1 //===-- R600ISelLowering.cpp - R600 DAG Lowering Implementation -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// Custom DAG lowering for R600
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "R600ISelLowering.h"
15 #include "AMDGPUFrameLowering.h"
16 #include "AMDGPUSubtarget.h"
17 #include "R600Defines.h"
18 #include "R600FrameLowering.h"
19 #include "R600InstrInfo.h"
20 #include "R600MachineFunctionInfo.h"
21 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
22 #include "Utils/AMDGPUBaseInfo.h"
23 #include "llvm/ADT/APFloat.h"
24 #include "llvm/ADT/APInt.h"
25 #include "llvm/ADT/ArrayRef.h"
26 #include "llvm/ADT/DenseMap.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/CodeGen/CallingConvLower.h"
29 #include "llvm/CodeGen/DAGCombine.h"
30 #include "llvm/CodeGen/ISDOpcodes.h"
31 #include "llvm/CodeGen/MachineBasicBlock.h"
32 #include "llvm/CodeGen/MachineFunction.h"
33 #include "llvm/CodeGen/MachineInstr.h"
34 #include "llvm/CodeGen/MachineInstrBuilder.h"
35 #include "llvm/CodeGen/MachineMemOperand.h"
36 #include "llvm/CodeGen/MachineRegisterInfo.h"
37 #include "llvm/CodeGen/SelectionDAG.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/IntrinsicsR600.h"
41 #include "llvm/Support/Casting.h"
42 #include "llvm/Support/Compiler.h"
43 #include "llvm/Support/ErrorHandling.h"
44 #include "llvm/Support/MachineValueType.h"
45 #include "llvm/Support/MathExtras.h"
46 #include <cassert>
47 #include <cstdint>
48 #include <iterator>
49 #include <utility>
50 #include <vector>
51 
52 using namespace llvm;
53 
54 #include "R600GenCallingConv.inc"
55 
56 R600TargetLowering::R600TargetLowering(const TargetMachine &TM,
57                                        const R600Subtarget &STI)
58     : AMDGPUTargetLowering(TM, STI), Subtarget(&STI), Gen(STI.getGeneration()) {
59   addRegisterClass(MVT::f32, &R600::R600_Reg32RegClass);
60   addRegisterClass(MVT::i32, &R600::R600_Reg32RegClass);
61   addRegisterClass(MVT::v2f32, &R600::R600_Reg64RegClass);
62   addRegisterClass(MVT::v2i32, &R600::R600_Reg64RegClass);
63   addRegisterClass(MVT::v4f32, &R600::R600_Reg128RegClass);
64   addRegisterClass(MVT::v4i32, &R600::R600_Reg128RegClass);
65 
66   setBooleanContents(ZeroOrNegativeOneBooleanContent);
67   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
68 
69   computeRegisterProperties(Subtarget->getRegisterInfo());
70 
71   // Legalize loads and stores to the private address space.
72   setOperationAction(ISD::LOAD, MVT::i32, Custom);
73   setOperationAction(ISD::LOAD, MVT::v2i32, Custom);
74   setOperationAction(ISD::LOAD, MVT::v4i32, Custom);
75 
76   // EXTLOAD should be the same as ZEXTLOAD. It is legal for some address
77   // spaces, so it is custom lowered to handle those where it isn't.
78   for (MVT VT : MVT::integer_valuetypes()) {
79     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
80     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Custom);
81     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Custom);
82 
83     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
84     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Custom);
85     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Custom);
86 
87     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
88     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Custom);
89     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Custom);
90   }
91 
92   // Workaround for LegalizeDAG asserting on expansion of i1 vector loads.
93   setLoadExtAction(ISD::EXTLOAD, MVT::v2i32, MVT::v2i1, Expand);
94   setLoadExtAction(ISD::SEXTLOAD, MVT::v2i32, MVT::v2i1, Expand);
95   setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i32, MVT::v2i1, Expand);
96 
97   setLoadExtAction(ISD::EXTLOAD, MVT::v4i32, MVT::v4i1, Expand);
98   setLoadExtAction(ISD::SEXTLOAD, MVT::v4i32, MVT::v4i1, Expand);
99   setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i32, MVT::v4i1, Expand);
100 
101   setOperationAction(ISD::STORE, MVT::i8, Custom);
102   setOperationAction(ISD::STORE, MVT::i32, Custom);
103   setOperationAction(ISD::STORE, MVT::v2i32, Custom);
104   setOperationAction(ISD::STORE, MVT::v4i32, Custom);
105 
106   setTruncStoreAction(MVT::i32, MVT::i8, Custom);
107   setTruncStoreAction(MVT::i32, MVT::i16, Custom);
108   // We need to include these since trunc STORES to PRIVATE need
109   // special handling to accommodate RMW
110   setTruncStoreAction(MVT::v2i32, MVT::v2i16, Custom);
111   setTruncStoreAction(MVT::v4i32, MVT::v4i16, Custom);
112   setTruncStoreAction(MVT::v8i32, MVT::v8i16, Custom);
113   setTruncStoreAction(MVT::v16i32, MVT::v16i16, Custom);
114   setTruncStoreAction(MVT::v32i32, MVT::v32i16, Custom);
115   setTruncStoreAction(MVT::v2i32, MVT::v2i8, Custom);
116   setTruncStoreAction(MVT::v4i32, MVT::v4i8, Custom);
117   setTruncStoreAction(MVT::v8i32, MVT::v8i8, Custom);
118   setTruncStoreAction(MVT::v16i32, MVT::v16i8, Custom);
119   setTruncStoreAction(MVT::v32i32, MVT::v32i8, Custom);
120 
121   // Workaround for LegalizeDAG asserting on expansion of i1 vector stores.
122   setTruncStoreAction(MVT::v2i32, MVT::v2i1, Expand);
123   setTruncStoreAction(MVT::v4i32, MVT::v4i1, Expand);
124 
125   // Set condition code actions
126   setCondCodeAction(ISD::SETO,   MVT::f32, Expand);
127   setCondCodeAction(ISD::SETUO,  MVT::f32, Expand);
128   setCondCodeAction(ISD::SETLT,  MVT::f32, Expand);
129   setCondCodeAction(ISD::SETLE,  MVT::f32, Expand);
130   setCondCodeAction(ISD::SETOLT, MVT::f32, Expand);
131   setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
132   setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
133   setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
134   setCondCodeAction(ISD::SETUGE, MVT::f32, Expand);
135   setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
136   setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
137   setCondCodeAction(ISD::SETULE, MVT::f32, Expand);
138 
139   setCondCodeAction(ISD::SETLE, MVT::i32, Expand);
140   setCondCodeAction(ISD::SETLT, MVT::i32, Expand);
141   setCondCodeAction(ISD::SETULE, MVT::i32, Expand);
142   setCondCodeAction(ISD::SETULT, MVT::i32, Expand);
143 
144   setOperationAction(ISD::FCOS, MVT::f32, Custom);
145   setOperationAction(ISD::FSIN, MVT::f32, Custom);
146 
147   setOperationAction(ISD::SETCC, MVT::v4i32, Expand);
148   setOperationAction(ISD::SETCC, MVT::v2i32, Expand);
149 
150   setOperationAction(ISD::BR_CC, MVT::i32, Expand);
151   setOperationAction(ISD::BR_CC, MVT::f32, Expand);
152   setOperationAction(ISD::BRCOND, MVT::Other, Custom);
153 
154   setOperationAction(ISD::FSUB, MVT::f32, Expand);
155 
156   setOperationAction(ISD::FCEIL, MVT::f64, Custom);
157   setOperationAction(ISD::FTRUNC, MVT::f64, Custom);
158   setOperationAction(ISD::FRINT, MVT::f64, Custom);
159   setOperationAction(ISD::FFLOOR, MVT::f64, Custom);
160 
161   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
162   setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
163 
164   setOperationAction(ISD::SETCC, MVT::i32, Expand);
165   setOperationAction(ISD::SETCC, MVT::f32, Expand);
166   setOperationAction(ISD::FP_TO_UINT, MVT::i1, Custom);
167   setOperationAction(ISD::FP_TO_SINT, MVT::i1, Custom);
168   setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
169   setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
170 
171   setOperationAction(ISD::SELECT, MVT::i32, Expand);
172   setOperationAction(ISD::SELECT, MVT::f32, Expand);
173   setOperationAction(ISD::SELECT, MVT::v2i32, Expand);
174   setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
175 
176   // ADD, SUB overflow.
177   // TODO: turn these into Legal?
178   if (Subtarget->hasCARRY())
179     setOperationAction(ISD::UADDO, MVT::i32, Custom);
180 
181   if (Subtarget->hasBORROW())
182     setOperationAction(ISD::USUBO, MVT::i32, Custom);
183 
184   // Expand sign extension of vectors
185   if (!Subtarget->hasBFE())
186     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
187 
188   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i1, Expand);
189   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i1, Expand);
190 
191   if (!Subtarget->hasBFE())
192     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
193   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Expand);
194   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Expand);
195 
196   if (!Subtarget->hasBFE())
197     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
198   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Expand);
199   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Expand);
200 
201   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
202   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Expand);
203   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Expand);
204 
205   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Expand);
206 
207   setOperationAction(ISD::FrameIndex, MVT::i32, Custom);
208 
209   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i32, Custom);
210   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f32, Custom);
211   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
212   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
213 
214   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i32, Custom);
215   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f32, Custom);
216   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
217   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
218 
219   // We don't have 64-bit shifts. Thus we need either SHX i64 or SHX_PARTS i32
220   //  to be Legal/Custom in order to avoid library calls.
221   setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
222   setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
223   setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
224 
225   if (!Subtarget->hasFMA()) {
226     setOperationAction(ISD::FMA, MVT::f32, Expand);
227     setOperationAction(ISD::FMA, MVT::f64, Expand);
228   }
229 
230   // FIXME: May need no denormals check
231   setOperationAction(ISD::FMAD, MVT::f32, Legal);
232 
233   if (!Subtarget->hasBFI()) {
234     // fcopysign can be done in a single instruction with BFI.
235     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
236     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
237   }
238 
239   if (!Subtarget->hasBCNT(32))
240     setOperationAction(ISD::CTPOP, MVT::i32, Expand);
241 
242   if (!Subtarget->hasBCNT(64))
243     setOperationAction(ISD::CTPOP, MVT::i64, Expand);
244 
245   if (Subtarget->hasFFBH())
246     setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom);
247 
248   if (Subtarget->hasFFBL())
249     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom);
250 
251   // FIXME: This was moved from AMDGPUTargetLowering, I'm not sure if we
252   // need it for R600.
253   if (Subtarget->hasBFE())
254     setHasExtractBitsInsn(true);
255 
256   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
257 
258   const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
259   for (MVT VT : ScalarIntVTs) {
260     setOperationAction(ISD::ADDC, VT, Expand);
261     setOperationAction(ISD::SUBC, VT, Expand);
262     setOperationAction(ISD::ADDE, VT, Expand);
263     setOperationAction(ISD::SUBE, VT, Expand);
264   }
265 
266   // LLVM will expand these to atomic_cmp_swap(0)
267   // and atomic_swap, respectively.
268   setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Expand);
269   setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Expand);
270 
271   // We need to custom lower some of the intrinsics
272   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
273   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
274 
275   setSchedulingPreference(Sched::Source);
276 
277   setTargetDAGCombine(ISD::FP_ROUND);
278   setTargetDAGCombine(ISD::FP_TO_SINT);
279   setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
280   setTargetDAGCombine(ISD::SELECT_CC);
281   setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
282   setTargetDAGCombine(ISD::LOAD);
283 }
284 
285 static inline bool isEOP(MachineBasicBlock::iterator I) {
286   if (std::next(I) == I->getParent()->end())
287     return false;
288   return std::next(I)->getOpcode() == R600::RETURN;
289 }
290 
291 MachineBasicBlock *
292 R600TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
293                                                 MachineBasicBlock *BB) const {
294   MachineFunction *MF = BB->getParent();
295   MachineRegisterInfo &MRI = MF->getRegInfo();
296   MachineBasicBlock::iterator I = MI;
297   const R600InstrInfo *TII = Subtarget->getInstrInfo();
298 
299   switch (MI.getOpcode()) {
300   default:
301     // Replace LDS_*_RET instruction that don't have any uses with the
302     // equivalent LDS_*_NORET instruction.
303     if (TII->isLDSRetInstr(MI.getOpcode())) {
304       int DstIdx = TII->getOperandIdx(MI.getOpcode(), R600::OpName::dst);
305       assert(DstIdx != -1);
306       MachineInstrBuilder NewMI;
307       // FIXME: getLDSNoRetOp method only handles LDS_1A1D LDS ops. Add
308       //        LDS_1A2D support and remove this special case.
