode, R600::OpName::src1_neg_Z),
2141       TII->getOperandIdx(Opcode, R600::OpName::src1_neg_W)
2142     };
2143     int AbsIdx[] = {
2144       TII->getOperandIdx(Opcode, R600::OpName::src0_abs_X),
2145       TII->getOperandIdx(Opcode, R600::OpName::src0_abs_Y),
2146       TII->getOperandIdx(Opcode, R600::OpName::src0_abs_Z),
2147       TII->getOperandIdx(Opcode, R600::OpName::src0_abs_W),
2148       TII->getOperandIdx(Opcode, R600::OpName::src1_abs_X),
2149       TII->getOperandIdx(Opcode, R600::OpName::src1_abs_Y),
2150       TII->getOperandIdx(Opcode, R600::OpName::src1_abs_Z),
2151       TII->getOperandIdx(Opcode, R600::OpName::src1_abs_W)
2152     };
2153     for (unsigned i = 0; i < 8; i++) {
2154       if (OperandIdx[i] < 0)
2155         return Node;
2156       SDValue &Src = Ops[OperandIdx[i] - 1];
2157       SDValue &Neg = Ops[NegIdx[i] - 1];
2158       SDValue &Abs = Ops[AbsIdx[i] - 1];
2159       bool HasDst = TII->getOperandIdx(Opcode, R600::OpName::dst) > -1;
2160       int SelIdx = TII->getSelIdx(Opcode, OperandIdx[i]);
2161       if (HasDst)
2162         SelIdx--;
2163       SDValue &Sel = (SelIdx > -1) ? Ops[SelIdx] : FakeOp;
2164       if (FoldOperand(Node, i, Src, Neg, Abs, Sel, FakeOp, DAG))
2165         return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
2166     }
2167   } else if (Opcode == R600::REG_SEQUENCE) {
2168     for (unsigned i = 1, e = Node->getNumOperands(); i < e; i += 2) {
2169       SDValue &Src = Ops[i];
2170       if (FoldOperand(Node, i, Src, FakeOp, FakeOp, FakeOp, FakeOp, DAG))
2171         return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
2172     }
2173   } else {
2174     if (!TII->hasInstrModifiers(Opcode))
2175       return Node;
2176     int OperandIdx[] = {
2177       TII->getOperandIdx(Opcode, R600::OpName::src0),
2178       TII->getOperandIdx(Opcode, R600::OpName::src1),
2179       TII->getOperandIdx(Opcode, R600::OpName::src2)
2180     };
2181     int NegIdx[] = {
2182       TII->getOperandIdx(Opcode, R600::OpName::src0_neg),
2183       TII->getOperandIdx(Opcode, R600::OpName::src1_neg),
2184       TII->getOperandIdx(Opcode, R600::OpName::src2_neg)
2185     };
2186     int AbsIdx[] = {
2187       TII->getOperandIdx(Opcode, R600::OpName::src0_abs),
2188       TII->getOperandIdx(Opcode, R600::OpName::src1_abs),
2189       -1
2190     };
2191     for (unsigned i = 0; i < 3; i++) {
2192       if (OperandIdx[i] < 0)
2193         return Node;
2194       SDValue &Src = Ops[OperandIdx[i] - 1];
2195       SDValue &Neg = Ops[NegIdx[i] - 1];
2196       SDValue FakeAbs;
2197       SDValue &Abs = (AbsIdx[i] > -1) ? Ops[AbsIdx[i] - 1] : FakeAbs;
2198       bool HasDst = TII->getOperandIdx(Opcode, R600::OpName::dst) > -1;
2199       int SelIdx = TII->getSelIdx(Opcode, OperandIdx[i]);
2200       int ImmIdx = TII->getOperandIdx(Opcode, R600::OpName::literal);
2201       if (HasDst) {
2202         SelIdx--;
2203         ImmIdx--;
2204       }
2205       SDValue &Sel = (SelIdx > -1) ? Ops[SelIdx] : FakeOp;
2206       SDValue &Imm = Ops[ImmIdx];
2207       if (FoldOperand(Node, i, Src, Neg, Abs, Sel, Imm, DAG))
2208         return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
2209     }
2210   }
2211 
2212   return Node;
2213 }
2214