1 //===-- R600ISelLowering.cpp - R600 DAG Lowering Implementation -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// Custom DAG lowering for R600
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "R600ISelLowering.h"
15 #include "AMDGPU.h"
16 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
17 #include "R600Defines.h"
18 #include "R600InstrInfo.h"
19 #include "R600MachineFunctionInfo.h"
20 #include "R600Subtarget.h"
21 #include "llvm/IR/IntrinsicsAMDGPU.h"
22 #include "llvm/IR/IntrinsicsR600.h"
23 
24 using namespace llvm;
25 
26 #include "R600GenCallingConv.inc"
27 
28 R600TargetLowering::R600TargetLowering(const TargetMachine &TM,
29                                        const R600Subtarget &STI)
30     : AMDGPUTargetLowering(TM, STI), Subtarget(&STI), Gen(STI.getGeneration()) {
31   addRegisterClass(MVT::f32, &R600::R600_Reg32RegClass);
32   addRegisterClass(MVT::i32, &R600::R600_Reg32RegClass);
33   addRegisterClass(MVT::v2f32, &R600::R600_Reg64RegClass);
34   addRegisterClass(MVT::v2i32, &R600::R600_Reg64RegClass);
35   addRegisterClass(MVT::v4f32, &R600::R600_Reg128RegClass);
36   addRegisterClass(MVT::v4i32, &R600::R600_Reg128RegClass);
37 
38   setBooleanContents(ZeroOrNegativeOneBooleanContent);
39   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
40 
41   computeRegisterProperties(Subtarget->getRegisterInfo());
42 
43   // Legalize loads and stores to the private address space.
44   setOperationAction(ISD::LOAD, MVT::i32, Custom);
45   setOperationAction(ISD::LOAD, MVT::v2i32, Custom);
46   setOperationAction(ISD::LOAD, MVT::v4i32, Custom);
47 
48   // EXTLOAD should be the same as ZEXTLOAD. It is legal for some address
49   // spaces, so it is custom lowered to handle those where it isn't.
50   for (MVT VT : MVT::integer_valuetypes()) {
51     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
52     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Custom);
53     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Custom);
54 
55     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
56     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Custom);
57     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Custom);
58 
59     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
60     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Custom);
61     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Custom);
62   }
63 
64   // Workaround for LegalizeDAG asserting on expansion of i1 vector loads.
65   setLoadExtAction(ISD::EXTLOAD, MVT::v2i32, MVT::v2i1, Expand);
66   setLoadExtAction(ISD::SEXTLOAD, MVT::v2i32, MVT::v2i1, Expand);
67   setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i32, MVT::v2i1, Expand);
68 
69   setLoadExtAction(ISD::EXTLOAD, MVT::v4i32, MVT::v4i1, Expand);
70   setLoadExtAction(ISD::SEXTLOAD, MVT::v4i32, MVT::v4i1, Expand);
71   setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i32, MVT::v4i1, Expand);
72 
73   setOperationAction(ISD::STORE, MVT::i8, Custom);
74   setOperationAction(ISD::STORE, MVT::i32, Custom);
75   setOperationAction(ISD::STORE, MVT::v2i32, Custom);
76   setOperationAction(ISD::STORE, MVT::v4i32, Custom);
77 
78   setTruncStoreAction(MVT::i32, MVT::i8, Custom);
79   setTruncStoreAction(MVT::i32, MVT::i16, Custom);
80   // We need to include these since trunc STORES to PRIVATE need
81   // special handling to accommodate RMW
82   setTruncStoreAction(MVT::v2i32, MVT::v2i16, Custom);
83   setTruncStoreAction(MVT::v4i32, MVT::v4i16, Custom);
84   setTruncStoreAction(MVT::v8i32, MVT::v8i16, Custom);
85   setTruncStoreAction(MVT::v16i32, MVT::v16i16, Custom);
86   setTruncStoreAction(MVT::v32i32, MVT::v32i16, Custom);
87   setTruncStoreAction(MVT::v2i32, MVT::v2i8, Custom);
88   setTruncStoreAction(MVT::v4i32, MVT::v4i8, Custom);
89   setTruncStoreAction(MVT::v8i32, MVT::v8i8, Custom);
90   setTruncStoreAction(MVT::v16i32, MVT::v16i8, Custom);
91   setTruncStoreAction(MVT::v32i32, MVT::v32i8, Custom);
92 
93   // Workaround for LegalizeDAG asserting on expansion of i1 vector stores.
94   setTruncStoreAction(MVT::v2i32, MVT::v2i1, Expand);
95   setTruncStoreAction(MVT::v4i32, MVT::v4i1, Expand);
96 
97   // Set condition code actions
98   setCondCodeAction(ISD::SETO,   MVT::f32, Expand);
99   setCondCodeAction(ISD::SETUO,  MVT::f32, Expand);
100   setCondCodeAction(ISD::SETLT,  MVT::f32, Expand);
101   setCondCodeAction(ISD::SETLE,  MVT::f32, Expand);
102   setCondCodeAction(ISD::SETOLT, MVT::f32, Expand);
103   setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
104   setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
105   setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
106   setCondCodeAction(ISD::SETUGE, MVT::f32, Expand);
107   setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
108   setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
109   setCondCodeAction(ISD::SETULE, MVT::f32, Expand);
110 
111   setCondCodeAction(ISD::SETLE, MVT::i32, Expand);
112   setCondCodeAction(ISD::SETLT, MVT::i32, Expand);
113   setCondCodeAction(ISD::SETULE, MVT::i32, Expand);
114   setCondCodeAction(ISD::SETULT, MVT::i32, Expand);
115 
116   setOperationAction(ISD::FCOS, MVT::f32, Custom);
117   setOperationAction(ISD::FSIN, MVT::f32, Custom);
118 
119   setOperationAction(ISD::SETCC, MVT::v4i32, Expand);
120   setOperationAction(ISD::SETCC, MVT::v2i32, Expand);
121 
122   setOperationAction(ISD::BR_CC, MVT::i32, Expand);
123   setOperationAction(ISD::BR_CC, MVT::f32, Expand);
124   setOperationAction(ISD::BRCOND, MVT::Other, Custom);
125 
126   setOperationAction(ISD::FSUB, MVT::f32, Expand);
127 
128   setOperationAction(ISD::FCEIL, MVT::f64, Custom);
129   setOperationAction(ISD::FTRUNC, MVT::f64, Custom);
130   setOperationAction(ISD::FRINT, MVT::f64, Custom);
131   setOperationAction(ISD::FFLOOR, MVT::f64, Custom);
132 
133   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
134   setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
135 
136   setOperationAction(ISD::SETCC, MVT::i32, Expand);
137   setOperationAction(ISD::SETCC, MVT::f32, Expand);
138   setOperationAction(ISD::FP_TO_UINT, MVT::i1, Custom);
139   setOperationAction(ISD::FP_TO_SINT, MVT::i1, Custom);
140   setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
141   setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
142 
143   setOperationAction(ISD::SELECT, MVT::i32, Expand);
144   setOperationAction(ISD::SELECT, MVT::f32, Expand);
145   setOperationAction(ISD::SELECT, MVT::v2i32, Expand);
146   setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
147 
148   // ADD, SUB overflow.
149   // TODO: turn these into Legal?
150   if (Subtarget->hasCARRY())
151     setOperationAction(ISD::UADDO, MVT::i32, Custom);
152 
153   if (Subtarget->hasBORROW())
154     setOperationAction(ISD::USUBO, MVT::i32, Custom);
155 
156   // Expand sign extension of vectors
157   if (!Subtarget->hasBFE())
158     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
159 
160   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i1, Expand);
161   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i1, Expand);
162 
163   if (!Subtarget->hasBFE())
164     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
165   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Expand);
166   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Expand);
167 
168   if (!Subtarget->hasBFE())
169     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
170   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Expand);
171   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Expand);
172 
173   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
174   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Expand);
175   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Expand);
176 
177   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Expand);
178 
179   setOperationAction(ISD::FrameIndex, MVT::i32, Custom);
180 
181   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i32, Custom);
182   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f32, Custom);
183   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
184   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
185 
186   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i32, Custom);
187   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f32, Custom);
188   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
189   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
190 
191   // We don't have 64-bit shifts. Thus we need either SHX i64 or SHX_PARTS i32
192   //  to be Legal/Custom in order to avoid library calls.
193   setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
194   setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
195   setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
196 
197   if (!Subtarget->hasFMA()) {
198     setOperationAction(ISD::FMA, MVT::f32, Expand);
199     setOperationAction(ISD::FMA, MVT::f64, Expand);
200   }
201 
202   // FIXME: May need no denormals check
203   setOperationAction(ISD::FMAD, MVT::f32, Legal);
204 
205   if (!Subtarget->hasBFI()) {
206     // fcopysign can be done in a single instruction with BFI.
207     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
208     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
209   }
210 
211   if (!Subtarget->hasBCNT(32))
212     setOperationAction(ISD::CTPOP, MVT::i32, Expand);
213 
214   if (!Subtarget->hasBCNT(64))
215     setOperationAction(ISD::CTPOP, MVT::i64, Expand);
216 
217   if (Subtarget->hasFFBH())
218     setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom);
219 
220   if (Subtarget->hasFFBL())
221     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom);
222 
223   // FIXME: This was moved from AMDGPUTargetLowering, I'm not sure if we
224   // need it for R600.
225   if (Subtarget->hasBFE())
226     setHasExtractBitsInsn(true);
227 
228   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
229 
230   const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
231   for (MVT VT : ScalarIntVTs) {
232     setOperationAction(ISD::ADDC, VT, Expand);
233     setOperationAction(ISD::SUBC, VT, Expand);
234     setOperationAction(ISD::ADDE, VT, Expand);
235     setOperationAction(ISD::SUBE, VT, Expand);
236   }
237 
238   // LLVM will expand these to atomic_cmp_swap(0)
239   // and atomic_swap, respectively.
240   setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Expand);
241   setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Expand);
242 
243   // We need to custom lower some of the intrinsics
244   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
245   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
246 
247   setSchedulingPreference(Sched::Source);
248 
249   setTargetDAGCombine(ISD::FP_ROUND);
250   setTargetDAGCombine(ISD::FP_TO_SINT);
251   setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
252   setTargetDAGCombine(ISD::SELECT_CC);
253   setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
254   setTargetDAGCombine(ISD::LOAD);
255 }
256 
257 static inline bool isEOP(MachineBasicBlock::iterator I) {
258   if (std::next(I) == I->getParent()->end())
259     return false;
260   return std::next(I)->getOpcode() == R600::RETURN;
261 }
262 
263 MachineBasicBlock *
264 R600TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
265                                                 MachineBasicBlock *BB) const {
266   MachineFunction *MF = BB->getParent();
267   MachineRegisterInfo &MRI = MF->getRegInfo();
268   MachineBasicBlock::iterator I = MI;
269   const R600InstrInfo *TII = Subtarget->getInstrInfo();
270 
271   switch (MI.getOpcode()) {
272   default:
273     // Replace LDS_*_RET instruction that don't have any uses with the
274     // equivalent LDS_*_NORET instruction.
275     if (TII->isLDSRetInstr(MI.getOpcode())) {
276       int DstIdx = TII->getOperandIdx(MI.getOpcode(), R600::OpName::dst);
277       assert(DstIdx != -1);
278       MachineInstrBuilder NewMI;
279       // FIXME: getLDSNoRetOp method only handles LDS_1A1D LDS ops. Add
280       //        LDS_1A2D support and remove this special case.