309       if (!MRI.use_empty(MI.getOperand(DstIdx).getReg()) ||
310           MI.getOpcode() == R600::LDS_CMPST_RET)
311         return BB;
312 
313       NewMI = BuildMI(*BB, I, BB->findDebugLoc(I),
314                       TII->get(R600::getLDSNoRetOp(MI.getOpcode())));
315       for (unsigned i = 1, e = MI.getNumOperands(); i < e; ++i) {
316         NewMI.add(MI.getOperand(i));
317       }
318     } else {
319       return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB);
320     }
321     break;
322 
323   case R600::FABS_R600: {
324     MachineInstr *NewMI = TII->buildDefaultInstruction(
325         *BB, I, R600::MOV, MI.getOperand(0).getReg(),
326         MI.getOperand(1).getReg());
327     TII->addFlag(*NewMI, 0, MO_FLAG_ABS);
328     break;
329   }
330 
331   case R600::FNEG_R600: {
332     MachineInstr *NewMI = TII->buildDefaultInstruction(
333         *BB, I, R600::MOV, MI.getOperand(0).getReg(),
334         MI.getOperand(1).getReg());
335     TII->addFlag(*NewMI, 0, MO_FLAG_NEG);
336     break;
337   }
338 
339   case R600::MASK_WRITE: {
340     Register maskedRegister = MI.getOperand(0).getReg();
341     assert(Register::isVirtualRegister(maskedRegister));
342     MachineInstr * defInstr = MRI.getVRegDef(maskedRegister);
343     TII->addFlag(*defInstr, 0, MO_FLAG_MASK);
344     break;
345   }
346 
347   case R600::MOV_IMM_F32:
348     TII->buildMovImm(*BB, I, MI.getOperand(0).getReg(), MI.getOperand(1)
349                                                             .getFPImm()
350                                                             ->getValueAPF()
351                                                             .bitcastToAPInt()
352                                                             .getZExtValue());
353     break;
354 
355   case R600::MOV_IMM_I32:
356     TII->buildMovImm(*BB, I, MI.getOperand(0).getReg(),
357                      MI.getOperand(1).getImm());
358     break;
359 
360   case R600::MOV_IMM_GLOBAL_ADDR: {
361     //TODO: Perhaps combine this instruction with the next if possible
362     auto MIB = TII->buildDefaultInstruction(
363         *BB, MI, R600::MOV, MI.getOperand(0).getReg(), R600::ALU_LITERAL_X);
364     int Idx = TII->getOperandIdx(*MIB, R600::OpName::literal);
365     //TODO: Ugh this is rather ugly
366     MIB->getOperand(Idx) = MI.getOperand(1);
367     break;
368   }
369 
370   case R600::CONST_COPY: {
371     MachineInstr *NewMI = TII->buildDefaultInstruction(
372         *BB, MI, R600::MOV, MI.getOperand(0).getReg(), R600::ALU_CONST);
373     TII->setImmOperand(*NewMI, R600::OpName::src0_sel,
374                        MI.getOperand(1).getImm());
375     break;
376   }
377 
378   case R600::RAT_WRITE_CACHELESS_32_eg:
379   case R600::RAT_WRITE_CACHELESS_64_eg:
380   case R600::RAT_WRITE_CACHELESS_128_eg:
381     BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(MI.getOpcode()))
382         .add(MI.getOperand(0))
383         .add(MI.getOperand(1))
384         .addImm(isEOP(I)); // Set End of program bit
385     break;
386 
387   case R600::RAT_STORE_TYPED_eg:
388     BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(MI.getOpcode()))
389         .add(MI.getOperand(0))
390         .add(MI.getOperand(1))
391         .add(MI.getOperand(2))
392         .addImm(isEOP(I)); // Set End of program bit
393     break;
394 
395   case R600::BRANCH:
396     BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(R600::JUMP))
397         .add(MI.getOperand(0));
398     break;
399 
400   case R600::BRANCH_COND_f32: {
401     MachineInstr *NewMI =
402         BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(R600::PRED_X),
403                 R600::PREDICATE_BIT)
404             .add(MI.getOperand(1))
405             .addImm(R600::PRED_SETNE)
406             .addImm(0); // Flags
407     TII->addFlag(*NewMI, 0, MO_FLAG_PUSH);
408     BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(R600::JUMP_COND))
409         .add(MI.getOperand(0))
410         .addReg(R600::PREDICATE_BIT, RegState::Kill);
411     break;
412   }
413 
414   case R600::BRANCH_COND_i32: {
415     MachineInstr *NewMI =
416         BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(R600::PRED_X),
417                 R600::PREDICATE_BIT)
418             .add(MI.getOperand(1))
419             .addImm(R600::PRED_SETNE_INT)
420             .addImm(0); // Flags
421     TII->addFlag(*NewMI, 0, MO_FLAG_PUSH);
422     BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(R600::JUMP_COND))
423         .add(MI.getOperand(0))
424         .addReg(R600::PREDICATE_BIT, RegState::Kill);
425     break;
426   }
427 
428   case R600::EG_ExportSwz:
429   case R600::R600_ExportSwz: {
430     // Instruction is left unmodified if its not the last one of its type
431     bool isLastInstructionOfItsType = true;
432     unsigned InstExportType = MI.getOperand(1).getImm();
433     for (MachineBasicBlock::iterator NextExportInst = std::next(I),
434          EndBlock = BB->end(); NextExportInst != EndBlock;
435          NextExportInst = std::next(NextExportInst)) {
436       if (NextExportInst->getOpcode() == R600::EG_ExportSwz ||
437           NextExportInst->getOpcode() == R600::R600_ExportSwz) {
438         unsigned CurrentInstExportType = NextExportInst->getOperand(1)
439             .getImm();
440         if (CurrentInstExportType == InstExportType) {
441           isLastInstructionOfItsType = false;
442           break;
443         }
444       }
445     }
446     bool EOP = isEOP(I);
447     if (!EOP && !isLastInstructionOfItsType)
448       return BB;
449     unsigned CfInst = (MI.getOpcode() == R600::EG_ExportSwz) ? 84 : 40;
450     BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(MI.getOpcode()))
451         .add(MI.getOperand(0))
452         .add(MI.getOperand(1))
453         .add(MI.getOperand(2))
454         .add(MI.getOperand(3))
455         .add(MI.getOperand(4))
456         .add(MI.getOperand(5))
457         .add(MI.getOperand(6))
458         .addImm(CfInst)
459         .addImm(EOP);
460     break;
461   }
462   case R600::RETURN: {
463     return BB;
464   }
465   }
466 
467   MI.eraseFromParent();
468   return BB;
469 }
470 
471 //===----------------------------------------------------------------------===//
472 // Custom DAG Lowering Operations
473 //===----------------------------------------------------------------------===//
474 
475 SDValue R600TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
476   MachineFunction &MF = DAG.getMachineFunction();
477   R600MachineFunctionInfo *MFI = MF.getInfo<R600MachineFunctionInfo>();
478   switch (Op.getOpcode()) {
479   default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
480   case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
481   case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
482   case ISD::SHL_PARTS: return LowerSHLParts(Op, DAG);
483   case ISD::SRA_PARTS:
484   case ISD::SRL_PARTS: return LowerSRXParts(Op, DAG);
485   case ISD::UADDO: return LowerUADDSUBO(Op, DAG, ISD::ADD, AMDGPUISD::CARRY);
486   case ISD::USUBO: return LowerUADDSUBO(Op, DAG, ISD::SUB, AMDGPUISD::BORROW);
487   case ISD::FCOS:
488   case ISD::FSIN: return LowerTrig(Op, DAG);
489   case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
490   case ISD::STORE: return LowerSTORE(Op, DAG);
491   case ISD::LOAD: {
492     SDValue Result = LowerLOAD(Op, DAG);
493     assert((!Result.getNode() ||
494             Result.getNode()->getNumValues() == 2) &&
495            "Load should return a value and a chain");
496     return Result;
497   }
498 
499   case ISD::BRCOND: return LowerBRCOND(Op, DAG);
500   case ISD::GlobalAddress: return LowerGlobalAddress(MFI, Op, DAG);
501   case ISD::FrameIndex: return lowerFrameIndex(Op, DAG);
502   case ISD::INTRINSIC_VOID: {
503     SDValue Chain = Op.getOperand(0);
504     unsigned IntrinsicID =
505                          cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
506     switch (IntrinsicID) {
507     case Intrinsic::r600_store_swizzle: {
508       SDLoc DL(Op);
509       const SDValue Args[8] = {
510         Chain,
511         Op.getOperand(2), // Export Value
512         Op.getOperand(3), // ArrayBase
513         Op.getOperand(4), // Type
514         DAG.getConstant(0, DL, MVT::i32), // SWZ_X
515         DAG.getConstant(1, DL, MVT::i32), // SWZ_Y
516         DAG.getConstant(2, DL, MVT::i32), // SWZ_Z
517         DAG.getConstant(3, DL, MVT::i32) // SWZ_W
518       };
519       return DAG.getNode(AMDGPUISD::R600_EXPORT, DL, Op.getValueType(), Args);
520     }
521 
522     // default for switch(IntrinsicID)
523     default: break;
524     }
525     // break out of case ISD::INTRINSIC_VOID in switch(Op.getOpcode())
526     break;
527   }
528   case ISD::INTRINSIC_WO_CHAIN: {
529     unsigned IntrinsicID =
530                          cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
531     EVT VT = Op.getValueType();
532     SDLoc DL(Op);
533     switch (IntrinsicID) {
534     case Intrinsic::r600_tex:
535     case Intrinsic::r600_texc: {
536       unsigned TextureOp;
537       switch (IntrinsicID) {
538       case Intrinsic::r600_tex:
539         TextureOp = 0;
540         break;
541       case Intrinsic::r600_texc:
542         TextureOp = 1;
543         break;
544       default:
545         llvm_unreachable("unhandled texture operation");
546       }
547 
548       SDValue TexArgs[19] = {
549         DAG.getConstant(TextureOp, DL, MVT::i32),
550         Op.getOperand(1),
551         DAG.getConstant(0, DL, MVT::i32),
552         DAG.getConstant(1, DL, MVT::i32),
553         DAG.getConstant(2, DL, MVT::i32),
554         DAG.getConstant(3, DL, MVT::i32),
555         Op.getOperand(2),
556         Op.getOperand(3),
557         Op.getOperand(4),
558         DAG.getConstant(0, DL, MVT::i32),
559         DAG.getConstant(1, DL, MVT::i32),
560         DAG.getConstant(2, DL, MVT::i32),
561         DAG.getConstant(3, DL, MVT::i32),
562         Op.getOperand(5),
563         Op.getOperand(6),
564         Op.getOperand(7),
565         Op.getOperand(8),
566         Op.getOperand(9),
567         Op.getOperand(10)
568       };
569       return DAG.getNode(AMDGPUISD::TEXTURE_FETCH, DL, MVT::v4f32, TexArgs);
570     }
571     case Intrinsic::r600_dot4: {
572       SDValue Args[8] = {
573       DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1),
574           DAG.getConstant(0, DL, MVT::i32)),
575       DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2),
576           DAG.getConstant(0, DL, MVT::i32)),
577       DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1),
578           DAG.getConstant(1, DL, MVT::i32)),
579       DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2),
580           DAG.getConstant(1, DL, MVT::i32)),
581       DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1),
582           DAG.getConstant(2, DL, MVT::i32)),
583       DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2),
584           DAG.getConstant(2, DL, MVT::i32)),
585       DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1),
586           DAG.getConstant(3, DL, MVT::i32)),
587       DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2),
588           DAG.getConstant(3, DL, MVT::i32))
589       };
590       return DAG.getNode(AMDGPUISD::DOT4, DL, MVT::f32, Args);
591     }
592 
593     case Intrinsic::r600_implicitarg_ptr: {
594       MVT PtrVT = getPointerTy(DAG.getDataLayout(), AMDGPUAS::PARAM_I_ADDRESS);
595       uint32_t ByteOffset = getImplicitParameterOffset(MF, FIRST_IMPLICIT);
596       return DAG.getConstant(ByteOffset, DL, PtrVT);
597     }
598     case Intrinsic::r600_read_ngroups_x:
599       return LowerImplicitParameter(DAG, VT, DL, 0);
600     case Intrinsic::r600_read_ngroups_y:
601       return LowerImplicitParameter(DAG, VT, DL, 1);
602     case Intrinsic::r600_read_ngroups_z:
603       return LowerImplicitParameter(DAG, VT, DL, 2);
604     case Intrinsic::r600_read_global_size_x:
605       return LowerImplicitParameter(DAG, VT, DL, 3);
606     case Intrinsic::r600_read_global_size_y:
607       return LowerImplicitParameter(DAG, VT, DL, 4);
608     case Intrinsic::r600_read_global_size_z:
609       return LowerImplicitParameter(DAG, VT, DL, 5);
610     case Intrinsic::r600_read_local_size_x:
611       return LowerImplicitParameter(DAG, VT, DL, 6);
612     case Intrinsic::r600_read_local_size_y:
613       return LowerImplicitParameter(DAG, VT, DL, 7);
614     case Intrinsic::r600_read_local_size_z:
615       return LowerImplicitParameter(DAG, VT, DL, 8);
616 
617     case Intrinsic::r600_read_tgid_x:
618     case Intrinsic::amdgcn_workgroup_id_x:
619       return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass,
620                                      R600::T1_X, VT);
621     case Intrinsic::r600_read_tgid_y:
622     case Intrinsic::amdgcn_workgroup_id_y:
623       return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass,
624                                      R600::T1_Y, VT);
625     case Intrinsic::r600_read_tgid_z:
626     case Intrinsic::amdgcn_workgroup_id_z:
627       return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass,
628                                      R600::T1_Z, VT);
629     case Intrinsic::r600_read_tidig_x:
630     case Intrinsic::amdgcn_workitem_id_x:
631       return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass,
632                                      R600::T0_X, VT);
633     case Intrinsic::r600_read_tidig_y:
634     case Intrinsic::amdgcn_workitem_id_y:
635       return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass,
636                                      R600::T0_Y, VT);
637     case Intrinsic::r600_read_tidig_z:
638     case Intrinsic::amdgcn_workitem_id_z:
639       return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass,
640                                      R600::T0_Z, VT);
641 
642     case Intrinsic::r600_recipsqrt_ieee:
643       return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
644 
645     case Intrinsic::r600_recipsqrt_clamped:
646       return DAG.getNode(AMDGPUISD::RSQ_CLAMP, DL, VT, Op.getOperand(1));
647     default:
648       return Op;
649     }
650 
651     // break out of case ISD::INTRINSIC_WO_CHAIN in switch(Op.getOpcode())
652     break;
653   }
654   } // end switch(Op.getOpcode())
655   return SDValue();
656 }
657 
658 void R600TargetLowering::ReplaceNodeResults(SDNode *N,
659                                             SmallVectorImpl<SDValue> &Results,
660                                             SelectionDAG &DAG) const {
661   switch (N->getOpcode()) {
662   default:
663     AMDGPUTargetLowering::ReplaceNodeResults(N, Results, DAG);
664     return;
665   case ISD::FP_TO_UINT:
666     if (N->getValueType(0) == MVT::i1) {
667       Results.push_back(lowerFP_TO_UINT(N->getOperand(0), DAG));
668       return;
669     }
670     // Since we don't care about out of bounds values we can use FP_TO_SINT for
671     // uints too. The DAGLegalizer code for uint considers some extra cases
672     // which are not necessary here.
