1 //===-- SIFoldOperands.cpp - Fold operands --- ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 /// \file
8 //===----------------------------------------------------------------------===//
9 //
10 
11 #include "AMDGPU.h"
12 #include "AMDGPUSubtarget.h"
13 #include "SIInstrInfo.h"
14 #include "SIMachineFunctionInfo.h"
15 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
16 #include "llvm/ADT/DepthFirstIterator.h"
17 #include "llvm/ADT/SetVector.h"
18 #include "llvm/CodeGen/MachineFunctionPass.h"
19 #include "llvm/CodeGen/MachineInstrBuilder.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/Support/Debug.h"
22 #include "llvm/Support/raw_ostream.h"
23 #include "llvm/Target/TargetMachine.h"
24 
25 #define DEBUG_TYPE "si-fold-operands"
26 using namespace llvm;
27 
28 namespace {
29 
30 struct FoldCandidate {
31   MachineInstr *UseMI;
32   union {
33     MachineOperand *OpToFold;
34     uint64_t ImmToFold;
35     int FrameIndexToFold;
36   };
37   int ShrinkOpcode;
38   unsigned char UseOpNo;
39   MachineOperand::MachineOperandType Kind;
40   bool Commuted;
41 
42   FoldCandidate(MachineInstr *MI, unsigned OpNo, MachineOperand *FoldOp,
43                 bool Commuted_ = false,
44                 int ShrinkOp = -1) :
45     UseMI(MI), OpToFold(nullptr), ShrinkOpcode(ShrinkOp), UseOpNo(OpNo),
46     Kind(FoldOp->getType()),
47     Commuted(Commuted_) {
48     if (FoldOp->isImm()) {
49       ImmToFold = FoldOp->getImm();
50     } else if (FoldOp->isFI()) {
51       FrameIndexToFold = FoldOp->getIndex();
52     } else {
53       assert(FoldOp->isReg() || FoldOp->isGlobal());
54       OpToFold = FoldOp;
55     }
56   }
57 
58   bool isFI() const {
59     return Kind == MachineOperand::MO_FrameIndex;
60   }
61 
62   bool isImm() const {
63     return Kind == MachineOperand::MO_Immediate;
64   }
65 
66   bool isReg() const {
67     return Kind == MachineOperand::MO_Register;
68   }
69 
70   bool isGlobal() const { return Kind == MachineOperand::MO_GlobalAddress; }
71 
72   bool isCommuted() const {
73     return Commuted;
74   }
75 
76   bool needsShrink() const {
77     return ShrinkOpcode != -1;
78   }
79 
80   int getShrinkOpcode() const {
81     return ShrinkOpcode;
82   }
83 };
84 
85 class SIFoldOperands : public MachineFunctionPass {
86 public:
87   static char ID;
88   MachineRegisterInfo *MRI;
89   const SIInstrInfo *TII;
90   const SIRegisterInfo *TRI;
91   const GCNSubtarget *ST;
92   const SIMachineFunctionInfo *MFI;
93 
94   void foldOperand(MachineOperand &OpToFold,
95                    MachineInstr *UseMI,
96                    int UseOpIdx,
97                    SmallVectorImpl<FoldCandidate> &FoldList,
98                    SmallVectorImpl<MachineInstr *> &CopiesToReplace) const;
99 
100   void foldInstOperand(MachineInstr &MI, MachineOperand &OpToFold) const;
101 
102   const MachineOperand *isClamp(const MachineInstr &MI) const;
103   bool tryFoldClamp(MachineInstr &MI);
104 
105   std::pair<const MachineOperand *, int> isOMod(const MachineInstr &MI) const;
106   bool tryFoldOMod(MachineInstr &MI);
107 
108 public:
109   SIFoldOperands() : MachineFunctionPass(ID) {
110     initializeSIFoldOperandsPass(*PassRegistry::getPassRegistry());
111   }
112 
113   bool runOnMachineFunction(MachineFunction &MF) override;
114 
115   StringRef getPassName() const override { return "SI Fold Operands"; }
116 
117   void getAnalysisUsage(AnalysisUsage &AU) const override {
118     AU.setPreservesCFG();
119     MachineFunctionPass::getAnalysisUsage(AU);
120   }
121 };
122 
123 } // End anonymous namespace.
124 
125 INITIALIZE_PASS(SIFoldOperands, DEBUG_TYPE,
126                 "SI Fold Operands", false, false)
127 
128 char SIFoldOperands::ID = 0;
129 
130 char &llvm::SIFoldOperandsID = SIFoldOperands::ID;
131 
132 // Wrapper around isInlineConstant that understands special cases when
133 // instruction types are replaced during operand folding.
134 static bool isInlineConstantIfFolded(const SIInstrInfo *TII,
135                                      const MachineInstr &UseMI,
136                                      unsigned OpNo,
137                                      const MachineOperand &OpToFold) {
138   if (TII->isInlineConstant(UseMI, OpNo, OpToFold))
139     return true;
140 
141   unsigned Opc = UseMI.getOpcode();
142   switch (Opc) {
143   case AMDGPU::V_MAC_F32_e64:
144   case AMDGPU::V_MAC_F16_e64:
145   case AMDGPU::V_FMAC_F32_e64:
146   case AMDGPU::V_FMAC_F16_e64: {
147     // Special case for mac. Since this is replaced with mad when folded into
148     // src2, we need to check the legality for the final instruction.
149     int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2);
150     if (static_cast<int>(OpNo) == Src2Idx) {
151       bool IsFMA = Opc == AMDGPU::V_FMAC_F32_e64 ||
152                    Opc == AMDGPU::V_FMAC_F16_e64;
153       bool IsF32 = Opc == AMDGPU::V_MAC_F32_e64 ||
154                    Opc == AMDGPU::V_FMAC_F32_e64;
155 
156       unsigned Opc = IsFMA ?
157         (IsF32 ? AMDGPU::V_FMA_F32 : AMDGPU::V_FMA_F16_gfx9) :
158         (IsF32 ? AMDGPU::V_MAD_F32 : AMDGPU::V_MAD_F16);
159       const MCInstrDesc &MadDesc = TII->get(Opc);
160       return TII->isInlineConstant(OpToFold, MadDesc.OpInfo[OpNo].OperandType);
161     }
162     return false;
163   }
164   default:
165     return false;
166   }
167 }
168 
169 // TODO: Add heuristic that the frame index might not fit in the addressing mode
170 // immediate offset to avoid materializing in loops.
171 static bool frameIndexMayFold(const SIInstrInfo *TII,
172                               const MachineInstr &UseMI,
173                               int OpNo,
174                               const MachineOperand &OpToFold) {
175   return OpToFold.isFI() &&
176     (TII->isMUBUF(UseMI) || TII->isFLATScratch(UseMI)) &&
177     OpNo == AMDGPU::getNamedOperandIdx(UseMI.getOpcode(), AMDGPU::OpName::vaddr);
178 }
179 
180 FunctionPass *llvm::createSIFoldOperandsPass() {
181   return new SIFoldOperands();
182 }
183 
184 static bool updateOperand(FoldCandidate &Fold,
185                           const SIInstrInfo &TII,
186                           const TargetRegisterInfo &TRI,
187                           const GCNSubtarget &ST) {
188   MachineInstr *MI = Fold.UseMI;
189   MachineOperand &Old = MI->getOperand(Fold.UseOpNo);
190   assert(Old.isReg());
191 
192   if (Fold.isImm()) {
193     if (MI->getDesc().TSFlags & SIInstrFlags::IsPacked &&
194         !(MI->getDesc().TSFlags & SIInstrFlags::IsMAI) &&
195         AMDGPU::isInlinableLiteralV216(static_cast<uint16_t>(Fold.ImmToFold),
196                                        ST.hasInv2PiInlineImm())) {
197       // Set op_sel/op_sel_hi on this operand or bail out if op_sel is
198       // already set.
199       unsigned Opcode = MI->getOpcode();
200       int OpNo = MI->getOperandNo(&Old);
201       int ModIdx = -1;
202       if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src0))
203         ModIdx = AMDGPU::OpName::src0_modifiers;
204       else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src1))
205         ModIdx = AMDGPU::OpName::src1_modifiers;
206       else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2))
207         ModIdx = AMDGPU::OpName::src2_modifiers;
208       assert(ModIdx != -1);
209       ModIdx = AMDGPU::getNamedOperandIdx(Opcode, ModIdx);
210       MachineOperand &Mod = MI->getOperand(ModIdx);
211       unsigned Val = Mod.getImm();
212       if ((Val & SISrcMods::OP_SEL_0) || !(Val & SISrcMods::OP_SEL_1))
213         return false;
214       // Only apply the following transformation if that operand requries
215       // a packed immediate.
