1 //===-- R600ISelLowering.cpp - R600 DAG Lowering Implementation -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// Custom DAG lowering for R600
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "R600ISelLowering.h"
15 #include "AMDGPUFrameLowering.h"
16 #include "AMDGPUSubtarget.h"
17 #include "R600Defines.h"
18 #include "R600FrameLowering.h"
19 #include "R600InstrInfo.h"
20 #include "R600MachineFunctionInfo.h"
21 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
22 #include "Utils/AMDGPUBaseInfo.h"
23 #include "llvm/ADT/APFloat.h"
24 #include "llvm/ADT/APInt.h"
25 #include "llvm/ADT/ArrayRef.h"
26 #include "llvm/ADT/DenseMap.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/CodeGen/CallingConvLower.h"
29 #include "llvm/CodeGen/DAGCombine.h"
30 #include "llvm/CodeGen/ISDOpcodes.h"
31 #include "llvm/CodeGen/MachineBasicBlock.h"
32 #include "llvm/CodeGen/MachineFunction.h"
33 #include "llvm/CodeGen/MachineInstr.h"
34 #include "llvm/CodeGen/MachineInstrBuilder.h"
35 #include "llvm/CodeGen/MachineMemOperand.h"
36 #include "llvm/CodeGen/MachineRegisterInfo.h"
37 #include "llvm/CodeGen/SelectionDAG.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/IntrinsicsR600.h"
41 #include "llvm/Support/Casting.h"
42 #include "llvm/Support/Compiler.h"
43 #include "llvm/Support/ErrorHandling.h"
44 #include "llvm/Support/MachineValueType.h"
45 #include "llvm/Support/MathExtras.h"
46 #include <cassert>
47 #include <cstdint>
48 #include <iterator>
49 #include <utility>
50 #include <vector>
51 
52 using namespace llvm;
53 
54 #include "R600GenCallingConv.inc"
55 
56 R600TargetLowering::R600TargetLowering(const TargetMachine &TM,
57                                        const R600Subtarget &STI)
58     : AMDGPUTargetLowering(TM, STI), Subtarget(&STI), Gen(STI.getGeneration()) {
59   addRegisterClass(MVT::f32, &R600::R600_Reg32RegClass);
60   addRegisterClass(MVT::i32, &R600::R600_Reg32RegClass);
61   addRegisterClass(MVT::v2f32, &R600::R600_Reg64RegClass);
62   addRegisterClass(MVT::v2i32, &R600::R600_Reg64RegClass);
63   addRegisterClass(MVT::v4f32, &R600::R600_Reg128RegClass);
64   addRegisterClass(MVT::v4i32, &R600::R600_Reg128RegClass);
65 
66   setBooleanContents(ZeroOrNegativeOneBooleanContent);
67   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
68 
69   computeRegisterProperties(Subtarget->getRegisterInfo());
70 
71   // Legalize loads and stores to the private address space.
72   setOperationAction(ISD::LOAD, MVT::i32, Custom);
73   setOperationAction(ISD::LOAD, MVT::v2i32, Custom);
74   setOperationAction(ISD::LOAD, MVT::v4i32, Custom);
75 
76   // EXTLOAD should be the same as ZEXTLOAD. It is legal for some address
77   // spaces, so it is custom lowered to handle those where it isn't.
78   for (MVT VT : MVT::integer_valuetypes()) {
79     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
80     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Custom);
81     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Custom);
82 
83     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
84     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Custom);
85     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Custom);
86 
87     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
88     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Custom);
89     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Custom);
90   }
91 
92   // Workaround for LegalizeDAG asserting on expansion of i1 vector loads.
93   setLoadExtAction(ISD::EXTLOAD, MVT::v2i32, MVT::v2i1, Expand);
94   setLoadExtAction(ISD::SEXTLOAD, MVT::v2i32, MVT::v2i1, Expand);
95   setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i32, MVT::v2i1, Expand);
96 
97   setLoadExtAction(ISD::EXTLOAD, MVT::v4i32, MVT::v4i1, Expand);
98   setLoadExtAction(ISD::SEXTLOAD, MVT::v4i32, MVT::v4i1, Expand);
99   setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i32, MVT::v4i1, Expand);
100 
101   setOperationAction(ISD::STORE, MVT::i8, Custom);
102   setOperationAction(ISD::STORE, MVT::i32, Custom);
103   setOperationAction(ISD::STORE, MVT::v2i32, Custom);
104   setOperationAction(ISD::STORE, MVT::v4i32, Custom);
105 
106   setTruncStoreAction(MVT::i32, MVT::i8, Custom);
107   setTruncStoreAction(MVT::i32, MVT::i16, Custom);
108   // We need to include these since trunc STORES to PRIVATE need
109   // special handling to accommodate RMW
110   setTruncStoreAction(MVT::v2i32, MVT::v2i16, Custom);
111   setTruncStoreAction(MVT::v4i32, MVT::v4i16, Custom);
112   setTruncStoreAction(MVT::v8i32, MVT::v8i16, Custom);
113   setTruncStoreAction(MVT::v16i32, MVT::v16i16, Custom);
114   setTruncStoreAction(MVT::v32i32, MVT::v32i16, Custom);
115   setTruncStoreAction(MVT::v2i32, MVT::v2i8, Custom);
116   setTruncStoreAction(MVT::v4i32, MVT::v4i8, Custom);
117   setTruncStoreAction(MVT::v8i32, MVT::v8i8, Custom);
118   setTruncStoreAction(MVT::v16i32, MVT::v16i8, Custom);
119   setTruncStoreAction(MVT::v32i32, MVT::v32i8, Custom);
120 
121   // Workaround for LegalizeDAG asserting on expansion of i1 vector stores.
122   setTruncStoreAction(MVT::v2i32, MVT::v2i1, Expand);
123   setTruncStoreAction(MVT::v4i32, MVT::v4i1, Expand);
124 
125   // Set condition code actions
126   setCondCodeAction(ISD::SETO,   MVT::f32, Expand);
127   setCondCodeAction(ISD::SETUO,  MVT::f32, Expand);
128   setCondCodeAction(ISD::SETLT,  MVT::f32, Expand);
129   setCondCodeAction(ISD::SETLE,  MVT::f32, Expand);
130   setCondCodeAction(ISD::SETOLT, MVT::f32, Expand);
131   setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
132   setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
133   setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
134   setCondCodeAction(ISD::SETUGE, MVT::f32, Expand);
135   setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
136   setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
137   setCondCodeAction(ISD::SETULE, MVT::f32, Expand);
138 
139   setCondCodeAction(ISD::SETLE, MVT::i32, Expand);
140   setCondCodeAction(ISD::SETLT, MVT::i32, Expand);
141   setCondCodeAction(ISD::SETULE, MVT::i32, Expand);
142   setCondCodeAction(ISD::SETULT, MVT::i32, Expand);
143 
144   setOperationAction(ISD::FCOS, MVT::f32, Custom);
145   setOperationAction(ISD::FSIN, MVT::f32, Custom);
146 
147   setOperationAction(ISD::SETCC, MVT::v4i32, Expand);
148   setOperationAction(ISD::SETCC, MVT::v2i32, Expand);
149 
150   setOperationAction(ISD::BR_CC, MVT::i32, Expand);
151   setOperationAction(ISD::BR_CC, MVT::f32, Expand);
152   setOperationAction(ISD::BRCOND, MVT::Other, Custom);
153 
154   setOperationAction(ISD::FSUB, MVT::f32, Expand);
155 
156   setOperationAction(ISD::FCEIL, MVT::f64, Custom);
157   setOperationAction(ISD::FTRUNC, MVT::f64, Custom);
158   setOperationAction(ISD::FRINT, MVT::f64, Custom);
159   setOperationAction(ISD::FFLOOR, MVT::f64, Custom);
160 
161   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
162   setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
163 
164   setOperationAction(ISD::SETCC, MVT::i32, Expand);
165   setOperationAction(ISD::SETCC, MVT::f32, Expand);
166   setOperationAction(ISD::FP_TO_UINT, MVT::i1, Custom);
167   setOperationAction(ISD::FP_TO_SINT, MVT::i1, Custom);
168   setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
169   setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
170 
171   setOperationAction(ISD::SELECT, MVT::i32, Expand);
172   setOperationAction(ISD::SELECT, MVT::f32, Expand);
173   setOperationAction(ISD::SELECT, MVT::v2i32, Expand);
174   setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
175 
176   // ADD, SUB overflow.
177   // TODO: turn these into Legal?
178   if (Subtarget->hasCARRY())
179     setOperationAction(ISD::UADDO, MVT::i32, Custom);
180 
181   if (Subtarget->hasBORROW())
182     setOperationAction(ISD::USUBO, MVT::i32, Custom);
183 
184   // Expand sign extension of vectors
185   if (!Subtarget->hasBFE())
186     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
187 
188   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i1, Expand);
189   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i1, Expand);
190 
191   if (!Subtarget->hasBFE())
192     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
193   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Expand);
194   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Expand);
195 
196   if (!Subtarget->hasBFE())
197     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
198   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Expand);
199   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Expand);
200 
201   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
202   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Expand);
203   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Expand);
204 
205   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Expand);
206 
207   setOperationAction(ISD::FrameIndex, MVT::i32, Custom);
208 
209   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i32, Custom);
210   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f32, Custom);
211   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
212   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
213 
214   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i32, Custom);
215   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f32, Custom);
216   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
217   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
218 
219   // We don't have 64-bit shifts. Thus we need either SHX i64 or SHX_PARTS i32
220   //  to be Legal/Custom in order to avoid library calls.
221   setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
222   setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
223   setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
224 
225   if (!Subtarget->hasFMA()) {
226     setOperationAction(ISD::FMA, MVT::f32, Expand);
227     setOperationAction(ISD::FMA, MVT::f64, Expand);
228   }
229 
230   // FIXME: May need no denormals check
231   setOperationAction(ISD::FMAD, MVT::f32, Legal);
232 
233   if (!Subtarget->hasBFI()) {
234     // fcopysign can be done in a single instruction with BFI.
235     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
236     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
237   }
238 
239   if (!Subtarget->hasBCNT(32))
240     setOperationAction(ISD::CTPOP, MVT::i32, Expand);
241 
242   if (!Subtarget->hasBCNT(64))
243     setOperationAction(ISD::CTPOP, MVT::i64, Expand);
244 
245   if (Subtarget->hasFFBH())
246     setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom);
247 
248   if (Subtarget->hasFFBL())
249     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom);
250 
251   // FIXME: This was moved from AMDGPUTargetLowering, I'm not sure if we
252   // need it for R600.
253   if (Subtarget->hasBFE())
254     setHasExtractBitsInsn(true);
255 
256   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
257 
258   const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
259   for (MVT VT : ScalarIntVTs) {
260     setOperationAction(ISD::ADDC, VT, Expand);
261     setOperationAction(ISD::SUBC, VT, Expand);
262     setOperationAction(ISD::ADDE, VT, Expand);
263     setOperationAction(ISD::SUBE, VT, Expand);
264   }
265 
266   // LLVM will expand these to atomic_cmp_swap(0)
267   // and atomic_swap, respectively.
268   setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Expand);
269   setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Expand);
270 
271   // We need to custom lower some of the intrinsics
272   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
273   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
274 
275   setSchedulingPreference(Sched::Source);
276 
277   setTargetDAGCombine(ISD::FP_ROUND);
278   setTargetDAGCombine(ISD::FP_TO_SINT);
279   setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
280   setTargetDAGCombine(ISD::SELECT_CC);
281   setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
282   setTargetDAGCombine(ISD::LOAD);
283 }
284 
285 static inline bool isEOP(MachineBasicBlock::iterator I) {
286   if (std::next(I) == I->getParent()->end())
287     return false;
288   return std::next(I)->getOpcode() == R600::RETURN;
289 }
290 
291 MachineBasicBlock *
292 R600TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
293                                                 MachineBasicBlock *BB) const {
294   MachineFunction *MF = BB->getParent();
295   MachineRegisterInfo &MRI = MF->getRegInfo();
296   MachineBasicBlock::iterator I = MI;
297   const R600InstrInfo *TII = Subtarget->getInstrInfo();
298 
299   switch (MI.getOpcode()) {
300   default:
301     // Replace LDS_*_RET instruction that don't have any uses with the
302     // equivalent LDS_*_NORET instruction.
303     if (TII->isLDSRetInstr(MI.getOpcode())) {
304       int DstIdx = TII->getOperandIdx(MI.getOpcode(), R600::OpName::dst);
305       assert(DstIdx != -1);
306       MachineInstrBuilder NewMI;
307       // FIXME: getLDSNoRetOp method only handles LDS_1A1D LDS ops. Add
308       //        LDS_1A2D support and remove this special case.
