1 //===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// Custom DAG lowering for SI
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SIISelLowering.h"
15 #include "AMDGPU.h"
16 #include "AMDGPUInstrInfo.h"
17 #include "AMDGPUTargetMachine.h"
18 #include "SIMachineFunctionInfo.h"
19 #include "SIRegisterInfo.h"
20 #include "llvm/ADT/FloatingPointMode.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
23 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
24 #include "llvm/BinaryFormat/ELF.h"
25 #include "llvm/CodeGen/Analysis.h"
26 #include "llvm/CodeGen/FunctionLoweringInfo.h"
27 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h"
28 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
29 #include "llvm/CodeGen/MachineFrameInfo.h"
30 #include "llvm/CodeGen/MachineFunction.h"
31 #include "llvm/CodeGen/MachineLoopInfo.h"
32 #include "llvm/IR/DiagnosticInfo.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/IntrinsicsAMDGPU.h"
35 #include "llvm/IR/IntrinsicsR600.h"
36 #include "llvm/Support/CommandLine.h"
37 #include "llvm/Support/KnownBits.h"
38 
39 using namespace llvm;
40 
41 #define DEBUG_TYPE "si-lower"
42 
43 STATISTIC(NumTailCalls, "Number of tail calls");
44 
45 static cl::opt<bool> DisableLoopAlignment(
46   "amdgpu-disable-loop-alignment",
47   cl::desc("Do not align and prefetch loops"),
48   cl::init(false));
49 
50 static cl::opt<bool> UseDivergentRegisterIndexing(
51   "amdgpu-use-divergent-register-indexing",
52   cl::Hidden,
53   cl::desc("Use indirect register addressing for divergent indexes"),
54   cl::init(false));
55 
56 static bool hasFP32Denormals(const MachineFunction &MF) {
57   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
58   return Info->getMode().allFP32Denormals();
59 }
60 
61 static bool hasFP64FP16Denormals(const MachineFunction &MF) {
62   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
63   return Info->getMode().allFP64FP16Denormals();
64 }
65 
66 static unsigned findFirstFreeSGPR(CCState &CCInfo) {
67   unsigned NumSGPRs = AMDGPU::SGPR_32RegClass.getNumRegs();
68   for (unsigned Reg = 0; Reg < NumSGPRs; ++Reg) {
69     if (!CCInfo.isAllocated(AMDGPU::SGPR0 + Reg)) {
70       return AMDGPU::SGPR0 + Reg;
71     }
72   }
73   llvm_unreachable("Cannot allocate sgpr");
74 }
75 
76 SITargetLowering::SITargetLowering(const TargetMachine &TM,
77                                    const GCNSubtarget &STI)
78     : AMDGPUTargetLowering(TM, STI),
79       Subtarget(&STI) {
80   addRegisterClass(MVT::i1, &AMDGPU::VReg_1RegClass);
81   addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass);
82 
83   addRegisterClass(MVT::i32, &AMDGPU::SReg_32RegClass);
84   addRegisterClass(MVT::f32, &AMDGPU::VGPR_32RegClass);
85 
86   addRegisterClass(MVT::v2i32, &AMDGPU::SReg_64RegClass);
87 
88   const SIRegisterInfo *TRI = STI.getRegisterInfo();
89   const TargetRegisterClass *V64RegClass = TRI->getVGPR64Class();
90 
91   addRegisterClass(MVT::f64, V64RegClass);
92   addRegisterClass(MVT::v2f32, V64RegClass);
93 
94   addRegisterClass(MVT::v3i32, &AMDGPU::SGPR_96RegClass);
95   addRegisterClass(MVT::v3f32, TRI->getVGPRClassForBitWidth(96));
96 
97   addRegisterClass(MVT::v2i64, &AMDGPU::SGPR_128RegClass);
98   addRegisterClass(MVT::v2f64, &AMDGPU::SGPR_128RegClass);
99 
100   addRegisterClass(MVT::v4i32, &AMDGPU::SGPR_128RegClass);
101   addRegisterClass(MVT::v4f32, TRI->getVGPRClassForBitWidth(128));
102 
103   addRegisterClass(MVT::v5i32, &AMDGPU::SGPR_160RegClass);
104   addRegisterClass(MVT::v5f32, TRI->getVGPRClassForBitWidth(160));
105 
106   addRegisterClass(MVT::v6i32, &AMDGPU::SGPR_192RegClass);
107   addRegisterClass(MVT::v6f32, TRI->getVGPRClassForBitWidth(192));
108 
109   addRegisterClass(MVT::v3i64, &AMDGPU::SGPR_192RegClass);
110   addRegisterClass(MVT::v3f64, TRI->getVGPRClassForBitWidth(192));
111 
112   addRegisterClass(MVT::v7i32, &AMDGPU::SGPR_224RegClass);
113   addRegisterClass(MVT::v7f32, TRI->getVGPRClassForBitWidth(224));
114 
115   addRegisterClass(MVT::v8i32, &AMDGPU::SGPR_256RegClass);
116   addRegisterClass(MVT::v8f32, TRI->getVGPRClassForBitWidth(256));
117 
118   addRegisterClass(MVT::v4i64, &AMDGPU::SGPR_256RegClass);
119   addRegisterClass(MVT::v4f64, TRI->getVGPRClassForBitWidth(256));
120 
121   addRegisterClass(MVT::v16i32, &AMDGPU::SGPR_512RegClass);
122   addRegisterClass(MVT::v16f32, TRI->getVGPRClassForBitWidth(512));
123 
124   addRegisterClass(MVT::v8i64, &AMDGPU::SGPR_512RegClass);
125   addRegisterClass(MVT::v8f64, TRI->getVGPRClassForBitWidth(512));
126 
127   addRegisterClass(MVT::v16i64, &AMDGPU::SGPR_1024RegClass);
128   addRegisterClass(MVT::v16f64, TRI->getVGPRClassForBitWidth(1024));
129 
130   if (Subtarget->has16BitInsts()) {
131     addRegisterClass(MVT::i16, &AMDGPU::SReg_32RegClass);
132     addRegisterClass(MVT::f16, &AMDGPU::SReg_32RegClass);
133 
134     // Unless there are also VOP3P operations, not operations are really legal.
135     addRegisterClass(MVT::v2i16, &AMDGPU::SReg_32RegClass);
136     addRegisterClass(MVT::v2f16, &AMDGPU::SReg_32RegClass);
137     addRegisterClass(MVT::v4i16, &AMDGPU::SReg_64RegClass);
138     addRegisterClass(MVT::v4f16, &AMDGPU::SReg_64RegClass);
139     addRegisterClass(MVT::v8i16, &AMDGPU::SGPR_128RegClass);
140     addRegisterClass(MVT::v8f16, &AMDGPU::SGPR_128RegClass);
141     addRegisterClass(MVT::v16i16, &AMDGPU::SGPR_256RegClass);
142     addRegisterClass(MVT::v16f16, &AMDGPU::SGPR_256RegClass);
143   }
144 
145   addRegisterClass(MVT::v32i32, &AMDGPU::VReg_1024RegClass);
146   addRegisterClass(MVT::v32f32, TRI->getVGPRClassForBitWidth(1024));
147 
148   computeRegisterProperties(Subtarget->getRegisterInfo());
149 
150   // The boolean content concept here is too inflexible. Compares only ever
151   // really produce a 1-bit result. Any copy/extend from these will turn into a
152   // select, and zext/1 or sext/-1 are equally cheap. Arbitrarily choose 0/1, as
153   // it's what most targets use.
154   setBooleanContents(ZeroOrOneBooleanContent);
155   setBooleanVectorContents(ZeroOrOneBooleanContent);
156 
157   // We need to custom lower vector stores from local memory
158   setOperationAction(ISD::LOAD,
159                      {MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32,
160                       MVT::v6i32, MVT::v7i32, MVT::v8i32, MVT::v16i32, MVT::i1,
161                       MVT::v32i32},
162                      Custom);
163 
164   setOperationAction(ISD::STORE,
165                      {MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32,
166                       MVT::v6i32, MVT::v7i32, MVT::v8i32, MVT::v16i32, MVT::i1,
167                       MVT::v32i32},
168                      Custom);
169 
170   setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand);
171   setTruncStoreAction(MVT::v3i32, MVT::v3i16, Expand);
172   setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand);
173   setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand);
174   setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand);
175   setTruncStoreAction(MVT::v32i32, MVT::v32i16, Expand);
176   setTruncStoreAction(MVT::v2i32, MVT::v2i8, Expand);
177   setTruncStoreAction(MVT::v4i32, MVT::v4i8, Expand);
178   setTruncStoreAction(MVT::v8i32, MVT::v8i8, Expand);
179   setTruncStoreAction(MVT::v16i32, MVT::v16i8, Expand);
180   setTruncStoreAction(MVT::v32i32, MVT::v32i8, Expand);
181   setTruncStoreAction(MVT::v2i16, MVT::v2i8, Expand);
182   setTruncStoreAction(MVT::v4i16, MVT::v4i8, Expand);
183   setTruncStoreAction(MVT::v8i16, MVT::v8i8, Expand);
184   setTruncStoreAction(MVT::v16i16, MVT::v16i8, Expand);
185   setTruncStoreAction(MVT::v32i16, MVT::v32i8, Expand);
186 
187   setTruncStoreAction(MVT::v3i64, MVT::v3i16, Expand);
188   setTruncStoreAction(MVT::v3i64, MVT::v3i32, Expand);
189   setTruncStoreAction(MVT::v4i64, MVT::v4i8, Expand);
190   setTruncStoreAction(MVT::v8i64, MVT::v8i8, Expand);
191   setTruncStoreAction(MVT::v8i64, MVT::v8i16, Expand);
192   setTruncStoreAction(MVT::v8i64, MVT::v8i32, Expand);
193   setTruncStoreAction(MVT::v16i64, MVT::v16i32, Expand);
194 
195   setOperationAction(ISD::GlobalAddress, {MVT::i32, MVT::i64}, Custom);
196 
197   setOperationAction(ISD::SELECT, MVT::i1, Promote);
198   setOperationAction(ISD::SELECT, MVT::i64, Custom);
199   setOperationAction(ISD::SELECT, MVT::f64, Promote);
200   AddPromotedToType(ISD::SELECT, MVT::f64, MVT::i64);
201 
202   setOperationAction(ISD::SELECT_CC,
203                      {MVT::f32, MVT::i32, MVT::i64, MVT::f64, MVT::i1}, Expand);
204 
205   setOperationAction(ISD::SETCC, MVT::i1, Promote);
206   setOperationAction(ISD::SETCC, {MVT::v2i1, MVT::v4i1}, Expand);
207   AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
208 
209   setOperationAction(ISD::TRUNCATE,
210                      {MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32,
211                       MVT::v6i32, MVT::v7i32, MVT::v8i32, MVT::v16i32},
212                      Expand);
213   setOperationAction(ISD::FP_ROUND,
214                      {MVT::v2f32, MVT::v3f32, MVT::v4f32, MVT::v5f32,
215                       MVT::v6f32, MVT::v7f32, MVT::v8f32, MVT::v16f32},
216                      Expand);
217 
218   setOperationAction(ISD::SIGN_EXTEND_INREG,
219                      {MVT::v2i1, MVT::v4i1, MVT::v2i8, MVT::v4i8, MVT::v2i16,
220                       MVT::v3i16, MVT::v4i16, MVT::Other},
221                      Custom);
222 
223   setOperationAction(ISD::BRCOND, MVT::Other, Custom);
224   setOperationAction(ISD::BR_CC,
225                      {MVT::i1, MVT::i32, MVT::i64, MVT::f32, MVT::f64}, Expand);
226 
227   setOperationAction({ISD::UADDO, ISD::USUBO}, MVT::i32, Legal);
228 
229   setOperationAction({ISD::ADDCARRY, ISD::SUBCARRY}, MVT::i32, Legal);
230 
231   setOperationAction({ISD::SHL_PARTS, ISD::SRA_PARTS, ISD::SRL_PARTS}, MVT::i64,
232                      Expand);
233 
234 #if 0
235   setOperationAction({ISD::ADDCARRY, ISD::SUBCARRY}, MVT::i64, Legal);
236 #endif
237 
238   // We only support LOAD/STORE and vector manipulation ops for vectors
239   // with > 4 elements.
240   for (MVT VT :
241        {MVT::v8i32,  MVT::v8f32,  MVT::v16i32, MVT::v16f32, MVT::v2i64,
242         MVT::v2f64,  MVT::v4i16,  MVT::v4f16,  MVT::v3i64,  MVT::v3f64,
243         MVT::v6i32,  MVT::v6f32,  MVT::v4i64,  MVT::v4f64,  MVT::v8i64,
244         MVT::v8f64,  MVT::v8i16,  MVT::v8f16,  MVT::v16i16, MVT::v16f16,
245         MVT::v16i64, MVT::v16f64, MVT::v32i32, MVT::v32f32}) {
246     for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
247       switch (Op) {
248       case ISD::LOAD:
249       case ISD::STORE:
250       case ISD::BUILD_VECTOR:
251       case ISD::BITCAST:
252       case ISD::EXTRACT_VECTOR_ELT:
253       case ISD::INSERT_VECTOR_ELT:
254       case ISD::EXTRACT_SUBVECTOR:
255       case ISD::SCALAR_TO_VECTOR:
256         break;
257       case ISD::INSERT_SUBVECTOR:
258       case ISD::CONCAT_VECTORS:
259         setOperationAction(Op, VT, Custom);
260         break;
261       default:
262         setOperationAction(Op, VT, Expand);
263         break;
264       }
265     }
266   }
267 
268   setOperationAction(ISD::FP_EXTEND, MVT::v4f32, Expand);
269 
270   // TODO: For dynamic 64-bit vector inserts/extracts, should emit a pseudo that
271   // is expanded to avoid having two separate loops in case the index is a VGPR.
272 
273   // Most operations are naturally 32-bit vector operations. We only support
274   // load and store of i64 vectors, so promote v2i64 vector operations to v4i32.
275   for (MVT Vec64 : { MVT::v2i64, MVT::v2f64 }) {
276     setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
277     AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v4i32);
278 
279     setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
280     AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v4i32);
281 
282     setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
283     AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v4i32);
284 
285     setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
286     AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v4i32);
287   }
288 
289   for (MVT Vec64 : { MVT::v3i64, MVT::v3f64 }) {
290     setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
291     AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v6i32);
292 
293     setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
294     AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v6i32);
295 
296     setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
297     AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v6i32);
298 
299     setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
300     AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v6i32);
301   }
302 
303   for (MVT Vec64 : { MVT::v4i64, MVT::v4f64 }) {
304     setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
305     AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v8i32);
306 
307     setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
308     AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v8i32);
309 
310     setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
311     AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v8i32);
312 
313     setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
314     AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v8i32);
315   }
316 
317   for (MVT Vec64 : { MVT::v8i64, MVT::v8f64 }) {
318     setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
319     AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v16i32);
320 
321     setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
322     AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v16i32);
323 
324     setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
325     AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v16i32);
326 
327     setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
328     AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v16i32);
329   }
330 
331   for (MVT Vec64 : { MVT::v16i64, MVT::v16f64 }) {
332     setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
333     AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v32i32);
334 
335     setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
336     AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v32i32);
337 
338     setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
339     AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v32i32);
340 
341     setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
342     AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v32i32);
343   }
344 
345   setOperationAction(ISD::VECTOR_SHUFFLE,
346                      {MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32},
347                      Expand);
348 
349   setOperationAction(ISD::BUILD_VECTOR, {MVT::v4f16, MVT::v4i16}, Custom);
350 
351   // Avoid stack access for these.
352   // TODO: Generalize to more vector types.
353   setOperationAction({ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT},
354                      {MVT::v2i16, MVT::v2f16, MVT::v2i8, MVT::v4i8, MVT::v8i8,
355                       MVT::v4i16, MVT::v4f16, MVT::v16i16, MVT::v16f16},
356                      Custom);
357 
358   // Deal with vec3 vector operations when widened to vec4.
359   setOperationAction(ISD::INSERT_SUBVECTOR,
360                      {MVT::v3i32, MVT::v3f32, MVT::v4i32, MVT::v4f32}, Custom);
361 
362   // Deal with vec5/6/7 vector operations when widened to vec8.
363   setOperationAction(ISD::INSERT_SUBVECTOR,
364                      {MVT::v5i32, MVT::v5f32, MVT::v6i32, MVT::v6f32,
365                       MVT::v7i32, MVT::v7f32, MVT::v8i32, MVT::v8f32},
366                      Custom);
367 
368   // BUFFER/FLAT_ATOMIC_CMP_SWAP on GCN GPUs needs input marshalling,
369   // and output demarshalling
370   setOperationAction(ISD::ATOMIC_CMP_SWAP, {MVT::i32, MVT::i64}, Custom);
371 
372   // We can't return success/failure, only the old value,
373   // let LLVM add the comparison
374   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, {MVT::i32, MVT::i64},
375                      Expand);
376 
377   if (Subtarget->hasFlatAddressSpace())
378     setOperationAction(ISD::ADDRSPACECAST, {MVT::i32, MVT::i64}, Custom);
379 
380   setOperationAction(ISD::BITREVERSE, {MVT::i32, MVT::i64}, Legal);
381 
382   // FIXME: This should be narrowed to i32, but that only happens if i64 is
383   // illegal.
384   // FIXME: Should lower sub-i32 bswaps to bit-ops without v_perm_b32.
385   setOperationAction(ISD::BSWAP, {MVT::i64, MVT::i32}, Legal);
386 
387   // On SI this is s_memtime and s_memrealtime on VI.
388   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
389   setOperationAction({ISD::TRAP, ISD::DEBUGTRAP}, MVT::Other, Custom);
390 
391   if (Subtarget->has16BitInsts()) {
392     setOperationAction({ISD::FPOW, ISD::FPOWI}, MVT::f16, Promote);
393     setOperationAction({ISD::FLOG, ISD::FEXP, ISD::FLOG10}, MVT::f16, Custom);
394   }
395 
396   if (Subtarget->hasMadMacF32Insts())
397     setOperationAction(ISD::FMAD, MVT::f32, Legal);
398 
399   if (!Subtarget->hasBFI())
400     // fcopysign can be done in a single instruction with BFI.
401     setOperationAction(ISD::FCOPYSIGN, {MVT::f32, MVT::f64}, Expand);
402 
403   if (!Subtarget->hasBCNT(32))
404     setOperationAction(ISD::CTPOP, MVT::i32, Expand);
405 
406   if (!Subtarget->hasBCNT(64))
407     setOperationAction(ISD::CTPOP, MVT::i64, Expand);
408 
409   if (Subtarget->hasFFBH())
410     setOperationAction({ISD::CTLZ, ISD::CTLZ_ZERO_UNDEF}, MVT::i32, Custom);
411 
412   if (Subtarget->hasFFBL())
413     setOperationAction({ISD::CTTZ, ISD::CTTZ_ZERO_UNDEF}, MVT::i32, Custom);
414 
415   // We only really have 32-bit BFE instructions (and 16-bit on VI).
416   //
417   // On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any
418   // effort to match them now. We want this to be false for i64 cases when the
419   // extraction isn't restricted to the upper or lower half. Ideally we would
420   // have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that
421   // span the midpoint are probably relatively rare, so don't worry about them
422   // for now.
423   if (Subtarget->hasBFE())
424     setHasExtractBitsInsn(true);
425 
426   // Clamp modifier on add/sub
427   if (Subtarget->hasIntClamp())
428     setOperationAction({ISD::UADDSAT, ISD::USUBSAT}, MVT::i32, Legal);
429 
430   if (Subtarget->hasAddNoCarry())
431     setOperationAction({ISD::SADDSAT, ISD::SSUBSAT}, {MVT::i16, MVT::i32},
432                        Legal);
433 
434   setOperationAction({ISD::FMINNUM, ISD::FMAXNUM}, {MVT::f32, MVT::f64},
435                      Custom);
436 
437   // These are really only legal for ieee_mode functions. We should be avoiding
438   // them for functions that don't have ieee_mode enabled, so just say they are
439   // legal.
440   setOperationAction({ISD::FMINNUM_IEEE, ISD::FMAXNUM_IEEE},
441                      {MVT::f32, MVT::f64}, Legal);
442 
443   if (Subtarget->haveRoundOpsF64())
444     setOperationAction({ISD::FTRUNC, ISD::FCEIL, ISD::FRINT}, MVT::f64, Legal);
445   else
446     setOperationAction({ISD::FCEIL, ISD::FTRUNC, ISD::FRINT, ISD::FFLOOR},
447                        MVT::f64, Custom);
448 
449   setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
450 
451   setOperationAction({ISD::FSIN, ISD::FCOS, ISD::FDIV}, MVT::f32, Custom);
452   setOperationAction(ISD::FDIV, MVT::f64, Custom);
453 
454   if (Subtarget->has16BitInsts()) {
455     setOperationAction({ISD::Constant, ISD::SMIN, ISD::SMAX, ISD::UMIN,
456                         ISD::UMAX, ISD::UADDSAT, ISD::USUBSAT},
457                        MVT::i16, Legal);
458 
459     AddPromotedToType(ISD::SIGN_EXTEND, MVT::i16, MVT::i32);
460 
461     setOperationAction({ISD::ROTR, ISD::ROTL, ISD::SELECT_CC, ISD::BR_CC},
462                        MVT::i16, Expand);
463 
464     setOperationAction({ISD::SIGN_EXTEND, ISD::SDIV, ISD::UDIV, ISD::SREM,
465                         ISD::UREM, ISD::BITREVERSE, ISD::CTTZ,
466                         ISD::CTTZ_ZERO_UNDEF, ISD::CTLZ, ISD::CTLZ_ZERO_UNDEF,
467                         ISD::CTPOP},
468                        MVT::i16, Promote);
469 
470     setOperationAction(ISD::LOAD, MVT::i16, Custom);
471 
472     setTruncStoreAction(MVT::i64, MVT::i16, Expand);
473 
474     setOperationAction(ISD::FP16_TO_FP, MVT::i16, Promote);
475     AddPromotedToType(ISD::FP16_TO_FP, MVT::i16, MVT::i32);
476     setOperationAction(ISD::FP_TO_FP16, MVT::i16, Promote);
477     AddPromotedToType(ISD::FP_TO_FP16, MVT::i16, MVT::i32);
478 
479     setOperationAction({ISD::FP_TO_SINT, ISD::FP_TO_UINT}, MVT::i16, Custom);
480 
481     // F16 - Constant Actions.
482     setOperationAction(ISD::ConstantFP, MVT::f16, Legal);
483 
484     // F16 - Load/Store Actions.
485     setOperationAction(ISD::LOAD, MVT::f16, Promote);
486     AddPromotedToType(ISD::LOAD, MVT::f16, MVT::i16);
487     setOperationAction(ISD::STORE, MVT::f16, Promote);
488     AddPromotedToType(ISD::STORE, MVT::f16, MVT::i16);
489 
490     // F16 - VOP1 Actions.
491     setOperationAction(
492         {ISD::FP_ROUND, ISD::FCOS, ISD::FSIN, ISD::FROUND, ISD::FPTRUNC_ROUND},
493         MVT::f16, Custom);
494 
495     setOperationAction({ISD::SINT_TO_FP, ISD::UINT_TO_FP}, MVT::i16, Custom);
496 
497     setOperationAction(
498         {ISD::FP_TO_SINT, ISD::FP_TO_UINT, ISD::SINT_TO_FP, ISD::UINT_TO_FP},
499         MVT::f16, Promote);
500 
501     // F16 - VOP2 Actions.
502     setOperationAction({ISD::BR_CC, ISD::SELECT_CC}, MVT::f16, Expand);
503 
504     setOperationAction(ISD::FDIV, MVT::f16, Custom);
505 
506     // F16 - VOP3 Actions.
507     setOperationAction(ISD::FMA, MVT::f16, Legal);
508     if (STI.hasMadF16())
509       setOperationAction(ISD::FMAD, MVT::f16, Legal);
510 
511     for (MVT VT : {MVT::v2i16, MVT::v2f16, MVT::v4i16, MVT::v4f16, MVT::v8i16,
512                    MVT::v8f16, MVT::v16i16, MVT::v16f16}) {
513       for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
514         switch (Op) {
515         case ISD::LOAD:
516         case ISD::STORE:
517         case ISD::BUILD_VECTOR:
518         case ISD::BITCAST:
519         case ISD::EXTRACT_VECTOR_ELT:
520         case ISD::INSERT_VECTOR_ELT:
521         case ISD::INSERT_SUBVECTOR:
522         case ISD::EXTRACT_SUBVECTOR:
523         case ISD::SCALAR_TO_VECTOR:
524           break;
525         case ISD::CONCAT_VECTORS:
526           setOperationAction(Op, VT, Custom);
527           break;
528         default:
529           setOperationAction(Op, VT, Expand);
530           break;
531         }
532       }
533     }
534 
535     // v_perm_b32 can handle either of these.
536     setOperationAction(ISD::BSWAP, {MVT::i16, MVT::v2i16}, Legal);
537     setOperationAction(ISD::BSWAP, MVT::v4i16, Custom);
538 
539     // XXX - Do these do anything? Vector constants turn into build_vector.
540     setOperationAction(ISD::Constant, {MVT::v2i16, MVT::v2f16}, Legal);
541 
542     setOperationAction(ISD::UNDEF, {MVT::v2i16, MVT::v2f16}, Legal);
543 
544     setOperationAction(ISD::STORE, MVT::v2i16, Promote);
545     AddPromotedToType(ISD::STORE, MVT::v2i16, MVT::i32);
546     setOperationAction(ISD::STORE, MVT::v2f16, Promote);
547     AddPromotedToType(ISD::STORE, MVT::v2f16, MVT::i32);
548 
549     setOperationAction(ISD::LOAD, MVT::v2i16, Promote);
550     AddPromotedToType(ISD::LOAD, MVT::v2i16, MVT::i32);
551     setOperationAction(ISD::LOAD, MVT::v2f16, Promote);
552     AddPromotedToType(ISD::LOAD, MVT::v2f16, MVT::i32);
553 
554     setOperationAction(ISD::AND, MVT::v2i16, Promote);
555     AddPromotedToType(ISD::AND, MVT::v2i16, MVT::i32);
556     setOperationAction(ISD::OR, MVT::v2i16, Promote);
557     AddPromotedToType(ISD::OR, MVT::v2i16, MVT::i32);
558     setOperationAction(ISD::XOR, MVT::v2i16, Promote);
559     AddPromotedToType(ISD::XOR, MVT::v2i16, MVT::i32);
560 
561     setOperationAction(ISD::LOAD, MVT::v4i16, Promote);
562     AddPromotedToType(ISD::LOAD, MVT::v4i16, MVT::v2i32);
563     setOperationAction(ISD::LOAD, MVT::v4f16, Promote);
564     AddPromotedToType(ISD::LOAD, MVT::v4f16, MVT::v2i32);
565 
566     setOperationAction(ISD::STORE, MVT::v4i16, Promote);
567     AddPromotedToType(ISD::STORE, MVT::v4i16, MVT::v2i32);
568     setOperationAction(ISD::STORE, MVT::v4f16, Promote);
569     AddPromotedToType(ISD::STORE, MVT::v4f16, MVT::v2i32);
570 
571     setOperationAction(ISD::LOAD, MVT::v8i16, Promote);
572     AddPromotedToType(ISD::LOAD, MVT::v8i16, MVT::v4i32);
573     setOperationAction(ISD::LOAD, MVT::v8f16, Promote);
574     AddPromotedToType(ISD::LOAD, MVT::v8f16, MVT::v4i32);
575 
576     setOperationAction(ISD::STORE, MVT::v4i16, Promote);
577     AddPromotedToType(ISD::STORE, MVT::v4i16, MVT::v2i32);
578     setOperationAction(ISD::STORE, MVT::v4f16, Promote);
579     AddPromotedToType(ISD::STORE, MVT::v4f16, MVT::v2i32);
580 
581     setOperationAction(ISD::STORE, MVT::v8i16, Promote);
582     AddPromotedToType(ISD::STORE, MVT::v8i16, MVT::v4i32);
583     setOperationAction(ISD::STORE, MVT::v8f16, Promote);
584     AddPromotedToType(ISD::STORE, MVT::v8f16, MVT::v4i32);
585 
586     setOperationAction(ISD::LOAD, MVT::v16i16, Promote);
587     AddPromotedToType(ISD::LOAD, MVT::v16i16, MVT::v8i32);
588     setOperationAction(ISD::LOAD, MVT::v16f16, Promote);
589     AddPromotedToType(ISD::LOAD, MVT::v16f16, MVT::v8i32);
590 
591     setOperationAction(ISD::STORE, MVT::v16i16, Promote);
592     AddPromotedToType(ISD::STORE, MVT::v16i16, MVT::v8i32);
593     setOperationAction(ISD::STORE, MVT::v16f16, Promote);
594     AddPromotedToType(ISD::STORE, MVT::v16f16, MVT::v8i32);
595 
596     setOperationAction({ISD::ANY_EXTEND, ISD::ZERO_EXTEND, ISD::SIGN_EXTEND},
597                        MVT::v2i32, Expand);
598     setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Expand);
599 
600     setOperationAction({ISD::ANY_EXTEND, ISD::ZERO_EXTEND, ISD::SIGN_EXTEND},
601                        MVT::v4i32, Expand);
602 
603     setOperationAction({ISD::ANY_EXTEND, ISD::ZERO_EXTEND, ISD::SIGN_EXTEND},
604                        MVT::v8i32, Expand);
605 
606     if (!Subtarget->hasVOP3PInsts())
607       setOperationAction(ISD::BUILD_VECTOR, {MVT::v2i16, MVT::v2f16}, Custom);
608 
609     setOperationAction(ISD::FNEG, MVT::v2f16, Legal);
610     // This isn't really legal, but this avoids the legalizer unrolling it (and
611     // allows matching fneg (fabs x) patterns)
612     setOperationAction(ISD::FABS, MVT::v2f16, Legal);
613 
614     setOperationAction({ISD::FMAXNUM, ISD::FMINNUM}, MVT::f16, Custom);
615     setOperationAction({ISD::FMAXNUM_IEEE, ISD::FMINNUM_IEEE}, MVT::f16, Legal);
616 
617     setOperationAction({ISD::FMINNUM_IEEE, ISD::FMAXNUM_IEEE},
618                        {MVT::v4f16, MVT::v8f16, MVT::v16f16}, Custom);
619 
620     setOperationAction({ISD::FMINNUM, ISD::FMAXNUM},
621                        {MVT::v4f16, MVT::v8f16, MVT::v16f16}, Expand);
622 
623     for (MVT Vec16 : {MVT::v8i16, MVT::v8f16, MVT::v16i16, MVT::v16f16}) {
624       setOperationAction(
625           {ISD::BUILD_VECTOR, ISD::EXTRACT_VECTOR_ELT, ISD::SCALAR_TO_VECTOR},
626           Vec16, Custom);
627       setOperationAction(ISD::INSERT_VECTOR_ELT, Vec16, Expand);
628     }
629   }
630 
631   if (Subtarget->hasVOP3PInsts()) {
632     setOperationAction({ISD::ADD, ISD::SUB, ISD::MUL, ISD::SHL, ISD::SRL,
633                         ISD::SRA, ISD::SMIN, ISD::UMIN, ISD::SMAX, ISD::UMAX,
634                         ISD::UADDSAT, ISD::USUBSAT, ISD::SADDSAT, ISD::SSUBSAT},
635                        MVT::v2i16, Legal);
636 
637     setOperationAction({ISD::FADD, ISD::FMUL, ISD::FMA, ISD::FMINNUM_IEEE,
638                         ISD::FMAXNUM_IEEE, ISD::FCANONICALIZE},
639                        MVT::v2f16, Legal);
640 
641     setOperationAction(ISD::EXTRACT_VECTOR_ELT, {MVT::v2i16, MVT::v2f16},
642                        Custom);
643 
644     setOperationAction(ISD::VECTOR_SHUFFLE,
645                        {MVT::v4f16, MVT::v4i16, MVT::v8f16, MVT::v8i16,
646                         MVT::v16f16, MVT::v16i16},
647                        Custom);
648 
649     for (MVT VT : {MVT::v4i16, MVT::v8i16, MVT::v16i16})
650       // Split vector operations.
651       setOperationAction({ISD::SHL, ISD::SRA, ISD::SRL, ISD::ADD, ISD::SUB,
652                           ISD::MUL, ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX,
653                           ISD::UADDSAT, ISD::SADDSAT, ISD::USUBSAT,
654                           ISD::SSUBSAT},
655                          VT, Custom);
656 
657     for (MVT VT : {MVT::v4f16, MVT::v8f16, MVT::v16f16})
658       // Split vector operations.
659       setOperationAction({ISD::FADD, ISD::FMUL, ISD::FMA, ISD::FCANONICALIZE},
660                          VT, Custom);
661 
662     setOperationAction({ISD::FMAXNUM, ISD::FMINNUM}, {MVT::v2f16, MVT::v4f16},
663                        Custom);
664 
665     setOperationAction(ISD::FEXP, MVT::v2f16, Custom);
666     setOperationAction(ISD::SELECT, {MVT::v4i16, MVT::v4f16}, Custom);
667 
668     if (Subtarget->hasPackedFP32Ops()) {
669       setOperationAction({ISD::FADD, ISD::FMUL, ISD::FMA, ISD::FNEG},
670                          MVT::v2f32, Legal);
671       setOperationAction({ISD::FADD, ISD::FMUL, ISD::FMA},
672                          {MVT::v4f32, MVT::v8f32, MVT::v16f32, MVT::v32f32},
673                          Custom);
674     }
675   }
676 
677   setOperationAction({ISD::FNEG, ISD::FABS}, MVT::v4f16, Custom);
678 
679   if (Subtarget->has16BitInsts()) {
680     setOperationAction(ISD::SELECT, MVT::v2i16, Promote);
681     AddPromotedToType(ISD::SELECT, MVT::v2i16, MVT::i32);
682     setOperationAction(ISD::SELECT, MVT::v2f16, Promote);
683     AddPromotedToType(ISD::SELECT, MVT::v2f16, MVT::i32);
684   } else {
685     // Legalization hack.
686     setOperationAction(ISD::SELECT, {MVT::v2i16, MVT::v2f16}, Custom);
687 
688     setOperationAction({ISD::FNEG, ISD::FABS}, MVT::v2f16, Custom);
689   }
690 
691   setOperationAction(ISD::SELECT,
692                      {MVT::v4i16, MVT::v4f16, MVT::v2i8, MVT::v4i8, MVT::v8i8,
693                       MVT::v8i16, MVT::v8f16, MVT::v16i16, MVT::v16f16},
694                      Custom);
695 
696   setOperationAction({ISD::SMULO, ISD::UMULO}, MVT::i64, Custom);
697 
698   if (Subtarget->hasMad64_32())
699     setOperationAction({ISD::SMUL_LOHI, ISD::UMUL_LOHI}, MVT::i32, Custom);
700 
701   setOperationAction(ISD::INTRINSIC_WO_CHAIN,
702                      {MVT::Other, MVT::f32, MVT::v4f32, MVT::i16, MVT::f16,
703                       MVT::v2i16, MVT::v2f16},
704                      Custom);
705 
706   setOperationAction(ISD::INTRINSIC_W_CHAIN,
707                      {MVT::v2f16, MVT::v2i16, MVT::v3f16, MVT::v3i16,
708                       MVT::v4f16, MVT::v4i16, MVT::v8f16, MVT::Other, MVT::f16,
709                       MVT::i16, MVT::i8},
710                      Custom);
711 
712   setOperationAction(ISD::INTRINSIC_VOID,
713                      {MVT::Other, MVT::v2i16, MVT::v2f16, MVT::v3i16,
714                       MVT::v3f16, MVT::v4f16, MVT::v4i16, MVT::f16, MVT::i16,
715                       MVT::i8},
716                      Custom);
717 
718   setTargetDAGCombine({ISD::ADD,
719                        ISD::ADDCARRY,
720                        ISD::SUB,
721                        ISD::SUBCARRY,
722                        ISD::FADD,
723                        ISD::FSUB,
724                        ISD::FMINNUM,
725                        ISD::FMAXNUM,
726                        ISD::FMINNUM_IEEE,
727                        ISD::FMAXNUM_IEEE,
728                        ISD::FMA,
729                        ISD::SMIN,
730                        ISD::SMAX,
731                        ISD::UMIN,
732                        ISD::UMAX,
733                        ISD::SETCC,
734                        ISD::AND,
735                        ISD::OR,
736                        ISD::XOR,
737                        ISD::SINT_TO_FP,
738                        ISD::UINT_TO_FP,
739                        ISD::FCANONICALIZE,
740                        ISD::SCALAR_TO_VECTOR,
741                        ISD::ZERO_EXTEND,
742                        ISD::SIGN_EXTEND_INREG,
743                        ISD::EXTRACT_VECTOR_ELT,
744                        ISD::INSERT_VECTOR_ELT});
745 
746   // All memory operations. Some folding on the pointer operand is done to help
747   // matching the constant offsets in the addressing modes.
748   setTargetDAGCombine({ISD::LOAD,
749                        ISD::STORE,
750                        ISD::ATOMIC_LOAD,
751                        ISD::ATOMIC_STORE,
752                        ISD::ATOMIC_CMP_SWAP,
753                        ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
754                        ISD::ATOMIC_SWAP,
755                        ISD::ATOMIC_LOAD_ADD,
756                        ISD::ATOMIC_LOAD_SUB,
757                        ISD::ATOMIC_LOAD_AND,
758                        ISD::ATOMIC_LOAD_OR,
759                        ISD::ATOMIC_LOAD_XOR,
760                        ISD::ATOMIC_LOAD_NAND,
761                        ISD::ATOMIC_LOAD_MIN,
762                        ISD::ATOMIC_LOAD_MAX,
763                        ISD::ATOMIC_LOAD_UMIN,
764                        ISD::ATOMIC_LOAD_UMAX,
765                        ISD::ATOMIC_LOAD_FADD,
766                        ISD::INTRINSIC_VOID,
767                        ISD::INTRINSIC_W_CHAIN});
768 
769   // FIXME: In other contexts we pretend this is a per-function property.
770   setStackPointerRegisterToSaveRestore(AMDGPU::SGPR32);
771 
772   setSchedulingPreference(Sched::RegPressure);
773 }
774 
775 const GCNSubtarget *SITargetLowering::getSubtarget() const {
776   return Subtarget;
777 }
778 
779 //===----------------------------------------------------------------------===//
780 // TargetLowering queries
781 //===----------------------------------------------------------------------===//
782 
783 // v_mad_mix* support a conversion from f16 to f32.
784 //
785 // There is only one special case when denormals are enabled we don't currently,
786 // where this is OK to use.
787 bool SITargetLowering::isFPExtFoldable(const SelectionDAG &DAG, unsigned Opcode,
788                                        EVT DestVT, EVT SrcVT) const {
789   return ((Opcode == ISD::FMAD && Subtarget->hasMadMixInsts()) ||
790           (Opcode == ISD::FMA && Subtarget->hasFmaMixInsts())) &&
791     DestVT.getScalarType() == MVT::f32 &&
792     SrcVT.getScalarType() == MVT::f16 &&
793     // TODO: This probably only requires no input flushing?
794     !hasFP32Denormals(DAG.getMachineFunction());
795 }
796 
797 bool SITargetLowering::isFPExtFoldable(const MachineInstr &MI, unsigned Opcode,
798                                        LLT DestTy, LLT SrcTy) const {
799   return ((Opcode == TargetOpcode::G_FMAD && Subtarget->hasMadMixInsts()) ||
800           (Opcode == TargetOpcode::G_FMA && Subtarget->hasFmaMixInsts())) &&
801          DestTy.getScalarSizeInBits() == 32 &&
802          SrcTy.getScalarSizeInBits() == 16 &&
803          // TODO: This probably only requires no input flushing?
804          !hasFP32Denormals(*MI.getMF());
805 }
806 
807 bool SITargetLowering::isShuffleMaskLegal(ArrayRef<int>, EVT) const {
808   // SI has some legal vector types, but no legal vector operations. Say no
809   // shuffles are legal in order to prefer scalarizing some vector operations.
810   return false;
811 }
812 
813 MVT SITargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
814                                                     CallingConv::ID CC,
815                                                     EVT VT) const {
816   if (CC == CallingConv::AMDGPU_KERNEL)
817     return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
818 
819   if (VT.isVector()) {
820     EVT ScalarVT = VT.getScalarType();
821     unsigned Size = ScalarVT.getSizeInBits();
822     if (Size == 16) {
823       if (Subtarget->has16BitInsts())
824         return VT.isInteger() ? MVT::v2i16 : MVT::v2f16;
825       return VT.isInteger() ? MVT::i32 : MVT::f32;
826     }
827 
828     if (Size < 16)
829       return Subtarget->has16BitInsts() ? MVT::i16 : MVT::i32;
830     return Size == 32 ? ScalarVT.getSimpleVT() : MVT::i32;
831   }
832 
833   if (VT.getSizeInBits() > 32)
834     return MVT::i32;
835 
836   return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
837 }
838 
839 unsigned SITargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
840                                                          CallingConv::ID CC,
841                                                          EVT VT) const {
842   if (CC == CallingConv::AMDGPU_KERNEL)
843     return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
844 
845   if (VT.isVector()) {
846     unsigned NumElts = VT.getVectorNumElements();
847     EVT ScalarVT = VT.getScalarType();
848     unsigned Size = ScalarVT.getSizeInBits();
849 
850     // FIXME: Should probably promote 8-bit vectors to i16.
851     if (Size == 16 && Subtarget->has16BitInsts())
852       return (NumElts + 1) / 2;
853 
854     if (Size <= 32)
855       return NumElts;
856 
857     if (Size > 32)
858       return NumElts * ((Size + 31) / 32);
859   } else if (VT.getSizeInBits() > 32)
860     return (VT.getSizeInBits() + 31) / 32;
861 
862   return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
863 }
864 
865 unsigned SITargetLowering::getVectorTypeBreakdownForCallingConv(
866   LLVMContext &Context, CallingConv::ID CC,
867   EVT VT, EVT &IntermediateVT,
868   unsigned &NumIntermediates, MVT &RegisterVT) const {
869   if (CC != CallingConv::AMDGPU_KERNEL && VT.isVector()) {
870     unsigned NumElts = VT.getVectorNumElements();
871     EVT ScalarVT = VT.getScalarType();
872     unsigned Size = ScalarVT.getSizeInBits();
873     // FIXME: We should fix the ABI to be the same on targets without 16-bit
874     // support, but unless we can properly handle 3-vectors, it will be still be
875     // inconsistent.
876     if (Size == 16 && Subtarget->has16BitInsts()) {
877       RegisterVT = VT.isInteger() ? MVT::v2i16 : MVT::v2f16;
878       IntermediateVT = RegisterVT;
879       NumIntermediates = (NumElts + 1) / 2;
880       return NumIntermediates;
881     }
882 
883     if (Size == 32) {
884       RegisterVT = ScalarVT.getSimpleVT();
885       IntermediateVT = RegisterVT;
886       NumIntermediates = NumElts;
887       return NumIntermediates;
888     }
889 
890     if (Size < 16 && Subtarget->has16BitInsts()) {
891       // FIXME: Should probably form v2i16 pieces
892       RegisterVT = MVT::i16;
893       IntermediateVT = ScalarVT;
894       NumIntermediates = NumElts;
895       return NumIntermediates;
896     }
897 
898 
899     if (Size != 16 && Size <= 32) {
900       RegisterVT = MVT::i32;
901       IntermediateVT = ScalarVT;
902       NumIntermediates = NumElts;
903       return NumIntermediates;
904     }
905 
906     if (Size > 32) {
907       RegisterVT = MVT::i32;
908       IntermediateVT = RegisterVT;
909       NumIntermediates = NumElts * ((Size + 31) / 32);
910       return NumIntermediates;
911     }
912   }
913 
914   return TargetLowering::getVectorTypeBreakdownForCallingConv(
915     Context, CC, VT, IntermediateVT, NumIntermediates, RegisterVT);
916 }
917 
918 static EVT memVTFromImageData(Type *Ty, unsigned DMaskLanes) {
919   assert(DMaskLanes != 0);
920 
921   if (auto *VT = dyn_cast<FixedVectorType>(Ty)) {
922     unsigned NumElts = std::min(DMaskLanes, VT->getNumElements());
923     return EVT::getVectorVT(Ty->getContext(),
924                             EVT::getEVT(VT->getElementType()),
925                             NumElts);
926   }
927 
928   return EVT::getEVT(Ty);
929 }
930 
931 // Peek through TFE struct returns to only use the data size.
932 static EVT memVTFromImageReturn(Type *Ty, unsigned DMaskLanes) {
933   auto *ST = dyn_cast<StructType>(Ty);
934   if (!ST)
935     return memVTFromImageData(Ty, DMaskLanes);
936 
937   // Some intrinsics return an aggregate type - special case to work out the
938   // correct memVT.
939   //
940   // Only limited forms of aggregate type currently expected.
941   if (ST->getNumContainedTypes() != 2 ||
942       !ST->getContainedType(1)->isIntegerTy(32))
943     return EVT();
944   return memVTFromImageData(ST->getContainedType(0), DMaskLanes);
945 }
946 
947 bool SITargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
948                                           const CallInst &CI,
949                                           MachineFunction &MF,
950                                           unsigned IntrID) const {
951   Info.flags = MachineMemOperand::MONone;
952   if (CI.hasMetadata(LLVMContext::MD_invariant_load))
953     Info.flags |= MachineMemOperand::MOInvariant;
954 
955   if (const AMDGPU::RsrcIntrinsic *RsrcIntr =
956           AMDGPU::lookupRsrcIntrinsic(IntrID)) {
957     AttributeList Attr = Intrinsic::getAttributes(CI.getContext(),
958                                                   (Intrinsic::ID)IntrID);
959     if (Attr.hasFnAttr(Attribute::ReadNone))
960       return false;
961 
962     SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
963 
964     const GCNTargetMachine &TM =
965         static_cast<const GCNTargetMachine &>(getTargetMachine());
966 
967     if (RsrcIntr->IsImage) {
968       Info.ptrVal = MFI->getImagePSV(TM);
969       Info.align.reset();
970     } else {
971       Info.ptrVal = MFI->getBufferPSV(TM);
972     }
973 
974     Info.flags |= MachineMemOperand::MODereferenceable;
975     if (Attr.hasFnAttr(Attribute::ReadOnly)) {
976       unsigned DMaskLanes = 4;
977 
978       if (RsrcIntr->IsImage) {
979         const AMDGPU::ImageDimIntrinsicInfo *Intr
980           = AMDGPU::getImageDimIntrinsicInfo(IntrID);
981         const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
982           AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode);
983 
984         if (!BaseOpcode->Gather4) {
985           // If this isn't a gather, we may have excess loaded elements in the
986           // IR type. Check the dmask for the real number of elements loaded.
987           unsigned DMask
988             = cast<ConstantInt>(CI.getArgOperand(0))->getZExtValue();
989           DMaskLanes = DMask == 0 ? 1 : countPopulation(DMask);
990         }
991 
992         Info.memVT = memVTFromImageReturn(CI.getType(), DMaskLanes);
993       } else
994         Info.memVT = EVT::getEVT(CI.getType());
995 
996       // FIXME: What does alignment mean for an image?
997       Info.opc = ISD::INTRINSIC_W_CHAIN;
998       Info.flags |= MachineMemOperand::MOLoad;
999     } else if (Attr.hasFnAttr(Attribute::WriteOnly)) {
1000       Info.opc = ISD::INTRINSIC_VOID;
1001 
1002       Type *DataTy = CI.getArgOperand(0)->getType();
1003       if (RsrcIntr->IsImage) {
1004         unsigned DMask = cast<ConstantInt>(CI.getArgOperand(1))->getZExtValue();
1005         unsigned DMaskLanes = DMask == 0 ? 1 : countPopulation(DMask);
1006         Info.memVT = memVTFromImageData(DataTy, DMaskLanes);
1007       } else
1008         Info.memVT = EVT::getEVT(DataTy);
1009 
1010       Info.flags |= MachineMemOperand::MOStore;
1011     } else {
1012       // Atomic
1013       Info.opc = CI.getType()->isVoidTy() ? ISD::INTRINSIC_VOID :
1014                                             ISD::INTRINSIC_W_CHAIN;
1015       Info.memVT = MVT::getVT(CI.getArgOperand(0)->getType());
1016       Info.flags |= MachineMemOperand::MOLoad |
1017                     MachineMemOperand::MOStore |
1018                     MachineMemOperand::MODereferenceable;
1019 
1020       // XXX - Should this be volatile without known ordering?