673     LLVM_FALLTHROUGH;
674   case ISD::FP_TO_SINT: {
675     if (N->getValueType(0) == MVT::i1) {
676       Results.push_back(lowerFP_TO_SINT(N->getOperand(0), DAG));
677       return;
678     }
679 
680     SDValue Result;
681     if (expandFP_TO_SINT(N, Result, DAG))
682       Results.push_back(Result);
683     return;
684   }
685   case ISD::SDIVREM: {
686     SDValue Op = SDValue(N, 1);
687     SDValue RES = LowerSDIVREM(Op, DAG);
688     Results.push_back(RES);
689     Results.push_back(RES.getValue(1));
690     break;
691   }
692   case ISD::UDIVREM: {
693     SDValue Op = SDValue(N, 0);
694     LowerUDIVREM64(Op, DAG, Results);
695     break;
696   }
697   }
698 }
699 
700 SDValue R600TargetLowering::vectorToVerticalVector(SelectionDAG &DAG,
701                                                    SDValue Vector) const {
702   SDLoc DL(Vector);
703   EVT VecVT = Vector.getValueType();
704   EVT EltVT = VecVT.getVectorElementType();
705   SmallVector<SDValue, 8> Args;
706 
707   for (unsigned i = 0, e = VecVT.getVectorNumElements(); i != e; ++i) {
708     Args.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vector,
709                                DAG.getVectorIdxConstant(i, DL)));
710   }
711 
712   return DAG.getNode(AMDGPUISD::BUILD_VERTICAL_VECTOR, DL, VecVT, Args);
713 }
714 
715 SDValue R600TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
716                                                     SelectionDAG &DAG) const {
717   SDLoc DL(Op);
718   SDValue Vector = Op.getOperand(0);
719   SDValue Index = Op.getOperand(1);
720 
721   if (isa<ConstantSDNode>(Index) ||
722       Vector.getOpcode() == AMDGPUISD::BUILD_VERTICAL_VECTOR)
723     return Op;
724 
725   Vector = vectorToVerticalVector(DAG, Vector);
726   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, Op.getValueType(),
727                      Vector, Index);
728 }
729 
730 SDValue R600TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
731                                                    SelectionDAG &DAG) const {
732   SDLoc DL(Op);
733   SDValue Vector = Op.getOperand(0);
734   SDValue Value = Op.getOperand(1);
735   SDValue Index = Op.getOperand(2);
736 
737   if (isa<ConstantSDNode>(Index) ||
738       Vector.getOpcode() == AMDGPUISD::BUILD_VERTICAL_VECTOR)
739     return Op;
740 
741   Vector = vectorToVerticalVector(DAG, Vector);
742   SDValue Insert = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, Op.getValueType(),
743                                Vector, Value, Index);
744   return vectorToVerticalVector(DAG, Insert);
745 }
746 
747 SDValue R600TargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI,
748                                                SDValue Op,
749                                                SelectionDAG &DAG) const {
750   GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op);
751   if (GSD->getAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS)
752     return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG);
753 
754   const DataLayout &DL = DAG.getDataLayout();
755   const GlobalValue *GV = GSD->getGlobal();
756   MVT ConstPtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS);
757 
758   SDValue GA = DAG.getTargetGlobalAddress(GV, SDLoc(GSD), ConstPtrVT);
759   return DAG.getNode(AMDGPUISD::CONST_DATA_PTR, SDLoc(GSD), ConstPtrVT, GA);
760 }
761 
762 SDValue R600TargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const {
763   // On hw >= R700, COS/SIN input must be between -1. and 1.
764   // Thus we lower them to TRIG ( FRACT ( x / 2Pi + 0.5) - 0.5)
765   EVT VT = Op.getValueType();
766   SDValue Arg = Op.getOperand(0);
767   SDLoc DL(Op);
768 
769   // TODO: Should this propagate fast-math-flags?
770   SDValue FractPart = DAG.getNode(AMDGPUISD::FRACT, DL, VT,
771       DAG.getNode(ISD::FADD, DL, VT,
772         DAG.getNode(ISD::FMUL, DL, VT, Arg,
773           DAG.getConstantFP(0.15915494309, DL, MVT::f32)),
774         DAG.getConstantFP(0.5, DL, MVT::f32)));
775   unsigned TrigNode;
776   switch (Op.getOpcode()) {
777   case ISD::FCOS:
778     TrigNode = AMDGPUISD::COS_HW;
779     break;
780   case ISD::FSIN:
781     TrigNode = AMDGPUISD::SIN_HW;
782     break;
783   default:
784     llvm_unreachable("Wrong trig opcode");
785   }
786   SDValue TrigVal = DAG.getNode(TrigNode, DL, VT,
787       DAG.getNode(ISD::FADD, DL, VT, FractPart,
788         DAG.getConstantFP(-0.5, DL, MVT::f32)));
789   if (Gen >= AMDGPUSubtarget::R700)
790     return TrigVal;
791   // On R600 hw, COS/SIN input must be between -Pi and Pi.
792   return DAG.getNode(ISD::FMUL, DL, VT, TrigVal,
793       DAG.getConstantFP(numbers::pif, DL, MVT::f32));
794 }
795 
796 SDValue R600TargetLowering::LowerSHLParts(SDValue Op, SelectionDAG &DAG) const {
797   SDLoc DL(Op);
798   EVT VT = Op.getValueType();
799 
800   SDValue Lo = Op.getOperand(0);
801   SDValue Hi = Op.getOperand(1);
802   SDValue Shift = Op.getOperand(2);
803   SDValue Zero = DAG.getConstant(0, DL, VT);
804   SDValue One  = DAG.getConstant(1, DL, VT);
805 
806   SDValue Width  = DAG.getConstant(VT.getSizeInBits(), DL, VT);
807   SDValue Width1 = DAG.getConstant(VT.getSizeInBits() - 1, DL, VT);
808   SDValue BigShift  = DAG.getNode(ISD::SUB, DL, VT, Shift, Width);
809   SDValue CompShift = DAG.getNode(ISD::SUB, DL, VT, Width1, Shift);
810 
811   // The dance around Width1 is necessary for 0 special case.
812   // Without it the CompShift might be 32, producing incorrect results in
813   // Overflow. So we do the shift in two steps, the alternative is to
814   // add a conditional to filter the special case.
815 
816   SDValue Overflow = DAG.getNode(ISD::SRL, DL, VT, Lo, CompShift);
817   Overflow = DAG.getNode(ISD::SRL, DL, VT, Overflow, One);
818 
819   SDValue HiSmall = DAG.getNode(ISD::SHL, DL, VT, Hi, Shift);
820   HiSmall = DAG.getNode(ISD::OR, DL, VT, HiSmall, Overflow);
821   SDValue LoSmall = DAG.getNode(ISD::SHL, DL, VT, Lo, Shift);
822 
823   SDValue HiBig = DAG.getNode(ISD::SHL, DL, VT, Lo, BigShift);
824   SDValue LoBig = Zero;
825 
826   Hi = DAG.getSelectCC(DL, Shift, Width, HiSmall, HiBig, ISD::SETULT);
827   Lo = DAG.getSelectCC(DL, Shift, Width, LoSmall, LoBig, ISD::SETULT);
828 
829   return DAG.getNode(ISD::MERGE_VALUES, DL, DAG.getVTList(VT,VT), Lo, Hi);
830 }
831 
832 SDValue R600TargetLowering::LowerSRXParts(SDValue Op, SelectionDAG &DAG) const {
833   SDLoc DL(Op);
834   EVT VT = Op.getValueType();
835 
836   SDValue Lo = Op.getOperand(0);
837   SDValue Hi = Op.getOperand(1);
838   SDValue Shift = Op.getOperand(2);
839   SDValue Zero = DAG.getConstant(0, DL, VT);
840   SDValue One  = DAG.getConstant(1, DL, VT);
841 
842   const bool SRA = Op.getOpcode() == ISD::SRA_PARTS;
843 
844   SDValue Width  = DAG.getConstant(VT.getSizeInBits(), DL, VT);
845   SDValue Width1 = DAG.getConstant(VT.getSizeInBits() - 1, DL, VT);
846   SDValue BigShift  = DAG.getNode(ISD::SUB, DL, VT, Shift, Width);
847   SDValue CompShift = DAG.getNode(ISD::SUB, DL, VT, Width1, Shift);
848 
849   // The dance around Width1 is necessary for 0 special case.
850   // Without it the CompShift might be 32, producing incorrect results in
851   // Overflow. So we do the shift in two steps, the alternative is to
852   // add a conditional to filter the special case.
853 
854   SDValue Overflow = DAG.getNode(ISD::SHL, DL, VT, Hi, CompShift);
855   Overflow = DAG.getNode(ISD::SHL, DL, VT, Overflow, One);
856 
857   SDValue HiSmall = DAG.getNode(SRA ? ISD::SRA : ISD::SRL, DL, VT, Hi, Shift);
858   SDValue LoSmall = DAG.getNode(ISD::SRL, DL, VT, Lo, Shift);
859   LoSmall = DAG.getNode(ISD::OR, DL, VT, LoSmall, Overflow);
860 
861   SDValue LoBig = DAG.getNode(SRA ? ISD::SRA : ISD::SRL, DL, VT, Hi, BigShift);
862   SDValue HiBig = SRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, Width1) : Zero;
863 
864   Hi = DAG.getSelectCC(DL, Shift, Width, HiSmall, HiBig, ISD::SETULT);
865   Lo = DAG.getSelectCC(DL, Shift, Width, LoSmall, LoBig, ISD::SETULT);
866 
867   return DAG.getNode(ISD::MERGE_VALUES, DL, DAG.getVTList(VT,VT), Lo, Hi);
868 }
869 
870 SDValue R600TargetLowering::LowerUADDSUBO(SDValue Op, SelectionDAG &DAG,
871                                           unsigned mainop, unsigned ovf) const {
872   SDLoc DL(Op);
873   EVT VT = Op.getValueType();
874 
875   SDValue Lo = Op.getOperand(0);
876   SDValue Hi = Op.getOperand(1);
877 
878   SDValue OVF = DAG.getNode(ovf, DL, VT, Lo, Hi);
879   // Extend sign.
880   OVF = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, OVF,
881                     DAG.getValueType(MVT::i1));
882 
883   SDValue Res = DAG.getNode(mainop, DL, VT, Lo, Hi);
884 
885   return DAG.getNode(ISD::MERGE_VALUES, DL, DAG.getVTList(VT, VT), Res, OVF);
886 }
887 
888 SDValue R600TargetLowering::lowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) const {
889   SDLoc DL(Op);
890   return DAG.getNode(
891       ISD::SETCC,
892       DL,
893       MVT::i1,
894       Op, DAG.getConstantFP(1.0f, DL, MVT::f32),
895       DAG.getCondCode(ISD::SETEQ));
896 }
897 
898 SDValue R600TargetLowering::lowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) const {
899   SDLoc DL(Op);
900   return DAG.getNode(
901       ISD::SETCC,
902       DL,
903       MVT::i1,
904       Op, DAG.getConstantFP(-1.0f, DL, MVT::f32),
905       DAG.getCondCode(ISD::SETEQ));
906 }
907 
908 SDValue R600TargetLowering::LowerImplicitParameter(SelectionDAG &DAG, EVT VT,
909                                                    const SDLoc &DL,
910                                                    unsigned DwordOffset) const {
911   unsigned ByteOffset = DwordOffset * 4;
912   PointerType * PtrType = PointerType::get(VT.getTypeForEVT(*DAG.getContext()),
913                                       AMDGPUAS::PARAM_I_ADDRESS);
914 
915   // We shouldn't be using an offset wider than 16-bits for implicit parameters.