216       switch (TII.get(Opcode).OpInfo[OpNo].OperandType) {
217       case AMDGPU::OPERAND_REG_IMM_V2FP16:
218       case AMDGPU::OPERAND_REG_IMM_V2INT16:
219       case AMDGPU::OPERAND_REG_INLINE_C_V2FP16:
220       case AMDGPU::OPERAND_REG_INLINE_C_V2INT16:
221         // If upper part is all zero we do not need op_sel_hi.
222         if (!isUInt<16>(Fold.ImmToFold)) {
223           if (!(Fold.ImmToFold & 0xffff)) {
224             Mod.setImm(Mod.getImm() | SISrcMods::OP_SEL_0);
225             Mod.setImm(Mod.getImm() & ~SISrcMods::OP_SEL_1);
226             Old.ChangeToImmediate((Fold.ImmToFold >> 16) & 0xffff);
227             return true;
228           }
229           Mod.setImm(Mod.getImm() & ~SISrcMods::OP_SEL_1);
230           Old.ChangeToImmediate(Fold.ImmToFold & 0xffff);
231           return true;
232         }
233         break;
234       default:
235         break;
236       }
237     }
238   }
239 
240   if ((Fold.isImm() || Fold.isFI() || Fold.isGlobal()) && Fold.needsShrink()) {
241     MachineBasicBlock *MBB = MI->getParent();
242     auto Liveness = MBB->computeRegisterLiveness(&TRI, AMDGPU::VCC, MI, 16);
243     if (Liveness != MachineBasicBlock::LQR_Dead) {
244       LLVM_DEBUG(dbgs() << "Not shrinking " << MI << " due to vcc liveness\n");
245       return false;
246     }
247 
248     MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
249     int Op32 = Fold.getShrinkOpcode();
250     MachineOperand &Dst0 = MI->getOperand(0);
251     MachineOperand &Dst1 = MI->getOperand(1);
252     assert(Dst0.isDef() && Dst1.isDef());
253 
254     bool HaveNonDbgCarryUse = !MRI.use_nodbg_empty(Dst1.getReg());
255 
256     const TargetRegisterClass *Dst0RC = MRI.getRegClass(Dst0.getReg());
257     Register NewReg0 = MRI.createVirtualRegister(Dst0RC);
258 
259     MachineInstr *Inst32 = TII.buildShrunkInst(*MI, Op32);
260 
261     if (HaveNonDbgCarryUse) {
262       BuildMI(*MBB, MI, MI->getDebugLoc(), TII.get(AMDGPU::COPY), Dst1.getReg())
263         .addReg(AMDGPU::VCC, RegState::Kill);
264     }
265 
266     // Keep the old instruction around to avoid breaking iterators, but
267     // replace it with a dummy instruction to remove uses.
268     //
269     // FIXME: We should not invert how this pass looks at operands to avoid
270     // this. Should track set of foldable movs instead of looking for uses
271     // when looking at a use.
272     Dst0.setReg(NewReg0);
273     for (unsigned I = MI->getNumOperands() - 1; I > 0; --I)
274       MI->RemoveOperand(I);
275     MI->setDesc(TII.get(AMDGPU::IMPLICIT_DEF));
276 
277     if (Fold.isCommuted())
278       TII.commuteInstruction(*Inst32, false);
279     return true;
280   }
281 
282   assert(!Fold.needsShrink() && "not handled");
283 
284   if (Fold.isImm()) {
285     Old.ChangeToImmediate(Fold.ImmToFold);
286     return true;
287   }
288 
289   if (Fold.isGlobal()) {
290     Old.ChangeToGA(Fold.OpToFold->getGlobal(), Fold.OpToFold->getOffset(),
291                    Fold.OpToFold->getTargetFlags());
292     return true;
293   }
294 
295   if (Fold.isFI()) {
296     Old.ChangeToFrameIndex(Fold.FrameIndexToFold);
297     return true;
298   }
299 
300   MachineOperand *New = Fold.OpToFold;
301   Old.substVirtReg(New->getReg(), New->getSubReg(), TRI);
302   Old.setIsUndef(New->isUndef());
303   return true;
304 }
305 
306 static bool isUseMIInFoldList(ArrayRef<FoldCandidate> FoldList,
307                               const MachineInstr *MI) {
308   for (auto Candidate : FoldList) {
309     if (Candidate.UseMI == MI)
310       return true;
311   }
312   return false;
313 }
314 
315 static void appendFoldCandidate(SmallVectorImpl<FoldCandidate> &FoldList,
316                                 MachineInstr *MI, unsigned OpNo,
317                                 MachineOperand *FoldOp, bool Commuted = false,
318                                 int ShrinkOp = -1) {
319   // Skip additional folding on the same operand.
320   for (FoldCandidate &Fold : FoldList)
321     if (Fold.UseMI == MI && Fold.UseOpNo == OpNo)
322       return;
323   LLVM_DEBUG(dbgs() << "Append " << (Commuted ? "commuted" : "normal")
324                     << " operand " << OpNo << "\n  " << *MI << '\n');
325   FoldList.push_back(FoldCandidate(MI, OpNo, FoldOp, Commuted, ShrinkOp));
326 }
327 
328 static bool tryAddToFoldList(SmallVectorImpl<FoldCandidate> &FoldList,
329                              MachineInstr *MI, unsigned OpNo,
330                              MachineOperand *OpToFold,
331                              const SIInstrInfo *TII) {
332   if (!TII->isOperandLegal(*MI, OpNo, OpToFold)) {
333     // Special case for v_mac_{f16, f32}_e64 if we are trying to fold into src2
334     unsigned Opc = MI->getOpcode();
335     if ((Opc == AMDGPU::V_MAC_F32_e64 || Opc == AMDGPU::V_MAC_F16_e64 ||
336          Opc == AMDGPU::V_FMAC_F32_e64 || Opc == AMDGPU::V_FMAC_F16_e64) &&
337         (int)OpNo == AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2)) {
338       bool IsFMA = Opc == AMDGPU::V_FMAC_F32_e64 ||
339                    Opc == AMDGPU::V_FMAC_F16_e64;
340       bool IsF32 = Opc == AMDGPU::V_MAC_F32_e64 ||
341                    Opc == AMDGPU::V_FMAC_F32_e64;
342       unsigned NewOpc = IsFMA ?
343         (IsF32 ? AMDGPU::V_FMA_F32 : AMDGPU::V_FMA_F16_gfx9) :
344         (IsF32 ? AMDGPU::V_MAD_F32 : AMDGPU::V_MAD_F16);
345 
346       // Check if changing this to a v_mad_{f16, f32} instruction will allow us
347       // to fold the operand.
348       MI->setDesc(TII->get(NewOpc));
349       bool FoldAsMAD = tryAddToFoldList(FoldList, MI, OpNo, OpToFold, TII);
350       if (FoldAsMAD) {
351         MI->untieRegOperand(OpNo);
352         return true;
353       }
354       MI->setDesc(TII->get(Opc));
355     }
356 
357     // Special case for s_setreg_b32
358     if (Opc == AMDGPU::S_SETREG_B32 && OpToFold->isImm()) {
359       MI->setDesc(TII->get(AMDGPU::S_SETREG_IMM32_B32));
360       appendFoldCandidate(FoldList, MI, OpNo, OpToFold);
361       return true;
362     }
363 
364     // If we are already folding into another operand of MI, then
365     // we can't commute the instruction, otherwise we risk making the
366     // other fold illegal.
367     if (isUseMIInFoldList(FoldList, MI))
368       return false;
369 
370     unsigned CommuteOpNo = OpNo;
371 
372     // Operand is not legal, so try to commute the instruction to
373     // see if this makes it possible to fold.
374     unsigned CommuteIdx0 = TargetInstrInfo::CommuteAnyOperandIndex;
375     unsigned CommuteIdx1 = TargetInstrInfo::CommuteAnyOperandIndex;
376     bool CanCommute = TII->findCommutedOpIndices(*MI, CommuteIdx0, CommuteIdx1);
377 
378     if (CanCommute) {
379       if (CommuteIdx0 == OpNo)
380         CommuteOpNo = CommuteIdx1;
381       else if (CommuteIdx1 == OpNo)
382         CommuteOpNo = CommuteIdx0;
383     }
384 
385 
386     // One of operands might be an Imm operand, and OpNo may refer to it after
387     // the call of commuteInstruction() below. Such situations are avoided
388     // here explicitly as OpNo must be a register operand to be a candidate
389     // for memory folding.
390     if (CanCommute && (!MI->getOperand(CommuteIdx0).isReg() ||
391                        !MI->getOperand(CommuteIdx1).isReg()))
392       return false;
393 
394     if (!CanCommute ||
395         !TII->commuteInstruction(*MI, false, CommuteIdx0, CommuteIdx1))
396       return false;
397 
398     if (!TII->isOperandLegal(*MI, CommuteOpNo, OpToFold)) {
399       if ((Opc == AMDGPU::V_ADD_I32_e64 ||
400            Opc == AMDGPU::V_SUB_I32_e64 ||
401            Opc == AMDGPU::V_SUBREV_I32_e64) && // FIXME
402           (OpToFold->isImm() || OpToFold->isFI() || OpToFold->isGlobal())) {
403         MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
404 
405         // Verify the other operand is a VGPR, otherwise we would violate the
406         // constant bus restriction.