309       if (!MRI.use_empty(MI.getOperand(DstIdx).getReg()) ||
310           MI.getOpcode() == R600::LDS_CMPST_RET)
311         return BB;
312 
313       NewMI = BuildMI(*BB, I, BB->findDebugLoc(I),
314                       TII->get(R600::getLDSNoRetOp(MI.getOpcode())));
315       for (unsigned i = 1, e = MI.getNumOperands(); i < e; ++i) {
316         NewMI.add(MI.getOperand(i));
317       }
318     } else {
319       return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB);
320     }
321     break;
322 
323   case R600::FABS_R600: {
324     MachineInstr *NewMI = TII->buildDefaultInstruction(
325         *BB, I, R600::MOV, MI.getOperand(0).getReg(),
326         MI.getOperand(1).getReg());
327     TII->addFlag(*NewMI, 0, MO_FLAG_ABS);
328     break;
329   }
330 
331   case R600::FNEG_R600: {
332     MachineInstr *NewMI = TII->buildDefaultInstruction(
333         *BB, I, R600::MOV, MI.getOperand(0).getReg(),
334         MI.getOperand(1).getReg());
335     TII->addFlag(*NewMI, 0, MO_FLAG_NEG);
336     break;
337   }
338 
339   case R600::MASK_WRITE: {
340     Register maskedRegister = MI.getOperand(0).getReg();
341     assert(Register::isVirtualRegister(maskedRegister));
342     MachineInstr * defInstr = MRI.getVRegDef(maskedRegister);
343     TII->addFlag(*defInstr, 0, MO_FLAG_MASK);
344     break;
345   }
346 
347   case R600::MOV_IMM_F32:
348     TII->buildMovImm(*BB, I, MI.getOperand(0).getReg(), MI.getOperand(1)
349                                                             .getFPImm()
350                                                             ->getValueAPF()
351                                                             .bitcastToAPInt()
352                                                             .getZExtValue());
353     break;
354 
355   case R600::MOV_IMM_I32:
356     TII->buildMovImm(*BB, I, MI.getOperand(0).getReg(),
357                      MI.getOperand(1).getImm());
358     break;
359 
360   case R600::MOV_IMM_GLOBAL_ADDR: {
361     //TODO: Perhaps combine this instruction with the next if possible
362     auto MIB = TII->buildDefaultInstruction(
363         *BB, MI, R600::MOV, MI.getOperand(0).getReg(), R600::ALU_LITERAL_X);
364     int Idx = TII->getOperandIdx(*MIB, R600::OpName::literal);
365     //TODO: Ugh this is rather ugly
366     MIB->getOperand(Idx) = MI.getOperand(1);
367     break;
368   }
369 
370   case R600::CONST_COPY: {
371     MachineInstr *NewMI = TII->buildDefaultInstruction(
372         *BB, MI, R600::MOV, MI.getOperand(0).getReg(), R600::ALU_CONST);
373     TII->setImmOperand(*NewMI, R600::OpName::src0_sel,
374                        MI.getOperand(1).getImm());
375     break;
376   }
377 
378   case R600::RAT_WRITE_CACHELESS_32_eg:
379   case R600::RAT_WRITE_CACHELESS_64_eg:
380   case R600::RAT_WRITE_CACHELESS_128_eg:
381     BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(MI.getOpcode()))
382         .add(MI.getOperand(0))
383         .add(MI.getOperand(1))
384         .addImm(isEOP(I)); // Set End of program bit
385     break;
386 
387   case R600::RAT_STORE_TYPED_eg:
388     BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(MI.getOpcode()))
389         .add(MI.getOperand(0))
390         .add(MI.getOperand(1))
391         .add(MI.getOperand(2))
392         .addImm(isEOP(I)); // Set End of program bit
393     break;
394 
395   case R600::BRANCH:
396     BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(R600::JUMP))
397         .add(MI.getOperand(0));
398     break;
399 
400   case R600::BRANCH_COND_f32: {
401     MachineInstr *NewMI =
402         BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(R600::PRED_X),
403                 R600::PREDICATE_BIT)
404             .add(MI.getOperand(1))
405             .addImm(R600::PRED_SETNE)
406             .addImm(0); // Flags
407     TII->addFlag(*NewMI, 0, MO_FLAG_PUSH);
408     BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(R600::JUMP_COND))
409         .add(MI.getOperand(0))
410         .addReg(R600::PREDICATE_BIT, RegState::Kill);
411     break;
412   }
413 
414   case R600::BRANCH_COND_i32: {
415     MachineInstr *NewMI =
416         BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(R600::PRED_X),
417                 R600::PREDICATE_BIT)
418             .add(MI.getOperand(1))
419             .addImm(R600::PRED_SETNE_INT)
420             .addImm(0); // Flags
421     TII->addFlag(*NewMI, 0, MO_FLAG_PUSH);
422     BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(R600::JUMP_COND))
423         .add(MI.getOperand(0))
424         .addReg(R600::PREDICATE_BIT, RegState::Kill);
425     break;
426   }
427 
428   case R600::EG_ExportSwz:
429   case R600::R600_ExportSwz: {
430     // Instruction is left unmodified if its not the last one of its type
431     bool isLastInstructionOfItsType = true;
432     unsigned InstExportType = MI.getOperand(1).getImm();
433     for (MachineBasicBlock::iterator NextExportInst = std::next(I),
434          EndBlock = BB->end(); NextExportInst != EndBlock;
435          NextExportInst = std::next(NextExportInst)) {
436       if (NextExportInst->getOpcode() == R600::EG_ExportSwz ||
437           NextExportInst->getOpcode() == R600::R600_ExportSwz) {
438         unsigned CurrentInstExportType = NextExportInst->getOperand(1)
439             .getImm();
440         if (CurrentInstExportType == InstExportType) {
441           isLastInstructionOfItsType = false;
442           break;
443         }
444       }
445     }
446     bool EOP = isEOP(I);
447     if (!EOP && !isLastInstructionOfItsType)
448       return BB;
449     unsigned CfInst = (MI.getOpcode() == R600::EG_ExportSwz) ? 84 : 40;
450     BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(MI.getOpcode()))
451         .add(MI.getOperand(0))
452         .add(MI.getOperand(1))
453         .add(MI.getOperand(2))
454         .add(MI.getOperand(3))
455         .add(MI.getOperand(4))
456         .add(MI.getOperand(5))
457         .add(MI.getOperand(6))
458         .addImm(CfInst)
459         .addImm(EOP);
460     break;
461   }
462   case R600::RETURN: {
463     return BB;
464   }
465   }
466 
467   MI.eraseFromParent();
468   return BB;
469 }
470 
471 //===----------------------------------------------------------------------===//
472 // Custom DAG Lowering Operations
473 //===----------------------------------------------------------------------===//
474 
475 SDValue R600TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
476   MachineFunction &MF = DAG.getMachineFunction();
477   R600MachineFunctionInfo *MFI = MF.getInfo<R600MachineFunctionInfo>();
478   switch (Op.getOpcode()) {
479   default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
480   case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
481   case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
482   case ISD::SHL_PARTS: return LowerSHLParts(Op, DAG);
483   case ISD::SRA_PARTS:
484   case ISD::SRL_PARTS: return LowerSRXParts(Op, DAG);
485   case ISD::UADDO: return LowerUADDSUBO(Op, DAG, ISD::ADD, AMDGPUISD::CARRY);
486   case ISD::USUBO: return LowerUADDSUBO(Op, DAG, ISD::SUB, AMDGPUISD::BORROW);
487   case ISD::FCOS:
488   case ISD::FSIN: return LowerTrig(Op, DAG);
489   case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
490   case ISD::STORE: return LowerSTORE(Op, DAG);
491   case ISD::LOAD: {
492     SDValue Result = LowerLOAD(Op, DAG);
493     assert((!Result.getNode() ||
494             Result.getNode()->getNumValues() == 2) &&
495            "Load should return a value and a chain");
496     return Result;
497   }
498 
499   case ISD::BRCOND: return LowerBRCOND(Op, DAG);
500   case ISD::GlobalAddress: return LowerGlobalAddress(MFI, Op, DAG);
501   case ISD::FrameIndex: return lowerFrameIndex(Op, DAG);
502   case ISD::INTRINSIC_VOID: {
503     SDValue Chain = Op.getOperand(0);
504     unsigned IntrinsicID =
505                          cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
506     switch (IntrinsicID) {
507     case Intrinsic::r600_store_swizzle: {
508       SDLoc DL(Op);
509       const SDValue Args[8] = {
510         Chain,
511         Op.getOperand(2), // Export Value
512         Op.getOperand(3), // ArrayBase
513         Op.getOperand(4), // Type
514         DAG.getConstant(0, DL, MVT::i32), // SWZ_X
515         DAG.getConstant(1, DL, MVT::i32), // SWZ_Y
516         DAG.getConstant(2, DL, MVT::i32), // SWZ_Z
517         DAG.getConstant(3, DL, MVT::i32) // SWZ_W
518       };
519       return DAG.getNode(AMDGPUISD::R600_EXPORT, DL, Op.getValueType(), Args);
520     }
521 
522     // default for switch(IntrinsicID)
523     default: break;
524     }
525     // break out of case ISD::INTRINSIC_VOID in switch(Op.getOpcode())
526     break;
527   }
528   case ISD::INTRINSIC_WO_CHAIN: {
529     unsigned IntrinsicID =
530                          cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
531     EVT VT = Op.getValueType();
532     SDLoc DL(Op);
533     switch (IntrinsicID) {
534     case Intrinsic::r600_tex:
535     case Intrinsic::r600_texc: {
536       unsigned TextureOp;
537       switch (IntrinsicID) {
538       case Intrinsic::r600_tex:
539         TextureOp = 0;
540         break;
541       case Intrinsic::r600_texc:
542         TextureOp = 1;
543         break;
544       default:
545         llvm_unreachable("unhandled texture operation");
546       }
547 
548       SDValue TexArgs[19] = {
549         DAG.getConstant(TextureOp, DL, MVT::i32),
550         Op.getOperand(1),
551         DAG.getConstant(0, DL, MVT::i32),
552         DAG.getConstant(1, DL, MVT::i32),
553         DAG.getConstant(2, DL, MVT::i32),
554         DAG.getConstant(3, DL, MVT::i32),
555         Op.getOperand(2),
556         Op.getOperand(3),
557         Op.getOperand(4),
558         DAG.getConstant(0, DL, MVT::i32),
559         DAG.getConstant(1, DL, MVT::i32),
560         DAG.getConstant(2, DL, MVT::i32),
561         DAG.getConstant(3, DL, MVT::i32),
562         Op.getOperand(5),
563         Op.getOperand(6),
564         Op.getOperand(7),
565         Op.getOperand(8),
566         Op.getOperand(9),
567         Op.getOperand(10)
568       };
569       return DAG.getNode(AMDGPUISD::TEXTURE_FETCH, DL, MVT::v4f32, TexArgs);
570     }
571     case Intrinsic::r600_dot4: {
572       SDValue Args[8] = {
573       DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1),
574           DAG.getConstant(0, DL, MVT::i32)),
575       DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2),
576           DAG.getConstant(0, DL, MVT::i32)),
577       DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1),
578           DAG.getConstant(1, DL, MVT::i32)),
579       DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2),
580           DAG.getConstant(1, DL, MVT::i32)),
581       DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1),
582           DAG.getConstant(2, DL, MVT::i32)),
583       DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2),
584           DAG.getConstant(2, DL, MVT::i32)),
585       DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1),
586           DAG.getConstant(3, DL, MVT::i32)),
587       DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2),
588           DAG.getConstant(3, DL, MVT::i32))
589       };
590       return DAG.getNode(AMDGPUISD::DOT4, DL, MVT::f32, Args);
591     }
592 
593     case Intrinsic::r600_implicitarg_ptr: {
594       MVT PtrVT = getPointerTy(DAG.getDataLayout(), AMDGPUAS::PARAM_I_ADDRESS);
595       uint32_t ByteOffset = getImplicitParameterOffset(MF, FIRST_IMPLICIT);
596       return DAG.getConstant(ByteOffset, DL, PtrVT);
597     }
598     case Intrinsic::r600_read_ngroups_x:
599       return LowerImplicitParameter(DAG, VT, DL, 0);
600     case Intrinsic::r600_read_ngroups_y:
601       return LowerImplicitParameter(DAG, VT, DL, 1);
602     case Intrinsic::r600_read_ngroups_z:
603       return LowerImplicitParameter(DAG, VT, DL, 2);
604     case Intrinsic::r600_read_global_size_x:
605       return LowerImplicitParameter(DAG, VT, DL, 3);
606     case Intrinsic::r600_read_global_size_y:
607       return LowerImplicitParameter(DAG, VT, DL, 4);
608     case Intrinsic::r600_read_global_size_z:
609       return LowerImplicitParameter(DAG, VT, DL, 5);
610     case Intrinsic::r600_read_local_size_x:
611       return LowerImplicitParameter(DAG, VT, DL, 6);
612     case Intrinsic::r600_read_local_size_y:
613       return LowerImplicitParameter(DAG, VT, DL, 7);
614     case Intrinsic::r600_read_local_size_z:
615       return LowerImplicitParameter(DAG, VT, DL, 8);
616 
617     case Intrinsic::r600_read_tgid_x:
618       return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass,
619                                      R600::T1_X, VT);
620     case Intrinsic::r600_read_tgid_y:
621       return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass,
622                                      R600::T1_Y, VT);
623     case Intrinsic::r600_read_tgid_z:
624       return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass,
625                                      R600::T1_Z, VT);
626     case Intrinsic::r600_read_tidig_x:
627       return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass,
628                                      R600::T0_X, VT);
629     case Intrinsic::r600_read_tidig_y:
630       return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass,
631                                      R600::T0_Y, VT);
632     case Intrinsic::r600_read_tidig_z:
633       return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass,
634                                      R600::T0_Z, VT);
635 
636     case Intrinsic::r600_recipsqrt_ieee:
637       return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
638 
639     case Intrinsic::r600_recipsqrt_clamped:
640       return DAG.getNode(AMDGPUISD::RSQ_CLAMP, DL, VT, Op.getOperand(1));
641     default:
642       return Op;
643     }
644 
645     // break out of case ISD::INTRINSIC_WO_CHAIN in switch(Op.getOpcode())
646     break;
647   }
648   } // end switch(Op.getOpcode())
649   return SDValue();
650 }
651 
652 void R600TargetLowering::ReplaceNodeResults(SDNode *N,
653                                             SmallVectorImpl<SDValue> &Results,
654                                             SelectionDAG &DAG) const {
655   switch (N->getOpcode()) {
656   default:
657     AMDGPUTargetLowering::ReplaceNodeResults(N, Results, DAG);
658     return;
659   case ISD::FP_TO_UINT:
660     if (N->getValueType(0) == MVT::i1) {
661       Results.push_back(lowerFP_TO_UINT(N->getOperand(0), DAG));
662       return;
663     }
664     // Since we don't care about out of bounds values we can use FP_TO_SINT for
665     // uints too. The DAGLegalizer code for uint considers some extra cases
666     // which are not necessary here.