281       if (!MRI.use_empty(MI.getOperand(DstIdx).getReg()) ||
282           MI.getOpcode() == R600::LDS_CMPST_RET)
283         return BB;
284 
285       NewMI = BuildMI(*BB, I, BB->findDebugLoc(I),
286                       TII->get(R600::getLDSNoRetOp(MI.getOpcode())));
287       for (unsigned i = 1, e = MI.getNumOperands(); i < e; ++i) {
288         NewMI.add(MI.getOperand(i));
289       }
290     } else {
291       return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB);
292     }
293     break;
294 
295   case R600::FABS_R600: {
296     MachineInstr *NewMI = TII->buildDefaultInstruction(
297         *BB, I, R600::MOV, MI.getOperand(0).getReg(),
298         MI.getOperand(1).getReg());
299     TII->addFlag(*NewMI, 0, MO_FLAG_ABS);
300     break;
301   }
302 
303   case R600::FNEG_R600: {
304     MachineInstr *NewMI = TII->buildDefaultInstruction(
305         *BB, I, R600::MOV, MI.getOperand(0).getReg(),
306         MI.getOperand(1).getReg());
307     TII->addFlag(*NewMI, 0, MO_FLAG_NEG);
308     break;
309   }
310 
311   case R600::MASK_WRITE: {
312     Register maskedRegister = MI.getOperand(0).getReg();
313     assert(maskedRegister.isVirtual());
314     MachineInstr * defInstr = MRI.getVRegDef(maskedRegister);
315     TII->addFlag(*defInstr, 0, MO_FLAG_MASK);
316     break;
317   }
318 
319   case R600::MOV_IMM_F32:
320     TII->buildMovImm(*BB, I, MI.getOperand(0).getReg(), MI.getOperand(1)
321                                                             .getFPImm()
322                                                             ->getValueAPF()
323                                                             .bitcastToAPInt()
324                                                             .getZExtValue());
325     break;
326 
327   case R600::MOV_IMM_I32:
328     TII->buildMovImm(*BB, I, MI.getOperand(0).getReg(),
329                      MI.getOperand(1).getImm());
330     break;
331 
332   case R600::MOV_IMM_GLOBAL_ADDR: {
333     //TODO: Perhaps combine this instruction with the next if possible
334     auto MIB = TII->buildDefaultInstruction(
335         *BB, MI, R600::MOV, MI.getOperand(0).getReg(), R600::ALU_LITERAL_X);
336     int Idx = TII->getOperandIdx(*MIB, R600::OpName::literal);
337     //TODO: Ugh this is rather ugly
338     MIB->getOperand(Idx) = MI.getOperand(1);
339     break;
340   }
341 
342   case R600::CONST_COPY: {
343     MachineInstr *NewMI = TII->buildDefaultInstruction(
344         *BB, MI, R600::MOV, MI.getOperand(0).getReg(), R600::ALU_CONST);
345     TII->setImmOperand(*NewMI, R600::OpName::src0_sel,
346                        MI.getOperand(1).getImm());
347     break;
348   }
349 
350   case R600::RAT_WRITE_CACHELESS_32_eg:
351   case R600::RAT_WRITE_CACHELESS_64_eg:
352   case R600::RAT_WRITE_CACHELESS_128_eg:
353     BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(MI.getOpcode()))
354         .add(MI.getOperand(0))
355         .add(MI.getOperand(1))
356         .addImm(isEOP(I)); // Set End of program bit
357     break;
358 
359   case R600::RAT_STORE_TYPED_eg:
360     BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(MI.getOpcode()))
361         .add(MI.getOperand(0))
362         .add(MI.getOperand(1))
363         .add(MI.getOperand(2))
364         .addImm(isEOP(I)); // Set End of program bit
365     break;
366 
367   case R600::BRANCH:
368     BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(R600::JUMP))
369         .add(MI.getOperand(0));
370     break;
371 
372   case R600::BRANCH_COND_f32: {
373     MachineInstr *NewMI =
374         BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(R600::PRED_X),
375                 R600::PREDICATE_BIT)
376             .add(MI.getOperand(1))
377             .addImm(R600::PRED_SETNE)
378             .addImm(0); // Flags
379     TII->addFlag(*NewMI, 0, MO_FLAG_PUSH);
380     BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(R600::JUMP_COND))
381         .add(MI.getOperand(0))
382         .addReg(R600::PREDICATE_BIT, RegState::Kill);
383     break;
384   }
385 
386   case R600::BRANCH_COND_i32: {
387     MachineInstr *NewMI =
388         BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(R600::PRED_X),
389                 R600::PREDICATE_BIT)
390             .add(MI.getOperand(1))
391             .addImm(R600::PRED_SETNE_INT)
392             .addImm(0); // Flags
393     TII->addFlag(*NewMI, 0, MO_FLAG_PUSH);
394     BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(R600::JUMP_COND))
395         .add(MI.getOperand(0))
396         .addReg(R600::PREDICATE_BIT, RegState::Kill);
397     break;
398   }
399 
400   case R600::EG_ExportSwz:
401   case R600::R600_ExportSwz: {
402     // Instruction is left unmodified if its not the last one of its type
403     bool isLastInstructionOfItsType = true;
404     unsigned InstExportType = MI.getOperand(1).getImm();
405     for (MachineBasicBlock::iterator NextExportInst = std::next(I),
406          EndBlock = BB->end(); NextExportInst != EndBlock;
407          NextExportInst = std::next(NextExportInst)) {
408       if (NextExportInst->getOpcode() == R600::EG_ExportSwz ||
409           NextExportInst->getOpcode() == R600::R600_ExportSwz) {
410         unsigned CurrentInstExportType = NextExportInst->getOperand(1)
411             .getImm();
412         if (CurrentInstExportType == InstExportType) {
413           isLastInstructionOfItsType = false;
414           break;
415         }
416       }
417     }
418     bool EOP = isEOP(I);
419     if (!EOP && !isLastInstructionOfItsType)
420       return BB;
421     unsigned CfInst = (MI.getOpcode() == R600::EG_ExportSwz) ? 84 : 40;
422     BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(MI.getOpcode()))
423         .add(MI.getOperand(0))
424         .add(MI.getOperand(1))
425         .add(MI.getOperand(2))
426         .add(MI.getOperand(3))
427         .add(MI.getOperand(4))
428         .add(MI.getOperand(5))
429         .add(MI.getOperand(6))
430         .addImm(CfInst)
431         .addImm(EOP);
432     break;
433   }
434   case R600::RETURN: {
435     return BB;
436   }
437   }
438 
439   MI.eraseFromParent();
440   return BB;
441 }
442 
443 //===----------------------------------------------------------------------===//
444 // Custom DAG Lowering Operations
445 //===----------------------------------------------------------------------===//
446 
447 SDValue R600TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
448   MachineFunction &MF = DAG.getMachineFunction();
449   R600MachineFunctionInfo *MFI = MF.getInfo<R600MachineFunctionInfo>();
450   switch (Op.getOpcode()) {
451   default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
452   case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
453   case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
454   case ISD::SHL_PARTS: return LowerSHLParts(Op, DAG);
455   case ISD::SRA_PARTS:
456   case ISD::SRL_PARTS: return LowerSRXParts(Op, DAG);
457   case ISD::UADDO: return LowerUADDSUBO(Op, DAG, ISD::ADD, AMDGPUISD::CARRY);
458   case ISD::USUBO: return LowerUADDSUBO(Op, DAG, ISD::SUB, AMDGPUISD::BORROW);
459   case ISD::FCOS:
460   case ISD::FSIN: return LowerTrig(Op, DAG);
461   case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
462   case ISD::STORE: return LowerSTORE(Op, DAG);
463   case ISD::LOAD: {
464     SDValue Result = LowerLOAD(Op, DAG);
465     assert((!Result.getNode() ||
466             Result.getNode()->getNumValues() == 2) &&
467            "Load should return a value and a chain");
468     return Result;
469   }
470 
471   case ISD::BRCOND: return LowerBRCOND(Op, DAG);
472   case ISD::GlobalAddress: return LowerGlobalAddress(MFI, Op, DAG);
473   case ISD::FrameIndex: return lowerFrameIndex(Op, DAG);
474   case ISD::INTRINSIC_VOID: {
475     SDValue Chain = Op.getOperand(0);
476     unsigned IntrinsicID =
477                          cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
478     switch (IntrinsicID) {
479     case Intrinsic::r600_store_swizzle: {
480       SDLoc DL(Op);
481       const SDValue Args[8] = {
482         Chain,
483         Op.getOperand(2), // Export Value
484         Op.getOperand(3), // ArrayBase
485         Op.getOperand(4), // Type
486         DAG.getConstant(0, DL, MVT::i32), // SWZ_X
487         DAG.getConstant(1, DL, MVT::i32), // SWZ_Y
488         DAG.getConstant(2, DL, MVT::i32), // SWZ_Z
489         DAG.getConstant(3, DL, MVT::i32) // SWZ_W
490       };
491       return DAG.getNode(AMDGPUISD::R600_EXPORT, DL, Op.getValueType(), Args);
492     }
493 
494     // default for switch(IntrinsicID)
495     default: break;
496     }
497     // break out of case ISD::INTRINSIC_VOID in switch(Op.getOpcode())
498     break;
499   }
500   case ISD::INTRINSIC_WO_CHAIN: {
501     unsigned IntrinsicID =
502                          cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
503     EVT VT = Op.getValueType();
504     SDLoc DL(Op);
505     switch (IntrinsicID) {
506     case Intrinsic::r600_tex:
507     case Intrinsic::r600_texc: {
508       unsigned TextureOp;
509       switch (IntrinsicID) {
510       case Intrinsic::r600_tex:
511         TextureOp = 0;
512         break;
513       case Intrinsic::r600_texc:
514         TextureOp = 1;
515         break;
516       default:
517         llvm_unreachable("unhandled texture operation");
518       }
519 
520       SDValue TexArgs[19] = {
521         DAG.getConstant(TextureOp, DL, MVT::i32),
522         Op.getOperand(1),
523         DAG.getConstant(0, DL, MVT::i32),
524         DAG.getConstant(1, DL, MVT::i32),
525         DAG.getConstant(2, DL, MVT::i32),
526         DAG.getConstant(3, DL, MVT::i32),
527         Op.getOperand(2),
528         Op.getOperand(3),
529         Op.getOperand(4),
530         DAG.getConstant(0, DL, MVT::i32),
531         DAG.getConstant(1, DL, MVT::i32),
532         DAG.getConstant(2, DL, MVT::i32),
533         DAG.getConstant(3, DL, MVT::i32),
534         Op.getOperand(5),
535         Op.getOperand(6),
536         Op.getOperand(7),
537         Op.getOperand(8),
538         Op.getOperand(9),
539         Op.getOperand(10)
540       };
541       return DAG.getNode(AMDGPUISD::TEXTURE_FETCH, DL, MVT::v4f32, TexArgs);
542     }
543     case Intrinsic::r600_dot4: {
544       SDValue Args[8] = {
545       DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1),
546           DAG.getConstant(0, DL, MVT::i32)),
547       DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2),
548           DAG.getConstant(0, DL, MVT::i32)),
549       DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1),
550           DAG.getConstant(1, DL, MVT::i32)),
551       DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2),
552           DAG.getConstant(1, DL, MVT::i32)),
553       DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1),
554           DAG.getConstant(2, DL, MVT::i32)),
555       DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2),
556           DAG.getConstant(2, DL, MVT::i32)),
557       DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1),
558           DAG.getConstant(3, DL, MVT::i32)),
559       DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2),
560           DAG.getConstant(3, DL, MVT::i32))
561       };
562       return DAG.getNode(AMDGPUISD::DOT4, DL, MVT::f32, Args);
563     }
564 
565     case Intrinsic::r600_implicitarg_ptr: {
566       MVT PtrVT = getPointerTy(DAG.getDataLayout(), AMDGPUAS::PARAM_I_ADDRESS);
567       uint32_t ByteOffset = getImplicitParameterOffset(MF, FIRST_IMPLICIT);
568       return DAG.getConstant(ByteOffset, DL, PtrVT);
569     }
570     case Intrinsic::r600_read_ngroups_x:
571       return LowerImplicitParameter(DAG, VT, DL, 0);
572     case Intrinsic::r600_read_ngroups_y:
573       return LowerImplicitParameter(DAG, VT, DL, 1);
574     case Intrinsic::r600_read_ngroups_z:
575       return LowerImplicitParameter(DAG, VT, DL, 2);
576     case Intrinsic::r600_read_global_size_x:
577       return LowerImplicitParameter(DAG, VT, DL, 3);
578     case Intrinsic::r600_read_global_size_y:
579       return LowerImplicitParameter(DAG, VT, DL, 4);
580     case Intrinsic::r600_read_global_size_z:
581       return LowerImplicitParameter(DAG, VT, DL, 5);
582     case Intrinsic::r600_read_local_size_x:
583       return LowerImplicitParameter(DAG, VT, DL, 6);
584     case Intrinsic::r600_read_local_size_y:
585       return LowerImplicitParameter(DAG, VT, DL, 7);
586     case Intrinsic::r600_read_local_size_z:
587       return LowerImplicitParameter(DAG, VT, DL, 8);
588 
589     case Intrinsic::r600_read_tgid_x:
590     case Intrinsic::amdgcn_workgroup_id_x:
591       return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass,
592                                      R600::T1_X, VT);
593     case Intrinsic::r600_read_tgid_y:
594     case Intrinsic::amdgcn_workgroup_id_y:
595       return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass,
596                                      R600::T1_Y, VT);
597     case Intrinsic::r600_read_tgid_z:
598     case Intrinsic::amdgcn_workgroup_id_z:
599       return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass,
600                                      R600::T1_Z, VT);
601     case Intrinsic::r600_read_tidig_x:
602     case Intrinsic::amdgcn_workitem_id_x:
603       return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass,
604                                      R600::T0_X, VT);
605     case Intrinsic::r600_read_tidig_y:
606     case Intrinsic::amdgcn_workitem_id_y:
607       return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass,
608                                      R600::T0_Y, VT);
609     case Intrinsic::r600_read_tidig_z:
610     case Intrinsic::amdgcn_workitem_id_z:
611       return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass,
612                                      R600::T0_Z, VT);
613 
614     case Intrinsic::r600_recipsqrt_ieee:
615       return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
616 
617     case Intrinsic::r600_recipsqrt_clamped:
618       return DAG.getNode(AMDGPUISD::RSQ_CLAMP, DL, VT, Op.getOperand(1));
619     default:
620       return Op;
621     }
622 
623     // break out of case ISD::INTRINSIC_WO_CHAIN in switch(Op.getOpcode())
624     break;
625   }
626   } // end switch(Op.getOpcode())
627   return SDValue();
628 }
629 
630 void R600TargetLowering::ReplaceNodeResults(SDNode *N,
631                                             SmallVectorImpl<SDValue> &Results,
632                                             SelectionDAG &DAG) const {
633   switch (N->getOpcode()) {
634   default:
635     AMDGPUTargetLowering::ReplaceNodeResults(N, Results, DAG);
636     return;
637   case ISD::FP_TO_UINT:
638     if (N->getValueType(0) == MVT::i1) {
639       Results.push_back(lowerFP_TO_UINT(N->getOperand(0), DAG));
640       return;
641     }
642     // Since we don't care about out of bounds values we can use FP_TO_SINT for
643     // uints too. The DAGLegalizer code for uint considers some extra cases
644     // which are not necessary here.