1021       Info.flags |= MachineMemOperand::MOVolatile;
1022 
1023       switch (IntrID) {
1024       default:
1025         break;
1026       case Intrinsic::amdgcn_raw_buffer_load_lds:
1027       case Intrinsic::amdgcn_struct_buffer_load_lds: {
1028         unsigned Width = cast<ConstantInt>(CI.getArgOperand(2))->getZExtValue();
1029         Info.memVT = EVT::getIntegerVT(CI.getContext(), Width * 8);
1030         return true;
1031       }
1032       }
1033     }
1034     return true;
1035   }
1036 
1037   switch (IntrID) {
1038   case Intrinsic::amdgcn_atomic_inc:
1039   case Intrinsic::amdgcn_atomic_dec:
1040   case Intrinsic::amdgcn_ds_ordered_add:
1041   case Intrinsic::amdgcn_ds_ordered_swap:
1042   case Intrinsic::amdgcn_ds_fadd:
1043   case Intrinsic::amdgcn_ds_fmin:
1044   case Intrinsic::amdgcn_ds_fmax: {
1045     Info.opc = ISD::INTRINSIC_W_CHAIN;
1046     Info.memVT = MVT::getVT(CI.getType());
1047     Info.ptrVal = CI.getOperand(0);
1048     Info.align.reset();
1049     Info.flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1050 
1051     const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(4));
1052     if (!Vol->isZero())
1053       Info.flags |= MachineMemOperand::MOVolatile;
1054 
1055     return true;
1056   }
1057   case Intrinsic::amdgcn_buffer_atomic_fadd: {
1058     SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1059 
1060     const GCNTargetMachine &TM =
1061         static_cast<const GCNTargetMachine &>(getTargetMachine());
1062 
1063     Info.opc = ISD::INTRINSIC_W_CHAIN;
1064     Info.memVT = MVT::getVT(CI.getOperand(0)->getType());
1065     Info.ptrVal = MFI->getBufferPSV(TM);
1066     Info.align.reset();
1067     Info.flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1068 
1069     const ConstantInt *Vol = dyn_cast<ConstantInt>(CI.getOperand(4));
1070     if (!Vol || !Vol->isZero())
1071       Info.flags |= MachineMemOperand::MOVolatile;
1072 
1073     return true;
1074   }
1075   case Intrinsic::amdgcn_ds_append:
1076   case Intrinsic::amdgcn_ds_consume: {
1077     Info.opc = ISD::INTRINSIC_W_CHAIN;
1078     Info.memVT = MVT::getVT(CI.getType());
1079     Info.ptrVal = CI.getOperand(0);
1080     Info.align.reset();
1081     Info.flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1082 
1083     const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(1));
1084     if (!Vol->isZero())
1085       Info.flags |= MachineMemOperand::MOVolatile;
1086 
1087     return true;
1088   }
1089   case Intrinsic::amdgcn_global_atomic_csub: {
1090     Info.opc = ISD::INTRINSIC_W_CHAIN;
1091     Info.memVT = MVT::getVT(CI.getType());
1092     Info.ptrVal = CI.getOperand(0);
1093     Info.align.reset();
1094     Info.flags |= MachineMemOperand::MOLoad |
1095                   MachineMemOperand::MOStore |
1096                   MachineMemOperand::MOVolatile;
1097     return true;
1098   }
1099   case Intrinsic::amdgcn_image_bvh_intersect_ray: {
1100     SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1101     Info.opc = ISD::INTRINSIC_W_CHAIN;
1102     Info.memVT = MVT::getVT(CI.getType()); // XXX: what is correct VT?
1103 
1104     const GCNTargetMachine &TM =
1105         static_cast<const GCNTargetMachine &>(getTargetMachine());
1106 
1107     Info.ptrVal = MFI->getImagePSV(TM);
1108     Info.align.reset();
1109     Info.flags |= MachineMemOperand::MOLoad |
1110                   MachineMemOperand::MODereferenceable;
1111     return true;
1112   }
1113   case Intrinsic::amdgcn_global_atomic_fadd:
1114   case Intrinsic::amdgcn_global_atomic_fmin:
1115   case Intrinsic::amdgcn_global_atomic_fmax:
1116   case Intrinsic::amdgcn_flat_atomic_fadd:
1117   case Intrinsic::amdgcn_flat_atomic_fmin:
1118   case Intrinsic::amdgcn_flat_atomic_fmax:
1119   case Intrinsic::amdgcn_global_atomic_fadd_v2bf16:
1120   case Intrinsic::amdgcn_flat_atomic_fadd_v2bf16: {
1121     Info.opc = ISD::INTRINSIC_W_CHAIN;
1122     Info.memVT = MVT::getVT(CI.getType());
1123     Info.ptrVal = CI.getOperand(0);
1124     Info.align.reset();
1125     Info.flags |= MachineMemOperand::MOLoad |
1126                   MachineMemOperand::MOStore |
1127                   MachineMemOperand::MODereferenceable |
1128                   MachineMemOperand::MOVolatile;
1129     return true;
1130   }
1131   case Intrinsic::amdgcn_ds_gws_init:
1132   case Intrinsic::amdgcn_ds_gws_barrier:
1133   case Intrinsic::amdgcn_ds_gws_sema_v:
1134   case Intrinsic::amdgcn_ds_gws_sema_br:
1135   case Intrinsic::amdgcn_ds_gws_sema_p:
1136   case Intrinsic::amdgcn_ds_gws_sema_release_all: {
1137     Info.opc = ISD::INTRINSIC_VOID;
1138 
1139     const GCNTargetMachine &TM =
1140         static_cast<const GCNTargetMachine &>(getTargetMachine());
1141 
1142     SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1143     Info.ptrVal = MFI->getGWSPSV(TM);
1144 
1145     // This is an abstract access, but we need to specify a type and size.
1146     Info.memVT = MVT::i32;
1147     Info.size = 4;
1148     Info.align = Align(4);
1149 
1150     if (IntrID == Intrinsic::amdgcn_ds_gws_barrier)
1151       Info.flags |= MachineMemOperand::MOLoad;
1152     else
1153       Info.flags |= MachineMemOperand::MOStore;
1154     return true;
1155   }
1156   case Intrinsic::amdgcn_global_load_lds: {
1157     Info.opc = ISD::INTRINSIC_VOID;
1158     unsigned Width = cast<ConstantInt>(CI.getArgOperand(2))->getZExtValue();
1159     Info.memVT = EVT::getIntegerVT(CI.getContext(), Width * 8);
1160     Info.flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore |
1161                   MachineMemOperand::MOVolatile;
1162     return true;
1163   }
1164   default:
1165     return false;
1166   }
1167 }
1168 
1169 bool SITargetLowering::getAddrModeArguments(IntrinsicInst *II,
1170                                             SmallVectorImpl<Value*> &Ops,
1171                                             Type *&AccessTy) const {
1172   switch (II->getIntrinsicID()) {
1173   case Intrinsic::amdgcn_atomic_inc:
1174   case Intrinsic::amdgcn_atomic_dec:
1175   case Intrinsic::amdgcn_ds_ordered_add:
1176   case Intrinsic::amdgcn_ds_ordered_swap:
1177   case Intrinsic::amdgcn_ds_append:
1178   case Intrinsic::amdgcn_ds_consume:
1179   case Intrinsic::amdgcn_ds_fadd:
1180   case Intrinsic::amdgcn_ds_fmin:
1181   case Intrinsic::amdgcn_ds_fmax:
1182   case Intrinsic::amdgcn_global_atomic_fadd:
1183   case Intrinsic::amdgcn_flat_atomic_fadd:
1184   case Intrinsic::amdgcn_flat_atomic_fmin:
1185   case Intrinsic::amdgcn_flat_atomic_fmax:
1186   case Intrinsic::amdgcn_global_atomic_fadd_v2bf16:
1187   case Intrinsic::amdgcn_flat_atomic_fadd_v2bf16:
1188   case Intrinsic::amdgcn_global_atomic_csub: {
1189     Value *Ptr = II->getArgOperand(0);
1190     AccessTy = II->getType();
1191     Ops.push_back(Ptr);
1192     return true;
1193   }
1194   default:
1195     return false;
1196   }
1197 }
1198 
1199 bool SITargetLowering::isLegalFlatAddressingMode(const AddrMode &AM) const {
1200   if (!Subtarget->hasFlatInstOffsets()) {
1201     // Flat instructions do not have offsets, and only have the register
1202     // address.
1203     return AM.BaseOffs == 0 && AM.Scale == 0;
1204   }
1205 
1206   return AM.Scale == 0 &&
1207          (AM.BaseOffs == 0 ||
1208           Subtarget->getInstrInfo()->isLegalFLATOffset(
1209               AM.BaseOffs, AMDGPUAS::FLAT_ADDRESS, SIInstrFlags::FLAT));
1210 }
1211 
1212 bool SITargetLowering::isLegalGlobalAddressingMode(const AddrMode &AM) const {
1213   if (Subtarget->hasFlatGlobalInsts())
1214     return AM.Scale == 0 &&
1215            (AM.BaseOffs == 0 || Subtarget->getInstrInfo()->isLegalFLATOffset(
1216                                     AM.BaseOffs, AMDGPUAS::GLOBAL_ADDRESS,
1217                                     SIInstrFlags::FlatGlobal));
1218 
1219   if (!Subtarget->hasAddr64() || Subtarget->useFlatForGlobal()) {
1220       // Assume the we will use FLAT for all global memory accesses
1221       // on VI.
1222       // FIXME: This assumption is currently wrong.  On VI we still use
1223       // MUBUF instructions for the r + i addressing mode.  As currently
1224       // implemented, the MUBUF instructions only work on buffer < 4GB.
1225       // It may be possible to support > 4GB buffers with MUBUF instructions,
1226       // by setting the stride value in the resource descriptor which would
1227       // increase the size limit to (stride * 4GB).  However, this is risky,
1228       // because it has never been validated.
1229     return isLegalFlatAddressingMode(AM);
1230   }
1231 
1232   return isLegalMUBUFAddressingMode(AM);
1233 }
1234 
1235 bool SITargetLowering::isLegalMUBUFAddressingMode(const AddrMode &AM) const {
1236   // MUBUF / MTBUF instructions have a 12-bit unsigned byte offset, and
1237   // additionally can do r + r + i with addr64. 32-bit has more addressing
1238   // mode options. Depending on the resource constant, it can also do
1239   // (i64 r0) + (i32 r1) * (i14 i).
1240   //
1241   // Private arrays end up using a scratch buffer most of the time, so also
1242   // assume those use MUBUF instructions. Scratch loads / stores are currently
1243   // implemented as mubuf instructions with offen bit set, so slightly
1244   // different than the normal addr64.
1245   if (!SIInstrInfo::isLegalMUBUFImmOffset(AM.BaseOffs))
1246     return false;
1247 
1248   // FIXME: Since we can split immediate into soffset and immediate offset,
1249   // would it make sense to allow any immediate?
1250 
1251   switch (AM.Scale) {
1252   case 0: // r + i or just i, depending on HasBaseReg.
1253     return true;
1254   case 1:
1255     return true; // We have r + r or r + i.
1256   case 2:
1257     if (AM.HasBaseReg) {
1258       // Reject 2 * r + r.
1259       return false;
1260     }
1261 
1262     // Allow 2 * r as r + r
1263     // Or  2 * r + i is allowed as r + r + i.
1264     return true;
1265   default: // Don't allow n * r
1266     return false;
1267   }
1268 }
1269 
1270 bool SITargetLowering::isLegalAddressingMode(const DataLayout &DL,
1271                                              const AddrMode &AM, Type *Ty,
1272                                              unsigned AS, Instruction *I) const {
1273   // No global is ever allowed as a base.
1274   if (AM.BaseGV)
1275     return false;
1276 
1277   if (AS == AMDGPUAS::GLOBAL_ADDRESS)
1278     return isLegalGlobalAddressingMode(AM);
1279 
1280   if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
1281       AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
1282       AS == AMDGPUAS::BUFFER_FAT_POINTER) {
1283     // If the offset isn't a multiple of 4, it probably isn't going to be
1284     // correctly aligned.
1285     // FIXME: Can we get the real alignment here?
1286     if (AM.BaseOffs % 4 != 0)
1287       return isLegalMUBUFAddressingMode(AM);
1288 
1289     // There are no SMRD extloads, so if we have to do a small type access we
1290     // will use a MUBUF load.
1291     // FIXME?: We also need to do this if unaligned, but we don't know the
1292     // alignment here.
1293     if (Ty->isSized() && DL.getTypeStoreSize(Ty) < 4)
1294       return isLegalGlobalAddressingMode(AM);
1295 
1296     if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) {
1297       // SMRD instructions have an 8-bit, dword offset on SI.
1298       if (!isUInt<8>(AM.BaseOffs / 4))
1299         return false;
1300     } else if (Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS) {
1301       // On CI+, this can also be a 32-bit literal constant offset. If it fits
1302       // in 8-bits, it can use a smaller encoding.
1303       if (!isUInt<32>(AM.BaseOffs / 4))
1304         return false;
1305     } else if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) {
1306       // On VI, these use the SMEM format and the offset is 20-bit in bytes.
1307       if (!isUInt<20>(AM.BaseOffs))
1308         return false;
1309     } else
1310       llvm_unreachable("unhandled generation");
1311 
1312     if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
1313       return true;
1314 
1315     if (AM.Scale == 1 && AM.HasBaseReg)
1316       return true;
1317 
1318     return false;
1319 
1320   } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
1321     return isLegalMUBUFAddressingMode(AM);
1322   } else if (AS == AMDGPUAS::LOCAL_ADDRESS ||
1323              AS == AMDGPUAS::REGION_ADDRESS) {
1324     // Basic, single offset DS instructions allow a 16-bit unsigned immediate
1325     // field.
1326     // XXX - If doing a 4-byte aligned 8-byte type access, we effectively have
1327     // an 8-bit dword offset but we don't know the alignment here.
1328     if (!isUInt<16>(AM.BaseOffs))
1329       return false;
1330 
1331     if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
1332       return true;
1333 
1334     if (AM.Scale == 1 && AM.HasBaseReg)
1335       return true;
1336 
1337     return false;
1338   } else if (AS == AMDGPUAS::FLAT_ADDRESS ||
1339              AS == AMDGPUAS::UNKNOWN_ADDRESS_SPACE) {
1340     // For an unknown address space, this usually means that this is for some
1341     // reason being used for pure arithmetic, and not based on some addressing
1342     // computation. We don't have instructions that compute pointers with any
1343     // addressing modes, so treat them as having no offset like flat
1344     // instructions.
1345     return isLegalFlatAddressingMode(AM);
1346   }
1347 
1348   // Assume a user alias of global for unknown address spaces.
1349   return isLegalGlobalAddressingMode(AM);
1350 }
1351 
1352 bool SITargetLowering::canMergeStoresTo(unsigned AS, EVT MemVT,
1353                                         const MachineFunction &MF) const {
1354   if (AS == AMDGPUAS::GLOBAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) {
1355     return (MemVT.getSizeInBits() <= 4 * 32);
1356   } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
1357     unsigned MaxPrivateBits = 8 * getSubtarget()->getMaxPrivateElementSize();
1358     return (MemVT.getSizeInBits() <= MaxPrivateBits);
1359   } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
1360     return (MemVT.getSizeInBits() <= 2 * 32);
1361   }
1362   return true;
1363 }
1364 
1365 bool SITargetLowering::allowsMisalignedMemoryAccessesImpl(
1366     unsigned Size, unsigned AddrSpace, Align Alignment,
1367     MachineMemOperand::Flags Flags, bool *IsFast) const {
1368   if (IsFast)
1369     *IsFast = false;
1370 
1371   if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
1372       AddrSpace == AMDGPUAS::REGION_ADDRESS) {
1373     // Check if alignment requirements for ds_read/write instructions are
1374     // disabled.
1375     if (!Subtarget->hasUnalignedDSAccessEnabled() && Alignment < Align(4))
1376       return false;
1377 
1378     Align RequiredAlignment(PowerOf2Ceil(Size/8)); // Natural alignment.
1379     if (Subtarget->hasLDSMisalignedBug() && Size > 32 &&
1380         Alignment < RequiredAlignment)
1381       return false;
1382 
1383     // Either, the alignment requirements are "enabled", or there is an
1384     // unaligned LDS access related hardware bug though alignment requirements
1385     // are "disabled". In either case, we need to check for proper alignment
1386     // requirements.
1387     //
1388     switch (Size) {
1389     case 64:
1390       // SI has a hardware bug in the LDS / GDS bounds checking: if the base
1391       // address is negative, then the instruction is incorrectly treated as
1392       // out-of-bounds even if base + offsets is in bounds. Split vectorized
1393       // loads here to avoid emitting ds_read2_b32. We may re-combine the
1394       // load later in the SILoadStoreOptimizer.
1395       if (!Subtarget->hasUsableDSOffset() && Alignment < Align(8))
1396         return false;
1397 
1398       // 8 byte accessing via ds_read/write_b64 require 8-byte alignment, but we
1399       // can do a 4 byte aligned, 8 byte access in a single operation using
1400       // ds_read2/write2_b32 with adjacent offsets.
1401       RequiredAlignment = Align(4);
1402 
1403       if (Subtarget->hasUnalignedDSAccessEnabled()) {
1404         // We will either select ds_read_b64/ds_write_b64 or ds_read2_b32/
1405         // ds_write2_b32 depending on the alignment. In either case with either
1406         // alignment there is no faster way of doing this.
1407         if (IsFast)
1408           *IsFast = true;
1409         return true;
1410       }
1411 
1412       break;
1413     case 96:
1414       if (!Subtarget->hasDS96AndDS128())
1415         return false;
1416 
1417       // 12 byte accessing via ds_read/write_b96 require 16-byte alignment on
1418       // gfx8 and older.
1419 
1420       if (Subtarget->hasUnalignedDSAccessEnabled()) {
1421         // Naturally aligned access is fastest. However, also report it is Fast
1422         // if memory is aligned less than DWORD. A narrow load or store will be
1423         // be equally slow as a single ds_read_b96/ds_write_b96, but there will
1424         // be more of them, so overall we will pay less penalty issuing a single
1425         // instruction.
1426         if (IsFast)
1427           *IsFast = Alignment >= RequiredAlignment || Alignment < Align(4);
1428         return true;
1429       }
1430 
1431       break;
1432     case 128:
1433       if (!Subtarget->hasDS96AndDS128() || !Subtarget->useDS128())
1434         return false;
1435 
1436       // 16 byte accessing via ds_read/write_b128 require 16-byte alignment on
1437       // gfx8 and older, but  we can do a 8 byte aligned, 16 byte access in a
1438       // single operation using ds_read2/write2_b64.
1439       RequiredAlignment = Align(8);
1440 
1441       if (Subtarget->hasUnalignedDSAccessEnabled()) {
1442         // Naturally aligned access is fastest. However, also report it is Fast
1443         // if memory is aligned less than DWORD. A narrow load or store will be
1444         // be equally slow as a single ds_read_b128/ds_write_b128, but there
1445         // will be more of them, so overall we will pay less penalty issuing a
1446         // single instruction.
1447         if (IsFast)
1448           *IsFast = Alignment >= RequiredAlignment || Alignment < Align(4);
1449         return true;
1450       }
1451 
1452       break;
1453     default:
1454       if (Size > 32)
1455         return false;
1456 
1457       break;
1458     }
1459 
1460     if (IsFast)
1461       *IsFast = Alignment >= RequiredAlignment;
1462 
1463     return Alignment >= RequiredAlignment ||
1464            Subtarget->hasUnalignedDSAccessEnabled();
1465   }
1466 
1467   if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) {
1468     bool AlignedBy4 = Alignment >= Align(4);
1469     if (IsFast)
1470       *IsFast = AlignedBy4;
1471 
1472     return AlignedBy4 ||
1473            Subtarget->enableFlatScratch() ||
1474            Subtarget->hasUnalignedScratchAccess();
1475   }
1476 
1477   // FIXME: We have to be conservative here and assume that flat operations
1478   // will access scratch.  If we had access to the IR function, then we
1479   // could determine if any private memory was used in the function.
1480   if (AddrSpace == AMDGPUAS::FLAT_ADDRESS &&
1481       !Subtarget->hasUnalignedScratchAccess()) {
1482     bool AlignedBy4 = Alignment >= Align(4);
1483     if (IsFast)
1484       *IsFast = AlignedBy4;
1485 
1486     return AlignedBy4;
1487   }
1488 
1489   if (Subtarget->hasUnalignedBufferAccessEnabled()) {
1490     // If we have a uniform constant load, it still requires using a slow
1491     // buffer instruction if unaligned.
1492     if (IsFast) {
1493       // Accesses can really be issued as 1-byte aligned or 4-byte aligned, so
1494       // 2-byte alignment is worse than 1 unless doing a 2-byte access.
1495       *IsFast = (AddrSpace == AMDGPUAS::CONSTANT_ADDRESS ||
1496                  AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT) ?
1497         Alignment >= Align(4) : Alignment != Align(2);
1498     }
1499 
1500     return true;
1501   }
1502 
1503   // Smaller than dword value must be aligned.
1504   if (Size < 32)
1505     return false;
1506 
1507   // 8.1.6 - For Dword or larger reads or writes, the two LSBs of the
1508   // byte-address are ignored, thus forcing Dword alignment.
1509   // This applies to private, global, and constant memory.
1510   if (IsFast)
1511     *IsFast = true;
1512 
1513   return Size >= 32 && Alignment >= Align(4);
1514 }
1515 
1516 bool SITargetLowering::allowsMisalignedMemoryAccesses(
1517     EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
1518     bool *IsFast) const {
1519   bool Allow = allowsMisalignedMemoryAccessesImpl(VT.getSizeInBits(), AddrSpace,
1520                                                   Alignment, Flags, IsFast);
1521 
1522   if (Allow && IsFast && Subtarget->hasUnalignedDSAccessEnabled() &&
1523       (AddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
1524        AddrSpace == AMDGPUAS::REGION_ADDRESS)) {
1525     // Lie it is fast if +unaligned-access-mode is passed so that DS accesses
1526     // get vectorized. We could use ds_read2_b*/ds_write2_b* instructions on a
1527     // misaligned data which is faster than a pair of ds_read_b*/ds_write_b*
1528     // which would be equally misaligned.
1529     // This is only used by the common passes, selection always calls the
1530     // allowsMisalignedMemoryAccessesImpl version.
1531     *IsFast = true;
1532   }
1533 
1534   return Allow;
1535 }
1536 
1537 EVT SITargetLowering::getOptimalMemOpType(
1538     const MemOp &Op, const AttributeList &FuncAttributes) const {
1539   // FIXME: Should account for address space here.
1540 
1541   // The default fallback uses the private pointer size as a guess for a type to
1542   // use. Make sure we switch these to 64-bit accesses.
1543 
1544   if (Op.size() >= 16 &&
1545       Op.isDstAligned(Align(4))) // XXX: Should only do for global
1546     return MVT::v4i32;
1547 
1548   if (Op.size() >= 8 && Op.isDstAligned(Align(4)))
1549     return MVT::v2i32;
1550 
1551   // Use the default.
1552   return MVT::Other;
1553 }
1554 
1555 bool SITargetLowering::isMemOpHasNoClobberedMemOperand(const SDNode *N) const {
1556   const MemSDNode *MemNode = cast<MemSDNode>(N);
1557   return MemNode->getMemOperand()->getFlags() & MONoClobber;
1558 }
1559 
1560 bool SITargetLowering::isNonGlobalAddrSpace(unsigned AS) {
1561   return AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS ||
1562          AS == AMDGPUAS::PRIVATE_ADDRESS;
1563 }
1564 
1565 bool SITargetLowering::isFreeAddrSpaceCast(unsigned SrcAS,
1566                                            unsigned DestAS) const {
1567   // Flat -> private/local is a simple truncate.
1568   // Flat -> global is no-op
1569   if (SrcAS == AMDGPUAS::FLAT_ADDRESS)
1570     return true;
1571 
1572   const GCNTargetMachine &TM =
1573       static_cast<const GCNTargetMachine &>(getTargetMachine());
1574   return TM.isNoopAddrSpaceCast(SrcAS, DestAS);
1575 }
1576 
1577 bool SITargetLowering::isMemOpUniform(const SDNode *N) const {
1578   const MemSDNode *MemNode = cast<MemSDNode>(N);
1579 
1580   return AMDGPUInstrInfo::isUniformMMO(MemNode->getMemOperand());
1581 }
1582 
1583 TargetLoweringBase::LegalizeTypeAction
1584 SITargetLowering::getPreferredVectorAction(MVT VT) const {
1585   if (!VT.isScalableVector() && VT.getVectorNumElements() != 1 &&
1586       VT.getScalarType().bitsLE(MVT::i16))
1587     return VT.isPow2VectorType() ? TypeSplitVector : TypeWidenVector;
1588   return TargetLoweringBase::getPreferredVectorAction(VT);
1589 }
1590 
1591 bool SITargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
1592                                                          Type *Ty) const {
1593   // FIXME: Could be smarter if called for vector constants.
1594   return true;
1595 }
1596 
1597 bool SITargetLowering::isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
1598                                                unsigned Index) const {
1599   if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, ResVT))
1600     return false;
1601 
1602   // TODO: Add more cases that are cheap.
1603   return Index == 0;
1604 }
1605 
1606 bool SITargetLowering::isTypeDesirableForOp(unsigned Op, EVT VT) const {
1607   if (Subtarget->has16BitInsts() && VT == MVT::i16) {
1608     switch (Op) {
1609     case ISD::LOAD:
1610     case ISD::STORE:
1611 
1612     // These operations are done with 32-bit instructions anyway.
1613     case ISD::AND:
1614     case ISD::OR:
1615     case ISD::XOR:
1616     case ISD::SELECT:
1617       // TODO: Extensions?
1618       return true;
1619     default:
1620       return false;
1621     }
1622   }
1623 
1624   // SimplifySetCC uses this function to determine whether or not it should
1625   // create setcc with i1 operands.  We don't have instructions for i1 setcc.
1626   if (VT == MVT::i1 && Op == ISD::SETCC)
1627     return false;
1628 
1629   return TargetLowering::isTypeDesirableForOp(Op, VT);
1630 }
1631 
1632 SDValue SITargetLowering::lowerKernArgParameterPtr(SelectionDAG &DAG,
1633                                                    const SDLoc &SL,
1634                                                    SDValue Chain,
1635                                                    uint64_t Offset) const {
1636   const DataLayout &DL = DAG.getDataLayout();
1637   MachineFunction &MF = DAG.getMachineFunction();
1638   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1639 
1640   const ArgDescriptor *InputPtrReg;
1641   const TargetRegisterClass *RC;
1642   LLT ArgTy;
1643   MVT PtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS);
1644 
1645   std::tie(InputPtrReg, RC, ArgTy) =
1646       Info->getPreloadedValue(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
1647 
1648   // We may not have the kernarg segment argument if we have no kernel
1649   // arguments.
1650   if (!InputPtrReg)
1651     return DAG.getConstant(0, SL, PtrVT);
1652 
1653   MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1654   SDValue BasePtr = DAG.getCopyFromReg(Chain, SL,
1655     MRI.getLiveInVirtReg(InputPtrReg->getRegister()), PtrVT);
1656 
1657   return DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Offset));
1658 }
1659 
1660 SDValue SITargetLowering::getImplicitArgPtr(SelectionDAG &DAG,
1661                                             const SDLoc &SL) const {
1662   uint64_t Offset = getImplicitParameterOffset(DAG.getMachineFunction(),
1663                                                FIRST_IMPLICIT);
1664   return lowerKernArgParameterPtr(DAG, SL, DAG.getEntryNode(), Offset);
1665 }
1666 
1667 SDValue SITargetLowering::convertArgType(SelectionDAG &DAG, EVT VT, EVT MemVT,
1668                                          const SDLoc &SL, SDValue Val,
1669                                          bool Signed,
1670                                          const ISD::InputArg *Arg) const {
1671   // First, if it is a widened vector, narrow it.
1672   if (VT.isVector() &&
1673       VT.getVectorNumElements() != MemVT.getVectorNumElements()) {
1674     EVT NarrowedVT =
1675         EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(),
1676                          VT.getVectorNumElements());
1677     Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, NarrowedVT, Val,
1678                       DAG.getConstant(0, SL, MVT::i32));
1679   }
1680 
1681   // Then convert the vector elements or scalar value.
1682   if (Arg && (Arg->Flags.isSExt() || Arg->Flags.isZExt()) &&
1683       VT.bitsLT(MemVT)) {
1684     unsigned Opc = Arg->Flags.isZExt() ? ISD::AssertZext : ISD::AssertSext;
1685     Val = DAG.getNode(Opc, SL, MemVT, Val, DAG.getValueType(VT));
1686   }
1687 
1688   if (MemVT.isFloatingPoint())
1689     Val = getFPExtOrFPRound(DAG, Val, SL, VT);
1690   else if (Signed)
1691     Val = DAG.getSExtOrTrunc(Val, SL, VT);
1692   else
1693     Val = DAG.getZExtOrTrunc(Val, SL, VT);
1694 
1695   return Val;
1696 }
1697 
1698 SDValue SITargetLowering::lowerKernargMemParameter(
1699     SelectionDAG &DAG, EVT VT, EVT MemVT, const SDLoc &SL, SDValue Chain,
1700     uint64_t Offset, Align Alignment, bool Signed,
1701     const ISD::InputArg *Arg) const {
1702   MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
1703 
1704   // Try to avoid using an extload by loading earlier than the argument address,
1705   // and extracting the relevant bits. The load should hopefully be merged with
1706   // the previous argument.
1707   if (MemVT.getStoreSize() < 4 && Alignment < 4) {
1708     // TODO: Handle align < 4 and size >= 4 (can happen with packed structs).
1709     int64_t AlignDownOffset = alignDown(Offset, 4);
1710     int64_t OffsetDiff = Offset - AlignDownOffset;
1711 
1712     EVT IntVT = MemVT.changeTypeToInteger();
1713 
1714     // TODO: If we passed in the base kernel offset we could have a better
1715     // alignment than 4, but we don't really need it.
1716     SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, AlignDownOffset);
1717     SDValue Load = DAG.getLoad(MVT::i32, SL, Chain, Ptr, PtrInfo, Align(4),
1718                                MachineMemOperand::MODereferenceable |
1719                                    MachineMemOperand::MOInvariant);
1720 
1721     SDValue ShiftAmt = DAG.getConstant(OffsetDiff * 8, SL, MVT::i32);
1722     SDValue Extract = DAG.getNode(ISD::SRL, SL, MVT::i32, Load, ShiftAmt);
1723 
1724     SDValue ArgVal = DAG.getNode(ISD::TRUNCATE, SL, IntVT, Extract);
1725     ArgVal = DAG.getNode(ISD::BITCAST, SL, MemVT, ArgVal);
1726     ArgVal = convertArgType(DAG, VT, MemVT, SL, ArgVal, Signed, Arg);
1727 
1728 
1729     return DAG.getMergeValues({ ArgVal, Load.getValue(1) }, SL);
1730   }
1731 
1732   SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, Offset);
1733   SDValue Load = DAG.getLoad(MemVT, SL, Chain, Ptr, PtrInfo, Alignment,
1734                              MachineMemOperand::MODereferenceable |
1735                                  MachineMemOperand::MOInvariant);
1736 
1737   SDValue Val = convertArgType(DAG, VT, MemVT, SL, Load, Signed, Arg);
1738   return DAG.getMergeValues({ Val, Load.getValue(1) }, SL);
1739 }
1740 
1741 SDValue SITargetLowering::lowerStackParameter(SelectionDAG &DAG, CCValAssign &VA,
1742                                               const SDLoc &SL, SDValue Chain,
1743                                               const ISD::InputArg &Arg) const {
1744   MachineFunction &MF = DAG.getMachineFunction();
1745   MachineFrameInfo &MFI = MF.getFrameInfo();
1746 
1747   if (Arg.Flags.isByVal()) {
1748     unsigned Size = Arg.Flags.getByValSize();
1749     int FrameIdx = MFI.CreateFixedObject(Size, VA.getLocMemOffset(), false);
1750     return DAG.getFrameIndex(FrameIdx, MVT::i32);
1751   }
1752 
1753   unsigned ArgOffset = VA.getLocMemOffset();
1754   unsigned ArgSize = VA.getValVT().getStoreSize();
1755 
1756   int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, true);
1757 
1758   // Create load nodes to retrieve arguments from the stack.
1759   SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1760   SDValue ArgValue;
1761 
1762   // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT)
1763   ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
1764   MVT MemVT = VA.getValVT();
1765 
1766   switch (VA.getLocInfo()) {
1767   default:
1768     break;
1769   case CCValAssign::BCvt:
1770     MemVT = VA.getLocVT();
1771     break;
1772   case CCValAssign::SExt:
1773     ExtType = ISD::SEXTLOAD;
1774     break;
1775   case CCValAssign::ZExt:
1776     ExtType = ISD::ZEXTLOAD;
1777     break;
1778   case CCValAssign::AExt:
1779     ExtType = ISD::EXTLOAD;
1780     break;
1781   }
1782 
1783   ArgValue = DAG.getExtLoad(
1784     ExtType, SL, VA.getLocVT(), Chain, FIN,
1785     MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
1786     MemVT);
1787   return ArgValue;
1788 }
1789 
1790 SDValue SITargetLowering::getPreloadedValue(SelectionDAG &DAG,
1791   const SIMachineFunctionInfo &MFI,
1792   EVT VT,
1793   AMDGPUFunctionArgInfo::PreloadedValue PVID) const {
1794   const ArgDescriptor *Reg;
1795   const TargetRegisterClass *RC;
1796   LLT Ty;
1797 
1798   std::tie(Reg, RC, Ty) = MFI.getPreloadedValue(PVID);
1799   if (!Reg) {
1800     if (PVID == AMDGPUFunctionArgInfo::PreloadedValue::KERNARG_SEGMENT_PTR) {
1801       // It's possible for a kernarg intrinsic call to appear in a kernel with
1802       // no allocated segment, in which case we do not add the user sgpr
1803       // argument, so just return null.
1804       return DAG.getConstant(0, SDLoc(), VT);
1805     }
1806 
1807     // It's undefined behavior if a function marked with the amdgpu-no-*
1808     // attributes uses the corresponding intrinsic.
1809     return DAG.getUNDEF(VT);
1810   }
1811 
1812   return CreateLiveInRegister(DAG, RC, Reg->getRegister(), VT);
1813 }
1814 
1815 static void processPSInputArgs(SmallVectorImpl<ISD::InputArg> &Splits,
1816                                CallingConv::ID CallConv,
1817                                ArrayRef<ISD::InputArg> Ins, BitVector &Skipped,
1818                                FunctionType *FType,
1819                                SIMachineFunctionInfo *Info) {
1820   for (unsigned I = 0, E = Ins.size(), PSInputNum = 0; I != E; ++I) {
1821     const ISD::InputArg *Arg = &Ins[I];
1822 
1823     assert((!Arg->VT.isVector() || Arg->VT.getScalarSizeInBits() == 16) &&
1824            "vector type argument should have been split");
1825 
1826     // First check if it's a PS input addr.
1827     if (CallConv == CallingConv::AMDGPU_PS &&
1828         !Arg->Flags.isInReg() && PSInputNum <= 15) {
1829       bool SkipArg = !Arg->Used && !Info->isPSInputAllocated(PSInputNum);
1830 
1831       // Inconveniently only the first part of the split is marked as isSplit,
1832       // so skip to the end. We only want to increment PSInputNum once for the
1833       // entire split argument.
1834       if (Arg->Flags.isSplit()) {
1835         while (!Arg->Flags.isSplitEnd()) {
1836           assert((!Arg->VT.isVector() ||
1837                   Arg->VT.getScalarSizeInBits() == 16) &&
1838                  "unexpected vector split in ps argument type");
1839           if (!SkipArg)
1840             Splits.push_back(*Arg);
1841           Arg = &Ins[++I];
1842         }
1843       }
1844 
1845       if (SkipArg) {
1846         // We can safely skip PS inputs.
1847         Skipped.set(Arg->getOrigArgIndex());
1848         ++PSInputNum;
1849         continue;
1850       }
1851 
1852       Info->markPSInputAllocated(PSInputNum);
1853       if (Arg->Used)
1854         Info->markPSInputEnabled(PSInputNum);
1855 
1856       ++PSInputNum;
1857     }
1858 
1859     Splits.push_back(*Arg);
1860   }
1861 }
1862 
1863 // Allocate special inputs passed in VGPRs.
1864 void SITargetLowering::allocateSpecialEntryInputVGPRs(CCState &CCInfo,
1865                                                       MachineFunction &MF,
1866                                                       const SIRegisterInfo &TRI,
1867                                                       SIMachineFunctionInfo &Info) const {
1868   const LLT S32 = LLT::scalar(32);
1869   MachineRegisterInfo &MRI = MF.getRegInfo();
1870 
1871   if (Info.hasWorkItemIDX()) {
1872     Register Reg = AMDGPU::VGPR0;
1873     MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32);
1874 
1875     CCInfo.AllocateReg(Reg);
1876     unsigned Mask = (Subtarget->hasPackedTID() &&
1877                      Info.hasWorkItemIDY()) ? 0x3ff : ~0u;
1878     Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg, Mask));
1879   }
1880 
1881   if (Info.hasWorkItemIDY()) {
1882     assert(Info.hasWorkItemIDX());
1883     if (Subtarget->hasPackedTID()) {
1884       Info.setWorkItemIDY(ArgDescriptor::createRegister(AMDGPU::VGPR0,
1885                                                         0x3ff << 10));
1886     } else {
1887       unsigned Reg = AMDGPU::VGPR1;
1888       MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32);
1889 
1890       CCInfo.AllocateReg(Reg);
1891       Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg));
1892     }
1893   }
1894 
1895   if (Info.hasWorkItemIDZ()) {
1896     assert(Info.hasWorkItemIDX() && Info.hasWorkItemIDY());
1897     if (Subtarget->hasPackedTID()) {
1898       Info.setWorkItemIDZ(ArgDescriptor::createRegister(AMDGPU::VGPR0,
1899                                                         0x3ff << 20));
1900     } else {
1901       unsigned Reg = AMDGPU::VGPR2;
1902       MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32);
1903 
1904       CCInfo.AllocateReg(Reg);
1905       Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg));
1906     }
1907   }
1908 }
1909 
1910 // Try to allocate a VGPR at the end of the argument list, or if no argument
1911 // VGPRs are left allocating a stack slot.
1912 // If \p Mask is is given it indicates bitfield position in the register.
1913 // If \p Arg is given use it with new ]p Mask instead of allocating new.
1914 static ArgDescriptor allocateVGPR32Input(CCState &CCInfo, unsigned Mask = ~0u,
1915                                          ArgDescriptor Arg = ArgDescriptor()) {
1916   if (Arg.isSet())
1917     return ArgDescriptor::createArg(Arg, Mask);
1918 
1919   ArrayRef<MCPhysReg> ArgVGPRs
1920     = makeArrayRef(AMDGPU::VGPR_32RegClass.begin(), 32);
1921   unsigned RegIdx = CCInfo.getFirstUnallocated(ArgVGPRs);
1922   if (RegIdx == ArgVGPRs.size()) {
1923     // Spill to stack required.
1924     int64_t Offset = CCInfo.AllocateStack(4, Align(4));
1925 
1926     return ArgDescriptor::createStack(Offset, Mask);
1927   }
1928 
1929   unsigned Reg = ArgVGPRs[RegIdx];
1930   Reg = CCInfo.AllocateReg(Reg);
1931   assert(Reg != AMDGPU::NoRegister);
1932 
1933   MachineFunction &MF = CCInfo.getMachineFunction();
1934   Register LiveInVReg = MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
1935   MF.getRegInfo().setType(LiveInVReg, LLT::scalar(32));
1936   return ArgDescriptor::createRegister(Reg, Mask);
1937 }
1938 
1939 static ArgDescriptor allocateSGPR32InputImpl(CCState &CCInfo,
1940                                              const TargetRegisterClass *RC,
1941                                              unsigned NumArgRegs) {
1942   ArrayRef<MCPhysReg> ArgSGPRs = makeArrayRef(RC->begin(), 32);
1943   unsigned RegIdx = CCInfo.getFirstUnallocated(ArgSGPRs);
1944   if (RegIdx == ArgSGPRs.size())
1945     report_fatal_error("ran out of SGPRs for arguments");
1946 
1947   unsigned Reg = ArgSGPRs[RegIdx];
1948   Reg = CCInfo.AllocateReg(Reg);
1949   assert(Reg != AMDGPU::NoRegister);
1950 
1951   MachineFunction &MF = CCInfo.getMachineFunction();
1952   MF.addLiveIn(Reg, RC);
1953   return ArgDescriptor::createRegister(Reg);
1954 }
1955 
1956 // If this has a fixed position, we still should allocate the register in the
1957 // CCInfo state. Technically we could get away with this for values passed
1958 // outside of the normal argument range.
1959 static void allocateFixedSGPRInputImpl(CCState &CCInfo,
1960                                        const TargetRegisterClass *RC,
1961                                        MCRegister Reg) {
1962   Reg = CCInfo.AllocateReg(Reg);
1963   assert(Reg != AMDGPU::NoRegister);
1964   MachineFunction &MF = CCInfo.getMachineFunction();
1965   MF.addLiveIn(Reg, RC);
1966 }
1967 
1968 static void allocateSGPR32Input(CCState &CCInfo, ArgDescriptor &Arg) {
1969   if (Arg) {
1970     allocateFixedSGPRInputImpl(CCInfo, &AMDGPU::SGPR_32RegClass,
1971                                Arg.getRegister());
1972   } else
1973     Arg = allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_32RegClass, 32);
1974 }
1975 
1976 static void allocateSGPR64Input(CCState &CCInfo, ArgDescriptor &Arg) {
1977   if (Arg) {
1978     allocateFixedSGPRInputImpl(CCInfo, &AMDGPU::SGPR_64RegClass,
1979                                Arg.getRegister());
1980   } else
1981     Arg = allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_64RegClass, 16);
1982 }
1983 
1984 /// Allocate implicit function VGPR arguments at the end of allocated user
1985 /// arguments.
1986 void SITargetLowering::allocateSpecialInputVGPRs(
1987   CCState &CCInfo, MachineFunction &MF,
1988   const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const {
1989   const unsigned Mask = 0x3ff;
1990   ArgDescriptor Arg;
1991 
1992   if (Info.hasWorkItemIDX()) {
1993     Arg = allocateVGPR32Input(CCInfo, Mask);
1994     Info.setWorkItemIDX(Arg);
1995   }
1996 
1997   if (Info.hasWorkItemIDY()) {
1998     Arg = allocateVGPR32Input(CCInfo, Mask << 10, Arg);
1999     Info.setWorkItemIDY(Arg);
2000   }
2001 
2002   if (Info.hasWorkItemIDZ())
2003     Info.setWorkItemIDZ(allocateVGPR32Input(CCInfo, Mask << 20, Arg));
2004 }
2005 
2006 /// Allocate implicit function VGPR arguments in fixed registers.
2007 void SITargetLowering::allocateSpecialInputVGPRsFixed(
2008   CCState &CCInfo, MachineFunction &MF,
2009   const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const {
2010   Register Reg = CCInfo.AllocateReg(AMDGPU::VGPR31);
2011   if (!Reg)
2012     report_fatal_error("failed to allocated VGPR for implicit arguments");
2013 
2014   const unsigned Mask = 0x3ff;
2015   Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg, Mask));
2016   Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg, Mask << 10));
2017   Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg, Mask << 20));
2018 }
2019 
2020 void SITargetLowering::allocateSpecialInputSGPRs(
2021   CCState &CCInfo,
2022   MachineFunction &MF,
2023   const SIRegisterInfo &TRI,
2024   SIMachineFunctionInfo &Info) const {
2025   auto &ArgInfo = Info.getArgInfo();
2026 
2027   // TODO: Unify handling with private memory pointers.
2028   if (Info.hasDispatchPtr())
2029     allocateSGPR64Input(CCInfo, ArgInfo.DispatchPtr);
2030 
2031   if (Info.hasQueuePtr() && AMDGPU::getAmdhsaCodeObjectVersion() < 5)
2032     allocateSGPR64Input(CCInfo, ArgInfo.QueuePtr);
2033 
2034   // Implicit arg ptr takes the place of the kernarg segment pointer. This is a
2035   // constant offset from the kernarg segment.
2036   if (Info.hasImplicitArgPtr())
2037     allocateSGPR64Input(CCInfo, ArgInfo.ImplicitArgPtr);
2038 
2039   if (Info.hasDispatchID())
2040     allocateSGPR64Input(CCInfo, ArgInfo.DispatchID);
2041 
2042   // flat_scratch_init is not applicable for non-kernel functions.
2043 
2044   if (Info.hasWorkGroupIDX())
2045     allocateSGPR32Input(CCInfo, ArgInfo.WorkGroupIDX);
2046 
2047   if (Info.hasWorkGroupIDY())
2048     allocateSGPR32Input(CCInfo, ArgInfo.WorkGroupIDY);
2049 
2050   if (Info.hasWorkGroupIDZ())
2051     allocateSGPR32Input(CCInfo, ArgInfo.WorkGroupIDZ);
2052 }
2053 
2054 // Allocate special inputs passed in user SGPRs.
2055 void SITargetLowering::allocateHSAUserSGPRs(CCState &CCInfo,
2056                                             MachineFunction &MF,
2057                                             const SIRegisterInfo &TRI,
2058                                             SIMachineFunctionInfo &Info) const {
2059   if (Info.hasImplicitBufferPtr()) {
2060     Register ImplicitBufferPtrReg = Info.addImplicitBufferPtr(TRI);
2061     MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass);
2062     CCInfo.AllocateReg(ImplicitBufferPtrReg);
2063   }
2064 
2065   // FIXME: How should these inputs interact with inreg / custom SGPR inputs?
2066   if (Info.hasPrivateSegmentBuffer()) {
2067     Register PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI);
2068     MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass);
2069     CCInfo.AllocateReg(PrivateSegmentBufferReg);
2070   }
2071 
2072   if (Info.hasDispatchPtr()) {
2073     Register DispatchPtrReg = Info.addDispatchPtr(TRI);
2074     MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass);
2075     CCInfo.AllocateReg(DispatchPtrReg);
2076   }
2077 
2078   if (Info.hasQueuePtr() && AMDGPU::getAmdhsaCodeObjectVersion() < 5) {
2079     Register QueuePtrReg = Info.addQueuePtr(TRI);
2080     MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass);
2081     CCInfo.AllocateReg(QueuePtrReg);
2082   }
2083 
2084   if (Info.hasKernargSegmentPtr()) {
2085     MachineRegisterInfo &MRI = MF.getRegInfo();
2086     Register InputPtrReg = Info.addKernargSegmentPtr(TRI);
2087     CCInfo.AllocateReg(InputPtrReg);
2088 
2089     Register VReg = MF.addLiveIn(InputPtrReg, &AMDGPU::SGPR_64RegClass);
2090     MRI.setType(VReg, LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64));
2091   }
2092 
2093   if (Info.hasDispatchID()) {
2094     Register DispatchIDReg = Info.addDispatchID(TRI);
2095     MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass);
2096     CCInfo.AllocateReg(DispatchIDReg);
2097   }
2098 
2099   if (Info.hasFlatScratchInit() && !getSubtarget()->isAmdPalOS()) {
2100     Register FlatScratchInitReg = Info.addFlatScratchInit(TRI);
2101     MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass);
2102     CCInfo.AllocateReg(FlatScratchInitReg);
2103   }
2104 
2105   // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read
2106   // these from the dispatch pointer.
2107 }
2108 
2109 // Allocate special input registers that are initialized per-wave.
2110 void SITargetLowering::allocateSystemSGPRs(CCState &CCInfo,
2111                                            MachineFunction &MF,
2112                                            SIMachineFunctionInfo &Info,
2113                                            CallingConv::ID CallConv,
2114                                            bool IsShader) const {
2115   if (Subtarget->hasUserSGPRInit16Bug()) {
2116     // Pad up the used user SGPRs with dead inputs.
2117     unsigned CurrentUserSGPRs = Info.getNumUserSGPRs();
2118 
2119     // Note we do not count the PrivateSegmentWaveByteOffset. We do not want to
2120     // rely on it to reach 16 since if we end up having no stack usage, it will
2121     // not really be added.