407         unsigned OtherIdx = CommuteOpNo == CommuteIdx0 ? CommuteIdx1 : CommuteIdx0;
408         MachineOperand &OtherOp = MI->getOperand(OtherIdx);
409         if (!OtherOp.isReg() ||
410             !TII->getRegisterInfo().isVGPR(MRI, OtherOp.getReg()))
411           return false;
412 
413         assert(MI->getOperand(1).isDef());
414 
415         // Make sure to get the 32-bit version of the commuted opcode.
416         unsigned MaybeCommutedOpc = MI->getOpcode();
417         int Op32 = AMDGPU::getVOPe32(MaybeCommutedOpc);
418 
419         appendFoldCandidate(FoldList, MI, CommuteOpNo, OpToFold, true, Op32);
420         return true;
421       }
422 
423       TII->commuteInstruction(*MI, false, CommuteIdx0, CommuteIdx1);
424       return false;
425     }
426 
427     appendFoldCandidate(FoldList, MI, CommuteOpNo, OpToFold, true);
428     return true;
429   }
430 
431   // Check the case where we might introduce a second constant operand to a
432   // scalar instruction
433   if (TII->isSALU(MI->getOpcode())) {
434     const MCInstrDesc &InstDesc = MI->getDesc();
435     const MCOperandInfo &OpInfo = InstDesc.OpInfo[OpNo];
436     const SIRegisterInfo &SRI = TII->getRegisterInfo();
437 
438     // Fine if the operand can be encoded as an inline constant
439     if (OpToFold->isImm()) {
440       if (!SRI.opCanUseInlineConstant(OpInfo.OperandType) ||
441           !TII->isInlineConstant(*OpToFold, OpInfo)) {
442         // Otherwise check for another constant
443         for (unsigned i = 0, e = InstDesc.getNumOperands(); i != e; ++i) {
444           auto &Op = MI->getOperand(i);
445           if (OpNo != i &&
446               TII->isLiteralConstantLike(Op, OpInfo)) {
447             return false;
448           }
449         }
450       }
451     }
452   }
453 
454   appendFoldCandidate(FoldList, MI, OpNo, OpToFold);
455   return true;
456 }
457 
458 // If the use operand doesn't care about the value, this may be an operand only
459 // used for register indexing, in which case it is unsafe to fold.
460 static bool isUseSafeToFold(const SIInstrInfo *TII,
461                             const MachineInstr &MI,
462                             const MachineOperand &UseMO) {
463   return !UseMO.isUndef() && !TII->isSDWA(MI);
464   //return !MI.hasRegisterImplicitUseOperand(UseMO.getReg());
465 }
466 
467 // Find a def of the UseReg, check if it is a reg_seqence and find initializers
468 // for each subreg, tracking it to foldable inline immediate if possible.
469 // Returns true on success.
470 static bool getRegSeqInit(
471     SmallVectorImpl<std::pair<MachineOperand*, unsigned>> &Defs,
472     Register UseReg, uint8_t OpTy,
473     const SIInstrInfo *TII, const MachineRegisterInfo &MRI) {
474   MachineInstr *Def = MRI.getUniqueVRegDef(UseReg);
475   if (!Def || !Def->isRegSequence())
476     return false;
477 
478   for (unsigned I = 1, E = Def->getNumExplicitOperands(); I < E; I += 2) {
479     MachineOperand *Sub = &Def->getOperand(I);
480     assert (Sub->isReg());
481 
482     for (MachineInstr *SubDef = MRI.getUniqueVRegDef(Sub->getReg());
483          SubDef && Sub->isReg() && !Sub->getSubReg() &&
484          TII->isFoldableCopy(*SubDef);
485          SubDef = MRI.getUniqueVRegDef(Sub->getReg())) {
486       MachineOperand *Op = &SubDef->getOperand(1);
487       if (Op->isImm()) {
488         if (TII->isInlineConstant(*Op, OpTy))
489           Sub = Op;
490         break;
491       }
492       if (!Op->isReg())
493         break;
494       Sub = Op;
495     }
496 
497     Defs.push_back(std::make_pair(Sub, Def->getOperand(I + 1).getImm()));
498   }
499 
500   return true;
501 }
502 
503 static bool tryToFoldACImm(const SIInstrInfo *TII,
504                            const MachineOperand &OpToFold,
505                            MachineInstr *UseMI,
506                            unsigned UseOpIdx,
507                            SmallVectorImpl<FoldCandidate> &FoldList) {
508   const MCInstrDesc &Desc = UseMI->getDesc();
509   const MCOperandInfo *OpInfo = Desc.OpInfo;
510   if (!OpInfo || UseOpIdx >= Desc.getNumOperands())
511     return false;
512 
513   uint8_t OpTy = OpInfo[UseOpIdx].OperandType;
514   if (OpTy < AMDGPU::OPERAND_REG_INLINE_AC_FIRST ||
515       OpTy > AMDGPU::OPERAND_REG_INLINE_AC_LAST)
516     return false;
517 
518   if (OpToFold.isImm() && TII->isInlineConstant(OpToFold, OpTy) &&
519       TII->isOperandLegal(*UseMI, UseOpIdx, &OpToFold)) {
520     UseMI->getOperand(UseOpIdx).ChangeToImmediate(OpToFold.getImm());
521     return true;
522   }
523 
524   if (!OpToFold.isReg())
525     return false;
526 
527   Register UseReg = OpToFold.getReg();
528   if (!Register::isVirtualRegister(UseReg))
529     return false;
530 
531   if (llvm::find_if(FoldList, [UseMI](const FoldCandidate &FC) {
532         return FC.UseMI == UseMI; }) != FoldList.end())
533     return false;
534 
535   MachineRegisterInfo &MRI = UseMI->getParent()->getParent()->getRegInfo();
536   SmallVector<std::pair<MachineOperand*, unsigned>, 32> Defs;
537   if (!getRegSeqInit(Defs, UseReg, OpTy, TII, MRI))
538     return false;
539 
540   int32_t Imm;
541   for (unsigned I = 0, E = Defs.size(); I != E; ++I) {
542     const MachineOperand *Op = Defs[I].first;
543     if (!Op->isImm())
544       return false;
545 
546     auto SubImm = Op->getImm();
547     if (!I) {
548       Imm = SubImm;
549       if (!TII->isInlineConstant(*Op, OpTy) ||
550           !TII->isOperandLegal(*UseMI, UseOpIdx, Op))
551         return false;
552 
553       continue;
554     }
555     if (Imm != SubImm)
556       return false; // Can only fold splat constants
557   }
558 
559   appendFoldCandidate(FoldList, UseMI, UseOpIdx, Defs[0].first);
560   return true;
561 }
562 
563 void SIFoldOperands::foldOperand(
564   MachineOperand &OpToFold,
565   MachineInstr *UseMI,
566   int UseOpIdx,
567   SmallVectorImpl<FoldCandidate> &FoldList,
568   SmallVectorImpl<MachineInstr *> &CopiesToReplace) const {
569   const MachineOperand &UseOp = UseMI->getOperand(UseOpIdx);
570 
571   if (!isUseSafeToFold(TII, *UseMI, UseOp))
572     return;
573 
574   // FIXME: Fold operands with subregs.
575   if (UseOp.isReg() && OpToFold.isReg()) {
576     if (UseOp.isImplicit() || UseOp.getSubReg() != AMDGPU::NoSubRegister)
577       return;
578   }
579 
580   // Special case for REG_SEQUENCE: We can't fold literals into
581   // REG_SEQUENCE instructions, so we have to fold them into the
582   // uses of REG_SEQUENCE.
583   if (UseMI->isRegSequence()) {
584     Register RegSeqDstReg = UseMI->getOperand(0).getReg();
585     unsigned RegSeqDstSubReg = UseMI->getOperand(UseOpIdx + 1).getImm();
586 
587     MachineRegisterInfo::use_iterator Next;
588     for (MachineRegisterInfo::use_iterator
589            RSUse = MRI->use_begin(RegSeqDstReg), RSE = MRI->use_end();
590          RSUse != RSE; RSUse = Next) {
591       Next = std::next(RSUse);
592 
593       MachineInstr *RSUseMI = RSUse->getParent();
594 
595       if (tryToFoldACImm(TII, UseMI->getOperand(0), RSUseMI,
596                          RSUse.getOperandNo(), FoldList))
597         continue;
598 
599       if (RSUse->getSubReg() != RegSeqDstSubReg)
600         continue;
601 
602       foldOperand(OpToFold, RSUseMI, RSUse.getOperandNo(), FoldList,
603                   CopiesToReplace);
604     }
605 
606     return;
607   }
608 
609   if (tryToFoldACImm(TII, OpToFold, UseMI, UseOpIdx, FoldList))
610     return;
611 
612   if (frameIndexMayFold(TII, *UseMI, UseOpIdx, OpToFold)) {
613     // Sanity check that this is a stack access.