667     LLVM_FALLTHROUGH;
668   case ISD::FP_TO_SINT: {
669     if (N->getValueType(0) == MVT::i1) {
670       Results.push_back(lowerFP_TO_SINT(N->getOperand(0), DAG));
671       return;
672     }
673 
674     SDValue Result;
675     if (expandFP_TO_SINT(N, Result, DAG))
676       Results.push_back(Result);
677     return;
678   }
679   case ISD::SDIVREM: {
680     SDValue Op = SDValue(N, 1);
681     SDValue RES = LowerSDIVREM(Op, DAG);
682     Results.push_back(RES);
683     Results.push_back(RES.getValue(1));
684     break;
685   }
686   case ISD::UDIVREM: {
687     SDValue Op = SDValue(N, 0);
688     LowerUDIVREM64(Op, DAG, Results);
689     break;
690   }
691   }
692 }
693 
694 SDValue R600TargetLowering::vectorToVerticalVector(SelectionDAG &DAG,
695                                                    SDValue Vector) const {
696   SDLoc DL(Vector);
697   EVT VecVT = Vector.getValueType();
698   EVT EltVT = VecVT.getVectorElementType();
699   SmallVector<SDValue, 8> Args;
700 
701   for (unsigned i = 0, e = VecVT.getVectorNumElements(); i != e; ++i) {
702     Args.push_back(DAG.getNode(
703         ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vector,
704         DAG.getConstant(i, DL, getVectorIdxTy(DAG.getDataLayout()))));
705   }
706 
707   return DAG.getNode(AMDGPUISD::BUILD_VERTICAL_VECTOR, DL, VecVT, Args);
708 }
709 
710 SDValue R600TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
711                                                     SelectionDAG &DAG) const {
712   SDLoc DL(Op);
713   SDValue Vector = Op.getOperand(0);
714   SDValue Index = Op.getOperand(1);
715 
716   if (isa<ConstantSDNode>(Index) ||
717       Vector.getOpcode() == AMDGPUISD::BUILD_VERTICAL_VECTOR)
718     return Op;
719 
720   Vector = vectorToVerticalVector(DAG, Vector);
721   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, Op.getValueType(),
722                      Vector, Index);
723 }
724 
725 SDValue R600TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
726                                                    SelectionDAG &DAG) const {
727   SDLoc DL(Op);
728   SDValue Vector = Op.getOperand(0);
729   SDValue Value = Op.getOperand(1);
730   SDValue Index = Op.getOperand(2);
731 
732   if (isa<ConstantSDNode>(Index) ||
733       Vector.getOpcode() == AMDGPUISD::BUILD_VERTICAL_VECTOR)
734     return Op;
735 
736   Vector = vectorToVerticalVector(DAG, Vector);
737   SDValue Insert = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, Op.getValueType(),
738                                Vector, Value, Index);
739   return vectorToVerticalVector(DAG, Insert);
740 }
741 
742 SDValue R600TargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI,
743                                                SDValue Op,
744                                                SelectionDAG &DAG) const {
745   GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op);
746   if (GSD->getAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS)
747     return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG);
748 
749   const DataLayout &DL = DAG.getDataLayout();
750   const GlobalValue *GV = GSD->getGlobal();
751   MVT ConstPtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS);
752 
753   SDValue GA = DAG.getTargetGlobalAddress(GV, SDLoc(GSD), ConstPtrVT);
754   return DAG.getNode(AMDGPUISD::CONST_DATA_PTR, SDLoc(GSD), ConstPtrVT, GA);
755 }
756 
757 SDValue R600TargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const {
758   // On hw >= R700, COS/SIN input must be between -1. and 1.
759   // Thus we lower them to TRIG ( FRACT ( x / 2Pi + 0.5) - 0.5)
760   EVT VT = Op.getValueType();
761   SDValue Arg = Op.getOperand(0);
762   SDLoc DL(Op);
763 
764   // TODO: Should this propagate fast-math-flags?
765   SDValue FractPart = DAG.getNode(AMDGPUISD::FRACT, DL, VT,
766       DAG.getNode(ISD::FADD, DL, VT,
767         DAG.getNode(ISD::FMUL, DL, VT, Arg,
768           DAG.getConstantFP(0.15915494309, DL, MVT::f32)),
769         DAG.getConstantFP(0.5, DL, MVT::f32)));
770   unsigned TrigNode;
771   switch (Op.getOpcode()) {
772   case ISD::FCOS:
773     TrigNode = AMDGPUISD::COS_HW;
774     break;
775   case ISD::FSIN:
776     TrigNode = AMDGPUISD::SIN_HW;
777     break;
778   default:
779     llvm_unreachable("Wrong trig opcode");
780   }
781   SDValue TrigVal = DAG.getNode(TrigNode, DL, VT,
782       DAG.getNode(ISD::FADD, DL, VT, FractPart,
783         DAG.getConstantFP(-0.5, DL, MVT::f32)));
784   if (Gen >= AMDGPUSubtarget::R700)
785     return TrigVal;
786   // On R600 hw, COS/SIN input must be between -Pi and Pi.
787   return DAG.getNode(ISD::FMUL, DL, VT, TrigVal,
788       DAG.getConstantFP(numbers::pif, DL, MVT::f32));
789 }
790 
791 SDValue R600TargetLowering::LowerSHLParts(SDValue Op, SelectionDAG &DAG) const {
792   SDLoc DL(Op);
793   EVT VT = Op.getValueType();
794 
795   SDValue Lo = Op.getOperand(0);
796   SDValue Hi = Op.getOperand(1);
797   SDValue Shift = Op.getOperand(2);
798   SDValue Zero = DAG.getConstant(0, DL, VT);
799   SDValue One  = DAG.getConstant(1, DL, VT);
800 
801   SDValue Width  = DAG.getConstant(VT.getSizeInBits(), DL, VT);
802   SDValue Width1 = DAG.getConstant(VT.getSizeInBits() - 1, DL, VT);
803   SDValue BigShift  = DAG.getNode(ISD::SUB, DL, VT, Shift, Width);
804   SDValue CompShift = DAG.getNode(ISD::SUB, DL, VT, Width1, Shift);
805 
806   // The dance around Width1 is necessary for 0 special case.
807   // Without it the CompShift might be 32, producing incorrect results in
808   // Overflow. So we do the shift in two steps, the alternative is to
809   // add a conditional to filter the special case.
810 
811   SDValue Overflow = DAG.getNode(ISD::SRL, DL, VT, Lo, CompShift);
812   Overflow = DAG.getNode(ISD::SRL, DL, VT, Overflow, One);
813 
814   SDValue HiSmall = DAG.getNode(ISD::SHL, DL, VT, Hi, Shift);
815   HiSmall = DAG.getNode(ISD::OR, DL, VT, HiSmall, Overflow);
816   SDValue LoSmall = DAG.getNode(ISD::SHL, DL, VT, Lo, Shift);
817 
818   SDValue HiBig = DAG.getNode(ISD::SHL, DL, VT, Lo, BigShift);
819   SDValue LoBig = Zero;
820 
821   Hi = DAG.getSelectCC(DL, Shift, Width, HiSmall, HiBig, ISD::SETULT);
822   Lo = DAG.getSelectCC(DL, Shift, Width, LoSmall, LoBig, ISD::SETULT);
823 
824   return DAG.getNode(ISD::MERGE_VALUES, DL, DAG.getVTList(VT,VT), Lo, Hi);
825 }
826 
827 SDValue R600TargetLowering::LowerSRXParts(SDValue Op, SelectionDAG &DAG) const {
828   SDLoc DL(Op);
829   EVT VT = Op.getValueType();
830 
831   SDValue Lo = Op.getOperand(0);
832   SDValue Hi = Op.getOperand(1);
833   SDValue Shift = Op.getOperand(2);
834   SDValue Zero = DAG.getConstant(0, DL, VT);
835   SDValue One  = DAG.getConstant(1, DL, VT);
836 
837   const bool SRA = Op.getOpcode() == ISD::SRA_PARTS;
838 
839   SDValue Width  = DAG.getConstant(VT.getSizeInBits(), DL, VT);
840   SDValue Width1 = DAG.getConstant(VT.getSizeInBits() - 1, DL, VT);
841   SDValue BigShift  = DAG.getNode(ISD::SUB, DL, VT, Shift, Width);
842   SDValue CompShift = DAG.getNode(ISD::SUB, DL, VT, Width1, Shift);
843 
844   // The dance around Width1 is necessary for 0 special case.
845   // Without it the CompShift might be 32, producing incorrect results in
846   // Overflow. So we do the shift in two steps, the alternative is to
847   // add a conditional to filter the special case.
848 
849   SDValue Overflow = DAG.getNode(ISD::SHL, DL, VT, Hi, CompShift);
850   Overflow = DAG.getNode(ISD::SHL, DL, VT, Overflow, One);
851 
852   SDValue HiSmall = DAG.getNode(SRA ? ISD::SRA : ISD::SRL, DL, VT, Hi, Shift);
853   SDValue LoSmall = DAG.getNode(ISD::SRL, DL, VT, Lo, Shift);
854   LoSmall = DAG.getNode(ISD::OR, DL, VT, LoSmall, Overflow);
855 
856   SDValue LoBig = DAG.getNode(SRA ? ISD::SRA : ISD::SRL, DL, VT, Hi, BigShift);
857   SDValue HiBig = SRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, Width1) : Zero;
858 
859   Hi = DAG.getSelectCC(DL, Shift, Width, HiSmall, HiBig, ISD::SETULT);
860   Lo = DAG.getSelectCC(DL, Shift, Width, LoSmall, LoBig, ISD::SETULT);
861 
862   return DAG.getNode(ISD::MERGE_VALUES, DL, DAG.getVTList(VT,VT), Lo, Hi);
863 }
864 
865 SDValue R600TargetLowering::LowerUADDSUBO(SDValue Op, SelectionDAG &DAG,
866                                           unsigned mainop, unsigned ovf) const {
867   SDLoc DL(Op);
868   EVT VT = Op.getValueType();
869 
870   SDValue Lo = Op.getOperand(0);
871   SDValue Hi = Op.getOperand(1);
872 
873   SDValue OVF = DAG.getNode(ovf, DL, VT, Lo, Hi);
874   // Extend sign.
875   OVF = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, OVF,
876                     DAG.getValueType(MVT::i1));
877 
878   SDValue Res = DAG.getNode(mainop, DL, VT, Lo, Hi);
879 
880   return DAG.getNode(ISD::MERGE_VALUES, DL, DAG.getVTList(VT, VT), Res, OVF);
881 }
882 
883 SDValue R600TargetLowering::lowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) const {
884   SDLoc DL(Op);
885   return DAG.getNode(
886       ISD::SETCC,
887       DL,
888       MVT::i1,
889       Op, DAG.getConstantFP(1.0f, DL, MVT::f32),
890       DAG.getCondCode(ISD::SETEQ));
891 }
892 
893 SDValue R600TargetLowering::lowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) const {
894   SDLoc DL(Op);
895   return DAG.getNode(
896       ISD::SETCC,
897       DL,
898       MVT::i1,
899       Op, DAG.getConstantFP(-1.0f, DL, MVT::f32),
900       DAG.getCondCode(ISD::SETEQ));
901 }
902 
903 SDValue R600TargetLowering::LowerImplicitParameter(SelectionDAG &DAG, EVT VT,
904                                                    const SDLoc &DL,
905                                                    unsigned DwordOffset) const {
906   unsigned ByteOffset = DwordOffset * 4;
907   PointerType * PtrType = PointerType::get(VT.getTypeForEVT(*DAG.getContext()),
908                                       AMDGPUAS::PARAM_I_ADDRESS);
909 
910   // We shouldn't be using an offset wider than 16-bits for implicit parameters.