2122     unsigned NumRequiredSystemSGPRs = Info.hasWorkGroupIDX() +
2123                                       Info.hasWorkGroupIDY() +
2124                                       Info.hasWorkGroupIDZ() +
2125                                       Info.hasWorkGroupInfo();
2126     for (unsigned i = NumRequiredSystemSGPRs + CurrentUserSGPRs; i < 16; ++i) {
2127       Register Reg = Info.addReservedUserSGPR();
2128       MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2129       CCInfo.AllocateReg(Reg);
2130     }
2131   }
2132 
2133   if (Info.hasWorkGroupIDX()) {
2134     Register Reg = Info.addWorkGroupIDX();
2135     MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2136     CCInfo.AllocateReg(Reg);
2137   }
2138 
2139   if (Info.hasWorkGroupIDY()) {
2140     Register Reg = Info.addWorkGroupIDY();
2141     MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2142     CCInfo.AllocateReg(Reg);
2143   }
2144 
2145   if (Info.hasWorkGroupIDZ()) {
2146     Register Reg = Info.addWorkGroupIDZ();
2147     MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2148     CCInfo.AllocateReg(Reg);
2149   }
2150 
2151   if (Info.hasWorkGroupInfo()) {
2152     Register Reg = Info.addWorkGroupInfo();
2153     MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2154     CCInfo.AllocateReg(Reg);
2155   }
2156 
2157   if (Info.hasPrivateSegmentWaveByteOffset()) {
2158     // Scratch wave offset passed in system SGPR.
2159     unsigned PrivateSegmentWaveByteOffsetReg;
2160 
2161     if (IsShader) {
2162       PrivateSegmentWaveByteOffsetReg =
2163         Info.getPrivateSegmentWaveByteOffsetSystemSGPR();
2164 
2165       // This is true if the scratch wave byte offset doesn't have a fixed
2166       // location.
2167       if (PrivateSegmentWaveByteOffsetReg == AMDGPU::NoRegister) {
2168         PrivateSegmentWaveByteOffsetReg = findFirstFreeSGPR(CCInfo);
2169         Info.setPrivateSegmentWaveByteOffset(PrivateSegmentWaveByteOffsetReg);
2170       }
2171     } else
2172       PrivateSegmentWaveByteOffsetReg = Info.addPrivateSegmentWaveByteOffset();
2173 
2174     MF.addLiveIn(PrivateSegmentWaveByteOffsetReg, &AMDGPU::SGPR_32RegClass);
2175     CCInfo.AllocateReg(PrivateSegmentWaveByteOffsetReg);
2176   }
2177 
2178   assert(!Subtarget->hasUserSGPRInit16Bug() || Info.getNumPreloadedSGPRs() >= 16);
2179 }
2180 
2181 static void reservePrivateMemoryRegs(const TargetMachine &TM,
2182                                      MachineFunction &MF,
2183                                      const SIRegisterInfo &TRI,
2184                                      SIMachineFunctionInfo &Info) {
2185   // Now that we've figured out where the scratch register inputs are, see if
2186   // should reserve the arguments and use them directly.
2187   MachineFrameInfo &MFI = MF.getFrameInfo();
2188   bool HasStackObjects = MFI.hasStackObjects();
2189   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
2190 
2191   // Record that we know we have non-spill stack objects so we don't need to
2192   // check all stack objects later.
2193   if (HasStackObjects)
2194     Info.setHasNonSpillStackObjects(true);
2195 
2196   // Everything live out of a block is spilled with fast regalloc, so it's
2197   // almost certain that spilling will be required.
2198   if (TM.getOptLevel() == CodeGenOpt::None)
2199     HasStackObjects = true;
2200 
2201   // For now assume stack access is needed in any callee functions, so we need
2202   // the scratch registers to pass in.
2203   bool RequiresStackAccess = HasStackObjects || MFI.hasCalls();
2204 
2205   if (!ST.enableFlatScratch()) {
2206     if (RequiresStackAccess && ST.isAmdHsaOrMesa(MF.getFunction())) {
2207       // If we have stack objects, we unquestionably need the private buffer
2208       // resource. For the Code Object V2 ABI, this will be the first 4 user
2209       // SGPR inputs. We can reserve those and use them directly.
2210 
2211       Register PrivateSegmentBufferReg =
2212           Info.getPreloadedReg(AMDGPUFunctionArgInfo::PRIVATE_SEGMENT_BUFFER);
2213       Info.setScratchRSrcReg(PrivateSegmentBufferReg);
2214     } else {
2215       unsigned ReservedBufferReg = TRI.reservedPrivateSegmentBufferReg(MF);
2216       // We tentatively reserve the last registers (skipping the last registers
2217       // which may contain VCC, FLAT_SCR, and XNACK). After register allocation,
2218       // we'll replace these with the ones immediately after those which were
2219       // really allocated. In the prologue copies will be inserted from the
2220       // argument to these reserved registers.
2221 
2222       // Without HSA, relocations are used for the scratch pointer and the
2223       // buffer resource setup is always inserted in the prologue. Scratch wave
2224       // offset is still in an input SGPR.
2225       Info.setScratchRSrcReg(ReservedBufferReg);
2226     }
2227   }
2228 
2229   MachineRegisterInfo &MRI = MF.getRegInfo();
2230 
2231   // For entry functions we have to set up the stack pointer if we use it,
2232   // whereas non-entry functions get this "for free". This means there is no
2233   // intrinsic advantage to using S32 over S34 in cases where we do not have
2234   // calls but do need a frame pointer (i.e. if we are requested to have one
2235   // because frame pointer elimination is disabled). To keep things simple we
2236   // only ever use S32 as the call ABI stack pointer, and so using it does not
2237   // imply we need a separate frame pointer.
2238   //
2239   // Try to use s32 as the SP, but move it if it would interfere with input
2240   // arguments. This won't work with calls though.
2241   //
2242   // FIXME: Move SP to avoid any possible inputs, or find a way to spill input
2243   // registers.
2244   if (!MRI.isLiveIn(AMDGPU::SGPR32)) {
2245     Info.setStackPtrOffsetReg(AMDGPU::SGPR32);
2246   } else {
2247     assert(AMDGPU::isShader(MF.getFunction().getCallingConv()));
2248 
2249     if (MFI.hasCalls())
2250       report_fatal_error("call in graphics shader with too many input SGPRs");
2251 
2252     for (unsigned Reg : AMDGPU::SGPR_32RegClass) {
2253       if (!MRI.isLiveIn(Reg)) {
2254         Info.setStackPtrOffsetReg(Reg);
2255         break;
2256       }
2257     }
2258 
2259     if (Info.getStackPtrOffsetReg() == AMDGPU::SP_REG)
2260       report_fatal_error("failed to find register for SP");
2261   }
2262 
2263   // hasFP should be accurate for entry functions even before the frame is
2264   // finalized, because it does not rely on the known stack size, only
2265   // properties like whether variable sized objects are present.
2266   if (ST.getFrameLowering()->hasFP(MF)) {
2267     Info.setFrameOffsetReg(AMDGPU::SGPR33);
2268   }
2269 }
2270 
2271 bool SITargetLowering::supportSplitCSR(MachineFunction *MF) const {
2272   const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>();
2273   return !Info->isEntryFunction();
2274 }
2275 
2276 void SITargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
2277 
2278 }
2279 
2280 void SITargetLowering::insertCopiesSplitCSR(
2281   MachineBasicBlock *Entry,
2282   const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
2283   const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2284 
2285   const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
2286   if (!IStart)
2287     return;
2288 
2289   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
2290   MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
2291   MachineBasicBlock::iterator MBBI = Entry->begin();
2292   for (const MCPhysReg *I = IStart; *I; ++I) {
2293     const TargetRegisterClass *RC = nullptr;
2294     if (AMDGPU::SReg_64RegClass.contains(*I))
2295       RC = &AMDGPU::SGPR_64RegClass;
2296     else if (AMDGPU::SReg_32RegClass.contains(*I))
2297       RC = &AMDGPU::SGPR_32RegClass;
2298     else
2299       llvm_unreachable("Unexpected register class in CSRsViaCopy!");
2300 
2301     Register NewVR = MRI->createVirtualRegister(RC);
2302     // Create copy from CSR to a virtual register.
2303     Entry->addLiveIn(*I);
2304     BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
2305       .addReg(*I);
2306 
2307     // Insert the copy-back instructions right before the terminator.
2308     for (auto *Exit : Exits)
2309       BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
2310               TII->get(TargetOpcode::COPY), *I)
2311         .addReg(NewVR);
2312   }
2313 }
2314 
2315 SDValue SITargetLowering::LowerFormalArguments(
2316     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
2317     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
2318     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
2319   const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2320 
2321   MachineFunction &MF = DAG.getMachineFunction();
2322   const Function &Fn = MF.getFunction();
2323   FunctionType *FType = MF.getFunction().getFunctionType();
2324   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
2325 
2326   if (Subtarget->isAmdHsaOS() && AMDGPU::isGraphics(CallConv)) {
2327     DiagnosticInfoUnsupported NoGraphicsHSA(
2328         Fn, "unsupported non-compute shaders with HSA", DL.getDebugLoc());
2329     DAG.getContext()->diagnose(NoGraphicsHSA);
2330     return DAG.getEntryNode();
2331   }
2332 
2333   Info->allocateModuleLDSGlobal(Fn);
2334 
2335   SmallVector<ISD::InputArg, 16> Splits;
2336   SmallVector<CCValAssign, 16> ArgLocs;
2337   BitVector Skipped(Ins.size());
2338   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
2339                  *DAG.getContext());
2340 
2341   bool IsGraphics = AMDGPU::isGraphics(CallConv);
2342   bool IsKernel = AMDGPU::isKernel(CallConv);
2343   bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CallConv);
2344 
2345   if (IsGraphics) {
2346     assert(!Info->hasDispatchPtr() && !Info->hasKernargSegmentPtr() &&
2347            (!Info->hasFlatScratchInit() || Subtarget->enableFlatScratch()) &&
2348            !Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() &&
2349            !Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() &&
2350            !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() &&
2351            !Info->hasWorkItemIDZ());
2352   }
2353 
2354   if (CallConv == CallingConv::AMDGPU_PS) {
2355     processPSInputArgs(Splits, CallConv, Ins, Skipped, FType, Info);
2356 
2357     // At least one interpolation mode must be enabled or else the GPU will
2358     // hang.
2359     //
2360     // Check PSInputAddr instead of PSInputEnable. The idea is that if the user
2361     // set PSInputAddr, the user wants to enable some bits after the compilation
2362     // based on run-time states. Since we can't know what the final PSInputEna
2363     // will look like, so we shouldn't do anything here and the user should take
2364     // responsibility for the correct programming.
2365     //
2366     // Otherwise, the following restrictions apply:
2367     // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled.
2368     // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be
2369     //   enabled too.
2370     if ((Info->getPSInputAddr() & 0x7F) == 0 ||
2371         ((Info->getPSInputAddr() & 0xF) == 0 && Info->isPSInputAllocated(11))) {
2372       CCInfo.AllocateReg(AMDGPU::VGPR0);
2373       CCInfo.AllocateReg(AMDGPU::VGPR1);
2374       Info->markPSInputAllocated(0);
2375       Info->markPSInputEnabled(0);
2376     }
2377     if (Subtarget->isAmdPalOS()) {
2378       // For isAmdPalOS, the user does not enable some bits after compilation
2379       // based on run-time states; the register values being generated here are
2380       // the final ones set in hardware. Therefore we need to apply the
2381       // workaround to PSInputAddr and PSInputEnable together.  (The case where
2382       // a bit is set in PSInputAddr but not PSInputEnable is where the
2383       // frontend set up an input arg for a particular interpolation mode, but
2384       // nothing uses that input arg. Really we should have an earlier pass
2385       // that removes such an arg.)
2386       unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable();
2387       if ((PsInputBits & 0x7F) == 0 ||
2388           ((PsInputBits & 0xF) == 0 && (PsInputBits >> 11 & 1)))
2389         Info->markPSInputEnabled(
2390             countTrailingZeros(Info->getPSInputAddr(), ZB_Undefined));
2391     }
2392   } else if (IsKernel) {
2393     assert(Info->hasWorkGroupIDX() && Info->hasWorkItemIDX());
2394   } else {
2395     Splits.append(Ins.begin(), Ins.end());
2396   }
2397 
2398   if (IsEntryFunc) {
2399     allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info);
2400     allocateHSAUserSGPRs(CCInfo, MF, *TRI, *Info);
2401   } else if (!IsGraphics) {
2402     // For the fixed ABI, pass workitem IDs in the last argument register.
2403     allocateSpecialInputVGPRsFixed(CCInfo, MF, *TRI, *Info);
2404   }
2405 
2406   if (IsKernel) {
2407     analyzeFormalArgumentsCompute(CCInfo, Ins);
2408   } else {
2409     CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, isVarArg);
2410     CCInfo.AnalyzeFormalArguments(Splits, AssignFn);
2411   }
2412 
2413   SmallVector<SDValue, 16> Chains;
2414 
2415   // FIXME: This is the minimum kernel argument alignment. We should improve
2416   // this to the maximum alignment of the arguments.
2417   //
2418   // FIXME: Alignment of explicit arguments totally broken with non-0 explicit
2419   // kern arg offset.
2420   const Align KernelArgBaseAlign = Align(16);
2421 
2422   for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) {
2423     const ISD::InputArg &Arg = Ins[i];
2424     if (Arg.isOrigArg() && Skipped[Arg.getOrigArgIndex()]) {
2425       InVals.push_back(DAG.getUNDEF(Arg.VT));
2426       continue;
2427     }
2428 
2429     CCValAssign &VA = ArgLocs[ArgIdx++];
2430     MVT VT = VA.getLocVT();
2431 
2432     if (IsEntryFunc && VA.isMemLoc()) {
2433       VT = Ins[i].VT;
2434       EVT MemVT = VA.getLocVT();
2435 
2436       const uint64_t Offset = VA.getLocMemOffset();
2437       Align Alignment = commonAlignment(KernelArgBaseAlign, Offset);
2438 
2439       if (Arg.Flags.isByRef()) {
2440         SDValue Ptr = lowerKernArgParameterPtr(DAG, DL, Chain, Offset);
2441 
2442         const GCNTargetMachine &TM =
2443             static_cast<const GCNTargetMachine &>(getTargetMachine());
2444         if (!TM.isNoopAddrSpaceCast(AMDGPUAS::CONSTANT_ADDRESS,
2445                                     Arg.Flags.getPointerAddrSpace())) {
2446           Ptr = DAG.getAddrSpaceCast(DL, VT, Ptr, AMDGPUAS::CONSTANT_ADDRESS,
2447                                      Arg.Flags.getPointerAddrSpace());
2448         }
2449 
2450         InVals.push_back(Ptr);
2451         continue;
2452       }
2453 
2454       SDValue Arg = lowerKernargMemParameter(
2455         DAG, VT, MemVT, DL, Chain, Offset, Alignment, Ins[i].Flags.isSExt(), &Ins[i]);
2456       Chains.push_back(Arg.getValue(1));
2457 
2458       auto *ParamTy =
2459         dyn_cast<PointerType>(FType->getParamType(Ins[i].getOrigArgIndex()));
2460       if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS &&
2461           ParamTy && (ParamTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
2462                       ParamTy->getAddressSpace() == AMDGPUAS::REGION_ADDRESS)) {
2463         // On SI local pointers are just offsets into LDS, so they are always
2464         // less than 16-bits.  On CI and newer they could potentially be
2465         // real pointers, so we can't guarantee their size.
2466         Arg = DAG.getNode(ISD::AssertZext, DL, Arg.getValueType(), Arg,
2467                           DAG.getValueType(MVT::i16));
2468       }
2469 
2470       InVals.push_back(Arg);
2471       continue;
2472     } else if (!IsEntryFunc && VA.isMemLoc()) {
2473       SDValue Val = lowerStackParameter(DAG, VA, DL, Chain, Arg);
2474       InVals.push_back(Val);
2475       if (!Arg.Flags.isByVal())
2476         Chains.push_back(Val.getValue(1));
2477       continue;
2478     }
2479 
2480     assert(VA.isRegLoc() && "Parameter must be in a register!");
2481 
2482     Register Reg = VA.getLocReg();
2483     const TargetRegisterClass *RC = nullptr;
2484     if (AMDGPU::VGPR_32RegClass.contains(Reg))
2485       RC = &AMDGPU::VGPR_32RegClass;
2486     else if (AMDGPU::SGPR_32RegClass.contains(Reg))
2487       RC = &AMDGPU::SGPR_32RegClass;
2488     else
2489       llvm_unreachable("Unexpected register class in LowerFormalArguments!");
2490     EVT ValVT = VA.getValVT();
2491 
2492     Reg = MF.addLiveIn(Reg, RC);
2493     SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT);
2494 
2495     if (Arg.Flags.isSRet()) {
2496       // The return object should be reasonably addressable.
2497 
2498       // FIXME: This helps when the return is a real sret. If it is a
2499       // automatically inserted sret (i.e. CanLowerReturn returns false), an
2500       // extra copy is inserted in SelectionDAGBuilder which obscures this.
2501       unsigned NumBits
2502         = 32 - getSubtarget()->getKnownHighZeroBitsForFrameIndex();
2503       Val = DAG.getNode(ISD::AssertZext, DL, VT, Val,
2504         DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), NumBits)));
2505     }
2506 
2507     // If this is an 8 or 16-bit value, it is really passed promoted
2508     // to 32 bits. Insert an assert[sz]ext to capture this, then
2509     // truncate to the right size.
2510     switch (VA.getLocInfo()) {
2511     case CCValAssign::Full:
2512       break;
2513     case CCValAssign::BCvt:
2514       Val = DAG.getNode(ISD::BITCAST, DL, ValVT, Val);
2515       break;
2516     case CCValAssign::SExt:
2517       Val = DAG.getNode(ISD::AssertSext, DL, VT, Val,
2518                         DAG.getValueType(ValVT));
2519       Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
2520       break;
2521     case CCValAssign::ZExt:
2522       Val = DAG.getNode(ISD::AssertZext, DL, VT, Val,
2523                         DAG.getValueType(ValVT));
2524       Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
2525       break;
2526     case CCValAssign::AExt:
2527       Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
2528       break;
2529     default:
2530       llvm_unreachable("Unknown loc info!");
2531     }
2532 
2533     InVals.push_back(Val);
2534   }
2535 
2536   // Start adding system SGPRs.
2537   if (IsEntryFunc) {
2538     allocateSystemSGPRs(CCInfo, MF, *Info, CallConv, IsGraphics);
2539   } else {
2540     CCInfo.AllocateReg(Info->getScratchRSrcReg());
2541     if (!IsGraphics)
2542       allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info);
2543   }
2544 
2545   auto &ArgUsageInfo =
2546     DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>();
2547   ArgUsageInfo.setFuncArgInfo(Fn, Info->getArgInfo());
2548 
2549   unsigned StackArgSize = CCInfo.getNextStackOffset();
2550   Info->setBytesInStackArgArea(StackArgSize);
2551 
2552   return Chains.empty() ? Chain :
2553     DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
2554 }
2555 
2556 // TODO: If return values can't fit in registers, we should return as many as
2557 // possible in registers before passing on stack.
2558 bool SITargetLowering::CanLowerReturn(
2559   CallingConv::ID CallConv,
2560   MachineFunction &MF, bool IsVarArg,
2561   const SmallVectorImpl<ISD::OutputArg> &Outs,
2562   LLVMContext &Context) const {
2563   // Replacing returns with sret/stack usage doesn't make sense for shaders.
2564   // FIXME: Also sort of a workaround for custom vector splitting in LowerReturn
2565   // for shaders. Vector types should be explicitly handled by CC.
2566   if (AMDGPU::isEntryFunctionCC(CallConv))
2567     return true;
2568 
2569   SmallVector<CCValAssign, 16> RVLocs;
2570   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
2571   return CCInfo.CheckReturn(Outs, CCAssignFnForReturn(CallConv, IsVarArg));
2572 }
2573 
2574 SDValue
2575 SITargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
2576                               bool isVarArg,
2577                               const SmallVectorImpl<ISD::OutputArg> &Outs,
2578                               const SmallVectorImpl<SDValue> &OutVals,
2579                               const SDLoc &DL, SelectionDAG &DAG) const {
2580   MachineFunction &MF = DAG.getMachineFunction();
2581   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
2582 
2583   if (AMDGPU::isKernel(CallConv)) {
2584     return AMDGPUTargetLowering::LowerReturn(Chain, CallConv, isVarArg, Outs,
2585                                              OutVals, DL, DAG);
2586   }
2587 
2588   bool IsShader = AMDGPU::isShader(CallConv);
2589 
2590   Info->setIfReturnsVoid(Outs.empty());
2591   bool IsWaveEnd = Info->returnsVoid() && IsShader;
2592 
2593   // CCValAssign - represent the assignment of the return value to a location.
2594   SmallVector<CCValAssign, 48> RVLocs;
2595   SmallVector<ISD::OutputArg, 48> Splits;
2596 
2597   // CCState - Info about the registers and stack slots.
2598   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
2599                  *DAG.getContext());
2600 
2601   // Analyze outgoing return values.
2602   CCInfo.AnalyzeReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg));
2603 
2604   SDValue Flag;
2605   SmallVector<SDValue, 48> RetOps;
2606   RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
2607 
2608   // Copy the result values into the output registers.
2609   for (unsigned I = 0, RealRVLocIdx = 0, E = RVLocs.size(); I != E;
2610        ++I, ++RealRVLocIdx) {
2611     CCValAssign &VA = RVLocs[I];
2612     assert(VA.isRegLoc() && "Can only return in registers!");
2613     // TODO: Partially return in registers if return values don't fit.
2614     SDValue Arg = OutVals[RealRVLocIdx];
2615 
2616     // Copied from other backends.
2617     switch (VA.getLocInfo()) {
2618     case CCValAssign::Full:
2619       break;
2620     case CCValAssign::BCvt:
2621       Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
2622       break;
2623     case CCValAssign::SExt:
2624       Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
2625       break;
2626     case CCValAssign::ZExt:
2627       Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
2628       break;
2629     case CCValAssign::AExt:
2630       Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
2631       break;
2632     default:
2633       llvm_unreachable("Unknown loc info!");
2634     }
2635 
2636     Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag);
2637     Flag = Chain.getValue(1);
2638     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2639   }
2640 
2641   // FIXME: Does sret work properly?
2642   if (!Info->isEntryFunction()) {
2643     const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
2644     const MCPhysReg *I =
2645       TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
2646     if (I) {
2647       for (; *I; ++I) {
2648         if (AMDGPU::SReg_64RegClass.contains(*I))
2649           RetOps.push_back(DAG.getRegister(*I, MVT::i64));
2650         else if (AMDGPU::SReg_32RegClass.contains(*I))
2651           RetOps.push_back(DAG.getRegister(*I, MVT::i32));
2652         else
2653           llvm_unreachable("Unexpected register class in CSRsViaCopy!");
2654       }
2655     }
2656   }
2657 
2658   // Update chain and glue.
2659   RetOps[0] = Chain;
2660   if (Flag.getNode())
2661     RetOps.push_back(Flag);
2662 
2663   unsigned Opc = AMDGPUISD::ENDPGM;
2664   if (!IsWaveEnd)
2665     Opc = IsShader ? AMDGPUISD::RETURN_TO_EPILOG : AMDGPUISD::RET_FLAG;
2666   return DAG.getNode(Opc, DL, MVT::Other, RetOps);
2667 }
2668 
2669 SDValue SITargetLowering::LowerCallResult(
2670     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg,
2671     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
2672     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool IsThisReturn,
2673     SDValue ThisVal) const {
2674   CCAssignFn *RetCC = CCAssignFnForReturn(CallConv, IsVarArg);
2675 
2676   // Assign locations to each value returned by this call.
2677   SmallVector<CCValAssign, 16> RVLocs;
2678   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
2679                  *DAG.getContext());
2680   CCInfo.AnalyzeCallResult(Ins, RetCC);
2681 
2682   // Copy all of the result registers out of their specified physreg.
2683   for (unsigned i = 0; i != RVLocs.size(); ++i) {
2684     CCValAssign VA = RVLocs[i];
2685     SDValue Val;
2686 
2687     if (VA.isRegLoc()) {
2688       Val = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag);
2689       Chain = Val.getValue(1);
2690       InFlag = Val.getValue(2);
2691     } else if (VA.isMemLoc()) {
2692       report_fatal_error("TODO: return values in memory");
2693     } else
2694       llvm_unreachable("unknown argument location type");
2695 
2696     switch (VA.getLocInfo()) {
2697     case CCValAssign::Full:
2698       break;
2699     case CCValAssign::BCvt:
2700       Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
2701       break;
2702     case CCValAssign::ZExt:
2703       Val = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Val,
2704                         DAG.getValueType(VA.getValVT()));
2705       Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
2706       break;
2707     case CCValAssign::SExt:
2708       Val = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Val,
2709                         DAG.getValueType(VA.getValVT()));
2710       Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
2711       break;
2712     case CCValAssign::AExt:
2713       Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
2714       break;
2715     default:
2716       llvm_unreachable("Unknown loc info!");
2717     }
2718 
2719     InVals.push_back(Val);
2720   }
2721 
2722   return Chain;
2723 }
2724 
2725 // Add code to pass special inputs required depending on used features separate
2726 // from the explicit user arguments present in the IR.
2727 void SITargetLowering::passSpecialInputs(
2728     CallLoweringInfo &CLI,
2729     CCState &CCInfo,
2730     const SIMachineFunctionInfo &Info,
2731     SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass,
2732     SmallVectorImpl<SDValue> &MemOpChains,
2733     SDValue Chain) const {
2734   // If we don't have a call site, this was a call inserted by
2735   // legalization. These can never use special inputs.
2736   if (!CLI.CB)
2737     return;
2738 
2739   SelectionDAG &DAG = CLI.DAG;
2740   const SDLoc &DL = CLI.DL;
2741   const Function &F = DAG.getMachineFunction().getFunction();
2742 
2743   const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
2744   const AMDGPUFunctionArgInfo &CallerArgInfo = Info.getArgInfo();
2745 
2746   const AMDGPUFunctionArgInfo *CalleeArgInfo
2747     = &AMDGPUArgumentUsageInfo::FixedABIFunctionInfo;
2748   if (const Function *CalleeFunc = CLI.CB->getCalledFunction()) {
2749     auto &ArgUsageInfo =
2750       DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>();
2751     CalleeArgInfo = &ArgUsageInfo.lookupFuncArgInfo(*CalleeFunc);
2752   }
2753 
2754   // TODO: Unify with private memory register handling. This is complicated by
2755   // the fact that at least in kernels, the input argument is not necessarily
2756   // in the same location as the input.
2757   static constexpr std::pair<AMDGPUFunctionArgInfo::PreloadedValue,
2758                              StringLiteral> ImplicitAttrs[] = {
2759     {AMDGPUFunctionArgInfo::DISPATCH_PTR, "amdgpu-no-dispatch-ptr"},
2760     {AMDGPUFunctionArgInfo::QUEUE_PTR, "amdgpu-no-queue-ptr" },
2761     {AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR, "amdgpu-no-implicitarg-ptr"},
2762     {AMDGPUFunctionArgInfo::DISPATCH_ID, "amdgpu-no-dispatch-id"},
2763     {AMDGPUFunctionArgInfo::WORKGROUP_ID_X, "amdgpu-no-workgroup-id-x"},
2764     {AMDGPUFunctionArgInfo::WORKGROUP_ID_Y,"amdgpu-no-workgroup-id-y"},
2765     {AMDGPUFunctionArgInfo::WORKGROUP_ID_Z,"amdgpu-no-workgroup-id-z"}
2766   };
2767 
2768   for (auto Attr : ImplicitAttrs) {
2769     const ArgDescriptor *OutgoingArg;
2770     const TargetRegisterClass *ArgRC;
2771     LLT ArgTy;
2772 
2773     AMDGPUFunctionArgInfo::PreloadedValue InputID = Attr.first;
2774 
2775     // If the callee does not use the attribute value, skip copying the value.
2776     if (CLI.CB->hasFnAttr(Attr.second))
2777       continue;
2778 
2779     std::tie(OutgoingArg, ArgRC, ArgTy) =
2780         CalleeArgInfo->getPreloadedValue(InputID);
2781     if (!OutgoingArg)
2782       continue;
2783 
2784     const ArgDescriptor *IncomingArg;
2785     const TargetRegisterClass *IncomingArgRC;
2786     LLT Ty;
2787     std::tie(IncomingArg, IncomingArgRC, Ty) =
2788         CallerArgInfo.getPreloadedValue(InputID);
2789     assert(IncomingArgRC == ArgRC);
2790 
2791     // All special arguments are ints for now.
2792     EVT ArgVT = TRI->getSpillSize(*ArgRC) == 8 ? MVT::i64 : MVT::i32;
2793     SDValue InputReg;
2794 
2795     if (IncomingArg) {
2796       InputReg = loadInputValue(DAG, ArgRC, ArgVT, DL, *IncomingArg);
2797     } else if (InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR) {
2798       // The implicit arg ptr is special because it doesn't have a corresponding
2799       // input for kernels, and is computed from the kernarg segment pointer.
2800       InputReg = getImplicitArgPtr(DAG, DL);
2801     } else {
2802       // We may have proven the input wasn't needed, although the ABI is
2803       // requiring it. We just need to allocate the register appropriately.
2804       InputReg = DAG.getUNDEF(ArgVT);
2805     }
2806 
2807     if (OutgoingArg->isRegister()) {
2808       RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg);
2809       if (!CCInfo.AllocateReg(OutgoingArg->getRegister()))
2810         report_fatal_error("failed to allocate implicit input argument");
2811     } else {
2812       unsigned SpecialArgOffset =
2813           CCInfo.AllocateStack(ArgVT.getStoreSize(), Align(4));
2814       SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg,
2815                                               SpecialArgOffset);
2816       MemOpChains.push_back(ArgStore);
2817     }
2818   }
2819 
2820   // Pack workitem IDs into a single register or pass it as is if already
2821   // packed.
2822   const ArgDescriptor *OutgoingArg;
2823   const TargetRegisterClass *ArgRC;
2824   LLT Ty;
2825 
2826   std::tie(OutgoingArg, ArgRC, Ty) =
2827       CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X);
2828   if (!OutgoingArg)
2829     std::tie(OutgoingArg, ArgRC, Ty) =
2830         CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y);
2831   if (!OutgoingArg)
2832     std::tie(OutgoingArg, ArgRC, Ty) =
2833         CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z);
2834   if (!OutgoingArg)
2835     return;
2836 
2837   const ArgDescriptor *IncomingArgX = std::get<0>(
2838       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X));
2839   const ArgDescriptor *IncomingArgY = std::get<0>(
2840       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y));
2841   const ArgDescriptor *IncomingArgZ = std::get<0>(
2842       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z));
2843 
2844   SDValue InputReg;
2845   SDLoc SL;
2846 
2847   const bool NeedWorkItemIDX = !CLI.CB->hasFnAttr("amdgpu-no-workitem-id-x");
2848   const bool NeedWorkItemIDY = !CLI.CB->hasFnAttr("amdgpu-no-workitem-id-y");
2849   const bool NeedWorkItemIDZ = !CLI.CB->hasFnAttr("amdgpu-no-workitem-id-z");
2850 
2851   // If incoming ids are not packed we need to pack them.
2852   if (IncomingArgX && !IncomingArgX->isMasked() && CalleeArgInfo->WorkItemIDX &&
2853       NeedWorkItemIDX) {
2854     if (Subtarget->getMaxWorkitemID(F, 0) != 0) {
2855       InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgX);
2856     } else {
2857       InputReg = DAG.getConstant(0, DL, MVT::i32);
2858     }
2859   }
2860 
2861   if (IncomingArgY && !IncomingArgY->isMasked() && CalleeArgInfo->WorkItemIDY &&
2862       NeedWorkItemIDY && Subtarget->getMaxWorkitemID(F, 1) != 0) {
2863     SDValue Y = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgY);
2864     Y = DAG.getNode(ISD::SHL, SL, MVT::i32, Y,
2865                     DAG.getShiftAmountConstant(10, MVT::i32, SL));
2866     InputReg = InputReg.getNode() ?
2867                  DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Y) : Y;
2868   }
2869 
2870   if (IncomingArgZ && !IncomingArgZ->isMasked() && CalleeArgInfo->WorkItemIDZ &&
2871       NeedWorkItemIDZ && Subtarget->getMaxWorkitemID(F, 2) != 0) {
2872     SDValue Z = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgZ);
2873     Z = DAG.getNode(ISD::SHL, SL, MVT::i32, Z,
2874                     DAG.getShiftAmountConstant(20, MVT::i32, SL));
2875     InputReg = InputReg.getNode() ?
2876                  DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Z) : Z;
2877   }
2878 
2879   if (!InputReg && (NeedWorkItemIDX || NeedWorkItemIDY || NeedWorkItemIDZ)) {
2880     if (!IncomingArgX && !IncomingArgY && !IncomingArgZ) {
2881       // We're in a situation where the outgoing function requires the workitem
2882       // ID, but the calling function does not have it (e.g a graphics function
2883       // calling a C calling convention function). This is illegal, but we need
2884       // to produce something.
2885       InputReg = DAG.getUNDEF(MVT::i32);
2886     } else {
2887       // Workitem ids are already packed, any of present incoming arguments
2888       // will carry all required fields.
2889       ArgDescriptor IncomingArg = ArgDescriptor::createArg(
2890         IncomingArgX ? *IncomingArgX :
2891         IncomingArgY ? *IncomingArgY :
2892         *IncomingArgZ, ~0u);
2893       InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, IncomingArg);
2894     }
2895   }
2896 
2897   if (OutgoingArg->isRegister()) {
2898     if (InputReg)
2899       RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg);
2900 
2901     CCInfo.AllocateReg(OutgoingArg->getRegister());
2902   } else {
2903     unsigned SpecialArgOffset = CCInfo.AllocateStack(4, Align(4));
2904     if (InputReg) {
2905       SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg,
2906                                               SpecialArgOffset);
2907       MemOpChains.push_back(ArgStore);
2908     }
2909   }
2910 }
2911 
2912 static bool canGuaranteeTCO(CallingConv::ID CC) {
2913   return CC == CallingConv::Fast;
2914 }
2915 
2916 /// Return true if we might ever do TCO for calls with this calling convention.
2917 static bool mayTailCallThisCC(CallingConv::ID CC) {
2918   switch (CC) {
2919   case CallingConv::C:
2920   case CallingConv::AMDGPU_Gfx:
2921     return true;
2922   default:
2923     return canGuaranteeTCO(CC);
2924   }
2925 }
2926 
2927 bool SITargetLowering::isEligibleForTailCallOptimization(
2928     SDValue Callee, CallingConv::ID CalleeCC, bool IsVarArg,
2929     const SmallVectorImpl<ISD::OutputArg> &Outs,
2930     const SmallVectorImpl<SDValue> &OutVals,
2931     const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
2932   if (!mayTailCallThisCC(CalleeCC))
2933     return false;
2934 
2935   // For a divergent call target, we need to do a waterfall loop over the
2936   // possible callees which precludes us from using a simple jump.
2937   if (Callee->isDivergent())
2938     return false;
2939 
2940   MachineFunction &MF = DAG.getMachineFunction();
2941   const Function &CallerF = MF.getFunction();
2942   CallingConv::ID CallerCC = CallerF.getCallingConv();
2943   const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2944   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
2945 
2946   // Kernels aren't callable, and don't have a live in return address so it
2947   // doesn't make sense to do a tail call with entry functions.
2948   if (!CallerPreserved)
2949     return false;
2950 
2951   bool CCMatch = CallerCC == CalleeCC;
2952 
2953   if (DAG.getTarget().Options.GuaranteedTailCallOpt) {
2954     if (canGuaranteeTCO(CalleeCC) && CCMatch)
2955       return true;
2956     return false;
2957   }
2958 
2959   // TODO: Can we handle var args?
2960   if (IsVarArg)
2961     return false;
2962 
2963   for (const Argument &Arg : CallerF.args()) {
2964     if (Arg.hasByValAttr())
2965       return false;
2966   }
2967 
2968   LLVMContext &Ctx = *DAG.getContext();
2969 
2970   // Check that the call results are passed in the same way.
2971   if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, Ctx, Ins,
2972                                   CCAssignFnForCall(CalleeCC, IsVarArg),
2973                                   CCAssignFnForCall(CallerCC, IsVarArg)))
2974     return false;
2975 
2976   // The callee has to preserve all registers the caller needs to preserve.
2977   if (!CCMatch) {
2978     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
2979     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
2980       return false;
2981   }
2982 
2983   // Nothing more to check if the callee is taking no arguments.
2984   if (Outs.empty())
2985     return true;
2986 
2987   SmallVector<CCValAssign, 16> ArgLocs;
2988   CCState CCInfo(CalleeCC, IsVarArg, MF, ArgLocs, Ctx);
2989 
2990   CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, IsVarArg));
2991 
2992   const SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>();
2993   // If the stack arguments for this call do not fit into our own save area then
2994   // the call cannot be made tail.
2995   // TODO: Is this really necessary?
2996   if (CCInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea())
2997     return false;
2998 
2999   const MachineRegisterInfo &MRI = MF.getRegInfo();
3000   return parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals);
3001 }
3002 
3003 bool SITargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
3004   if (!CI->isTailCall())
3005     return false;
3006 
3007   const Function *ParentFn = CI->getParent()->getParent();
3008   if (AMDGPU::isEntryFunctionCC(ParentFn->getCallingConv()))
3009     return false;
3010   return true;
3011 }
3012 
3013 // The wave scratch offset register is used as the global base pointer.
3014 SDValue SITargetLowering::LowerCall(CallLoweringInfo &CLI,
3015                                     SmallVectorImpl<SDValue> &InVals) const {
3016   SelectionDAG &DAG = CLI.DAG;
3017   const SDLoc &DL = CLI.DL;
3018   SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
3019   SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
3020   SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
3021   SDValue Chain = CLI.Chain;
3022   SDValue Callee = CLI.Callee;
3023   bool &IsTailCall = CLI.IsTailCall;
3024   CallingConv::ID CallConv = CLI.CallConv;
3025   bool IsVarArg = CLI.IsVarArg;
3026   bool IsSibCall = false;
3027   bool IsThisReturn = false;
3028   MachineFunction &MF = DAG.getMachineFunction();
3029 
3030   if (Callee.isUndef() || isNullConstant(Callee)) {
3031     if (!CLI.IsTailCall) {
3032       for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I)
3033         InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT));
3034     }
3035 
3036     return Chain;
3037   }
3038 
3039   if (IsVarArg) {
3040     return lowerUnhandledCall(CLI, InVals,
3041                               "unsupported call to variadic function ");
3042   }
3043 
3044   if (!CLI.CB)
3045     report_fatal_error("unsupported libcall legalization");
3046 
3047   if (IsTailCall && MF.getTarget().Options.GuaranteedTailCallOpt) {
3048     return lowerUnhandledCall(CLI, InVals,
3049                               "unsupported required tail call to function ");
3050   }
3051 
3052   if (AMDGPU::isShader(CallConv)) {
3053     // Note the issue is with the CC of the called function, not of the call
3054     // itself.
3055     return lowerUnhandledCall(CLI, InVals,
3056                               "unsupported call to a shader function ");
3057   }
3058 
3059   if (AMDGPU::isShader(MF.getFunction().getCallingConv()) &&
3060       CallConv != CallingConv::AMDGPU_Gfx) {
3061     // Only allow calls with specific calling conventions.
3062     return lowerUnhandledCall(CLI, InVals,
3063                               "unsupported calling convention for call from "
3064                               "graphics shader of function ");
3065   }
3066 
3067   if (IsTailCall) {
3068     IsTailCall = isEligibleForTailCallOptimization(
3069       Callee, CallConv, IsVarArg, Outs, OutVals, Ins, DAG);
3070     if (!IsTailCall && CLI.CB && CLI.CB->isMustTailCall()) {
3071       report_fatal_error("failed to perform tail call elimination on a call "
3072                          "site marked musttail");
3073     }
3074 
3075     bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
3076 
3077     // A sibling call is one where we're under the usual C ABI and not planning
3078     // to change that but can still do a tail call:
3079     if (!TailCallOpt && IsTailCall)
3080       IsSibCall = true;
3081 
3082     if (IsTailCall)
3083       ++NumTailCalls;
3084   }
3085 
3086   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
3087   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
3088   SmallVector<SDValue, 8> MemOpChains;
3089 
3090   // Analyze operands of the call, assigning locations to each operand.
3091   SmallVector<CCValAssign, 16> ArgLocs;
3092   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
3093   CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, IsVarArg);
3094 
3095   if (CallConv != CallingConv::AMDGPU_Gfx) {
3096     // With a fixed ABI, allocate fixed registers before user arguments.
3097     passSpecialInputs(CLI, CCInfo, *Info, RegsToPass, MemOpChains, Chain);
3098   }
3099 
3100   CCInfo.AnalyzeCallOperands(Outs, AssignFn);
3101 
3102   // Get a count of how many bytes are to be pushed on the stack.
3103   unsigned NumBytes = CCInfo.getNextStackOffset();
3104 
3105   if (IsSibCall) {
3106     // Since we're not changing the ABI to make this a tail call, the memory
3107     // operands are already available in the caller's incoming argument space.
3108     NumBytes = 0;
3109   }
3110 
3111   // FPDiff is the byte offset of the call's argument area from the callee's.
3112   // Stores to callee stack arguments will be placed in FixedStackSlots offset
3113   // by this amount for a tail call. In a sibling call it must be 0 because the
3114   // caller will deallocate the entire stack and the callee still expects its
3115   // arguments to begin at SP+0. Completely unused for non-tail calls.
3116   int32_t FPDiff = 0;
3117   MachineFrameInfo &MFI = MF.getFrameInfo();
3118 
3119   // Adjust the stack pointer for the new arguments...
3120   // These operations are automatically eliminated by the prolog/epilog pass
3121   if (!IsSibCall) {
3122     Chain = DAG.getCALLSEQ_START(Chain, 0, 0, DL);
3123 
3124     if (!Subtarget->enableFlatScratch()) {
3125       SmallVector<SDValue, 4> CopyFromChains;
3126 
3127       // In the HSA case, this should be an identity copy.
3128       SDValue ScratchRSrcReg
3129         = DAG.getCopyFromReg(Chain, DL, Info->getScratchRSrcReg(), MVT::v4i32);
3130       RegsToPass.emplace_back(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, ScratchRSrcReg);
3131       CopyFromChains.push_back(ScratchRSrcReg.getValue(1));
3132       Chain = DAG.getTokenFactor(DL, CopyFromChains);
3133     }
3134   }
3135 
3136   MVT PtrVT = MVT::i32;
3137 
3138   // Walk the register/memloc assignments, inserting copies/loads.
3139   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3140     CCValAssign &VA = ArgLocs[i];
3141     SDValue Arg = OutVals[i];
3142 
3143     // Promote the value if needed.
3144     switch (VA.getLocInfo()) {
3145     case CCValAssign::Full:
3146       break;
3147     case CCValAssign::BCvt:
3148       Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
3149       break;
3150     case CCValAssign::ZExt:
3151       Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
3152       break;
3153     case CCValAssign::SExt:
3154       Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
3155       break;
3156     case CCValAssign::AExt:
3157       Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
3158       break;
3159     case CCValAssign::FPExt:
3160       Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg);
3161       break;
3162     default:
3163       llvm_unreachable("Unknown loc info!");
3164     }
3165 
3166     if (VA.isRegLoc()) {
3167       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
3168     } else {
3169       assert(VA.isMemLoc());
3170 
3171       SDValue DstAddr;
3172       MachinePointerInfo DstInfo;
3173 
3174       unsigned LocMemOffset = VA.getLocMemOffset();
3175       int32_t Offset = LocMemOffset;
3176 
3177       SDValue PtrOff = DAG.getConstant(Offset, DL, PtrVT);
3178       MaybeAlign Alignment;
3179 
3180       if (IsTailCall) {
3181         ISD::ArgFlagsTy Flags = Outs[i].Flags;
3182         unsigned OpSize = Flags.isByVal() ?
3183           Flags.getByValSize() : VA.getValVT().getStoreSize();
3184 
3185         // FIXME: We can have better than the minimum byval required alignment.
3186         Alignment =
3187             Flags.isByVal()
3188                 ? Flags.getNonZeroByValAlign()
3189                 : commonAlignment(Subtarget->getStackAlignment(), Offset);
3190 
3191         Offset = Offset + FPDiff;
3192         int FI = MFI.CreateFixedObject(OpSize, Offset, true);
3193 
3194         DstAddr = DAG.getFrameIndex(FI, PtrVT);
3195         DstInfo = MachinePointerInfo::getFixedStack(MF, FI);
3196 
3197         // Make sure any stack arguments overlapping with where we're storing
3198         // are loaded before this eventual operation. Otherwise they'll be
3199         // clobbered.
3200 
3201         // FIXME: Why is this really necessary? This seems to just result in a
3202         // lot of code to copy the stack and write them back to the same
3203         // locations, which are supposed to be immutable?
3204         Chain = addTokenForArgument(Chain, DAG, MFI, FI);
3205       } else {
3206         // Stores to the argument stack area are relative to the stack pointer.
3207         SDValue SP = DAG.getCopyFromReg(Chain, DL, Info->getStackPtrOffsetReg(),
3208                                         MVT::i32);
3209         DstAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, SP, PtrOff);
3210         DstInfo = MachinePointerInfo::getStack(MF, LocMemOffset);
3211         Alignment =
3212             commonAlignment(Subtarget->getStackAlignment(), LocMemOffset);
3213       }
3214 
3215       if (Outs[i].Flags.isByVal()) {
3216         SDValue SizeNode =
3217             DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i32);
3218         SDValue Cpy =
3219             DAG.getMemcpy(Chain, DL, DstAddr, Arg, SizeNode,
3220                           Outs[i].Flags.getNonZeroByValAlign(),
3221                           /*isVol = */ false, /*AlwaysInline = */ true,
3222                           /*isTailCall = */ false, DstInfo,
3223                           MachinePointerInfo(AMDGPUAS::PRIVATE_ADDRESS));
3224 
3225         MemOpChains.push_back(Cpy);
3226       } else {
3227         SDValue Store =
3228             DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo, Alignment);
3229         MemOpChains.push_back(Store);
3230       }
3231     }
3232   }
3233 
3234   if (!MemOpChains.empty())
3235     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
3236 
3237   // Build a sequence of copy-to-reg nodes chained together with token chain
3238   // and flag operands which copy the outgoing args into the appropriate regs.
3239   SDValue InFlag;
3240   for (auto &RegToPass : RegsToPass) {
3241     Chain = DAG.getCopyToReg(Chain, DL, RegToPass.first,
3242                              RegToPass.second, InFlag);
3243     InFlag = Chain.getValue(1);
3244   }
3245 
3246 
3247   // We don't usually want to end the call-sequence here because we would tidy
3248   // the frame up *after* the call, however in the ABI-changing tail-call case
3249   // we've carefully laid out the parameters so that when sp is reset they'll be
3250   // in the correct location.
3251   if (IsTailCall && !IsSibCall) {
3252     Chain = DAG.getCALLSEQ_END(Chain,
3253                                DAG.getTargetConstant(NumBytes, DL, MVT::i32),
3254                                DAG.getTargetConstant(0, DL, MVT::i32),
3255                                InFlag, DL);
3256     InFlag = Chain.getValue(1);
3257   }
3258 
3259   std::vector<SDValue> Ops;
3260   Ops.push_back(Chain);
3261   Ops.push_back(Callee);
3262   // Add a redundant copy of the callee global which will not be legalized, as
3263   // we need direct access to the callee later.
3264   if (GlobalAddressSDNode *GSD = dyn_cast<GlobalAddressSDNode>(Callee)) {
3265     const GlobalValue *GV = GSD->getGlobal();
3266     Ops.push_back(DAG.getTargetGlobalAddress(GV, DL, MVT::i64));
3267   } else {
3268     Ops.push_back(DAG.getTargetConstant(0, DL, MVT::i64));
3269   }
3270 
3271   if (IsTailCall) {
3272     // Each tail call may have to adjust the stack by a different amount, so
3273     // this information must travel along with the operation for eventual
3274     // consumption by emitEpilogue.
3275     Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32));
3276   }
3277 
3278   // Add argument registers to the end of the list so that they are known live
3279   // into the call.