645     LLVM_FALLTHROUGH;
646   case ISD::FP_TO_SINT: {
647     if (N->getValueType(0) == MVT::i1) {
648       Results.push_back(lowerFP_TO_SINT(N->getOperand(0), DAG));
649       return;
650     }
651 
652     SDValue Result;
653     if (expandFP_TO_SINT(N, Result, DAG))
654       Results.push_back(Result);
655     return;
656   }
657   case ISD::SDIVREM: {
658     SDValue Op = SDValue(N, 1);
659     SDValue RES = LowerSDIVREM(Op, DAG);
660     Results.push_back(RES);
661     Results.push_back(RES.getValue(1));
662     break;
663   }
664   case ISD::UDIVREM: {
665     SDValue Op = SDValue(N, 0);
666     LowerUDIVREM64(Op, DAG, Results);
667     break;
668   }
669   }
670 }
671 
672 SDValue R600TargetLowering::vectorToVerticalVector(SelectionDAG &DAG,
673                                                    SDValue Vector) const {
674   SDLoc DL(Vector);
675   EVT VecVT = Vector.getValueType();
676   EVT EltVT = VecVT.getVectorElementType();
677   SmallVector<SDValue, 8> Args;
678 
679   for (unsigned i = 0, e = VecVT.getVectorNumElements(); i != e; ++i) {
680     Args.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vector,
681                                DAG.getVectorIdxConstant(i, DL)));
682   }
683 
684   return DAG.getNode(AMDGPUISD::BUILD_VERTICAL_VECTOR, DL, VecVT, Args);
685 }
686 
687 SDValue R600TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
688                                                     SelectionDAG &DAG) const {
689   SDLoc DL(Op);
690   SDValue Vector = Op.getOperand(0);
691   SDValue Index = Op.getOperand(1);
692 
693   if (isa<ConstantSDNode>(Index) ||
694       Vector.getOpcode() == AMDGPUISD::BUILD_VERTICAL_VECTOR)
695     return Op;
696 
697   Vector = vectorToVerticalVector(DAG, Vector);
698   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, Op.getValueType(),
699                      Vector, Index);
700 }
701 
702 SDValue R600TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
703                                                    SelectionDAG &DAG) const {
704   SDLoc DL(Op);
705   SDValue Vector = Op.getOperand(0);
706   SDValue Value = Op.getOperand(1);
707   SDValue Index = Op.getOperand(2);
708 
709   if (isa<ConstantSDNode>(Index) ||
710       Vector.getOpcode() == AMDGPUISD::BUILD_VERTICAL_VECTOR)
711     return Op;
712 
713   Vector = vectorToVerticalVector(DAG, Vector);
714   SDValue Insert = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, Op.getValueType(),
715                                Vector, Value, Index);
716   return vectorToVerticalVector(DAG, Insert);
717 }
718 
719 SDValue R600TargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI,
720                                                SDValue Op,
721                                                SelectionDAG &DAG) const {
722   GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op);
723   if (GSD->getAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS)
724     return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG);
725 
726   const DataLayout &DL = DAG.getDataLayout();
727   const GlobalValue *GV = GSD->getGlobal();
728   MVT ConstPtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS);
729 
730   SDValue GA = DAG.getTargetGlobalAddress(GV, SDLoc(GSD), ConstPtrVT);
731   return DAG.getNode(AMDGPUISD::CONST_DATA_PTR, SDLoc(GSD), ConstPtrVT, GA);
732 }
733 
734 SDValue R600TargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const {
735   // On hw >= R700, COS/SIN input must be between -1. and 1.
736   // Thus we lower them to TRIG ( FRACT ( x / 2Pi + 0.5) - 0.5)
737   EVT VT = Op.getValueType();
738   SDValue Arg = Op.getOperand(0);
739   SDLoc DL(Op);
740 
741   // TODO: Should this propagate fast-math-flags?
742   SDValue FractPart = DAG.getNode(AMDGPUISD::FRACT, DL, VT,
743       DAG.getNode(ISD::FADD, DL, VT,
744         DAG.getNode(ISD::FMUL, DL, VT, Arg,
745           DAG.getConstantFP(0.15915494309, DL, MVT::f32)),
746         DAG.getConstantFP(0.5, DL, MVT::f32)));
747   unsigned TrigNode;
748   switch (Op.getOpcode()) {
749   case ISD::FCOS:
750     TrigNode = AMDGPUISD::COS_HW;
751     break;
752   case ISD::FSIN:
753     TrigNode = AMDGPUISD::SIN_HW;
754     break;
755   default:
756     llvm_unreachable("Wrong trig opcode");
757   }
758   SDValue TrigVal = DAG.getNode(TrigNode, DL, VT,
759       DAG.getNode(ISD::FADD, DL, VT, FractPart,
760         DAG.getConstantFP(-0.5, DL, MVT::f32)));
761   if (Gen >= AMDGPUSubtarget::R700)
762     return TrigVal;
763   // On R600 hw, COS/SIN input must be between -Pi and Pi.
764   return DAG.getNode(ISD::FMUL, DL, VT, TrigVal,
765       DAG.getConstantFP(numbers::pif, DL, MVT::f32));
766 }
767 
768 SDValue R600TargetLowering::LowerSHLParts(SDValue Op, SelectionDAG &DAG) const {
769   SDLoc DL(Op);
770   EVT VT = Op.getValueType();
771 
772   SDValue Lo = Op.getOperand(0);
773   SDValue Hi = Op.getOperand(1);
774   SDValue Shift = Op.getOperand(2);
775   SDValue Zero = DAG.getConstant(0, DL, VT);
776   SDValue One  = DAG.getConstant(1, DL, VT);
777 
778   SDValue Width  = DAG.getConstant(VT.getSizeInBits(), DL, VT);
779   SDValue Width1 = DAG.getConstant(VT.getSizeInBits() - 1, DL, VT);
780   SDValue BigShift  = DAG.getNode(ISD::SUB, DL, VT, Shift, Width);
781   SDValue CompShift = DAG.getNode(ISD::SUB, DL, VT, Width1, Shift);
782 
783   // The dance around Width1 is necessary for 0 special case.
784   // Without it the CompShift might be 32, producing incorrect results in
785   // Overflow. So we do the shift in two steps, the alternative is to
786   // add a conditional to filter the special case.
787 
788   SDValue Overflow = DAG.getNode(ISD::SRL, DL, VT, Lo, CompShift);
789   Overflow = DAG.getNode(ISD::SRL, DL, VT, Overflow, One);
790 
791   SDValue HiSmall = DAG.getNode(ISD::SHL, DL, VT, Hi, Shift);
792   HiSmall = DAG.getNode(ISD::OR, DL, VT, HiSmall, Overflow);
793   SDValue LoSmall = DAG.getNode(ISD::SHL, DL, VT, Lo, Shift);
794 
795   SDValue HiBig = DAG.getNode(ISD::SHL, DL, VT, Lo, BigShift);
796   SDValue LoBig = Zero;
797 
798   Hi = DAG.getSelectCC(DL, Shift, Width, HiSmall, HiBig, ISD::SETULT);
799   Lo = DAG.getSelectCC(DL, Shift, Width, LoSmall, LoBig, ISD::SETULT);
800 
801   return DAG.getNode(ISD::MERGE_VALUES, DL, DAG.getVTList(VT,VT), Lo, Hi);
802 }
803 
804 SDValue R600TargetLowering::LowerSRXParts(SDValue Op, SelectionDAG &DAG) const {
805   SDLoc DL(Op);
806   EVT VT = Op.getValueType();
807 
808   SDValue Lo = Op.getOperand(0);
809   SDValue Hi = Op.getOperand(1);
810   SDValue Shift = Op.getOperand(2);
811   SDValue Zero = DAG.getConstant(0, DL, VT);
812   SDValue One  = DAG.getConstant(1, DL, VT);
813 
814   const bool SRA = Op.getOpcode() == ISD::SRA_PARTS;
815 
816   SDValue Width  = DAG.getConstant(VT.getSizeInBits(), DL, VT);
817   SDValue Width1 = DAG.getConstant(VT.getSizeInBits() - 1, DL, VT);
818   SDValue BigShift  = DAG.getNode(ISD::SUB, DL, VT, Shift, Width);
819   SDValue CompShift = DAG.getNode(ISD::SUB, DL, VT, Width1, Shift);
820 
821   // The dance around Width1 is necessary for 0 special case.
822   // Without it the CompShift might be 32, producing incorrect results in
823   // Overflow. So we do the shift in two steps, the alternative is to
824   // add a conditional to filter the special case.
825 
826   SDValue Overflow = DAG.getNode(ISD::SHL, DL, VT, Hi, CompShift);
827   Overflow = DAG.getNode(ISD::SHL, DL, VT, Overflow, One);
828 
829   SDValue HiSmall = DAG.getNode(SRA ? ISD::SRA : ISD::SRL, DL, VT, Hi, Shift);
830   SDValue LoSmall = DAG.getNode(ISD::SRL, DL, VT, Lo, Shift);
831   LoSmall = DAG.getNode(ISD::OR, DL, VT, LoSmall, Overflow);
832 
833   SDValue LoBig = DAG.getNode(SRA ? ISD::SRA : ISD::SRL, DL, VT, Hi, BigShift);
834   SDValue HiBig = SRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, Width1) : Zero;
835 
836   Hi = DAG.getSelectCC(DL, Shift, Width, HiSmall, HiBig, ISD::SETULT);
837   Lo = DAG.getSelectCC(DL, Shift, Width, LoSmall, LoBig, ISD::SETULT);
838 
839   return DAG.getNode(ISD::MERGE_VALUES, DL, DAG.getVTList(VT,VT), Lo, Hi);
840 }
841 
842 SDValue R600TargetLowering::LowerUADDSUBO(SDValue Op, SelectionDAG &DAG,
843                                           unsigned mainop, unsigned ovf) const {
844   SDLoc DL(Op);
845   EVT VT = Op.getValueType();
846 
847   SDValue Lo = Op.getOperand(0);
848   SDValue Hi = Op.getOperand(1);
849 
850   SDValue OVF = DAG.getNode(ovf, DL, VT, Lo, Hi);
851   // Extend sign.
852   OVF = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, OVF,
853                     DAG.getValueType(MVT::i1));
854 
855   SDValue Res = DAG.getNode(mainop, DL, VT, Lo, Hi);
856 
857   return DAG.getNode(ISD::MERGE_VALUES, DL, DAG.getVTList(VT, VT), Res, OVF);
858 }
859 
860 SDValue R600TargetLowering::lowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) const {
861   SDLoc DL(Op);
862   return DAG.getNode(
863       ISD::SETCC,
864       DL,
865       MVT::i1,
866       Op, DAG.getConstantFP(1.0f, DL, MVT::f32),
867       DAG.getCondCode(ISD::SETEQ));
868 }
869 
870 SDValue R600TargetLowering::lowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) const {
871   SDLoc DL(Op);
872   return DAG.getNode(
873       ISD::SETCC,
874       DL,
875       MVT::i1,
876       Op, DAG.getConstantFP(-1.0f, DL, MVT::f32),
877       DAG.getCondCode(ISD::SETEQ));
878 }
879 
880 SDValue R600TargetLowering::LowerImplicitParameter(SelectionDAG &DAG, EVT VT,
881                                                    const SDLoc &DL,
882                                                    unsigned DwordOffset) const {
883   unsigned ByteOffset = DwordOffset * 4;
884   PointerType * PtrType = PointerType::get(VT.getTypeForEVT(*DAG.getContext()),
885                                       AMDGPUAS::PARAM_I_ADDRESS);
886 
887   // We shouldn't be using an offset wider than 16-bits for implicit parameters.