911   assert(isInt<16>(ByteOffset));
912 
913   return DAG.getLoad(VT, DL, DAG.getEntryNode(),
914                      DAG.getConstant(ByteOffset, DL, MVT::i32), // PTR
915                      MachinePointerInfo(ConstantPointerNull::get(PtrType)));
916 }
917 
918 bool R600TargetLowering::isZero(SDValue Op) const {
919   if(ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Op)) {
920     return Cst->isNullValue();
921   } else if(ConstantFPSDNode *CstFP = dyn_cast<ConstantFPSDNode>(Op)){
922     return CstFP->isZero();
923   } else {
924     return false;
925   }
926 }
927 
928 bool R600TargetLowering::isHWTrueValue(SDValue Op) const {
929   if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Op)) {
930     return CFP->isExactlyValue(1.0);
931   }
932   return isAllOnesConstant(Op);
933 }
934 
935 bool R600TargetLowering::isHWFalseValue(SDValue Op) const {
936   if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Op)) {
937     return CFP->getValueAPF().isZero();
938   }
939   return isNullConstant(Op);
940 }
941 
942 SDValue R600TargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
943   SDLoc DL(Op);
944   EVT VT = Op.getValueType();
945 
946   SDValue LHS = Op.getOperand(0);
947   SDValue RHS = Op.getOperand(1);
948   SDValue True = Op.getOperand(2);
949   SDValue False = Op.getOperand(3);
950   SDValue CC = Op.getOperand(4);
951   SDValue Temp;
952 
953   if (VT == MVT::f32) {
954     DAGCombinerInfo DCI(DAG, AfterLegalizeVectorOps, true, nullptr);
955     SDValue MinMax = combineFMinMaxLegacy(DL, VT, LHS, RHS, True, False, CC, DCI);
956     if (MinMax)
957       return MinMax;
958   }
959 
960   // LHS and RHS are guaranteed to be the same value type
961   EVT CompareVT = LHS.getValueType();
962 
963   // Check if we can lower this to a native operation.
964 
965   // Try to lower to a SET* instruction:
966   //
967   // SET* can match the following patterns:
968   //
969   // select_cc f32, f32, -1,  0, cc_supported
970   // select_cc f32, f32, 1.0f, 0.0f, cc_supported
971   // select_cc i32, i32, -1,  0, cc_supported
972   //
973 
974   // Move hardware True/False values to the correct operand.
975   if (isHWTrueValue(False) && isHWFalseValue(True)) {
976     ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
977     ISD::CondCode InverseCC = ISD::getSetCCInverse(CCOpcode, CompareVT);
978     if (isCondCodeLegal(InverseCC, CompareVT.getSimpleVT())) {
979       std::swap(False, True);
980       CC = DAG.getCondCode(InverseCC);
981     } else {
982       ISD::CondCode SwapInvCC = ISD::getSetCCSwappedOperands(InverseCC);
983       if (isCondCodeLegal(SwapInvCC, CompareVT.getSimpleVT())) {
984         std::swap(False, True);
985         std::swap(LHS, RHS);
986         CC = DAG.getCondCode(SwapInvCC);
987       }
988     }
989   }
990 
991   if (isHWTrueValue(True) && isHWFalseValue(False) &&
992       (CompareVT == VT || VT == MVT::i32)) {
993     // This can be matched by a SET* instruction.
994     return DAG.getNode(ISD::SELECT_CC, DL, VT, LHS, RHS, True, False, CC);
995   }
996 
997   // Try to lower to a CND* instruction:
998   //
999   // CND* can match the following patterns:
1000   //
1001   // select_cc f32, 0.0, f32, f32, cc_supported
1002   // select_cc f32, 0.0, i32, i32, cc_supported
1003   // select_cc i32, 0,   f32, f32, cc_supported
1004   // select_cc i32, 0,   i32, i32, cc_supported
1005   //
1006 
1007   // Try to move the zero value to the RHS
1008   if (isZero(LHS)) {
1009     ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
1010     // Try swapping the operands
1011     ISD::CondCode CCSwapped = ISD::getSetCCSwappedOperands(CCOpcode);
1012     if (isCondCodeLegal(CCSwapped, CompareVT.getSimpleVT())) {
1013       std::swap(LHS, RHS);
1014       CC = DAG.getCondCode(CCSwapped);
1015     } else {
1016       // Try inverting the conditon and then swapping the operands
1017       ISD::CondCode CCInv = ISD::getSetCCInverse(CCOpcode, CompareVT);
1018       CCSwapped = ISD::getSetCCSwappedOperands(CCInv);
1019       if (isCondCodeLegal(CCSwapped, CompareVT.getSimpleVT())) {
1020         std::swap(True, False);
1021         std::swap(LHS, RHS);
1022         CC = DAG.getCondCode(CCSwapped);
1023       }
1024     }
1025   }
1026   if (isZero(RHS)) {
1027     SDValue Cond = LHS;
1028     SDValue Zero = RHS;
1029     ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
1030     if (CompareVT != VT) {
1031       // Bitcast True / False to the correct types.  This will end up being
1032       // a nop, but it allows us to define only a single pattern in the
1033       // .TD files for each CND* instruction rather than having to have
1034       // one pattern for integer True/False and one for fp True/False
1035       True = DAG.getNode(ISD::BITCAST, DL, CompareVT, True);
1036       False = DAG.getNode(ISD::BITCAST, DL, CompareVT, False);
1037     }
1038 
1039     switch (CCOpcode) {
1040     case ISD::SETONE:
1041     case ISD::SETUNE:
1042     case ISD::SETNE:
1043       CCOpcode = ISD::getSetCCInverse(CCOpcode, CompareVT);
1044       Temp = True;
1045       True = False;
1046       False = Temp;
1047       break;
1048     default:
1049       break;
1050     }
1051     SDValue SelectNode = DAG.getNode(ISD::SELECT_CC, DL, CompareVT,
1052         Cond, Zero,
1053         True, False,
1054         DAG.getCondCode(CCOpcode));
1055     return DAG.getNode(ISD::BITCAST, DL, VT, SelectNode);
1056   }
1057 
1058   // If we make it this for it means we have no native instructions to handle
1059   // this SELECT_CC, so we must lower it.
1060   SDValue HWTrue, HWFalse;
1061 
1062   if (CompareVT == MVT::f32) {
1063     HWTrue = DAG.getConstantFP(1.0f, DL, CompareVT);
1064     HWFalse = DAG.getConstantFP(0.0f, DL, CompareVT);
1065   } else if (CompareVT == MVT::i32) {
1066     HWTrue = DAG.getConstant(-1, DL, CompareVT);
1067     HWFalse = DAG.getConstant(0, DL, CompareVT);
1068   }
1069   else {
1070     llvm_unreachable("Unhandled value type in LowerSELECT_CC");
1071   }
1072 
1073   // Lower this unsupported SELECT_CC into a combination of two supported
1074   // SELECT_CC operations.
1075   SDValue Cond = DAG.getNode(ISD::SELECT_CC, DL, CompareVT, LHS, RHS, HWTrue, HWFalse, CC);
1076 
1077   return DAG.getNode(ISD::SELECT_CC, DL, VT,
1078       Cond, HWFalse,
1079       True, False,
1080       DAG.getCondCode(ISD::SETNE));
1081 }
1082 
1083 /// LLVM generates byte-addressed pointers.  For indirect addressing, we need to
1084 /// convert these pointers to a register index.  Each register holds
1085 /// 16 bytes, (4 x 32bit sub-register), but we need to take into account the
1086 /// \p StackWidth, which tells us how many of the 4 sub-registrers will be used
1087 /// for indirect addressing.
1088 SDValue R600TargetLowering::stackPtrToRegIndex(SDValue Ptr,
1089                                                unsigned StackWidth,
1090                                                SelectionDAG &DAG) const {
1091   unsigned SRLPad;
1092   switch(StackWidth) {
1093   case 1:
1094     SRLPad = 2;
1095     break;
1096   case 2:
1097     SRLPad = 3;
1098     break;
1099   case 4:
1100     SRLPad = 4;
1101     break;
1102   default: llvm_unreachable("Invalid stack width");
1103   }
1104 
1105   SDLoc DL(Ptr);
1106   return DAG.getNode(ISD::SRL, DL, Ptr.getValueType(), Ptr,
1107                      DAG.getConstant(SRLPad, DL, MVT::i32));
1108 }
1109 
1110 void R600TargetLowering::getStackAddress(unsigned StackWidth,
1111                                          unsigned ElemIdx,
1112                                          unsigned &Channel,
1113                                          unsigned &PtrIncr) const {
1114   switch (StackWidth) {
1115   default:
1116   case 1:
1117     Channel = 0;
1118     if (ElemIdx > 0) {
1119       PtrIncr = 1;
1120     } else {
1121       PtrIncr = 0;
1122     }
1123     break;
1124   case 2:
1125     Channel = ElemIdx % 2;
1126     if (ElemIdx == 2) {
1127       PtrIncr = 1;
1128     } else {
1129       PtrIncr = 0;
1130     }
1131     break;
1132   case 4:
1133     Channel = ElemIdx;
1134     PtrIncr = 0;
1135     break;
1136   }
1137 }
1138 
1139 SDValue R600TargetLowering::lowerPrivateTruncStore(StoreSDNode *Store,
1140                                                    SelectionDAG &DAG) const {
1141   SDLoc DL(Store);
1142   //TODO: Who creates the i8 stores?
1143   assert(Store->isTruncatingStore()
1144          || Store->getValue().getValueType() == MVT::i8);
1145   assert(Store->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS);
1146 
1147   SDValue Mask;
1148   if (Store->getMemoryVT() == MVT::i8) {
1149     assert(Store->getAlignment() >= 1);
1150     Mask = DAG.getConstant(0xff, DL, MVT::i32);
1151   } else if (Store->getMemoryVT() == MVT::i16) {
1152     assert(Store->getAlignment() >= 2);
1153     Mask = DAG.getConstant(0xffff, DL, MVT::i32);
1154   } else {
1155     llvm_unreachable("Unsupported private trunc store");
1156   }
1157 
1158   SDValue OldChain = Store->getChain();
1159   bool VectorTrunc = (OldChain.getOpcode() == AMDGPUISD::DUMMY_CHAIN);
1160   // Skip dummy
1161   SDValue Chain = VectorTrunc ? OldChain->getOperand(0) : OldChain;
1162   SDValue BasePtr = Store->getBasePtr();
1163   SDValue Offset = Store->getOffset();
1164   EVT MemVT = Store->getMemoryVT();
1165 
1166   SDValue LoadPtr = BasePtr;
1167   if (!Offset.isUndef()) {
1168     LoadPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr, Offset);
1169   }
1170 
1171   // Get dword location
1172   // TODO: this should be eliminated by the future SHR ptr, 2
1173   SDValue Ptr = DAG.getNode(ISD::AND, DL, MVT::i32, LoadPtr,
1174                             DAG.getConstant(0xfffffffc, DL, MVT::i32));
1175 
1176   // Load dword
1177   // TODO: can we be smarter about machine pointer info?
1178   MachinePointerInfo PtrInfo(AMDGPUAS::PRIVATE_ADDRESS);
1179   SDValue Dst = DAG.getLoad(MVT::i32, DL, Chain, Ptr, PtrInfo);
1180 
1181   Chain = Dst.getValue(1);
1182 
1183   // Get offset in dword
1184   SDValue ByteIdx = DAG.getNode(ISD::AND, DL, MVT::i32, LoadPtr,
1185                                 DAG.getConstant(0x3, DL, MVT::i32));
1186 
1187   // Convert byte offset to bit shift
1188   SDValue ShiftAmt = DAG.getNode(ISD::SHL, DL, MVT::i32, ByteIdx,
1189                                  DAG.getConstant(3, DL, MVT::i32));
1190 
1191   // TODO: Contrary to the name of the functiom,
1192   // it also handles sub i32 non-truncating stores (like i1)
1193   SDValue SExtValue = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i32,
1194                                   Store->getValue());
1195 
1196   // Mask the value to the right type
1197   SDValue MaskedValue = DAG.getZeroExtendInReg(SExtValue, DL, MemVT);
1198 
1199   // Shift the value in place
1200   SDValue ShiftedValue = DAG.getNode(ISD::SHL, DL, MVT::i32,
1201                                      MaskedValue, ShiftAmt);
1202 
1203   // Shift the mask in place
1204   SDValue DstMask = DAG.getNode(ISD::SHL, DL, MVT::i32, Mask, ShiftAmt);
1205 
1206   // Invert the mask. NOTE: if we had native ROL instructions we could
1207   // use inverted mask
1208   DstMask = DAG.getNOT(DL, DstMask, MVT::i32);
1209 
1210   // Cleanup the target bits
1211   Dst = DAG.getNode(ISD::AND, DL, MVT::i32, Dst, DstMask);
1212 
1213   // Add the new bits
1214   SDValue Value = DAG.getNode(ISD::OR, DL, MVT::i32, Dst, ShiftedValue);
1215 
1216   // Store dword
1217   // TODO: Can we be smarter about MachinePointerInfo?