3280   for (auto &RegToPass : RegsToPass) {
3281     Ops.push_back(DAG.getRegister(RegToPass.first,
3282                                   RegToPass.second.getValueType()));
3283   }
3284 
3285   // Add a register mask operand representing the call-preserved registers.
3286 
3287   auto *TRI = static_cast<const SIRegisterInfo*>(Subtarget->getRegisterInfo());
3288   const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
3289   assert(Mask && "Missing call preserved mask for calling convention");
3290   Ops.push_back(DAG.getRegisterMask(Mask));
3291 
3292   if (InFlag.getNode())
3293     Ops.push_back(InFlag);
3294 
3295   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3296 
3297   // If we're doing a tall call, use a TC_RETURN here rather than an
3298   // actual call instruction.
3299   if (IsTailCall) {
3300     MFI.setHasTailCall();
3301     return DAG.getNode(AMDGPUISD::TC_RETURN, DL, NodeTys, Ops);
3302   }
3303 
3304   // Returns a chain and a flag for retval copy to use.
3305   SDValue Call = DAG.getNode(AMDGPUISD::CALL, DL, NodeTys, Ops);
3306   Chain = Call.getValue(0);
3307   InFlag = Call.getValue(1);
3308 
3309   uint64_t CalleePopBytes = NumBytes;
3310   Chain = DAG.getCALLSEQ_END(Chain, DAG.getTargetConstant(0, DL, MVT::i32),
3311                              DAG.getTargetConstant(CalleePopBytes, DL, MVT::i32),
3312                              InFlag, DL);
3313   if (!Ins.empty())
3314     InFlag = Chain.getValue(1);
3315 
3316   // Handle result values, copying them out of physregs into vregs that we
3317   // return.
3318   return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
3319                          InVals, IsThisReturn,
3320                          IsThisReturn ? OutVals[0] : SDValue());
3321 }
3322 
3323 // This is identical to the default implementation in ExpandDYNAMIC_STACKALLOC,
3324 // except for applying the wave size scale to the increment amount.
3325 SDValue SITargetLowering::lowerDYNAMIC_STACKALLOCImpl(
3326     SDValue Op, SelectionDAG &DAG) const {
3327   const MachineFunction &MF = DAG.getMachineFunction();
3328   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
3329 
3330   SDLoc dl(Op);
3331   EVT VT = Op.getValueType();
3332   SDValue Tmp1 = Op;
3333   SDValue Tmp2 = Op.getValue(1);
3334   SDValue Tmp3 = Op.getOperand(2);
3335   SDValue Chain = Tmp1.getOperand(0);
3336 
3337   Register SPReg = Info->getStackPtrOffsetReg();
3338 
3339   // Chain the dynamic stack allocation so that it doesn't modify the stack
3340   // pointer when other instructions are using the stack.
3341   Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl);
3342 
3343   SDValue Size  = Tmp2.getOperand(1);
3344   SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
3345   Chain = SP.getValue(1);
3346   MaybeAlign Alignment = cast<ConstantSDNode>(Tmp3)->getMaybeAlignValue();
3347   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
3348   const TargetFrameLowering *TFL = ST.getFrameLowering();
3349   unsigned Opc =
3350     TFL->getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp ?
3351     ISD::ADD : ISD::SUB;
3352 
3353   SDValue ScaledSize = DAG.getNode(
3354       ISD::SHL, dl, VT, Size,
3355       DAG.getConstant(ST.getWavefrontSizeLog2(), dl, MVT::i32));
3356 
3357   Align StackAlign = TFL->getStackAlign();
3358   Tmp1 = DAG.getNode(Opc, dl, VT, SP, ScaledSize); // Value
3359   if (Alignment && *Alignment > StackAlign) {
3360     Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1,
3361                        DAG.getConstant(-(uint64_t)Alignment->value()
3362                                            << ST.getWavefrontSizeLog2(),
3363                                        dl, VT));
3364   }
3365 
3366   Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1);    // Output chain
3367   Tmp2 = DAG.getCALLSEQ_END(
3368       Chain, DAG.getIntPtrConstant(0, dl, true),
3369       DAG.getIntPtrConstant(0, dl, true), SDValue(), dl);
3370 
3371   return DAG.getMergeValues({Tmp1, Tmp2}, dl);
3372 }
3373 
3374 SDValue SITargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
3375                                                   SelectionDAG &DAG) const {
3376   // We only handle constant sizes here to allow non-entry block, static sized
3377   // allocas. A truly dynamic value is more difficult to support because we
3378   // don't know if the size value is uniform or not. If the size isn't uniform,
3379   // we would need to do a wave reduction to get the maximum size to know how
3380   // much to increment the uniform stack pointer.
3381   SDValue Size = Op.getOperand(1);
3382   if (isa<ConstantSDNode>(Size))
3383       return lowerDYNAMIC_STACKALLOCImpl(Op, DAG); // Use "generic" expansion.
3384 
3385   return AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(Op, DAG);
3386 }
3387 
3388 Register SITargetLowering::getRegisterByName(const char* RegName, LLT VT,
3389                                              const MachineFunction &MF) const {
3390   Register Reg = StringSwitch<Register>(RegName)
3391     .Case("m0", AMDGPU::M0)
3392     .Case("exec", AMDGPU::EXEC)
3393     .Case("exec_lo", AMDGPU::EXEC_LO)
3394     .Case("exec_hi", AMDGPU::EXEC_HI)
3395     .Case("flat_scratch", AMDGPU::FLAT_SCR)
3396     .Case("flat_scratch_lo", AMDGPU::FLAT_SCR_LO)
3397     .Case("flat_scratch_hi", AMDGPU::FLAT_SCR_HI)
3398     .Default(Register());
3399 
3400   if (Reg == AMDGPU::NoRegister) {
3401     report_fatal_error(Twine("invalid register name \""
3402                              + StringRef(RegName)  + "\"."));
3403 
3404   }
3405 
3406   if (!Subtarget->hasFlatScrRegister() &&
3407        Subtarget->getRegisterInfo()->regsOverlap(Reg, AMDGPU::FLAT_SCR)) {
3408     report_fatal_error(Twine("invalid register \""
3409                              + StringRef(RegName)  + "\" for subtarget."));
3410   }
3411 
3412   switch (Reg) {
3413   case AMDGPU::M0:
3414   case AMDGPU::EXEC_LO:
3415   case AMDGPU::EXEC_HI:
3416   case AMDGPU::FLAT_SCR_LO:
3417   case AMDGPU::FLAT_SCR_HI:
3418     if (VT.getSizeInBits() == 32)
3419       return Reg;
3420     break;
3421   case AMDGPU::EXEC:
3422   case AMDGPU::FLAT_SCR:
3423     if (VT.getSizeInBits() == 64)
3424       return Reg;
3425     break;
3426   default:
3427     llvm_unreachable("missing register type checking");
3428   }
3429 
3430   report_fatal_error(Twine("invalid type for register \""
3431                            + StringRef(RegName) + "\"."));
3432 }
3433 
3434 // If kill is not the last instruction, split the block so kill is always a
3435 // proper terminator.
3436 MachineBasicBlock *
3437 SITargetLowering::splitKillBlock(MachineInstr &MI,
3438                                  MachineBasicBlock *BB) const {
3439   MachineBasicBlock *SplitBB = BB->splitAt(MI, false /*UpdateLiveIns*/);
3440   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3441   MI.setDesc(TII->getKillTerminatorFromPseudo(MI.getOpcode()));
3442   return SplitBB;
3443 }
3444 
3445 // Split block \p MBB at \p MI, as to insert a loop. If \p InstInLoop is true,
3446 // \p MI will be the only instruction in the loop body block. Otherwise, it will
3447 // be the first instruction in the remainder block.
3448 //
3449 /// \returns { LoopBody, Remainder }
3450 static std::pair<MachineBasicBlock *, MachineBasicBlock *>
3451 splitBlockForLoop(MachineInstr &MI, MachineBasicBlock &MBB, bool InstInLoop) {
3452   MachineFunction *MF = MBB.getParent();
3453   MachineBasicBlock::iterator I(&MI);
3454 
3455   // To insert the loop we need to split the block. Move everything after this
3456   // point to a new block, and insert a new empty block between the two.
3457   MachineBasicBlock *LoopBB = MF->CreateMachineBasicBlock();
3458   MachineBasicBlock *RemainderBB = MF->CreateMachineBasicBlock();
3459   MachineFunction::iterator MBBI(MBB);
3460   ++MBBI;
3461 
3462   MF->insert(MBBI, LoopBB);
3463   MF->insert(MBBI, RemainderBB);
3464 
3465   LoopBB->addSuccessor(LoopBB);
3466   LoopBB->addSuccessor(RemainderBB);
3467 
3468   // Move the rest of the block into a new block.
3469   RemainderBB->transferSuccessorsAndUpdatePHIs(&MBB);
3470 
3471   if (InstInLoop) {
3472     auto Next = std::next(I);
3473 
3474     // Move instruction to loop body.
3475     LoopBB->splice(LoopBB->begin(), &MBB, I, Next);
3476 
3477     // Move the rest of the block.
3478     RemainderBB->splice(RemainderBB->begin(), &MBB, Next, MBB.end());
3479   } else {
3480     RemainderBB->splice(RemainderBB->begin(), &MBB, I, MBB.end());
3481   }
3482 
3483   MBB.addSuccessor(LoopBB);
3484 
3485   return std::make_pair(LoopBB, RemainderBB);
3486 }
3487 
3488 /// Insert \p MI into a BUNDLE with an S_WAITCNT 0 immediately following it.
3489 void SITargetLowering::bundleInstWithWaitcnt(MachineInstr &MI) const {
3490   MachineBasicBlock *MBB = MI.getParent();
3491   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3492   auto I = MI.getIterator();
3493   auto E = std::next(I);
3494 
3495   BuildMI(*MBB, E, MI.getDebugLoc(), TII->get(AMDGPU::S_WAITCNT))
3496     .addImm(0);
3497 
3498   MIBundleBuilder Bundler(*MBB, I, E);
3499   finalizeBundle(*MBB, Bundler.begin());
3500 }
3501 
3502 MachineBasicBlock *
3503 SITargetLowering::emitGWSMemViolTestLoop(MachineInstr &MI,
3504                                          MachineBasicBlock *BB) const {
3505   const DebugLoc &DL = MI.getDebugLoc();
3506 
3507   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
3508 
3509   MachineBasicBlock *LoopBB;
3510   MachineBasicBlock *RemainderBB;
3511   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3512 
3513   // Apparently kill flags are only valid if the def is in the same block?
3514   if (MachineOperand *Src = TII->getNamedOperand(MI, AMDGPU::OpName::data0))
3515     Src->setIsKill(false);
3516 
3517   std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, *BB, true);
3518 
3519   MachineBasicBlock::iterator I = LoopBB->end();
3520 
3521   const unsigned EncodedReg = AMDGPU::Hwreg::encodeHwreg(
3522     AMDGPU::Hwreg::ID_TRAPSTS, AMDGPU::Hwreg::OFFSET_MEM_VIOL, 1);
3523 
3524   // Clear TRAP_STS.MEM_VIOL
3525   BuildMI(*LoopBB, LoopBB->begin(), DL, TII->get(AMDGPU::S_SETREG_IMM32_B32))
3526     .addImm(0)
3527     .addImm(EncodedReg);
3528 
3529   bundleInstWithWaitcnt(MI);
3530 
3531   Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
3532 
3533   // Load and check TRAP_STS.MEM_VIOL
3534   BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_GETREG_B32), Reg)
3535     .addImm(EncodedReg);
3536 
3537   // FIXME: Do we need to use an isel pseudo that may clobber scc?
3538   BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CMP_LG_U32))
3539     .addReg(Reg, RegState::Kill)
3540     .addImm(0);
3541   BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_SCC1))
3542     .addMBB(LoopBB);
3543 
3544   return RemainderBB;
3545 }
3546 
3547 // Do a v_movrels_b32 or v_movreld_b32 for each unique value of \p IdxReg in the
3548 // wavefront. If the value is uniform and just happens to be in a VGPR, this
3549 // will only do one iteration. In the worst case, this will loop 64 times.
3550 //
3551 // TODO: Just use v_readlane_b32 if we know the VGPR has a uniform value.
3552 static MachineBasicBlock::iterator
3553 emitLoadM0FromVGPRLoop(const SIInstrInfo *TII, MachineRegisterInfo &MRI,
3554                        MachineBasicBlock &OrigBB, MachineBasicBlock &LoopBB,
3555                        const DebugLoc &DL, const MachineOperand &Idx,
3556                        unsigned InitReg, unsigned ResultReg, unsigned PhiReg,
3557                        unsigned InitSaveExecReg, int Offset, bool UseGPRIdxMode,
3558                        Register &SGPRIdxReg) {
3559 
3560   MachineFunction *MF = OrigBB.getParent();
3561   const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3562   const SIRegisterInfo *TRI = ST.getRegisterInfo();
3563   MachineBasicBlock::iterator I = LoopBB.begin();
3564 
3565   const TargetRegisterClass *BoolRC = TRI->getBoolRC();
3566   Register PhiExec = MRI.createVirtualRegister(BoolRC);
3567   Register NewExec = MRI.createVirtualRegister(BoolRC);
3568   Register CurrentIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
3569   Register CondReg = MRI.createVirtualRegister(BoolRC);
3570 
3571   BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiReg)
3572     .addReg(InitReg)
3573     .addMBB(&OrigBB)
3574     .addReg(ResultReg)
3575     .addMBB(&LoopBB);
3576 
3577   BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiExec)
3578     .addReg(InitSaveExecReg)
3579     .addMBB(&OrigBB)
3580     .addReg(NewExec)
3581     .addMBB(&LoopBB);
3582 
3583   // Read the next variant <- also loop target.
3584   BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), CurrentIdxReg)
3585       .addReg(Idx.getReg(), getUndefRegState(Idx.isUndef()));
3586 
3587   // Compare the just read M0 value to all possible Idx values.
3588   BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_CMP_EQ_U32_e64), CondReg)
3589       .addReg(CurrentIdxReg)
3590       .addReg(Idx.getReg(), 0, Idx.getSubReg());
3591 
3592   // Update EXEC, save the original EXEC value to VCC.
3593   BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_AND_SAVEEXEC_B32
3594                                                 : AMDGPU::S_AND_SAVEEXEC_B64),
3595           NewExec)
3596     .addReg(CondReg, RegState::Kill);
3597 
3598   MRI.setSimpleHint(NewExec, CondReg);
3599 
3600   if (UseGPRIdxMode) {
3601     if (Offset == 0) {
3602       SGPRIdxReg = CurrentIdxReg;
3603     } else {
3604       SGPRIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
3605       BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), SGPRIdxReg)
3606           .addReg(CurrentIdxReg, RegState::Kill)
3607           .addImm(Offset);
3608     }
3609   } else {
3610     // Move index from VCC into M0
3611     if (Offset == 0) {
3612       BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
3613         .addReg(CurrentIdxReg, RegState::Kill);
3614     } else {
3615       BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0)
3616         .addReg(CurrentIdxReg, RegState::Kill)
3617         .addImm(Offset);
3618     }
3619   }
3620 
3621   // Update EXEC, switch all done bits to 0 and all todo bits to 1.
3622   unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
3623   MachineInstr *InsertPt =
3624     BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_XOR_B32_term
3625                                                   : AMDGPU::S_XOR_B64_term), Exec)
3626       .addReg(Exec)
3627       .addReg(NewExec);
3628 
3629   // XXX - s_xor_b64 sets scc to 1 if the result is nonzero, so can we use
3630   // s_cbranch_scc0?
3631 
3632   // Loop back to V_READFIRSTLANE_B32 if there are still variants to cover.
3633   BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ))
3634     .addMBB(&LoopBB);
3635 
3636   return InsertPt->getIterator();
3637 }
3638 
3639 // This has slightly sub-optimal regalloc when the source vector is killed by
3640 // the read. The register allocator does not understand that the kill is
3641 // per-workitem, so is kept alive for the whole loop so we end up not re-using a
3642 // subregister from it, using 1 more VGPR than necessary. This was saved when
3643 // this was expanded after register allocation.
3644 static MachineBasicBlock::iterator
3645 loadM0FromVGPR(const SIInstrInfo *TII, MachineBasicBlock &MBB, MachineInstr &MI,
3646                unsigned InitResultReg, unsigned PhiReg, int Offset,
3647                bool UseGPRIdxMode, Register &SGPRIdxReg) {
3648   MachineFunction *MF = MBB.getParent();
3649   const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3650   const SIRegisterInfo *TRI = ST.getRegisterInfo();
3651   MachineRegisterInfo &MRI = MF->getRegInfo();
3652   const DebugLoc &DL = MI.getDebugLoc();
3653   MachineBasicBlock::iterator I(&MI);
3654 
3655   const auto *BoolXExecRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
3656   Register DstReg = MI.getOperand(0).getReg();
3657   Register SaveExec = MRI.createVirtualRegister(BoolXExecRC);
3658   Register TmpExec = MRI.createVirtualRegister(BoolXExecRC);
3659   unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
3660   unsigned MovExecOpc = ST.isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64;
3661 
3662   BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), TmpExec);
3663 
3664   // Save the EXEC mask
3665   BuildMI(MBB, I, DL, TII->get(MovExecOpc), SaveExec)
3666     .addReg(Exec);
3667 
3668   MachineBasicBlock *LoopBB;
3669   MachineBasicBlock *RemainderBB;
3670   std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, MBB, false);
3671 
3672   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3673 
3674   auto InsPt = emitLoadM0FromVGPRLoop(TII, MRI, MBB, *LoopBB, DL, *Idx,
3675                                       InitResultReg, DstReg, PhiReg, TmpExec,
3676                                       Offset, UseGPRIdxMode, SGPRIdxReg);
3677 
3678   MachineBasicBlock* LandingPad = MF->CreateMachineBasicBlock();
3679   MachineFunction::iterator MBBI(LoopBB);
3680   ++MBBI;
3681   MF->insert(MBBI, LandingPad);
3682   LoopBB->removeSuccessor(RemainderBB);
3683   LandingPad->addSuccessor(RemainderBB);
3684   LoopBB->addSuccessor(LandingPad);
3685   MachineBasicBlock::iterator First = LandingPad->begin();
3686   BuildMI(*LandingPad, First, DL, TII->get(MovExecOpc), Exec)
3687     .addReg(SaveExec);
3688 
3689   return InsPt;
3690 }
3691 
3692 // Returns subreg index, offset
3693 static std::pair<unsigned, int>
3694 computeIndirectRegAndOffset(const SIRegisterInfo &TRI,
3695                             const TargetRegisterClass *SuperRC,
3696                             unsigned VecReg,
3697                             int Offset) {
3698   int NumElts = TRI.getRegSizeInBits(*SuperRC) / 32;
3699 
3700   // Skip out of bounds offsets, or else we would end up using an undefined
3701   // register.
3702   if (Offset >= NumElts || Offset < 0)
3703     return std::make_pair(AMDGPU::sub0, Offset);
3704 
3705   return std::make_pair(SIRegisterInfo::getSubRegFromChannel(Offset), 0);
3706 }
3707 
3708 static void setM0ToIndexFromSGPR(const SIInstrInfo *TII,
3709                                  MachineRegisterInfo &MRI, MachineInstr &MI,
3710                                  int Offset) {
3711   MachineBasicBlock *MBB = MI.getParent();
3712   const DebugLoc &DL = MI.getDebugLoc();
3713   MachineBasicBlock::iterator I(&MI);
3714 
3715   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3716 
3717   assert(Idx->getReg() != AMDGPU::NoRegister);
3718 
3719   if (Offset == 0) {
3720     BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0).add(*Idx);
3721   } else {
3722     BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0)
3723         .add(*Idx)
3724         .addImm(Offset);
3725   }
3726 }
3727 
3728 static Register getIndirectSGPRIdx(const SIInstrInfo *TII,
3729                                    MachineRegisterInfo &MRI, MachineInstr &MI,
3730                                    int Offset) {
3731   MachineBasicBlock *MBB = MI.getParent();
3732   const DebugLoc &DL = MI.getDebugLoc();
3733   MachineBasicBlock::iterator I(&MI);
3734 
3735   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3736 
3737   if (Offset == 0)
3738     return Idx->getReg();
3739 
3740   Register Tmp = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
3741   BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), Tmp)
3742       .add(*Idx)
3743       .addImm(Offset);
3744   return Tmp;
3745 }
3746 
3747 static MachineBasicBlock *emitIndirectSrc(MachineInstr &MI,
3748                                           MachineBasicBlock &MBB,
3749                                           const GCNSubtarget &ST) {
3750   const SIInstrInfo *TII = ST.getInstrInfo();
3751   const SIRegisterInfo &TRI = TII->getRegisterInfo();
3752   MachineFunction *MF = MBB.getParent();
3753   MachineRegisterInfo &MRI = MF->getRegInfo();
3754 
3755   Register Dst = MI.getOperand(0).getReg();
3756   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3757   Register SrcReg = TII->getNamedOperand(MI, AMDGPU::OpName::src)->getReg();
3758   int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm();
3759 
3760   const TargetRegisterClass *VecRC = MRI.getRegClass(SrcReg);
3761   const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg());
3762 
3763   unsigned SubReg;
3764   std::tie(SubReg, Offset)
3765     = computeIndirectRegAndOffset(TRI, VecRC, SrcReg, Offset);
3766 
3767   const bool UseGPRIdxMode = ST.useVGPRIndexMode();
3768 
3769   // Check for a SGPR index.
3770   if (TII->getRegisterInfo().isSGPRClass(IdxRC)) {
3771     MachineBasicBlock::iterator I(&MI);
3772     const DebugLoc &DL = MI.getDebugLoc();
3773 
3774     if (UseGPRIdxMode) {
3775       // TODO: Look at the uses to avoid the copy. This may require rescheduling
3776       // to avoid interfering with other uses, so probably requires a new
3777       // optimization pass.
3778       Register Idx = getIndirectSGPRIdx(TII, MRI, MI, Offset);
3779 
3780       const MCInstrDesc &GPRIDXDesc =
3781           TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), true);
3782       BuildMI(MBB, I, DL, GPRIDXDesc, Dst)
3783           .addReg(SrcReg)
3784           .addReg(Idx)
3785           .addImm(SubReg);
3786     } else {
3787       setM0ToIndexFromSGPR(TII, MRI, MI, Offset);
3788 
3789       BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst)
3790         .addReg(SrcReg, 0, SubReg)
3791         .addReg(SrcReg, RegState::Implicit);
3792     }
3793 
3794     MI.eraseFromParent();
3795 
3796     return &MBB;
3797   }
3798 
3799   // Control flow needs to be inserted if indexing with a VGPR.
3800   const DebugLoc &DL = MI.getDebugLoc();
3801   MachineBasicBlock::iterator I(&MI);
3802 
3803   Register PhiReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
3804   Register InitReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
3805 
3806   BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), InitReg);
3807 
3808   Register SGPRIdxReg;
3809   auto InsPt = loadM0FromVGPR(TII, MBB, MI, InitReg, PhiReg, Offset,
3810                               UseGPRIdxMode, SGPRIdxReg);
3811 
3812   MachineBasicBlock *LoopBB = InsPt->getParent();
3813 
3814   if (UseGPRIdxMode) {
3815     const MCInstrDesc &GPRIDXDesc =
3816         TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), true);
3817 
3818     BuildMI(*LoopBB, InsPt, DL, GPRIDXDesc, Dst)
3819         .addReg(SrcReg)
3820         .addReg(SGPRIdxReg)
3821         .addImm(SubReg);
3822   } else {
3823     BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst)
3824       .addReg(SrcReg, 0, SubReg)
3825       .addReg(SrcReg, RegState::Implicit);
3826   }
3827 
3828   MI.eraseFromParent();
3829 
3830   return LoopBB;
3831 }
3832 
3833 static MachineBasicBlock *emitIndirectDst(MachineInstr &MI,
3834                                           MachineBasicBlock &MBB,
3835                                           const GCNSubtarget &ST) {
3836   const SIInstrInfo *TII = ST.getInstrInfo();
3837   const SIRegisterInfo &TRI = TII->getRegisterInfo();
3838   MachineFunction *MF = MBB.getParent();
3839   MachineRegisterInfo &MRI = MF->getRegInfo();
3840 
3841   Register Dst = MI.getOperand(0).getReg();
3842   const MachineOperand *SrcVec = TII->getNamedOperand(MI, AMDGPU::OpName::src);
3843   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3844   const MachineOperand *Val = TII->getNamedOperand(MI, AMDGPU::OpName::val);
3845   int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm();
3846   const TargetRegisterClass *VecRC = MRI.getRegClass(SrcVec->getReg());
3847   const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg());
3848 
3849   // This can be an immediate, but will be folded later.
3850   assert(Val->getReg());
3851 
3852   unsigned SubReg;
3853   std::tie(SubReg, Offset) = computeIndirectRegAndOffset(TRI, VecRC,
3854                                                          SrcVec->getReg(),
3855                                                          Offset);
3856   const bool UseGPRIdxMode = ST.useVGPRIndexMode();
3857 
3858   if (Idx->getReg() == AMDGPU::NoRegister) {
3859     MachineBasicBlock::iterator I(&MI);
3860     const DebugLoc &DL = MI.getDebugLoc();
3861 
3862     assert(Offset == 0);
3863 
3864     BuildMI(MBB, I, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dst)
3865         .add(*SrcVec)
3866         .add(*Val)
3867         .addImm(SubReg);
3868 
3869     MI.eraseFromParent();
3870     return &MBB;
3871   }
3872 
3873   // Check for a SGPR index.
3874   if (TII->getRegisterInfo().isSGPRClass(IdxRC)) {
3875     MachineBasicBlock::iterator I(&MI);
3876     const DebugLoc &DL = MI.getDebugLoc();
3877 
3878     if (UseGPRIdxMode) {
3879       Register Idx = getIndirectSGPRIdx(TII, MRI, MI, Offset);
3880 
3881       const MCInstrDesc &GPRIDXDesc =
3882           TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), false);
3883       BuildMI(MBB, I, DL, GPRIDXDesc, Dst)
3884           .addReg(SrcVec->getReg())
3885           .add(*Val)
3886           .addReg(Idx)
3887           .addImm(SubReg);
3888     } else {
3889       setM0ToIndexFromSGPR(TII, MRI, MI, Offset);
3890 
3891       const MCInstrDesc &MovRelDesc = TII->getIndirectRegWriteMovRelPseudo(
3892           TRI.getRegSizeInBits(*VecRC), 32, false);
3893       BuildMI(MBB, I, DL, MovRelDesc, Dst)
3894           .addReg(SrcVec->getReg())
3895           .add(*Val)
3896           .addImm(SubReg);
3897     }
3898     MI.eraseFromParent();
3899     return &MBB;
3900   }
3901 
3902   // Control flow needs to be inserted if indexing with a VGPR.
3903   if (Val->isReg())
3904     MRI.clearKillFlags(Val->getReg());
3905 
3906   const DebugLoc &DL = MI.getDebugLoc();
3907 
3908   Register PhiReg = MRI.createVirtualRegister(VecRC);
3909 
3910   Register SGPRIdxReg;
3911   auto InsPt = loadM0FromVGPR(TII, MBB, MI, SrcVec->getReg(), PhiReg, Offset,
3912                               UseGPRIdxMode, SGPRIdxReg);
3913   MachineBasicBlock *LoopBB = InsPt->getParent();
3914 
3915   if (UseGPRIdxMode) {
3916     const MCInstrDesc &GPRIDXDesc =
3917         TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), false);
3918 
3919     BuildMI(*LoopBB, InsPt, DL, GPRIDXDesc, Dst)
3920         .addReg(PhiReg)
3921         .add(*Val)
3922         .addReg(SGPRIdxReg)
3923         .addImm(AMDGPU::sub0);
3924   } else {
3925     const MCInstrDesc &MovRelDesc = TII->getIndirectRegWriteMovRelPseudo(
3926         TRI.getRegSizeInBits(*VecRC), 32, false);
3927     BuildMI(*LoopBB, InsPt, DL, MovRelDesc, Dst)
3928         .addReg(PhiReg)
3929         .add(*Val)
3930         .addImm(AMDGPU::sub0);
3931   }
3932 
3933   MI.eraseFromParent();
3934   return LoopBB;
3935 }
3936 
3937 MachineBasicBlock *SITargetLowering::EmitInstrWithCustomInserter(
3938   MachineInstr &MI, MachineBasicBlock *BB) const {
3939 
3940   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3941   MachineFunction *MF = BB->getParent();
3942   SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
3943 
3944   switch (MI.getOpcode()) {
3945   case AMDGPU::S_UADDO_PSEUDO:
3946   case AMDGPU::S_USUBO_PSEUDO: {
3947     const DebugLoc &DL = MI.getDebugLoc();
3948     MachineOperand &Dest0 = MI.getOperand(0);
3949     MachineOperand &Dest1 = MI.getOperand(1);
3950     MachineOperand &Src0 = MI.getOperand(2);
3951     MachineOperand &Src1 = MI.getOperand(3);
3952 
3953     unsigned Opc = (MI.getOpcode() == AMDGPU::S_UADDO_PSEUDO)
3954                        ? AMDGPU::S_ADD_I32
3955                        : AMDGPU::S_SUB_I32;
3956     BuildMI(*BB, MI, DL, TII->get(Opc), Dest0.getReg()).add(Src0).add(Src1);
3957 
3958     BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CSELECT_B64), Dest1.getReg())
3959         .addImm(1)
3960         .addImm(0);
3961 
3962     MI.eraseFromParent();
3963     return BB;
3964   }
3965   case AMDGPU::S_ADD_U64_PSEUDO:
3966   case AMDGPU::S_SUB_U64_PSEUDO: {
3967     MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
3968     const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3969     const SIRegisterInfo *TRI = ST.getRegisterInfo();
3970     const TargetRegisterClass *BoolRC = TRI->getBoolRC();
3971     const DebugLoc &DL = MI.getDebugLoc();
3972 
3973     MachineOperand &Dest = MI.getOperand(0);
3974     MachineOperand &Src0 = MI.getOperand(1);
3975     MachineOperand &Src1 = MI.getOperand(2);
3976 
3977     Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
3978     Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
3979 
3980     MachineOperand Src0Sub0 = TII->buildExtractSubRegOrImm(
3981         MI, MRI, Src0, BoolRC, AMDGPU::sub0, &AMDGPU::SReg_32RegClass);
3982     MachineOperand Src0Sub1 = TII->buildExtractSubRegOrImm(
3983         MI, MRI, Src0, BoolRC, AMDGPU::sub1, &AMDGPU::SReg_32RegClass);
3984 
3985     MachineOperand Src1Sub0 = TII->buildExtractSubRegOrImm(
3986         MI, MRI, Src1, BoolRC, AMDGPU::sub0, &AMDGPU::SReg_32RegClass);
3987     MachineOperand Src1Sub1 = TII->buildExtractSubRegOrImm(
3988         MI, MRI, Src1, BoolRC, AMDGPU::sub1, &AMDGPU::SReg_32RegClass);
3989 
3990     bool IsAdd = (MI.getOpcode() == AMDGPU::S_ADD_U64_PSEUDO);
3991 
3992     unsigned LoOpc = IsAdd ? AMDGPU::S_ADD_U32 : AMDGPU::S_SUB_U32;
3993     unsigned HiOpc = IsAdd ? AMDGPU::S_ADDC_U32 : AMDGPU::S_SUBB_U32;
3994     BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0).add(Src0Sub0).add(Src1Sub0);
3995     BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1).add(Src0Sub1).add(Src1Sub1);
3996     BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg())
3997         .addReg(DestSub0)
3998         .addImm(AMDGPU::sub0)
3999         .addReg(DestSub1)
4000         .addImm(AMDGPU::sub1);
4001     MI.eraseFromParent();
4002     return BB;
4003   }
4004   case AMDGPU::V_ADD_U64_PSEUDO:
4005   case AMDGPU::V_SUB_U64_PSEUDO: {
4006     MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
4007     const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
4008     const SIRegisterInfo *TRI = ST.getRegisterInfo();
4009     const DebugLoc &DL = MI.getDebugLoc();
4010 
4011     bool IsAdd = (MI.getOpcode() == AMDGPU::V_ADD_U64_PSEUDO);
4012 
4013     MachineOperand &Dest = MI.getOperand(0);
4014     MachineOperand &Src0 = MI.getOperand(1);
4015     MachineOperand &Src1 = MI.getOperand(2);
4016 
4017     if (IsAdd && ST.hasLshlAddB64()) {
4018       auto Add = BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_LSHL_ADD_U64_e64),
4019                          Dest.getReg())
4020                      .add(Src0)
4021                      .addImm(0)
4022                      .add(Src1);
4023       TII->legalizeOperands(*Add);
4024       MI.eraseFromParent();
4025       return BB;
4026     }
4027 
4028     const auto *CarryRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
4029 
4030     Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
4031     Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
4032 
4033     Register CarryReg = MRI.createVirtualRegister(CarryRC);
4034     Register DeadCarryReg = MRI.createVirtualRegister(CarryRC);
4035 
4036     const TargetRegisterClass *Src0RC = Src0.isReg()
4037                                             ? MRI.getRegClass(Src0.getReg())
4038                                             : &AMDGPU::VReg_64RegClass;
4039     const TargetRegisterClass *Src1RC = Src1.isReg()
4040                                             ? MRI.getRegClass(Src1.getReg())
4041                                             : &AMDGPU::VReg_64RegClass;
4042 
4043     const TargetRegisterClass *Src0SubRC =
4044         TRI->getSubRegClass(Src0RC, AMDGPU::sub0);
4045     const TargetRegisterClass *Src1SubRC =
4046         TRI->getSubRegClass(Src1RC, AMDGPU::sub1);
4047 
4048     MachineOperand SrcReg0Sub0 = TII->buildExtractSubRegOrImm(
4049         MI, MRI, Src0, Src0RC, AMDGPU::sub0, Src0SubRC);
4050     MachineOperand SrcReg1Sub0 = TII->buildExtractSubRegOrImm(
4051         MI, MRI, Src1, Src1RC, AMDGPU::sub0, Src1SubRC);
4052 
4053     MachineOperand SrcReg0Sub1 = TII->buildExtractSubRegOrImm(
4054         MI, MRI, Src0, Src0RC, AMDGPU::sub1, Src0SubRC);
4055     MachineOperand SrcReg1Sub1 = TII->buildExtractSubRegOrImm(
4056         MI, MRI, Src1, Src1RC, AMDGPU::sub1, Src1SubRC);
4057 
4058     unsigned LoOpc = IsAdd ? AMDGPU::V_ADD_CO_U32_e64 : AMDGPU::V_SUB_CO_U32_e64;
4059     MachineInstr *LoHalf = BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0)
4060                                .addReg(CarryReg, RegState::Define)
4061                                .add(SrcReg0Sub0)
4062                                .add(SrcReg1Sub0)
4063                                .addImm(0); // clamp bit
4064 
4065     unsigned HiOpc = IsAdd ? AMDGPU::V_ADDC_U32_e64 : AMDGPU::V_SUBB_U32_e64;
4066     MachineInstr *HiHalf =
4067         BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1)
4068             .addReg(DeadCarryReg, RegState::Define | RegState::Dead)
4069             .add(SrcReg0Sub1)
4070             .add(SrcReg1Sub1)
4071             .addReg(CarryReg, RegState::Kill)
4072             .addImm(0); // clamp bit
4073 
4074     BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg())
4075         .addReg(DestSub0)
4076         .addImm(AMDGPU::sub0)
4077         .addReg(DestSub1)
4078         .addImm(AMDGPU::sub1);
4079     TII->legalizeOperands(*LoHalf);
4080     TII->legalizeOperands(*HiHalf);
4081     MI.eraseFromParent();
4082     return BB;
4083   }
4084   case AMDGPU::S_ADD_CO_PSEUDO:
4085   case AMDGPU::S_SUB_CO_PSEUDO: {
4086     // This pseudo has a chance to be selected
4087     // only from uniform add/subcarry node. All the VGPR operands
4088     // therefore assumed to be splat vectors.
4089     MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
4090     const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
4091     const SIRegisterInfo *TRI = ST.getRegisterInfo();
4092     MachineBasicBlock::iterator MII = MI;
4093     const DebugLoc &DL = MI.getDebugLoc();
4094     MachineOperand &Dest = MI.getOperand(0);
4095     MachineOperand &CarryDest = MI.getOperand(1);
4096     MachineOperand &Src0 = MI.getOperand(2);
4097     MachineOperand &Src1 = MI.getOperand(3);
4098     MachineOperand &Src2 = MI.getOperand(4);
4099     unsigned Opc = (MI.getOpcode() == AMDGPU::S_ADD_CO_PSEUDO)
4100                        ? AMDGPU::S_ADDC_U32
4101                        : AMDGPU::S_SUBB_U32;
4102     if (Src0.isReg() && TRI->isVectorRegister(MRI, Src0.getReg())) {
4103       Register RegOp0 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
4104       BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp0)
4105           .addReg(Src0.getReg());
4106       Src0.setReg(RegOp0);
4107     }
4108     if (Src1.isReg() && TRI->isVectorRegister(MRI, Src1.getReg())) {
4109       Register RegOp1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
4110       BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp1)
4111           .addReg(Src1.getReg());
4112       Src1.setReg(RegOp1);
4113     }
4114     Register RegOp2 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
4115     if (TRI->isVectorRegister(MRI, Src2.getReg())) {
4116       BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp2)
4117           .addReg(Src2.getReg());
4118       Src2.setReg(RegOp2);
4119     }
4120 
4121     const TargetRegisterClass *Src2RC = MRI.getRegClass(Src2.getReg());
4122     unsigned WaveSize = TRI->getRegSizeInBits(*Src2RC);
4123     assert(WaveSize == 64 || WaveSize == 32);
4124 
4125     if (WaveSize == 64) {
4126       if (ST.hasScalarCompareEq64()) {
4127         BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMP_LG_U64))
4128             .addReg(Src2.getReg())
4129             .addImm(0);
4130       } else {
4131         const TargetRegisterClass *SubRC =
4132             TRI->getSubRegClass(Src2RC, AMDGPU::sub0);
4133         MachineOperand Src2Sub0 = TII->buildExtractSubRegOrImm(
4134             MII, MRI, Src2, Src2RC, AMDGPU::sub0, SubRC);
4135         MachineOperand Src2Sub1 = TII->buildExtractSubRegOrImm(
4136             MII, MRI, Src2, Src2RC, AMDGPU::sub1, SubRC);
4137         Register Src2_32 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
4138 
4139         BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_OR_B32), Src2_32)
4140             .add(Src2Sub0)
4141             .add(Src2Sub1);
4142 
4143         BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMP_LG_U32))
4144             .addReg(Src2_32, RegState::Kill)
4145             .addImm(0);
4146       }
4147     } else {
4148       BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMPK_LG_U32))
4149           .addReg(Src2.getReg())
4150           .addImm(0);
4151     }
4152 
4153     BuildMI(*BB, MII, DL, TII->get(Opc), Dest.getReg()).add(Src0).add(Src1);
4154 
4155     unsigned SelOpc =
4156         (WaveSize == 64) ? AMDGPU::S_CSELECT_B64 : AMDGPU::S_CSELECT_B32;
4157 
4158     BuildMI(*BB, MII, DL, TII->get(SelOpc), CarryDest.getReg())
4159         .addImm(-1)
4160         .addImm(0);
4161 
4162     MI.eraseFromParent();
4163     return BB;
4164   }
4165   case AMDGPU::SI_INIT_M0: {
4166     BuildMI(*BB, MI.getIterator(), MI.getDebugLoc(),
4167             TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
4168         .add(MI.getOperand(0));
4169     MI.eraseFromParent();
4170     return BB;
4171   }
4172   case AMDGPU::GET_GROUPSTATICSIZE: {
4173     assert(getTargetMachine().getTargetTriple().getOS() == Triple::AMDHSA ||
4174            getTargetMachine().getTargetTriple().getOS() == Triple::AMDPAL);
4175     DebugLoc DL = MI.getDebugLoc();
4176     BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_MOV_B32))
4177         .add(MI.getOperand(0))
4178         .addImm(MFI->getLDSSize());
4179     MI.eraseFromParent();
4180     return BB;
4181   }
4182   case AMDGPU::SI_INDIRECT_SRC_V1:
4183   case AMDGPU::SI_INDIRECT_SRC_V2:
4184   case AMDGPU::SI_INDIRECT_SRC_V4:
4185   case AMDGPU::SI_INDIRECT_SRC_V8:
4186   case AMDGPU::SI_INDIRECT_SRC_V16:
4187   case AMDGPU::SI_INDIRECT_SRC_V32:
4188     return emitIndirectSrc(MI, *BB, *getSubtarget());
4189   case AMDGPU::SI_INDIRECT_DST_V1:
4190   case AMDGPU::SI_INDIRECT_DST_V2:
4191   case AMDGPU::SI_INDIRECT_DST_V4:
4192   case AMDGPU::SI_INDIRECT_DST_V8:
4193   case AMDGPU::SI_INDIRECT_DST_V16:
4194   case AMDGPU::SI_INDIRECT_DST_V32:
4195     return emitIndirectDst(MI, *BB, *getSubtarget());
4196   case AMDGPU::SI_KILL_F32_COND_IMM_PSEUDO:
4197   case AMDGPU::SI_KILL_I1_PSEUDO:
4198     return splitKillBlock(MI, BB);
4199   case AMDGPU::V_CNDMASK_B64_PSEUDO: {
4200     MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
4201     const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
4202     const SIRegisterInfo *TRI = ST.getRegisterInfo();
4203 
4204     Register Dst = MI.getOperand(0).getReg();
4205     Register Src0 = MI.getOperand(1).getReg();
4206     Register Src1 = MI.getOperand(2).getReg();
4207     const DebugLoc &DL = MI.getDebugLoc();
4208     Register SrcCond = MI.getOperand(3).getReg();
4209 
4210     Register DstLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
4211     Register DstHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
4212     const auto *CondRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
4213     Register SrcCondCopy = MRI.createVirtualRegister(CondRC);
4214 
4215     BuildMI(*BB, MI, DL, TII->get(AMDGPU::COPY), SrcCondCopy)
4216       .addReg(SrcCond);
4217     BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstLo)
4218       .addImm(0)
4219       .addReg(Src0, 0, AMDGPU::sub0)
4220       .addImm(0)
4221       .addReg(Src1, 0, AMDGPU::sub0)
4222       .addReg(SrcCondCopy);
4223     BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstHi)
4224       .addImm(0)
4225       .addReg(Src0, 0, AMDGPU::sub1)
4226       .addImm(0)
4227       .addReg(Src1, 0, AMDGPU::sub1)
4228       .addReg(SrcCondCopy);
4229 
4230     BuildMI(*BB, MI, DL, TII->get(AMDGPU::REG_SEQUENCE), Dst)
4231       .addReg(DstLo)
4232       .addImm(AMDGPU::sub0)
4233       .addReg(DstHi)
4234       .addImm(AMDGPU::sub1);
4235     MI.eraseFromParent();
4236     return BB;
4237   }
4238   case AMDGPU::SI_BR_UNDEF: {
4239     const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
4240     const DebugLoc &DL = MI.getDebugLoc();
4241     MachineInstr *Br = BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CBRANCH_SCC1))
4242                            .add(MI.getOperand(0));
4243     Br->getOperand(1).setIsUndef(true); // read undef SCC
4244     MI.eraseFromParent();
4245     return BB;
4246   }
4247   case AMDGPU::ADJCALLSTACKUP:
4248   case AMDGPU::ADJCALLSTACKDOWN: {
4249     const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>();
4250     MachineInstrBuilder MIB(*MF, &MI);
4251     MIB.addReg(Info->getStackPtrOffsetReg(), RegState::ImplicitDefine)
4252        .addReg(Info->getStackPtrOffsetReg(), RegState::Implicit);
4253     return BB;
4254   }
4255   case AMDGPU::SI_CALL_ISEL: {
4256     const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
4257     const DebugLoc &DL = MI.getDebugLoc();
4258 
4259     unsigned ReturnAddrReg = TII->getRegisterInfo().getReturnAddressReg(*MF);
4260 
4261     MachineInstrBuilder MIB;
4262     MIB = BuildMI(*BB, MI, DL, TII->get(AMDGPU::SI_CALL), ReturnAddrReg);
4263 
4264     for (const MachineOperand &MO : MI.operands())
4265       MIB.add(MO);
4266 
4267     MIB.cloneMemRefs(MI);
4268     MI.eraseFromParent();
4269     return BB;
4270   }
4271   case AMDGPU::V_ADD_CO_U32_e32:
4272   case AMDGPU::V_SUB_CO_U32_e32:
4273   case AMDGPU::V_SUBREV_CO_U32_e32: {
4274     // TODO: Define distinct V_*_I32_Pseudo instructions instead.
4275     const DebugLoc &DL = MI.getDebugLoc();
4276     unsigned Opc = MI.getOpcode();
4277 
4278     bool NeedClampOperand = false;
4279     if (TII->pseudoToMCOpcode(Opc) == -1) {
4280       Opc = AMDGPU::getVOPe64(Opc);
4281       NeedClampOperand = true;
4282     }
4283 
4284     auto I = BuildMI(*BB, MI, DL, TII->get(Opc), MI.getOperand(0).getReg());
4285     if (TII->isVOP3(*I)) {
4286       const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
4287       const SIRegisterInfo *TRI = ST.getRegisterInfo();
4288       I.addReg(TRI->getVCC(), RegState::Define);
4289     }
4290     I.add(MI.getOperand(1))
4291      .add(MI.getOperand(2));
4292     if (NeedClampOperand)
4293       I.addImm(0); // clamp bit for e64 encoding
4294 
4295     TII->legalizeOperands(*I);
4296 
4297     MI.eraseFromParent();
4298     return BB;
4299   }
4300   case AMDGPU::V_ADDC_U32_e32:
4301   case AMDGPU::V_SUBB_U32_e32:
4302   case AMDGPU::V_SUBBREV_U32_e32:
4303     // These instructions have an implicit use of vcc which counts towards the
4304     // constant bus limit.
4305     TII->legalizeOperands(MI);
4306     return BB;
4307   case AMDGPU::DS_GWS_INIT:
4308   case AMDGPU::DS_GWS_SEMA_BR:
4309   case AMDGPU::DS_GWS_BARRIER:
4310     TII->enforceOperandRCAlignment(MI, AMDGPU::OpName::data0);
4311     LLVM_FALLTHROUGH;
4312   case AMDGPU::DS_GWS_SEMA_V:
4313   case AMDGPU::DS_GWS_SEMA_P:
4314   case AMDGPU::DS_GWS_SEMA_RELEASE_ALL:
4315     // A s_waitcnt 0 is required to be the instruction immediately following.
4316     if (getSubtarget()->hasGWSAutoReplay()) {
4317       bundleInstWithWaitcnt(MI);
4318       return BB;
4319     }
4320 
4321     return emitGWSMemViolTestLoop(MI, BB);
4322   case AMDGPU::S_SETREG_B32: {
4323     // Try to optimize cases that only set the denormal mode or rounding mode.
4324     //
4325     // If the s_setreg_b32 fully sets all of the bits in the rounding mode or
4326     // denormal mode to a constant, we can use s_round_mode or s_denorm_mode
4327     // instead.
4328     //
4329     // FIXME: This could be predicates on the immediate, but tablegen doesn't
4330     // allow you to have a no side effect instruction in the output of a
4331     // sideeffecting pattern.
4332     unsigned ID, Offset, Width;
4333     AMDGPU::Hwreg::decodeHwreg(MI.getOperand(1).getImm(), ID, Offset, Width);
4334     if (ID != AMDGPU::Hwreg::ID_MODE)
4335       return BB;
4336 
4337     const unsigned WidthMask = maskTrailingOnes<unsigned>(Width);
4338     const unsigned SetMask = WidthMask << Offset;
4339 
4340     if (getSubtarget()->hasDenormModeInst()) {
4341       unsigned SetDenormOp = 0;
4342       unsigned SetRoundOp = 0;
4343 
4344       // The dedicated instructions can only set the whole denorm or round mode
4345       // at once, not a subset of bits in either.
4346       if (SetMask ==
4347           (AMDGPU::Hwreg::FP_ROUND_MASK | AMDGPU::Hwreg::FP_DENORM_MASK)) {
4348         // If this fully sets both the round and denorm mode, emit the two
4349         // dedicated instructions for these.