888   assert(isInt<16>(ByteOffset));
889 
890   return DAG.getLoad(VT, DL, DAG.getEntryNode(),
891                      DAG.getConstant(ByteOffset, DL, MVT::i32), // PTR
892                      MachinePointerInfo(ConstantPointerNull::get(PtrType)));
893 }
894 
895 bool R600TargetLowering::isZero(SDValue Op) const {
896   if(ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Op)) {
897     return Cst->isNullValue();
898   } else if(ConstantFPSDNode *CstFP = dyn_cast<ConstantFPSDNode>(Op)){
899     return CstFP->isZero();
900   } else {
901     return false;
902   }
903 }
904 
905 bool R600TargetLowering::isHWTrueValue(SDValue Op) const {
906   if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Op)) {
907     return CFP->isExactlyValue(1.0);
908   }
909   return isAllOnesConstant(Op);
910 }
911 
912 bool R600TargetLowering::isHWFalseValue(SDValue Op) const {
913   if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Op)) {
914     return CFP->getValueAPF().isZero();
915   }
916   return isNullConstant(Op);
917 }
918 
919 SDValue R600TargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
920   SDLoc DL(Op);
921   EVT VT = Op.getValueType();
922 
923   SDValue LHS = Op.getOperand(0);
924   SDValue RHS = Op.getOperand(1);
925   SDValue True = Op.getOperand(2);
926   SDValue False = Op.getOperand(3);
927   SDValue CC = Op.getOperand(4);
928   SDValue Temp;
929 
930   if (VT == MVT::f32) {
931     DAGCombinerInfo DCI(DAG, AfterLegalizeVectorOps, true, nullptr);
932     SDValue MinMax = combineFMinMaxLegacy(DL, VT, LHS, RHS, True, False, CC, DCI);
933     if (MinMax)
934       return MinMax;
935   }
936 
937   // LHS and RHS are guaranteed to be the same value type
938   EVT CompareVT = LHS.getValueType();
939 
940   // Check if we can lower this to a native operation.
941 
942   // Try to lower to a SET* instruction:
943   //
944   // SET* can match the following patterns:
945   //
946   // select_cc f32, f32, -1,  0, cc_supported
947   // select_cc f32, f32, 1.0f, 0.0f, cc_supported
948   // select_cc i32, i32, -1,  0, cc_supported
949   //
950 
951   // Move hardware True/False values to the correct operand.
952   if (isHWTrueValue(False) && isHWFalseValue(True)) {
953     ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
954     ISD::CondCode InverseCC = ISD::getSetCCInverse(CCOpcode, CompareVT);
955     if (isCondCodeLegal(InverseCC, CompareVT.getSimpleVT())) {
956       std::swap(False, True);
957       CC = DAG.getCondCode(InverseCC);
958     } else {
959       ISD::CondCode SwapInvCC = ISD::getSetCCSwappedOperands(InverseCC);
960       if (isCondCodeLegal(SwapInvCC, CompareVT.getSimpleVT())) {
961         std::swap(False, True);
962         std::swap(LHS, RHS);
963         CC = DAG.getCondCode(SwapInvCC);
964       }
965     }
966   }
967 
968   if (isHWTrueValue(True) && isHWFalseValue(False) &&
969       (CompareVT == VT || VT == MVT::i32)) {
970     // This can be matched by a SET* instruction.
971     return DAG.getNode(ISD::SELECT_CC, DL, VT, LHS, RHS, True, False, CC);
972   }
973 
974   // Try to lower to a CND* instruction:
975   //
976   // CND* can match the following patterns:
977   //
978   // select_cc f32, 0.0, f32, f32, cc_supported
979   // select_cc f32, 0.0, i32, i32, cc_supported
980   // select_cc i32, 0,   f32, f32, cc_supported
981   // select_cc i32, 0,   i32, i32, cc_supported
982   //
983 
984   // Try to move the zero value to the RHS
985   if (isZero(LHS)) {
986     ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
987     // Try swapping the operands
988     ISD::CondCode CCSwapped = ISD::getSetCCSwappedOperands(CCOpcode);
989     if (isCondCodeLegal(CCSwapped, CompareVT.getSimpleVT())) {
990       std::swap(LHS, RHS);
991       CC = DAG.getCondCode(CCSwapped);
992     } else {
993       // Try inverting the conditon and then swapping the operands
994       ISD::CondCode CCInv = ISD::getSetCCInverse(CCOpcode, CompareVT);
995       CCSwapped = ISD::getSetCCSwappedOperands(CCInv);
996       if (isCondCodeLegal(CCSwapped, CompareVT.getSimpleVT())) {
997         std::swap(True, False);
998         std::swap(LHS, RHS);
999         CC = DAG.getCondCode(CCSwapped);
1000       }
1001     }
1002   }
1003   if (isZero(RHS)) {
1004     SDValue Cond = LHS;
1005     SDValue Zero = RHS;
1006     ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
1007     if (CompareVT != VT) {
1008       // Bitcast True / False to the correct types.  This will end up being
1009       // a nop, but it allows us to define only a single pattern in the
1010       // .TD files for each CND* instruction rather than having to have
1011       // one pattern for integer True/False and one for fp True/False
1012       True = DAG.getNode(ISD::BITCAST, DL, CompareVT, True);
1013       False = DAG.getNode(ISD::BITCAST, DL, CompareVT, False);
1014     }
1015 
1016     switch (CCOpcode) {
1017     case ISD::SETONE:
1018     case ISD::SETUNE:
1019     case ISD::SETNE:
1020       CCOpcode = ISD::getSetCCInverse(CCOpcode, CompareVT);
1021       Temp = True;
1022       True = False;
1023       False = Temp;
1024       break;
1025     default:
1026       break;
1027     }
1028     SDValue SelectNode = DAG.getNode(ISD::SELECT_CC, DL, CompareVT,
1029         Cond, Zero,
1030         True, False,
1031         DAG.getCondCode(CCOpcode));
1032     return DAG.getNode(ISD::BITCAST, DL, VT, SelectNode);
1033   }
1034 
1035   // If we make it this for it means we have no native instructions to handle
1036   // this SELECT_CC, so we must lower it.
1037   SDValue HWTrue, HWFalse;
1038 
1039   if (CompareVT == MVT::f32) {
1040     HWTrue = DAG.getConstantFP(1.0f, DL, CompareVT);
1041     HWFalse = DAG.getConstantFP(0.0f, DL, CompareVT);
1042   } else if (CompareVT == MVT::i32) {
1043     HWTrue = DAG.getConstant(-1, DL, CompareVT);
1044     HWFalse = DAG.getConstant(0, DL, CompareVT);
1045   }
1046   else {
1047     llvm_unreachable("Unhandled value type in LowerSELECT_CC");
1048   }
1049 
1050   // Lower this unsupported SELECT_CC into a combination of two supported
1051   // SELECT_CC operations.
1052   SDValue Cond = DAG.getNode(ISD::SELECT_CC, DL, CompareVT, LHS, RHS, HWTrue, HWFalse, CC);
1053 
1054   return DAG.getNode(ISD::SELECT_CC, DL, VT,
1055       Cond, HWFalse,
1056       True, False,
1057       DAG.getCondCode(ISD::SETNE));
1058 }
1059 
1060 /// LLVM generates byte-addressed pointers.  For indirect addressing, we need to
1061 /// convert these pointers to a register index.  Each register holds
1062 /// 16 bytes, (4 x 32bit sub-register), but we need to take into account the
1063 /// \p StackWidth, which tells us how many of the 4 sub-registrers will be used
1064 /// for indirect addressing.
1065 SDValue R600TargetLowering::stackPtrToRegIndex(SDValue Ptr,
1066                                                unsigned StackWidth,
1067                                                SelectionDAG &DAG) const {
1068   unsigned SRLPad;
1069   switch(StackWidth) {
1070   case 1:
1071     SRLPad = 2;
1072     break;
1073   case 2:
1074     SRLPad = 3;
1075     break;
1076   case 4:
1077     SRLPad = 4;
1078     break;
1079   default: llvm_unreachable("Invalid stack width");
1080   }
1081 
1082   SDLoc DL(Ptr);
1083   return DAG.getNode(ISD::SRL, DL, Ptr.getValueType(), Ptr,
1084                      DAG.getConstant(SRLPad, DL, MVT::i32));
1085 }
1086 
1087 void R600TargetLowering::getStackAddress(unsigned StackWidth,
1088                                          unsigned ElemIdx,
1089                                          unsigned &Channel,
1090                                          unsigned &PtrIncr) const {
1091   switch (StackWidth) {
1092   default:
1093   case 1:
1094     Channel = 0;
1095     if (ElemIdx > 0) {
1096       PtrIncr = 1;
1097     } else {
1098       PtrIncr = 0;
1099     }
1100     break;
1101   case 2:
1102     Channel = ElemIdx % 2;
1103     if (ElemIdx == 2) {
1104       PtrIncr = 1;
1105     } else {
1106       PtrIncr = 0;
1107     }
1108     break;
1109   case 4:
1110     Channel = ElemIdx;
1111     PtrIncr = 0;
1112     break;
1113   }
1114 }
1115 
1116 SDValue R600TargetLowering::lowerPrivateTruncStore(StoreSDNode *Store,
1117                                                    SelectionDAG &DAG) const {
1118   SDLoc DL(Store);
1119   //TODO: Who creates the i8 stores?
1120   assert(Store->isTruncatingStore()
1121          || Store->getValue().getValueType() == MVT::i8);
1122   assert(Store->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS);
1123 
1124   SDValue Mask;
1125   if (Store->getMemoryVT() == MVT::i8) {
1126     assert(Store->getAlignment() >= 1);
1127     Mask = DAG.getConstant(0xff, DL, MVT::i32);
1128   } else if (Store->getMemoryVT() == MVT::i16) {
1129     assert(Store->getAlignment() >= 2);
1130     Mask = DAG.getConstant(0xffff, DL, MVT::i32);
1131   } else {
1132     llvm_unreachable("Unsupported private trunc store");
1133   }
1134 
1135   SDValue OldChain = Store->getChain();
1136   bool VectorTrunc = (OldChain.getOpcode() == AMDGPUISD::DUMMY_CHAIN);
1137   // Skip dummy
1138   SDValue Chain = VectorTrunc ? OldChain->getOperand(0) : OldChain;
1139   SDValue BasePtr = Store->getBasePtr();
1140   SDValue Offset = Store->getOffset();
1141   EVT MemVT = Store->getMemoryVT();
1142 
1143   SDValue LoadPtr = BasePtr;
1144   if (!Offset.isUndef()) {
1145     LoadPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr, Offset);
1146   }
1147 
1148   // Get dword location
1149   // TODO: this should be eliminated by the future SHR ptr, 2
1150   SDValue Ptr = DAG.getNode(ISD::AND, DL, MVT::i32, LoadPtr,
1151                             DAG.getConstant(0xfffffffc, DL, MVT::i32));
1152 
1153   // Load dword
1154   // TODO: can we be smarter about machine pointer info?
1155   MachinePointerInfo PtrInfo(AMDGPUAS::PRIVATE_ADDRESS);
1156   SDValue Dst = DAG.getLoad(MVT::i32, DL, Chain, Ptr, PtrInfo);
1157 
1158   Chain = Dst.getValue(1);
1159 
1160   // Get offset in dword
1161   SDValue ByteIdx = DAG.getNode(ISD::AND, DL, MVT::i32, LoadPtr,
1162                                 DAG.getConstant(0x3, DL, MVT::i32));
1163 
1164   // Convert byte offset to bit shift
1165   SDValue ShiftAmt = DAG.getNode(ISD::SHL, DL, MVT::i32, ByteIdx,
1166                                  DAG.getConstant(3, DL, MVT::i32));
1167 
1168   // TODO: Contrary to the name of the functiom,
1169   // it also handles sub i32 non-truncating stores (like i1)
1170   SDValue SExtValue = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i32,
1171                                   Store->getValue());
1172 
1173   // Mask the value to the right type
1174   SDValue MaskedValue = DAG.getZeroExtendInReg(SExtValue, DL, MemVT);
1175 
1176   // Shift the value in place
1177   SDValue ShiftedValue = DAG.getNode(ISD::SHL, DL, MVT::i32,
1178                                      MaskedValue, ShiftAmt);
1179 
1180   // Shift the mask in place
1181   SDValue DstMask = DAG.getNode(ISD::SHL, DL, MVT::i32, Mask, ShiftAmt);
1182 
1183   // Invert the mask. NOTE: if we had native ROL instructions we could
1184   // use inverted mask
1185   DstMask = DAG.getNOT(DL, DstMask, MVT::i32);
1186 
1187   // Cleanup the target bits
1188   Dst = DAG.getNode(ISD::AND, DL, MVT::i32, Dst, DstMask);
1189 
1190   // Add the new bits
1191   SDValue Value = DAG.getNode(ISD::OR, DL, MVT::i32, Dst, ShiftedValue);
1192 
1193   // Store dword
1194   // TODO: Can we be smarter about MachinePointerInfo?