916   assert(isInt<16>(ByteOffset));
917 
918   return DAG.getLoad(VT, DL, DAG.getEntryNode(),
919                      DAG.getConstant(ByteOffset, DL, MVT::i32), // PTR
920                      MachinePointerInfo(ConstantPointerNull::get(PtrType)));
921 }
922 
923 bool R600TargetLowering::isZero(SDValue Op) const {
924   if(ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Op)) {
925     return Cst->isNullValue();
926   } else if(ConstantFPSDNode *CstFP = dyn_cast<ConstantFPSDNode>(Op)){
927     return CstFP->isZero();
928   } else {
929     return false;
930   }
931 }
932 
933 bool R600TargetLowering::isHWTrueValue(SDValue Op) const {
934   if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Op)) {
935     return CFP->isExactlyValue(1.0);
936   }
937   return isAllOnesConstant(Op);
938 }
939 
940 bool R600TargetLowering::isHWFalseValue(SDValue Op) const {
941   if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Op)) {
942     return CFP->getValueAPF().isZero();
943   }
944   return isNullConstant(Op);
945 }
946 
947 SDValue R600TargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
948   SDLoc DL(Op);
949   EVT VT = Op.getValueType();
950 
951   SDValue LHS = Op.getOperand(0);
952   SDValue RHS = Op.getOperand(1);
953   SDValue True = Op.getOperand(2);
954   SDValue False = Op.getOperand(3);
955   SDValue CC = Op.getOperand(4);
956   SDValue Temp;
957 
958   if (VT == MVT::f32) {
959     DAGCombinerInfo DCI(DAG, AfterLegalizeVectorOps, true, nullptr);
960     SDValue MinMax = combineFMinMaxLegacy(DL, VT, LHS, RHS, True, False, CC, DCI);
961     if (MinMax)
962       return MinMax;
963   }
964 
965   // LHS and RHS are guaranteed to be the same value type
966   EVT CompareVT = LHS.getValueType();
967 
968   // Check if we can lower this to a native operation.
969 
970   // Try to lower to a SET* instruction:
971   //
972   // SET* can match the following patterns:
973   //
974   // select_cc f32, f32, -1,  0, cc_supported
975   // select_cc f32, f32, 1.0f, 0.0f, cc_supported
976   // select_cc i32, i32, -1,  0, cc_supported
977   //
978 
979   // Move hardware True/False values to the correct operand.
980   if (isHWTrueValue(False) && isHWFalseValue(True)) {
981     ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
982     ISD::CondCode InverseCC = ISD::getSetCCInverse(CCOpcode, CompareVT);
983     if (isCondCodeLegal(InverseCC, CompareVT.getSimpleVT())) {
984       std::swap(False, True);
985       CC = DAG.getCondCode(InverseCC);
986     } else {
987       ISD::CondCode SwapInvCC = ISD::getSetCCSwappedOperands(InverseCC);
988       if (isCondCodeLegal(SwapInvCC, CompareVT.getSimpleVT())) {
989         std::swap(False, True);
990         std::swap(LHS, RHS);
991         CC = DAG.getCondCode(SwapInvCC);
992       }
993     }
994   }
995 
996   if (isHWTrueValue(True) && isHWFalseValue(False) &&
997       (CompareVT == VT || VT == MVT::i32)) {
998     // This can be matched by a SET* instruction.
999     return DAG.getNode(ISD::SELECT_CC, DL, VT, LHS, RHS, True, False, CC);
1000   }
1001 
1002   // Try to lower to a CND* instruction:
1003   //
1004   // CND* can match the following patterns:
1005   //
1006   // select_cc f32, 0.0, f32, f32, cc_supported
1007   // select_cc f32, 0.0, i32, i32, cc_supported
1008   // select_cc i32, 0,   f32, f32, cc_supported
1009   // select_cc i32, 0,   i32, i32, cc_supported
1010   //
1011 
1012   // Try to move the zero value to the RHS
1013   if (isZero(LHS)) {
1014     ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
1015     // Try swapping the operands
1016     ISD::CondCode CCSwapped = ISD::getSetCCSwappedOperands(CCOpcode);
1017     if (isCondCodeLegal(CCSwapped, CompareVT.getSimpleVT())) {
1018       std::swap(LHS, RHS);
1019       CC = DAG.getCondCode(CCSwapped);
1020     } else {
1021       // Try inverting the conditon and then swapping the operands
1022       ISD::CondCode CCInv = ISD::getSetCCInverse(CCOpcode, CompareVT);
1023       CCSwapped = ISD::getSetCCSwappedOperands(CCInv);
1024       if (isCondCodeLegal(CCSwapped, CompareVT.getSimpleVT())) {
1025         std::swap(True, False);
1026         std::swap(LHS, RHS);
1027         CC = DAG.getCondCode(CCSwapped);
1028       }
1029     }
1030   }
1031   if (isZero(RHS)) {
1032     SDValue Cond = LHS;
1033     SDValue Zero = RHS;
1034     ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
1035     if (CompareVT != VT) {
1036       // Bitcast True / False to the correct types.  This will end up being
1037       // a nop, but it allows us to define only a single pattern in the
1038       // .TD files for each CND* instruction rather than having to have
1039       // one pattern for integer True/False and one for fp True/False
1040       True = DAG.getNode(ISD::BITCAST, DL, CompareVT, True);
1041       False = DAG.getNode(ISD::BITCAST, DL, CompareVT, False);
1042     }
1043 
1044     switch (CCOpcode) {
1045     case ISD::SETONE:
1046     case ISD::SETUNE:
1047     case ISD::SETNE:
1048       CCOpcode = ISD::getSetCCInverse(CCOpcode, CompareVT);
1049       Temp = True;
1050       True = False;
1051       False = Temp;
1052       break;
1053     default:
1054       break;
1055     }
1056     SDValue SelectNode = DAG.getNode(ISD::SELECT_CC, DL, CompareVT,
1057         Cond, Zero,
1058         True, False,
1059         DAG.getCondCode(CCOpcode));
1060     return DAG.getNode(ISD::BITCAST, DL, VT, SelectNode);
1061   }
1062 
1063   // If we make it this for it means we have no native instructions to handle
1064   // this SELECT_CC, so we must lower it.
1065   SDValue HWTrue, HWFalse;
1066 
1067   if (CompareVT == MVT::f32) {
1068     HWTrue = DAG.getConstantFP(1.0f, DL, CompareVT);
1069     HWFalse = DAG.getConstantFP(0.0f, DL, CompareVT);
1070   } else if (CompareVT == MVT::i32) {
1071     HWTrue = DAG.getConstant(-1, DL, CompareVT);
1072     HWFalse = DAG.getConstant(0, DL, CompareVT);
1073   }
1074   else {
1075     llvm_unreachable("Unhandled value type in LowerSELECT_CC");
1076   }
1077 
1078   // Lower this unsupported SELECT_CC into a combination of two supported
1079   // SELECT_CC operations.
1080   SDValue Cond = DAG.getNode(ISD::SELECT_CC, DL, CompareVT, LHS, RHS, HWTrue, HWFalse, CC);
1081 
1082   return DAG.getNode(ISD::SELECT_CC, DL, VT,
1083       Cond, HWFalse,
1084       True, False,
1085       DAG.getCondCode(ISD::SETNE));
1086 }
1087 
1088 /// LLVM generates byte-addressed pointers.  For indirect addressing, we need to
1089 /// convert these pointers to a register index.  Each register holds
1090 /// 16 bytes, (4 x 32bit sub-register), but we need to take into account the
1091 /// \p StackWidth, which tells us how many of the 4 sub-registrers will be used
1092 /// for indirect addressing.
1093 SDValue R600TargetLowering::stackPtrToRegIndex(SDValue Ptr,
1094                                                unsigned StackWidth,
1095                                                SelectionDAG &DAG) const {
1096   unsigned SRLPad;
1097   switch(StackWidth) {
1098   case 1:
1099     SRLPad = 2;
1100     break;
1101   case 2:
1102     SRLPad = 3;
1103     break;
1104   case 4:
1105     SRLPad = 4;
1106     break;
1107   default: llvm_unreachable("Invalid stack width");
1108   }
1109 
1110   SDLoc DL(Ptr);
1111   return DAG.getNode(ISD::SRL, DL, Ptr.getValueType(), Ptr,
1112                      DAG.getConstant(SRLPad, DL, MVT::i32));
1113 }
1114 
1115 void R600TargetLowering::getStackAddress(unsigned StackWidth,
1116                                          unsigned ElemIdx,
1117                                          unsigned &Channel,
1118                                          unsigned &PtrIncr) const {
1119   switch (StackWidth) {
1120   default:
1121   case 1:
1122     Channel = 0;
1123     if (ElemIdx > 0) {
1124       PtrIncr = 1;
1125     } else {
1126       PtrIncr = 0;
1127     }
1128     break;
1129   case 2:
1130     Channel = ElemIdx % 2;
1131     if (ElemIdx == 2) {
1132       PtrIncr = 1;
1133     } else {
1134       PtrIncr = 0;
1135     }
1136     break;
1137   case 4:
1138     Channel = ElemIdx;
1139     PtrIncr = 0;
1140     break;
1141   }
1142 }
1143 
1144 SDValue R600TargetLowering::lowerPrivateTruncStore(StoreSDNode *Store,
1145                                                    SelectionDAG &DAG) const {
1146   SDLoc DL(Store);
1147   //TODO: Who creates the i8 stores?
1148   assert(Store->isTruncatingStore()
1149          || Store->getValue().getValueType() == MVT::i8);
1150   assert(Store->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS);
1151 
1152   SDValue Mask;
1153   if (Store->getMemoryVT() == MVT::i8) {
1154     assert(Store->getAlignment() >= 1);
1155     Mask = DAG.getConstant(0xff, DL, MVT::i32);
1156   } else if (Store->getMemoryVT() == MVT::i16) {
1157     assert(Store->getAlignment() >= 2);
1158     Mask = DAG.getConstant(0xffff, DL, MVT::i32);
1159   } else {
1160     llvm_unreachable("Unsupported private trunc store");
1161   }
1162 
1163   SDValue OldChain = Store->getChain();
1164   bool VectorTrunc = (OldChain.getOpcode() == AMDGPUISD::DUMMY_CHAIN);
1165   // Skip dummy
1166   SDValue Chain = VectorTrunc ? OldChain->getOperand(0) : OldChain;
1167   SDValue BasePtr = Store->getBasePtr();
1168   SDValue Offset = Store->getOffset();
1169   EVT MemVT = Store->getMemoryVT();
1170 
1171   SDValue LoadPtr = BasePtr;
1172   if (!Offset.isUndef()) {
1173     LoadPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr, Offset);
1174   }
1175 
1176   // Get dword location
1177   // TODO: this should be eliminated by the future SHR ptr, 2
1178   SDValue Ptr = DAG.getNode(ISD::AND, DL, MVT::i32, LoadPtr,
1179                             DAG.getConstant(0xfffffffc, DL, MVT::i32));
1180 
1181   // Load dword
1182   // TODO: can we be smarter about machine pointer info?
1183   MachinePointerInfo PtrInfo(AMDGPUAS::PRIVATE_ADDRESS);
1184   SDValue Dst = DAG.getLoad(MVT::i32, DL, Chain, Ptr, PtrInfo);
1185 
1186   Chain = Dst.getValue(1);
1187 
1188   // Get offset in dword
1189   SDValue ByteIdx = DAG.getNode(ISD::AND, DL, MVT::i32, LoadPtr,
1190                                 DAG.getConstant(0x3, DL, MVT::i32));
1191 
1192   // Convert byte offset to bit shift
1193   SDValue ShiftAmt = DAG.getNode(ISD::SHL, DL, MVT::i32, ByteIdx,
1194                                  DAG.getConstant(3, DL, MVT::i32));
1195 
1196   // TODO: Contrary to the name of the functiom,
1197   // it also handles sub i32 non-truncating stores (like i1)
1198   SDValue SExtValue = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i32,
1199                                   Store->getValue());
1200 
1201   // Mask the value to the right type
1202   SDValue MaskedValue = DAG.getZeroExtendInReg(SExtValue, DL, MemVT);
1203 
1204   // Shift the value in place
1205   SDValue ShiftedValue = DAG.getNode(ISD::SHL, DL, MVT::i32,
1206                                      MaskedValue, ShiftAmt);
1207 
1208   // Shift the mask in place
1209   SDValue DstMask = DAG.getNode(ISD::SHL, DL, MVT::i32, Mask, ShiftAmt);
1210 
1211   // Invert the mask. NOTE: if we had native ROL instructions we could
1212   // use inverted mask
1213   DstMask = DAG.getNOT(DL, DstMask, MVT::i32);
1214 
1215   // Cleanup the target bits
1216   Dst = DAG.getNode(ISD::AND, DL, MVT::i32, Dst, DstMask);
1217 
1218   // Add the new bits
1219   SDValue Value = DAG.getNode(ISD::OR, DL, MVT::i32, Dst, ShiftedValue);
1220 
1221   // Store dword
1222   // TODO: Can we be smarter about MachinePointerInfo?