4350         SetRoundOp = AMDGPU::S_ROUND_MODE;
4351         SetDenormOp = AMDGPU::S_DENORM_MODE;
4352       } else if (SetMask == AMDGPU::Hwreg::FP_ROUND_MASK) {
4353         SetRoundOp = AMDGPU::S_ROUND_MODE;
4354       } else if (SetMask == AMDGPU::Hwreg::FP_DENORM_MASK) {
4355         SetDenormOp = AMDGPU::S_DENORM_MODE;
4356       }
4357 
4358       if (SetRoundOp || SetDenormOp) {
4359         MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
4360         MachineInstr *Def = MRI.getVRegDef(MI.getOperand(0).getReg());
4361         if (Def && Def->isMoveImmediate() && Def->getOperand(1).isImm()) {
4362           unsigned ImmVal = Def->getOperand(1).getImm();
4363           if (SetRoundOp) {
4364             BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(SetRoundOp))
4365                 .addImm(ImmVal & 0xf);
4366 
4367             // If we also have the denorm mode, get just the denorm mode bits.
4368             ImmVal >>= 4;
4369           }
4370 
4371           if (SetDenormOp) {
4372             BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(SetDenormOp))
4373                 .addImm(ImmVal & 0xf);
4374           }
4375 
4376           MI.eraseFromParent();
4377           return BB;
4378         }
4379       }
4380     }
4381 
4382     // If only FP bits are touched, used the no side effects pseudo.
4383     if ((SetMask & (AMDGPU::Hwreg::FP_ROUND_MASK |
4384                     AMDGPU::Hwreg::FP_DENORM_MASK)) == SetMask)
4385       MI.setDesc(TII->get(AMDGPU::S_SETREG_B32_mode));
4386 
4387     return BB;
4388   }
4389   default:
4390     return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB);
4391   }
4392 }
4393 
4394 bool SITargetLowering::hasBitPreservingFPLogic(EVT VT) const {
4395   return isTypeLegal(VT.getScalarType());
4396 }
4397 
4398 bool SITargetLowering::hasAtomicFaddRtnForTy(SDValue &Op) const {
4399   switch (Op.getValue(0).getSimpleValueType().SimpleTy) {
4400   case MVT::f32:
4401     return Subtarget->hasAtomicFaddRtnInsts();
4402   case MVT::v2f16:
4403   case MVT::f64:
4404     return Subtarget->hasGFX90AInsts();
4405   default:
4406     return false;
4407   }
4408 }
4409 
4410 bool SITargetLowering::enableAggressiveFMAFusion(EVT VT) const {
4411   // This currently forces unfolding various combinations of fsub into fma with
4412   // free fneg'd operands. As long as we have fast FMA (controlled by
4413   // isFMAFasterThanFMulAndFAdd), we should perform these.
4414 
4415   // When fma is quarter rate, for f64 where add / sub are at best half rate,
4416   // most of these combines appear to be cycle neutral but save on instruction
4417   // count / code size.
4418   return true;
4419 }
4420 
4421 bool SITargetLowering::enableAggressiveFMAFusion(LLT Ty) const { return true; }
4422 
4423 EVT SITargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &Ctx,
4424                                          EVT VT) const {
4425   if (!VT.isVector()) {
4426     return MVT::i1;
4427   }
4428   return EVT::getVectorVT(Ctx, MVT::i1, VT.getVectorNumElements());
4429 }
4430 
4431 MVT SITargetLowering::getScalarShiftAmountTy(const DataLayout &, EVT VT) const {
4432   // TODO: Should i16 be used always if legal? For now it would force VALU
4433   // shifts.
4434   return (VT == MVT::i16) ? MVT::i16 : MVT::i32;
4435 }
4436 
4437 LLT SITargetLowering::getPreferredShiftAmountTy(LLT Ty) const {
4438   return (Ty.getScalarSizeInBits() <= 16 && Subtarget->has16BitInsts())
4439              ? Ty.changeElementSize(16)
4440              : Ty.changeElementSize(32);
4441 }
4442 
4443 // Answering this is somewhat tricky and depends on the specific device which
4444 // have different rates for fma or all f64 operations.
4445 //
4446 // v_fma_f64 and v_mul_f64 always take the same number of cycles as each other
4447 // regardless of which device (although the number of cycles differs between
4448 // devices), so it is always profitable for f64.
4449 //
4450 // v_fma_f32 takes 4 or 16 cycles depending on the device, so it is profitable
4451 // only on full rate devices. Normally, we should prefer selecting v_mad_f32
4452 // which we can always do even without fused FP ops since it returns the same
4453 // result as the separate operations and since it is always full
4454 // rate. Therefore, we lie and report that it is not faster for f32. v_mad_f32
4455 // however does not support denormals, so we do report fma as faster if we have
4456 // a fast fma device and require denormals.
4457 //
4458 bool SITargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
4459                                                   EVT VT) const {
4460   VT = VT.getScalarType();
4461 
4462   switch (VT.getSimpleVT().SimpleTy) {
4463   case MVT::f32: {
4464     // If mad is not available this depends only on if f32 fma is full rate.
4465     if (!Subtarget->hasMadMacF32Insts())
4466       return Subtarget->hasFastFMAF32();
4467 
4468     // Otherwise f32 mad is always full rate and returns the same result as
4469     // the separate operations so should be preferred over fma.
4470     // However does not support denormals.
4471     if (hasFP32Denormals(MF))
4472       return Subtarget->hasFastFMAF32() || Subtarget->hasDLInsts();
4473 
4474     // If the subtarget has v_fmac_f32, that's just as good as v_mac_f32.
4475     return Subtarget->hasFastFMAF32() && Subtarget->hasDLInsts();
4476   }
4477   case MVT::f64:
4478     return true;
4479   case MVT::f16:
4480     return Subtarget->has16BitInsts() && hasFP64FP16Denormals(MF);
4481   default:
4482     break;
4483   }
4484 
4485   return false;
4486 }
4487 
4488 bool SITargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
4489                                                   LLT Ty) const {
4490   switch (Ty.getScalarSizeInBits()) {
4491   case 16:
4492     return isFMAFasterThanFMulAndFAdd(MF, MVT::f16);
4493   case 32:
4494     return isFMAFasterThanFMulAndFAdd(MF, MVT::f32);
4495   case 64:
4496     return isFMAFasterThanFMulAndFAdd(MF, MVT::f64);
4497   default:
4498     break;
4499   }
4500 
4501   return false;
4502 }
4503 
4504 bool SITargetLowering::isFMADLegal(const MachineInstr &MI, LLT Ty) const {
4505   if (!Ty.isScalar())
4506     return false;
4507 
4508   if (Ty.getScalarSizeInBits() == 16)
4509     return Subtarget->hasMadF16() && !hasFP64FP16Denormals(*MI.getMF());
4510   if (Ty.getScalarSizeInBits() == 32)
4511     return Subtarget->hasMadMacF32Insts() && !hasFP32Denormals(*MI.getMF());
4512 
4513   return false;
4514 }
4515 
4516 bool SITargetLowering::isFMADLegal(const SelectionDAG &DAG,
4517                                    const SDNode *N) const {
4518   // TODO: Check future ftz flag
4519   // v_mad_f32/v_mac_f32 do not support denormals.
4520   EVT VT = N->getValueType(0);
4521   if (VT == MVT::f32)
4522     return Subtarget->hasMadMacF32Insts() &&
4523            !hasFP32Denormals(DAG.getMachineFunction());
4524   if (VT == MVT::f16) {
4525     return Subtarget->hasMadF16() &&
4526            !hasFP64FP16Denormals(DAG.getMachineFunction());
4527   }
4528 
4529   return false;
4530 }
4531 
4532 //===----------------------------------------------------------------------===//
4533 // Custom DAG Lowering Operations
4534 //===----------------------------------------------------------------------===//
4535 
4536 // Work around LegalizeDAG doing the wrong thing and fully scalarizing if the
4537 // wider vector type is legal.
4538 SDValue SITargetLowering::splitUnaryVectorOp(SDValue Op,
4539                                              SelectionDAG &DAG) const {
4540   unsigned Opc = Op.getOpcode();
4541   EVT VT = Op.getValueType();
4542   assert(VT == MVT::v4f16 || VT == MVT::v4i16);
4543 
4544   SDValue Lo, Hi;
4545   std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0);
4546 
4547   SDLoc SL(Op);
4548   SDValue OpLo = DAG.getNode(Opc, SL, Lo.getValueType(), Lo,
4549                              Op->getFlags());
4550   SDValue OpHi = DAG.getNode(Opc, SL, Hi.getValueType(), Hi,
4551                              Op->getFlags());
4552 
4553   return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
4554 }
4555 
4556 // Work around LegalizeDAG doing the wrong thing and fully scalarizing if the
4557 // wider vector type is legal.
4558 SDValue SITargetLowering::splitBinaryVectorOp(SDValue Op,
4559                                               SelectionDAG &DAG) const {
4560   unsigned Opc = Op.getOpcode();
4561   EVT VT = Op.getValueType();
4562   assert(VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4f32 ||
4563          VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v16i16 ||
4564          VT == MVT::v16f16 || VT == MVT::v8f32 || VT == MVT::v16f32 ||
4565          VT == MVT::v32f32);
4566 
4567   SDValue Lo0, Hi0;
4568   std::tie(Lo0, Hi0) = DAG.SplitVectorOperand(Op.getNode(), 0);
4569   SDValue Lo1, Hi1;
4570   std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1);
4571 
4572   SDLoc SL(Op);
4573 
4574   SDValue OpLo = DAG.getNode(Opc, SL, Lo0.getValueType(), Lo0, Lo1,
4575                              Op->getFlags());
4576   SDValue OpHi = DAG.getNode(Opc, SL, Hi0.getValueType(), Hi0, Hi1,
4577                              Op->getFlags());
4578 
4579   return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
4580 }
4581 
4582 SDValue SITargetLowering::splitTernaryVectorOp(SDValue Op,
4583                                               SelectionDAG &DAG) const {
4584   unsigned Opc = Op.getOpcode();
4585   EVT VT = Op.getValueType();
4586   assert(VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v8i16 ||
4587          VT == MVT::v8f16 || VT == MVT::v4f32 || VT == MVT::v16i16 ||
4588          VT == MVT::v16f16 || VT == MVT::v8f32 || VT == MVT::v16f32 ||
4589          VT == MVT::v32f32);
4590 
4591   SDValue Lo0, Hi0;
4592   SDValue Op0 = Op.getOperand(0);
4593   std::tie(Lo0, Hi0) = Op0.getValueType().isVector()
4594                          ? DAG.SplitVectorOperand(Op.getNode(), 0)
4595                          : std::make_pair(Op0, Op0);
4596   SDValue Lo1, Hi1;
4597   std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1);
4598   SDValue Lo2, Hi2;
4599   std::tie(Lo2, Hi2) = DAG.SplitVectorOperand(Op.getNode(), 2);
4600 
4601   SDLoc SL(Op);
4602   auto ResVT = DAG.GetSplitDestVTs(VT);
4603 
4604   SDValue OpLo = DAG.getNode(Opc, SL, ResVT.first, Lo0, Lo1, Lo2,
4605                              Op->getFlags());
4606   SDValue OpHi = DAG.getNode(Opc, SL, ResVT.second, Hi0, Hi1, Hi2,
4607                              Op->getFlags());
4608 
4609   return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
4610 }
4611 
4612 
4613 SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
4614   switch (Op.getOpcode()) {
4615   default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
4616   case ISD::BRCOND: return LowerBRCOND(Op, DAG);
4617   case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
4618   case ISD::LOAD: {
4619     SDValue Result = LowerLOAD(Op, DAG);
4620     assert((!Result.getNode() ||
4621             Result.getNode()->getNumValues() == 2) &&
4622            "Load should return a value and a chain");
4623     return Result;
4624   }
4625 
4626   case ISD::FSIN:
4627   case ISD::FCOS:
4628     return LowerTrig(Op, DAG);
4629   case ISD::SELECT: return LowerSELECT(Op, DAG);
4630   case ISD::FDIV: return LowerFDIV(Op, DAG);
4631   case ISD::ATOMIC_CMP_SWAP: return LowerATOMIC_CMP_SWAP(Op, DAG);
4632   case ISD::STORE: return LowerSTORE(Op, DAG);
4633   case ISD::GlobalAddress: {
4634     MachineFunction &MF = DAG.getMachineFunction();
4635     SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
4636     return LowerGlobalAddress(MFI, Op, DAG);
4637   }
4638   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
4639   case ISD::INTRINSIC_W_CHAIN: return LowerINTRINSIC_W_CHAIN(Op, DAG);
4640   case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG);
4641   case ISD::ADDRSPACECAST: return lowerADDRSPACECAST(Op, DAG);
4642   case ISD::INSERT_SUBVECTOR:
4643     return lowerINSERT_SUBVECTOR(Op, DAG);
4644   case ISD::INSERT_VECTOR_ELT:
4645     return lowerINSERT_VECTOR_ELT(Op, DAG);
4646   case ISD::EXTRACT_VECTOR_ELT:
4647     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
4648   case ISD::VECTOR_SHUFFLE:
4649     return lowerVECTOR_SHUFFLE(Op, DAG);
4650   case ISD::SCALAR_TO_VECTOR:
4651     return lowerSCALAR_TO_VECTOR(Op, DAG);
4652   case ISD::BUILD_VECTOR:
4653     return lowerBUILD_VECTOR(Op, DAG);
4654   case ISD::FP_ROUND:
4655     return lowerFP_ROUND(Op, DAG);
4656   case ISD::FPTRUNC_ROUND: {
4657     unsigned Opc;
4658     SDLoc DL(Op);
4659 
4660     if (Op.getOperand(0)->getValueType(0) != MVT::f32)
4661       return SDValue();
4662 
4663     // Get the rounding mode from the last operand
4664     int RoundMode = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4665     if (RoundMode == (int)RoundingMode::TowardPositive)
4666       Opc = AMDGPUISD::FPTRUNC_ROUND_UPWARD;
4667     else if (RoundMode == (int)RoundingMode::TowardNegative)
4668       Opc = AMDGPUISD::FPTRUNC_ROUND_DOWNWARD;
4669     else
4670       return SDValue();
4671 
4672     return DAG.getNode(Opc, DL, Op.getNode()->getVTList(), Op->getOperand(0));
4673   }
4674   case ISD::TRAP:
4675     return lowerTRAP(Op, DAG);
4676   case ISD::DEBUGTRAP:
4677     return lowerDEBUGTRAP(Op, DAG);
4678   case ISD::FABS:
4679   case ISD::FNEG:
4680   case ISD::FCANONICALIZE:
4681   case ISD::BSWAP:
4682     return splitUnaryVectorOp(Op, DAG);
4683   case ISD::FMINNUM:
4684   case ISD::FMAXNUM:
4685     return lowerFMINNUM_FMAXNUM(Op, DAG);
4686   case ISD::FMA:
4687     return splitTernaryVectorOp(Op, DAG);
4688   case ISD::FP_TO_SINT:
4689   case ISD::FP_TO_UINT:
4690     return LowerFP_TO_INT(Op, DAG);
4691   case ISD::SHL:
4692   case ISD::SRA:
4693   case ISD::SRL:
4694   case ISD::ADD:
4695   case ISD::SUB:
4696   case ISD::MUL:
4697   case ISD::SMIN:
4698   case ISD::SMAX:
4699   case ISD::UMIN:
4700   case ISD::UMAX:
4701   case ISD::FADD:
4702   case ISD::FMUL:
4703   case ISD::FMINNUM_IEEE:
4704   case ISD::FMAXNUM_IEEE:
4705   case ISD::UADDSAT:
4706   case ISD::USUBSAT:
4707   case ISD::SADDSAT:
4708   case ISD::SSUBSAT:
4709     return splitBinaryVectorOp(Op, DAG);
4710   case ISD::SMULO:
4711   case ISD::UMULO:
4712     return lowerXMULO(Op, DAG);
4713   case ISD::SMUL_LOHI:
4714   case ISD::UMUL_LOHI:
4715     return lowerXMUL_LOHI(Op, DAG);
4716   case ISD::DYNAMIC_STACKALLOC:
4717     return LowerDYNAMIC_STACKALLOC(Op, DAG);
4718   }
4719   return SDValue();
4720 }
4721 
4722 // Used for D16: Casts the result of an instruction into the right vector,
4723 // packs values if loads return unpacked values.
4724 static SDValue adjustLoadValueTypeImpl(SDValue Result, EVT LoadVT,
4725                                        const SDLoc &DL,
4726                                        SelectionDAG &DAG, bool Unpacked) {
4727   if (!LoadVT.isVector())
4728     return Result;
4729 
4730   // Cast back to the original packed type or to a larger type that is a
4731   // multiple of 32 bit for D16. Widening the return type is a required for
4732   // legalization.
4733   EVT FittingLoadVT = LoadVT;
4734   if ((LoadVT.getVectorNumElements() % 2) == 1) {
4735     FittingLoadVT =
4736         EVT::getVectorVT(*DAG.getContext(), LoadVT.getVectorElementType(),
4737                          LoadVT.getVectorNumElements() + 1);
4738   }
4739 
4740   if (Unpacked) { // From v2i32/v4i32 back to v2f16/v4f16.
4741     // Truncate to v2i16/v4i16.
4742     EVT IntLoadVT = FittingLoadVT.changeTypeToInteger();
4743 
4744     // Workaround legalizer not scalarizing truncate after vector op
4745     // legalization but not creating intermediate vector trunc.
4746     SmallVector<SDValue, 4> Elts;
4747     DAG.ExtractVectorElements(Result, Elts);
4748     for (SDValue &Elt : Elts)
4749       Elt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Elt);
4750 
4751     // Pad illegal v1i16/v3fi6 to v4i16
4752     if ((LoadVT.getVectorNumElements() % 2) == 1)
4753       Elts.push_back(DAG.getUNDEF(MVT::i16));
4754 
4755     Result = DAG.getBuildVector(IntLoadVT, DL, Elts);
4756 
4757     // Bitcast to original type (v2f16/v4f16).
4758     return DAG.getNode(ISD::BITCAST, DL, FittingLoadVT, Result);
4759   }
4760 
4761   // Cast back to the original packed type.
4762   return DAG.getNode(ISD::BITCAST, DL, FittingLoadVT, Result);
4763 }
4764 
4765 SDValue SITargetLowering::adjustLoadValueType(unsigned Opcode,
4766                                               MemSDNode *M,
4767                                               SelectionDAG &DAG,
4768                                               ArrayRef<SDValue> Ops,
4769                                               bool IsIntrinsic) const {
4770   SDLoc DL(M);
4771 
4772   bool Unpacked = Subtarget->hasUnpackedD16VMem();
4773   EVT LoadVT = M->getValueType(0);
4774 
4775   EVT EquivLoadVT = LoadVT;
4776   if (LoadVT.isVector()) {
4777     if (Unpacked) {
4778       EquivLoadVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32,
4779                                      LoadVT.getVectorNumElements());
4780     } else if ((LoadVT.getVectorNumElements() % 2) == 1) {
4781       // Widen v3f16 to legal type
4782       EquivLoadVT =
4783           EVT::getVectorVT(*DAG.getContext(), LoadVT.getVectorElementType(),
4784                            LoadVT.getVectorNumElements() + 1);
4785     }
4786   }
4787 
4788   // Change from v4f16/v2f16 to EquivLoadVT.
4789   SDVTList VTList = DAG.getVTList(EquivLoadVT, MVT::Other);
4790 
4791   SDValue Load
4792     = DAG.getMemIntrinsicNode(
4793       IsIntrinsic ? (unsigned)ISD::INTRINSIC_W_CHAIN : Opcode, DL,
4794       VTList, Ops, M->getMemoryVT(),
4795       M->getMemOperand());
4796 
4797   SDValue Adjusted = adjustLoadValueTypeImpl(Load, LoadVT, DL, DAG, Unpacked);
4798 
4799   return DAG.getMergeValues({ Adjusted, Load.getValue(1) }, DL);
4800 }
4801 
4802 SDValue SITargetLowering::lowerIntrinsicLoad(MemSDNode *M, bool IsFormat,
4803                                              SelectionDAG &DAG,
4804                                              ArrayRef<SDValue> Ops) const {
4805   SDLoc DL(M);
4806   EVT LoadVT = M->getValueType(0);
4807   EVT EltType = LoadVT.getScalarType();
4808   EVT IntVT = LoadVT.changeTypeToInteger();
4809 
4810   bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16);
4811 
4812   unsigned Opc =
4813       IsFormat ? AMDGPUISD::BUFFER_LOAD_FORMAT : AMDGPUISD::BUFFER_LOAD;
4814 
4815   if (IsD16) {
4816     return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16, M, DAG, Ops);
4817   }
4818 
4819   // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics
4820   if (!IsD16 && !LoadVT.isVector() && EltType.getSizeInBits() < 32)
4821     return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M);
4822 
4823   if (isTypeLegal(LoadVT)) {
4824     return getMemIntrinsicNode(Opc, DL, M->getVTList(), Ops, IntVT,
4825                                M->getMemOperand(), DAG);
4826   }
4827 
4828   EVT CastVT = getEquivalentMemType(*DAG.getContext(), LoadVT);
4829   SDVTList VTList = DAG.getVTList(CastVT, MVT::Other);
4830   SDValue MemNode = getMemIntrinsicNode(Opc, DL, VTList, Ops, CastVT,
4831                                         M->getMemOperand(), DAG);
4832   return DAG.getMergeValues(
4833       {DAG.getNode(ISD::BITCAST, DL, LoadVT, MemNode), MemNode.getValue(1)},
4834       DL);
4835 }
4836 
4837 static SDValue lowerICMPIntrinsic(const SITargetLowering &TLI,
4838                                   SDNode *N, SelectionDAG &DAG) {
4839   EVT VT = N->getValueType(0);
4840   const auto *CD = cast<ConstantSDNode>(N->getOperand(3));
4841   unsigned CondCode = CD->getZExtValue();
4842   if (!ICmpInst::isIntPredicate(static_cast<ICmpInst::Predicate>(CondCode)))
4843     return DAG.getUNDEF(VT);
4844 
4845   ICmpInst::Predicate IcInput = static_cast<ICmpInst::Predicate>(CondCode);
4846 
4847   SDValue LHS = N->getOperand(1);
4848   SDValue RHS = N->getOperand(2);
4849 
4850   SDLoc DL(N);
4851 
4852   EVT CmpVT = LHS.getValueType();
4853   if (CmpVT == MVT::i16 && !TLI.isTypeLegal(MVT::i16)) {
4854     unsigned PromoteOp = ICmpInst::isSigned(IcInput) ?
4855       ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
4856     LHS = DAG.getNode(PromoteOp, DL, MVT::i32, LHS);
4857     RHS = DAG.getNode(PromoteOp, DL, MVT::i32, RHS);
4858   }
4859 
4860   ISD::CondCode CCOpcode = getICmpCondCode(IcInput);
4861 
4862   unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize();
4863   EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize);
4864 
4865   SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, DL, CCVT, LHS, RHS,
4866                               DAG.getCondCode(CCOpcode));
4867   if (VT.bitsEq(CCVT))
4868     return SetCC;
4869   return DAG.getZExtOrTrunc(SetCC, DL, VT);
4870 }
4871 
4872 static SDValue lowerFCMPIntrinsic(const SITargetLowering &TLI,
4873                                   SDNode *N, SelectionDAG &DAG) {
4874   EVT VT = N->getValueType(0);
4875   const auto *CD = cast<ConstantSDNode>(N->getOperand(3));
4876 
4877   unsigned CondCode = CD->getZExtValue();
4878   if (!FCmpInst::isFPPredicate(static_cast<FCmpInst::Predicate>(CondCode)))
4879     return DAG.getUNDEF(VT);
4880 
4881   SDValue Src0 = N->getOperand(1);
4882   SDValue Src1 = N->getOperand(2);
4883   EVT CmpVT = Src0.getValueType();
4884   SDLoc SL(N);
4885 
4886   if (CmpVT == MVT::f16 && !TLI.isTypeLegal(CmpVT)) {
4887     Src0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0);
4888     Src1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1);
4889   }
4890 
4891   FCmpInst::Predicate IcInput = static_cast<FCmpInst::Predicate>(CondCode);
4892   ISD::CondCode CCOpcode = getFCmpCondCode(IcInput);
4893   unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize();
4894   EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize);
4895   SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, SL, CCVT, Src0,
4896                               Src1, DAG.getCondCode(CCOpcode));
4897   if (VT.bitsEq(CCVT))
4898     return SetCC;
4899   return DAG.getZExtOrTrunc(SetCC, SL, VT);
4900 }
4901 
4902 static SDValue lowerBALLOTIntrinsic(const SITargetLowering &TLI, SDNode *N,
4903                                     SelectionDAG &DAG) {
4904   EVT VT = N->getValueType(0);
4905   SDValue Src = N->getOperand(1);
4906   SDLoc SL(N);
4907 
4908   if (Src.getOpcode() == ISD::SETCC) {
4909     // (ballot (ISD::SETCC ...)) -> (AMDGPUISD::SETCC ...)
4910     return DAG.getNode(AMDGPUISD::SETCC, SL, VT, Src.getOperand(0),
4911                        Src.getOperand(1), Src.getOperand(2));
4912   }
4913   if (const ConstantSDNode *Arg = dyn_cast<ConstantSDNode>(Src)) {
4914     // (ballot 0) -> 0
4915     if (Arg->isZero())
4916       return DAG.getConstant(0, SL, VT);
4917 
4918     // (ballot 1) -> EXEC/EXEC_LO
4919     if (Arg->isOne()) {
4920       Register Exec;
4921       if (VT.getScalarSizeInBits() == 32)
4922         Exec = AMDGPU::EXEC_LO;
4923       else if (VT.getScalarSizeInBits() == 64)
4924         Exec = AMDGPU::EXEC;
4925       else
4926         return SDValue();
4927 
4928       return DAG.getCopyFromReg(DAG.getEntryNode(), SL, Exec, VT);
4929     }
4930   }
4931 
4932   // (ballot (i1 $src)) -> (AMDGPUISD::SETCC (i32 (zext $src)) (i32 0)
4933   // ISD::SETNE)
4934   return DAG.getNode(
4935       AMDGPUISD::SETCC, SL, VT, DAG.getZExtOrTrunc(Src, SL, MVT::i32),
4936       DAG.getConstant(0, SL, MVT::i32), DAG.getCondCode(ISD::SETNE));
4937 }
4938 
4939 void SITargetLowering::ReplaceNodeResults(SDNode *N,
4940                                           SmallVectorImpl<SDValue> &Results,
4941                                           SelectionDAG &DAG) const {
4942   switch (N->getOpcode()) {
4943   case ISD::INSERT_VECTOR_ELT: {
4944     if (SDValue Res = lowerINSERT_VECTOR_ELT(SDValue(N, 0), DAG))
4945       Results.push_back(Res);
4946     return;
4947   }
4948   case ISD::EXTRACT_VECTOR_ELT: {
4949     if (SDValue Res = lowerEXTRACT_VECTOR_ELT(SDValue(N, 0), DAG))
4950       Results.push_back(Res);
4951     return;
4952   }
4953   case ISD::INTRINSIC_WO_CHAIN: {
4954     unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
4955     switch (IID) {
4956     case Intrinsic::amdgcn_cvt_pkrtz: {
4957       SDValue Src0 = N->getOperand(1);
4958       SDValue Src1 = N->getOperand(2);
4959       SDLoc SL(N);
4960       SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_PKRTZ_F16_F32, SL, MVT::i32,
4961                                 Src0, Src1);
4962       Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Cvt));
4963       return;
4964     }
4965     case Intrinsic::amdgcn_cvt_pknorm_i16:
4966     case Intrinsic::amdgcn_cvt_pknorm_u16:
4967     case Intrinsic::amdgcn_cvt_pk_i16:
4968     case Intrinsic::amdgcn_cvt_pk_u16: {
4969       SDValue Src0 = N->getOperand(1);
4970       SDValue Src1 = N->getOperand(2);
4971       SDLoc SL(N);
4972       unsigned Opcode;
4973 
4974       if (IID == Intrinsic::amdgcn_cvt_pknorm_i16)
4975         Opcode = AMDGPUISD::CVT_PKNORM_I16_F32;
4976       else if (IID == Intrinsic::amdgcn_cvt_pknorm_u16)
4977         Opcode = AMDGPUISD::CVT_PKNORM_U16_F32;
4978       else if (IID == Intrinsic::amdgcn_cvt_pk_i16)
4979         Opcode = AMDGPUISD::CVT_PK_I16_I32;
4980       else
4981         Opcode = AMDGPUISD::CVT_PK_U16_U32;
4982 
4983       EVT VT = N->getValueType(0);
4984       if (isTypeLegal(VT))
4985         Results.push_back(DAG.getNode(Opcode, SL, VT, Src0, Src1));
4986       else {
4987         SDValue Cvt = DAG.getNode(Opcode, SL, MVT::i32, Src0, Src1);
4988         Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, Cvt));
4989       }
4990       return;
4991     }
4992     }
4993     break;
4994   }
4995   case ISD::INTRINSIC_W_CHAIN: {
4996     if (SDValue Res = LowerINTRINSIC_W_CHAIN(SDValue(N, 0), DAG)) {
4997       if (Res.getOpcode() == ISD::MERGE_VALUES) {
4998         // FIXME: Hacky
4999         for (unsigned I = 0; I < Res.getNumOperands(); I++) {
5000           Results.push_back(Res.getOperand(I));
5001         }
5002       } else {
5003         Results.push_back(Res);
5004         Results.push_back(Res.getValue(1));
5005       }
5006       return;
5007     }
5008 
5009     break;
5010   }
5011   case ISD::SELECT: {
5012     SDLoc SL(N);
5013     EVT VT = N->getValueType(0);
5014     EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
5015     SDValue LHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(1));
5016     SDValue RHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(2));
5017 
5018     EVT SelectVT = NewVT;
5019     if (NewVT.bitsLT(MVT::i32)) {
5020       LHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, LHS);
5021       RHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, RHS);
5022       SelectVT = MVT::i32;
5023     }
5024 
5025     SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, SelectVT,
5026                                     N->getOperand(0), LHS, RHS);
5027 
5028     if (NewVT != SelectVT)
5029       NewSelect = DAG.getNode(ISD::TRUNCATE, SL, NewVT, NewSelect);
5030     Results.push_back(DAG.getNode(ISD::BITCAST, SL, VT, NewSelect));
5031     return;
5032   }
5033   case ISD::FNEG: {
5034     if (N->getValueType(0) != MVT::v2f16)
5035       break;
5036 
5037     SDLoc SL(N);
5038     SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0));
5039 
5040     SDValue Op = DAG.getNode(ISD::XOR, SL, MVT::i32,
5041                              BC,
5042                              DAG.getConstant(0x80008000, SL, MVT::i32));
5043     Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op));
5044     return;
5045   }
5046   case ISD::FABS: {
5047     if (N->getValueType(0) != MVT::v2f16)
5048       break;
5049 
5050     SDLoc SL(N);
5051     SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0));
5052 
5053     SDValue Op = DAG.getNode(ISD::AND, SL, MVT::i32,
5054                              BC,
5055                              DAG.getConstant(0x7fff7fff, SL, MVT::i32));
5056     Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op));
5057     return;
5058   }
5059   default:
5060     break;
5061   }
5062 }
5063 
5064 /// Helper function for LowerBRCOND
5065 static SDNode *findUser(SDValue Value, unsigned Opcode) {
5066 
5067   SDNode *Parent = Value.getNode();
5068   for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end();
5069        I != E; ++I) {
5070 
5071     if (I.getUse().get() != Value)
5072       continue;
5073 
5074     if (I->getOpcode() == Opcode)
5075       return *I;
5076   }
5077   return nullptr;
5078 }
5079 
5080 unsigned SITargetLowering::isCFIntrinsic(const SDNode *Intr) const {
5081   if (Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
5082     switch (cast<ConstantSDNode>(Intr->getOperand(1))->getZExtValue()) {
5083     case Intrinsic::amdgcn_if:
5084       return AMDGPUISD::IF;
5085     case Intrinsic::amdgcn_else:
5086       return AMDGPUISD::ELSE;
5087     case Intrinsic::amdgcn_loop:
5088       return AMDGPUISD::LOOP;
5089     case Intrinsic::amdgcn_end_cf:
5090       llvm_unreachable("should not occur");
5091     default:
5092       return 0;
5093     }
5094   }
5095 
5096   // break, if_break, else_break are all only used as inputs to loop, not
5097   // directly as branch conditions.
5098   return 0;
5099 }
5100 
5101 bool SITargetLowering::shouldEmitFixup(const GlobalValue *GV) const {
5102   const Triple &TT = getTargetMachine().getTargetTriple();
5103   return (GV->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
5104           GV->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
5105          AMDGPU::shouldEmitConstantsToTextSection(TT);
5106 }
5107 
5108 bool SITargetLowering::shouldEmitGOTReloc(const GlobalValue *GV) const {
5109   // FIXME: Either avoid relying on address space here or change the default
5110   // address space for functions to avoid the explicit check.
5111   return (GV->getValueType()->isFunctionTy() ||
5112           !isNonGlobalAddrSpace(GV->getAddressSpace())) &&
5113          !shouldEmitFixup(GV) &&
5114          !getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
5115 }
5116 
5117 bool SITargetLowering::shouldEmitPCReloc(const GlobalValue *GV) const {
5118   return !shouldEmitFixup(GV) && !shouldEmitGOTReloc(GV);
5119 }
5120 
5121 bool SITargetLowering::shouldUseLDSConstAddress(const GlobalValue *GV) const {
5122   if (!GV->hasExternalLinkage())
5123     return true;
5124 
5125   const auto OS = getTargetMachine().getTargetTriple().getOS();
5126   return OS == Triple::AMDHSA || OS == Triple::AMDPAL;
5127 }
5128 
5129 /// This transforms the control flow intrinsics to get the branch destination as
5130 /// last parameter, also switches branch target with BR if the need arise
5131 SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND,
5132                                       SelectionDAG &DAG) const {
5133   SDLoc DL(BRCOND);
5134 
5135   SDNode *Intr = BRCOND.getOperand(1).getNode();
5136   SDValue Target = BRCOND.getOperand(2);
5137   SDNode *BR = nullptr;
5138   SDNode *SetCC = nullptr;
5139 
5140   if (Intr->getOpcode() == ISD::SETCC) {
5141     // As long as we negate the condition everything is fine
5142     SetCC = Intr;
5143     Intr = SetCC->getOperand(0).getNode();
5144 
5145   } else {
5146     // Get the target from BR if we don't negate the condition
5147     BR = findUser(BRCOND, ISD::BR);
5148     assert(BR && "brcond missing unconditional branch user");
5149     Target = BR->getOperand(1);
5150   }
5151 
5152   unsigned CFNode = isCFIntrinsic(Intr);
5153   if (CFNode == 0) {
5154     // This is a uniform branch so we don't need to legalize.
5155     return BRCOND;
5156   }
5157 
5158   bool HaveChain = Intr->getOpcode() == ISD::INTRINSIC_VOID ||
5159                    Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN;
5160 
5161   assert(!SetCC ||
5162         (SetCC->getConstantOperandVal(1) == 1 &&
5163          cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() ==
5164                                                              ISD::SETNE));
5165 
5166   // operands of the new intrinsic call
5167   SmallVector<SDValue, 4> Ops;
5168   if (HaveChain)
5169     Ops.push_back(BRCOND.getOperand(0));
5170 
5171   Ops.append(Intr->op_begin() + (HaveChain ?  2 : 1), Intr->op_end());
5172   Ops.push_back(Target);
5173 
5174   ArrayRef<EVT> Res(Intr->value_begin() + 1, Intr->value_end());
5175 
5176   // build the new intrinsic call
5177   SDNode *Result = DAG.getNode(CFNode, DL, DAG.getVTList(Res), Ops).getNode();
5178 
5179   if (!HaveChain) {
5180     SDValue Ops[] =  {
5181       SDValue(Result, 0),
5182       BRCOND.getOperand(0)
5183     };
5184 
5185     Result = DAG.getMergeValues(Ops, DL).getNode();
5186   }
5187 
5188   if (BR) {
5189     // Give the branch instruction our target
5190     SDValue Ops[] = {
5191       BR->getOperand(0),
5192       BRCOND.getOperand(2)
5193     };
5194     SDValue NewBR = DAG.getNode(ISD::BR, DL, BR->getVTList(), Ops);
5195     DAG.ReplaceAllUsesWith(BR, NewBR.getNode());
5196   }
5197 
5198   SDValue Chain = SDValue(Result, Result->getNumValues() - 1);
5199 
5200   // Copy the intrinsic results to registers
5201   for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) {
5202     SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg);
5203     if (!CopyToReg)
5204       continue;
5205 
5206     Chain = DAG.getCopyToReg(
5207       Chain, DL,
5208       CopyToReg->getOperand(1),
5209       SDValue(Result, i - 1),
5210       SDValue());
5211 
5212     DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0));
5213   }
5214 
5215   // Remove the old intrinsic from the chain
5216   DAG.ReplaceAllUsesOfValueWith(
5217     SDValue(Intr, Intr->getNumValues() - 1),
5218     Intr->getOperand(0));
5219 
5220   return Chain;
5221 }
5222 
5223 SDValue SITargetLowering::LowerRETURNADDR(SDValue Op,
5224                                           SelectionDAG &DAG) const {
5225   MVT VT = Op.getSimpleValueType();
5226   SDLoc DL(Op);
5227   // Checking the depth
5228   if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() != 0)
5229     return DAG.getConstant(0, DL, VT);
5230 
5231   MachineFunction &MF = DAG.getMachineFunction();
5232   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
5233   // Check for kernel and shader functions
5234   if (Info->isEntryFunction())
5235     return DAG.getConstant(0, DL, VT);
5236 
5237   MachineFrameInfo &MFI = MF.getFrameInfo();
5238   // There is a call to @llvm.returnaddress in this function
5239   MFI.setReturnAddressIsTaken(true);
5240 
5241   const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
5242   // Get the return address reg and mark it as an implicit live-in
5243   Register Reg = MF.addLiveIn(TRI->getReturnAddressReg(MF), getRegClassFor(VT, Op.getNode()->isDivergent()));
5244 
5245   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT);
5246 }
5247 
5248 SDValue SITargetLowering::getFPExtOrFPRound(SelectionDAG &DAG,
5249                                             SDValue Op,
5250                                             const SDLoc &DL,
5251                                             EVT VT) const {
5252   return Op.getValueType().bitsLE(VT) ?
5253       DAG.getNode(ISD::FP_EXTEND, DL, VT, Op) :
5254     DAG.getNode(ISD::FP_ROUND, DL, VT, Op,
5255                 DAG.getTargetConstant(0, DL, MVT::i32));
5256 }
5257 
5258 SDValue SITargetLowering::lowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
5259   assert(Op.getValueType() == MVT::f16 &&
5260          "Do not know how to custom lower FP_ROUND for non-f16 type");
5261 
5262   SDValue Src = Op.getOperand(0);
5263   EVT SrcVT = Src.getValueType();
5264   if (SrcVT != MVT::f64)
5265     return Op;
5266 
5267   SDLoc DL(Op);
5268 
5269   SDValue FpToFp16 = DAG.getNode(ISD::FP_TO_FP16, DL, MVT::i32, Src);
5270   SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FpToFp16);
5271   return DAG.getNode(ISD::BITCAST, DL, MVT::f16, Trunc);
5272 }
5273 
5274 SDValue SITargetLowering::lowerFMINNUM_FMAXNUM(SDValue Op,
5275                                                SelectionDAG &DAG) const {
5276   EVT VT = Op.getValueType();
5277   const MachineFunction &MF = DAG.getMachineFunction();
5278   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
5279   bool IsIEEEMode = Info->getMode().IEEE;
5280 
5281   // FIXME: Assert during selection that this is only selected for
5282   // ieee_mode. Currently a combine can produce the ieee version for non-ieee
5283   // mode functions, but this happens to be OK since it's only done in cases
5284   // where there is known no sNaN.
5285   if (IsIEEEMode)
5286     return expandFMINNUM_FMAXNUM(Op.getNode(), DAG);
5287 
5288   if (VT == MVT::v4f16 || VT == MVT::v8f16 || VT == MVT::v16f16)
5289     return splitBinaryVectorOp(Op, DAG);
5290   return Op;
5291 }
5292 
5293 SDValue SITargetLowering::lowerXMULO(SDValue Op, SelectionDAG &DAG) const {
5294   EVT VT = Op.getValueType();
5295   SDLoc SL(Op);
5296   SDValue LHS = Op.getOperand(0);
5297   SDValue RHS = Op.getOperand(1);
5298   bool isSigned = Op.getOpcode() == ISD::SMULO;
5299 
5300   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
5301     const APInt &C = RHSC->getAPIntValue();
5302     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
5303     if (C.isPowerOf2()) {
5304       // smulo(x, signed_min) is same as umulo(x, signed_min).
5305       bool UseArithShift = isSigned && !C.isMinSignedValue();
5306       SDValue ShiftAmt = DAG.getConstant(C.logBase2(), SL, MVT::i32);
5307       SDValue Result = DAG.getNode(ISD::SHL, SL, VT, LHS, ShiftAmt);
5308       SDValue Overflow = DAG.getSetCC(SL, MVT::i1,
5309           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
5310                       SL, VT, Result, ShiftAmt),
5311           LHS, ISD::SETNE);
5312       return DAG.getMergeValues({ Result, Overflow }, SL);
5313     }
5314   }
5315 
5316   SDValue Result = DAG.getNode(ISD::MUL, SL, VT, LHS, RHS);
5317   SDValue Top = DAG.getNode(isSigned ? ISD::MULHS : ISD::MULHU,
5318                             SL, VT, LHS, RHS);
5319 
5320   SDValue Sign = isSigned
5321     ? DAG.getNode(ISD::SRA, SL, VT, Result,
5322                   DAG.getConstant(VT.getScalarSizeInBits() - 1, SL, MVT::i32))
5323     : DAG.getConstant(0, SL, VT);
5324   SDValue Overflow = DAG.getSetCC(SL, MVT::i1, Top, Sign, ISD::SETNE);
5325 
5326   return DAG.getMergeValues({ Result, Overflow }, SL);
5327 }
5328 
5329 SDValue SITargetLowering::lowerXMUL_LOHI(SDValue Op, SelectionDAG &DAG) const {
5330   if (Op->isDivergent()) {
5331     // Select to V_MAD_[IU]64_[IU]32.
5332     return Op;
5333   }
5334   if (Subtarget->hasSMulHi()) {
5335     // Expand to S_MUL_I32 + S_MUL_HI_[IU]32.
5336     return SDValue();
5337   }
5338   // The multiply is uniform but we would have to use V_MUL_HI_[IU]32 to
5339   // calculate the high part, so we might as well do the whole thing with
5340   // V_MAD_[IU]64_[IU]32.
5341   return Op;
5342 }
5343 
5344 SDValue SITargetLowering::lowerTRAP(SDValue Op, SelectionDAG &DAG) const {
5345   if (!Subtarget->isTrapHandlerEnabled() ||
5346       Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbi::AMDHSA)
5347     return lowerTrapEndpgm(Op, DAG);
5348 
5349   if (Optional<uint8_t> HsaAbiVer = AMDGPU::getHsaAbiVersion(Subtarget)) {
5350     switch (*HsaAbiVer) {
5351     case ELF::ELFABIVERSION_AMDGPU_HSA_V2:
5352     case ELF::ELFABIVERSION_AMDGPU_HSA_V3:
5353       return lowerTrapHsaQueuePtr(Op, DAG);
5354     case ELF::ELFABIVERSION_AMDGPU_HSA_V4:
5355     case ELF::ELFABIVERSION_AMDGPU_HSA_V5:
5356       return Subtarget->supportsGetDoorbellID() ?
5357           lowerTrapHsa(Op, DAG) : lowerTrapHsaQueuePtr(Op, DAG);
5358     }
5359   }
5360 
5361   llvm_unreachable("Unknown trap handler");
5362 }
5363 
5364 SDValue SITargetLowering::lowerTrapEndpgm(
5365     SDValue Op, SelectionDAG &DAG) const {
5366   SDLoc SL(Op);
5367   SDValue Chain = Op.getOperand(0);
5368   return DAG.getNode(AMDGPUISD::ENDPGM, SL, MVT::Other, Chain);
5369 }
5370 
5371 SDValue SITargetLowering::loadImplicitKernelArgument(SelectionDAG &DAG, MVT VT,
5372     const SDLoc &DL, Align Alignment, ImplicitParameter Param) const {
5373   MachineFunction &MF = DAG.getMachineFunction();
5374   uint64_t Offset = getImplicitParameterOffset(MF, Param);
5375   SDValue Ptr = lowerKernArgParameterPtr(DAG, DL, DAG.getEntryNode(), Offset);
5376   MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
5377   return DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, PtrInfo, Alignment,
5378                      MachineMemOperand::MODereferenceable |
5379                          MachineMemOperand::MOInvariant);
5380 }
5381 
5382 SDValue SITargetLowering::lowerTrapHsaQueuePtr(
5383     SDValue Op, SelectionDAG &DAG) const {
5384   SDLoc SL(Op);
5385   SDValue Chain = Op.getOperand(0);
5386 
5387   SDValue QueuePtr;
5388   // For code object version 5, QueuePtr is passed through implicit kernarg.
5389   if (AMDGPU::getAmdhsaCodeObjectVersion() == 5) {
5390     QueuePtr =
5391         loadImplicitKernelArgument(DAG, MVT::i64, SL, Align(8), QUEUE_PTR);
5392   } else {
5393     MachineFunction &MF = DAG.getMachineFunction();
5394     SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
5395     Register UserSGPR = Info->getQueuePtrUserSGPR();
5396 
5397     if (UserSGPR == AMDGPU::NoRegister) {
5398       // We probably are in a function incorrectly marked with
5399       // amdgpu-no-queue-ptr. This is undefined. We don't want to delete the
5400       // trap, so just use a null pointer.
5401       QueuePtr = DAG.getConstant(0, SL, MVT::i64);
5402     } else {
5403       QueuePtr = CreateLiveInRegister(DAG, &AMDGPU::SReg_64RegClass, UserSGPR,
5404                                       MVT::i64);
5405     }
5406   }
5407 
5408   SDValue SGPR01 = DAG.getRegister(AMDGPU::SGPR0_SGPR1, MVT::i64);
5409   SDValue ToReg = DAG.getCopyToReg(Chain, SL, SGPR01,
5410                                    QueuePtr, SDValue());
5411 
5412   uint64_t TrapID = static_cast<uint64_t>(GCNSubtarget::TrapID::LLVMAMDHSATrap);
5413   SDValue Ops[] = {
5414     ToReg,
5415     DAG.getTargetConstant(TrapID, SL, MVT::i16),
5416     SGPR01,
5417     ToReg.getValue(1)
5418   };
5419   return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops);
5420 }
5421 
5422 SDValue SITargetLowering::lowerTrapHsa(
5423     SDValue Op, SelectionDAG &DAG) const {
5424   SDLoc SL(Op);
5425   SDValue Chain = Op.getOperand(0);
5426 
5427   uint64_t TrapID = static_cast<uint64_t>(GCNSubtarget::TrapID::LLVMAMDHSATrap);
5428   SDValue Ops[] = {
5429     Chain,
5430     DAG.getTargetConstant(TrapID, SL, MVT::i16)
5431   };
5432   return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops);
5433 }
5434 
5435 SDValue SITargetLowering::lowerDEBUGTRAP(SDValue Op, SelectionDAG &DAG) const {
5436   SDLoc SL(Op);
5437   SDValue Chain = Op.getOperand(0);
5438   MachineFunction &MF = DAG.getMachineFunction();
5439 
5440   if (!Subtarget->isTrapHandlerEnabled() ||
5441       Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbi::AMDHSA) {
5442     DiagnosticInfoUnsupported NoTrap(MF.getFunction(),
5443                                      "debugtrap handler not supported",
5444                                      Op.getDebugLoc(),
5445                                      DS_Warning);
5446     LLVMContext &Ctx = MF.getFunction().getContext();
5447     Ctx.diagnose(NoTrap);
5448     return Chain;
5449   }
5450 
5451   uint64_t TrapID = static_cast<uint64_t>(GCNSubtarget::TrapID::LLVMAMDHSADebugTrap);
5452   SDValue Ops[] = {
5453     Chain,
5454     DAG.getTargetConstant(TrapID, SL, MVT::i16)
5455   };
5456   return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops);
5457 }
5458 
5459 SDValue SITargetLowering::getSegmentAperture(unsigned AS, const SDLoc &DL,
5460                                              SelectionDAG &DAG) const {
5461   // FIXME: Use inline constants (src_{shared, private}_base) instead.