1195   SDValue NewStore = DAG.getStore(Chain, DL, Value, Ptr, PtrInfo);
1196 
1197   // If we are part of expanded vector, make our neighbors depend on this store
1198   if (VectorTrunc) {
1199     // Make all other vector elements depend on this store
1200     Chain = DAG.getNode(AMDGPUISD::DUMMY_CHAIN, DL, MVT::Other, NewStore);
1201     DAG.ReplaceAllUsesOfValueWith(OldChain, Chain);
1202   }
1203   return NewStore;
1204 }
1205 
1206 SDValue R600TargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
1207   StoreSDNode *StoreNode = cast<StoreSDNode>(Op);
1208   unsigned AS = StoreNode->getAddressSpace();
1209 
1210   SDValue Chain = StoreNode->getChain();
1211   SDValue Ptr = StoreNode->getBasePtr();
1212   SDValue Value = StoreNode->getValue();
1213 
1214   EVT VT = Value.getValueType();
1215   EVT MemVT = StoreNode->getMemoryVT();
1216   EVT PtrVT = Ptr.getValueType();
1217 
1218   SDLoc DL(Op);
1219 
1220   const bool TruncatingStore = StoreNode->isTruncatingStore();
1221 
1222   // Neither LOCAL nor PRIVATE can do vectors at the moment
1223   if ((AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::PRIVATE_ADDRESS ||
1224        TruncatingStore) &&
1225       VT.isVector()) {
1226     if ((AS == AMDGPUAS::PRIVATE_ADDRESS) && TruncatingStore) {
1227       // Add an extra level of chain to isolate this vector
1228       SDValue NewChain = DAG.getNode(AMDGPUISD::DUMMY_CHAIN, DL, MVT::Other, Chain);
1229       // TODO: can the chain be replaced without creating a new store?
1230       SDValue NewStore = DAG.getTruncStore(
1231           NewChain, DL, Value, Ptr, StoreNode->getPointerInfo(),
1232           MemVT, StoreNode->getAlignment(),
1233           StoreNode->getMemOperand()->getFlags(), StoreNode->getAAInfo());
1234       StoreNode = cast<StoreSDNode>(NewStore);
1235     }
1236 
1237     return scalarizeVectorStore(StoreNode, DAG);
1238   }
1239 
1240   Align Alignment = StoreNode->getAlign();
1241   if (Alignment < MemVT.getStoreSize() &&
1242       !allowsMisalignedMemoryAccesses(MemVT, AS, Alignment.value(),
1243                                       StoreNode->getMemOperand()->getFlags(),
1244                                       nullptr)) {
1245     return expandUnalignedStore(StoreNode, DAG);
1246   }
1247 
1248   SDValue DWordAddr = DAG.getNode(ISD::SRL, DL, PtrVT, Ptr,
1249                                   DAG.getConstant(2, DL, PtrVT));
1250 
1251   if (AS == AMDGPUAS::GLOBAL_ADDRESS) {
1252     // It is beneficial to create MSKOR here instead of combiner to avoid
1253     // artificial dependencies introduced by RMW
1254     if (TruncatingStore) {
1255       assert(VT.bitsLE(MVT::i32));
1256       SDValue MaskConstant;
1257       if (MemVT == MVT::i8) {
1258         MaskConstant = DAG.getConstant(0xFF, DL, MVT::i32);
1259       } else {
1260         assert(MemVT == MVT::i16);
1261         assert(StoreNode->getAlignment() >= 2);
1262         MaskConstant = DAG.getConstant(0xFFFF, DL, MVT::i32);
1263       }
1264 
1265       SDValue ByteIndex = DAG.getNode(ISD::AND, DL, PtrVT, Ptr,
1266                                       DAG.getConstant(0x00000003, DL, PtrVT));
1267       SDValue BitShift = DAG.getNode(ISD::SHL, DL, VT, ByteIndex,
1268                                      DAG.getConstant(3, DL, VT));
1269 
1270       // Put the mask in correct place
1271       SDValue Mask = DAG.getNode(ISD::SHL, DL, VT, MaskConstant, BitShift);
1272 
1273       // Put the value bits in correct place
1274       SDValue TruncValue = DAG.getNode(ISD::AND, DL, VT, Value, MaskConstant);
1275       SDValue ShiftedValue = DAG.getNode(ISD::SHL, DL, VT, TruncValue, BitShift);
1276 
1277       // XXX: If we add a 64-bit ZW register class, then we could use a 2 x i32
1278       // vector instead.
1279       SDValue Src[4] = {
1280         ShiftedValue,
1281         DAG.getConstant(0, DL, MVT::i32),
1282         DAG.getConstant(0, DL, MVT::i32),
1283         Mask
1284       };
1285       SDValue Input = DAG.getBuildVector(MVT::v4i32, DL, Src);
1286       SDValue Args[3] = { Chain, Input, DWordAddr };
1287       return DAG.getMemIntrinsicNode(AMDGPUISD::STORE_MSKOR, DL,
1288                                      Op->getVTList(), Args, MemVT,
1289                                      StoreNode->getMemOperand());
1290     } else if (Ptr->getOpcode() != AMDGPUISD::DWORDADDR && VT.bitsGE(MVT::i32)) {
1291       // Convert pointer from byte address to dword address.
1292       Ptr = DAG.getNode(AMDGPUISD::DWORDADDR, DL, PtrVT, DWordAddr);
1293 
1294       if (StoreNode->isIndexed()) {
1295         llvm_unreachable("Indexed stores not supported yet");
1296       } else {
1297         Chain = DAG.getStore(Chain, DL, Value, Ptr, StoreNode->getMemOperand());
1298       }
1299       return Chain;
1300     }
1301   }
1302 
1303   // GLOBAL_ADDRESS has been handled above, LOCAL_ADDRESS allows all sizes
1304   if (AS != AMDGPUAS::PRIVATE_ADDRESS)
1305     return SDValue();
1306 
1307   if (MemVT.bitsLT(MVT::i32))
1308     return lowerPrivateTruncStore(StoreNode, DAG);
1309 
1310   // Standard i32+ store, tag it with DWORDADDR to note that the address
1311   // has been shifted
1312   if (Ptr.getOpcode() != AMDGPUISD::DWORDADDR) {
1313     Ptr = DAG.getNode(AMDGPUISD::DWORDADDR, DL, PtrVT, DWordAddr);
1314     return DAG.getStore(Chain, DL, Value, Ptr, StoreNode->getMemOperand());
1315   }
1316 
1317   // Tagged i32+ stores will be matched by patterns
1318   return SDValue();
1319 }
1320 
1321 // return (512 + (kc_bank << 12)
1322 static int
1323 ConstantAddressBlock(unsigned AddressSpace) {
1324   switch (AddressSpace) {
1325   case AMDGPUAS::CONSTANT_BUFFER_0:
1326     return 512;
1327   case AMDGPUAS::CONSTANT_BUFFER_1:
1328     return 512 + 4096;
1329   case AMDGPUAS::CONSTANT_BUFFER_2:
1330     return 512 + 4096 * 2;
1331   case AMDGPUAS::CONSTANT_BUFFER_3:
1332     return 512 + 4096 * 3;
1333   case AMDGPUAS::CONSTANT_BUFFER_4:
1334     return 512 + 4096 * 4;
1335   case AMDGPUAS::CONSTANT_BUFFER_5:
1336     return 512 + 4096 * 5;
1337   case AMDGPUAS::CONSTANT_BUFFER_6:
1338     return 512 + 4096 * 6;
1339   case AMDGPUAS::CONSTANT_BUFFER_7:
1340     return 512 + 4096 * 7;
1341   case AMDGPUAS::CONSTANT_BUFFER_8:
1342     return 512 + 4096 * 8;
1343   case AMDGPUAS::CONSTANT_BUFFER_9:
1344     return 512 + 4096 * 9;
1345   case AMDGPUAS::CONSTANT_BUFFER_10:
1346     return 512 + 4096 * 10;
1347   case AMDGPUAS::CONSTANT_BUFFER_11:
1348     return 512 + 4096 * 11;
1349   case AMDGPUAS::CONSTANT_BUFFER_12:
1350     return 512 + 4096 * 12;
1351   case AMDGPUAS::CONSTANT_BUFFER_13:
1352     return 512 + 4096 * 13;
1353   case AMDGPUAS::CONSTANT_BUFFER_14:
1354     return 512 + 4096 * 14;
1355   case AMDGPUAS::CONSTANT_BUFFER_15:
1356     return 512 + 4096 * 15;
1357   default:
1358     return -1;
1359   }
1360 }
1361 
1362 SDValue R600TargetLowering::lowerPrivateExtLoad(SDValue Op,
1363                                                 SelectionDAG &DAG) const {
1364   SDLoc DL(Op);
1365   LoadSDNode *Load = cast<LoadSDNode>(Op);
1366   ISD::LoadExtType ExtType = Load->getExtensionType();
1367   EVT MemVT = Load->getMemoryVT();
1368   assert(Load->getAlignment() >= MemVT.getStoreSize());
1369 
1370   SDValue BasePtr = Load->getBasePtr();
1371   SDValue Chain = Load->getChain();
1372   SDValue Offset = Load->getOffset();
1373 
1374   SDValue LoadPtr = BasePtr;
1375   if (!Offset.isUndef()) {
1376     LoadPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr, Offset);
1377   }
1378 
1379   // Get dword location
1380   // NOTE: this should be eliminated by the future SHR ptr, 2
1381   SDValue Ptr = DAG.getNode(ISD::AND, DL, MVT::i32, LoadPtr,
1382                             DAG.getConstant(0xfffffffc, DL, MVT::i32));
1383 
1384   // Load dword
1385   // TODO: can we be smarter about machine pointer info?
1386   MachinePointerInfo PtrInfo(AMDGPUAS::PRIVATE_ADDRESS);
1387   SDValue Read = DAG.getLoad(MVT::i32, DL, Chain, Ptr, PtrInfo);
1388 
1389   // Get offset within the register.
1390   SDValue ByteIdx = DAG.getNode(ISD::AND, DL, MVT::i32,
1391                                 LoadPtr, DAG.getConstant(0x3, DL, MVT::i32));
1392 
1393   // Bit offset of target byte (byteIdx * 8).
1394   SDValue ShiftAmt = DAG.getNode(ISD::SHL, DL, MVT::i32, ByteIdx,
1395                                  DAG.getConstant(3, DL, MVT::i32));
1396 
1397   // Shift to the right.
1398   SDValue Ret = DAG.getNode(ISD::SRL, DL, MVT::i32, Read, ShiftAmt);
1399 
1400   // Eliminate the upper bits by setting them to ...
1401   EVT MemEltVT = MemVT.getScalarType();
1402 
1403   if (ExtType == ISD::SEXTLOAD) { // ... ones.
1404     SDValue MemEltVTNode = DAG.getValueType(MemEltVT);
1405     Ret = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, Ret, MemEltVTNode);
1406   } else { // ... or zeros.
1407     Ret = DAG.getZeroExtendInReg(Ret, DL, MemEltVT);
1408   }
1409 
1410   SDValue Ops[] = {
1411     Ret,
1412     Read.getValue(1) // This should be our output chain
1413   };
1414 
1415   return DAG.getMergeValues(Ops, DL);
1416 }
1417 
1418 SDValue R600TargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
1419   LoadSDNode *LoadNode = cast<LoadSDNode>(Op);
1420   unsigned AS = LoadNode->getAddressSpace();
1421   EVT MemVT = LoadNode->getMemoryVT();
1422   ISD::LoadExtType ExtType = LoadNode->getExtensionType();
1423 
1424   if (AS == AMDGPUAS::PRIVATE_ADDRESS &&
1425       ExtType != ISD::NON_EXTLOAD && MemVT.bitsLT(MVT::i32)) {
1426     return lowerPrivateExtLoad(Op, DAG);
1427   }
1428 
1429   SDLoc DL(Op);
1430   EVT VT = Op.getValueType();
1431   SDValue Chain = LoadNode->getChain();
1432   SDValue Ptr = LoadNode->getBasePtr();
1433 
1434   if ((LoadNode->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
1435       LoadNode->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) &&
1436       VT.isVector()) {
1437     SDValue Ops[2];
1438     std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(LoadNode, DAG);
1439     return DAG.getMergeValues(Ops, DL);
1440   }
1441 
1442   // This is still used for explicit load from addrspace(8)
1443   int ConstantBlock = ConstantAddressBlock(LoadNode->getAddressSpace());
1444   if (ConstantBlock > -1 &&
1445       ((LoadNode->getExtensionType() == ISD::NON_EXTLOAD) ||
1446        (LoadNode->getExtensionType() == ISD::ZEXTLOAD))) {
1447     SDValue Result;
1448     if (isa<Constant>(LoadNode->getMemOperand()->getValue()) ||
1449         isa<ConstantSDNode>(Ptr)) {
1450       return constBufferLoad(LoadNode, LoadNode->getAddressSpace(), DAG);
1451     } else {
1452       //TODO: Does this even work?