1218   SDValue NewStore = DAG.getStore(Chain, DL, Value, Ptr, PtrInfo);
1219 
1220   // If we are part of expanded vector, make our neighbors depend on this store
1221   if (VectorTrunc) {
1222     // Make all other vector elements depend on this store
1223     Chain = DAG.getNode(AMDGPUISD::DUMMY_CHAIN, DL, MVT::Other, NewStore);
1224     DAG.ReplaceAllUsesOfValueWith(OldChain, Chain);
1225   }
1226   return NewStore;
1227 }
1228 
1229 SDValue R600TargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
1230   StoreSDNode *StoreNode = cast<StoreSDNode>(Op);
1231   unsigned AS = StoreNode->getAddressSpace();
1232 
1233   SDValue Chain = StoreNode->getChain();
1234   SDValue Ptr = StoreNode->getBasePtr();
1235   SDValue Value = StoreNode->getValue();
1236 
1237   EVT VT = Value.getValueType();
1238   EVT MemVT = StoreNode->getMemoryVT();
1239   EVT PtrVT = Ptr.getValueType();
1240 
1241   SDLoc DL(Op);
1242 
1243   const bool TruncatingStore = StoreNode->isTruncatingStore();
1244 
1245   // Neither LOCAL nor PRIVATE can do vectors at the moment
1246   if ((AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::PRIVATE_ADDRESS ||
1247        TruncatingStore) &&
1248       VT.isVector()) {
1249     if ((AS == AMDGPUAS::PRIVATE_ADDRESS) && TruncatingStore) {
1250       // Add an extra level of chain to isolate this vector
1251       SDValue NewChain = DAG.getNode(AMDGPUISD::DUMMY_CHAIN, DL, MVT::Other, Chain);
1252       // TODO: can the chain be replaced without creating a new store?
1253       SDValue NewStore = DAG.getTruncStore(
1254           NewChain, DL, Value, Ptr, StoreNode->getPointerInfo(),
1255           MemVT, StoreNode->getAlignment(),
1256           StoreNode->getMemOperand()->getFlags(), StoreNode->getAAInfo());
1257       StoreNode = cast<StoreSDNode>(NewStore);
1258     }
1259 
1260     return scalarizeVectorStore(StoreNode, DAG);
1261   }
1262 
1263   unsigned Align = StoreNode->getAlignment();
1264   if (Align < MemVT.getStoreSize() &&
1265       !allowsMisalignedMemoryAccesses(
1266           MemVT, AS, Align, StoreNode->getMemOperand()->getFlags(), nullptr)) {
1267     return expandUnalignedStore(StoreNode, DAG);
1268   }
1269 
1270   SDValue DWordAddr = DAG.getNode(ISD::SRL, DL, PtrVT, Ptr,
1271                                   DAG.getConstant(2, DL, PtrVT));
1272 
1273   if (AS == AMDGPUAS::GLOBAL_ADDRESS) {
1274     // It is beneficial to create MSKOR here instead of combiner to avoid
1275     // artificial dependencies introduced by RMW
1276     if (TruncatingStore) {
1277       assert(VT.bitsLE(MVT::i32));
1278       SDValue MaskConstant;
1279       if (MemVT == MVT::i8) {
1280         MaskConstant = DAG.getConstant(0xFF, DL, MVT::i32);
1281       } else {
1282         assert(MemVT == MVT::i16);
1283         assert(StoreNode->getAlignment() >= 2);
1284         MaskConstant = DAG.getConstant(0xFFFF, DL, MVT::i32);
1285       }
1286 
1287       SDValue ByteIndex = DAG.getNode(ISD::AND, DL, PtrVT, Ptr,
1288                                       DAG.getConstant(0x00000003, DL, PtrVT));
1289       SDValue BitShift = DAG.getNode(ISD::SHL, DL, VT, ByteIndex,
1290                                      DAG.getConstant(3, DL, VT));
1291 
1292       // Put the mask in correct place
1293       SDValue Mask = DAG.getNode(ISD::SHL, DL, VT, MaskConstant, BitShift);
1294 
1295       // Put the value bits in correct place
1296       SDValue TruncValue = DAG.getNode(ISD::AND, DL, VT, Value, MaskConstant);
1297       SDValue ShiftedValue = DAG.getNode(ISD::SHL, DL, VT, TruncValue, BitShift);
1298 
1299       // XXX: If we add a 64-bit ZW register class, then we could use a 2 x i32
1300       // vector instead.
1301       SDValue Src[4] = {
1302         ShiftedValue,
1303         DAG.getConstant(0, DL, MVT::i32),
1304         DAG.getConstant(0, DL, MVT::i32),
1305         Mask
1306       };
1307       SDValue Input = DAG.getBuildVector(MVT::v4i32, DL, Src);
1308       SDValue Args[3] = { Chain, Input, DWordAddr };
1309       return DAG.getMemIntrinsicNode(AMDGPUISD::STORE_MSKOR, DL,
1310                                      Op->getVTList(), Args, MemVT,
1311                                      StoreNode->getMemOperand());
1312     } else if (Ptr->getOpcode() != AMDGPUISD::DWORDADDR && VT.bitsGE(MVT::i32)) {
1313       // Convert pointer from byte address to dword address.
1314       Ptr = DAG.getNode(AMDGPUISD::DWORDADDR, DL, PtrVT, DWordAddr);
1315 
1316       if (StoreNode->isIndexed()) {
1317         llvm_unreachable("Indexed stores not supported yet");
1318       } else {
1319         Chain = DAG.getStore(Chain, DL, Value, Ptr, StoreNode->getMemOperand());
1320       }
1321       return Chain;
1322     }
1323   }
1324 
1325   // GLOBAL_ADDRESS has been handled above, LOCAL_ADDRESS allows all sizes
1326   if (AS != AMDGPUAS::PRIVATE_ADDRESS)
1327     return SDValue();
1328 
1329   if (MemVT.bitsLT(MVT::i32))
1330     return lowerPrivateTruncStore(StoreNode, DAG);
1331 
1332   // Standard i32+ store, tag it with DWORDADDR to note that the address
1333   // has been shifted
1334   if (Ptr.getOpcode() != AMDGPUISD::DWORDADDR) {
1335     Ptr = DAG.getNode(AMDGPUISD::DWORDADDR, DL, PtrVT, DWordAddr);
1336     return DAG.getStore(Chain, DL, Value, Ptr, StoreNode->getMemOperand());
1337   }
1338 
1339   // Tagged i32+ stores will be matched by patterns
1340   return SDValue();
1341 }
1342 
1343 // return (512 + (kc_bank << 12)
1344 static int
1345 ConstantAddressBlock(unsigned AddressSpace) {
1346   switch (AddressSpace) {
1347   case AMDGPUAS::CONSTANT_BUFFER_0:
1348     return 512;
1349   case AMDGPUAS::CONSTANT_BUFFER_1:
1350     return 512 + 4096;
1351   case AMDGPUAS::CONSTANT_BUFFER_2:
1352     return 512 + 4096 * 2;
1353   case AMDGPUAS::CONSTANT_BUFFER_3:
1354     return 512 + 4096 * 3;
1355   case AMDGPUAS::CONSTANT_BUFFER_4:
1356     return 512 + 4096 * 4;
1357   case AMDGPUAS::CONSTANT_BUFFER_5:
1358     return 512 + 4096 * 5;
1359   case AMDGPUAS::CONSTANT_BUFFER_6:
1360     return 512 + 4096 * 6;
1361   case AMDGPUAS::CONSTANT_BUFFER_7:
1362     return 512 + 4096 * 7;
1363   case AMDGPUAS::CONSTANT_BUFFER_8:
1364     return 512 + 4096 * 8;
1365   case AMDGPUAS::CONSTANT_BUFFER_9:
1366     return 512 + 4096 * 9;
1367   case AMDGPUAS::CONSTANT_BUFFER_10:
1368     return 512 + 4096 * 10;
1369   case AMDGPUAS::CONSTANT_BUFFER_11:
1370     return 512 + 4096 * 11;
1371   case AMDGPUAS::CONSTANT_BUFFER_12:
1372     return 512 + 4096 * 12;
1373   case AMDGPUAS::CONSTANT_BUFFER_13:
1374     return 512 + 4096 * 13;
1375   case AMDGPUAS::CONSTANT_BUFFER_14:
1376     return 512 + 4096 * 14;
1377   case AMDGPUAS::CONSTANT_BUFFER_15:
1378     return 512 + 4096 * 15;
1379   default:
1380     return -1;
1381   }
1382 }
1383 
1384 SDValue R600TargetLowering::lowerPrivateExtLoad(SDValue Op,
1385                                                 SelectionDAG &DAG) const {
1386   SDLoc DL(Op);
1387   LoadSDNode *Load = cast<LoadSDNode>(Op);
1388   ISD::LoadExtType ExtType = Load->getExtensionType();
1389   EVT MemVT = Load->getMemoryVT();
1390   assert(Load->getAlignment() >= MemVT.getStoreSize());
1391 
1392   SDValue BasePtr = Load->getBasePtr();
1393   SDValue Chain = Load->getChain();
1394   SDValue Offset = Load->getOffset();
1395 
1396   SDValue LoadPtr = BasePtr;
1397   if (!Offset.isUndef()) {
1398     LoadPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr, Offset);
1399   }
1400 
1401   // Get dword location
1402   // NOTE: this should be eliminated by the future SHR ptr, 2
1403   SDValue Ptr = DAG.getNode(ISD::AND, DL, MVT::i32, LoadPtr,
1404                             DAG.getConstant(0xfffffffc, DL, MVT::i32));
1405 
1406   // Load dword
1407   // TODO: can we be smarter about machine pointer info?
1408   MachinePointerInfo PtrInfo(AMDGPUAS::PRIVATE_ADDRESS);
1409   SDValue Read = DAG.getLoad(MVT::i32, DL, Chain, Ptr, PtrInfo);
1410 
1411   // Get offset within the register.
1412   SDValue ByteIdx = DAG.getNode(ISD::AND, DL, MVT::i32,
1413                                 LoadPtr, DAG.getConstant(0x3, DL, MVT::i32));
1414 
1415   // Bit offset of target byte (byteIdx * 8).
1416   SDValue ShiftAmt = DAG.getNode(ISD::SHL, DL, MVT::i32, ByteIdx,
1417                                  DAG.getConstant(3, DL, MVT::i32));
1418 
1419   // Shift to the right.
1420   SDValue Ret = DAG.getNode(ISD::SRL, DL, MVT::i32, Read, ShiftAmt);
1421 
1422   // Eliminate the upper bits by setting them to ...
1423   EVT MemEltVT = MemVT.getScalarType();
1424 
1425   if (ExtType == ISD::SEXTLOAD) { // ... ones.
1426     SDValue MemEltVTNode = DAG.getValueType(MemEltVT);
1427     Ret = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, Ret, MemEltVTNode);
1428   } else { // ... or zeros.
1429     Ret = DAG.getZeroExtendInReg(Ret, DL, MemEltVT);
1430   }
1431 
1432   SDValue Ops[] = {
1433     Ret,
1434     Read.getValue(1) // This should be our output chain
1435   };
1436 
1437   return DAG.getMergeValues(Ops, DL);
1438 }
1439 
1440 SDValue R600TargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
1441   LoadSDNode *LoadNode = cast<LoadSDNode>(Op);
1442   unsigned AS = LoadNode->getAddressSpace();
1443   EVT MemVT = LoadNode->getMemoryVT();
1444   ISD::LoadExtType ExtType = LoadNode->getExtensionType();
1445 
1446   if (AS == AMDGPUAS::PRIVATE_ADDRESS &&
1447       ExtType != ISD::NON_EXTLOAD && MemVT.bitsLT(MVT::i32)) {
1448     return lowerPrivateExtLoad(Op, DAG);
1449   }
1450 
1451   SDLoc DL(Op);
1452   EVT VT = Op.getValueType();
1453   SDValue Chain = LoadNode->getChain();
1454   SDValue Ptr = LoadNode->getBasePtr();
1455 
1456   if ((LoadNode->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
1457       LoadNode->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) &&
1458       VT.isVector()) {
1459     SDValue Ops[2];
1460     std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(LoadNode, DAG);
1461     return DAG.getMergeValues(Ops, DL);
1462   }
1463 
1464   // This is still used for explicit load from addrspace(8)
1465   int ConstantBlock = ConstantAddressBlock(LoadNode->getAddressSpace());
1466   if (ConstantBlock > -1 &&
1467       ((LoadNode->getExtensionType() == ISD::NON_EXTLOAD) ||
1468        (LoadNode->getExtensionType() == ISD::ZEXTLOAD))) {
1469     SDValue Result;
1470     if (isa<Constant>(LoadNode->getMemOperand()->getValue()) ||
1471         isa<ConstantSDNode>(Ptr)) {
1472       return constBufferLoad(LoadNode, LoadNode->getAddressSpace(), DAG);
1473     } else {
1474       //TODO: Does this even work?