1223   SDValue NewStore = DAG.getStore(Chain, DL, Value, Ptr, PtrInfo);
1224 
1225   // If we are part of expanded vector, make our neighbors depend on this store
1226   if (VectorTrunc) {
1227     // Make all other vector elements depend on this store
1228     Chain = DAG.getNode(AMDGPUISD::DUMMY_CHAIN, DL, MVT::Other, NewStore);
1229     DAG.ReplaceAllUsesOfValueWith(OldChain, Chain);
1230   }
1231   return NewStore;
1232 }
1233 
1234 SDValue R600TargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
1235   StoreSDNode *StoreNode = cast<StoreSDNode>(Op);
1236   unsigned AS = StoreNode->getAddressSpace();
1237 
1238   SDValue Chain = StoreNode->getChain();
1239   SDValue Ptr = StoreNode->getBasePtr();
1240   SDValue Value = StoreNode->getValue();
1241 
1242   EVT VT = Value.getValueType();
1243   EVT MemVT = StoreNode->getMemoryVT();
1244   EVT PtrVT = Ptr.getValueType();
1245 
1246   SDLoc DL(Op);
1247 
1248   const bool TruncatingStore = StoreNode->isTruncatingStore();
1249 
1250   // Neither LOCAL nor PRIVATE can do vectors at the moment
1251   if ((AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::PRIVATE_ADDRESS ||
1252        TruncatingStore) &&
1253       VT.isVector()) {
1254     if ((AS == AMDGPUAS::PRIVATE_ADDRESS) && TruncatingStore) {
1255       // Add an extra level of chain to isolate this vector
1256       SDValue NewChain = DAG.getNode(AMDGPUISD::DUMMY_CHAIN, DL, MVT::Other, Chain);
1257       // TODO: can the chain be replaced without creating a new store?
1258       SDValue NewStore = DAG.getTruncStore(
1259           NewChain, DL, Value, Ptr, StoreNode->getPointerInfo(),
1260           MemVT, StoreNode->getAlignment(),
1261           StoreNode->getMemOperand()->getFlags(), StoreNode->getAAInfo());
1262       StoreNode = cast<StoreSDNode>(NewStore);
1263     }
1264 
1265     return scalarizeVectorStore(StoreNode, DAG);
1266   }
1267 
1268   Align Alignment = StoreNode->getAlign();
1269   if (Alignment < MemVT.getStoreSize() &&
1270       !allowsMisalignedMemoryAccesses(MemVT, AS, Alignment.value(),
1271                                       StoreNode->getMemOperand()->getFlags(),
1272                                       nullptr)) {
1273     return expandUnalignedStore(StoreNode, DAG);
1274   }
1275 
1276   SDValue DWordAddr = DAG.getNode(ISD::SRL, DL, PtrVT, Ptr,
1277                                   DAG.getConstant(2, DL, PtrVT));
1278 
1279   if (AS == AMDGPUAS::GLOBAL_ADDRESS) {
1280     // It is beneficial to create MSKOR here instead of combiner to avoid
1281     // artificial dependencies introduced by RMW
1282     if (TruncatingStore) {
1283       assert(VT.bitsLE(MVT::i32));
1284       SDValue MaskConstant;
1285       if (MemVT == MVT::i8) {
1286         MaskConstant = DAG.getConstant(0xFF, DL, MVT::i32);
1287       } else {
1288         assert(MemVT == MVT::i16);
1289         assert(StoreNode->getAlignment() >= 2);
1290         MaskConstant = DAG.getConstant(0xFFFF, DL, MVT::i32);
1291       }
1292 
1293       SDValue ByteIndex = DAG.getNode(ISD::AND, DL, PtrVT, Ptr,
1294                                       DAG.getConstant(0x00000003, DL, PtrVT));
1295       SDValue BitShift = DAG.getNode(ISD::SHL, DL, VT, ByteIndex,
1296                                      DAG.getConstant(3, DL, VT));
1297 
1298       // Put the mask in correct place
1299       SDValue Mask = DAG.getNode(ISD::SHL, DL, VT, MaskConstant, BitShift);
1300 
1301       // Put the value bits in correct place
1302       SDValue TruncValue = DAG.getNode(ISD::AND, DL, VT, Value, MaskConstant);
1303       SDValue ShiftedValue = DAG.getNode(ISD::SHL, DL, VT, TruncValue, BitShift);
1304 
1305       // XXX: If we add a 64-bit ZW register class, then we could use a 2 x i32
1306       // vector instead.
1307       SDValue Src[4] = {
1308         ShiftedValue,
1309         DAG.getConstant(0, DL, MVT::i32),
1310         DAG.getConstant(0, DL, MVT::i32),
1311         Mask
1312       };
1313       SDValue Input = DAG.getBuildVector(MVT::v4i32, DL, Src);
1314       SDValue Args[3] = { Chain, Input, DWordAddr };
1315       return DAG.getMemIntrinsicNode(AMDGPUISD::STORE_MSKOR, DL,
1316                                      Op->getVTList(), Args, MemVT,
1317                                      StoreNode->getMemOperand());
1318     } else if (Ptr->getOpcode() != AMDGPUISD::DWORDADDR && VT.bitsGE(MVT::i32)) {
1319       // Convert pointer from byte address to dword address.
1320       Ptr = DAG.getNode(AMDGPUISD::DWORDADDR, DL, PtrVT, DWordAddr);
1321 
1322       if (StoreNode->isIndexed()) {
1323         llvm_unreachable("Indexed stores not supported yet");
1324       } else {
1325         Chain = DAG.getStore(Chain, DL, Value, Ptr, StoreNode->getMemOperand());
1326       }
1327       return Chain;
1328     }
1329   }
1330 
1331   // GLOBAL_ADDRESS has been handled above, LOCAL_ADDRESS allows all sizes
1332   if (AS != AMDGPUAS::PRIVATE_ADDRESS)
1333     return SDValue();
1334 
1335   if (MemVT.bitsLT(MVT::i32))
1336     return lowerPrivateTruncStore(StoreNode, DAG);
1337 
1338   // Standard i32+ store, tag it with DWORDADDR to note that the address
1339   // has been shifted
1340   if (Ptr.getOpcode() != AMDGPUISD::DWORDADDR) {
1341     Ptr = DAG.getNode(AMDGPUISD::DWORDADDR, DL, PtrVT, DWordAddr);
1342     return DAG.getStore(Chain, DL, Value, Ptr, StoreNode->getMemOperand());
1343   }
1344 
1345   // Tagged i32+ stores will be matched by patterns
1346   return SDValue();
1347 }
1348 
1349 // return (512 + (kc_bank << 12)
1350 static int
1351 ConstantAddressBlock(unsigned AddressSpace) {
1352   switch (AddressSpace) {
1353   case AMDGPUAS::CONSTANT_BUFFER_0:
1354     return 512;
1355   case AMDGPUAS::CONSTANT_BUFFER_1:
1356     return 512 + 4096;
1357   case AMDGPUAS::CONSTANT_BUFFER_2:
1358     return 512 + 4096 * 2;
1359   case AMDGPUAS::CONSTANT_BUFFER_3:
1360     return 512 + 4096 * 3;
1361   case AMDGPUAS::CONSTANT_BUFFER_4:
1362     return 512 + 4096 * 4;
1363   case AMDGPUAS::CONSTANT_BUFFER_5:
1364     return 512 + 4096 * 5;
1365   case AMDGPUAS::CONSTANT_BUFFER_6:
1366     return 512 + 4096 * 6;
1367   case AMDGPUAS::CONSTANT_BUFFER_7:
1368     return 512 + 4096 * 7;
1369   case AMDGPUAS::CONSTANT_BUFFER_8:
1370     return 512 + 4096 * 8;
1371   case AMDGPUAS::CONSTANT_BUFFER_9:
1372     return 512 + 4096 * 9;
1373   case AMDGPUAS::CONSTANT_BUFFER_10:
1374     return 512 + 4096 * 10;
1375   case AMDGPUAS::CONSTANT_BUFFER_11:
1376     return 512 + 4096 * 11;
1377   case AMDGPUAS::CONSTANT_BUFFER_12:
1378     return 512 + 4096 * 12;
1379   case AMDGPUAS::CONSTANT_BUFFER_13:
1380     return 512 + 4096 * 13;
1381   case AMDGPUAS::CONSTANT_BUFFER_14:
1382     return 512 + 4096 * 14;
1383   case AMDGPUAS::CONSTANT_BUFFER_15:
1384     return 512 + 4096 * 15;
1385   default:
1386     return -1;
1387   }
1388 }
1389 
1390 SDValue R600TargetLowering::lowerPrivateExtLoad(SDValue Op,
1391                                                 SelectionDAG &DAG) const {
1392   SDLoc DL(Op);
1393   LoadSDNode *Load = cast<LoadSDNode>(Op);
1394   ISD::LoadExtType ExtType = Load->getExtensionType();
1395   EVT MemVT = Load->getMemoryVT();
1396   assert(Load->getAlignment() >= MemVT.getStoreSize());
1397 
1398   SDValue BasePtr = Load->getBasePtr();
1399   SDValue Chain = Load->getChain();
1400   SDValue Offset = Load->getOffset();
1401 
1402   SDValue LoadPtr = BasePtr;
1403   if (!Offset.isUndef()) {
1404     LoadPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr, Offset);
1405   }
1406 
1407   // Get dword location
1408   // NOTE: this should be eliminated by the future SHR ptr, 2
1409   SDValue Ptr = DAG.getNode(ISD::AND, DL, MVT::i32, LoadPtr,
1410                             DAG.getConstant(0xfffffffc, DL, MVT::i32));
1411 
1412   // Load dword
1413   // TODO: can we be smarter about machine pointer info?
1414   MachinePointerInfo PtrInfo(AMDGPUAS::PRIVATE_ADDRESS);
1415   SDValue Read = DAG.getLoad(MVT::i32, DL, Chain, Ptr, PtrInfo);
1416 
1417   // Get offset within the register.
1418   SDValue ByteIdx = DAG.getNode(ISD::AND, DL, MVT::i32,
1419                                 LoadPtr, DAG.getConstant(0x3, DL, MVT::i32));
1420 
1421   // Bit offset of target byte (byteIdx * 8).
1422   SDValue ShiftAmt = DAG.getNode(ISD::SHL, DL, MVT::i32, ByteIdx,
1423                                  DAG.getConstant(3, DL, MVT::i32));
1424 
1425   // Shift to the right.
1426   SDValue Ret = DAG.getNode(ISD::SRL, DL, MVT::i32, Read, ShiftAmt);
1427 
1428   // Eliminate the upper bits by setting them to ...
1429   EVT MemEltVT = MemVT.getScalarType();
1430 
1431   if (ExtType == ISD::SEXTLOAD) { // ... ones.
1432     SDValue MemEltVTNode = DAG.getValueType(MemEltVT);
1433     Ret = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, Ret, MemEltVTNode);
1434   } else { // ... or zeros.
1435     Ret = DAG.getZeroExtendInReg(Ret, DL, MemEltVT);
1436   }
1437 
1438   SDValue Ops[] = {
1439     Ret,
1440     Read.getValue(1) // This should be our output chain
1441   };
1442 
1443   return DAG.getMergeValues(Ops, DL);
1444 }
1445 
1446 SDValue R600TargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
1447   LoadSDNode *LoadNode = cast<LoadSDNode>(Op);
1448   unsigned AS = LoadNode->getAddressSpace();
1449   EVT MemVT = LoadNode->getMemoryVT();
1450   ISD::LoadExtType ExtType = LoadNode->getExtensionType();
1451 
1452   if (AS == AMDGPUAS::PRIVATE_ADDRESS &&
1453       ExtType != ISD::NON_EXTLOAD && MemVT.bitsLT(MVT::i32)) {
1454     return lowerPrivateExtLoad(Op, DAG);
1455   }
1456 
1457   SDLoc DL(Op);
1458   EVT VT = Op.getValueType();
1459   SDValue Chain = LoadNode->getChain();
1460   SDValue Ptr = LoadNode->getBasePtr();
1461 
1462   if ((LoadNode->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
1463       LoadNode->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) &&
1464       VT.isVector()) {
1465     SDValue Ops[2];
1466     std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(LoadNode, DAG);
1467     return DAG.getMergeValues(Ops, DL);
1468   }
1469 
1470   // This is still used for explicit load from addrspace(8)
1471   int ConstantBlock = ConstantAddressBlock(LoadNode->getAddressSpace());
1472   if (ConstantBlock > -1 &&
1473       ((LoadNode->getExtensionType() == ISD::NON_EXTLOAD) ||
1474        (LoadNode->getExtensionType() == ISD::ZEXTLOAD))) {
1475     SDValue Result;
1476     if (isa<Constant>(LoadNode->getMemOperand()->getValue()) ||
1477         isa<ConstantSDNode>(Ptr)) {
1478       return constBufferLoad(LoadNode, LoadNode->getAddressSpace(), DAG);
1479     } else {
1480       //TODO: Does this even work?