1453       // non-constant ptr can't be folded, keeps it as a v4f32 load
1454       Result = DAG.getNode(AMDGPUISD::CONST_ADDRESS, DL, MVT::v4i32,
1455           DAG.getNode(ISD::SRL, DL, MVT::i32, Ptr,
1456                       DAG.getConstant(4, DL, MVT::i32)),
1457                       DAG.getConstant(LoadNode->getAddressSpace() -
1458                                       AMDGPUAS::CONSTANT_BUFFER_0, DL, MVT::i32)
1459           );
1460     }
1461 
1462     if (!VT.isVector()) {
1463       Result = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, Result,
1464                            DAG.getConstant(0, DL, MVT::i32));
1465     }
1466 
1467     SDValue MergedValues[2] = {
1468       Result,
1469       Chain
1470     };
1471     return DAG.getMergeValues(MergedValues, DL);
1472   }
1473 
1474   // For most operations returning SDValue() will result in the node being
1475   // expanded by the DAG Legalizer. This is not the case for ISD::LOAD, so we
1476   // need to manually expand loads that may be legal in some address spaces and
1477   // illegal in others. SEXT loads from CONSTANT_BUFFER_0 are supported for
1478   // compute shaders, since the data is sign extended when it is uploaded to the
1479   // buffer. However SEXT loads from other address spaces are not supported, so
1480   // we need to expand them here.
1481   if (LoadNode->getExtensionType() == ISD::SEXTLOAD) {
1482     assert(!MemVT.isVector() && (MemVT == MVT::i16 || MemVT == MVT::i8));
1483     SDValue NewLoad = DAG.getExtLoad(
1484         ISD::EXTLOAD, DL, VT, Chain, Ptr, LoadNode->getPointerInfo(), MemVT,
1485         LoadNode->getAlignment(), LoadNode->getMemOperand()->getFlags());
1486     SDValue Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, NewLoad,
1487                               DAG.getValueType(MemVT));
1488 
1489     SDValue MergedValues[2] = { Res, Chain };
1490     return DAG.getMergeValues(MergedValues, DL);
1491   }
1492 
1493   if (LoadNode->getAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS) {
1494     return SDValue();
1495   }
1496 
1497   // DWORDADDR ISD marks already shifted address
1498   if (Ptr.getOpcode() != AMDGPUISD::DWORDADDR) {
1499     assert(VT == MVT::i32);
1500     Ptr = DAG.getNode(ISD::SRL, DL, MVT::i32, Ptr, DAG.getConstant(2, DL, MVT::i32));
1501     Ptr = DAG.getNode(AMDGPUISD::DWORDADDR, DL, MVT::i32, Ptr);
1502     return DAG.getLoad(MVT::i32, DL, Chain, Ptr, LoadNode->getMemOperand());
1503   }
1504   return SDValue();
1505 }
1506 
1507 SDValue R600TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
1508   SDValue Chain = Op.getOperand(0);
1509   SDValue Cond  = Op.getOperand(1);
1510   SDValue Jump  = Op.getOperand(2);
1511 
1512   return DAG.getNode(AMDGPUISD::BRANCH_COND, SDLoc(Op), Op.getValueType(),
1513                      Chain, Jump, Cond);
1514 }
1515 
1516 SDValue R600TargetLowering::lowerFrameIndex(SDValue Op,
1517                                             SelectionDAG &DAG) const {
1518   MachineFunction &MF = DAG.getMachineFunction();
1519   const R600FrameLowering *TFL = Subtarget->getFrameLowering();
1520 
1521   FrameIndexSDNode *FIN = cast<FrameIndexSDNode>(Op);
1522 
1523   unsigned FrameIndex = FIN->getIndex();
1524   Register IgnoredFrameReg;
1525   StackOffset Offset =
1526       TFL->getFrameIndexReference(MF, FrameIndex, IgnoredFrameReg);
1527   return DAG.getConstant(Offset.getFixed() * 4 * TFL->getStackWidth(MF),
1528                          SDLoc(Op), Op.getValueType());
1529 }
1530 
1531 CCAssignFn *R600TargetLowering::CCAssignFnForCall(CallingConv::ID CC,
1532                                                   bool IsVarArg) const {
1533   switch (CC) {
1534   case CallingConv::AMDGPU_KERNEL:
1535   case CallingConv::SPIR_KERNEL:
1536   case CallingConv::C:
1537   case CallingConv::Fast:
1538   case CallingConv::Cold:
1539     llvm_unreachable("kernels should not be handled here");
1540   case CallingConv::AMDGPU_VS:
1541   case CallingConv::AMDGPU_GS:
1542   case CallingConv::AMDGPU_PS:
1543   case CallingConv::AMDGPU_CS:
1544   case CallingConv::AMDGPU_HS:
1545   case CallingConv::AMDGPU_ES:
1546   case CallingConv::AMDGPU_LS:
1547     return CC_R600;
1548   default:
1549     report_fatal_error("Unsupported calling convention.");
1550   }
1551 }
1552 
1553 /// XXX Only kernel functions are supported, so we can assume for now that
1554 /// every function is a kernel function, but in the future we should use
1555 /// separate calling conventions for kernel and non-kernel functions.
1556 SDValue R600TargetLowering::LowerFormalArguments(
1557     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1558     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1559     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1560   SmallVector<CCValAssign, 16> ArgLocs;
1561   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1562                  *DAG.getContext());
1563   MachineFunction &MF = DAG.getMachineFunction();
1564   SmallVector<ISD::InputArg, 8> LocalIns;
1565 
1566   if (AMDGPU::isShader(CallConv)) {
1567     CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForCall(CallConv, isVarArg));
1568   } else {
1569     analyzeFormalArgumentsCompute(CCInfo, Ins);
1570   }
1571 
1572   for (unsigned i = 0, e = Ins.size(); i < e; ++i) {
1573     CCValAssign &VA = ArgLocs[i];
1574     const ISD::InputArg &In = Ins[i];
1575     EVT VT = In.VT;
1576     EVT MemVT = VA.getLocVT();
1577     if (!VT.isVector() && MemVT.isVector()) {
1578       // Get load source type if scalarized.
1579       MemVT = MemVT.getVectorElementType();
1580     }
1581 
1582     if (AMDGPU::isShader(CallConv)) {
1583       Register Reg = MF.addLiveIn(VA.getLocReg(), &R600::R600_Reg128RegClass);
1584       SDValue Register = DAG.getCopyFromReg(Chain, DL, Reg, VT);
1585       InVals.push_back(Register);
1586       continue;
1587     }
1588 
1589     // i64 isn't a legal type, so the register type used ends up as i32, which
1590     // isn't expected here. It attempts to create this sextload, but it ends up
1591     // being invalid. Somehow this seems to work with i64 arguments, but breaks
1592     // for <1 x i64>.
1593 
1594     // The first 36 bytes of the input buffer contains information about
1595     // thread group and global sizes.
1596     ISD::LoadExtType Ext = ISD::NON_EXTLOAD;
1597     if (MemVT.getScalarSizeInBits() != VT.getScalarSizeInBits()) {
1598       // FIXME: This should really check the extload type, but the handling of
1599       // extload vector parameters seems to be broken.
1600 
1601       // Ext = In.Flags.isSExt() ? ISD::SEXTLOAD : ISD::ZEXTLOAD;
1602       Ext = ISD::SEXTLOAD;
1603     }
1604 
1605     // Compute the offset from the value.
1606     // XXX - I think PartOffset should give you this, but it seems to give the
1607     // size of the register which isn't useful.
1608 
1609     unsigned PartOffset = VA.getLocMemOffset();
1610     unsigned Alignment = MinAlign(VT.getStoreSize(), PartOffset);
1611 
1612     MachinePointerInfo PtrInfo(AMDGPUAS::PARAM_I_ADDRESS);
1613     SDValue Arg = DAG.getLoad(
1614         ISD::UNINDEXED, Ext, VT, DL, Chain,
1615         DAG.getConstant(PartOffset, DL, MVT::i32), DAG.getUNDEF(MVT::i32),
1616         PtrInfo,
1617         MemVT, Alignment, MachineMemOperand::MONonTemporal |
1618                                         MachineMemOperand::MODereferenceable |
1619                                         MachineMemOperand::MOInvariant);
1620 
1621     InVals.push_back(Arg);
1622   }
1623   return Chain;
1624 }
1625 
1626 EVT R600TargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &,
1627                                            EVT VT) const {
1628    if (!VT.isVector())
1629      return MVT::i32;
1630    return VT.changeVectorElementTypeToInteger();
1631 }
1632 
1633 bool R600TargetLowering::canMergeStoresTo(unsigned AS, EVT MemVT,
1634                                           const SelectionDAG &DAG) const {
1635   // Local and Private addresses do not handle vectors. Limit to i32
1636   if ((AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::PRIVATE_ADDRESS)) {
1637     return (MemVT.getSizeInBits() <= 32);
1638   }
1639   return true;
1640 }
1641 
1642 bool R600TargetLowering::allowsMisalignedMemoryAccesses(
1643     EVT VT, unsigned AddrSpace, unsigned Align, MachineMemOperand::Flags Flags,
1644     bool *IsFast) const {
1645   if (IsFast)
1646     *IsFast = false;
1647 
1648   if (!VT.isSimple() || VT == MVT::Other)
1649     return false;
1650 
1651   if (VT.bitsLT(MVT::i32))
1652     return false;
1653 
1654   // TODO: This is a rough estimate.
1655   if (IsFast)
1656     *IsFast = true;
1657 
1658   return VT.bitsGT(MVT::i32) && Align % 4 == 0;
1659 }
1660 
1661 static SDValue CompactSwizzlableVector(
1662   SelectionDAG &DAG, SDValue VectorEntry,
1663   DenseMap<unsigned, unsigned> &RemapSwizzle) {
1664   assert(RemapSwizzle.empty());
1665 
1666   SDLoc DL(VectorEntry);
1667   EVT EltTy = VectorEntry.getValueType().getVectorElementType();
1668 
1669   SDValue NewBldVec[4];
1670   for (unsigned i = 0; i < 4; i++)
1671     NewBldVec[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltTy, VectorEntry,
1672                                DAG.getIntPtrConstant(i, DL));
1673 
1674   for (unsigned i = 0; i < 4; i++) {
1675     if (NewBldVec[i].isUndef())
1676       // We mask write here to teach later passes that the ith element of this
1677       // vector is undef. Thus we can use it to reduce 128 bits reg usage,
1678       // break false dependencies and additionnaly make assembly easier to read.