614     // FIXME: Should probably use stack pseudos before frame lowering.
615     MachineOperand *SOff = TII->getNamedOperand(*UseMI, AMDGPU::OpName::soffset);
616     if (!SOff->isReg() || (SOff->getReg() != MFI->getScratchWaveOffsetReg() &&
617                            SOff->getReg() != MFI->getStackPtrOffsetReg()))
618       return;
619 
620     if (TII->getNamedOperand(*UseMI, AMDGPU::OpName::srsrc)->getReg() !=
621         MFI->getScratchRSrcReg())
622       return;
623 
624     // A frame index will resolve to a positive constant, so it should always be
625     // safe to fold the addressing mode, even pre-GFX9.
626     UseMI->getOperand(UseOpIdx).ChangeToFrameIndex(OpToFold.getIndex());
627     SOff->setReg(MFI->getStackPtrOffsetReg());
628     return;
629   }
630 
631   bool FoldingImmLike =
632       OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal();
633 
634   if (FoldingImmLike && UseMI->isCopy()) {
635     Register DestReg = UseMI->getOperand(0).getReg();
636 
637     // Don't fold into a copy to a physical register. Doing so would interfere
638     // with the register coalescer's logic which would avoid redundant
639     // initalizations.
640     if (DestReg.isPhysical())
641       return;
642 
643     const TargetRegisterClass *DestRC =  MRI->getRegClass(DestReg);
644 
645     Register SrcReg = UseMI->getOperand(1).getReg();
646     if (SrcReg.isVirtual()) { // XXX - This can be an assert?
647       const TargetRegisterClass * SrcRC = MRI->getRegClass(SrcReg);
648       if (TRI->isSGPRClass(SrcRC) && TRI->hasVectorRegisters(DestRC)) {
649         MachineRegisterInfo::use_iterator NextUse;
650         SmallVector<FoldCandidate, 4> CopyUses;
651         for (MachineRegisterInfo::use_iterator
652           Use = MRI->use_begin(DestReg), E = MRI->use_end();
653           Use != E; Use = NextUse) {
654           NextUse = std::next(Use);
655           FoldCandidate FC = FoldCandidate(Use->getParent(),
656            Use.getOperandNo(), &UseMI->getOperand(1));
657           CopyUses.push_back(FC);
658        }
659         for (auto & F : CopyUses) {
660           foldOperand(*F.OpToFold, F.UseMI, F.UseOpNo,
661            FoldList, CopiesToReplace);
662         }
663       }
664     }
665 
666     if (DestRC == &AMDGPU::AGPR_32RegClass &&
667         TII->isInlineConstant(OpToFold, AMDGPU::OPERAND_REG_INLINE_C_INT32)) {
668       UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_WRITE_B32));
669       UseMI->getOperand(1).ChangeToImmediate(OpToFold.getImm());
670       CopiesToReplace.push_back(UseMI);
671       return;
672     }
673 
674     // In order to fold immediates into copies, we need to change the
675     // copy to a MOV.
676 
677     unsigned MovOp = TII->getMovOpcode(DestRC);
678     if (MovOp == AMDGPU::COPY)
679       return;
680 
681     UseMI->setDesc(TII->get(MovOp));
682     MachineInstr::mop_iterator ImpOpI = UseMI->implicit_operands().begin();
683     MachineInstr::mop_iterator ImpOpE = UseMI->implicit_operands().end();
684     while (ImpOpI != ImpOpE) {
685       MachineInstr::mop_iterator Tmp = ImpOpI;
686       ImpOpI++;
687       UseMI->RemoveOperand(UseMI->getOperandNo(Tmp));
688     }
689     CopiesToReplace.push_back(UseMI);
690   } else {
691     if (UseMI->isCopy() && OpToFold.isReg() &&
692         UseMI->getOperand(0).getReg().isVirtual() &&
693         !UseMI->getOperand(1).getSubReg()) {
694       LLVM_DEBUG(dbgs() << "Folding " << OpToFold
695                         << "\n into " << *UseMI << '\n');
696       unsigned Size = TII->getOpSize(*UseMI, 1);
697       Register UseReg = OpToFold.getReg();
698       UseMI->getOperand(1).setReg(UseReg);
699       UseMI->getOperand(1).setSubReg(OpToFold.getSubReg());
700       UseMI->getOperand(1).setIsKill(false);
701       CopiesToReplace.push_back(UseMI);
702       OpToFold.setIsKill(false);
703 
704       // That is very tricky to store a value into an AGPR. v_accvgpr_write_b32
705       // can only accept VGPR or inline immediate. Recreate a reg_sequence with
706       // its initializers right here, so we will rematerialize immediates and
707       // avoid copies via different reg classes.
708       SmallVector<std::pair<MachineOperand*, unsigned>, 32> Defs;
709       if (Size > 4 && TRI->isAGPR(*MRI, UseMI->getOperand(0).getReg()) &&
710           getRegSeqInit(Defs, UseReg, AMDGPU::OPERAND_REG_INLINE_C_INT32, TII,
711                         *MRI)) {
712         const DebugLoc &DL = UseMI->getDebugLoc();
713         MachineBasicBlock &MBB = *UseMI->getParent();
714 
715         UseMI->setDesc(TII->get(AMDGPU::REG_SEQUENCE));
716         for (unsigned I = UseMI->getNumOperands() - 1; I > 0; --I)
717           UseMI->RemoveOperand(I);
718 
719         MachineInstrBuilder B(*MBB.getParent(), UseMI);
720         DenseMap<TargetInstrInfo::RegSubRegPair, Register> VGPRCopies;
721         SmallSetVector<TargetInstrInfo::RegSubRegPair, 32> SeenAGPRs;
722         for (unsigned I = 0; I < Size / 4; ++I) {
723           MachineOperand *Def = Defs[I].first;
724           TargetInstrInfo::RegSubRegPair CopyToVGPR;
725           if (Def->isImm() &&
726               TII->isInlineConstant(*Def, AMDGPU::OPERAND_REG_INLINE_C_INT32)) {
727             int64_t Imm = Def->getImm();
728 
729             auto Tmp = MRI->createVirtualRegister(&AMDGPU::AGPR_32RegClass);
730             BuildMI(MBB, UseMI, DL,
731                     TII->get(AMDGPU::V_ACCVGPR_WRITE_B32), Tmp).addImm(Imm);
732             B.addReg(Tmp);
733           } else if (Def->isReg() && TRI->isAGPR(*MRI, Def->getReg())) {
734             auto Src = getRegSubRegPair(*Def);
735             Def->setIsKill(false);
736             if (!SeenAGPRs.insert(Src)) {
737               // We cannot build a reg_sequence out of the same registers, they
738               // must be copied. Better do it here before copyPhysReg() created
739               // several reads to do the AGPR->VGPR->AGPR copy.
740               CopyToVGPR = Src;
741             } else {
742               B.addReg(Src.Reg, Def->isUndef() ? RegState::Undef : 0,
743                        Src.SubReg);
744             }
745           } else {
746             assert(Def->isReg());
747             Def->setIsKill(false);
748             auto Src = getRegSubRegPair(*Def);
749 
750             // Direct copy from SGPR to AGPR is not possible. To avoid creation
751             // of exploded copies SGPR->VGPR->AGPR in the copyPhysReg() later,
752             // create a copy here and track if we already have such a copy.