1481       // non-constant ptr can't be folded, keeps it as a v4f32 load
1482       Result = DAG.getNode(AMDGPUISD::CONST_ADDRESS, DL, MVT::v4i32,
1483           DAG.getNode(ISD::SRL, DL, MVT::i32, Ptr,
1484                       DAG.getConstant(4, DL, MVT::i32)),
1485                       DAG.getConstant(LoadNode->getAddressSpace() -
1486                                       AMDGPUAS::CONSTANT_BUFFER_0, DL, MVT::i32)
1487           );
1488     }
1489 
1490     if (!VT.isVector()) {
1491       Result = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, Result,
1492                            DAG.getConstant(0, DL, MVT::i32));
1493     }
1494 
1495     SDValue MergedValues[2] = {
1496       Result,
1497       Chain
1498     };
1499     return DAG.getMergeValues(MergedValues, DL);
1500   }
1501 
1502   // For most operations returning SDValue() will result in the node being
1503   // expanded by the DAG Legalizer. This is not the case for ISD::LOAD, so we
1504   // need to manually expand loads that may be legal in some address spaces and
1505   // illegal in others. SEXT loads from CONSTANT_BUFFER_0 are supported for
1506   // compute shaders, since the data is sign extended when it is uploaded to the
1507   // buffer. However SEXT loads from other address spaces are not supported, so
1508   // we need to expand them here.
1509   if (LoadNode->getExtensionType() == ISD::SEXTLOAD) {
1510     assert(!MemVT.isVector() && (MemVT == MVT::i16 || MemVT == MVT::i8));
1511     SDValue NewLoad = DAG.getExtLoad(
1512         ISD::EXTLOAD, DL, VT, Chain, Ptr, LoadNode->getPointerInfo(), MemVT,
1513         LoadNode->getAlignment(), LoadNode->getMemOperand()->getFlags());
1514     SDValue Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, NewLoad,
1515                               DAG.getValueType(MemVT));
1516 
1517     SDValue MergedValues[2] = { Res, Chain };
1518     return DAG.getMergeValues(MergedValues, DL);
1519   }
1520 
1521   if (LoadNode->getAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS) {
1522     return SDValue();
1523   }
1524 
1525   // DWORDADDR ISD marks already shifted address
1526   if (Ptr.getOpcode() != AMDGPUISD::DWORDADDR) {
1527     assert(VT == MVT::i32);
1528     Ptr = DAG.getNode(ISD::SRL, DL, MVT::i32, Ptr, DAG.getConstant(2, DL, MVT::i32));
1529     Ptr = DAG.getNode(AMDGPUISD::DWORDADDR, DL, MVT::i32, Ptr);
1530     return DAG.getLoad(MVT::i32, DL, Chain, Ptr, LoadNode->getMemOperand());
1531   }
1532   return SDValue();
1533 }
1534 
1535 SDValue R600TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
1536   SDValue Chain = Op.getOperand(0);
1537   SDValue Cond  = Op.getOperand(1);
1538   SDValue Jump  = Op.getOperand(2);
1539 
1540   return DAG.getNode(AMDGPUISD::BRANCH_COND, SDLoc(Op), Op.getValueType(),
1541                      Chain, Jump, Cond);
1542 }
1543 
1544 SDValue R600TargetLowering::lowerFrameIndex(SDValue Op,
1545                                             SelectionDAG &DAG) const {
1546   MachineFunction &MF = DAG.getMachineFunction();
1547   const R600FrameLowering *TFL = Subtarget->getFrameLowering();
1548 
1549   FrameIndexSDNode *FIN = cast<FrameIndexSDNode>(Op);
1550 
1551   unsigned FrameIndex = FIN->getIndex();
1552   Register IgnoredFrameReg;
1553   unsigned Offset =
1554     TFL->getFrameIndexReference(MF, FrameIndex, IgnoredFrameReg);
1555   return DAG.getConstant(Offset * 4 * TFL->getStackWidth(MF), SDLoc(Op),
1556                          Op.getValueType());
1557 }
1558 
1559 CCAssignFn *R600TargetLowering::CCAssignFnForCall(CallingConv::ID CC,
1560                                                   bool IsVarArg) const {
1561   switch (CC) {
1562   case CallingConv::AMDGPU_KERNEL:
1563   case CallingConv::SPIR_KERNEL:
1564   case CallingConv::C:
1565   case CallingConv::Fast:
1566   case CallingConv::Cold:
1567     llvm_unreachable("kernels should not be handled here");
1568   case CallingConv::AMDGPU_VS:
1569   case CallingConv::AMDGPU_GS:
1570   case CallingConv::AMDGPU_PS:
1571   case CallingConv::AMDGPU_CS:
1572   case CallingConv::AMDGPU_HS:
1573   case CallingConv::AMDGPU_ES:
1574   case CallingConv::AMDGPU_LS:
1575     return CC_R600;
1576   default:
1577     report_fatal_error("Unsupported calling convention.");
1578   }
1579 }
1580 
1581 /// XXX Only kernel functions are supported, so we can assume for now that
1582 /// every function is a kernel function, but in the future we should use
1583 /// separate calling conventions for kernel and non-kernel functions.
1584 SDValue R600TargetLowering::LowerFormalArguments(
1585     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1586     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1587     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1588   SmallVector<CCValAssign, 16> ArgLocs;
1589   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1590                  *DAG.getContext());
1591   MachineFunction &MF = DAG.getMachineFunction();
1592   SmallVector<ISD::InputArg, 8> LocalIns;
1593 
1594   if (AMDGPU::isShader(CallConv)) {
1595     CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForCall(CallConv, isVarArg));
1596   } else {
1597     analyzeFormalArgumentsCompute(CCInfo, Ins);
1598   }
1599 
1600   for (unsigned i = 0, e = Ins.size(); i < e; ++i) {
1601     CCValAssign &VA = ArgLocs[i];
1602     const ISD::InputArg &In = Ins[i];
1603     EVT VT = In.VT;
1604     EVT MemVT = VA.getLocVT();
1605     if (!VT.isVector() && MemVT.isVector()) {
1606       // Get load source type if scalarized.
1607       MemVT = MemVT.getVectorElementType();
1608     }
1609 
1610     if (AMDGPU::isShader(CallConv)) {
1611       unsigned Reg = MF.addLiveIn(VA.getLocReg(), &R600::R600_Reg128RegClass);
1612       SDValue Register = DAG.getCopyFromReg(Chain, DL, Reg, VT);
1613       InVals.push_back(Register);
1614       continue;
1615     }
1616 
1617     // i64 isn't a legal type, so the register type used ends up as i32, which
1618     // isn't expected here. It attempts to create this sextload, but it ends up
1619     // being invalid. Somehow this seems to work with i64 arguments, but breaks
1620     // for <1 x i64>.
1621 
1622     // The first 36 bytes of the input buffer contains information about
1623     // thread group and global sizes.
1624     ISD::LoadExtType Ext = ISD::NON_EXTLOAD;
1625     if (MemVT.getScalarSizeInBits() != VT.getScalarSizeInBits()) {
1626       // FIXME: This should really check the extload type, but the handling of
1627       // extload vector parameters seems to be broken.
1628 
1629       // Ext = In.Flags.isSExt() ? ISD::SEXTLOAD : ISD::ZEXTLOAD;
1630       Ext = ISD::SEXTLOAD;
1631     }
1632 
1633     // Compute the offset from the value.
1634     // XXX - I think PartOffset should give you this, but it seems to give the
1635     // size of the register which isn't useful.
1636 
1637     unsigned PartOffset = VA.getLocMemOffset();
1638     unsigned Alignment = MinAlign(VT.getStoreSize(), PartOffset);
1639 
1640     MachinePointerInfo PtrInfo(AMDGPUAS::PARAM_I_ADDRESS);
1641     SDValue Arg = DAG.getLoad(
1642         ISD::UNINDEXED, Ext, VT, DL, Chain,
1643         DAG.getConstant(PartOffset, DL, MVT::i32), DAG.getUNDEF(MVT::i32),
1644         PtrInfo,
1645         MemVT, Alignment, MachineMemOperand::MONonTemporal |
1646                                         MachineMemOperand::MODereferenceable |
1647                                         MachineMemOperand::MOInvariant);
1648 
1649     InVals.push_back(Arg);
1650   }
1651   return Chain;
1652 }
1653 
1654 EVT R600TargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &,
1655                                            EVT VT) const {
1656    if (!VT.isVector())
1657      return MVT::i32;
1658    return VT.changeVectorElementTypeToInteger();
1659 }
1660 
1661 bool R600TargetLowering::canMergeStoresTo(unsigned AS, EVT MemVT,
1662                                           const SelectionDAG &DAG) const {
1663   // Local and Private addresses do not handle vectors. Limit to i32
1664   if ((AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::PRIVATE_ADDRESS)) {
1665     return (MemVT.getSizeInBits() <= 32);
1666   }
1667   return true;
1668 }
1669 
1670 bool R600TargetLowering::allowsMisalignedMemoryAccesses(
1671     EVT VT, unsigned AddrSpace, unsigned Align, MachineMemOperand::Flags Flags,
1672     bool *IsFast) const {
1673   if (IsFast)
1674     *IsFast = false;
1675 
1676   if (!VT.isSimple() || VT == MVT::Other)
1677     return false;
1678 
1679   if (VT.bitsLT(MVT::i32))
1680     return false;
1681 
1682   // TODO: This is a rough estimate.
1683   if (IsFast)
1684     *IsFast = true;
1685 
1686   return VT.bitsGT(MVT::i32) && Align % 4 == 0;
1687 }
1688 
1689 static SDValue CompactSwizzlableVector(
1690   SelectionDAG &DAG, SDValue VectorEntry,
1691   DenseMap<unsigned, unsigned> &RemapSwizzle) {
1692   assert(RemapSwizzle.empty());
1693 
1694   SDLoc DL(VectorEntry);
1695   EVT EltTy = VectorEntry.getValueType().getVectorElementType();
1696 
1697   SDValue NewBldVec[4];
1698   for (unsigned i = 0; i < 4; i++)
1699     NewBldVec[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltTy, VectorEntry,
1700                                DAG.getIntPtrConstant(i, DL));
1701 
1702   for (unsigned i = 0; i < 4; i++) {
1703     if (NewBldVec[i].isUndef())
1704       // We mask write here to teach later passes that the ith element of this
1705       // vector is undef. Thus we can use it to reduce 128 bits reg usage,
1706       // break false dependencies and additionnaly make assembly easier to read.