5462   if (Subtarget->hasApertureRegs()) {
5463     unsigned Offset = AS == AMDGPUAS::LOCAL_ADDRESS ?
5464         AMDGPU::Hwreg::OFFSET_SRC_SHARED_BASE :
5465         AMDGPU::Hwreg::OFFSET_SRC_PRIVATE_BASE;
5466     unsigned WidthM1 = AS == AMDGPUAS::LOCAL_ADDRESS ?
5467         AMDGPU::Hwreg::WIDTH_M1_SRC_SHARED_BASE :
5468         AMDGPU::Hwreg::WIDTH_M1_SRC_PRIVATE_BASE;
5469     unsigned Encoding =
5470         AMDGPU::Hwreg::ID_MEM_BASES << AMDGPU::Hwreg::ID_SHIFT_ |
5471         Offset << AMDGPU::Hwreg::OFFSET_SHIFT_ |
5472         WidthM1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_;
5473 
5474     SDValue EncodingImm = DAG.getTargetConstant(Encoding, DL, MVT::i16);
5475     SDValue ApertureReg = SDValue(
5476         DAG.getMachineNode(AMDGPU::S_GETREG_B32, DL, MVT::i32, EncodingImm), 0);
5477     SDValue ShiftAmount = DAG.getTargetConstant(WidthM1 + 1, DL, MVT::i32);
5478     return DAG.getNode(ISD::SHL, DL, MVT::i32, ApertureReg, ShiftAmount);
5479   }
5480 
5481   // For code object version 5, private_base and shared_base are passed through
5482   // implicit kernargs.
5483   if (AMDGPU::getAmdhsaCodeObjectVersion() == 5) {
5484     ImplicitParameter Param =
5485         (AS == AMDGPUAS::LOCAL_ADDRESS) ? SHARED_BASE : PRIVATE_BASE;
5486     return loadImplicitKernelArgument(DAG, MVT::i32, DL, Align(4), Param);
5487   }
5488 
5489   MachineFunction &MF = DAG.getMachineFunction();
5490   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
5491   Register UserSGPR = Info->getQueuePtrUserSGPR();
5492   if (UserSGPR == AMDGPU::NoRegister) {
5493     // We probably are in a function incorrectly marked with
5494     // amdgpu-no-queue-ptr. This is undefined.
5495     return DAG.getUNDEF(MVT::i32);
5496   }
5497 
5498   SDValue QueuePtr = CreateLiveInRegister(
5499     DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64);
5500 
5501   // Offset into amd_queue_t for group_segment_aperture_base_hi /
5502   // private_segment_aperture_base_hi.
5503   uint32_t StructOffset = (AS == AMDGPUAS::LOCAL_ADDRESS) ? 0x40 : 0x44;
5504 
5505   SDValue Ptr =
5506       DAG.getObjectPtrOffset(DL, QueuePtr, TypeSize::Fixed(StructOffset));
5507 
5508   // TODO: Use custom target PseudoSourceValue.
5509   // TODO: We should use the value from the IR intrinsic call, but it might not
5510   // be available and how do we get it?
5511   MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
5512   return DAG.getLoad(MVT::i32, DL, QueuePtr.getValue(1), Ptr, PtrInfo,
5513                      commonAlignment(Align(64), StructOffset),
5514                      MachineMemOperand::MODereferenceable |
5515                          MachineMemOperand::MOInvariant);
5516 }
5517 
5518 /// Return true if the value is a known valid address, such that a null check is
5519 /// not necessary.
5520 static bool isKnownNonNull(SDValue Val, SelectionDAG &DAG,
5521                            const AMDGPUTargetMachine &TM, unsigned AddrSpace) {
5522   if (isa<FrameIndexSDNode>(Val) || isa<GlobalAddressSDNode>(Val) ||
5523       isa<BasicBlockSDNode>(Val))
5524     return true;
5525 
5526   if (auto *ConstVal = dyn_cast<ConstantSDNode>(Val))
5527     return ConstVal->getSExtValue() != TM.getNullPointerValue(AddrSpace);
5528 
5529   // TODO: Search through arithmetic, handle arguments and loads
5530   // marked nonnull.
5531   return false;
5532 }
5533 
5534 SDValue SITargetLowering::lowerADDRSPACECAST(SDValue Op,
5535                                              SelectionDAG &DAG) const {
5536   SDLoc SL(Op);
5537   const AddrSpaceCastSDNode *ASC = cast<AddrSpaceCastSDNode>(Op);
5538 
5539   SDValue Src = ASC->getOperand(0);
5540   SDValue FlatNullPtr = DAG.getConstant(0, SL, MVT::i64);
5541   unsigned SrcAS = ASC->getSrcAddressSpace();
5542 
5543   const AMDGPUTargetMachine &TM =
5544     static_cast<const AMDGPUTargetMachine &>(getTargetMachine());
5545 
5546   // flat -> local/private
5547   if (SrcAS == AMDGPUAS::FLAT_ADDRESS) {
5548     unsigned DestAS = ASC->getDestAddressSpace();
5549 
5550     if (DestAS == AMDGPUAS::LOCAL_ADDRESS ||
5551         DestAS == AMDGPUAS::PRIVATE_ADDRESS) {
5552       SDValue Ptr = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src);
5553 
5554       if (isKnownNonNull(Src, DAG, TM, SrcAS))
5555         return Ptr;
5556 
5557       unsigned NullVal = TM.getNullPointerValue(DestAS);
5558       SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32);
5559       SDValue NonNull = DAG.getSetCC(SL, MVT::i1, Src, FlatNullPtr, ISD::SETNE);
5560 
5561       return DAG.getNode(ISD::SELECT, SL, MVT::i32, NonNull, Ptr,
5562                          SegmentNullPtr);
5563     }
5564   }
5565 
5566   // local/private -> flat
5567   if (ASC->getDestAddressSpace() == AMDGPUAS::FLAT_ADDRESS) {
5568     if (SrcAS == AMDGPUAS::LOCAL_ADDRESS ||
5569         SrcAS == AMDGPUAS::PRIVATE_ADDRESS) {
5570 
5571       SDValue Aperture = getSegmentAperture(ASC->getSrcAddressSpace(), SL, DAG);
5572       SDValue CvtPtr =
5573           DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Src, Aperture);
5574       CvtPtr = DAG.getNode(ISD::BITCAST, SL, MVT::i64, CvtPtr);
5575 
5576       if (isKnownNonNull(Src, DAG, TM, SrcAS))
5577         return CvtPtr;
5578 
5579       unsigned NullVal = TM.getNullPointerValue(SrcAS);
5580       SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32);
5581 
5582       SDValue NonNull
5583         = DAG.getSetCC(SL, MVT::i1, Src, SegmentNullPtr, ISD::SETNE);
5584 
5585       return DAG.getNode(ISD::SELECT, SL, MVT::i64, NonNull, CvtPtr,
5586                          FlatNullPtr);
5587     }
5588   }
5589 
5590   if (SrcAS == AMDGPUAS::CONSTANT_ADDRESS_32BIT &&
5591       Op.getValueType() == MVT::i64) {
5592     const SIMachineFunctionInfo *Info =
5593         DAG.getMachineFunction().getInfo<SIMachineFunctionInfo>();
5594     SDValue Hi = DAG.getConstant(Info->get32BitAddressHighBits(), SL, MVT::i32);
5595     SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Src, Hi);
5596     return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
5597   }
5598 
5599   if (ASC->getDestAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT &&
5600       Src.getValueType() == MVT::i64)
5601     return DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src);
5602 
5603   // global <-> flat are no-ops and never emitted.
5604 
5605   const MachineFunction &MF = DAG.getMachineFunction();
5606   DiagnosticInfoUnsupported InvalidAddrSpaceCast(
5607     MF.getFunction(), "invalid addrspacecast", SL.getDebugLoc());
5608   DAG.getContext()->diagnose(InvalidAddrSpaceCast);
5609 
5610   return DAG.getUNDEF(ASC->getValueType(0));
5611 }
5612 
5613 // This lowers an INSERT_SUBVECTOR by extracting the individual elements from
5614 // the small vector and inserting them into the big vector. That is better than
5615 // the default expansion of doing it via a stack slot. Even though the use of
5616 // the stack slot would be optimized away afterwards, the stack slot itself
5617 // remains.
5618 SDValue SITargetLowering::lowerINSERT_SUBVECTOR(SDValue Op,
5619                                                 SelectionDAG &DAG) const {
5620   SDValue Vec = Op.getOperand(0);
5621   SDValue Ins = Op.getOperand(1);
5622   SDValue Idx = Op.getOperand(2);
5623   EVT VecVT = Vec.getValueType();
5624   EVT InsVT = Ins.getValueType();
5625   EVT EltVT = VecVT.getVectorElementType();
5626   unsigned InsNumElts = InsVT.getVectorNumElements();
5627   unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
5628   SDLoc SL(Op);
5629 
5630   for (unsigned I = 0; I != InsNumElts; ++I) {
5631     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Ins,
5632                               DAG.getConstant(I, SL, MVT::i32));
5633     Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, VecVT, Vec, Elt,
5634                       DAG.getConstant(IdxVal + I, SL, MVT::i32));
5635   }
5636   return Vec;
5637 }
5638 
5639 SDValue SITargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
5640                                                  SelectionDAG &DAG) const {
5641   SDValue Vec = Op.getOperand(0);
5642   SDValue InsVal = Op.getOperand(1);
5643   SDValue Idx = Op.getOperand(2);
5644   EVT VecVT = Vec.getValueType();
5645   EVT EltVT = VecVT.getVectorElementType();
5646   unsigned VecSize = VecVT.getSizeInBits();
5647   unsigned EltSize = EltVT.getSizeInBits();
5648   SDLoc SL(Op);
5649 
5650   // Specially handle the case of v4i16 with static indexing.
5651   unsigned NumElts = VecVT.getVectorNumElements();
5652   auto KIdx = dyn_cast<ConstantSDNode>(Idx);
5653   if (NumElts == 4 && EltSize == 16 && KIdx) {
5654     SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Vec);
5655 
5656     SDValue LoHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec,
5657                                  DAG.getConstant(0, SL, MVT::i32));
5658     SDValue HiHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec,
5659                                  DAG.getConstant(1, SL, MVT::i32));
5660 
5661     SDValue LoVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, LoHalf);
5662     SDValue HiVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, HiHalf);
5663 
5664     unsigned Idx = KIdx->getZExtValue();
5665     bool InsertLo = Idx < 2;
5666     SDValue InsHalf = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, MVT::v2i16,
5667       InsertLo ? LoVec : HiVec,
5668       DAG.getNode(ISD::BITCAST, SL, MVT::i16, InsVal),
5669       DAG.getConstant(InsertLo ? Idx : (Idx - 2), SL, MVT::i32));
5670 
5671     InsHalf = DAG.getNode(ISD::BITCAST, SL, MVT::i32, InsHalf);
5672 
5673     SDValue Concat = InsertLo ?
5674       DAG.getBuildVector(MVT::v2i32, SL, { InsHalf, HiHalf }) :
5675       DAG.getBuildVector(MVT::v2i32, SL, { LoHalf, InsHalf });
5676 
5677     return DAG.getNode(ISD::BITCAST, SL, VecVT, Concat);
5678   }
5679 
5680   // Static indexing does not lower to stack access, and hence there is no need
5681   // for special custom lowering to avoid stack access.
5682   if (isa<ConstantSDNode>(Idx))
5683     return SDValue();
5684 
5685   // Avoid stack access for dynamic indexing by custom lowering to
5686   // v_bfi_b32 (v_bfm_b32 16, (shl idx, 16)), val, vec
5687 
5688   assert(VecSize <= 64 && "Expected target vector size to be <= 64 bits");
5689 
5690   MVT IntVT = MVT::getIntegerVT(VecSize);
5691 
5692   // Convert vector index to bit-index and get the required bit mask.
5693   assert(isPowerOf2_32(EltSize));
5694   SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32);
5695   SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor);
5696   SDValue BFM = DAG.getNode(ISD::SHL, SL, IntVT,
5697                             DAG.getConstant(0xffff, SL, IntVT),
5698                             ScaledIdx);
5699 
5700   // 1. Create a congruent vector with the target value in each element.
5701   SDValue ExtVal = DAG.getNode(ISD::BITCAST, SL, IntVT,
5702                                DAG.getSplatBuildVector(VecVT, SL, InsVal));
5703 
5704   // 2. Mask off all other indicies except the required index within (1).
5705   SDValue LHS = DAG.getNode(ISD::AND, SL, IntVT, BFM, ExtVal);
5706 
5707   // 3. Mask off the required index within the target vector.
5708   SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec);
5709   SDValue RHS = DAG.getNode(ISD::AND, SL, IntVT,
5710                             DAG.getNOT(SL, BFM, IntVT), BCVec);
5711 
5712   // 4. Get (2) and (3) ORed into the target vector.
5713   SDValue BFI = DAG.getNode(ISD::OR, SL, IntVT, LHS, RHS);
5714 
5715   return DAG.getNode(ISD::BITCAST, SL, VecVT, BFI);
5716 }
5717 
5718 SDValue SITargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
5719                                                   SelectionDAG &DAG) const {
5720   SDLoc SL(Op);
5721 
5722   EVT ResultVT = Op.getValueType();
5723   SDValue Vec = Op.getOperand(0);
5724   SDValue Idx = Op.getOperand(1);
5725   EVT VecVT = Vec.getValueType();
5726   unsigned VecSize = VecVT.getSizeInBits();
5727   EVT EltVT = VecVT.getVectorElementType();
5728 
5729   DAGCombinerInfo DCI(DAG, AfterLegalizeVectorOps, true, nullptr);
5730 
5731   // Make sure we do any optimizations that will make it easier to fold
5732   // source modifiers before obscuring it with bit operations.
5733 
5734   // XXX - Why doesn't this get called when vector_shuffle is expanded?
5735   if (SDValue Combined = performExtractVectorEltCombine(Op.getNode(), DCI))
5736     return Combined;
5737 
5738   if (VecSize == 128 || VecSize == 256) {
5739     SDValue Lo, Hi;
5740     EVT LoVT, HiVT;
5741     std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT);
5742 
5743     if (VecSize == 128) {
5744       SDValue V2 = DAG.getBitcast(MVT::v2i64, Vec);
5745       Lo = DAG.getBitcast(LoVT,
5746                           DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i64, V2,
5747                                       DAG.getConstant(0, SL, MVT::i32)));
5748       Hi = DAG.getBitcast(HiVT,
5749                           DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i64, V2,
5750                                       DAG.getConstant(1, SL, MVT::i32)));
5751     } else {
5752       assert(VecSize == 256);
5753 
5754       SDValue V2 = DAG.getBitcast(MVT::v4i64, Vec);
5755       SDValue Parts[4];
5756       for (unsigned P = 0; P < 4; ++P) {
5757         Parts[P] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i64, V2,
5758                                DAG.getConstant(P, SL, MVT::i32));
5759       }
5760 
5761       Lo = DAG.getBitcast(LoVT, DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i64,
5762                                             Parts[0], Parts[1]));
5763       Hi = DAG.getBitcast(HiVT, DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i64,
5764                                             Parts[2], Parts[3]));
5765     }
5766 
5767     EVT IdxVT = Idx.getValueType();
5768     unsigned NElem = VecVT.getVectorNumElements();
5769     assert(isPowerOf2_32(NElem));
5770     SDValue IdxMask = DAG.getConstant(NElem / 2 - 1, SL, IdxVT);
5771     SDValue NewIdx = DAG.getNode(ISD::AND, SL, IdxVT, Idx, IdxMask);
5772     SDValue Half = DAG.getSelectCC(SL, Idx, IdxMask, Hi, Lo, ISD::SETUGT);
5773     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Half, NewIdx);
5774   }
5775 
5776   assert(VecSize <= 64);
5777 
5778   MVT IntVT = MVT::getIntegerVT(VecSize);
5779 
5780   // If Vec is just a SCALAR_TO_VECTOR, then use the scalar integer directly.
5781   SDValue VecBC = peekThroughBitcasts(Vec);
5782   if (VecBC.getOpcode() == ISD::SCALAR_TO_VECTOR) {
5783     SDValue Src = VecBC.getOperand(0);
5784     Src = DAG.getBitcast(Src.getValueType().changeTypeToInteger(), Src);
5785     Vec = DAG.getAnyExtOrTrunc(Src, SL, IntVT);
5786   }
5787 
5788   unsigned EltSize = EltVT.getSizeInBits();
5789   assert(isPowerOf2_32(EltSize));
5790 
5791   SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32);
5792 
5793   // Convert vector index to bit-index (* EltSize)
5794   SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor);
5795 
5796   SDValue BC = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec);
5797   SDValue Elt = DAG.getNode(ISD::SRL, SL, IntVT, BC, ScaledIdx);
5798 
5799   if (ResultVT == MVT::f16) {
5800     SDValue Result = DAG.getNode(ISD::TRUNCATE, SL, MVT::i16, Elt);
5801     return DAG.getNode(ISD::BITCAST, SL, ResultVT, Result);
5802   }
5803 
5804   return DAG.getAnyExtOrTrunc(Elt, SL, ResultVT);
5805 }
5806 
5807 static bool elementPairIsContiguous(ArrayRef<int> Mask, int Elt) {
5808   assert(Elt % 2 == 0);
5809   return Mask[Elt + 1] == Mask[Elt] + 1 && (Mask[Elt] % 2 == 0);
5810 }
5811 
5812 SDValue SITargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
5813                                               SelectionDAG &DAG) const {
5814   SDLoc SL(Op);
5815   EVT ResultVT = Op.getValueType();
5816   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
5817 
5818   EVT PackVT = ResultVT.isInteger() ? MVT::v2i16 : MVT::v2f16;
5819   EVT EltVT = PackVT.getVectorElementType();
5820   int SrcNumElts = Op.getOperand(0).getValueType().getVectorNumElements();
5821 
5822   // vector_shuffle <0,1,6,7> lhs, rhs
5823   // -> concat_vectors (extract_subvector lhs, 0), (extract_subvector rhs, 2)
5824   //
5825   // vector_shuffle <6,7,2,3> lhs, rhs
5826   // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 2)
5827   //
5828   // vector_shuffle <6,7,0,1> lhs, rhs
5829   // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 0)
5830 
5831   // Avoid scalarizing when both halves are reading from consecutive elements.
5832   SmallVector<SDValue, 4> Pieces;
5833   for (int I = 0, N = ResultVT.getVectorNumElements(); I != N; I += 2) {
5834     if (elementPairIsContiguous(SVN->getMask(), I)) {
5835       const int Idx = SVN->getMaskElt(I);
5836       int VecIdx = Idx < SrcNumElts ? 0 : 1;
5837       int EltIdx = Idx < SrcNumElts ? Idx : Idx - SrcNumElts;
5838       SDValue SubVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL,
5839                                     PackVT, SVN->getOperand(VecIdx),
5840                                     DAG.getConstant(EltIdx, SL, MVT::i32));
5841       Pieces.push_back(SubVec);
5842     } else {
5843       const int Idx0 = SVN->getMaskElt(I);
5844       const int Idx1 = SVN->getMaskElt(I + 1);
5845       int VecIdx0 = Idx0 < SrcNumElts ? 0 : 1;
5846       int VecIdx1 = Idx1 < SrcNumElts ? 0 : 1;
5847       int EltIdx0 = Idx0 < SrcNumElts ? Idx0 : Idx0 - SrcNumElts;
5848       int EltIdx1 = Idx1 < SrcNumElts ? Idx1 : Idx1 - SrcNumElts;
5849 
5850       SDValue Vec0 = SVN->getOperand(VecIdx0);
5851       SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
5852                                  Vec0, DAG.getConstant(EltIdx0, SL, MVT::i32));
5853 
5854       SDValue Vec1 = SVN->getOperand(VecIdx1);
5855       SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
5856                                  Vec1, DAG.getConstant(EltIdx1, SL, MVT::i32));
5857       Pieces.push_back(DAG.getBuildVector(PackVT, SL, { Elt0, Elt1 }));
5858     }
5859   }
5860 
5861   return DAG.getNode(ISD::CONCAT_VECTORS, SL, ResultVT, Pieces);
5862 }
5863 
5864 SDValue SITargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op,
5865                                                 SelectionDAG &DAG) const {
5866   SDValue SVal = Op.getOperand(0);
5867   EVT ResultVT = Op.getValueType();
5868   EVT SValVT = SVal.getValueType();
5869   SDValue UndefVal = DAG.getUNDEF(SValVT);
5870   SDLoc SL(Op);
5871 
5872   SmallVector<SDValue, 8> VElts;
5873   VElts.push_back(SVal);
5874   for (int I = 1, E = ResultVT.getVectorNumElements(); I < E; ++I)
5875     VElts.push_back(UndefVal);
5876 
5877   return DAG.getBuildVector(ResultVT, SL, VElts);
5878 }
5879 
5880 SDValue SITargetLowering::lowerBUILD_VECTOR(SDValue Op,
5881                                             SelectionDAG &DAG) const {
5882   SDLoc SL(Op);
5883   EVT VT = Op.getValueType();
5884 
5885   if (VT == MVT::v4i16 || VT == MVT::v4f16 ||
5886       VT == MVT::v8i16 || VT == MVT::v8f16) {
5887     EVT HalfVT = MVT::getVectorVT(VT.getVectorElementType().getSimpleVT(),
5888                                   VT.getVectorNumElements() / 2);
5889     MVT HalfIntVT = MVT::getIntegerVT(HalfVT.getSizeInBits());
5890 
5891     // Turn into pair of packed build_vectors.
5892     // TODO: Special case for constants that can be materialized with s_mov_b64.
5893     SmallVector<SDValue, 4> LoOps, HiOps;
5894     for (unsigned I = 0, E = VT.getVectorNumElements() / 2; I != E; ++I) {
5895       LoOps.push_back(Op.getOperand(I));
5896       HiOps.push_back(Op.getOperand(I + E));
5897     }
5898     SDValue Lo = DAG.getBuildVector(HalfVT, SL, LoOps);
5899     SDValue Hi = DAG.getBuildVector(HalfVT, SL, HiOps);
5900 
5901     SDValue CastLo = DAG.getNode(ISD::BITCAST, SL, HalfIntVT, Lo);
5902     SDValue CastHi = DAG.getNode(ISD::BITCAST, SL, HalfIntVT, Hi);
5903 
5904     SDValue Blend = DAG.getBuildVector(MVT::getVectorVT(HalfIntVT, 2), SL,
5905                                        { CastLo, CastHi });
5906     return DAG.getNode(ISD::BITCAST, SL, VT, Blend);
5907   }
5908 
5909   if (VT == MVT::v16i16 || VT == MVT::v16f16) {
5910     EVT QuarterVT = MVT::getVectorVT(VT.getVectorElementType().getSimpleVT(),
5911                                      VT.getVectorNumElements() / 4);
5912     MVT QuarterIntVT = MVT::getIntegerVT(QuarterVT.getSizeInBits());
5913 
5914     SmallVector<SDValue, 4> Parts[4];
5915     for (unsigned I = 0, E = VT.getVectorNumElements() / 4; I != E; ++I) {
5916       for (unsigned P = 0; P < 4; ++P)
5917         Parts[P].push_back(Op.getOperand(I + P * E));
5918     }
5919     SDValue Casts[4];
5920     for (unsigned P = 0; P < 4; ++P) {
5921       SDValue Vec = DAG.getBuildVector(QuarterVT, SL, Parts[P]);
5922       Casts[P] = DAG.getNode(ISD::BITCAST, SL, QuarterIntVT, Vec);
5923     }
5924 
5925     SDValue Blend =
5926         DAG.getBuildVector(MVT::getVectorVT(QuarterIntVT, 4), SL, Casts);
5927     return DAG.getNode(ISD::BITCAST, SL, VT, Blend);
5928   }
5929 
5930   assert(VT == MVT::v2f16 || VT == MVT::v2i16);
5931   assert(!Subtarget->hasVOP3PInsts() && "this should be legal");
5932 
5933   SDValue Lo = Op.getOperand(0);
5934   SDValue Hi = Op.getOperand(1);
5935 
5936   // Avoid adding defined bits with the zero_extend.
5937   if (Hi.isUndef()) {
5938     Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo);
5939     SDValue ExtLo = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Lo);
5940     return DAG.getNode(ISD::BITCAST, SL, VT, ExtLo);
5941   }
5942 
5943   Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Hi);
5944   Hi = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Hi);
5945 
5946   SDValue ShlHi = DAG.getNode(ISD::SHL, SL, MVT::i32, Hi,
5947                               DAG.getConstant(16, SL, MVT::i32));
5948   if (Lo.isUndef())
5949     return DAG.getNode(ISD::BITCAST, SL, VT, ShlHi);
5950 
5951   Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo);
5952   Lo = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Lo);
5953 
5954   SDValue Or = DAG.getNode(ISD::OR, SL, MVT::i32, Lo, ShlHi);
5955   return DAG.getNode(ISD::BITCAST, SL, VT, Or);
5956 }
5957 
5958 bool
5959 SITargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
5960   // We can fold offsets for anything that doesn't require a GOT relocation.
5961   return (GA->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS ||
5962           GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
5963           GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
5964          !shouldEmitGOTReloc(GA->getGlobal());
5965 }
5966 
5967 static SDValue
5968 buildPCRelGlobalAddress(SelectionDAG &DAG, const GlobalValue *GV,
5969                         const SDLoc &DL, int64_t Offset, EVT PtrVT,
5970                         unsigned GAFlags = SIInstrInfo::MO_NONE) {
5971   assert(isInt<32>(Offset + 4) && "32-bit offset is expected!");
5972   // In order to support pc-relative addressing, the PC_ADD_REL_OFFSET SDNode is
5973   // lowered to the following code sequence:
5974   //
5975   // For constant address space:
5976   //   s_getpc_b64 s[0:1]
5977   //   s_add_u32 s0, s0, $symbol
5978   //   s_addc_u32 s1, s1, 0
5979   //
5980   //   s_getpc_b64 returns the address of the s_add_u32 instruction and then
5981   //   a fixup or relocation is emitted to replace $symbol with a literal
5982   //   constant, which is a pc-relative offset from the encoding of the $symbol
5983   //   operand to the global variable.
5984   //
5985   // For global address space:
5986   //   s_getpc_b64 s[0:1]
5987   //   s_add_u32 s0, s0, $symbol@{gotpc}rel32@lo
5988   //   s_addc_u32 s1, s1, $symbol@{gotpc}rel32@hi
5989   //
5990   //   s_getpc_b64 returns the address of the s_add_u32 instruction and then
5991   //   fixups or relocations are emitted to replace $symbol@*@lo and
5992   //   $symbol@*@hi with lower 32 bits and higher 32 bits of a literal constant,
5993   //   which is a 64-bit pc-relative offset from the encoding of the $symbol
5994   //   operand to the global variable.
5995   //
5996   // What we want here is an offset from the value returned by s_getpc
5997   // (which is the address of the s_add_u32 instruction) to the global
5998   // variable, but since the encoding of $symbol starts 4 bytes after the start
5999   // of the s_add_u32 instruction, we end up with an offset that is 4 bytes too
6000   // small. This requires us to add 4 to the global variable offset in order to
6001   // compute the correct address. Similarly for the s_addc_u32 instruction, the
6002   // encoding of $symbol starts 12 bytes after the start of the s_add_u32
6003   // instruction.
6004   SDValue PtrLo =
6005       DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 4, GAFlags);
6006   SDValue PtrHi;
6007   if (GAFlags == SIInstrInfo::MO_NONE) {
6008     PtrHi = DAG.getTargetConstant(0, DL, MVT::i32);
6009   } else {
6010     PtrHi =
6011         DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 12, GAFlags + 1);
6012   }
6013   return DAG.getNode(AMDGPUISD::PC_ADD_REL_OFFSET, DL, PtrVT, PtrLo, PtrHi);
6014 }
6015 
6016 SDValue SITargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI,
6017                                              SDValue Op,
6018                                              SelectionDAG &DAG) const {
6019   GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op);
6020   SDLoc DL(GSD);
6021   EVT PtrVT = Op.getValueType();
6022 
6023   const GlobalValue *GV = GSD->getGlobal();
6024   if ((GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS &&
6025        shouldUseLDSConstAddress(GV)) ||
6026       GSD->getAddressSpace() == AMDGPUAS::REGION_ADDRESS ||
6027       GSD->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) {
6028     if (GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS &&
6029         GV->hasExternalLinkage()) {
6030       Type *Ty = GV->getValueType();
6031       // HIP uses an unsized array `extern __shared__ T s[]` or similar
6032       // zero-sized type in other languages to declare the dynamic shared
6033       // memory which size is not known at the compile time. They will be
6034       // allocated by the runtime and placed directly after the static
6035       // allocated ones. They all share the same offset.
6036       if (DAG.getDataLayout().getTypeAllocSize(Ty).isZero()) {
6037         assert(PtrVT == MVT::i32 && "32-bit pointer is expected.");
6038         // Adjust alignment for that dynamic shared memory array.
6039         MFI->setDynLDSAlign(DAG.getDataLayout(), *cast<GlobalVariable>(GV));
6040         return SDValue(
6041             DAG.getMachineNode(AMDGPU::GET_GROUPSTATICSIZE, DL, PtrVT), 0);
6042       }
6043     }
6044     return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG);
6045   }
6046 
6047   if (GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) {
6048     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, GSD->getOffset(),
6049                                             SIInstrInfo::MO_ABS32_LO);
6050     return DAG.getNode(AMDGPUISD::LDS, DL, MVT::i32, GA);
6051   }
6052 
6053   if (shouldEmitFixup(GV))
6054     return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT);
6055   else if (shouldEmitPCReloc(GV))
6056     return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT,
6057                                    SIInstrInfo::MO_REL32);
6058 
6059   SDValue GOTAddr = buildPCRelGlobalAddress(DAG, GV, DL, 0, PtrVT,
6060                                             SIInstrInfo::MO_GOTPCREL32);
6061 
6062   Type *Ty = PtrVT.getTypeForEVT(*DAG.getContext());
6063   PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS);
6064   const DataLayout &DataLayout = DAG.getDataLayout();
6065   Align Alignment = DataLayout.getABITypeAlign(PtrTy);
6066   MachinePointerInfo PtrInfo
6067     = MachinePointerInfo::getGOT(DAG.getMachineFunction());
6068 
6069   return DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), GOTAddr, PtrInfo, Alignment,
6070                      MachineMemOperand::MODereferenceable |
6071                          MachineMemOperand::MOInvariant);
6072 }
6073 
6074 SDValue SITargetLowering::copyToM0(SelectionDAG &DAG, SDValue Chain,
6075                                    const SDLoc &DL, SDValue V) const {
6076   // We can't use S_MOV_B32 directly, because there is no way to specify m0 as
6077   // the destination register.
6078   //
6079   // We can't use CopyToReg, because MachineCSE won't combine COPY instructions,
6080   // so we will end up with redundant moves to m0.
6081   //
6082   // We use a pseudo to ensure we emit s_mov_b32 with m0 as the direct result.
6083 
6084   // A Null SDValue creates a glue result.
6085   SDNode *M0 = DAG.getMachineNode(AMDGPU::SI_INIT_M0, DL, MVT::Other, MVT::Glue,
6086                                   V, Chain);
6087   return SDValue(M0, 0);
6088 }
6089 
6090 SDValue SITargetLowering::lowerImplicitZextParam(SelectionDAG &DAG,
6091                                                  SDValue Op,
6092                                                  MVT VT,
6093                                                  unsigned Offset) const {
6094   SDLoc SL(Op);
6095   SDValue Param = lowerKernargMemParameter(
6096       DAG, MVT::i32, MVT::i32, SL, DAG.getEntryNode(), Offset, Align(4), false);
6097   // The local size values will have the hi 16-bits as zero.
6098   return DAG.getNode(ISD::AssertZext, SL, MVT::i32, Param,
6099                      DAG.getValueType(VT));
6100 }
6101 
6102 static SDValue emitNonHSAIntrinsicError(SelectionDAG &DAG, const SDLoc &DL,
6103                                         EVT VT) {
6104   DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(),
6105                                       "non-hsa intrinsic with hsa target",
6106                                       DL.getDebugLoc());
6107   DAG.getContext()->diagnose(BadIntrin);
6108   return DAG.getUNDEF(VT);
6109 }
6110 
6111 static SDValue emitRemovedIntrinsicError(SelectionDAG &DAG, const SDLoc &DL,
6112                                          EVT VT) {
6113   DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(),
6114                                       "intrinsic not supported on subtarget",
6115                                       DL.getDebugLoc());
6116   DAG.getContext()->diagnose(BadIntrin);
6117   return DAG.getUNDEF(VT);
6118 }
6119 
6120 static SDValue getBuildDwordsVector(SelectionDAG &DAG, SDLoc DL,
6121                                     ArrayRef<SDValue> Elts) {
6122   assert(!Elts.empty());
6123   MVT Type;
6124   unsigned NumElts = Elts.size();
6125 
6126   if (NumElts <= 8) {
6127     Type = MVT::getVectorVT(MVT::f32, NumElts);
6128   } else {
6129     assert(Elts.size() <= 16);
6130     Type = MVT::v16f32;
6131     NumElts = 16;
6132   }
6133 
6134   SmallVector<SDValue, 16> VecElts(NumElts);
6135   for (unsigned i = 0; i < Elts.size(); ++i) {
6136     SDValue Elt = Elts[i];
6137     if (Elt.getValueType() != MVT::f32)
6138       Elt = DAG.getBitcast(MVT::f32, Elt);
6139     VecElts[i] = Elt;
6140   }
6141   for (unsigned i = Elts.size(); i < NumElts; ++i)
6142     VecElts[i] = DAG.getUNDEF(MVT::f32);
6143 
6144   if (NumElts == 1)
6145     return VecElts[0];
6146   return DAG.getBuildVector(Type, DL, VecElts);
6147 }
6148 
6149 static SDValue padEltsToUndef(SelectionDAG &DAG, const SDLoc &DL, EVT CastVT,
6150                               SDValue Src, int ExtraElts) {
6151   EVT SrcVT = Src.getValueType();
6152 
6153   SmallVector<SDValue, 8> Elts;
6154 
6155   if (SrcVT.isVector())
6156     DAG.ExtractVectorElements(Src, Elts);
6157   else
6158     Elts.push_back(Src);
6159 
6160   SDValue Undef = DAG.getUNDEF(SrcVT.getScalarType());
6161   while (ExtraElts--)
6162     Elts.push_back(Undef);
6163 
6164   return DAG.getBuildVector(CastVT, DL, Elts);
6165 }
6166 
6167 // Re-construct the required return value for a image load intrinsic.
6168 // This is more complicated due to the optional use TexFailCtrl which means the required
6169 // return type is an aggregate
6170 static SDValue constructRetValue(SelectionDAG &DAG,
6171                                  MachineSDNode *Result,
6172                                  ArrayRef<EVT> ResultTypes,
6173                                  bool IsTexFail, bool Unpacked, bool IsD16,
6174                                  int DMaskPop, int NumVDataDwords,
6175                                  const SDLoc &DL) {
6176   // Determine the required return type. This is the same regardless of IsTexFail flag
6177   EVT ReqRetVT = ResultTypes[0];
6178   int ReqRetNumElts = ReqRetVT.isVector() ? ReqRetVT.getVectorNumElements() : 1;
6179   int NumDataDwords = (!IsD16 || (IsD16 && Unpacked)) ?
6180     ReqRetNumElts : (ReqRetNumElts + 1) / 2;
6181 
6182   int MaskPopDwords = (!IsD16 || (IsD16 && Unpacked)) ?
6183     DMaskPop : (DMaskPop + 1) / 2;
6184 
6185   MVT DataDwordVT = NumDataDwords == 1 ?
6186     MVT::i32 : MVT::getVectorVT(MVT::i32, NumDataDwords);
6187 
6188   MVT MaskPopVT = MaskPopDwords == 1 ?
6189     MVT::i32 : MVT::getVectorVT(MVT::i32, MaskPopDwords);
6190 
6191   SDValue Data(Result, 0);
6192   SDValue TexFail;
6193 
6194   if (DMaskPop > 0 && Data.getValueType() != MaskPopVT) {
6195     SDValue ZeroIdx = DAG.getConstant(0, DL, MVT::i32);
6196     if (MaskPopVT.isVector()) {
6197       Data = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MaskPopVT,
6198                          SDValue(Result, 0), ZeroIdx);
6199     } else {
6200       Data = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MaskPopVT,
6201                          SDValue(Result, 0), ZeroIdx);
6202     }
6203   }
6204 
6205   if (DataDwordVT.isVector())
6206     Data = padEltsToUndef(DAG, DL, DataDwordVT, Data,
6207                           NumDataDwords - MaskPopDwords);
6208 
6209   if (IsD16)
6210     Data = adjustLoadValueTypeImpl(Data, ReqRetVT, DL, DAG, Unpacked);
6211 
6212   EVT LegalReqRetVT = ReqRetVT;
6213   if (!ReqRetVT.isVector()) {
6214     if (!Data.getValueType().isInteger())
6215       Data = DAG.getNode(ISD::BITCAST, DL,
6216                          Data.getValueType().changeTypeToInteger(), Data);
6217     Data = DAG.getNode(ISD::TRUNCATE, DL, ReqRetVT.changeTypeToInteger(), Data);
6218   } else {
6219     // We need to widen the return vector to a legal type
6220     if ((ReqRetVT.getVectorNumElements() % 2) == 1 &&
6221         ReqRetVT.getVectorElementType().getSizeInBits() == 16) {
6222       LegalReqRetVT =
6223           EVT::getVectorVT(*DAG.getContext(), ReqRetVT.getVectorElementType(),
6224                            ReqRetVT.getVectorNumElements() + 1);
6225     }
6226   }
6227   Data = DAG.getNode(ISD::BITCAST, DL, LegalReqRetVT, Data);
6228 
6229   if (IsTexFail) {
6230     TexFail =
6231         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, SDValue(Result, 0),
6232                     DAG.getConstant(MaskPopDwords, DL, MVT::i32));
6233 
6234     return DAG.getMergeValues({Data, TexFail, SDValue(Result, 1)}, DL);
6235   }
6236 
6237   if (Result->getNumValues() == 1)
6238     return Data;
6239 
6240   return DAG.getMergeValues({Data, SDValue(Result, 1)}, DL);
6241 }
6242 
6243 static bool parseTexFail(SDValue TexFailCtrl, SelectionDAG &DAG, SDValue *TFE,
6244                          SDValue *LWE, bool &IsTexFail) {
6245   auto TexFailCtrlConst = cast<ConstantSDNode>(TexFailCtrl.getNode());
6246 
6247   uint64_t Value = TexFailCtrlConst->getZExtValue();
6248   if (Value) {
6249     IsTexFail = true;
6250   }
6251 
6252   SDLoc DL(TexFailCtrlConst);
6253   *TFE = DAG.getTargetConstant((Value & 0x1) ? 1 : 0, DL, MVT::i32);
6254   Value &= ~(uint64_t)0x1;
6255   *LWE = DAG.getTargetConstant((Value & 0x2) ? 1 : 0, DL, MVT::i32);
6256   Value &= ~(uint64_t)0x2;
6257 
6258   return Value == 0;
6259 }
6260 
6261 static void packImage16bitOpsToDwords(SelectionDAG &DAG, SDValue Op,
6262                                       MVT PackVectorVT,
6263                                       SmallVectorImpl<SDValue> &PackedAddrs,
6264                                       unsigned DimIdx, unsigned EndIdx,
6265                                       unsigned NumGradients) {
6266   SDLoc DL(Op);
6267   for (unsigned I = DimIdx; I < EndIdx; I++) {
6268     SDValue Addr = Op.getOperand(I);
6269 
6270     // Gradients are packed with undef for each coordinate.
6271     // In <hi 16 bit>,<lo 16 bit> notation, the registers look like this:
6272     // 1D: undef,dx/dh; undef,dx/dv
6273     // 2D: dy/dh,dx/dh; dy/dv,dx/dv
6274     // 3D: dy/dh,dx/dh; undef,dz/dh; dy/dv,dx/dv; undef,dz/dv
6275     if (((I + 1) >= EndIdx) ||
6276         ((NumGradients / 2) % 2 == 1 && (I == DimIdx + (NumGradients / 2) - 1 ||
6277                                          I == DimIdx + NumGradients - 1))) {
6278       if (Addr.getValueType() != MVT::i16)
6279         Addr = DAG.getBitcast(MVT::i16, Addr);
6280       Addr = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Addr);
6281     } else {
6282       Addr = DAG.getBuildVector(PackVectorVT, DL, {Addr, Op.getOperand(I + 1)});
6283       I++;
6284     }
6285     Addr = DAG.getBitcast(MVT::f32, Addr);
6286     PackedAddrs.push_back(Addr);
6287   }
6288 }
6289 
6290 SDValue SITargetLowering::lowerImage(SDValue Op,
6291                                      const AMDGPU::ImageDimIntrinsicInfo *Intr,
6292                                      SelectionDAG &DAG, bool WithChain) const {
6293   SDLoc DL(Op);
6294   MachineFunction &MF = DAG.getMachineFunction();
6295   const GCNSubtarget* ST = &MF.getSubtarget<GCNSubtarget>();
6296   const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
6297       AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode);
6298   const AMDGPU::MIMGDimInfo *DimInfo = AMDGPU::getMIMGDimInfo(Intr->Dim);
6299   unsigned IntrOpcode = Intr->BaseOpcode;
6300   bool IsGFX10Plus = AMDGPU::isGFX10Plus(*Subtarget);
6301   bool IsGFX11Plus = AMDGPU::isGFX11Plus(*Subtarget);
6302 
6303   SmallVector<EVT, 3> ResultTypes(Op->values());
6304   SmallVector<EVT, 3> OrigResultTypes(Op->values());
6305   bool IsD16 = false;
6306   bool IsG16 = false;
6307   bool IsA16 = false;
6308   SDValue VData;
6309   int NumVDataDwords;
6310   bool AdjustRetType = false;
6311 
6312   // Offset of intrinsic arguments
6313   const unsigned ArgOffset = WithChain ? 2 : 1;
6314 
6315   unsigned DMask;
6316   unsigned DMaskLanes = 0;
6317 
6318   if (BaseOpcode->Atomic) {
6319     VData = Op.getOperand(2);
6320 
6321     bool Is64Bit = VData.getValueType() == MVT::i64;
6322     if (BaseOpcode->AtomicX2) {
6323       SDValue VData2 = Op.getOperand(3);
6324       VData = DAG.getBuildVector(Is64Bit ? MVT::v2i64 : MVT::v2i32, DL,
6325                                  {VData, VData2});
6326       if (Is64Bit)
6327         VData = DAG.getBitcast(MVT::v4i32, VData);
6328 
6329       ResultTypes[0] = Is64Bit ? MVT::v2i64 : MVT::v2i32;
6330       DMask = Is64Bit ? 0xf : 0x3;
6331       NumVDataDwords = Is64Bit ? 4 : 2;
6332     } else {
6333       DMask = Is64Bit ? 0x3 : 0x1;
6334       NumVDataDwords = Is64Bit ? 2 : 1;
6335     }
6336   } else {
6337     auto *DMaskConst =
6338         cast<ConstantSDNode>(Op.getOperand(ArgOffset + Intr->DMaskIndex));
6339     DMask = DMaskConst->getZExtValue();
6340     DMaskLanes = BaseOpcode->Gather4 ? 4 : countPopulation(DMask);
6341 
6342     if (BaseOpcode->Store) {
6343       VData = Op.getOperand(2);
6344 
6345       MVT StoreVT = VData.getSimpleValueType();
6346       if (StoreVT.getScalarType() == MVT::f16) {
6347         if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16)
6348           return Op; // D16 is unsupported for this instruction
6349 
6350         IsD16 = true;
6351         VData = handleD16VData(VData, DAG, true);
6352       }
6353 
6354       NumVDataDwords = (VData.getValueType().getSizeInBits() + 31) / 32;
6355     } else {
6356       // Work out the num dwords based on the dmask popcount and underlying type
6357       // and whether packing is supported.
6358       MVT LoadVT = ResultTypes[0].getSimpleVT();
6359       if (LoadVT.getScalarType() == MVT::f16) {
6360         if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16)
6361           return Op; // D16 is unsupported for this instruction
6362 
6363         IsD16 = true;
6364       }
6365 
6366       // Confirm that the return type is large enough for the dmask specified
6367       if ((LoadVT.isVector() && LoadVT.getVectorNumElements() < DMaskLanes) ||
6368           (!LoadVT.isVector() && DMaskLanes > 1))
6369           return Op;
6370 
6371       // The sq block of gfx8 and gfx9 do not estimate register use correctly
6372       // for d16 image_gather4, image_gather4_l, and image_gather4_lz
6373       // instructions.
6374       if (IsD16 && !Subtarget->hasUnpackedD16VMem() &&
6375           !(BaseOpcode->Gather4 && Subtarget->hasImageGather4D16Bug()))
6376         NumVDataDwords = (DMaskLanes + 1) / 2;
6377       else
6378         NumVDataDwords = DMaskLanes;
6379 
6380       AdjustRetType = true;
6381     }
6382   }
6383 
6384   unsigned VAddrEnd = ArgOffset + Intr->VAddrEnd;
6385   SmallVector<SDValue, 4> VAddrs;
6386 
6387   // Check for 16 bit addresses or derivatives and pack if true.
6388   MVT VAddrVT =
6389       Op.getOperand(ArgOffset + Intr->GradientStart).getSimpleValueType();
6390   MVT VAddrScalarVT = VAddrVT.getScalarType();
6391   MVT GradPackVectorVT = VAddrScalarVT == MVT::f16 ? MVT::v2f16 : MVT::v2i16;
6392   IsG16 = VAddrScalarVT == MVT::f16 || VAddrScalarVT == MVT::i16;
6393 
6394   VAddrVT = Op.getOperand(ArgOffset + Intr->CoordStart).getSimpleValueType();
6395   VAddrScalarVT = VAddrVT.getScalarType();
6396   MVT AddrPackVectorVT = VAddrScalarVT == MVT::f16 ? MVT::v2f16 : MVT::v2i16;
6397   IsA16 = VAddrScalarVT == MVT::f16 || VAddrScalarVT == MVT::i16;
6398 
6399   // Push back extra arguments.
6400   for (unsigned I = Intr->VAddrStart; I < Intr->GradientStart; I++) {
6401     if (IsA16 && (Op.getOperand(ArgOffset + I).getValueType() == MVT::f16)) {
6402       assert(I == Intr->BiasIndex && "Got unexpected 16-bit extra argument");
6403       // Special handling of bias when A16 is on. Bias is of type half but
6404       // occupies full 32-bit.