753             if (TRI->isSGPRReg(*MRI, Src.Reg)) {
754               CopyToVGPR = Src;
755             } else {
756               auto Tmp = MRI->createVirtualRegister(&AMDGPU::AGPR_32RegClass);
757               BuildMI(MBB, UseMI, DL, TII->get(AMDGPU::COPY), Tmp).add(*Def);
758               B.addReg(Tmp);
759             }
760           }
761 
762           if (CopyToVGPR.Reg) {
763             Register Vgpr;
764             if (VGPRCopies.count(CopyToVGPR)) {
765               Vgpr = VGPRCopies[CopyToVGPR];
766             } else {
767               Vgpr = MRI->createVirtualRegister(&AMDGPU::VGPR_32RegClass);
768               BuildMI(MBB, UseMI, DL, TII->get(AMDGPU::COPY), Vgpr).add(*Def);
769               VGPRCopies[CopyToVGPR] = Vgpr;
770             }
771             auto Tmp = MRI->createVirtualRegister(&AMDGPU::AGPR_32RegClass);
772             BuildMI(MBB, UseMI, DL,
773                     TII->get(AMDGPU::V_ACCVGPR_WRITE_B32), Tmp).addReg(Vgpr);
774             B.addReg(Tmp);
775           }
776 
777           B.addImm(Defs[I].second);
778         }
779         LLVM_DEBUG(dbgs() << "Folded " << *UseMI << '\n');
780         return;
781       }
782 
783       if (Size != 4)
784         return;
785       if (TRI->isAGPR(*MRI, UseMI->getOperand(0).getReg()) &&
786           TRI->isVGPR(*MRI, UseMI->getOperand(1).getReg()))
787         UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_WRITE_B32));
788       else if (TRI->isVGPR(*MRI, UseMI->getOperand(0).getReg()) &&
789                TRI->isAGPR(*MRI, UseMI->getOperand(1).getReg()))
790         UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_READ_B32));
791       return;
792     }
793 
794     unsigned UseOpc = UseMI->getOpcode();
795     if (UseOpc == AMDGPU::V_READFIRSTLANE_B32 ||
796         (UseOpc == AMDGPU::V_READLANE_B32 &&
797          (int)UseOpIdx ==
798          AMDGPU::getNamedOperandIdx(UseOpc, AMDGPU::OpName::src0))) {
799       // %vgpr = V_MOV_B32 imm
800       // %sgpr = V_READFIRSTLANE_B32 %vgpr
801       // =>
802       // %sgpr = S_MOV_B32 imm
803       if (FoldingImmLike) {
804         if (execMayBeModifiedBeforeUse(*MRI,
805                                        UseMI->getOperand(UseOpIdx).getReg(),
806                                        *OpToFold.getParent(),
807                                        *UseMI))
808           return;
809 
810         UseMI->setDesc(TII->get(AMDGPU::S_MOV_B32));
811 
812         // FIXME: ChangeToImmediate should clear subreg
813         UseMI->getOperand(1).setSubReg(0);
814         if (OpToFold.isImm())
815           UseMI->getOperand(1).ChangeToImmediate(OpToFold.getImm());
816         else
817           UseMI->getOperand(1).ChangeToFrameIndex(OpToFold.getIndex());
818         UseMI->RemoveOperand(2); // Remove exec read (or src1 for readlane)
819         return;
820       }
821 
822       if (OpToFold.isReg() && TRI->isSGPRReg(*MRI, OpToFold.getReg())) {
823         if (execMayBeModifiedBeforeUse(*MRI,
824                                        UseMI->getOperand(UseOpIdx).getReg(),
825                                        *OpToFold.getParent(),
826                                        *UseMI))
827           return;
828 
829         // %vgpr = COPY %sgpr0
830         // %sgpr1 = V_READFIRSTLANE_B32 %vgpr
831         // =>
832         // %sgpr1 = COPY %sgpr0
833         UseMI->setDesc(TII->get(AMDGPU::COPY));
834         UseMI->getOperand(1).setReg(OpToFold.getReg());
835         UseMI->getOperand(1).setSubReg(OpToFold.getSubReg());
836         UseMI->getOperand(1).setIsKill(false);
837         UseMI->RemoveOperand(2); // Remove exec read (or src1 for readlane)
838         return;
839       }
840     }
841 
842     const MCInstrDesc &UseDesc = UseMI->getDesc();
843 
844     // Don't fold into target independent nodes.  Target independent opcodes
845     // don't have defined register classes.
846     if (UseDesc.isVariadic() ||
847         UseOp.isImplicit() ||
848         UseDesc.OpInfo[UseOpIdx].RegClass == -1)
849       return;
850   }
851 
852   if (!FoldingImmLike) {
853     tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold, TII);
854 
855     // FIXME: We could try to change the instruction from 64-bit to 32-bit
856     // to enable more folding opportunites.  The shrink operands pass
857     // already does this.
858     return;
859   }
860 
861 
862   const MCInstrDesc &FoldDesc = OpToFold.getParent()->getDesc();
863   const TargetRegisterClass *FoldRC =
864     TRI->getRegClass(FoldDesc.OpInfo[0].RegClass);
865 
866   // Split 64-bit constants into 32-bits for folding.
867   if (UseOp.getSubReg() && AMDGPU::getRegBitWidth(FoldRC->getID()) == 64) {
868     Register UseReg = UseOp.getReg();
869     const TargetRegisterClass *UseRC = MRI->getRegClass(UseReg);
870 
871     if (AMDGPU::getRegBitWidth(UseRC->getID()) != 64)
872       return;
873 
874     APInt Imm(64, OpToFold.getImm());
875     if (UseOp.getSubReg() == AMDGPU::sub0) {
876       Imm = Imm.getLoBits(32);
877     } else {
878       assert(UseOp.getSubReg() == AMDGPU::sub1);
879       Imm = Imm.getHiBits(32);
880     }
881 
882     MachineOperand ImmOp = MachineOperand::CreateImm(Imm.getSExtValue());
883     tryAddToFoldList(FoldList, UseMI, UseOpIdx, &ImmOp, TII);
884     return;
885   }
886 
887 
888 
889   tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold, TII);
890 }
891 
892 static bool evalBinaryInstruction(unsigned Opcode, int32_t &Result,
893                                   uint32_t LHS, uint32_t RHS) {
894   switch (Opcode) {
895   case AMDGPU::V_AND_B32_e64:
896   case AMDGPU::V_AND_B32_e32:
897   case AMDGPU::S_AND_B32:
898     Result = LHS & RHS;
899     return true;
900   case AMDGPU::V_OR_B32_e64:
901   case AMDGPU::V_OR_B32_e32:
902   case AMDGPU::S_OR_B32:
903     Result = LHS | RHS;
904     return true;
905   case AMDGPU::V_XOR_B32_e64:
906   case AMDGPU::V_XOR_B32_e32:
907   case AMDGPU::S_XOR_B32:
908     Result = LHS ^ RHS;
909     return true;
910   case AMDGPU::V_LSHL_B32_e64:
911   case AMDGPU::V_LSHL_B32_e32:
912   case AMDGPU::S_LSHL_B32:
913     // The instruction ignores the high bits for out of bounds shifts.
914     Result = LHS << (RHS & 31);
915     return true;
916   case AMDGPU::V_LSHLREV_B32_e64:
917   case AMDGPU::V_LSHLREV_B32_e32:
918     Result = RHS << (LHS & 31);
919     return true;
920   case AMDGPU::V_LSHR_B32_e64:
921   case AMDGPU::V_LSHR_B32_e32:
922   case AMDGPU::S_LSHR_B32:
923     Result = LHS >> (RHS & 31);
924     return true;
925   case AMDGPU::V_LSHRREV_B32_e64:
926   case AMDGPU::V_LSHRREV_B32_e32:
927     Result = RHS >> (LHS & 31);
928     return true;
929   case AMDGPU::V_ASHR_I32_e64:
930   case AMDGPU::V_ASHR_I32_e32:
931   case AMDGPU::S_ASHR_I32:
932     Result = static_cast<int32_t>(LHS) >> (RHS & 31);
933     return true;
934   case AMDGPU::V_ASHRREV_I32_e64:
935   case AMDGPU::V_ASHRREV_I32_e32:
936     Result = static_cast<int32_t>(RHS) >> (LHS & 31);
937     return true;
938   default:
939     return false;
940   }
941 }
942 
943 static unsigned getMovOpc(bool IsScalar) {
944   return IsScalar ? AMDGPU::S_MOV_B32 : AMDGPU::V_MOV_B32_e32;
945 }
946 
947 /// Remove any leftover implicit operands from mutating the instruction. e.g.
948 /// if we replace an s_and_b32 with a copy, we don't need the implicit scc def
949 /// anymore.
950 static void stripExtraCopyOperands(MachineInstr &MI) {
951   const MCInstrDesc &Desc = MI.getDesc();
952   unsigned NumOps = Desc.getNumOperands() +
953                     Desc.getNumImplicitUses() +
954                     Desc.getNumImplicitDefs();
955 
956   for (unsigned I = MI.getNumOperands() - 1; I >= NumOps; --I)
957     MI.RemoveOperand(I);
958 }
959 
960 static void mutateCopyOp(MachineInstr &MI, const MCInstrDesc &NewDesc) {
961   MI.setDesc(NewDesc);
962   stripExtraCopyOperands(MI);
963 }
964 
965 static MachineOperand *getImmOrMaterializedImm(MachineRegisterInfo &MRI,
966                                                MachineOperand &Op) {
967   if (Op.isReg()) {
968     // If this has a subregister, it obviously is a register source.