1707       RemapSwizzle[i] = 7; // SEL_MASK_WRITE
1708     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(NewBldVec[i])) {
1709       if (C->isZero()) {
1710         RemapSwizzle[i] = 4; // SEL_0
1711         NewBldVec[i] = DAG.getUNDEF(MVT::f32);
1712       } else if (C->isExactlyValue(1.0)) {
1713         RemapSwizzle[i] = 5; // SEL_1
1714         NewBldVec[i] = DAG.getUNDEF(MVT::f32);
1715       }
1716     }
1717 
1718     if (NewBldVec[i].isUndef())
1719       continue;
1720 
1721     for (unsigned j = 0; j < i; j++) {
1722       if (NewBldVec[i] == NewBldVec[j]) {
1723         NewBldVec[i] = DAG.getUNDEF(NewBldVec[i].getValueType());
1724         RemapSwizzle[i] = j;
1725         break;
1726       }
1727     }
1728   }
1729 
1730   return DAG.getBuildVector(VectorEntry.getValueType(), SDLoc(VectorEntry),
1731                             NewBldVec);
1732 }
1733 
1734 static SDValue ReorganizeVector(SelectionDAG &DAG, SDValue VectorEntry,
1735                                 DenseMap<unsigned, unsigned> &RemapSwizzle) {
1736   assert(RemapSwizzle.empty());
1737 
1738   SDLoc DL(VectorEntry);
1739   EVT EltTy = VectorEntry.getValueType().getVectorElementType();
1740 
1741   SDValue NewBldVec[4];
1742   bool isUnmovable[4] = {false, false, false, false};
1743   for (unsigned i = 0; i < 4; i++)
1744     NewBldVec[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltTy, VectorEntry,
1745                                DAG.getIntPtrConstant(i, DL));
1746 
1747   for (unsigned i = 0; i < 4; i++) {
1748     RemapSwizzle[i] = i;
1749     if (NewBldVec[i].getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
1750       unsigned Idx = dyn_cast<ConstantSDNode>(NewBldVec[i].getOperand(1))
1751           ->getZExtValue();
1752       if (i == Idx)
1753         isUnmovable[Idx] = true;
1754     }
1755   }
1756 
1757   for (unsigned i = 0; i < 4; i++) {
1758     if (NewBldVec[i].getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
1759       unsigned Idx = dyn_cast<ConstantSDNode>(NewBldVec[i].getOperand(1))
1760           ->getZExtValue();
1761       if (isUnmovable[Idx])
1762         continue;
1763       // Swap i and Idx
1764       std::swap(NewBldVec[Idx], NewBldVec[i]);
1765       std::swap(RemapSwizzle[i], RemapSwizzle[Idx]);
1766       break;
1767     }
1768   }
1769 
1770   return DAG.getBuildVector(VectorEntry.getValueType(), SDLoc(VectorEntry),
1771                             NewBldVec);
1772 }
1773 
1774 SDValue R600TargetLowering::OptimizeSwizzle(SDValue BuildVector, SDValue Swz[4],
1775                                             SelectionDAG &DAG,
1776                                             const SDLoc &DL) const {
1777   // Old -> New swizzle values
1778   DenseMap<unsigned, unsigned> SwizzleRemap;
1779 
1780   BuildVector = CompactSwizzlableVector(DAG, BuildVector, SwizzleRemap);
1781   for (unsigned i = 0; i < 4; i++) {
1782     unsigned Idx = cast<ConstantSDNode>(Swz[i])->getZExtValue();
1783     if (SwizzleRemap.find(Idx) != SwizzleRemap.end())
1784       Swz[i] = DAG.getConstant(SwizzleRemap[Idx], DL, MVT::i32);
1785   }
1786 
1787   SwizzleRemap.clear();
1788   BuildVector = ReorganizeVector(DAG, BuildVector, SwizzleRemap);
1789   for (unsigned i = 0; i < 4; i++) {
1790     unsigned Idx = cast<ConstantSDNode>(Swz[i])->getZExtValue();
1791     if (SwizzleRemap.find(Idx) != SwizzleRemap.end())
1792       Swz[i] = DAG.getConstant(SwizzleRemap[Idx], DL, MVT::i32);
1793   }
1794 
1795   return BuildVector;
1796 }
1797 
1798 SDValue R600TargetLowering::constBufferLoad(LoadSDNode *LoadNode, int Block,
1799                                             SelectionDAG &DAG) const {
1800   SDLoc DL(LoadNode);
1801   EVT VT = LoadNode->getValueType(0);
1802   SDValue Chain = LoadNode->getChain();
1803   SDValue Ptr = LoadNode->getBasePtr();
1804   assert (isa<ConstantSDNode>(Ptr));
1805 
1806   //TODO: Support smaller loads
1807   if (LoadNode->getMemoryVT().getScalarType() != MVT::i32 || !ISD::isNON_EXTLoad(LoadNode))
1808     return SDValue();
1809 
1810   if (LoadNode->getAlignment() < 4)
1811     return SDValue();
1812 
1813   int ConstantBlock = ConstantAddressBlock(Block);
1814 
1815   SDValue Slots[4];
1816   for (unsigned i = 0; i < 4; i++) {
1817     // We want Const position encoded with the following formula :
1818     // (((512 + (kc_bank << 12) + const_index) << 2) + chan)
1819     // const_index is Ptr computed by llvm using an alignment of 16.
1820     // Thus we add (((512 + (kc_bank << 12)) + chan ) * 4 here and
1821     // then div by 4 at the ISel step
1822     SDValue NewPtr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr,
1823         DAG.getConstant(4 * i + ConstantBlock * 16, DL, MVT::i32));
1824     Slots[i] = DAG.getNode(AMDGPUISD::CONST_ADDRESS, DL, MVT::i32, NewPtr);
1825   }
1826   EVT NewVT = MVT::v4i32;
1827   unsigned NumElements = 4;
1828   if (VT.isVector()) {
1829     NewVT = VT;
1830     NumElements = VT.getVectorNumElements();
1831   }
1832   SDValue Result = DAG.getBuildVector(NewVT, DL, makeArrayRef(Slots, NumElements));
1833   if (!VT.isVector()) {
1834     Result = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, Result,
1835                          DAG.getConstant(0, DL, MVT::i32));
1836   }
1837   SDValue MergedValues[2] = {
1838     Result,
1839     Chain
1840   };
1841   return DAG.getMergeValues(MergedValues, DL);
1842 }
1843 
1844 //===----------------------------------------------------------------------===//
1845 // Custom DAG Optimizations
1846 //===----------------------------------------------------------------------===//
1847 
1848 SDValue R600TargetLowering::PerformDAGCombine(SDNode *N,
1849                                               DAGCombinerInfo &DCI) const {
1850   SelectionDAG &DAG = DCI.DAG;
1851   SDLoc DL(N);
1852 
1853   switch (N->getOpcode()) {
1854   // (f32 fp_round (f64 uint_to_fp a)) -> (f32 uint_to_fp a)
1855   case ISD::FP_ROUND: {
1856       SDValue Arg = N->getOperand(0);
1857       if (Arg.getOpcode() == ISD::UINT_TO_FP && Arg.getValueType() == MVT::f64) {
1858         return DAG.getNode(ISD::UINT_TO_FP, DL, N->getValueType(0),
1859                            Arg.getOperand(0));
1860       }
1861       break;
1862     }
1863 
1864   // (i32 fp_to_sint (fneg (select_cc f32, f32, 1.0, 0.0 cc))) ->
1865   // (i32 select_cc f32, f32, -1, 0 cc)
1866   //
1867   // Mesa's GLSL frontend generates the above pattern a lot and we can lower
1868   // this to one of the SET*_DX10 instructions.
1869   case ISD::FP_TO_SINT: {
1870     SDValue FNeg = N->getOperand(0);
1871     if (FNeg.getOpcode() != ISD::FNEG) {
1872       return SDValue();
1873     }
1874     SDValue SelectCC = FNeg.getOperand(0);
1875     if (SelectCC.getOpcode() != ISD::SELECT_CC ||
1876         SelectCC.getOperand(0).getValueType() != MVT::f32 || // LHS
1877         SelectCC.getOperand(2).getValueType() != MVT::f32 || // True
1878         !isHWTrueValue(SelectCC.getOperand(2)) ||
1879         !isHWFalseValue(SelectCC.getOperand(3))) {
1880       return SDValue();
1881     }
1882 
1883     return DAG.getNode(ISD::SELECT_CC, DL, N->getValueType(0),
1884                            SelectCC.getOperand(0), // LHS
1885                            SelectCC.getOperand(1), // RHS
1886                            DAG.getConstant(-1, DL, MVT::i32), // True
1887                            DAG.getConstant(0, DL, MVT::i32),  // False
1888                            SelectCC.getOperand(4)); // CC
1889   }
1890 
1891   // insert_vector_elt (build_vector elt0, ... , eltN), NewEltIdx, idx
1892   // => build_vector elt0, ... , NewEltIdx, ... , eltN
1893   case ISD::INSERT_VECTOR_ELT: {
1894     SDValue InVec = N->getOperand(0);
1895     SDValue InVal = N->getOperand(1);
1896     SDValue EltNo = N->getOperand(2);
1897 
1898     // If the inserted element is an UNDEF, just use the input vector.
1899     if (InVal.isUndef())
1900       return InVec;
1901 
1902     EVT VT = InVec.getValueType();
1903 
1904     // If we can't generate a legal BUILD_VECTOR, exit
1905     if (!isOperationLegal(ISD::BUILD_VECTOR, VT))
1906       return SDValue();
1907 
1908     // Check that we know which element is being inserted
1909     if (!isa<ConstantSDNode>(EltNo))
1910       return SDValue();
1911     unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
1912 
1913     // Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially
1914     // be converted to a BUILD_VECTOR).  Fill in the Ops vector with the
1915     // vector elements.
1916     SmallVector<SDValue, 8> Ops;
1917     if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
1918       Ops.append(InVec.getNode()->op_begin(),
1919                  InVec.getNode()->op_end());
1920     } else if (InVec.isUndef()) {
1921       unsigned NElts = VT.getVectorNumElements();
1922       Ops.append(NElts, DAG.getUNDEF(InVal.getValueType()));
1923     } else {
1924       return SDValue();
1925     }
1926 
1927     // Insert the element
1928     if (Elt < Ops.size()) {
1929       // All the operands of BUILD_VECTOR must have the same type;
1930       // we enforce that here.
1931       EVT OpVT = Ops[0].getValueType();
1932       if (InVal.getValueType() != OpVT)
1933         InVal = OpVT.bitsGT(InVal.getValueType()) ?
1934           DAG.getNode(ISD::ANY_EXTEND, DL, OpVT, InVal) :
1935           DAG.getNode(ISD::TRUNCATE, DL, OpVT, InVal);
1936       Ops[Elt] = InVal;
1937     }
1938 
1939     // Return the new vector
1940     return DAG.getBuildVector(VT, DL, Ops);
1941   }
1942 
1943   // Extract_vec (Build_vector) generated by custom lowering
1944   // also needs to be customly combined
1945   case ISD::EXTRACT_VECTOR_ELT: {
1946     SDValue Arg = N->getOperand(0);
1947     if (Arg.getOpcode() == ISD::BUILD_VECTOR) {
1948       if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
1949         unsigned Element = Const->getZExtValue();
1950         return Arg->getOperand(Element);
1951       }
1952     }
1953     if (Arg.getOpcode() == ISD::BITCAST &&
1954         Arg.getOperand(0).getOpcode() == ISD::BUILD_VECTOR &&
1955         (Arg.getOperand(0).getValueType().getVectorNumElements() ==
1956          Arg.getValueType().getVectorNumElements())) {
1957       if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
1958         unsigned Element = Const->getZExtValue();
1959         return DAG.getNode(ISD::BITCAST, DL, N->getVTList(),
1960                            Arg->getOperand(0).getOperand(Element));
1961       }
1962     }
1963     break;
1964   }
1965 
1966   case ISD::SELECT_CC: {
1967     // Try common optimizations
1968     if (SDValue Ret = AMDGPUTargetLowering::PerformDAGCombine(N, DCI))
1969       return Ret;
1970 
1971     // fold selectcc (selectcc x, y, a, b, cc), b, a, b, seteq ->
1972     //      selectcc x, y, a, b, inv(cc)
1973     //
1974     // fold selectcc (selectcc x, y, a, b, cc), b, a, b, setne ->
1975     //      selectcc x, y, a, b, cc
1976     SDValue LHS = N->getOperand(0);
1977     if (LHS.getOpcode() != ISD::SELECT_CC) {
1978       return SDValue();
1979     }
1980 
1981     SDValue RHS = N->getOperand(1);
1982     SDValue True = N->getOperand(2);
1983     SDValue False = N->getOperand(3);
1984     ISD::CondCode NCC = cast<CondCodeSDNode>(N->getOperand(4))->get();
1985 
1986     if (LHS.getOperand(2).getNode() != True.getNode() ||
1987         LHS.getOperand(3).getNode() != False.getNode() ||
1988         RHS.getNode() != False.getNode()) {
1989       return SDValue();
1990     }
1991 
1992     switch (NCC) {
1993     default: return SDValue();
1994     case ISD::SETNE: return LHS;
1995     case ISD::SETEQ: {
1996       ISD::CondCode LHSCC = cast<CondCodeSDNode>(LHS.getOperand(4))->get();
1997       LHSCC = ISD::getSetCCInverse(LHSCC, LHS.getOperand(0).getValueType());
1998       if (DCI.isBeforeLegalizeOps() ||
1999           isCondCodeLegal(LHSCC, LHS.getOperand(0).getSimpleValueType()))
2000         return DAG.getSelectCC(DL,
2001                                LHS.getOperand(0),
2002                                LHS.getOperand(1),