1679       RemapSwizzle[i] = 7; // SEL_MASK_WRITE
1680     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(NewBldVec[i])) {
1681       if (C->isZero()) {
1682         RemapSwizzle[i] = 4; // SEL_0
1683         NewBldVec[i] = DAG.getUNDEF(MVT::f32);
1684       } else if (C->isExactlyValue(1.0)) {
1685         RemapSwizzle[i] = 5; // SEL_1
1686         NewBldVec[i] = DAG.getUNDEF(MVT::f32);
1687       }
1688     }
1689 
1690     if (NewBldVec[i].isUndef())
1691       continue;
1692 
1693     for (unsigned j = 0; j < i; j++) {
1694       if (NewBldVec[i] == NewBldVec[j]) {
1695         NewBldVec[i] = DAG.getUNDEF(NewBldVec[i].getValueType());
1696         RemapSwizzle[i] = j;
1697         break;
1698       }
1699     }
1700   }
1701 
1702   return DAG.getBuildVector(VectorEntry.getValueType(), SDLoc(VectorEntry),
1703                             NewBldVec);
1704 }
1705 
1706 static SDValue ReorganizeVector(SelectionDAG &DAG, SDValue VectorEntry,
1707                                 DenseMap<unsigned, unsigned> &RemapSwizzle) {
1708   assert(RemapSwizzle.empty());
1709 
1710   SDLoc DL(VectorEntry);
1711   EVT EltTy = VectorEntry.getValueType().getVectorElementType();
1712 
1713   SDValue NewBldVec[4];
1714   bool isUnmovable[4] = {false, false, false, false};
1715   for (unsigned i = 0; i < 4; i++)
1716     NewBldVec[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltTy, VectorEntry,
1717                                DAG.getIntPtrConstant(i, DL));
1718 
1719   for (unsigned i = 0; i < 4; i++) {
1720     RemapSwizzle[i] = i;
1721     if (NewBldVec[i].getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
1722       unsigned Idx = cast<ConstantSDNode>(NewBldVec[i].getOperand(1))
1723           ->getZExtValue();
1724       if (i == Idx)
1725         isUnmovable[Idx] = true;
1726     }
1727   }
1728 
1729   for (unsigned i = 0; i < 4; i++) {
1730     if (NewBldVec[i].getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
1731       unsigned Idx = cast<ConstantSDNode>(NewBldVec[i].getOperand(1))
1732           ->getZExtValue();
1733       if (isUnmovable[Idx])
1734         continue;
1735       // Swap i and Idx
1736       std::swap(NewBldVec[Idx], NewBldVec[i]);
1737       std::swap(RemapSwizzle[i], RemapSwizzle[Idx]);
1738       break;
1739     }
1740   }
1741 
1742   return DAG.getBuildVector(VectorEntry.getValueType(), SDLoc(VectorEntry),
1743                             NewBldVec);
1744 }
1745 
1746 SDValue R600TargetLowering::OptimizeSwizzle(SDValue BuildVector, SDValue Swz[4],
1747                                             SelectionDAG &DAG,
1748                                             const SDLoc &DL) const {
1749   // Old -> New swizzle values
1750   DenseMap<unsigned, unsigned> SwizzleRemap;
1751 
1752   BuildVector = CompactSwizzlableVector(DAG, BuildVector, SwizzleRemap);
1753   for (unsigned i = 0; i < 4; i++) {
1754     unsigned Idx = cast<ConstantSDNode>(Swz[i])->getZExtValue();
1755     if (SwizzleRemap.find(Idx) != SwizzleRemap.end())
1756       Swz[i] = DAG.getConstant(SwizzleRemap[Idx], DL, MVT::i32);
1757   }
1758 
1759   SwizzleRemap.clear();
1760   BuildVector = ReorganizeVector(DAG, BuildVector, SwizzleRemap);
1761   for (unsigned i = 0; i < 4; i++) {
1762     unsigned Idx = cast<ConstantSDNode>(Swz[i])->getZExtValue();
1763     if (SwizzleRemap.find(Idx) != SwizzleRemap.end())
1764       Swz[i] = DAG.getConstant(SwizzleRemap[Idx], DL, MVT::i32);
1765   }
1766 
1767   return BuildVector;
1768 }
1769 
1770 SDValue R600TargetLowering::constBufferLoad(LoadSDNode *LoadNode, int Block,
1771                                             SelectionDAG &DAG) const {
1772   SDLoc DL(LoadNode);
1773   EVT VT = LoadNode->getValueType(0);
1774   SDValue Chain = LoadNode->getChain();
1775   SDValue Ptr = LoadNode->getBasePtr();
1776   assert (isa<ConstantSDNode>(Ptr));
1777 
1778   //TODO: Support smaller loads
1779   if (LoadNode->getMemoryVT().getScalarType() != MVT::i32 || !ISD::isNON_EXTLoad(LoadNode))
1780     return SDValue();
1781 
1782   if (LoadNode->getAlignment() < 4)
1783     return SDValue();
1784 
1785   int ConstantBlock = ConstantAddressBlock(Block);
1786 
1787   SDValue Slots[4];
1788   for (unsigned i = 0; i < 4; i++) {
1789     // We want Const position encoded with the following formula :
1790     // (((512 + (kc_bank << 12) + const_index) << 2) + chan)
1791     // const_index is Ptr computed by llvm using an alignment of 16.
1792     // Thus we add (((512 + (kc_bank << 12)) + chan ) * 4 here and
1793     // then div by 4 at the ISel step
1794     SDValue NewPtr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr,
1795         DAG.getConstant(4 * i + ConstantBlock * 16, DL, MVT::i32));
1796     Slots[i] = DAG.getNode(AMDGPUISD::CONST_ADDRESS, DL, MVT::i32, NewPtr);
1797   }
1798   EVT NewVT = MVT::v4i32;
1799   unsigned NumElements = 4;
1800   if (VT.isVector()) {
1801     NewVT = VT;
1802     NumElements = VT.getVectorNumElements();
1803   }
1804   SDValue Result = DAG.getBuildVector(NewVT, DL, makeArrayRef(Slots, NumElements));
1805   if (!VT.isVector()) {
1806     Result = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, Result,
1807                          DAG.getConstant(0, DL, MVT::i32));
1808   }
1809   SDValue MergedValues[2] = {
1810     Result,
1811     Chain
1812   };
1813   return DAG.getMergeValues(MergedValues, DL);
1814 }
1815 
1816 //===----------------------------------------------------------------------===//
1817 // Custom DAG Optimizations
1818 //===----------------------------------------------------------------------===//
1819 
1820 SDValue R600TargetLowering::PerformDAGCombine(SDNode *N,
1821                                               DAGCombinerInfo &DCI) const {
1822   SelectionDAG &DAG = DCI.DAG;
1823   SDLoc DL(N);
1824 
1825   switch (N->getOpcode()) {
1826   // (f32 fp_round (f64 uint_to_fp a)) -> (f32 uint_to_fp a)
1827   case ISD::FP_ROUND: {
1828       SDValue Arg = N->getOperand(0);
1829       if (Arg.getOpcode() == ISD::UINT_TO_FP && Arg.getValueType() == MVT::f64) {
1830         return DAG.getNode(ISD::UINT_TO_FP, DL, N->getValueType(0),
1831                            Arg.getOperand(0));
1832       }
1833       break;
1834     }
1835 
1836   // (i32 fp_to_sint (fneg (select_cc f32, f32, 1.0, 0.0 cc))) ->
1837   // (i32 select_cc f32, f32, -1, 0 cc)
1838   //
1839   // Mesa's GLSL frontend generates the above pattern a lot and we can lower
1840   // this to one of the SET*_DX10 instructions.
1841   case ISD::FP_TO_SINT: {
1842     SDValue FNeg = N->getOperand(0);
1843     if (FNeg.getOpcode() != ISD::FNEG) {
1844       return SDValue();
1845     }
1846     SDValue SelectCC = FNeg.getOperand(0);
1847     if (SelectCC.getOpcode() != ISD::SELECT_CC ||
1848         SelectCC.getOperand(0).getValueType() != MVT::f32 || // LHS
1849         SelectCC.getOperand(2).getValueType() != MVT::f32 || // True
1850         !isHWTrueValue(SelectCC.getOperand(2)) ||
1851         !isHWFalseValue(SelectCC.getOperand(3))) {
1852       return SDValue();
1853     }
1854 
1855     return DAG.getNode(ISD::SELECT_CC, DL, N->getValueType(0),
1856                            SelectCC.getOperand(0), // LHS
1857                            SelectCC.getOperand(1), // RHS
1858                            DAG.getConstant(-1, DL, MVT::i32), // True
1859                            DAG.getConstant(0, DL, MVT::i32),  // False
1860                            SelectCC.getOperand(4)); // CC
1861   }
1862 
1863   // insert_vector_elt (build_vector elt0, ... , eltN), NewEltIdx, idx
1864   // => build_vector elt0, ... , NewEltIdx, ... , eltN
1865   case ISD::INSERT_VECTOR_ELT: {
1866     SDValue InVec = N->getOperand(0);
1867     SDValue InVal = N->getOperand(1);
1868     SDValue EltNo = N->getOperand(2);
1869 
1870     // If the inserted element is an UNDEF, just use the input vector.
1871     if (InVal.isUndef())
1872       return InVec;
1873 
1874     EVT VT = InVec.getValueType();
1875 
1876     // If we can't generate a legal BUILD_VECTOR, exit
1877     if (!isOperationLegal(ISD::BUILD_VECTOR, VT))
1878       return SDValue();
1879 
1880     // Check that we know which element is being inserted
1881     if (!isa<ConstantSDNode>(EltNo))
1882       return SDValue();
1883     unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
1884 
1885     // Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially
1886     // be converted to a BUILD_VECTOR).  Fill in the Ops vector with the
1887     // vector elements.
1888     SmallVector<SDValue, 8> Ops;
1889     if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
1890       Ops.append(InVec.getNode()->op_begin(),
1891                  InVec.getNode()->op_end());
1892     } else if (InVec.isUndef()) {
1893       unsigned NElts = VT.getVectorNumElements();
1894       Ops.append(NElts, DAG.getUNDEF(InVal.getValueType()));
1895     } else {
1896       return SDValue();
1897     }
1898 
1899     // Insert the element
1900     if (Elt < Ops.size()) {
1901       // All the operands of BUILD_VECTOR must have the same type;
1902       // we enforce that here.
1903       EVT OpVT = Ops[0].getValueType();
1904       if (InVal.getValueType() != OpVT)
1905         InVal = OpVT.bitsGT(InVal.getValueType()) ?
1906           DAG.getNode(ISD::ANY_EXTEND, DL, OpVT, InVal) :
1907           DAG.getNode(ISD::TRUNCATE, DL, OpVT, InVal);
1908       Ops[Elt] = InVal;
1909     }
1910 
1911     // Return the new vector
1912     return DAG.getBuildVector(VT, DL, Ops);
1913   }
1914 
1915   // Extract_vec (Build_vector) generated by custom lowering
1916   // also needs to be customly combined
1917   case ISD::EXTRACT_VECTOR_ELT: {
1918     SDValue Arg = N->getOperand(0);
1919     if (Arg.getOpcode() == ISD::BUILD_VECTOR) {
1920       if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
1921         unsigned Element = Const->getZExtValue();
1922         return Arg->getOperand(Element);
1923       }
1924     }
1925     if (Arg.getOpcode() == ISD::BITCAST &&
1926         Arg.getOperand(0).getOpcode() == ISD::BUILD_VECTOR &&
1927         (Arg.getOperand(0).getValueType().getVectorNumElements() ==
1928          Arg.getValueType().getVectorNumElements())) {
1929       if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
1930         unsigned Element = Const->getZExtValue();
1931         return DAG.getNode(ISD::BITCAST, DL, N->getVTList(),
1932                            Arg->getOperand(0).getOperand(Element));
1933       }
1934     }
1935     break;
1936   }
1937 
1938   case ISD::SELECT_CC: {
1939     // Try common optimizations
1940     if (SDValue Ret = AMDGPUTargetLowering::PerformDAGCombine(N, DCI))
1941       return Ret;
1942 
1943     // fold selectcc (selectcc x, y, a, b, cc), b, a, b, seteq ->
1944     //      selectcc x, y, a, b, inv(cc)
1945     //
1946     // fold selectcc (selectcc x, y, a, b, cc), b, a, b, setne ->
1947     //      selectcc x, y, a, b, cc
1948     SDValue LHS = N->getOperand(0);
1949     if (LHS.getOpcode() != ISD::SELECT_CC) {
1950       return SDValue();
1951     }
1952 
1953     SDValue RHS = N->getOperand(1);
1954     SDValue True = N->getOperand(2);
1955     SDValue False = N->getOperand(3);
1956     ISD::CondCode NCC = cast<CondCodeSDNode>(N->getOperand(4))->get();
1957 
1958     if (LHS.getOperand(2).getNode() != True.getNode() ||
1959         LHS.getOperand(3).getNode() != False.getNode() ||
1960         RHS.getNode() != False.getNode()) {
1961       return SDValue();
1962     }
1963 
1964     switch (NCC) {
1965     default: return SDValue();
1966     case ISD::SETNE: return LHS;
1967     case ISD::SETEQ: {
1968       ISD::CondCode LHSCC = cast<CondCodeSDNode>(LHS.getOperand(4))->get();
1969       LHSCC = ISD::getSetCCInverse(LHSCC, LHS.getOperand(0).getValueType());
1970       if (DCI.isBeforeLegalizeOps() ||
1971           isCondCodeLegal(LHSCC, LHS.getOperand(0).getSimpleValueType()))
1972         return DAG.getSelectCC(DL,
1973                                LHS.getOperand(0),
1974                                LHS.getOperand(1),