969     if (Op.getSubReg() != AMDGPU::NoSubRegister ||
970         !Register::isVirtualRegister(Op.getReg()))
971       return &Op;
972 
973     MachineInstr *Def = MRI.getVRegDef(Op.getReg());
974     if (Def && Def->isMoveImmediate()) {
975       MachineOperand &ImmSrc = Def->getOperand(1);
976       if (ImmSrc.isImm())
977         return &ImmSrc;
978     }
979   }
980 
981   return &Op;
982 }
983 
984 // Try to simplify operations with a constant that may appear after instruction
985 // selection.
986 // TODO: See if a frame index with a fixed offset can fold.
987 static bool tryConstantFoldOp(MachineRegisterInfo &MRI,
988                               const SIInstrInfo *TII,
989                               MachineInstr *MI,
990                               MachineOperand *ImmOp) {
991   unsigned Opc = MI->getOpcode();
992   if (Opc == AMDGPU::V_NOT_B32_e64 || Opc == AMDGPU::V_NOT_B32_e32 ||
993       Opc == AMDGPU::S_NOT_B32) {
994     MI->getOperand(1).ChangeToImmediate(~ImmOp->getImm());
995     mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_NOT_B32)));
996     return true;
997   }
998 
999   int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1);
1000   if (Src1Idx == -1)
1001     return false;
1002 
1003   int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0);
1004   MachineOperand *Src0 = getImmOrMaterializedImm(MRI, MI->getOperand(Src0Idx));
1005   MachineOperand *Src1 = getImmOrMaterializedImm(MRI, MI->getOperand(Src1Idx));
1006 
1007   if (!Src0->isImm() && !Src1->isImm())
1008     return false;
1009 
1010   if (MI->getOpcode() == AMDGPU::V_LSHL_OR_B32) {
1011     if (Src0->isImm() && Src0->getImm() == 0) {
1012       // v_lshl_or_b32 0, X, Y -> copy Y
1013       // v_lshl_or_b32 0, X, K -> v_mov_b32 K
1014       bool UseCopy = TII->getNamedOperand(*MI, AMDGPU::OpName::src2)->isReg();
1015       MI->RemoveOperand(Src1Idx);
1016       MI->RemoveOperand(Src0Idx);
1017 
1018       MI->setDesc(TII->get(UseCopy ? AMDGPU::COPY : AMDGPU::V_MOV_B32_e32));
1019       return true;
1020     }
1021   }
1022 
1023   // and k0, k1 -> v_mov_b32 (k0 & k1)
1024   // or k0, k1 -> v_mov_b32 (k0 | k1)
1025   // xor k0, k1 -> v_mov_b32 (k0 ^ k1)
1026   if (Src0->isImm() && Src1->isImm()) {
1027     int32_t NewImm;
1028     if (!evalBinaryInstruction(Opc, NewImm, Src0->getImm(), Src1->getImm()))
1029       return false;
1030 
1031     const SIRegisterInfo &TRI = TII->getRegisterInfo();
1032     bool IsSGPR = TRI.isSGPRReg(MRI, MI->getOperand(0).getReg());
1033 
1034     // Be careful to change the right operand, src0 may belong to a different
1035     // instruction.
1036     MI->getOperand(Src0Idx).ChangeToImmediate(NewImm);
1037     MI->RemoveOperand(Src1Idx);
1038     mutateCopyOp(*MI, TII->get(getMovOpc(IsSGPR)));
1039     return true;
1040   }
1041 
1042   if (!MI->isCommutable())
1043     return false;
1044 
1045   if (Src0->isImm() && !Src1->isImm()) {
1046     std::swap(Src0, Src1);
1047     std::swap(Src0Idx, Src1Idx);
1048   }
1049 
1050   int32_t Src1Val = static_cast<int32_t>(Src1->getImm());
1051   if (Opc == AMDGPU::V_OR_B32_e64 ||
1052       Opc == AMDGPU::V_OR_B32_e32 ||
1053       Opc == AMDGPU::S_OR_B32) {
1054     if (Src1Val == 0) {
1055       // y = or x, 0 => y = copy x
1056       MI->RemoveOperand(Src1Idx);
1057       mutateCopyOp(*MI, TII->get(AMDGPU::COPY));
1058     } else if (Src1Val == -1) {
1059       // y = or x, -1 => y = v_mov_b32 -1
1060       MI->RemoveOperand(Src1Idx);
1061       mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_OR_B32)));
1062     } else
1063       return false;
1064 
1065     return true;
1066   }
1067 
1068   if (MI->getOpcode() == AMDGPU::V_AND_B32_e64 ||
1069       MI->getOpcode() == AMDGPU::V_AND_B32_e32 ||
1070       MI->getOpcode() == AMDGPU::S_AND_B32) {
1071     if (Src1Val == 0) {
1072       // y = and x, 0 => y = v_mov_b32 0
1073       MI->RemoveOperand(Src0Idx);
1074       mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_AND_B32)));
1075     } else if (Src1Val == -1) {
1076       // y = and x, -1 => y = copy x
1077       MI->RemoveOperand(Src1Idx);
1078       mutateCopyOp(*MI, TII->get(AMDGPU::COPY));
1079       stripExtraCopyOperands(*MI);
1080     } else
1081       return false;
1082 
1083     return true;
1084   }
1085 
1086   if (MI->getOpcode() == AMDGPU::V_XOR_B32_e64 ||
1087       MI->getOpcode() == AMDGPU::V_XOR_B32_e32 ||
1088       MI->getOpcode() == AMDGPU::S_XOR_B32) {
1089     if (Src1Val == 0) {
1090       // y = xor x, 0 => y = copy x
1091       MI->RemoveOperand(Src1Idx);
1092       mutateCopyOp(*MI, TII->get(AMDGPU::COPY));
1093       return true;
1094     }
1095   }
1096 
1097   return false;
1098 }
1099 
1100 // Try to fold an instruction into a simpler one
1101 static bool tryFoldInst(const SIInstrInfo *TII,
1102                         MachineInstr *MI) {
1103   unsigned Opc = MI->getOpcode();
1104 
1105   if (Opc == AMDGPU::V_CNDMASK_B32_e32    ||
1106       Opc == AMDGPU::V_CNDMASK_B32_e64    ||
1107       Opc == AMDGPU::V_CNDMASK_B64_PSEUDO) {
1108     const MachineOperand *Src0 = TII->getNamedOperand(*MI, AMDGPU::OpName::src0);
1109     const MachineOperand *Src1 = TII->getNamedOperand(*MI, AMDGPU::OpName::src1);
1110     int Src1ModIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1_modifiers);
1111     int Src0ModIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0_modifiers);
1112     if (Src1->isIdenticalTo(*Src0) &&
1113         (Src1ModIdx == -1 || !MI->getOperand(Src1ModIdx).getImm()) &&
1114         (Src0ModIdx == -1 || !MI->getOperand(Src0ModIdx).getImm())) {
1115       LLVM_DEBUG(dbgs() << "Folded " << *MI << " into ");
1116       auto &NewDesc =
1117           TII->get(Src0->isReg() ? (unsigned)AMDGPU::COPY : getMovOpc(false));
1118       int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2);
1119       if (Src2Idx != -1)
1120         MI->RemoveOperand(Src2Idx);
1121       MI->RemoveOperand(AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1));
1122       if (Src1ModIdx != -1)
1123         MI->RemoveOperand(Src1ModIdx);
1124       if (Src0ModIdx != -1)
1125         MI->RemoveOperand(Src0ModIdx);
1126       mutateCopyOp(*MI, NewDesc);
1127       LLVM_DEBUG(dbgs() << *MI << '\n');
1128       return true;
1129     }
1130   }
1131 
1132   return false;
1133 }
1134 
1135 void SIFoldOperands::foldInstOperand(MachineInstr &MI,
1136                                      MachineOperand &OpToFold) const {
1137   // We need mutate the operands of new mov instructions to add implicit
1138   // uses of EXEC, but adding them invalidates the use_iterator, so defer
1139   // this.
1140   SmallVector<MachineInstr *, 4> CopiesToReplace;
1141   SmallVector<FoldCandidate, 4> FoldList;
1142   MachineOperand &Dst = MI.getOperand(0);
1143 
1144   bool FoldingImm = OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal();
1145   if (FoldingImm) {
1146     unsigned NumLiteralUses = 0;
1147     MachineOperand *NonInlineUse = nullptr;
1148     int NonInlineUseOpNo = -1;
1149 
1150     MachineRegisterInfo::use_iterator NextUse;
1151     for (MachineRegisterInfo::use_iterator
1152            Use = MRI->use_begin(Dst.getReg()), E = MRI->use_end();
1153          Use != E; Use = NextUse) {
1154       NextUse = std::next(Use);
1155       MachineInstr *UseMI = Use->getParent();
1156       unsigned OpNo = Use.getOperandNo();
1157 
1158       // Folding the immediate may reveal operations that can be constant
1159       // folded or replaced with a copy. This can happen for example after
1160       // frame indices are lowered to constants or from splitting 64-bit
1161       // constants.