2003                                LHS.getOperand(2),
2004                                LHS.getOperand(3),
2005                                LHSCC);
2006       break;
2007     }
2008     }
2009     return SDValue();
2010   }
2011 
2012   case AMDGPUISD::R600_EXPORT: {
2013     SDValue Arg = N->getOperand(1);
2014     if (Arg.getOpcode() != ISD::BUILD_VECTOR)
2015       break;
2016 
2017     SDValue NewArgs[8] = {
2018       N->getOperand(0), // Chain
2019       SDValue(),
2020       N->getOperand(2), // ArrayBase
2021       N->getOperand(3), // Type
2022       N->getOperand(4), // SWZ_X
2023       N->getOperand(5), // SWZ_Y
2024       N->getOperand(6), // SWZ_Z
2025       N->getOperand(7) // SWZ_W
2026     };
2027     NewArgs[1] = OptimizeSwizzle(N->getOperand(1), &NewArgs[4], DAG, DL);
2028     return DAG.getNode(AMDGPUISD::R600_EXPORT, DL, N->getVTList(), NewArgs);
2029   }
2030   case AMDGPUISD::TEXTURE_FETCH: {
2031     SDValue Arg = N->getOperand(1);
2032     if (Arg.getOpcode() != ISD::BUILD_VECTOR)
2033       break;
2034 
2035     SDValue NewArgs[19] = {
2036       N->getOperand(0),
2037       N->getOperand(1),
2038       N->getOperand(2),
2039       N->getOperand(3),
2040       N->getOperand(4),
2041       N->getOperand(5),
2042       N->getOperand(6),
2043       N->getOperand(7),
2044       N->getOperand(8),
2045       N->getOperand(9),
2046       N->getOperand(10),
2047       N->getOperand(11),
2048       N->getOperand(12),
2049       N->getOperand(13),
2050       N->getOperand(14),
2051       N->getOperand(15),
2052       N->getOperand(16),
2053       N->getOperand(17),
2054       N->getOperand(18),
2055     };
2056     NewArgs[1] = OptimizeSwizzle(N->getOperand(1), &NewArgs[2], DAG, DL);
2057     return DAG.getNode(AMDGPUISD::TEXTURE_FETCH, DL, N->getVTList(), NewArgs);
2058   }
2059 
2060   case ISD::LOAD: {
2061     LoadSDNode *LoadNode = cast<LoadSDNode>(N);
2062     SDValue Ptr = LoadNode->getBasePtr();
2063     if (LoadNode->getAddressSpace() == AMDGPUAS::PARAM_I_ADDRESS &&
2064          isa<ConstantSDNode>(Ptr))
2065       return constBufferLoad(LoadNode, AMDGPUAS::CONSTANT_BUFFER_0, DAG);
2066     break;
2067   }
2068 
2069   default: break;
2070   }
2071 
2072   return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
2073 }
2074 
2075 bool R600TargetLowering::FoldOperand(SDNode *ParentNode, unsigned SrcIdx,
2076                                      SDValue &Src, SDValue &Neg, SDValue &Abs,
2077                                      SDValue &Sel, SDValue &Imm,
2078                                      SelectionDAG &DAG) const {
2079   const R600InstrInfo *TII = Subtarget->getInstrInfo();
2080   if (!Src.isMachineOpcode())
2081     return false;
2082 
2083   switch (Src.getMachineOpcode()) {
2084   case R600::FNEG_R600:
2085     if (!Neg.getNode())
2086       return false;
2087     Src = Src.getOperand(0);
2088     Neg = DAG.getTargetConstant(1, SDLoc(ParentNode), MVT::i32);
2089     return true;
2090   case R600::FABS_R600:
2091     if (!Abs.getNode())
2092       return false;
2093     Src = Src.getOperand(0);
2094     Abs = DAG.getTargetConstant(1, SDLoc(ParentNode), MVT::i32);
2095     return true;
2096   case R600::CONST_COPY: {
2097     unsigned Opcode = ParentNode->getMachineOpcode();
2098     bool HasDst = TII->getOperandIdx(Opcode, R600::OpName::dst) > -1;
2099 
2100     if (!Sel.getNode())
2101       return false;
2102 
2103     SDValue CstOffset = Src.getOperand(0);
2104     if (ParentNode->getValueType(0).isVector())
2105       return false;
2106 
2107     // Gather constants values
2108     int SrcIndices[] = {
2109       TII->getOperandIdx(Opcode, R600::OpName::src0),
2110       TII->getOperandIdx(Opcode, R600::OpName::src1),
2111       TII->getOperandIdx(Opcode, R600::OpName::src2),
2112       TII->getOperandIdx(Opcode, R600::OpName::src0_X),
2113       TII->getOperandIdx(Opcode, R600::OpName::src0_Y),
2114       TII->getOperandIdx(Opcode, R600::OpName::src0_Z),
2115       TII->getOperandIdx(Opcode, R600::OpName::src0_W),
2116       TII->getOperandIdx(Opcode, R600::OpName::src1_X),
2117       TII->getOperandIdx(Opcode, R600::OpName::src1_Y),
2118       TII->getOperandIdx(Opcode, R600::OpName::src1_Z),
2119       TII->getOperandIdx(Opcode, R600::OpName::src1_W)
2120     };
2121     std::vector<unsigned> Consts;
2122     for (int OtherSrcIdx : SrcIndices) {
2123       int OtherSelIdx = TII->getSelIdx(Opcode, OtherSrcIdx);
2124       if (OtherSrcIdx < 0 || OtherSelIdx < 0)
2125         continue;
2126       if (HasDst) {
2127         OtherSrcIdx--;
2128         OtherSelIdx--;
2129       }
2130       if (RegisterSDNode *Reg =
2131           dyn_cast<RegisterSDNode>(ParentNode->getOperand(OtherSrcIdx))) {
2132         if (Reg->getReg() == R600::ALU_CONST) {
2133           ConstantSDNode *Cst
2134             = cast<ConstantSDNode>(ParentNode->getOperand(OtherSelIdx));
2135           Consts.push_back(Cst->getZExtValue());
2136         }
2137       }
2138     }
2139 
2140     ConstantSDNode *Cst = cast<ConstantSDNode>(CstOffset);
2141     Consts.push_back(Cst->getZExtValue());
2142     if (!TII->fitsConstReadLimitations(Consts)) {
2143       return false;
2144     }
2145 
2146     Sel = CstOffset;
2147     Src = DAG.getRegister(R600::ALU_CONST, MVT::f32);
2148     return true;
2149   }
2150   case R600::MOV_IMM_GLOBAL_ADDR:
2151     // Check if the Imm slot is used. Taken from below.
2152     if (cast<ConstantSDNode>(Imm)->getZExtValue())
2153       return false;
2154     Imm = Src.getOperand(0);
2155     Src = DAG.getRegister(R600::ALU_LITERAL_X, MVT::i32);
2156     return true;
2157   case R600::MOV_IMM_I32:
2158   case R600::MOV_IMM_F32: {
2159     unsigned ImmReg = R600::ALU_LITERAL_X;
2160     uint64_t ImmValue = 0;
2161 
2162     if (Src.getMachineOpcode() == R600::MOV_IMM_F32) {
2163       ConstantFPSDNode *FPC = dyn_cast<ConstantFPSDNode>(Src.getOperand(0));
2164       float FloatValue = FPC->getValueAPF().convertToFloat();
2165       if (FloatValue == 0.0) {
2166         ImmReg = R600::ZERO;
2167       } else if (FloatValue == 0.5) {
2168         ImmReg = R600::HALF;
2169       } else if (FloatValue == 1.0) {
2170         ImmReg = R600::ONE;
2171       } else {
2172         ImmValue = FPC->getValueAPF().bitcastToAPInt().getZExtValue();
2173       }
2174     } else {
2175       ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src.getOperand(0));
2176       uint64_t Value = C->getZExtValue();
2177       if (Value == 0) {
2178         ImmReg = R600::ZERO;
2179       } else if (Value == 1) {
2180         ImmReg = R600::ONE_INT;
2181       } else {
2182         ImmValue = Value;
2183       }
2184     }
2185 
2186     // Check that we aren't already using an immediate.
2187     // XXX: It's possible for an instruction to have more than one
2188     // immediate operand, but this is not supported yet.
2189     if (ImmReg == R600::ALU_LITERAL_X) {
2190       if (!Imm.getNode())
2191         return false;
2192       ConstantSDNode *C = dyn_cast<ConstantSDNode>(Imm);
2193       assert(C);
2194       if (C->getZExtValue())
2195         return false;
2196       Imm = DAG.getTargetConstant(ImmValue, SDLoc(ParentNode), MVT::i32);
2197     }
2198     Src = DAG.getRegister(ImmReg, MVT::i32);
2199     return true;
2200   }
2201   default:
2202     return false;
2203   }
2204 }
2205 
2206 /// Fold the instructions after selecting them
2207 SDNode *R600TargetLowering::PostISelFolding(MachineSDNode *Node,
2208                                             SelectionDAG &DAG) const {
2209   const R600InstrInfo *TII = Subtarget->getInstrInfo();
2210   if (!Node->isMachineOpcode())
2211     return Node;
2212 
2213   unsigned Opcode = Node->getMachineOpcode();
2214   SDValue FakeOp;
2215 
2216   std::vector<SDValue> Ops(Node->op_begin(), Node->op_end());
2217 
2218   if (Opcode == R600::DOT_4) {
2219     int OperandIdx[] = {
2220       TII->getOperandIdx(Opcode, R600::OpName::src0_X),
2221       TII->getOperandIdx(Opcode, R600::OpName::src0_Y),
2222       TII->getOperandIdx(Opcode, R600::OpName::src0_Z),
2223       TII->getOperandIdx(Opcode, R600::OpName::src0_W),
2224       TII->getOperandIdx(Opcode, R600::OpName::src1_X),
2225       TII->getOperandIdx(Opcode, R600::OpName::src1_Y),
2226       TII->getOperandIdx(Opcode, R600::OpName::src1_Z),
2227       TII->getOperandIdx(Opcode, R600::OpName::src1_W)
2228         };
2229     int NegIdx[] = {
2230       TII->getOperandIdx(Opcode, R600::OpName::src0_neg_X),
2231       TII->getOperandIdx(Opcode, R600::OpName::src0_neg_Y),
2232       TII->getOperandIdx(Opcode, R600::OpName::src0_neg_Z),
2233       TII->getOperandIdx(Opcode, R600::OpName::src0_neg_W),
2234       TII->getOperandIdx(Opcode, R600::OpName::src1_neg_X),
2235       TII->getOperandIdx(Opcode, R600::OpName::src1_neg_Y),
2236       TII->getOperandIdx(Opcode, R600::OpName::src1_neg_Z),
2237       TII->getOperandIdx(Opcode, R600::OpName::src1_neg_W)
2238     };
2239     int AbsIdx[] = {
2240       TII->getOperandIdx(Opcode, R600::OpName::src0_abs_X),
2241       TII->getOperandIdx(Opcode, R600::OpName::src0_abs_Y),
2242       TII->getOperandIdx(Opcode, R600::OpName::src0_abs_Z),
2243       TII->getOperandIdx(Opcode, R600::OpName::src0_abs_W),
2244       TII->getOperandIdx(Opcode, R600::OpName::src1_abs_X),
2245       TII->getOperandIdx(Opcode, R600::OpName::src1_abs_Y),
2246       TII->getOperandIdx(Opcode, R600::OpName::src1_abs_Z),
2247       TII->getOperandIdx(Opcode, R600::OpName::src1_abs_W)
2248     };
2249     for (unsigned i = 0; i < 8; i++) {
2250       if (OperandIdx[i] < 0)
2251         return Node;
2252       SDValue &Src = Ops[OperandIdx[i] - 1];
2253       SDValue &Neg = Ops[NegIdx[i] - 1];
2254       SDValue &Abs = Ops[AbsIdx[i] - 1];
2255       bool HasDst = TII->getOperandIdx(Opcode, R600::OpName::dst) > -1;
2256       int SelIdx = TII->getSelIdx(Opcode, OperandIdx[i]);
2257       if (HasDst)
2258         SelIdx--;
2259       SDValue &Sel = (SelIdx > -1) ? Ops[SelIdx] : FakeOp;
2260       if (FoldOperand(Node, i, Src, Neg, Abs, Sel, FakeOp, DAG))
2261         return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
2262     }
2263   } else if (Opcode == R600::REG_SEQUENCE) {
2264     for (unsigned i = 1, e = Node->getNumOperands(); i < e; i += 2) {
2265       SDValue &Src = Ops[i];
2266       if (FoldOperand(Node, i, Src, FakeOp, FakeOp, FakeOp, FakeOp, DAG))
2267         return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
2268     }
2269   } else {
2270     if (!TII->hasInstrModifiers(Opcode))
2271       return Node;
2272     int OperandIdx[] = {
2273       TII->getOperandIdx(Opcode, R600::OpName::src0),
2274       TII->getOperandIdx(Opcode, R600::OpName::src1),
2275       TII->getOperandIdx(Opcode, R600::OpName::src2)
2276     };
2277     int NegIdx[] = {
2278       TII->getOperandIdx(Opcode, R600::OpName::src0_neg),
2279       TII->getOperandIdx(Opcode, R600::OpName::src1_neg),
2280       TII->getOperandIdx(Opcode, R600::OpName::src2_neg)
2281     };
2282     int AbsIdx[] = {
2283       TII->getOperandIdx(Opcode, R600::OpName::src0_abs),
2284       TII->getOperandIdx(Opcode, R600::OpName::src1_abs),
2285       -1
2286     };
2287     for (unsigned i = 0; i < 3; i++) {
2288       if (OperandIdx[i] < 0)
2289         return Node;
2290       SDValue &Src = Ops[OperandIdx[i] - 1];
2291       SDValue &Neg = Ops[NegIdx[i] - 1];
2292       SDValue FakeAbs;
2293       SDValue &Abs = (AbsIdx[i] > -1) ? Ops[AbsIdx[i] - 1] : FakeAbs;
2294       bool HasDst = TII->getOperandIdx(Opcode, R600::OpName::dst) > -1;
2295       int SelIdx = TII->getSelIdx(Opcode, OperandIdx[i]);
2296       int ImmIdx = TII->getOperandIdx(Opcode, R600::OpName::literal);
2297       if (HasDst) {
2298         SelIdx--;
2299         ImmIdx--;
2300       }
2301       SDValue &Sel = (SelIdx > -1) ? Ops[SelIdx] : FakeOp;
2302       SDValue &Imm = Ops[ImmIdx];
2303       if (FoldOperand(Node, i, Src, Neg, Abs, Sel, Imm, DAG))
2304         return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
2305     }
2306   }
2307 
2308   return Node;
2309 }
2310