1475       // non-constant ptr can't be folded, keeps it as a v4f32 load
1476       Result = DAG.getNode(AMDGPUISD::CONST_ADDRESS, DL, MVT::v4i32,
1477           DAG.getNode(ISD::SRL, DL, MVT::i32, Ptr,
1478                       DAG.getConstant(4, DL, MVT::i32)),
1479                       DAG.getConstant(LoadNode->getAddressSpace() -
1480                                       AMDGPUAS::CONSTANT_BUFFER_0, DL, MVT::i32)
1481           );
1482     }
1483 
1484     if (!VT.isVector()) {
1485       Result = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, Result,
1486                            DAG.getConstant(0, DL, MVT::i32));
1487     }
1488 
1489     SDValue MergedValues[2] = {
1490       Result,
1491       Chain
1492     };
1493     return DAG.getMergeValues(MergedValues, DL);
1494   }
1495 
1496   // For most operations returning SDValue() will result in the node being
1497   // expanded by the DAG Legalizer. This is not the case for ISD::LOAD, so we
1498   // need to manually expand loads that may be legal in some address spaces and
1499   // illegal in others. SEXT loads from CONSTANT_BUFFER_0 are supported for
1500   // compute shaders, since the data is sign extended when it is uploaded to the
1501   // buffer. However SEXT loads from other address spaces are not supported, so
1502   // we need to expand them here.
1503   if (LoadNode->getExtensionType() == ISD::SEXTLOAD) {
1504     assert(!MemVT.isVector() && (MemVT == MVT::i16 || MemVT == MVT::i8));
1505     SDValue NewLoad = DAG.getExtLoad(
1506         ISD::EXTLOAD, DL, VT, Chain, Ptr, LoadNode->getPointerInfo(), MemVT,
1507         LoadNode->getAlignment(), LoadNode->getMemOperand()->getFlags());
1508     SDValue Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, NewLoad,
1509                               DAG.getValueType(MemVT));
1510 
1511     SDValue MergedValues[2] = { Res, Chain };
1512     return DAG.getMergeValues(MergedValues, DL);
1513   }
1514 
1515   if (LoadNode->getAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS) {
1516     return SDValue();
1517   }
1518 
1519   // DWORDADDR ISD marks already shifted address
1520   if (Ptr.getOpcode() != AMDGPUISD::DWORDADDR) {
1521     assert(VT == MVT::i32);
1522     Ptr = DAG.getNode(ISD::SRL, DL, MVT::i32, Ptr, DAG.getConstant(2, DL, MVT::i32));
1523     Ptr = DAG.getNode(AMDGPUISD::DWORDADDR, DL, MVT::i32, Ptr);
1524     return DAG.getLoad(MVT::i32, DL, Chain, Ptr, LoadNode->getMemOperand());
1525   }
1526   return SDValue();
1527 }
1528 
1529 SDValue R600TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
1530   SDValue Chain = Op.getOperand(0);
1531   SDValue Cond  = Op.getOperand(1);
1532   SDValue Jump  = Op.getOperand(2);
1533 
1534   return DAG.getNode(AMDGPUISD::BRANCH_COND, SDLoc(Op), Op.getValueType(),
1535                      Chain, Jump, Cond);
1536 }
1537 
1538 SDValue R600TargetLowering::lowerFrameIndex(SDValue Op,
1539                                             SelectionDAG &DAG) const {
1540   MachineFunction &MF = DAG.getMachineFunction();
1541   const R600FrameLowering *TFL = Subtarget->getFrameLowering();
1542 
1543   FrameIndexSDNode *FIN = cast<FrameIndexSDNode>(Op);
1544 
1545   unsigned FrameIndex = FIN->getIndex();
1546   unsigned IgnoredFrameReg;
1547   unsigned Offset =
1548     TFL->getFrameIndexReference(MF, FrameIndex, IgnoredFrameReg);
1549   return DAG.getConstant(Offset * 4 * TFL->getStackWidth(MF), SDLoc(Op),
1550                          Op.getValueType());
1551 }
1552 
1553 CCAssignFn *R600TargetLowering::CCAssignFnForCall(CallingConv::ID CC,
1554                                                   bool IsVarArg) const {
1555   switch (CC) {
1556   case CallingConv::AMDGPU_KERNEL:
1557   case CallingConv::SPIR_KERNEL:
1558   case CallingConv::C:
1559   case CallingConv::Fast:
1560   case CallingConv::Cold:
1561     llvm_unreachable("kernels should not be handled here");
1562   case CallingConv::AMDGPU_VS:
1563   case CallingConv::AMDGPU_GS:
1564   case CallingConv::AMDGPU_PS:
1565   case CallingConv::AMDGPU_CS:
1566   case CallingConv::AMDGPU_HS:
1567   case CallingConv::AMDGPU_ES:
1568   case CallingConv::AMDGPU_LS:
1569     return CC_R600;
1570   default:
1571     report_fatal_error("Unsupported calling convention.");
1572   }
1573 }
1574 
1575 /// XXX Only kernel functions are supported, so we can assume for now that
1576 /// every function is a kernel function, but in the future we should use
1577 /// separate calling conventions for kernel and non-kernel functions.
1578 SDValue R600TargetLowering::LowerFormalArguments(
1579     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1580     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1581     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1582   SmallVector<CCValAssign, 16> ArgLocs;
1583   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1584                  *DAG.getContext());
1585   MachineFunction &MF = DAG.getMachineFunction();
1586   SmallVector<ISD::InputArg, 8> LocalIns;
1587 
1588   if (AMDGPU::isShader(CallConv)) {
1589     CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForCall(CallConv, isVarArg));
1590   } else {
1591     analyzeFormalArgumentsCompute(CCInfo, Ins);
1592   }
1593 
1594   for (unsigned i = 0, e = Ins.size(); i < e; ++i) {
1595     CCValAssign &VA = ArgLocs[i];
1596     const ISD::InputArg &In = Ins[i];
1597     EVT VT = In.VT;
1598     EVT MemVT = VA.getLocVT();
1599     if (!VT.isVector() && MemVT.isVector()) {
1600       // Get load source type if scalarized.
1601       MemVT = MemVT.getVectorElementType();
1602     }
1603 
1604     if (AMDGPU::isShader(CallConv)) {
1605       unsigned Reg = MF.addLiveIn(VA.getLocReg(), &R600::R600_Reg128RegClass);
1606       SDValue Register = DAG.getCopyFromReg(Chain, DL, Reg, VT);
1607       InVals.push_back(Register);
1608       continue;
1609     }
1610 
1611     // i64 isn't a legal type, so the register type used ends up as i32, which
1612     // isn't expected here. It attempts to create this sextload, but it ends up
1613     // being invalid. Somehow this seems to work with i64 arguments, but breaks
1614     // for <1 x i64>.
1615 
1616     // The first 36 bytes of the input buffer contains information about
1617     // thread group and global sizes.
1618     ISD::LoadExtType Ext = ISD::NON_EXTLOAD;
1619     if (MemVT.getScalarSizeInBits() != VT.getScalarSizeInBits()) {
1620       // FIXME: This should really check the extload type, but the handling of
1621       // extload vector parameters seems to be broken.
1622 
1623       // Ext = In.Flags.isSExt() ? ISD::SEXTLOAD : ISD::ZEXTLOAD;
1624       Ext = ISD::SEXTLOAD;
1625     }
1626 
1627     // Compute the offset from the value.
1628     // XXX - I think PartOffset should give you this, but it seems to give the
1629     // size of the register which isn't useful.
1630 
1631     unsigned PartOffset = VA.getLocMemOffset();
1632     unsigned Alignment = MinAlign(VT.getStoreSize(), PartOffset);
1633 
1634     MachinePointerInfo PtrInfo(AMDGPUAS::PARAM_I_ADDRESS);
1635     SDValue Arg = DAG.getLoad(
1636         ISD::UNINDEXED, Ext, VT, DL, Chain,
1637         DAG.getConstant(PartOffset, DL, MVT::i32), DAG.getUNDEF(MVT::i32),
1638         PtrInfo,
1639         MemVT, Alignment, MachineMemOperand::MONonTemporal |
1640                                         MachineMemOperand::MODereferenceable |
1641                                         MachineMemOperand::MOInvariant);
1642 
1643     InVals.push_back(Arg);
1644   }
1645   return Chain;
1646 }
1647 
1648 EVT R600TargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &,
1649                                            EVT VT) const {
1650    if (!VT.isVector())
1651      return MVT::i32;
1652    return VT.changeVectorElementTypeToInteger();
1653 }
1654 
1655 bool R600TargetLowering::canMergeStoresTo(unsigned AS, EVT MemVT,
1656                                           const SelectionDAG &DAG) const {
1657   // Local and Private addresses do not handle vectors. Limit to i32
1658   if ((AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::PRIVATE_ADDRESS)) {
1659     return (MemVT.getSizeInBits() <= 32);
1660   }
1661   return true;
1662 }
1663 
1664 bool R600TargetLowering::allowsMisalignedMemoryAccesses(
1665     EVT VT, unsigned AddrSpace, unsigned Align, MachineMemOperand::Flags Flags,
1666     bool *IsFast) const {
1667   if (IsFast)
1668     *IsFast = false;
1669 
1670   if (!VT.isSimple() || VT == MVT::Other)
1671     return false;
1672 
1673   if (VT.bitsLT(MVT::i32))
1674     return false;
1675 
1676   // TODO: This is a rough estimate.
1677   if (IsFast)
1678     *IsFast = true;
1679 
1680   return VT.bitsGT(MVT::i32) && Align % 4 == 0;
1681 }
1682 
1683 static SDValue CompactSwizzlableVector(
1684   SelectionDAG &DAG, SDValue VectorEntry,
1685   DenseMap<unsigned, unsigned> &RemapSwizzle) {
1686   assert(RemapSwizzle.empty());
1687 
1688   SDLoc DL(VectorEntry);
1689   EVT EltTy = VectorEntry.getValueType().getVectorElementType();
1690 
1691   SDValue NewBldVec[4];
1692   for (unsigned i = 0; i < 4; i++)
1693     NewBldVec[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltTy, VectorEntry,
1694                                DAG.getIntPtrConstant(i, DL));
1695 
1696   for (unsigned i = 0; i < 4; i++) {
1697     if (NewBldVec[i].isUndef())
1698       // We mask write here to teach later passes that the ith element of this
1699       // vector is undef. Thus we can use it to reduce 128 bits reg usage,
1700       // break false dependencies and additionnaly make assembly easier to read.