1162       //
1163       // We may also encounter cases where one or both operands are
1164       // immediates materialized into a register, which would ordinarily not
1165       // be folded due to multiple uses or operand constraints.
1166 
1167       if (OpToFold.isImm() && tryConstantFoldOp(*MRI, TII, UseMI, &OpToFold)) {
1168         LLVM_DEBUG(dbgs() << "Constant folded " << *UseMI << '\n');
1169 
1170         // Some constant folding cases change the same immediate's use to a new
1171         // instruction, e.g. and x, 0 -> 0. Make sure we re-visit the user
1172         // again. The same constant folded instruction could also have a second
1173         // use operand.
1174         NextUse = MRI->use_begin(Dst.getReg());
1175         FoldList.clear();
1176         continue;
1177       }
1178 
1179       // Try to fold any inline immediate uses, and then only fold other
1180       // constants if they have one use.
1181       //
1182       // The legality of the inline immediate must be checked based on the use
1183       // operand, not the defining instruction, because 32-bit instructions
1184       // with 32-bit inline immediate sources may be used to materialize
1185       // constants used in 16-bit operands.
1186       //
1187       // e.g. it is unsafe to fold:
1188       //  s_mov_b32 s0, 1.0    // materializes 0x3f800000
1189       //  v_add_f16 v0, v1, s0 // 1.0 f16 inline immediate sees 0x00003c00
1190 
1191       // Folding immediates with more than one use will increase program size.
1192       // FIXME: This will also reduce register usage, which may be better
1193       // in some cases. A better heuristic is needed.
1194       if (isInlineConstantIfFolded(TII, *UseMI, OpNo, OpToFold)) {
1195         foldOperand(OpToFold, UseMI, OpNo, FoldList, CopiesToReplace);
1196       } else if (frameIndexMayFold(TII, *UseMI, OpNo, OpToFold)) {
1197         foldOperand(OpToFold, UseMI, OpNo, FoldList,
1198                     CopiesToReplace);
1199       } else {
1200         if (++NumLiteralUses == 1) {
1201           NonInlineUse = &*Use;
1202           NonInlineUseOpNo = OpNo;
1203         }
1204       }
1205     }
1206 
1207     if (NumLiteralUses == 1) {
1208       MachineInstr *UseMI = NonInlineUse->getParent();
1209       foldOperand(OpToFold, UseMI, NonInlineUseOpNo, FoldList, CopiesToReplace);
1210     }
1211   } else {
1212     // Folding register.
1213     SmallVector <MachineRegisterInfo::use_iterator, 4> UsesToProcess;
1214     for (MachineRegisterInfo::use_iterator
1215            Use = MRI->use_begin(Dst.getReg()), E = MRI->use_end();
1216          Use != E; ++Use) {
1217       UsesToProcess.push_back(Use);
1218     }
1219     for (auto U : UsesToProcess) {
1220       MachineInstr *UseMI = U->getParent();
1221 
1222       foldOperand(OpToFold, UseMI, U.getOperandNo(),
1223         FoldList, CopiesToReplace);
1224     }
1225   }
1226 
1227   MachineFunction *MF = MI.getParent()->getParent();
1228   // Make sure we add EXEC uses to any new v_mov instructions created.
1229   for (MachineInstr *Copy : CopiesToReplace)
1230     Copy->addImplicitDefUseOperands(*MF);
1231 
1232   for (FoldCandidate &Fold : FoldList) {
1233     assert(!Fold.isReg() || Fold.OpToFold);
1234     if (Fold.isReg() && Register::isVirtualRegister(Fold.OpToFold->getReg())) {
1235       Register Reg = Fold.OpToFold->getReg();
1236       MachineInstr *DefMI = Fold.OpToFold->getParent();
1237       if (DefMI->readsRegister(AMDGPU::EXEC, TRI) &&
1238           execMayBeModifiedBeforeUse(*MRI, Reg, *DefMI, *Fold.UseMI))
1239         continue;
1240     }
1241     if (updateOperand(Fold, *TII, *TRI, *ST)) {
1242       // Clear kill flags.
1243       if (Fold.isReg()) {
1244         assert(Fold.OpToFold && Fold.OpToFold->isReg());
1245         // FIXME: Probably shouldn't bother trying to fold if not an
1246         // SGPR. PeepholeOptimizer can eliminate redundant VGPR->VGPR
1247         // copies.
1248         MRI->clearKillFlags(Fold.OpToFold->getReg());
1249       }
1250       LLVM_DEBUG(dbgs() << "Folded source from " << MI << " into OpNo "
1251                         << static_cast<int>(Fold.UseOpNo) << " of "
1252                         << *Fold.UseMI << '\n');
1253       tryFoldInst(TII, Fold.UseMI);
1254     } else if (Fold.isCommuted()) {
1255       // Restoring instruction's original operand order if fold has failed.
1256       TII->commuteInstruction(*Fold.UseMI, false);
1257     }
1258   }
1259 }
1260 
1261 // Clamp patterns are canonically selected to v_max_* instructions, so only
1262 // handle them.
1263 const MachineOperand *SIFoldOperands::isClamp(const MachineInstr &MI) const {
1264   unsigned Op = MI.getOpcode();
1265   switch (Op) {
1266   case AMDGPU::V_MAX_F32_e64:
1267   case AMDGPU::V_MAX_F16_e64:
1268   case AMDGPU::V_MAX_F64:
1269   case AMDGPU::V_PK_MAX_F16: {
1270     if (!TII->getNamedOperand(MI, AMDGPU::OpName::clamp)->getImm())
1271       return nullptr;
1272 
1273     // Make sure sources are identical.
1274     const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
1275     const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
1276     if (!Src0->isReg() || !Src1->isReg() ||
1277         Src0->getReg() != Src1->getReg() ||
1278         Src0->getSubReg() != Src1->getSubReg() ||
1279         Src0->getSubReg() != AMDGPU::NoSubRegister)
1280       return nullptr;
1281 
1282     // Can't fold up if we have modifiers.
1283     if (TII->hasModifiersSet(MI, AMDGPU::OpName::omod))
1284       return nullptr;
1285 
1286     unsigned Src0Mods
1287       = TII->getNamedOperand(MI, AMDGPU::OpName::src0_modifiers)->getImm();
1288     unsigned Src1Mods
1289       = TII->getNamedOperand(MI, AMDGPU::OpName::src1_modifiers)->getImm();
1290 
1291     // Having a 0 op_sel_hi would require swizzling the output in the source
1292     // instruction, which we can't do.
1293     unsigned UnsetMods = (Op == AMDGPU::V_PK_MAX_F16) ? SISrcMods::OP_SEL_1
1294                                                       : 0u;
1295     if (Src0Mods != UnsetMods && Src1Mods != UnsetMods)
1296       return nullptr;
1297     return Src0;
1298   }
1299   default:
1300     return nullptr;
1301   }
1302 }
1303 
1304 // We obviously have multiple uses in a clamp since the register is used twice
1305 // in the same instruction.
1306 static bool hasOneNonDBGUseInst(const MachineRegisterInfo &MRI, unsigned Reg) {
1307   int Count = 0;
1308   for (auto I = MRI.use_instr_nodbg_begin(Reg), E = MRI.use_instr_nodbg_end();
1309        I != E; ++I) {
1310     if (++Count > 1)
1311       return false;
1312   }
1313 
1314   return true;
1315 }
1316 
1317 // FIXME: Clamp for v_mad_mixhi_f16 handled during isel.
1318 bool SIFoldOperands::tryFoldClamp(MachineInstr &MI) {
1319   const MachineOperand *ClampSrc = isClamp(MI);
1320   if (!ClampSrc || !hasOneNonDBGUseInst(*MRI, ClampSrc->getReg()))
1321     return false;
1322 
1323   MachineInstr *Def = MRI->getVRegDef(ClampSrc->getReg());
1324 
1325   // The type of clamp must be compatible.
1326   if (TII->getClampMask(*Def) != TII->getClampMask(MI))
1327     return false;
1328 
1329   MachineOperand *DefClamp = TII->getNamedOperand(*Def, AMDGPU::OpName::clamp);
1330   if (!DefClamp)
1331     return false;
1332 
1333   LLVM_DEBUG(dbgs() << "Folding clamp " << *DefClamp << " into " << *Def
1334                     << '\n');
1335 
1336   // Clamp is applied after omod, so it is OK if omod is set.