6405       SDValue Bias = DAG.getBuildVector(
6406           MVT::v2f16, DL,
6407           {Op.getOperand(ArgOffset + I), DAG.getUNDEF(MVT::f16)});
6408       VAddrs.push_back(Bias);
6409     } else {
6410       assert((!IsA16 || Intr->NumBiasArgs == 0 || I != Intr->BiasIndex) &&
6411              "Bias needs to be converted to 16 bit in A16 mode");
6412       VAddrs.push_back(Op.getOperand(ArgOffset + I));
6413     }
6414   }
6415 
6416   if (BaseOpcode->Gradients && !ST->hasG16() && (IsA16 != IsG16)) {
6417     // 16 bit gradients are supported, but are tied to the A16 control
6418     // so both gradients and addresses must be 16 bit
6419     LLVM_DEBUG(
6420         dbgs() << "Failed to lower image intrinsic: 16 bit addresses "
6421                   "require 16 bit args for both gradients and addresses");
6422     return Op;
6423   }
6424 
6425   if (IsA16) {
6426     if (!ST->hasA16()) {
6427       LLVM_DEBUG(dbgs() << "Failed to lower image intrinsic: Target does not "
6428                            "support 16 bit addresses\n");
6429       return Op;
6430     }
6431   }
6432 
6433   // We've dealt with incorrect input so we know that if IsA16, IsG16
6434   // are set then we have to compress/pack operands (either address,
6435   // gradient or both)
6436   // In the case where a16 and gradients are tied (no G16 support) then we
6437   // have already verified that both IsA16 and IsG16 are true
6438   if (BaseOpcode->Gradients && IsG16 && ST->hasG16()) {
6439     // Activate g16
6440     const AMDGPU::MIMGG16MappingInfo *G16MappingInfo =
6441         AMDGPU::getMIMGG16MappingInfo(Intr->BaseOpcode);
6442     IntrOpcode = G16MappingInfo->G16; // set new opcode to variant with _g16
6443   }
6444 
6445   // Add gradients (packed or unpacked)
6446   if (IsG16) {
6447     // Pack the gradients
6448     // const int PackEndIdx = IsA16 ? VAddrEnd : (ArgOffset + Intr->CoordStart);
6449     packImage16bitOpsToDwords(DAG, Op, GradPackVectorVT, VAddrs,
6450                               ArgOffset + Intr->GradientStart,
6451                               ArgOffset + Intr->CoordStart, Intr->NumGradients);
6452   } else {
6453     for (unsigned I = ArgOffset + Intr->GradientStart;
6454          I < ArgOffset + Intr->CoordStart; I++)
6455       VAddrs.push_back(Op.getOperand(I));
6456   }
6457 
6458   // Add addresses (packed or unpacked)
6459   if (IsA16) {
6460     packImage16bitOpsToDwords(DAG, Op, AddrPackVectorVT, VAddrs,
6461                               ArgOffset + Intr->CoordStart, VAddrEnd,
6462                               0 /* No gradients */);
6463   } else {
6464     // Add uncompressed address
6465     for (unsigned I = ArgOffset + Intr->CoordStart; I < VAddrEnd; I++)
6466       VAddrs.push_back(Op.getOperand(I));
6467   }
6468 
6469   // If the register allocator cannot place the address registers contiguously
6470   // without introducing moves, then using the non-sequential address encoding
6471   // is always preferable, since it saves VALU instructions and is usually a
6472   // wash in terms of code size or even better.
6473   //
6474   // However, we currently have no way of hinting to the register allocator that
6475   // MIMG addresses should be placed contiguously when it is possible to do so,
6476   // so force non-NSA for the common 2-address case as a heuristic.
6477   //
6478   // SIShrinkInstructions will convert NSA encodings to non-NSA after register
6479   // allocation when possible.
6480   //
6481   // TODO: we can actually allow partial NSA where the final register is a
6482   // contiguous set of the remaining addresses.
6483   // This could help where there are more addresses than supported.
6484   bool UseNSA = ST->hasFeature(AMDGPU::FeatureNSAEncoding) &&
6485                 VAddrs.size() >= 3 &&
6486                 VAddrs.size() <= (unsigned)ST->getNSAMaxSize();
6487   SDValue VAddr;
6488   if (!UseNSA)
6489     VAddr = getBuildDwordsVector(DAG, DL, VAddrs);
6490 
6491   SDValue True = DAG.getTargetConstant(1, DL, MVT::i1);
6492   SDValue False = DAG.getTargetConstant(0, DL, MVT::i1);
6493   SDValue Unorm;
6494   if (!BaseOpcode->Sampler) {
6495     Unorm = True;
6496   } else {
6497     auto UnormConst =
6498         cast<ConstantSDNode>(Op.getOperand(ArgOffset + Intr->UnormIndex));
6499 
6500     Unorm = UnormConst->getZExtValue() ? True : False;
6501   }
6502 
6503   SDValue TFE;
6504   SDValue LWE;
6505   SDValue TexFail = Op.getOperand(ArgOffset + Intr->TexFailCtrlIndex);
6506   bool IsTexFail = false;
6507   if (!parseTexFail(TexFail, DAG, &TFE, &LWE, IsTexFail))
6508     return Op;
6509 
6510   if (IsTexFail) {
6511     if (!DMaskLanes) {
6512       // Expecting to get an error flag since TFC is on - and dmask is 0
6513       // Force dmask to be at least 1 otherwise the instruction will fail
6514       DMask = 0x1;
6515       DMaskLanes = 1;
6516       NumVDataDwords = 1;
6517     }
6518     NumVDataDwords += 1;
6519     AdjustRetType = true;
6520   }
6521 
6522   // Has something earlier tagged that the return type needs adjusting
6523   // This happens if the instruction is a load or has set TexFailCtrl flags
6524   if (AdjustRetType) {
6525     // NumVDataDwords reflects the true number of dwords required in the return type
6526     if (DMaskLanes == 0 && !BaseOpcode->Store) {
6527       // This is a no-op load. This can be eliminated
6528       SDValue Undef = DAG.getUNDEF(Op.getValueType());
6529       if (isa<MemSDNode>(Op))
6530         return DAG.getMergeValues({Undef, Op.getOperand(0)}, DL);
6531       return Undef;
6532     }
6533 
6534     EVT NewVT = NumVDataDwords > 1 ?
6535                   EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumVDataDwords)
6536                 : MVT::i32;
6537 
6538     ResultTypes[0] = NewVT;
6539     if (ResultTypes.size() == 3) {
6540       // Original result was aggregate type used for TexFailCtrl results
6541       // The actual instruction returns as a vector type which has now been
6542       // created. Remove the aggregate result.
6543       ResultTypes.erase(&ResultTypes[1]);
6544     }
6545   }
6546 
6547   unsigned CPol = cast<ConstantSDNode>(
6548       Op.getOperand(ArgOffset + Intr->CachePolicyIndex))->getZExtValue();
6549   if (BaseOpcode->Atomic)
6550     CPol |= AMDGPU::CPol::GLC; // TODO no-return optimization
6551   if (CPol & ~AMDGPU::CPol::ALL)
6552     return Op;
6553 
6554   SmallVector<SDValue, 26> Ops;
6555   if (BaseOpcode->Store || BaseOpcode->Atomic)
6556     Ops.push_back(VData); // vdata
6557   if (UseNSA)
6558     append_range(Ops, VAddrs);
6559   else
6560     Ops.push_back(VAddr);
6561   Ops.push_back(Op.getOperand(ArgOffset + Intr->RsrcIndex));
6562   if (BaseOpcode->Sampler)
6563     Ops.push_back(Op.getOperand(ArgOffset + Intr->SampIndex));
6564   Ops.push_back(DAG.getTargetConstant(DMask, DL, MVT::i32));
6565   if (IsGFX10Plus)
6566     Ops.push_back(DAG.getTargetConstant(DimInfo->Encoding, DL, MVT::i32));
6567   Ops.push_back(Unorm);
6568   Ops.push_back(DAG.getTargetConstant(CPol, DL, MVT::i32));
6569   Ops.push_back(IsA16 &&  // r128, a16 for gfx9
6570                 ST->hasFeature(AMDGPU::FeatureR128A16) ? True : False);
6571   if (IsGFX10Plus)
6572     Ops.push_back(IsA16 ? True : False);
6573   if (!Subtarget->hasGFX90AInsts()) {
6574     Ops.push_back(TFE); //tfe
6575   } else if (cast<ConstantSDNode>(TFE)->getZExtValue()) {
6576     report_fatal_error("TFE is not supported on this GPU");
6577   }
6578   Ops.push_back(LWE); // lwe
6579   if (!IsGFX10Plus)
6580     Ops.push_back(DimInfo->DA ? True : False);
6581   if (BaseOpcode->HasD16)
6582     Ops.push_back(IsD16 ? True : False);
6583   if (isa<MemSDNode>(Op))
6584     Ops.push_back(Op.getOperand(0)); // chain
6585 
6586   int NumVAddrDwords =
6587       UseNSA ? VAddrs.size() : VAddr.getValueType().getSizeInBits() / 32;
6588   int Opcode = -1;
6589 
6590   if (IsGFX11Plus) {
6591     Opcode = AMDGPU::getMIMGOpcode(IntrOpcode,
6592                                    UseNSA ? AMDGPU::MIMGEncGfx11NSA
6593                                           : AMDGPU::MIMGEncGfx11Default,
6594                                    NumVDataDwords, NumVAddrDwords);
6595   } else if (IsGFX10Plus) {
6596     Opcode = AMDGPU::getMIMGOpcode(IntrOpcode,
6597                                    UseNSA ? AMDGPU::MIMGEncGfx10NSA
6598                                           : AMDGPU::MIMGEncGfx10Default,
6599                                    NumVDataDwords, NumVAddrDwords);
6600   } else {
6601     if (Subtarget->hasGFX90AInsts()) {
6602       Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx90a,
6603                                      NumVDataDwords, NumVAddrDwords);
6604       if (Opcode == -1)
6605         report_fatal_error(
6606             "requested image instruction is not supported on this GPU");
6607     }
6608     if (Opcode == -1 &&
6609         Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
6610       Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx8,
6611                                      NumVDataDwords, NumVAddrDwords);
6612     if (Opcode == -1)
6613       Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx6,
6614                                      NumVDataDwords, NumVAddrDwords);
6615   }
6616   assert(Opcode != -1);
6617 
6618   MachineSDNode *NewNode = DAG.getMachineNode(Opcode, DL, ResultTypes, Ops);
6619   if (auto MemOp = dyn_cast<MemSDNode>(Op)) {
6620     MachineMemOperand *MemRef = MemOp->getMemOperand();
6621     DAG.setNodeMemRefs(NewNode, {MemRef});
6622   }
6623 
6624   if (BaseOpcode->AtomicX2) {
6625     SmallVector<SDValue, 1> Elt;
6626     DAG.ExtractVectorElements(SDValue(NewNode, 0), Elt, 0, 1);
6627     return DAG.getMergeValues({Elt[0], SDValue(NewNode, 1)}, DL);
6628   }
6629   if (BaseOpcode->Store)
6630     return SDValue(NewNode, 0);
6631   return constructRetValue(DAG, NewNode,
6632                            OrigResultTypes, IsTexFail,
6633                            Subtarget->hasUnpackedD16VMem(), IsD16,
6634                            DMaskLanes, NumVDataDwords, DL);
6635 }
6636 
6637 SDValue SITargetLowering::lowerSBuffer(EVT VT, SDLoc DL, SDValue Rsrc,
6638                                        SDValue Offset, SDValue CachePolicy,
6639                                        SelectionDAG &DAG) const {
6640   MachineFunction &MF = DAG.getMachineFunction();
6641 
6642   const DataLayout &DataLayout = DAG.getDataLayout();
6643   Align Alignment =
6644       DataLayout.getABITypeAlign(VT.getTypeForEVT(*DAG.getContext()));
6645 
6646   MachineMemOperand *MMO = MF.getMachineMemOperand(
6647       MachinePointerInfo(),
6648       MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
6649           MachineMemOperand::MOInvariant,
6650       VT.getStoreSize(), Alignment);
6651 
6652   if (!Offset->isDivergent()) {
6653     SDValue Ops[] = {
6654         Rsrc,
6655         Offset, // Offset
6656         CachePolicy
6657     };
6658 
6659     // Widen vec3 load to vec4.
6660     if (VT.isVector() && VT.getVectorNumElements() == 3) {
6661       EVT WidenedVT =
6662           EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4);
6663       auto WidenedOp = DAG.getMemIntrinsicNode(
6664           AMDGPUISD::SBUFFER_LOAD, DL, DAG.getVTList(WidenedVT), Ops, WidenedVT,
6665           MF.getMachineMemOperand(MMO, 0, WidenedVT.getStoreSize()));
6666       auto Subvector = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, WidenedOp,
6667                                    DAG.getVectorIdxConstant(0, DL));
6668       return Subvector;
6669     }
6670 
6671     return DAG.getMemIntrinsicNode(AMDGPUISD::SBUFFER_LOAD, DL,
6672                                    DAG.getVTList(VT), Ops, VT, MMO);
6673   }
6674 
6675   // We have a divergent offset. Emit a MUBUF buffer load instead. We can
6676   // assume that the buffer is unswizzled.
6677   SmallVector<SDValue, 4> Loads;
6678   unsigned NumLoads = 1;
6679   MVT LoadVT = VT.getSimpleVT();
6680   unsigned NumElts = LoadVT.isVector() ? LoadVT.getVectorNumElements() : 1;
6681   assert((LoadVT.getScalarType() == MVT::i32 ||
6682           LoadVT.getScalarType() == MVT::f32));
6683 
6684   if (NumElts == 8 || NumElts == 16) {
6685     NumLoads = NumElts / 4;
6686     LoadVT = MVT::getVectorVT(LoadVT.getScalarType(), 4);
6687   }
6688 
6689   SDVTList VTList = DAG.getVTList({LoadVT, MVT::Glue});
6690   SDValue Ops[] = {
6691       DAG.getEntryNode(),                               // Chain
6692       Rsrc,                                             // rsrc
6693       DAG.getConstant(0, DL, MVT::i32),                 // vindex
6694       {},                                               // voffset
6695       {},                                               // soffset
6696       {},                                               // offset
6697       CachePolicy,                                      // cachepolicy
6698       DAG.getTargetConstant(0, DL, MVT::i1),            // idxen
6699   };
6700 
6701   // Use the alignment to ensure that the required offsets will fit into the
6702   // immediate offsets.
6703   setBufferOffsets(Offset, DAG, &Ops[3],
6704                    NumLoads > 1 ? Align(16 * NumLoads) : Align(4));
6705 
6706   uint64_t InstOffset = cast<ConstantSDNode>(Ops[5])->getZExtValue();
6707   for (unsigned i = 0; i < NumLoads; ++i) {
6708     Ops[5] = DAG.getTargetConstant(InstOffset + 16 * i, DL, MVT::i32);
6709     Loads.push_back(getMemIntrinsicNode(AMDGPUISD::BUFFER_LOAD, DL, VTList, Ops,
6710                                         LoadVT, MMO, DAG));
6711   }
6712 
6713   if (NumElts == 8 || NumElts == 16)
6714     return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Loads);
6715 
6716   return Loads[0];
6717 }
6718 
6719 SDValue SITargetLowering::lowerWorkitemID(SelectionDAG &DAG, SDValue Op,
6720                                           unsigned Dim,
6721                                           const ArgDescriptor &Arg) const {
6722   SDLoc SL(Op);
6723   MachineFunction &MF = DAG.getMachineFunction();
6724   unsigned MaxID = Subtarget->getMaxWorkitemID(MF.getFunction(), Dim);
6725   if (MaxID == 0)
6726     return DAG.getConstant(0, SL, MVT::i32);
6727 
6728   SDValue Val = loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
6729                                SDLoc(DAG.getEntryNode()), Arg);
6730 
6731   // Don't bother inserting AssertZext for packed IDs since we're emitting the
6732   // masking operations anyway.
6733   //
6734   // TODO: We could assert the top bit is 0 for the source copy.
6735   if (Arg.isMasked())
6736     return Val;
6737 
6738   // Preserve the known bits after expansion to a copy.
6739   EVT SmallVT =
6740       EVT::getIntegerVT(*DAG.getContext(), 32 - countLeadingZeros(MaxID));
6741   return DAG.getNode(ISD::AssertZext, SL, MVT::i32, Val,
6742                      DAG.getValueType(SmallVT));
6743 }
6744 
6745 SDValue SITargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
6746                                                   SelectionDAG &DAG) const {
6747   MachineFunction &MF = DAG.getMachineFunction();
6748   auto MFI = MF.getInfo<SIMachineFunctionInfo>();
6749 
6750   EVT VT = Op.getValueType();
6751   SDLoc DL(Op);
6752   unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6753 
6754   // TODO: Should this propagate fast-math-flags?
6755 
6756   switch (IntrinsicID) {
6757   case Intrinsic::amdgcn_implicit_buffer_ptr: {
6758     if (getSubtarget()->isAmdHsaOrMesa(MF.getFunction()))
6759       return emitNonHSAIntrinsicError(DAG, DL, VT);
6760     return getPreloadedValue(DAG, *MFI, VT,
6761                              AMDGPUFunctionArgInfo::IMPLICIT_BUFFER_PTR);
6762   }
6763   case Intrinsic::amdgcn_dispatch_ptr:
6764   case Intrinsic::amdgcn_queue_ptr: {
6765     if (!Subtarget->isAmdHsaOrMesa(MF.getFunction())) {
6766       DiagnosticInfoUnsupported BadIntrin(
6767           MF.getFunction(), "unsupported hsa intrinsic without hsa target",
6768           DL.getDebugLoc());
6769       DAG.getContext()->diagnose(BadIntrin);
6770       return DAG.getUNDEF(VT);
6771     }
6772 
6773     auto RegID = IntrinsicID == Intrinsic::amdgcn_dispatch_ptr ?
6774       AMDGPUFunctionArgInfo::DISPATCH_PTR : AMDGPUFunctionArgInfo::QUEUE_PTR;
6775     return getPreloadedValue(DAG, *MFI, VT, RegID);
6776   }
6777   case Intrinsic::amdgcn_implicitarg_ptr: {
6778     if (MFI->isEntryFunction())
6779       return getImplicitArgPtr(DAG, DL);
6780     return getPreloadedValue(DAG, *MFI, VT,
6781                              AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR);
6782   }
6783   case Intrinsic::amdgcn_kernarg_segment_ptr: {
6784     if (!AMDGPU::isKernel(MF.getFunction().getCallingConv())) {
6785       // This only makes sense to call in a kernel, so just lower to null.
6786       return DAG.getConstant(0, DL, VT);
6787     }
6788 
6789     return getPreloadedValue(DAG, *MFI, VT,
6790                              AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
6791   }
6792   case Intrinsic::amdgcn_dispatch_id: {
6793     return getPreloadedValue(DAG, *MFI, VT, AMDGPUFunctionArgInfo::DISPATCH_ID);
6794   }
6795   case Intrinsic::amdgcn_rcp:
6796     return DAG.getNode(AMDGPUISD::RCP, DL, VT, Op.getOperand(1));
6797   case Intrinsic::amdgcn_rsq:
6798     return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
6799   case Intrinsic::amdgcn_rsq_legacy:
6800     if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
6801       return emitRemovedIntrinsicError(DAG, DL, VT);
6802     return SDValue();
6803   case Intrinsic::amdgcn_rcp_legacy:
6804     if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
6805       return emitRemovedIntrinsicError(DAG, DL, VT);
6806     return DAG.getNode(AMDGPUISD::RCP_LEGACY, DL, VT, Op.getOperand(1));
6807   case Intrinsic::amdgcn_rsq_clamp: {
6808     if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS)
6809       return DAG.getNode(AMDGPUISD::RSQ_CLAMP, DL, VT, Op.getOperand(1));
6810 
6811     Type *Type = VT.getTypeForEVT(*DAG.getContext());
6812     APFloat Max = APFloat::getLargest(Type->getFltSemantics());
6813     APFloat Min = APFloat::getLargest(Type->getFltSemantics(), true);
6814 
6815     SDValue Rsq = DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
6816     SDValue Tmp = DAG.getNode(ISD::FMINNUM, DL, VT, Rsq,
6817                               DAG.getConstantFP(Max, DL, VT));
6818     return DAG.getNode(ISD::FMAXNUM, DL, VT, Tmp,
6819                        DAG.getConstantFP(Min, DL, VT));
6820   }
6821   case Intrinsic::r600_read_ngroups_x:
6822     if (Subtarget->isAmdHsaOS())
6823       return emitNonHSAIntrinsicError(DAG, DL, VT);
6824 
6825     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6826                                     SI::KernelInputOffsets::NGROUPS_X, Align(4),
6827                                     false);
6828   case Intrinsic::r600_read_ngroups_y:
6829     if (Subtarget->isAmdHsaOS())
6830       return emitNonHSAIntrinsicError(DAG, DL, VT);
6831 
6832     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6833                                     SI::KernelInputOffsets::NGROUPS_Y, Align(4),
6834                                     false);
6835   case Intrinsic::r600_read_ngroups_z:
6836     if (Subtarget->isAmdHsaOS())
6837       return emitNonHSAIntrinsicError(DAG, DL, VT);
6838 
6839     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6840                                     SI::KernelInputOffsets::NGROUPS_Z, Align(4),
6841                                     false);
6842   case Intrinsic::r600_read_global_size_x:
6843     if (Subtarget->isAmdHsaOS())
6844       return emitNonHSAIntrinsicError(DAG, DL, VT);
6845 
6846     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6847                                     SI::KernelInputOffsets::GLOBAL_SIZE_X,
6848                                     Align(4), false);
6849   case Intrinsic::r600_read_global_size_y:
6850     if (Subtarget->isAmdHsaOS())
6851       return emitNonHSAIntrinsicError(DAG, DL, VT);
6852 
6853     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6854                                     SI::KernelInputOffsets::GLOBAL_SIZE_Y,
6855                                     Align(4), false);
6856   case Intrinsic::r600_read_global_size_z:
6857     if (Subtarget->isAmdHsaOS())
6858       return emitNonHSAIntrinsicError(DAG, DL, VT);
6859 
6860     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6861                                     SI::KernelInputOffsets::GLOBAL_SIZE_Z,
6862                                     Align(4), false);
6863   case Intrinsic::r600_read_local_size_x:
6864     if (Subtarget->isAmdHsaOS())
6865       return emitNonHSAIntrinsicError(DAG, DL, VT);
6866 
6867     return lowerImplicitZextParam(DAG, Op, MVT::i16,
6868                                   SI::KernelInputOffsets::LOCAL_SIZE_X);
6869   case Intrinsic::r600_read_local_size_y:
6870     if (Subtarget->isAmdHsaOS())
6871       return emitNonHSAIntrinsicError(DAG, DL, VT);
6872 
6873     return lowerImplicitZextParam(DAG, Op, MVT::i16,
6874                                   SI::KernelInputOffsets::LOCAL_SIZE_Y);
6875   case Intrinsic::r600_read_local_size_z:
6876     if (Subtarget->isAmdHsaOS())
6877       return emitNonHSAIntrinsicError(DAG, DL, VT);
6878 
6879     return lowerImplicitZextParam(DAG, Op, MVT::i16,
6880                                   SI::KernelInputOffsets::LOCAL_SIZE_Z);
6881   case Intrinsic::amdgcn_workgroup_id_x:
6882     return getPreloadedValue(DAG, *MFI, VT,
6883                              AMDGPUFunctionArgInfo::WORKGROUP_ID_X);
6884   case Intrinsic::amdgcn_workgroup_id_y:
6885     return getPreloadedValue(DAG, *MFI, VT,
6886                              AMDGPUFunctionArgInfo::WORKGROUP_ID_Y);
6887   case Intrinsic::amdgcn_workgroup_id_z:
6888     return getPreloadedValue(DAG, *MFI, VT,
6889                              AMDGPUFunctionArgInfo::WORKGROUP_ID_Z);
6890   case Intrinsic::amdgcn_workitem_id_x:
6891     return lowerWorkitemID(DAG, Op, 0, MFI->getArgInfo().WorkItemIDX);
6892   case Intrinsic::amdgcn_workitem_id_y:
6893     return lowerWorkitemID(DAG, Op, 1, MFI->getArgInfo().WorkItemIDY);
6894   case Intrinsic::amdgcn_workitem_id_z:
6895     return lowerWorkitemID(DAG, Op, 2, MFI->getArgInfo().WorkItemIDZ);
6896   case Intrinsic::amdgcn_wavefrontsize:
6897     return DAG.getConstant(MF.getSubtarget<GCNSubtarget>().getWavefrontSize(),
6898                            SDLoc(Op), MVT::i32);
6899   case Intrinsic::amdgcn_s_buffer_load: {
6900     unsigned CPol = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
6901     if (CPol & ~AMDGPU::CPol::ALL)
6902       return Op;
6903     return lowerSBuffer(VT, DL, Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
6904                         DAG);
6905   }
6906   case Intrinsic::amdgcn_fdiv_fast:
6907     return lowerFDIV_FAST(Op, DAG);
6908   case Intrinsic::amdgcn_sin:
6909     return DAG.getNode(AMDGPUISD::SIN_HW, DL, VT, Op.getOperand(1));
6910 
6911   case Intrinsic::amdgcn_cos:
6912     return DAG.getNode(AMDGPUISD::COS_HW, DL, VT, Op.getOperand(1));
6913 
6914   case Intrinsic::amdgcn_mul_u24:
6915     return DAG.getNode(AMDGPUISD::MUL_U24, DL, VT, Op.getOperand(1), Op.getOperand(2));
6916   case Intrinsic::amdgcn_mul_i24:
6917     return DAG.getNode(AMDGPUISD::MUL_I24, DL, VT, Op.getOperand(1), Op.getOperand(2));
6918 
6919   case Intrinsic::amdgcn_log_clamp: {
6920     if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS)
6921       return SDValue();
6922 
6923     return emitRemovedIntrinsicError(DAG, DL, VT);
6924   }
6925   case Intrinsic::amdgcn_ldexp:
6926     return DAG.getNode(AMDGPUISD::LDEXP, DL, VT,
6927                        Op.getOperand(1), Op.getOperand(2));
6928 
6929   case Intrinsic::amdgcn_fract:
6930     return DAG.getNode(AMDGPUISD::FRACT, DL, VT, Op.getOperand(1));
6931 
6932   case Intrinsic::amdgcn_class:
6933     return DAG.getNode(AMDGPUISD::FP_CLASS, DL, VT,
6934                        Op.getOperand(1), Op.getOperand(2));
6935   case Intrinsic::amdgcn_div_fmas:
6936     return DAG.getNode(AMDGPUISD::DIV_FMAS, DL, VT,
6937                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
6938                        Op.getOperand(4));
6939 
6940   case Intrinsic::amdgcn_div_fixup:
6941     return DAG.getNode(AMDGPUISD::DIV_FIXUP, DL, VT,
6942                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
6943 
6944   case Intrinsic::amdgcn_div_scale: {
6945     const ConstantSDNode *Param = cast<ConstantSDNode>(Op.getOperand(3));
6946 
6947     // Translate to the operands expected by the machine instruction. The
6948     // first parameter must be the same as the first instruction.
6949     SDValue Numerator = Op.getOperand(1);
6950     SDValue Denominator = Op.getOperand(2);
6951 
6952     // Note this order is opposite of the machine instruction's operations,
6953     // which is s0.f = Quotient, s1.f = Denominator, s2.f = Numerator. The
6954     // intrinsic has the numerator as the first operand to match a normal
6955     // division operation.
6956 
6957     SDValue Src0 = Param->isAllOnes() ? Numerator : Denominator;
6958 
6959     return DAG.getNode(AMDGPUISD::DIV_SCALE, DL, Op->getVTList(), Src0,
6960                        Denominator, Numerator);
6961   }
6962   case Intrinsic::amdgcn_icmp: {
6963     // There is a Pat that handles this variant, so return it as-is.
6964     if (Op.getOperand(1).getValueType() == MVT::i1 &&
6965         Op.getConstantOperandVal(2) == 0 &&
6966         Op.getConstantOperandVal(3) == ICmpInst::Predicate::ICMP_NE)
6967       return Op;
6968     return lowerICMPIntrinsic(*this, Op.getNode(), DAG);
6969   }
6970   case Intrinsic::amdgcn_fcmp: {
6971     return lowerFCMPIntrinsic(*this, Op.getNode(), DAG);
6972   }
6973   case Intrinsic::amdgcn_ballot:
6974     return lowerBALLOTIntrinsic(*this, Op.getNode(), DAG);
6975   case Intrinsic::amdgcn_fmed3:
6976     return DAG.getNode(AMDGPUISD::FMED3, DL, VT,
6977                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
6978   case Intrinsic::amdgcn_fdot2:
6979     return DAG.getNode(AMDGPUISD::FDOT2, DL, VT,
6980                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
6981                        Op.getOperand(4));
6982   case Intrinsic::amdgcn_fmul_legacy:
6983     return DAG.getNode(AMDGPUISD::FMUL_LEGACY, DL, VT,
6984                        Op.getOperand(1), Op.getOperand(2));
6985   case Intrinsic::amdgcn_sffbh:
6986     return DAG.getNode(AMDGPUISD::FFBH_I32, DL, VT, Op.getOperand(1));
6987   case Intrinsic::amdgcn_sbfe:
6988     return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT,
6989                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
6990   case Intrinsic::amdgcn_ubfe:
6991     return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT,
6992                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
6993   case Intrinsic::amdgcn_cvt_pkrtz:
6994   case Intrinsic::amdgcn_cvt_pknorm_i16:
6995   case Intrinsic::amdgcn_cvt_pknorm_u16:
6996   case Intrinsic::amdgcn_cvt_pk_i16:
6997   case Intrinsic::amdgcn_cvt_pk_u16: {
6998     // FIXME: Stop adding cast if v2f16/v2i16 are legal.
6999     EVT VT = Op.getValueType();
7000     unsigned Opcode;
7001 
7002     if (IntrinsicID == Intrinsic::amdgcn_cvt_pkrtz)
7003       Opcode = AMDGPUISD::CVT_PKRTZ_F16_F32;
7004     else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_i16)
7005       Opcode = AMDGPUISD::CVT_PKNORM_I16_F32;
7006     else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_u16)
7007       Opcode = AMDGPUISD::CVT_PKNORM_U16_F32;
7008     else if (IntrinsicID == Intrinsic::amdgcn_cvt_pk_i16)
7009       Opcode = AMDGPUISD::CVT_PK_I16_I32;
7010     else
7011       Opcode = AMDGPUISD::CVT_PK_U16_U32;
7012 
7013     if (isTypeLegal(VT))
7014       return DAG.getNode(Opcode, DL, VT, Op.getOperand(1), Op.getOperand(2));
7015 
7016     SDValue Node = DAG.getNode(Opcode, DL, MVT::i32,
7017                                Op.getOperand(1), Op.getOperand(2));
7018     return DAG.getNode(ISD::BITCAST, DL, VT, Node);
7019   }
7020   case Intrinsic::amdgcn_fmad_ftz:
7021     return DAG.getNode(AMDGPUISD::FMAD_FTZ, DL, VT, Op.getOperand(1),
7022                        Op.getOperand(2), Op.getOperand(3));
7023 
7024   case Intrinsic::amdgcn_if_break:
7025     return SDValue(DAG.getMachineNode(AMDGPU::SI_IF_BREAK, DL, VT,
7026                                       Op->getOperand(1), Op->getOperand(2)), 0);
7027 
7028   case Intrinsic::amdgcn_groupstaticsize: {
7029     Triple::OSType OS = getTargetMachine().getTargetTriple().getOS();
7030     if (OS == Triple::AMDHSA || OS == Triple::AMDPAL)
7031       return Op;
7032 
7033     const Module *M = MF.getFunction().getParent();
7034     const GlobalValue *GV =
7035         M->getNamedValue(Intrinsic::getName(Intrinsic::amdgcn_groupstaticsize));
7036     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, 0,
7037                                             SIInstrInfo::MO_ABS32_LO);
7038     return {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, GA), 0};
7039   }
7040   case Intrinsic::amdgcn_is_shared:
7041   case Intrinsic::amdgcn_is_private: {
7042     SDLoc SL(Op);
7043     unsigned AS = (IntrinsicID == Intrinsic::amdgcn_is_shared) ?
7044       AMDGPUAS::LOCAL_ADDRESS : AMDGPUAS::PRIVATE_ADDRESS;
7045     SDValue Aperture = getSegmentAperture(AS, SL, DAG);
7046     SDValue SrcVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32,
7047                                  Op.getOperand(1));
7048 
7049     SDValue SrcHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, SrcVec,
7050                                 DAG.getConstant(1, SL, MVT::i32));
7051     return DAG.getSetCC(SL, MVT::i1, SrcHi, Aperture, ISD::SETEQ);
7052   }
7053   case Intrinsic::amdgcn_perm:
7054     return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, Op.getOperand(1),
7055                        Op.getOperand(2), Op.getOperand(3));
7056   case Intrinsic::amdgcn_reloc_constant: {
7057     Module *M = const_cast<Module *>(MF.getFunction().getParent());
7058     const MDNode *Metadata = cast<MDNodeSDNode>(Op.getOperand(1))->getMD();
7059     auto SymbolName = cast<MDString>(Metadata->getOperand(0))->getString();
7060     auto RelocSymbol = cast<GlobalVariable>(
7061         M->getOrInsertGlobal(SymbolName, Type::getInt32Ty(M->getContext())));
7062     SDValue GA = DAG.getTargetGlobalAddress(RelocSymbol, DL, MVT::i32, 0,
7063                                             SIInstrInfo::MO_ABS32_LO);
7064     return {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, GA), 0};
7065   }
7066   default:
7067     if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
7068             AMDGPU::getImageDimIntrinsicInfo(IntrinsicID))
7069       return lowerImage(Op, ImageDimIntr, DAG, false);
7070 
7071     return Op;
7072   }
7073 }
7074 
7075 /// Update \p MMO based on the offset inputs to an intrinsic.
7076 static void updateBufferMMO(MachineMemOperand *MMO, SDValue VOffset,
7077                             SDValue SOffset, SDValue Offset,
7078                             SDValue VIndex = SDValue()) {
7079   if (!isa<ConstantSDNode>(VOffset) || !isa<ConstantSDNode>(SOffset) ||
7080       !isa<ConstantSDNode>(Offset)) {
7081     // The combined offset is not known to be constant, so we cannot represent
7082     // it in the MMO. Give up.
7083     MMO->setValue((Value *)nullptr);
7084     return;
7085   }
7086 
7087   if (VIndex && (!isa<ConstantSDNode>(VIndex) ||
7088                  !cast<ConstantSDNode>(VIndex)->isZero())) {
7089     // The strided index component of the address is not known to be zero, so we
7090     // cannot represent it in the MMO. Give up.
7091     MMO->setValue((Value *)nullptr);
7092     return;
7093   }
7094 
7095   MMO->setOffset(cast<ConstantSDNode>(VOffset)->getSExtValue() +
7096                  cast<ConstantSDNode>(SOffset)->getSExtValue() +
7097                  cast<ConstantSDNode>(Offset)->getSExtValue());
7098 }
7099 
7100 SDValue SITargetLowering::lowerRawBufferAtomicIntrin(SDValue Op,
7101                                                      SelectionDAG &DAG,
7102                                                      unsigned NewOpcode) const {
7103   SDLoc DL(Op);
7104 
7105   SDValue VData = Op.getOperand(2);
7106   auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
7107   SDValue Ops[] = {
7108     Op.getOperand(0), // Chain
7109     VData,            // vdata
7110     Op.getOperand(3), // rsrc
7111     DAG.getConstant(0, DL, MVT::i32), // vindex
7112     Offsets.first,    // voffset
7113     Op.getOperand(5), // soffset
7114     Offsets.second,   // offset
7115     Op.getOperand(6), // cachepolicy
7116     DAG.getTargetConstant(0, DL, MVT::i1), // idxen
7117   };
7118 
7119   auto *M = cast<MemSDNode>(Op);
7120   updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6]);
7121 
7122   EVT MemVT = VData.getValueType();
7123   return DAG.getMemIntrinsicNode(NewOpcode, DL, Op->getVTList(), Ops, MemVT,
7124                                  M->getMemOperand());
7125 }
7126 
7127 // Return a value to use for the idxen operand by examining the vindex operand.
7128 static unsigned getIdxEn(SDValue VIndex) {
7129   if (auto VIndexC = dyn_cast<ConstantSDNode>(VIndex))
7130     // No need to set idxen if vindex is known to be zero.
7131     return VIndexC->getZExtValue() != 0;
7132   return 1;
7133 }
7134 
7135 SDValue
7136 SITargetLowering::lowerStructBufferAtomicIntrin(SDValue Op, SelectionDAG &DAG,
7137                                                 unsigned NewOpcode) const {
7138   SDLoc DL(Op);
7139 
7140   SDValue VData = Op.getOperand(2);
7141   auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
7142   SDValue Ops[] = {
7143     Op.getOperand(0), // Chain
7144     VData,            // vdata
7145     Op.getOperand(3), // rsrc
7146     Op.getOperand(4), // vindex
7147     Offsets.first,    // voffset
7148     Op.getOperand(6), // soffset
7149     Offsets.second,   // offset
7150     Op.getOperand(7), // cachepolicy
7151     DAG.getTargetConstant(1, DL, MVT::i1), // idxen
7152   };
7153 
7154   auto *M = cast<MemSDNode>(Op);
7155   updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6], Ops[3]);
7156 
7157   EVT MemVT = VData.getValueType();
7158   return DAG.getMemIntrinsicNode(NewOpcode, DL, Op->getVTList(), Ops, MemVT,
7159                                  M->getMemOperand());
7160 }
7161 
7162 SDValue SITargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
7163                                                  SelectionDAG &DAG) const {
7164   unsigned IntrID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7165   SDLoc DL(Op);
7166 
7167   switch (IntrID) {
7168   case Intrinsic::amdgcn_ds_ordered_add:
7169   case Intrinsic::amdgcn_ds_ordered_swap: {
7170     MemSDNode *M = cast<MemSDNode>(Op);
7171     SDValue Chain = M->getOperand(0);
7172     SDValue M0 = M->getOperand(2);
7173     SDValue Value = M->getOperand(3);
7174     unsigned IndexOperand = M->getConstantOperandVal(7);
7175     unsigned WaveRelease = M->getConstantOperandVal(8);
7176     unsigned WaveDone = M->getConstantOperandVal(9);
7177 
7178     unsigned OrderedCountIndex = IndexOperand & 0x3f;
7179     IndexOperand &= ~0x3f;
7180     unsigned CountDw = 0;
7181 
7182     if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10) {
7183       CountDw = (IndexOperand >> 24) & 0xf;
7184       IndexOperand &= ~(0xf << 24);
7185 
7186       if (CountDw < 1 || CountDw > 4) {
7187         report_fatal_error(
7188             "ds_ordered_count: dword count must be between 1 and 4");
7189       }
7190     }
7191 
7192     if (IndexOperand)
7193       report_fatal_error("ds_ordered_count: bad index operand");
7194 
7195     if (WaveDone && !WaveRelease)
7196       report_fatal_error("ds_ordered_count: wave_done requires wave_release");
7197 
7198     unsigned Instruction = IntrID == Intrinsic::amdgcn_ds_ordered_add ? 0 : 1;
7199     unsigned ShaderType =
7200         SIInstrInfo::getDSShaderTypeValue(DAG.getMachineFunction());
7201     unsigned Offset0 = OrderedCountIndex << 2;
7202     unsigned Offset1 = WaveRelease | (WaveDone << 1) | (Instruction << 4);
7203 
7204     if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10)
7205       Offset1 |= (CountDw - 1) << 6;
7206 
7207     if (Subtarget->getGeneration() < AMDGPUSubtarget::GFX11)
7208       Offset1 |= ShaderType << 2;
7209 
7210     unsigned Offset = Offset0 | (Offset1 << 8);
7211 
7212     SDValue Ops[] = {
7213       Chain,
7214       Value,
7215       DAG.getTargetConstant(Offset, DL, MVT::i16),
7216       copyToM0(DAG, Chain, DL, M0).getValue(1), // Glue
7217     };
7218     return DAG.getMemIntrinsicNode(AMDGPUISD::DS_ORDERED_COUNT, DL,
7219                                    M->getVTList(), Ops, M->getMemoryVT(),
7220                                    M->getMemOperand());
7221   }
7222   case Intrinsic::amdgcn_ds_fadd: {
7223     MemSDNode *M = cast<MemSDNode>(Op);
7224     unsigned Opc;
7225     switch (IntrID) {
7226     case Intrinsic::amdgcn_ds_fadd:
7227       Opc = ISD::ATOMIC_LOAD_FADD;
7228       break;
7229     }
7230 
7231     return DAG.getAtomic(Opc, SDLoc(Op), M->getMemoryVT(),
7232                          M->getOperand(0), M->getOperand(2), M->getOperand(3),
7233                          M->getMemOperand());
7234   }
7235   case Intrinsic::amdgcn_atomic_inc:
7236   case Intrinsic::amdgcn_atomic_dec:
7237   case Intrinsic::amdgcn_ds_fmin:
7238   case Intrinsic::amdgcn_ds_fmax: {
7239     MemSDNode *M = cast<MemSDNode>(Op);
7240     unsigned Opc;
7241     switch (IntrID) {
7242     case Intrinsic::amdgcn_atomic_inc:
7243       Opc = AMDGPUISD::ATOMIC_INC;
7244       break;
7245     case Intrinsic::amdgcn_atomic_dec:
7246       Opc = AMDGPUISD::ATOMIC_DEC;
7247       break;
7248     case Intrinsic::amdgcn_ds_fmin:
7249       Opc = AMDGPUISD::ATOMIC_LOAD_FMIN;
7250       break;
7251     case Intrinsic::amdgcn_ds_fmax:
7252       Opc = AMDGPUISD::ATOMIC_LOAD_FMAX;
7253       break;
7254     default:
7255       llvm_unreachable("Unknown intrinsic!");
7256     }
7257     SDValue Ops[] = {
7258       M->getOperand(0), // Chain
7259       M->getOperand(2), // Ptr
7260       M->getOperand(3)  // Value
7261     };
7262 
7263     return DAG.getMemIntrinsicNode(Opc, SDLoc(Op), M->getVTList(), Ops,
7264                                    M->getMemoryVT(), M->getMemOperand());
7265   }
7266   case Intrinsic::amdgcn_buffer_load:
7267   case Intrinsic::amdgcn_buffer_load_format: {
7268     unsigned Glc = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
7269     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue();
7270     unsigned IdxEn = getIdxEn(Op.getOperand(3));
7271     SDValue Ops[] = {
7272       Op.getOperand(0), // Chain
7273       Op.getOperand(2), // rsrc
7274       Op.getOperand(3), // vindex
7275       SDValue(),        // voffset -- will be set by setBufferOffsets
7276       SDValue(),        // soffset -- will be set by setBufferOffsets
7277       SDValue(),        // offset -- will be set by setBufferOffsets
7278       DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
7279       DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
7280     };
7281     setBufferOffsets(Op.getOperand(4), DAG, &Ops[3]);
7282 
7283     unsigned Opc = (IntrID == Intrinsic::amdgcn_buffer_load) ?