1701       RemapSwizzle[i] = 7; // SEL_MASK_WRITE
1702     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(NewBldVec[i])) {
1703       if (C->isZero()) {
1704         RemapSwizzle[i] = 4; // SEL_0
1705         NewBldVec[i] = DAG.getUNDEF(MVT::f32);
1706       } else if (C->isExactlyValue(1.0)) {
1707         RemapSwizzle[i] = 5; // SEL_1
1708         NewBldVec[i] = DAG.getUNDEF(MVT::f32);
1709       }
1710     }
1711 
1712     if (NewBldVec[i].isUndef())
1713       continue;
1714 
1715     for (unsigned j = 0; j < i; j++) {
1716       if (NewBldVec[i] == NewBldVec[j]) {
1717         NewBldVec[i] = DAG.getUNDEF(NewBldVec[i].getValueType());
1718         RemapSwizzle[i] = j;
1719         break;
1720       }
1721     }
1722   }
1723 
1724   return DAG.getBuildVector(VectorEntry.getValueType(), SDLoc(VectorEntry),
1725                             NewBldVec);
1726 }
1727 
1728 static SDValue ReorganizeVector(SelectionDAG &DAG, SDValue VectorEntry,
1729                                 DenseMap<unsigned, unsigned> &RemapSwizzle) {
1730   assert(RemapSwizzle.empty());
1731 
1732   SDLoc DL(VectorEntry);
1733   EVT EltTy = VectorEntry.getValueType().getVectorElementType();
1734 
1735   SDValue NewBldVec[4];
1736   bool isUnmovable[4] = {false, false, false, false};
1737   for (unsigned i = 0; i < 4; i++)
1738     NewBldVec[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltTy, VectorEntry,
1739                                DAG.getIntPtrConstant(i, DL));
1740 
1741   for (unsigned i = 0; i < 4; i++) {
1742     RemapSwizzle[i] = i;
1743     if (NewBldVec[i].getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
1744       unsigned Idx = dyn_cast<ConstantSDNode>(NewBldVec[i].getOperand(1))
1745           ->getZExtValue();
1746       if (i == Idx)
1747         isUnmovable[Idx] = true;
1748     }
1749   }
1750 
1751   for (unsigned i = 0; i < 4; i++) {
1752     if (NewBldVec[i].getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
1753       unsigned Idx = dyn_cast<ConstantSDNode>(NewBldVec[i].getOperand(1))
1754           ->getZExtValue();
1755       if (isUnmovable[Idx])
1756         continue;
1757       // Swap i and Idx
1758       std::swap(NewBldVec[Idx], NewBldVec[i]);
1759       std::swap(RemapSwizzle[i], RemapSwizzle[Idx]);
1760       break;
1761     }
1762   }
1763 
1764   return DAG.getBuildVector(VectorEntry.getValueType(), SDLoc(VectorEntry),
1765                             NewBldVec);
1766 }
1767 
1768 SDValue R600TargetLowering::OptimizeSwizzle(SDValue BuildVector, SDValue Swz[4],
1769                                             SelectionDAG &DAG,
1770                                             const SDLoc &DL) const {
1771   // Old -> New swizzle values
1772   DenseMap<unsigned, unsigned> SwizzleRemap;
1773 
1774   BuildVector = CompactSwizzlableVector(DAG, BuildVector, SwizzleRemap);
1775   for (unsigned i = 0; i < 4; i++) {
1776     unsigned Idx = cast<ConstantSDNode>(Swz[i])->getZExtValue();
1777     if (SwizzleRemap.find(Idx) != SwizzleRemap.end())
1778       Swz[i] = DAG.getConstant(SwizzleRemap[Idx], DL, MVT::i32);
1779   }
1780 
1781   SwizzleRemap.clear();
1782   BuildVector = ReorganizeVector(DAG, BuildVector, SwizzleRemap);
1783   for (unsigned i = 0; i < 4; i++) {
1784     unsigned Idx = cast<ConstantSDNode>(Swz[i])->getZExtValue();
1785     if (SwizzleRemap.find(Idx) != SwizzleRemap.end())
1786       Swz[i] = DAG.getConstant(SwizzleRemap[Idx], DL, MVT::i32);
1787   }
1788 
1789   return BuildVector;
1790 }
1791 
1792 SDValue R600TargetLowering::constBufferLoad(LoadSDNode *LoadNode, int Block,
1793                                             SelectionDAG &DAG) const {
1794   SDLoc DL(LoadNode);
1795   EVT VT = LoadNode->getValueType(0);
1796   SDValue Chain = LoadNode->getChain();
1797   SDValue Ptr = LoadNode->getBasePtr();
1798   assert (isa<ConstantSDNode>(Ptr));
1799 
1800   //TODO: Support smaller loads
1801   if (LoadNode->getMemoryVT().getScalarType() != MVT::i32 || !ISD::isNON_EXTLoad(LoadNode))
1802     return SDValue();
1803 
1804   if (LoadNode->getAlignment() < 4)
1805     return SDValue();
1806 
1807   int ConstantBlock = ConstantAddressBlock(Block);
1808 
1809   SDValue Slots[4];
1810   for (unsigned i = 0; i < 4; i++) {
1811     // We want Const position encoded with the following formula :
1812     // (((512 + (kc_bank << 12) + const_index) << 2) + chan)
1813     // const_index is Ptr computed by llvm using an alignment of 16.
1814     // Thus we add (((512 + (kc_bank << 12)) + chan ) * 4 here and
1815     // then div by 4 at the ISel step
1816     SDValue NewPtr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr,
1817         DAG.getConstant(4 * i + ConstantBlock * 16, DL, MVT::i32));
1818     Slots[i] = DAG.getNode(AMDGPUISD::CONST_ADDRESS, DL, MVT::i32, NewPtr);
1819   }
1820   EVT NewVT = MVT::v4i32;
1821   unsigned NumElements = 4;
1822   if (VT.isVector()) {
1823     NewVT = VT;
1824     NumElements = VT.getVectorNumElements();
1825   }
1826   SDValue Result = DAG.getBuildVector(NewVT, DL, makeArrayRef(Slots, NumElements));
1827   if (!VT.isVector()) {
1828     Result = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, Result,
1829                          DAG.getConstant(0, DL, MVT::i32));
1830   }
1831   SDValue MergedValues[2] = {
1832     Result,
1833     Chain
1834   };
1835   return DAG.getMergeValues(MergedValues, DL);
1836 }
1837 
1838 //===----------------------------------------------------------------------===//
1839 // Custom DAG Optimizations
1840 //===----------------------------------------------------------------------===//
1841 
1842 SDValue R600TargetLowering::PerformDAGCombine(SDNode *N,
1843                                               DAGCombinerInfo &DCI) const {
1844   SelectionDAG &DAG = DCI.DAG;
1845   SDLoc DL(N);
1846 
1847   switch (N->getOpcode()) {
1848   // (f32 fp_round (f64 uint_to_fp a)) -> (f32 uint_to_fp a)
1849   case ISD::FP_ROUND: {
1850       SDValue Arg = N->getOperand(0);
1851       if (Arg.getOpcode() == ISD::UINT_TO_FP && Arg.getValueType() == MVT::f64) {
1852         return DAG.getNode(ISD::UINT_TO_FP, DL, N->getValueType(0),
1853                            Arg.getOperand(0));
1854       }
1855       break;
1856     }
1857 
1858   // (i32 fp_to_sint (fneg (select_cc f32, f32, 1.0, 0.0 cc))) ->
1859   // (i32 select_cc f32, f32, -1, 0 cc)
1860   //
1861   // Mesa's GLSL frontend generates the above pattern a lot and we can lower
1862   // this to one of the SET*_DX10 instructions.
1863   case ISD::FP_TO_SINT: {
1864     SDValue FNeg = N->getOperand(0);
1865     if (FNeg.getOpcode() != ISD::FNEG) {
1866       return SDValue();
1867     }
1868     SDValue SelectCC = FNeg.getOperand(0);
1869     if (SelectCC.getOpcode() != ISD::SELECT_CC ||
1870         SelectCC.getOperand(0).getValueType() != MVT::f32 || // LHS
1871         SelectCC.getOperand(2).getValueType() != MVT::f32 || // True
1872         !isHWTrueValue(SelectCC.getOperand(2)) ||
1873         !isHWFalseValue(SelectCC.getOperand(3))) {
1874       return SDValue();
1875     }
1876 
1877     return DAG.getNode(ISD::SELECT_CC, DL, N->getValueType(0),
1878                            SelectCC.getOperand(0), // LHS
1879                            SelectCC.getOperand(1), // RHS
1880                            DAG.getConstant(-1, DL, MVT::i32), // True
1881                            DAG.getConstant(0, DL, MVT::i32),  // False
1882                            SelectCC.getOperand(4)); // CC
1883   }
1884 
1885   // insert_vector_elt (build_vector elt0, ... , eltN), NewEltIdx, idx
1886   // => build_vector elt0, ... , NewEltIdx, ... , eltN
1887   case ISD::INSERT_VECTOR_ELT: {
1888     SDValue InVec = N->getOperand(0);
1889     SDValue InVal = N->getOperand(1);
1890     SDValue EltNo = N->getOperand(2);
1891 
1892     // If the inserted element is an UNDEF, just use the input vector.
1893     if (InVal.isUndef())
1894       return InVec;
1895 
1896     EVT VT = InVec.getValueType();
1897 
1898     // If we can't generate a legal BUILD_VECTOR, exit
1899     if (!isOperationLegal(ISD::BUILD_VECTOR, VT))
1900       return SDValue();
1901 
1902     // Check that we know which element is being inserted
1903     if (!isa<ConstantSDNode>(EltNo))
1904       return SDValue();
1905     unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
1906 
1907     // Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially
1908     // be converted to a BUILD_VECTOR).  Fill in the Ops vector with the
1909     // vector elements.
1910     SmallVector<SDValue, 8> Ops;
1911     if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
1912       Ops.append(InVec.getNode()->op_begin(),
1913                  InVec.getNode()->op_end());
1914     } else if (InVec.isUndef()) {
1915       unsigned NElts = VT.getVectorNumElements();
1916       Ops.append(NElts, DAG.getUNDEF(InVal.getValueType()));
1917     } else {
1918       return SDValue();
1919     }
1920 
1921     // Insert the element
1922     if (Elt < Ops.size()) {
1923       // All the operands of BUILD_VECTOR must have the same type;
1924       // we enforce that here.
1925       EVT OpVT = Ops[0].getValueType();
1926       if (InVal.getValueType() != OpVT)
1927         InVal = OpVT.bitsGT(InVal.getValueType()) ?
1928           DAG.getNode(ISD::ANY_EXTEND, DL, OpVT, InVal) :
1929           DAG.getNode(ISD::TRUNCATE, DL, OpVT, InVal);
1930       Ops[Elt] = InVal;
1931     }
1932 
1933     // Return the new vector
1934     return DAG.getBuildVector(VT, DL, Ops);
1935   }
1936 
1937   // Extract_vec (Build_vector) generated by custom lowering
1938   // also needs to be customly combined
1939   case ISD::EXTRACT_VECTOR_ELT: {
1940     SDValue Arg = N->getOperand(0);
1941     if (Arg.getOpcode() == ISD::BUILD_VECTOR) {
1942       if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
1943         unsigned Element = Const->getZExtValue();
1944         return Arg->getOperand(Element);
1945       }
1946     }
1947     if (Arg.getOpcode() == ISD::BITCAST &&
1948         Arg.getOperand(0).getOpcode() == ISD::BUILD_VECTOR &&
1949         (Arg.getOperand(0).getValueType().getVectorNumElements() ==
1950          Arg.getValueType().getVectorNumElements())) {
1951       if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
1952         unsigned Element = Const->getZExtValue();
1953         return DAG.getNode(ISD::BITCAST, DL, N->getVTList(),
1954                            Arg->getOperand(0).getOperand(Element));
1955       }
1956     }
1957     break;
1958   }
1959 
1960   case ISD::SELECT_CC: {
1961     // Try common optimizations
1962     if (SDValue Ret = AMDGPUTargetLowering::PerformDAGCombine(N, DCI))
1963       return Ret;
1964 
1965     // fold selectcc (selectcc x, y, a, b, cc), b, a, b, seteq ->
1966     //      selectcc x, y, a, b, inv(cc)
1967     //
1968     // fold selectcc (selectcc x, y, a, b, cc), b, a, b, setne ->
1969     //      selectcc x, y, a, b, cc
1970     SDValue LHS = N->getOperand(0);
1971     if (LHS.getOpcode() != ISD::SELECT_CC) {
1972       return SDValue();
1973     }
1974 
1975     SDValue RHS = N->getOperand(1);
1976     SDValue True = N->getOperand(2);
1977     SDValue False = N->getOperand(3);
1978     ISD::CondCode NCC = cast<CondCodeSDNode>(N->getOperand(4))->get();
1979 
1980     if (LHS.getOperand(2).getNode() != True.getNode() ||
1981         LHS.getOperand(3).getNode() != False.getNode() ||
1982         RHS.getNode() != False.getNode()) {
1983       return SDValue();
1984     }
1985 
1986     switch (NCC) {
1987     default: return SDValue();
1988     case ISD::SETNE: return LHS;
1989     case ISD::SETEQ: {
1990       ISD::CondCode LHSCC = cast<CondCodeSDNode>(LHS.getOperand(4))->get();
1991       LHSCC = ISD::getSetCCInverse(LHSCC, LHS.getOperand(0).getValueType());
1992       if (DCI.isBeforeLegalizeOps() ||
1993           isCondCodeLegal(LHSCC, LHS.getOperand(0).getSimpleValueType()))
1994         return DAG.getSelectCC(DL,
1995                                LHS.getOperand(0),
1996                                LHS.getOperand(1),