1337   DefClamp->setImm(1);
1338   MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg());
1339   MI.eraseFromParent();
1340   return true;
1341 }
1342 
1343 static int getOModValue(unsigned Opc, int64_t Val) {
1344   switch (Opc) {
1345   case AMDGPU::V_MUL_F32_e64: {
1346     switch (static_cast<uint32_t>(Val)) {
1347     case 0x3f000000: // 0.5
1348       return SIOutMods::DIV2;
1349     case 0x40000000: // 2.0
1350       return SIOutMods::MUL2;
1351     case 0x40800000: // 4.0
1352       return SIOutMods::MUL4;
1353     default:
1354       return SIOutMods::NONE;
1355     }
1356   }
1357   case AMDGPU::V_MUL_F16_e64: {
1358     switch (static_cast<uint16_t>(Val)) {
1359     case 0x3800: // 0.5
1360       return SIOutMods::DIV2;
1361     case 0x4000: // 2.0
1362       return SIOutMods::MUL2;
1363     case 0x4400: // 4.0
1364       return SIOutMods::MUL4;
1365     default:
1366       return SIOutMods::NONE;
1367     }
1368   }
1369   default:
1370     llvm_unreachable("invalid mul opcode");
1371   }
1372 }
1373 
1374 // FIXME: Does this really not support denormals with f16?
1375 // FIXME: Does this need to check IEEE mode bit? SNaNs are generally not
1376 // handled, so will anything other than that break?
1377 std::pair<const MachineOperand *, int>
1378 SIFoldOperands::isOMod(const MachineInstr &MI) const {
1379   unsigned Op = MI.getOpcode();
1380   switch (Op) {
1381   case AMDGPU::V_MUL_F32_e64:
1382   case AMDGPU::V_MUL_F16_e64: {
1383     // If output denormals are enabled, omod is ignored.
1384     if ((Op == AMDGPU::V_MUL_F32_e64 && MFI->getMode().FP32Denormals) ||
1385         (Op == AMDGPU::V_MUL_F16_e64 && MFI->getMode().FP64FP16Denormals))
1386       return std::make_pair(nullptr, SIOutMods::NONE);
1387 
1388     const MachineOperand *RegOp = nullptr;
1389     const MachineOperand *ImmOp = nullptr;
1390     const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
1391     const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
1392     if (Src0->isImm()) {
1393       ImmOp = Src0;
1394       RegOp = Src1;
1395     } else if (Src1->isImm()) {
1396       ImmOp = Src1;
1397       RegOp = Src0;
1398     } else
1399       return std::make_pair(nullptr, SIOutMods::NONE);
1400 
1401     int OMod = getOModValue(Op, ImmOp->getImm());
1402     if (OMod == SIOutMods::NONE ||
1403         TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) ||
1404         TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) ||
1405         TII->hasModifiersSet(MI, AMDGPU::OpName::omod) ||
1406         TII->hasModifiersSet(MI, AMDGPU::OpName::clamp))
1407       return std::make_pair(nullptr, SIOutMods::NONE);
1408 
1409     return std::make_pair(RegOp, OMod);
1410   }
1411   case AMDGPU::V_ADD_F32_e64:
1412   case AMDGPU::V_ADD_F16_e64: {
1413     // If output denormals are enabled, omod is ignored.
1414     if ((Op == AMDGPU::V_ADD_F32_e64 && MFI->getMode().FP32Denormals) ||
1415         (Op == AMDGPU::V_ADD_F16_e64 && MFI->getMode().FP64FP16Denormals))
1416       return std::make_pair(nullptr, SIOutMods::NONE);
1417 
1418     // Look through the DAGCombiner canonicalization fmul x, 2 -> fadd x, x
1419     const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
1420     const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
1421 
1422     if (Src0->isReg() && Src1->isReg() && Src0->getReg() == Src1->getReg() &&
1423         Src0->getSubReg() == Src1->getSubReg() &&
1424         !TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) &&
1425         !TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) &&
1426         !TII->hasModifiersSet(MI, AMDGPU::OpName::clamp) &&
1427         !TII->hasModifiersSet(MI, AMDGPU::OpName::omod))
1428       return std::make_pair(Src0, SIOutMods::MUL2);
1429 
1430     return std::make_pair(nullptr, SIOutMods::NONE);
1431   }
1432   default:
1433     return std::make_pair(nullptr, SIOutMods::NONE);
1434   }
1435 }
1436 
1437 // FIXME: Does this need to check IEEE bit on function?
1438 bool SIFoldOperands::tryFoldOMod(MachineInstr &MI) {
1439   const MachineOperand *RegOp;
1440   int OMod;
1441   std::tie(RegOp, OMod) = isOMod(MI);
1442   if (OMod == SIOutMods::NONE || !RegOp->isReg() ||
1443       RegOp->getSubReg() != AMDGPU::NoSubRegister ||
1444       !hasOneNonDBGUseInst(*MRI, RegOp->getReg()))
1445     return false;
1446 
1447   MachineInstr *Def = MRI->getVRegDef(RegOp->getReg());
1448   MachineOperand *DefOMod = TII->getNamedOperand(*Def, AMDGPU::OpName::omod);
1449   if (!DefOMod || DefOMod->getImm() != SIOutMods::NONE)
1450     return false;
1451 
1452   // Clamp is applied after omod. If the source already has clamp set, don't
1453   // fold it.
1454   if (TII->hasModifiersSet(*Def, AMDGPU::OpName::clamp))
1455     return false;
1456 
1457   LLVM_DEBUG(dbgs() << "Folding omod " << MI << " into " << *Def << '\n');
1458 
1459   DefOMod->setImm(OMod);
1460   MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg());
1461   MI.eraseFromParent();
1462   return true;
1463 }
1464 
1465 bool SIFoldOperands::runOnMachineFunction(MachineFunction &MF) {
1466   if (skipFunction(MF.getFunction()))
1467     return false;
1468 
1469   MRI = &MF.getRegInfo();
1470   ST = &MF.getSubtarget<GCNSubtarget>();
1471   TII = ST->getInstrInfo();
1472   TRI = &TII->getRegisterInfo();
1473   MFI = MF.getInfo<SIMachineFunctionInfo>();
1474 
1475   // omod is ignored by hardware if IEEE bit is enabled. omod also does not
1476   // correctly handle signed zeros.
1477   //
1478   // FIXME: Also need to check strictfp
1479   bool IsIEEEMode = MFI->getMode().IEEE;
1480   bool HasNSZ = MFI->hasNoSignedZerosFPMath();
1481 
1482   for (MachineBasicBlock *MBB : depth_first(&MF)) {
1483     MachineBasicBlock::iterator I, Next;
1484 
1485     MachineOperand *CurrentKnownM0Val = nullptr;
1486     for (I = MBB->begin(); I != MBB->end(); I = Next) {
1487       Next = std::next(I);
1488       MachineInstr &MI = *I;
1489 
1490       tryFoldInst(TII, &MI);
1491 
1492       if (!TII->isFoldableCopy(MI)) {
1493         // Saw an unknown clobber of m0, so we no longer know what it is.
1494         if (CurrentKnownM0Val && MI.modifiesRegister(AMDGPU::M0, TRI))
1495           CurrentKnownM0Val = nullptr;
1496 
1497         // TODO: Omod might be OK if there is NSZ only on the source
1498         // instruction, and not the omod multiply.
1499         if (IsIEEEMode || (!HasNSZ && !MI.getFlag(MachineInstr::FmNsz)) ||
1500             !tryFoldOMod(MI))
1501           tryFoldClamp(MI);
1502 
1503         continue;
1504       }
1505 
1506       // Specially track simple redefs of m0 to the same value in a block, so we
1507       // can erase the later ones.
1508       if (MI.getOperand(0).getReg() == AMDGPU::M0) {
1509         MachineOperand &NewM0Val = MI.getOperand(1);
1510         if (CurrentKnownM0Val && CurrentKnownM0Val->isIdenticalTo(NewM0Val)) {
1511           MI.eraseFromParent();
1512           continue;
1513         }
1514 
1515         // We aren't tracking other physical registers
1516         CurrentKnownM0Val = (NewM0Val.isReg() && NewM0Val.getReg().isPhysical()) ?
1517           nullptr : &NewM0Val;
1518         continue;
1519       }
1520 
1521       MachineOperand &OpToFold = MI.getOperand(1);
1522       bool FoldingImm =
1523           OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal();
1524 
1525       // FIXME: We could also be folding things like TargetIndexes.
1526       if (!FoldingImm && !OpToFold.isReg())
1527         continue;
1528 
1529       if (OpToFold.isReg() && !Register::isVirtualRegister(OpToFold.getReg()))
1530         continue;
1531 
1532       // Prevent folding operands backwards in the function. For example,
1533       // the COPY opcode must not be replaced by 1 in this example:
1534       //
1535       //    %3 = COPY %vgpr0; VGPR_32:%3
1536       //    ...
1537       //    %vgpr0 = V_MOV_B32_e32 1, implicit %exec
1538       MachineOperand &Dst = MI.getOperand(0);
1539       if (Dst.isReg() && !Register::isVirtualRegister(Dst.getReg()))
1540         continue;
1541 
1542       foldInstOperand(MI, OpToFold);
1543     }
1544   }
1545   return true;
1546 }
1547