1975                                LHS.getOperand(2),
1976                                LHS.getOperand(3),
1977                                LHSCC);
1978       break;
1979     }
1980     }
1981     return SDValue();
1982   }
1983 
1984   case AMDGPUISD::R600_EXPORT: {
1985     SDValue Arg = N->getOperand(1);
1986     if (Arg.getOpcode() != ISD::BUILD_VECTOR)
1987       break;
1988 
1989     SDValue NewArgs[8] = {
1990       N->getOperand(0), // Chain
1991       SDValue(),
1992       N->getOperand(2), // ArrayBase
1993       N->getOperand(3), // Type
1994       N->getOperand(4), // SWZ_X
1995       N->getOperand(5), // SWZ_Y
1996       N->getOperand(6), // SWZ_Z
1997       N->getOperand(7) // SWZ_W
1998     };
1999     NewArgs[1] = OptimizeSwizzle(N->getOperand(1), &NewArgs[4], DAG, DL);
2000     return DAG.getNode(AMDGPUISD::R600_EXPORT, DL, N->getVTList(), NewArgs);
2001   }
2002   case AMDGPUISD::TEXTURE_FETCH: {
2003     SDValue Arg = N->getOperand(1);
2004     if (Arg.getOpcode() != ISD::BUILD_VECTOR)
2005       break;
2006 
2007     SDValue NewArgs[19] = {
2008       N->getOperand(0),
2009       N->getOperand(1),
2010       N->getOperand(2),
2011       N->getOperand(3),
2012       N->getOperand(4),
2013       N->getOperand(5),
2014       N->getOperand(6),
2015       N->getOperand(7),
2016       N->getOperand(8),
2017       N->getOperand(9),
2018       N->getOperand(10),
2019       N->getOperand(11),
2020       N->getOperand(12),
2021       N->getOperand(13),
2022       N->getOperand(14),
2023       N->getOperand(15),
2024       N->getOperand(16),
2025       N->getOperand(17),
2026       N->getOperand(18),
2027     };
2028     NewArgs[1] = OptimizeSwizzle(N->getOperand(1), &NewArgs[2], DAG, DL);
2029     return DAG.getNode(AMDGPUISD::TEXTURE_FETCH, DL, N->getVTList(), NewArgs);
2030   }
2031 
2032   case ISD::LOAD: {
2033     LoadSDNode *LoadNode = cast<LoadSDNode>(N);
2034     SDValue Ptr = LoadNode->getBasePtr();
2035     if (LoadNode->getAddressSpace() == AMDGPUAS::PARAM_I_ADDRESS &&
2036          isa<ConstantSDNode>(Ptr))
2037       return constBufferLoad(LoadNode, AMDGPUAS::CONSTANT_BUFFER_0, DAG);
2038     break;
2039   }
2040 
2041   default: break;
2042   }
2043 
2044   return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
2045 }
2046 
2047 bool R600TargetLowering::FoldOperand(SDNode *ParentNode, unsigned SrcIdx,
2048                                      SDValue &Src, SDValue &Neg, SDValue &Abs,
2049                                      SDValue &Sel, SDValue &Imm,
2050                                      SelectionDAG &DAG) const {
2051   const R600InstrInfo *TII = Subtarget->getInstrInfo();
2052   if (!Src.isMachineOpcode())
2053     return false;
2054 
2055   switch (Src.getMachineOpcode()) {
2056   case R600::FNEG_R600:
2057     if (!Neg.getNode())
2058       return false;
2059     Src = Src.getOperand(0);
2060     Neg = DAG.getTargetConstant(1, SDLoc(ParentNode), MVT::i32);
2061     return true;
2062   case R600::FABS_R600:
2063     if (!Abs.getNode())
2064       return false;
2065     Src = Src.getOperand(0);
2066     Abs = DAG.getTargetConstant(1, SDLoc(ParentNode), MVT::i32);
2067     return true;
2068   case R600::CONST_COPY: {
2069     unsigned Opcode = ParentNode->getMachineOpcode();
2070     bool HasDst = TII->getOperandIdx(Opcode, R600::OpName::dst) > -1;
2071 
2072     if (!Sel.getNode())
2073       return false;
2074 
2075     SDValue CstOffset = Src.getOperand(0);
2076     if (ParentNode->getValueType(0).isVector())
2077       return false;
2078 
2079     // Gather constants values
2080     int SrcIndices[] = {
2081       TII->getOperandIdx(Opcode, R600::OpName::src0),
2082       TII->getOperandIdx(Opcode, R600::OpName::src1),
2083       TII->getOperandIdx(Opcode, R600::OpName::src2),
2084       TII->getOperandIdx(Opcode, R600::OpName::src0_X),
2085       TII->getOperandIdx(Opcode, R600::OpName::src0_Y),
2086       TII->getOperandIdx(Opcode, R600::OpName::src0_Z),
2087       TII->getOperandIdx(Opcode, R600::OpName::src0_W),
2088       TII->getOperandIdx(Opcode, R600::OpName::src1_X),
2089       TII->getOperandIdx(Opcode, R600::OpName::src1_Y),
2090       TII->getOperandIdx(Opcode, R600::OpName::src1_Z),
2091       TII->getOperandIdx(Opcode, R600::OpName::src1_W)
2092     };
2093     std::vector<unsigned> Consts;
2094     for (int OtherSrcIdx : SrcIndices) {
2095       int OtherSelIdx = TII->getSelIdx(Opcode, OtherSrcIdx);
2096       if (OtherSrcIdx < 0 || OtherSelIdx < 0)
2097         continue;
2098       if (HasDst) {
2099         OtherSrcIdx--;
2100         OtherSelIdx--;
2101       }
2102       if (RegisterSDNode *Reg =
2103           dyn_cast<RegisterSDNode>(ParentNode->getOperand(OtherSrcIdx))) {
2104         if (Reg->getReg() == R600::ALU_CONST) {
2105           ConstantSDNode *Cst
2106             = cast<ConstantSDNode>(ParentNode->getOperand(OtherSelIdx));
2107           Consts.push_back(Cst->getZExtValue());
2108         }
2109       }
2110     }
2111 
2112     ConstantSDNode *Cst = cast<ConstantSDNode>(CstOffset);
2113     Consts.push_back(Cst->getZExtValue());
2114     if (!TII->fitsConstReadLimitations(Consts)) {
2115       return false;
2116     }
2117 
2118     Sel = CstOffset;
2119     Src = DAG.getRegister(R600::ALU_CONST, MVT::f32);
2120     return true;
2121   }
2122   case R600::MOV_IMM_GLOBAL_ADDR:
2123     // Check if the Imm slot is used. Taken from below.
2124     if (cast<ConstantSDNode>(Imm)->getZExtValue())
2125       return false;
2126     Imm = Src.getOperand(0);
2127     Src = DAG.getRegister(R600::ALU_LITERAL_X, MVT::i32);
2128     return true;
2129   case R600::MOV_IMM_I32:
2130   case R600::MOV_IMM_F32: {
2131     unsigned ImmReg = R600::ALU_LITERAL_X;
2132     uint64_t ImmValue = 0;
2133 
2134     if (Src.getMachineOpcode() == R600::MOV_IMM_F32) {
2135       ConstantFPSDNode *FPC = cast<ConstantFPSDNode>(Src.getOperand(0));
2136       float FloatValue = FPC->getValueAPF().convertToFloat();
2137       if (FloatValue == 0.0) {
2138         ImmReg = R600::ZERO;
2139       } else if (FloatValue == 0.5) {
2140         ImmReg = R600::HALF;
2141       } else if (FloatValue == 1.0) {
2142         ImmReg = R600::ONE;
2143       } else {
2144         ImmValue = FPC->getValueAPF().bitcastToAPInt().getZExtValue();
2145       }
2146     } else {
2147       ConstantSDNode *C = cast<ConstantSDNode>(Src.getOperand(0));
2148       uint64_t Value = C->getZExtValue();
2149       if (Value == 0) {
2150         ImmReg = R600::ZERO;
2151       } else if (Value == 1) {
2152         ImmReg = R600::ONE_INT;
2153       } else {
2154         ImmValue = Value;
2155       }
2156     }
2157 
2158     // Check that we aren't already using an immediate.
2159     // XXX: It's possible for an instruction to have more than one
2160     // immediate operand, but this is not supported yet.
2161     if (ImmReg == R600::ALU_LITERAL_X) {
2162       if (!Imm.getNode())
2163         return false;
2164       ConstantSDNode *C = cast<ConstantSDNode>(Imm);
2165       if (C->getZExtValue())
2166         return false;
2167       Imm = DAG.getTargetConstant(ImmValue, SDLoc(ParentNode), MVT::i32);
2168     }
2169     Src = DAG.getRegister(ImmReg, MVT::i32);
2170     return true;
2171   }
2172   default:
2173     return false;
2174   }
2175 }
2176 
2177 /// Fold the instructions after selecting them
2178 SDNode *R600TargetLowering::PostISelFolding(MachineSDNode *Node,
2179                                             SelectionDAG &DAG) const {
2180   const R600InstrInfo *TII = Subtarget->getInstrInfo();
2181   if (!Node->isMachineOpcode())
2182     return Node;
2183 
2184   unsigned Opcode = Node->getMachineOpcode();
2185   SDValue FakeOp;
2186 
2187   std::vector<SDValue> Ops(Node->op_begin(), Node->op_end());
2188 
2189   if (Opcode == R600::DOT_4) {
2190     int OperandIdx[] = {
2191       TII->getOperandIdx(Opcode, R600::OpName::src0_X),
2192       TII->getOperandIdx(Opcode, R600::OpName::src0_Y),
2193       TII->getOperandIdx(Opcode, R600::OpName::src0_Z),
2194       TII->getOperandIdx(Opcode, R600::OpName::src0_W),
2195       TII->getOperandIdx(Opcode, R600::OpName::src1_X),
2196       TII->getOperandIdx(Opcode, R600::OpName::src1_Y),
2197       TII->getOperandIdx(Opcode, R600::OpName::src1_Z),
2198       TII->getOperandIdx(Opcode, R600::OpName::src1_W)
2199         };
2200     int NegIdx[] = {
2201       TII->getOperandIdx(Opcode, R600::OpName::src0_neg_X),
2202       TII->getOperandIdx(Opcode, R600::OpName::src0_neg_Y),
2203       TII->getOperandIdx(Opcode, R600::OpName::src0_neg_Z),
2204       TII->getOperandIdx(Opcode, R600::OpName::src0_neg_W),
2205       TII->getOperandIdx(Opcode, R600::OpName::src1_neg_X),
2206       TII->getOperandIdx(Opcode, R600::OpName::src1_neg_Y),
2207       TII->getOperandIdx(Opcode, R600::OpName::src1_neg_Z),
2208       TII->getOperandIdx(Opcode, R600::OpName::src1_neg_W)
2209     };
2210     int AbsIdx[] = {
2211       TII->getOperandIdx(Opcode, R600::OpName::src0_abs_X),
2212       TII->getOperandIdx(Opcode, R600::OpName::src0_abs_Y),
2213       TII->getOperandIdx(Opcode, R600::OpName::src0_abs_Z),
2214       TII->getOperandIdx(Opcode, R600::OpName::src0_abs_W),
2215       TII->getOperandIdx(Opcode, R600::OpName::src1_abs_X),
2216       TII->getOperandIdx(Opcode, R600::OpName::src1_abs_Y),
2217       TII->getOperandIdx(Opcode, R600::OpName::src1_abs_Z),
2218       TII->getOperandIdx(Opcode, R600::OpName::src1_abs_W)
2219     };
2220     for (unsigned i = 0; i < 8; i++) {
2221       if (OperandIdx[i] < 0)
2222         return Node;
2223       SDValue &Src = Ops[OperandIdx[i] - 1];
2224       SDValue &Neg = Ops[NegIdx[i] - 1];
2225       SDValue &Abs = Ops[AbsIdx[i] - 1];
2226       bool HasDst = TII->getOperandIdx(Opcode, R600::OpName::dst) > -1;
2227       int SelIdx = TII->getSelIdx(Opcode, OperandIdx[i]);
2228       if (HasDst)
2229         SelIdx--;
2230       SDValue &Sel = (SelIdx > -1) ? Ops[SelIdx] : FakeOp;
2231       if (FoldOperand(Node, i, Src, Neg, Abs, Sel, FakeOp, DAG))
2232         return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
2233     }
2234   } else if (Opcode == R600::REG_SEQUENCE) {
2235     for (unsigned i = 1, e = Node->getNumOperands(); i < e; i += 2) {
2236       SDValue &Src = Ops[i];
2237       if (FoldOperand(Node, i, Src, FakeOp, FakeOp, FakeOp, FakeOp, DAG))
2238         return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
2239     }
2240   } else {
2241     if (!TII->hasInstrModifiers(Opcode))
2242       return Node;
2243     int OperandIdx[] = {
2244       TII->getOperandIdx(Opcode, R600::OpName::src0),
2245       TII->getOperandIdx(Opcode, R600::OpName::src1),
2246       TII->getOperandIdx(Opcode, R600::OpName::src2)
2247     };
2248     int NegIdx[] = {
2249       TII->getOperandIdx(Opcode, R600::OpName::src0_neg),
2250       TII->getOperandIdx(Opcode, R600::OpName::src1_neg),
2251       TII->getOperandIdx(Opcode, R600::OpName::src2_neg)
2252     };
2253     int AbsIdx[] = {
2254       TII->getOperandIdx(Opcode, R600::OpName::src0_abs),
2255       TII->getOperandIdx(Opcode, R600::OpName::src1_abs),
2256       -1
2257     };
2258     for (unsigned i = 0; i < 3; i++) {
2259       if (OperandIdx[i] < 0)
2260         return Node;
2261       SDValue &Src = Ops[OperandIdx[i] - 1];
2262       SDValue &Neg = Ops[NegIdx[i] - 1];
2263       SDValue FakeAbs;
2264       SDValue &Abs = (AbsIdx[i] > -1) ? Ops[AbsIdx[i] - 1] : FakeAbs;
2265       bool HasDst = TII->getOperandIdx(Opcode, R600::OpName::dst) > -1;
2266       int SelIdx = TII->getSelIdx(Opcode, OperandIdx[i]);
2267       int ImmIdx = TII->getOperandIdx(Opcode, R600::OpName::literal);
2268       if (HasDst) {
2269         SelIdx--;
2270         ImmIdx--;
2271       }
2272       SDValue &Sel = (SelIdx > -1) ? Ops[SelIdx] : FakeOp;
2273       SDValue &Imm = Ops[ImmIdx];
2274       if (FoldOperand(Node, i, Src, Neg, Abs, Sel, Imm, DAG))
2275         return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
2276     }
2277   }
2278 
2279   return Node;
2280 }
2281