1997                                LHS.getOperand(2),
1998                                LHS.getOperand(3),
1999                                LHSCC);
2000       break;
2001     }
2002     }
2003     return SDValue();
2004   }
2005 
2006   case AMDGPUISD::R600_EXPORT: {
2007     SDValue Arg = N->getOperand(1);
2008     if (Arg.getOpcode() != ISD::BUILD_VECTOR)
2009       break;
2010 
2011     SDValue NewArgs[8] = {
2012       N->getOperand(0), // Chain
2013       SDValue(),
2014       N->getOperand(2), // ArrayBase
2015       N->getOperand(3), // Type
2016       N->getOperand(4), // SWZ_X
2017       N->getOperand(5), // SWZ_Y
2018       N->getOperand(6), // SWZ_Z
2019       N->getOperand(7) // SWZ_W
2020     };
2021     NewArgs[1] = OptimizeSwizzle(N->getOperand(1), &NewArgs[4], DAG, DL);
2022     return DAG.getNode(AMDGPUISD::R600_EXPORT, DL, N->getVTList(), NewArgs);
2023   }
2024   case AMDGPUISD::TEXTURE_FETCH: {
2025     SDValue Arg = N->getOperand(1);
2026     if (Arg.getOpcode() != ISD::BUILD_VECTOR)
2027       break;
2028 
2029     SDValue NewArgs[19] = {
2030       N->getOperand(0),
2031       N->getOperand(1),
2032       N->getOperand(2),
2033       N->getOperand(3),
2034       N->getOperand(4),
2035       N->getOperand(5),
2036       N->getOperand(6),
2037       N->getOperand(7),
2038       N->getOperand(8),
2039       N->getOperand(9),
2040       N->getOperand(10),
2041       N->getOperand(11),
2042       N->getOperand(12),
2043       N->getOperand(13),
2044       N->getOperand(14),
2045       N->getOperand(15),
2046       N->getOperand(16),
2047       N->getOperand(17),
2048       N->getOperand(18),
2049     };
2050     NewArgs[1] = OptimizeSwizzle(N->getOperand(1), &NewArgs[2], DAG, DL);
2051     return DAG.getNode(AMDGPUISD::TEXTURE_FETCH, DL, N->getVTList(), NewArgs);
2052   }
2053 
2054   case ISD::LOAD: {
2055     LoadSDNode *LoadNode = cast<LoadSDNode>(N);
2056     SDValue Ptr = LoadNode->getBasePtr();
2057     if (LoadNode->getAddressSpace() == AMDGPUAS::PARAM_I_ADDRESS &&
2058          isa<ConstantSDNode>(Ptr))
2059       return constBufferLoad(LoadNode, AMDGPUAS::CONSTANT_BUFFER_0, DAG);
2060     break;
2061   }
2062 
2063   default: break;
2064   }
2065 
2066   return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
2067 }
2068 
2069 bool R600TargetLowering::FoldOperand(SDNode *ParentNode, unsigned SrcIdx,
2070                                      SDValue &Src, SDValue &Neg, SDValue &Abs,
2071                                      SDValue &Sel, SDValue &Imm,
2072                                      SelectionDAG &DAG) const {
2073   const R600InstrInfo *TII = Subtarget->getInstrInfo();
2074   if (!Src.isMachineOpcode())
2075     return false;
2076 
2077   switch (Src.getMachineOpcode()) {
2078   case R600::FNEG_R600:
2079     if (!Neg.getNode())
2080       return false;
2081     Src = Src.getOperand(0);
2082     Neg = DAG.getTargetConstant(1, SDLoc(ParentNode), MVT::i32);
2083     return true;
2084   case R600::FABS_R600:
2085     if (!Abs.getNode())
2086       return false;
2087     Src = Src.getOperand(0);
2088     Abs = DAG.getTargetConstant(1, SDLoc(ParentNode), MVT::i32);
2089     return true;
2090   case R600::CONST_COPY: {
2091     unsigned Opcode = ParentNode->getMachineOpcode();
2092     bool HasDst = TII->getOperandIdx(Opcode, R600::OpName::dst) > -1;
2093 
2094     if (!Sel.getNode())
2095       return false;
2096 
2097     SDValue CstOffset = Src.getOperand(0);
2098     if (ParentNode->getValueType(0).isVector())
2099       return false;
2100 
2101     // Gather constants values
2102     int SrcIndices[] = {
2103       TII->getOperandIdx(Opcode, R600::OpName::src0),
2104       TII->getOperandIdx(Opcode, R600::OpName::src1),
2105       TII->getOperandIdx(Opcode, R600::OpName::src2),
2106       TII->getOperandIdx(Opcode, R600::OpName::src0_X),
2107       TII->getOperandIdx(Opcode, R600::OpName::src0_Y),
2108       TII->getOperandIdx(Opcode, R600::OpName::src0_Z),
2109       TII->getOperandIdx(Opcode, R600::OpName::src0_W),
2110       TII->getOperandIdx(Opcode, R600::OpName::src1_X),
2111       TII->getOperandIdx(Opcode, R600::OpName::src1_Y),
2112       TII->getOperandIdx(Opcode, R600::OpName::src1_Z),
2113       TII->getOperandIdx(Opcode, R600::OpName::src1_W)
2114     };
2115     std::vector<unsigned> Consts;
2116     for (int OtherSrcIdx : SrcIndices) {
2117       int OtherSelIdx = TII->getSelIdx(Opcode, OtherSrcIdx);
2118       if (OtherSrcIdx < 0 || OtherSelIdx < 0)
2119         continue;
2120       if (HasDst) {
2121         OtherSrcIdx--;
2122         OtherSelIdx--;
2123       }
2124       if (RegisterSDNode *Reg =
2125           dyn_cast<RegisterSDNode>(ParentNode->getOperand(OtherSrcIdx))) {
2126         if (Reg->getReg() == R600::ALU_CONST) {
2127           ConstantSDNode *Cst
2128             = cast<ConstantSDNode>(ParentNode->getOperand(OtherSelIdx));
2129           Consts.push_back(Cst->getZExtValue());
2130         }
2131       }
2132     }
2133 
2134     ConstantSDNode *Cst = cast<ConstantSDNode>(CstOffset);
2135     Consts.push_back(Cst->getZExtValue());
2136     if (!TII->fitsConstReadLimitations(Consts)) {
2137       return false;
2138     }
2139 
2140     Sel = CstOffset;
2141     Src = DAG.getRegister(R600::ALU_CONST, MVT::f32);
2142     return true;
2143   }
2144   case R600::MOV_IMM_GLOBAL_ADDR:
2145     // Check if the Imm slot is used. Taken from below.
2146     if (cast<ConstantSDNode>(Imm)->getZExtValue())
2147       return false;
2148     Imm = Src.getOperand(0);
2149     Src = DAG.getRegister(R600::ALU_LITERAL_X, MVT::i32);
2150     return true;
2151   case R600::MOV_IMM_I32:
2152   case R600::MOV_IMM_F32: {
2153     unsigned ImmReg = R600::ALU_LITERAL_X;
2154     uint64_t ImmValue = 0;
2155 
2156     if (Src.getMachineOpcode() == R600::MOV_IMM_F32) {
2157       ConstantFPSDNode *FPC = dyn_cast<ConstantFPSDNode>(Src.getOperand(0));
2158       float FloatValue = FPC->getValueAPF().convertToFloat();
2159       if (FloatValue == 0.0) {
2160         ImmReg = R600::ZERO;
2161       } else if (FloatValue == 0.5) {
2162         ImmReg = R600::HALF;
2163       } else if (FloatValue == 1.0) {
2164         ImmReg = R600::ONE;
2165       } else {
2166         ImmValue = FPC->getValueAPF().bitcastToAPInt().getZExtValue();
2167       }
2168     } else {
2169       ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src.getOperand(0));
2170       uint64_t Value = C->getZExtValue();
2171       if (Value == 0) {
2172         ImmReg = R600::ZERO;
2173       } else if (Value == 1) {
2174         ImmReg = R600::ONE_INT;
2175       } else {
2176         ImmValue = Value;
2177       }
2178     }
2179 
2180     // Check that we aren't already using an immediate.
2181     // XXX: It's possible for an instruction to have more than one
2182     // immediate operand, but this is not supported yet.
2183     if (ImmReg == R600::ALU_LITERAL_X) {
2184       if (!Imm.getNode())
2185         return false;
2186       ConstantSDNode *C = dyn_cast<ConstantSDNode>(Imm);
2187       assert(C);
2188       if (C->getZExtValue())
2189         return false;
2190       Imm = DAG.getTargetConstant(ImmValue, SDLoc(ParentNode), MVT::i32);
2191     }
2192     Src = DAG.getRegister(ImmReg, MVT::i32);
2193     return true;
2194   }
2195   default:
2196     return false;
2197   }
2198 }
2199 
2200 /// Fold the instructions after selecting them
2201 SDNode *R600TargetLowering::PostISelFolding(MachineSDNode *Node,
2202                                             SelectionDAG &DAG) const {
2203   const R600InstrInfo *TII = Subtarget->getInstrInfo();
2204   if (!Node->isMachineOpcode())
2205     return Node;
2206 
2207   unsigned Opcode = Node->getMachineOpcode();
2208   SDValue FakeOp;
2209 
2210   std::vector<SDValue> Ops(Node->op_begin(), Node->op_end());
2211 
2212   if (Opcode == R600::DOT_4) {
2213     int OperandIdx[] = {
2214       TII->getOperandIdx(Opcode, R600::OpName::src0_X),
2215       TII->getOperandIdx(Opcode, R600::OpName::src0_Y),
2216       TII->getOperandIdx(Opcode, R600::OpName::src0_Z),
2217       TII->getOperandIdx(Opcode, R600::OpName::src0_W),
2218       TII->getOperandIdx(Opcode, R600::OpName::src1_X),
2219       TII->getOperandIdx(Opcode, R600::OpName::src1_Y),
2220       TII->getOperandIdx(Opcode, R600::OpName::src1_Z),
2221       TII->getOperandIdx(Opcode, R600::OpName::src1_W)
2222         };
2223     int NegIdx[] = {
2224       TII->getOperandIdx(Opcode, R600::OpName::src0_neg_X),
2225       TII->getOperandIdx(Opcode, R600::OpName::src0_neg_Y),
2226       TII->getOperandIdx(Opcode, R600::OpName::src0_neg_Z),
2227       TII->getOperandIdx(Opcode, R600::OpName::src0_neg_W),
2228       TII->getOperandIdx(Opcode, R600::OpName::src1_neg_X),
2229       TII->getOperandIdx(Opcode, R600::OpName::src1_neg_Y),
2230       TII->getOperandIdx(Opcode, R600::OpName::src1_neg_Z),
2231       TII->getOperandIdx(Opcode, R600::OpName::src1_neg_W)
2232     };
2233     int AbsIdx[] = {
2234       TII->getOperandIdx(Opcode, R600::OpName::src0_abs_X),
2235       TII->getOperandIdx(Opcode, R600::OpName::src0_abs_Y),
2236       TII->getOperandIdx(Opcode, R600::OpName::src0_abs_Z),
2237       TII->getOperandIdx(Opcode, R600::OpName::src0_abs_W),
2238       TII->getOperandIdx(Opcode, R600::OpName::src1_abs_X),
2239       TII->getOperandIdx(Opcode, R600::OpName::src1_abs_Y),
2240       TII->getOperandIdx(Opcode, R600::OpName::src1_abs_Z),
2241       TII->getOperandIdx(Opcode, R600::OpName::src1_abs_W)
2242     };
2243     for (unsigned i = 0; i < 8; i++) {
2244       if (OperandIdx[i] < 0)
2245         return Node;
2246       SDValue &Src = Ops[OperandIdx[i] - 1];
2247       SDValue &Neg = Ops[NegIdx[i] - 1];
2248       SDValue &Abs = Ops[AbsIdx[i] - 1];
2249       bool HasDst = TII->getOperandIdx(Opcode, R600::OpName::dst) > -1;
2250       int SelIdx = TII->getSelIdx(Opcode, OperandIdx[i]);
2251       if (HasDst)
2252         SelIdx--;
2253       SDValue &Sel = (SelIdx > -1) ? Ops[SelIdx] : FakeOp;
2254       if (FoldOperand(Node, i, Src, Neg, Abs, Sel, FakeOp, DAG))
2255         return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
2256     }
2257   } else if (Opcode == R600::REG_SEQUENCE) {
2258     for (unsigned i = 1, e = Node->getNumOperands(); i < e; i += 2) {
2259       SDValue &Src = Ops[i];
2260       if (FoldOperand(Node, i, Src, FakeOp, FakeOp, FakeOp, FakeOp, DAG))
2261         return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
2262     }
2263   } else {
2264     if (!TII->hasInstrModifiers(Opcode))
2265       return Node;
2266     int OperandIdx[] = {
2267       TII->getOperandIdx(Opcode, R600::OpName::src0),
2268       TII->getOperandIdx(Opcode, R600::OpName::src1),
2269       TII->getOperandIdx(Opcode, R600::OpName::src2)
2270     };
2271     int NegIdx[] = {
2272       TII->getOperandIdx(Opcode, R600::OpName::src0_neg),
2273       TII->getOperandIdx(Opcode, R600::OpName::src1_neg),
2274       TII->getOperandIdx(Opcode, R600::OpName::src2_neg)
2275     };
2276     int AbsIdx[] = {
2277       TII->getOperandIdx(Opcode, R600::OpName::src0_abs),
2278       TII->getOperandIdx(Opcode, R600::OpName::src1_abs),
2279       -1
2280     };
2281     for (unsigned i = 0; i < 3; i++) {
2282       if (OperandIdx[i] < 0)
2283         return Node;
2284       SDValue &Src = Ops[OperandIdx[i] - 1];
2285       SDValue &Neg = Ops[NegIdx[i] - 1];
2286       SDValue FakeAbs;
2287       SDValue &Abs = (AbsIdx[i] > -1) ? Ops[AbsIdx[i] - 1] : FakeAbs;
2288       bool HasDst = TII->getOperandIdx(Opcode, R600::OpName::dst) > -1;
2289       int SelIdx = TII->getSelIdx(Opcode, OperandIdx[i]);
2290       int ImmIdx = TII->getOperandIdx(Opcode, R600::OpName::literal);
2291       if (HasDst) {
2292         SelIdx--;
2293         ImmIdx--;
2294       }
2295       SDValue &Sel = (SelIdx > -1) ? Ops[SelIdx] : FakeOp;
2296       SDValue &Imm = Ops[ImmIdx];
2297       if (FoldOperand(Node, i, Src, Neg, Abs, Sel, Imm, DAG))
2298         return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
2299     }
2300   }
2301 
2302   return Node;
2303 }
2304