7284         AMDGPUISD::BUFFER_LOAD : AMDGPUISD::BUFFER_LOAD_FORMAT;
7285 
7286     EVT VT = Op.getValueType();
7287     EVT IntVT = VT.changeTypeToInteger();
7288     auto *M = cast<MemSDNode>(Op);
7289     updateBufferMMO(M->getMemOperand(), Ops[3], Ops[4], Ops[5], Ops[2]);
7290     EVT LoadVT = Op.getValueType();
7291 
7292     if (LoadVT.getScalarType() == MVT::f16)
7293       return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16,
7294                                  M, DAG, Ops);
7295 
7296     // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics
7297     if (LoadVT.getScalarType() == MVT::i8 ||
7298         LoadVT.getScalarType() == MVT::i16)
7299       return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M);
7300 
7301     return getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, IntVT,
7302                                M->getMemOperand(), DAG);
7303   }
7304   case Intrinsic::amdgcn_raw_buffer_load:
7305   case Intrinsic::amdgcn_raw_buffer_load_format: {
7306     const bool IsFormat = IntrID == Intrinsic::amdgcn_raw_buffer_load_format;
7307 
7308     auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG);
7309     SDValue Ops[] = {
7310       Op.getOperand(0), // Chain
7311       Op.getOperand(2), // rsrc
7312       DAG.getConstant(0, DL, MVT::i32), // vindex
7313       Offsets.first,    // voffset
7314       Op.getOperand(4), // soffset
7315       Offsets.second,   // offset
7316       Op.getOperand(5), // cachepolicy, swizzled buffer
7317       DAG.getTargetConstant(0, DL, MVT::i1), // idxen
7318     };
7319 
7320     auto *M = cast<MemSDNode>(Op);
7321     updateBufferMMO(M->getMemOperand(), Ops[3], Ops[4], Ops[5]);
7322     return lowerIntrinsicLoad(M, IsFormat, DAG, Ops);
7323   }
7324   case Intrinsic::amdgcn_struct_buffer_load:
7325   case Intrinsic::amdgcn_struct_buffer_load_format: {
7326     const bool IsFormat = IntrID == Intrinsic::amdgcn_struct_buffer_load_format;
7327 
7328     auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
7329     SDValue Ops[] = {
7330       Op.getOperand(0), // Chain
7331       Op.getOperand(2), // rsrc
7332       Op.getOperand(3), // vindex
7333       Offsets.first,    // voffset
7334       Op.getOperand(5), // soffset
7335       Offsets.second,   // offset
7336       Op.getOperand(6), // cachepolicy, swizzled buffer
7337       DAG.getTargetConstant(1, DL, MVT::i1), // idxen
7338     };
7339 
7340     auto *M = cast<MemSDNode>(Op);
7341     updateBufferMMO(M->getMemOperand(), Ops[3], Ops[4], Ops[5], Ops[2]);
7342     return lowerIntrinsicLoad(cast<MemSDNode>(Op), IsFormat, DAG, Ops);
7343   }
7344   case Intrinsic::amdgcn_tbuffer_load: {
7345     MemSDNode *M = cast<MemSDNode>(Op);
7346     EVT LoadVT = Op.getValueType();
7347 
7348     unsigned Dfmt = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue();
7349     unsigned Nfmt = cast<ConstantSDNode>(Op.getOperand(8))->getZExtValue();
7350     unsigned Glc = cast<ConstantSDNode>(Op.getOperand(9))->getZExtValue();
7351     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(10))->getZExtValue();
7352     unsigned IdxEn = getIdxEn(Op.getOperand(3));
7353     SDValue Ops[] = {
7354       Op.getOperand(0),  // Chain
7355       Op.getOperand(2),  // rsrc
7356       Op.getOperand(3),  // vindex
7357       Op.getOperand(4),  // voffset
7358       Op.getOperand(5),  // soffset
7359       Op.getOperand(6),  // offset
7360       DAG.getTargetConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format
7361       DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
7362       DAG.getTargetConstant(IdxEn, DL, MVT::i1) // idxen
7363     };
7364 
7365     if (LoadVT.getScalarType() == MVT::f16)
7366       return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16,
7367                                  M, DAG, Ops);
7368     return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
7369                                Op->getVTList(), Ops, LoadVT, M->getMemOperand(),
7370                                DAG);
7371   }
7372   case Intrinsic::amdgcn_raw_tbuffer_load: {
7373     MemSDNode *M = cast<MemSDNode>(Op);
7374     EVT LoadVT = Op.getValueType();
7375     auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG);
7376 
7377     SDValue Ops[] = {
7378       Op.getOperand(0),  // Chain
7379       Op.getOperand(2),  // rsrc
7380       DAG.getConstant(0, DL, MVT::i32), // vindex
7381       Offsets.first,     // voffset
7382       Op.getOperand(4),  // soffset
7383       Offsets.second,    // offset
7384       Op.getOperand(5),  // format
7385       Op.getOperand(6),  // cachepolicy, swizzled buffer
7386       DAG.getTargetConstant(0, DL, MVT::i1), // idxen
7387     };
7388 
7389     if (LoadVT.getScalarType() == MVT::f16)
7390       return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16,
7391                                  M, DAG, Ops);
7392     return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
7393                                Op->getVTList(), Ops, LoadVT, M->getMemOperand(),
7394                                DAG);
7395   }
7396   case Intrinsic::amdgcn_struct_tbuffer_load: {
7397     MemSDNode *M = cast<MemSDNode>(Op);
7398     EVT LoadVT = Op.getValueType();
7399     auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
7400 
7401     SDValue Ops[] = {
7402       Op.getOperand(0),  // Chain
7403       Op.getOperand(2),  // rsrc
7404       Op.getOperand(3),  // vindex
7405       Offsets.first,     // voffset
7406       Op.getOperand(5),  // soffset
7407       Offsets.second,    // offset
7408       Op.getOperand(6),  // format
7409       Op.getOperand(7),  // cachepolicy, swizzled buffer
7410       DAG.getTargetConstant(1, DL, MVT::i1), // idxen
7411     };
7412 
7413     if (LoadVT.getScalarType() == MVT::f16)
7414       return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16,
7415                                  M, DAG, Ops);
7416     return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
7417                                Op->getVTList(), Ops, LoadVT, M->getMemOperand(),
7418                                DAG);
7419   }
7420   case Intrinsic::amdgcn_buffer_atomic_swap:
7421   case Intrinsic::amdgcn_buffer_atomic_add:
7422   case Intrinsic::amdgcn_buffer_atomic_sub:
7423   case Intrinsic::amdgcn_buffer_atomic_csub:
7424   case Intrinsic::amdgcn_buffer_atomic_smin:
7425   case Intrinsic::amdgcn_buffer_atomic_umin:
7426   case Intrinsic::amdgcn_buffer_atomic_smax:
7427   case Intrinsic::amdgcn_buffer_atomic_umax:
7428   case Intrinsic::amdgcn_buffer_atomic_and:
7429   case Intrinsic::amdgcn_buffer_atomic_or:
7430   case Intrinsic::amdgcn_buffer_atomic_xor:
7431   case Intrinsic::amdgcn_buffer_atomic_fadd: {
7432     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue();
7433     unsigned IdxEn = getIdxEn(Op.getOperand(4));
7434     SDValue Ops[] = {
7435       Op.getOperand(0), // Chain
7436       Op.getOperand(2), // vdata
7437       Op.getOperand(3), // rsrc
7438       Op.getOperand(4), // vindex
7439       SDValue(),        // voffset -- will be set by setBufferOffsets
7440       SDValue(),        // soffset -- will be set by setBufferOffsets
7441       SDValue(),        // offset -- will be set by setBufferOffsets
7442       DAG.getTargetConstant(Slc << 1, DL, MVT::i32), // cachepolicy
7443       DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
7444     };
7445     setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]);
7446 
7447     EVT VT = Op.getValueType();
7448 
7449     auto *M = cast<MemSDNode>(Op);
7450     updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6], Ops[3]);
7451     unsigned Opcode = 0;
7452 
7453     switch (IntrID) {
7454     case Intrinsic::amdgcn_buffer_atomic_swap:
7455       Opcode = AMDGPUISD::BUFFER_ATOMIC_SWAP;
7456       break;
7457     case Intrinsic::amdgcn_buffer_atomic_add:
7458       Opcode = AMDGPUISD::BUFFER_ATOMIC_ADD;
7459       break;
7460     case Intrinsic::amdgcn_buffer_atomic_sub:
7461       Opcode = AMDGPUISD::BUFFER_ATOMIC_SUB;
7462       break;
7463     case Intrinsic::amdgcn_buffer_atomic_csub:
7464       Opcode = AMDGPUISD::BUFFER_ATOMIC_CSUB;
7465       break;
7466     case Intrinsic::amdgcn_buffer_atomic_smin:
7467       Opcode = AMDGPUISD::BUFFER_ATOMIC_SMIN;
7468       break;
7469     case Intrinsic::amdgcn_buffer_atomic_umin:
7470       Opcode = AMDGPUISD::BUFFER_ATOMIC_UMIN;
7471       break;
7472     case Intrinsic::amdgcn_buffer_atomic_smax:
7473       Opcode = AMDGPUISD::BUFFER_ATOMIC_SMAX;
7474       break;
7475     case Intrinsic::amdgcn_buffer_atomic_umax:
7476       Opcode = AMDGPUISD::BUFFER_ATOMIC_UMAX;
7477       break;
7478     case Intrinsic::amdgcn_buffer_atomic_and:
7479       Opcode = AMDGPUISD::BUFFER_ATOMIC_AND;
7480       break;
7481     case Intrinsic::amdgcn_buffer_atomic_or:
7482       Opcode = AMDGPUISD::BUFFER_ATOMIC_OR;
7483       break;
7484     case Intrinsic::amdgcn_buffer_atomic_xor:
7485       Opcode = AMDGPUISD::BUFFER_ATOMIC_XOR;
7486       break;
7487     case Intrinsic::amdgcn_buffer_atomic_fadd:
7488       if (!Op.getValue(0).use_empty() && !hasAtomicFaddRtnForTy(Op)) {
7489         DiagnosticInfoUnsupported
7490           NoFpRet(DAG.getMachineFunction().getFunction(),
7491                   "return versions of fp atomics not supported",
7492                   DL.getDebugLoc(), DS_Error);
7493         DAG.getContext()->diagnose(NoFpRet);
7494         return SDValue();
7495       }
7496       Opcode = AMDGPUISD::BUFFER_ATOMIC_FADD;
7497       break;
7498     default:
7499       llvm_unreachable("unhandled atomic opcode");
7500     }
7501 
7502     return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT,
7503                                    M->getMemOperand());
7504   }
7505   case Intrinsic::amdgcn_raw_buffer_atomic_fadd:
7506     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FADD);
7507   case Intrinsic::amdgcn_struct_buffer_atomic_fadd:
7508     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FADD);
7509   case Intrinsic::amdgcn_raw_buffer_atomic_fmin:
7510     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMIN);
7511   case Intrinsic::amdgcn_struct_buffer_atomic_fmin:
7512     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMIN);
7513   case Intrinsic::amdgcn_raw_buffer_atomic_fmax:
7514     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMAX);
7515   case Intrinsic::amdgcn_struct_buffer_atomic_fmax:
7516     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMAX);
7517   case Intrinsic::amdgcn_raw_buffer_atomic_swap:
7518     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SWAP);
7519   case Intrinsic::amdgcn_raw_buffer_atomic_add:
7520     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_ADD);
7521   case Intrinsic::amdgcn_raw_buffer_atomic_sub:
7522     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SUB);
7523   case Intrinsic::amdgcn_raw_buffer_atomic_smin:
7524     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SMIN);
7525   case Intrinsic::amdgcn_raw_buffer_atomic_umin:
7526     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_UMIN);
7527   case Intrinsic::amdgcn_raw_buffer_atomic_smax:
7528     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SMAX);
7529   case Intrinsic::amdgcn_raw_buffer_atomic_umax:
7530     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_UMAX);
7531   case Intrinsic::amdgcn_raw_buffer_atomic_and:
7532     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_AND);
7533   case Intrinsic::amdgcn_raw_buffer_atomic_or:
7534     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_OR);
7535   case Intrinsic::amdgcn_raw_buffer_atomic_xor:
7536     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_XOR);
7537   case Intrinsic::amdgcn_raw_buffer_atomic_inc:
7538     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_INC);
7539   case Intrinsic::amdgcn_raw_buffer_atomic_dec:
7540     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_DEC);
7541   case Intrinsic::amdgcn_struct_buffer_atomic_swap:
7542     return lowerStructBufferAtomicIntrin(Op, DAG,
7543                                          AMDGPUISD::BUFFER_ATOMIC_SWAP);
7544   case Intrinsic::amdgcn_struct_buffer_atomic_add:
7545     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_ADD);
7546   case Intrinsic::amdgcn_struct_buffer_atomic_sub:
7547     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SUB);
7548   case Intrinsic::amdgcn_struct_buffer_atomic_smin:
7549     return lowerStructBufferAtomicIntrin(Op, DAG,
7550                                          AMDGPUISD::BUFFER_ATOMIC_SMIN);
7551   case Intrinsic::amdgcn_struct_buffer_atomic_umin:
7552     return lowerStructBufferAtomicIntrin(Op, DAG,
7553                                          AMDGPUISD::BUFFER_ATOMIC_UMIN);
7554   case Intrinsic::amdgcn_struct_buffer_atomic_smax:
7555     return lowerStructBufferAtomicIntrin(Op, DAG,
7556                                          AMDGPUISD::BUFFER_ATOMIC_SMAX);
7557   case Intrinsic::amdgcn_struct_buffer_atomic_umax:
7558     return lowerStructBufferAtomicIntrin(Op, DAG,
7559                                          AMDGPUISD::BUFFER_ATOMIC_UMAX);
7560   case Intrinsic::amdgcn_struct_buffer_atomic_and:
7561     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_AND);
7562   case Intrinsic::amdgcn_struct_buffer_atomic_or:
7563     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_OR);
7564   case Intrinsic::amdgcn_struct_buffer_atomic_xor:
7565     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_XOR);
7566   case Intrinsic::amdgcn_struct_buffer_atomic_inc:
7567     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_INC);
7568   case Intrinsic::amdgcn_struct_buffer_atomic_dec:
7569     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_DEC);
7570 
7571   case Intrinsic::amdgcn_buffer_atomic_cmpswap: {
7572     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue();
7573     unsigned IdxEn = getIdxEn(Op.getOperand(5));
7574     SDValue Ops[] = {
7575       Op.getOperand(0), // Chain
7576       Op.getOperand(2), // src
7577       Op.getOperand(3), // cmp
7578       Op.getOperand(4), // rsrc
7579       Op.getOperand(5), // vindex
7580       SDValue(),        // voffset -- will be set by setBufferOffsets
7581       SDValue(),        // soffset -- will be set by setBufferOffsets
7582       SDValue(),        // offset -- will be set by setBufferOffsets
7583       DAG.getTargetConstant(Slc << 1, DL, MVT::i32), // cachepolicy
7584       DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
7585     };
7586     setBufferOffsets(Op.getOperand(6), DAG, &Ops[5]);
7587 
7588     EVT VT = Op.getValueType();
7589     auto *M = cast<MemSDNode>(Op);
7590     updateBufferMMO(M->getMemOperand(), Ops[5], Ops[6], Ops[7], Ops[4]);
7591 
7592     return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
7593                                    Op->getVTList(), Ops, VT, M->getMemOperand());
7594   }
7595   case Intrinsic::amdgcn_raw_buffer_atomic_cmpswap: {
7596     auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
7597     SDValue Ops[] = {
7598       Op.getOperand(0), // Chain
7599       Op.getOperand(2), // src
7600       Op.getOperand(3), // cmp
7601       Op.getOperand(4), // rsrc
7602       DAG.getConstant(0, DL, MVT::i32), // vindex
7603       Offsets.first,    // voffset
7604       Op.getOperand(6), // soffset
7605       Offsets.second,   // offset
7606       Op.getOperand(7), // cachepolicy
7607       DAG.getTargetConstant(0, DL, MVT::i1), // idxen
7608     };
7609     EVT VT = Op.getValueType();
7610     auto *M = cast<MemSDNode>(Op);
7611     updateBufferMMO(M->getMemOperand(), Ops[5], Ops[6], Ops[7]);
7612 
7613     return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
7614                                    Op->getVTList(), Ops, VT, M->getMemOperand());
7615   }
7616   case Intrinsic::amdgcn_struct_buffer_atomic_cmpswap: {
7617     auto Offsets = splitBufferOffsets(Op.getOperand(6), DAG);
7618     SDValue Ops[] = {
7619       Op.getOperand(0), // Chain
7620       Op.getOperand(2), // src
7621       Op.getOperand(3), // cmp
7622       Op.getOperand(4), // rsrc
7623       Op.getOperand(5), // vindex
7624       Offsets.first,    // voffset
7625       Op.getOperand(7), // soffset
7626       Offsets.second,   // offset
7627       Op.getOperand(8), // cachepolicy
7628       DAG.getTargetConstant(1, DL, MVT::i1), // idxen
7629     };
7630     EVT VT = Op.getValueType();
7631     auto *M = cast<MemSDNode>(Op);
7632     updateBufferMMO(M->getMemOperand(), Ops[5], Ops[6], Ops[7], Ops[4]);
7633 
7634     return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
7635                                    Op->getVTList(), Ops, VT, M->getMemOperand());
7636   }
7637   case Intrinsic::amdgcn_image_bvh_intersect_ray: {
7638     MemSDNode *M = cast<MemSDNode>(Op);
7639     SDValue NodePtr = M->getOperand(2);
7640     SDValue RayExtent = M->getOperand(3);
7641     SDValue RayOrigin = M->getOperand(4);
7642     SDValue RayDir = M->getOperand(5);
7643     SDValue RayInvDir = M->getOperand(6);
7644     SDValue TDescr = M->getOperand(7);
7645 
7646     assert(NodePtr.getValueType() == MVT::i32 ||
7647            NodePtr.getValueType() == MVT::i64);
7648     assert(RayDir.getValueType() == MVT::v3f16 ||
7649            RayDir.getValueType() == MVT::v3f32);
7650 
7651     if (!Subtarget->hasGFX10_AEncoding()) {
7652       emitRemovedIntrinsicError(DAG, DL, Op.getValueType());
7653       return SDValue();
7654     }
7655 
7656     const bool IsGFX11Plus = AMDGPU::isGFX11Plus(*Subtarget);
7657     const bool IsA16 = RayDir.getValueType().getVectorElementType() == MVT::f16;
7658     const bool Is64 = NodePtr.getValueType() == MVT::i64;
7659     const unsigned NumVDataDwords = 4;
7660     const unsigned NumVAddrDwords = IsA16 ? (Is64 ? 9 : 8) : (Is64 ? 12 : 11);
7661     const unsigned NumVAddrs = IsGFX11Plus ? (IsA16 ? 4 : 5) : NumVAddrDwords;
7662     const bool UseNSA =
7663         Subtarget->hasNSAEncoding() && NumVAddrs <= Subtarget->getNSAMaxSize();
7664     const unsigned BaseOpcodes[2][2] = {
7665         {AMDGPU::IMAGE_BVH_INTERSECT_RAY, AMDGPU::IMAGE_BVH_INTERSECT_RAY_a16},
7666         {AMDGPU::IMAGE_BVH64_INTERSECT_RAY,
7667          AMDGPU::IMAGE_BVH64_INTERSECT_RAY_a16}};
7668     int Opcode;
7669     if (UseNSA) {
7670       Opcode = AMDGPU::getMIMGOpcode(BaseOpcodes[Is64][IsA16],
7671                                      IsGFX11Plus ? AMDGPU::MIMGEncGfx11NSA
7672                                                  : AMDGPU::MIMGEncGfx10NSA,
7673                                      NumVDataDwords, NumVAddrDwords);
7674     } else {
7675       Opcode =
7676           AMDGPU::getMIMGOpcode(BaseOpcodes[Is64][IsA16],
7677                                 IsGFX11Plus ? AMDGPU::MIMGEncGfx11Default
7678                                             : AMDGPU::MIMGEncGfx10Default,
7679                                 NumVDataDwords, PowerOf2Ceil(NumVAddrDwords));
7680     }
7681     assert(Opcode != -1);
7682 
7683     SmallVector<SDValue, 16> Ops;
7684 
7685     auto packLanes = [&DAG, &Ops, &DL] (SDValue Op, bool IsAligned) {
7686       SmallVector<SDValue, 3> Lanes;
7687       DAG.ExtractVectorElements(Op, Lanes, 0, 3);
7688       if (Lanes[0].getValueSizeInBits() == 32) {
7689         for (unsigned I = 0; I < 3; ++I)
7690           Ops.push_back(DAG.getBitcast(MVT::i32, Lanes[I]));
7691       } else {
7692         if (IsAligned) {
7693           Ops.push_back(
7694             DAG.getBitcast(MVT::i32,
7695                            DAG.getBuildVector(MVT::v2f16, DL,
7696                                               { Lanes[0], Lanes[1] })));
7697           Ops.push_back(Lanes[2]);
7698         } else {
7699           SDValue Elt0 = Ops.pop_back_val();
7700           Ops.push_back(
7701             DAG.getBitcast(MVT::i32,
7702                            DAG.getBuildVector(MVT::v2f16, DL,
7703                                               { Elt0, Lanes[0] })));
7704           Ops.push_back(
7705             DAG.getBitcast(MVT::i32,
7706                            DAG.getBuildVector(MVT::v2f16, DL,
7707                                               { Lanes[1], Lanes[2] })));
7708         }
7709       }
7710     };
7711 
7712     if (UseNSA && IsGFX11Plus) {
7713       Ops.push_back(NodePtr);
7714       Ops.push_back(DAG.getBitcast(MVT::i32, RayExtent));
7715       Ops.push_back(RayOrigin);
7716       if (IsA16) {
7717         SmallVector<SDValue, 3> DirLanes, InvDirLanes, MergedLanes;
7718         DAG.ExtractVectorElements(RayDir, DirLanes, 0, 3);
7719         DAG.ExtractVectorElements(RayInvDir, InvDirLanes, 0, 3);
7720         for (unsigned I = 0; I < 3; ++I) {
7721           MergedLanes.push_back(DAG.getBitcast(
7722               MVT::i32, DAG.getBuildVector(MVT::v2f16, DL,
7723                                            {DirLanes[I], InvDirLanes[I]})));
7724         }
7725         Ops.push_back(DAG.getBuildVector(MVT::v3i32, DL, MergedLanes));
7726       } else {
7727         Ops.push_back(RayDir);
7728         Ops.push_back(RayInvDir);
7729       }
7730     } else {
7731       if (Is64)
7732         DAG.ExtractVectorElements(DAG.getBitcast(MVT::v2i32, NodePtr), Ops, 0,
7733                                   2);
7734       else
7735         Ops.push_back(NodePtr);
7736 
7737       Ops.push_back(DAG.getBitcast(MVT::i32, RayExtent));
7738       packLanes(RayOrigin, true);
7739       packLanes(RayDir, true);
7740       packLanes(RayInvDir, false);
7741     }
7742 
7743     if (!UseNSA) {
7744       // Build a single vector containing all the operands so far prepared.
7745       if (NumVAddrDwords > 8) {
7746         SDValue Undef = DAG.getUNDEF(MVT::i32);
7747         Ops.append(16 - Ops.size(), Undef);
7748       }
7749       assert(Ops.size() == 8 || Ops.size() == 16);
7750       SDValue MergedOps = DAG.getBuildVector(
7751           Ops.size() == 16 ? MVT::v16i32 : MVT::v8i32, DL, Ops);
7752       Ops.clear();
7753       Ops.push_back(MergedOps);
7754     }
7755 
7756     Ops.push_back(TDescr);
7757     if (IsA16)
7758       Ops.push_back(DAG.getTargetConstant(1, DL, MVT::i1));
7759     Ops.push_back(M->getChain());
7760 
7761     auto *NewNode = DAG.getMachineNode(Opcode, DL, M->getVTList(), Ops);
7762     MachineMemOperand *MemRef = M->getMemOperand();
7763     DAG.setNodeMemRefs(NewNode, {MemRef});
7764     return SDValue(NewNode, 0);
7765   }
7766   case Intrinsic::amdgcn_global_atomic_fadd:
7767     if (!Op.getValue(0).use_empty() && !Subtarget->hasGFX90AInsts()) {
7768       DiagnosticInfoUnsupported
7769         NoFpRet(DAG.getMachineFunction().getFunction(),
7770                 "return versions of fp atomics not supported",
7771                 DL.getDebugLoc(), DS_Error);
7772       DAG.getContext()->diagnose(NoFpRet);
7773       return SDValue();
7774     }
7775     LLVM_FALLTHROUGH;
7776   case Intrinsic::amdgcn_global_atomic_fmin:
7777   case Intrinsic::amdgcn_global_atomic_fmax:
7778   case Intrinsic::amdgcn_flat_atomic_fadd:
7779   case Intrinsic::amdgcn_flat_atomic_fmin:
7780   case Intrinsic::amdgcn_flat_atomic_fmax: {
7781     MemSDNode *M = cast<MemSDNode>(Op);
7782     SDValue Ops[] = {
7783       M->getOperand(0), // Chain
7784       M->getOperand(2), // Ptr
7785       M->getOperand(3)  // Value
7786     };
7787     unsigned Opcode = 0;
7788     switch (IntrID) {
7789     case Intrinsic::amdgcn_global_atomic_fadd:
7790     case Intrinsic::amdgcn_flat_atomic_fadd: {
7791       EVT VT = Op.getOperand(3).getValueType();
7792       return DAG.getAtomic(ISD::ATOMIC_LOAD_FADD, DL, VT,
7793                            DAG.getVTList(VT, MVT::Other), Ops,
7794                            M->getMemOperand());
7795     }
7796     case Intrinsic::amdgcn_global_atomic_fmin:
7797     case Intrinsic::amdgcn_flat_atomic_fmin: {
7798       Opcode = AMDGPUISD::ATOMIC_LOAD_FMIN;
7799       break;
7800     }
7801     case Intrinsic::amdgcn_global_atomic_fmax:
7802     case Intrinsic::amdgcn_flat_atomic_fmax: {
7803       Opcode = AMDGPUISD::ATOMIC_LOAD_FMAX;
7804       break;
7805     }
7806     default:
7807       llvm_unreachable("unhandled atomic opcode");
7808     }
7809     return DAG.getMemIntrinsicNode(Opcode, SDLoc(Op),
7810                                    M->getVTList(), Ops, M->getMemoryVT(),
7811                                    M->getMemOperand());
7812   }
7813   default:
7814 
7815     if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
7816             AMDGPU::getImageDimIntrinsicInfo(IntrID))
7817       return lowerImage(Op, ImageDimIntr, DAG, true);
7818 
7819     return SDValue();
7820   }
7821 }
7822 
7823 // Call DAG.getMemIntrinsicNode for a load, but first widen a dwordx3 type to
7824 // dwordx4 if on SI.
7825 SDValue SITargetLowering::getMemIntrinsicNode(unsigned Opcode, const SDLoc &DL,
7826                                               SDVTList VTList,
7827                                               ArrayRef<SDValue> Ops, EVT MemVT,
7828                                               MachineMemOperand *MMO,
7829                                               SelectionDAG &DAG) const {
7830   EVT VT = VTList.VTs[0];
7831   EVT WidenedVT = VT;
7832   EVT WidenedMemVT = MemVT;
7833   if (!Subtarget->hasDwordx3LoadStores() &&
7834       (WidenedVT == MVT::v3i32 || WidenedVT == MVT::v3f32)) {
7835     WidenedVT = EVT::getVectorVT(*DAG.getContext(),
7836                                  WidenedVT.getVectorElementType(), 4);
7837     WidenedMemVT = EVT::getVectorVT(*DAG.getContext(),
7838                                     WidenedMemVT.getVectorElementType(), 4);
7839     MMO = DAG.getMachineFunction().getMachineMemOperand(MMO, 0, 16);
7840   }
7841 
7842   assert(VTList.NumVTs == 2);
7843   SDVTList WidenedVTList = DAG.getVTList(WidenedVT, VTList.VTs[1]);
7844 
7845   auto NewOp = DAG.getMemIntrinsicNode(Opcode, DL, WidenedVTList, Ops,
7846                                        WidenedMemVT, MMO);
7847   if (WidenedVT != VT) {
7848     auto Extract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, NewOp,
7849                                DAG.getVectorIdxConstant(0, DL));
7850     NewOp = DAG.getMergeValues({ Extract, SDValue(NewOp.getNode(), 1) }, DL);
7851   }
7852   return NewOp;
7853 }
7854 
7855 SDValue SITargetLowering::handleD16VData(SDValue VData, SelectionDAG &DAG,
7856                                          bool ImageStore) const {
7857   EVT StoreVT = VData.getValueType();
7858 
7859   // No change for f16 and legal vector D16 types.
7860   if (!StoreVT.isVector())
7861     return VData;
7862 
7863   SDLoc DL(VData);
7864   unsigned NumElements = StoreVT.getVectorNumElements();
7865 
7866   if (Subtarget->hasUnpackedD16VMem()) {
7867     // We need to unpack the packed data to store.
7868     EVT IntStoreVT = StoreVT.changeTypeToInteger();
7869     SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData);
7870 
7871     EVT EquivStoreVT =
7872         EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElements);
7873     SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, EquivStoreVT, IntVData);
7874     return DAG.UnrollVectorOp(ZExt.getNode());
7875   }
7876 
7877   // The sq block of gfx8.1 does not estimate register use correctly for d16
7878   // image store instructions. The data operand is computed as if it were not a
7879   // d16 image instruction.
7880   if (ImageStore && Subtarget->hasImageStoreD16Bug()) {
7881     // Bitcast to i16
7882     EVT IntStoreVT = StoreVT.changeTypeToInteger();
7883     SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData);
7884 
7885     // Decompose into scalars
7886     SmallVector<SDValue, 4> Elts;
7887     DAG.ExtractVectorElements(IntVData, Elts);
7888 
7889     // Group pairs of i16 into v2i16 and bitcast to i32
7890     SmallVector<SDValue, 4> PackedElts;
7891     for (unsigned I = 0; I < Elts.size() / 2; I += 1) {
7892       SDValue Pair =
7893           DAG.getBuildVector(MVT::v2i16, DL, {Elts[I * 2], Elts[I * 2 + 1]});
7894       SDValue IntPair = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Pair);
7895       PackedElts.push_back(IntPair);
7896     }
7897     if ((NumElements % 2) == 1) {
7898       // Handle v3i16
7899       unsigned I = Elts.size() / 2;
7900       SDValue Pair = DAG.getBuildVector(MVT::v2i16, DL,
7901                                         {Elts[I * 2], DAG.getUNDEF(MVT::i16)});
7902       SDValue IntPair = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Pair);
7903       PackedElts.push_back(IntPair);
7904     }
7905 
7906     // Pad using UNDEF
7907     PackedElts.resize(Elts.size(), DAG.getUNDEF(MVT::i32));
7908 
7909     // Build final vector
7910     EVT VecVT =
7911         EVT::getVectorVT(*DAG.getContext(), MVT::i32, PackedElts.size());
7912     return DAG.getBuildVector(VecVT, DL, PackedElts);
7913   }
7914 
7915   if (NumElements == 3) {
7916     EVT IntStoreVT =
7917         EVT::getIntegerVT(*DAG.getContext(), StoreVT.getStoreSizeInBits());
7918     SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData);
7919 
7920     EVT WidenedStoreVT = EVT::getVectorVT(
7921         *DAG.getContext(), StoreVT.getVectorElementType(), NumElements + 1);
7922     EVT WidenedIntVT = EVT::getIntegerVT(*DAG.getContext(),
7923                                          WidenedStoreVT.getStoreSizeInBits());
7924     SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, WidenedIntVT, IntVData);
7925     return DAG.getNode(ISD::BITCAST, DL, WidenedStoreVT, ZExt);
7926   }
7927 
7928   assert(isTypeLegal(StoreVT));
7929   return VData;
7930 }
7931 
7932 SDValue SITargetLowering::LowerINTRINSIC_VOID(SDValue Op,
7933                                               SelectionDAG &DAG) const {
7934   SDLoc DL(Op);
7935   SDValue Chain = Op.getOperand(0);
7936   unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7937   MachineFunction &MF = DAG.getMachineFunction();
7938 
7939   switch (IntrinsicID) {
7940   case Intrinsic::amdgcn_exp_compr: {
7941     if (!Subtarget->hasCompressedExport()) {
7942       DiagnosticInfoUnsupported BadIntrin(
7943           DAG.getMachineFunction().getFunction(),
7944           "intrinsic not supported on subtarget", DL.getDebugLoc());
7945       DAG.getContext()->diagnose(BadIntrin);
7946     }
7947     SDValue Src0 = Op.getOperand(4);
7948     SDValue Src1 = Op.getOperand(5);
7949     // Hack around illegal type on SI by directly selecting it.
7950     if (isTypeLegal(Src0.getValueType()))
7951       return SDValue();
7952 
7953     const ConstantSDNode *Done = cast<ConstantSDNode>(Op.getOperand(6));
7954     SDValue Undef = DAG.getUNDEF(MVT::f32);
7955     const SDValue Ops[] = {
7956       Op.getOperand(2), // tgt
7957       DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src0), // src0
7958       DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src1), // src1
7959       Undef, // src2
7960       Undef, // src3
7961       Op.getOperand(7), // vm
7962       DAG.getTargetConstant(1, DL, MVT::i1), // compr
7963       Op.getOperand(3), // en
7964       Op.getOperand(0) // Chain
7965     };
7966 
7967     unsigned Opc = Done->isZero() ? AMDGPU::EXP : AMDGPU::EXP_DONE;
7968     return SDValue(DAG.getMachineNode(Opc, DL, Op->getVTList(), Ops), 0);
7969   }
7970   case Intrinsic::amdgcn_s_barrier: {
7971     if (getTargetMachine().getOptLevel() > CodeGenOpt::None) {
7972       const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
7973       unsigned WGSize = ST.getFlatWorkGroupSizes(MF.getFunction()).second;
7974       if (WGSize <= ST.getWavefrontSize())
7975         return SDValue(DAG.getMachineNode(AMDGPU::WAVE_BARRIER, DL, MVT::Other,
7976                                           Op.getOperand(0)), 0);
7977     }
7978     return SDValue();
7979   };
7980   case Intrinsic::amdgcn_tbuffer_store: {
7981     SDValue VData = Op.getOperand(2);
7982     bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
7983     if (IsD16)
7984       VData = handleD16VData(VData, DAG);
7985     unsigned Dfmt = cast<ConstantSDNode>(Op.getOperand(8))->getZExtValue();
7986     unsigned Nfmt = cast<ConstantSDNode>(Op.getOperand(9))->getZExtValue();
7987     unsigned Glc = cast<ConstantSDNode>(Op.getOperand(10))->getZExtValue();
7988     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(11))->getZExtValue();
7989     unsigned IdxEn = getIdxEn(Op.getOperand(4));
7990     SDValue Ops[] = {
7991       Chain,
7992       VData,             // vdata
7993       Op.getOperand(3),  // rsrc
7994       Op.getOperand(4),  // vindex
7995       Op.getOperand(5),  // voffset
7996       Op.getOperand(6),  // soffset
7997       Op.getOperand(7),  // offset
7998       DAG.getTargetConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format
7999       DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
8000       DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
8001     };
8002     unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 :
8003                            AMDGPUISD::TBUFFER_STORE_FORMAT;
8004     MemSDNode *M = cast<MemSDNode>(Op);
8005     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
8006                                    M->getMemoryVT(), M->getMemOperand());
8007   }
8008 
8009   case Intrinsic::amdgcn_struct_tbuffer_store: {
8010     SDValue VData = Op.getOperand(2);
8011     bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
8012     if (IsD16)
8013       VData = handleD16VData(VData, DAG);
8014     auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
8015     SDValue Ops[] = {
8016       Chain,
8017       VData,             // vdata
8018       Op.getOperand(3),  // rsrc
8019       Op.getOperand(4),  // vindex
8020       Offsets.first,     // voffset
8021       Op.getOperand(6),  // soffset
8022       Offsets.second,    // offset
8023       Op.getOperand(7),  // format
8024       Op.getOperand(8),  // cachepolicy, swizzled buffer
8025       DAG.getTargetConstant(1, DL, MVT::i1), // idxen
8026     };
8027     unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 :
8028                            AMDGPUISD::TBUFFER_STORE_FORMAT;
8029     MemSDNode *M = cast<MemSDNode>(Op);
8030     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
8031                                    M->getMemoryVT(), M->getMemOperand());
8032   }
8033 
8034   case Intrinsic::amdgcn_raw_tbuffer_store: {
8035     SDValue VData = Op.getOperand(2);
8036     bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
8037     if (IsD16)
8038       VData = handleD16VData(VData, DAG);
8039     auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
8040     SDValue Ops[] = {
8041       Chain,
8042       VData,             // vdata
8043       Op.getOperand(3),  // rsrc
8044       DAG.getConstant(0, DL, MVT::i32), // vindex
8045       Offsets.first,     // voffset
8046       Op.getOperand(5),  // soffset
8047       Offsets.second,    // offset
8048       Op.getOperand(6),  // format
8049       Op.getOperand(7),  // cachepolicy, swizzled buffer
8050       DAG.getTargetConstant(0, DL, MVT::i1), // idxen
8051     };
8052     unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 :
8053                            AMDGPUISD::TBUFFER_STORE_FORMAT;
8054     MemSDNode *M = cast<MemSDNode>(Op);
8055     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
8056                                    M->getMemoryVT(), M->getMemOperand());
8057   }
8058 
8059   case Intrinsic::amdgcn_buffer_store:
8060   case Intrinsic::amdgcn_buffer_store_format: {
8061     SDValue VData = Op.getOperand(2);
8062     bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
8063     if (IsD16)
8064       VData = handleD16VData(VData, DAG);
8065     unsigned Glc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue();
8066     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue();
8067     unsigned IdxEn = getIdxEn(Op.getOperand(4));
8068     SDValue Ops[] = {
8069       Chain,
8070       VData,
8071       Op.getOperand(3), // rsrc
8072       Op.getOperand(4), // vindex
8073       SDValue(), // voffset -- will be set by setBufferOffsets
8074       SDValue(), // soffset -- will be set by setBufferOffsets
8075       SDValue(), // offset -- will be set by setBufferOffsets
8076       DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
8077       DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
8078     };
8079     setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]);
8080 
8081     unsigned Opc = IntrinsicID == Intrinsic::amdgcn_buffer_store ?
8082                    AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT;
8083     Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
8084     MemSDNode *M = cast<MemSDNode>(Op);
8085     updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6], Ops[3]);
8086 
8087     // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics
8088     EVT VDataType = VData.getValueType().getScalarType();
8089     if (VDataType == MVT::i8 || VDataType == MVT::i16)
8090       return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M);
8091 
8092     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
8093                                    M->getMemoryVT(), M->getMemOperand());
8094   }
8095 
8096   case Intrinsic::amdgcn_raw_buffer_store:
8097   case Intrinsic::amdgcn_raw_buffer_store_format: {
8098     const bool IsFormat =
8099         IntrinsicID == Intrinsic::amdgcn_raw_buffer_store_format;
8100 
8101     SDValue VData = Op.getOperand(2);
8102     EVT VDataVT = VData.getValueType();
8103     EVT EltType = VDataVT.getScalarType();
8104     bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16);
8105     if (IsD16) {
8106       VData = handleD16VData(VData, DAG);
8107       VDataVT = VData.getValueType();
8108     }
8109 
8110     if (!isTypeLegal(VDataVT)) {
8111       VData =
8112           DAG.getNode(ISD::BITCAST, DL,
8113                       getEquivalentMemType(*DAG.getContext(), VDataVT), VData);
8114     }
8115 
8116     auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
8117     SDValue Ops[] = {
8118       Chain,
8119       VData,
8120       Op.getOperand(3), // rsrc
8121       DAG.getConstant(0, DL, MVT::i32), // vindex
8122       Offsets.first,    // voffset
8123       Op.getOperand(5), // soffset
8124       Offsets.second,   // offset
8125       Op.getOperand(6), // cachepolicy, swizzled buffer
8126       DAG.getTargetConstant(0, DL, MVT::i1), // idxen
8127     };
8128     unsigned Opc =
8129         IsFormat ? AMDGPUISD::BUFFER_STORE_FORMAT : AMDGPUISD::BUFFER_STORE;
8130     Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
8131     MemSDNode *M = cast<MemSDNode>(Op);
8132     updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6]);
8133 
8134     // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics
8135     if (!IsD16 && !VDataVT.isVector() && EltType.getSizeInBits() < 32)
8136       return handleByteShortBufferStores(DAG, VDataVT, DL, Ops, M);
8137 
8138     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
8139                                    M->getMemoryVT(), M->getMemOperand());
8140   }
8141 
8142   case Intrinsic::amdgcn_struct_buffer_store:
8143   case Intrinsic::amdgcn_struct_buffer_store_format: {
8144     const bool IsFormat =
8145         IntrinsicID == Intrinsic::amdgcn_struct_buffer_store_format;
8146 
8147     SDValue VData = Op.getOperand(2);
8148     EVT VDataVT = VData.getValueType();
8149     EVT EltType = VDataVT.getScalarType();
8150     bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16);
8151 
8152     if (IsD16) {
8153       VData = handleD16VData(VData, DAG);
8154       VDataVT = VData.getValueType();
8155     }
8156 
8157     if (!isTypeLegal(VDataVT)) {
8158       VData =
8159           DAG.getNode(ISD::BITCAST, DL,
8160                       getEquivalentMemType(*DAG.getContext(), VDataVT), VData);
8161     }
8162 
8163     auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
8164     SDValue Ops[] = {
8165       Chain,
8166       VData,
8167       Op.getOperand(3), // rsrc
8168       Op.getOperand(4), // vindex
8169       Offsets.first,    // voffset
8170       Op.getOperand(6), // soffset
8171       Offsets.second,   // offset
8172       Op.getOperand(7), // cachepolicy, swizzled buffer
8173       DAG.getTargetConstant(1, DL, MVT::i1), // idxen
8174     };
8175     unsigned Opc = IntrinsicID == Intrinsic::amdgcn_struct_buffer_store ?
8176                    AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT;
8177     Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
8178     MemSDNode *M = cast<MemSDNode>(Op);
8179     updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6], Ops[3]);
8180 
8181     // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics
8182     EVT VDataType = VData.getValueType().getScalarType();
8183     if (!IsD16 && !VDataVT.isVector() && EltType.getSizeInBits() < 32)
8184       return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M);
8185 
8186     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
8187                                    M->getMemoryVT(), M->getMemOperand());
8188   }
8189   case Intrinsic::amdgcn_raw_buffer_load_lds:
8190   case Intrinsic::amdgcn_struct_buffer_load_lds: {
8191     unsigned Opc;
8192     bool HasVIndex = IntrinsicID == Intrinsic::amdgcn_struct_buffer_load_lds;
8193     unsigned OpOffset = HasVIndex ? 1 : 0;
8194     SDValue VOffset = Op.getOperand(5 + OpOffset);
8195     auto CVOffset = dyn_cast<ConstantSDNode>(VOffset);
8196     bool HasVOffset = !CVOffset || !CVOffset->isZero();
8197     unsigned Size = Op->getConstantOperandVal(4);
8198 
8199     switch (Size) {
8200     default:
8201       return SDValue();
8202     case 1:
8203       Opc = HasVIndex ? HasVOffset ? AMDGPU::BUFFER_LOAD_UBYTE_LDS_BOTHEN
8204                                    : AMDGPU::BUFFER_LOAD_UBYTE_LDS_IDXEN
8205                       : HasVOffset ? AMDGPU::BUFFER_LOAD_UBYTE_LDS_OFFEN
8206                                    : AMDGPU::BUFFER_LOAD_UBYTE_LDS_OFFSET;
8207       break;
8208     case 2:
8209       Opc = HasVIndex ? HasVOffset ? AMDGPU::BUFFER_LOAD_USHORT_LDS_BOTHEN
8210                                    : AMDGPU::BUFFER_LOAD_USHORT_LDS_IDXEN
8211                       : HasVOffset ? AMDGPU::BUFFER_LOAD_USHORT_LDS_OFFEN
8212                                    : AMDGPU::BUFFER_LOAD_USHORT_LDS_OFFSET;
8213       break;
8214     case 4:
8215       Opc = HasVIndex ? HasVOffset ? AMDGPU::BUFFER_LOAD_DWORD_LDS_BOTHEN
8216                                    : AMDGPU::BUFFER_LOAD_DWORD_LDS_IDXEN
8217                       : HasVOffset ? AMDGPU::BUFFER_LOAD_DWORD_LDS_OFFEN
8218                                    : AMDGPU::BUFFER_LOAD_DWORD_LDS_OFFSET;
8219       break;
8220     }
8221 
8222     SDValue M0Val = copyToM0(DAG, Chain, DL, Op.getOperand(3));
8223 
8224     SmallVector<SDValue, 8> Ops;
8225 
8226     if (HasVIndex && HasVOffset)
8227       Ops.push_back(DAG.getBuildVector(MVT::v2i32, DL,
8228                                        { Op.getOperand(5), // VIndex
8229                                          VOffset }));
8230     else if (HasVIndex)
8231       Ops.push_back(Op.getOperand(5));
8232     else if (HasVOffset)
8233       Ops.push_back(VOffset);
8234 
8235     Ops.push_back(Op.getOperand(2));           // rsrc
8236     Ops.push_back(Op.getOperand(6 + OpOffset)); // soffset
8237     Ops.push_back(Op.getOperand(7 + OpOffset)); // imm offset
8238     unsigned Aux = Op.getConstantOperandVal(8 + OpOffset);
8239     Ops.push_back(
8240       DAG.getTargetConstant(Aux & AMDGPU::CPol::ALL, DL, MVT::i8)); // cpol
8241     Ops.push_back(
8242       DAG.getTargetConstant((Aux >> 3) & 1, DL, MVT::i8));          // swz
8243     Ops.push_back(M0Val.getValue(0)); // Chain
8244     Ops.push_back(M0Val.getValue(1)); // Glue
8245 
8246     auto *M = cast<MemSDNode>(Op);
8247     MachineMemOperand *LoadMMO = M->getMemOperand();
8248     MachinePointerInfo LoadPtrI = LoadMMO->getPointerInfo();
8249     LoadPtrI.Offset = Op->getConstantOperandVal(7 + OpOffset);
8250     MachinePointerInfo StorePtrI = LoadPtrI;
8251     StorePtrI.V = nullptr;
8252     StorePtrI.AddrSpace = AMDGPUAS::LOCAL_ADDRESS;
8253 
8254     auto F = LoadMMO->getFlags() &
8255              ~(MachineMemOperand::MOStore | MachineMemOperand::MOLoad);
8256     LoadMMO = MF.getMachineMemOperand(LoadPtrI, F | MachineMemOperand::MOLoad,
8257                                       Size, LoadMMO->getBaseAlign());
8258 
8259     MachineMemOperand *StoreMMO =
8260         MF.getMachineMemOperand(StorePtrI, F | MachineMemOperand::MOStore,
8261                                 sizeof(int32_t), LoadMMO->getBaseAlign());
8262 
8263     auto Load = DAG.getMachineNode(Opc, DL, M->getVTList(), Ops);
8264     DAG.setNodeMemRefs(Load, {LoadMMO, StoreMMO});
8265 
8266     return SDValue(Load, 0);
8267   }
8268   case Intrinsic::amdgcn_global_load_lds: {
8269     unsigned Opc;
8270     unsigned Size = Op->getConstantOperandVal(4);
8271     switch (Size) {
8272     default:
8273       return SDValue();
8274     case 1:
8275       Opc = AMDGPU::GLOBAL_LOAD_LDS_UBYTE;
8276       break;
8277     case 2:
8278       Opc = AMDGPU::GLOBAL_LOAD_LDS_USHORT;
8279       break;
8280     case 4:
8281       Opc = AMDGPU::GLOBAL_LOAD_LDS_DWORD;
8282       break;
8283     }
8284 
8285     auto *M = cast<MemSDNode>(Op);
8286     SDValue M0Val = copyToM0(DAG, Chain, DL, Op.getOperand(3));
8287 
8288     SmallVector<SDValue, 6> Ops;
8289 
8290     SDValue Addr = Op.getOperand(2); // Global ptr
8291     SDValue VOffset;
8292     // Try to split SAddr and VOffset. Global and LDS pointers share the same
8293     // immediate offset, so we cannot use a regular SelectGlobalSAddr().
8294     if (Addr->isDivergent() && Addr.getOpcode() == ISD::ADD) {
8295       SDValue LHS = Addr.getOperand(0);
8296       SDValue RHS = Addr.getOperand(1);
8297 
8298       if (LHS->isDivergent())
8299         std::swap(LHS, RHS);
8300 
8301       if (!LHS->isDivergent() && RHS.getOpcode() == ISD::ZERO_EXTEND &&
8302           RHS.getOperand(0).getValueType() == MVT::i32) {
8303         // add (i64 sgpr), (zero_extend (i32 vgpr))
8304         Addr = LHS;
8305         VOffset = RHS.getOperand(0);
8306       }
8307     }
8308 
8309     Ops.push_back(Addr);
8310     if (!Addr->isDivergent()) {
8311       Opc = AMDGPU::getGlobalSaddrOp(Opc);
8312       if (!VOffset)
8313         VOffset = SDValue(
8314             DAG.getMachineNode(AMDGPU::V_MOV_B32_e32, DL, MVT::i32,
8315                                DAG.getTargetConstant(0, DL, MVT::i32)), 0);
8316       Ops.push_back(VOffset);
8317     }
8318 
8319     Ops.push_back(Op.getOperand(5));  // Offset
8320     Ops.push_back(Op.getOperand(6));  // CPol
8321     Ops.push_back(M0Val.getValue(0)); // Chain
8322     Ops.push_back(M0Val.getValue(1)); // Glue
8323 
8324     MachineMemOperand *LoadMMO = M->getMemOperand();
8325     MachinePointerInfo LoadPtrI = LoadMMO->getPointerInfo();
8326     LoadPtrI.Offset = Op->getConstantOperandVal(5);
8327     MachinePointerInfo StorePtrI = LoadPtrI;
8328     LoadPtrI.AddrSpace = AMDGPUAS::GLOBAL_ADDRESS;
8329     StorePtrI.AddrSpace = AMDGPUAS::LOCAL_ADDRESS;
8330     auto F = LoadMMO->getFlags() &
8331              ~(MachineMemOperand::MOStore | MachineMemOperand::MOLoad);
8332     LoadMMO = MF.getMachineMemOperand(LoadPtrI, F | MachineMemOperand::MOLoad,
8333                                       Size, LoadMMO->getBaseAlign());
8334     MachineMemOperand *StoreMMO =
8335         MF.getMachineMemOperand(StorePtrI, F | MachineMemOperand::MOStore,
8336                                 sizeof(int32_t), Align(4));
8337 
8338     auto Load = DAG.getMachineNode(Opc, DL, Op->getVTList(), Ops);
8339     DAG.setNodeMemRefs(Load, {LoadMMO, StoreMMO});
8340 
8341     return SDValue(Load, 0);
8342   }
8343   case Intrinsic::amdgcn_end_cf:
8344     return SDValue(DAG.getMachineNode(AMDGPU::SI_END_CF, DL, MVT::Other,
8345                                       Op->getOperand(2), Chain), 0);
8346 
8347   default: {
8348     if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
8349             AMDGPU::getImageDimIntrinsicInfo(IntrinsicID))
8350       return lowerImage(Op, ImageDimIntr, DAG, true);
8351 
8352     return Op;
8353   }
8354   }
8355 }
8356 
8357 // The raw.(t)buffer and struct.(t)buffer intrinsics have two offset args:
8358 // offset (the offset that is included in bounds checking and swizzling, to be
8359 // split between the instruction's voffset and immoffset fields) and soffset
8360 // (the offset that is excluded from bounds checking and swizzling, to go in
8361 // the instruction's soffset field).  This function takes the first kind of
8362 // offset and figures out how to split it between voffset and immoffset.
8363 std::pair<SDValue, SDValue> SITargetLowering::splitBufferOffsets(
8364     SDValue Offset, SelectionDAG &DAG) const {
8365   SDLoc DL(Offset);
8366   const unsigned MaxImm = 4095;
8367   SDValue N0 = Offset;
8368   ConstantSDNode *C1 = nullptr;
8369 
8370   if ((C1 = dyn_cast<ConstantSDNode>(N0)))
8371     N0 = SDValue();
8372   else if (DAG.isBaseWithConstantOffset(N0)) {
8373     C1 = cast<ConstantSDNode>(N0.getOperand(1));
8374     N0 = N0.getOperand(0);
8375   }
8376 
8377   if (C1) {
8378     unsigned ImmOffset = C1->getZExtValue();
8379     // If the immediate value is too big for the immoffset field, put the value
8380     // and -4096 into the immoffset field so that the value that is copied/added
8381     // for the voffset field is a multiple of 4096, and it stands more chance
8382     // of being CSEd with the copy/add for another similar load/store.
8383     // However, do not do that rounding down to a multiple of 4096 if that is a
8384     // negative number, as it appears to be illegal to have a negative offset
8385     // in the vgpr, even if adding the immediate offset makes it positive.
8386     unsigned Overflow = ImmOffset & ~MaxImm;
8387     ImmOffset -= Overflow;
8388     if ((int32_t)Overflow < 0) {
8389       Overflow += ImmOffset;
8390       ImmOffset = 0;
8391     }
8392     C1 = cast<ConstantSDNode>(DAG.getTargetConstant(ImmOffset, DL, MVT::i32));
8393     if (Overflow) {
8394       auto OverflowVal = DAG.getConstant(Overflow, DL, MVT::i32);
8395       if (!N0)
8396         N0 = OverflowVal;
8397       else {
8398         SDValue Ops[] = { N0, OverflowVal };
8399         N0 = DAG.getNode(ISD::ADD, DL, MVT::i32, Ops);
8400       }
8401     }
8402   }
8403   if (!N0)
8404     N0 = DAG.getConstant(0, DL, MVT::i32);
8405   if (!C1)
8406     C1 = cast<ConstantSDNode>(DAG.getTargetConstant(0, DL, MVT::i32));
8407   return {N0, SDValue(C1, 0)};
8408 }
8409 
8410 // Analyze a combined offset from an amdgcn_buffer_ intrinsic and store the
8411 // three offsets (voffset, soffset and instoffset) into the SDValue[3] array
8412 // pointed to by Offsets.
8413 void SITargetLowering::setBufferOffsets(SDValue CombinedOffset,
8414                                         SelectionDAG &DAG, SDValue *Offsets,
8415                                         Align Alignment) const {
8416   SDLoc DL(CombinedOffset);
8417   if (auto C = dyn_cast<ConstantSDNode>(CombinedOffset)) {
8418     uint32_t Imm = C->getZExtValue();
8419     uint32_t SOffset, ImmOffset;
8420     if (AMDGPU::splitMUBUFOffset(Imm, SOffset, ImmOffset, Subtarget,
8421                                  Alignment)) {
8422       Offsets[0] = DAG.getConstant(0, DL, MVT::i32);
8423       Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32);
8424       Offsets[2] = DAG.getTargetConstant(ImmOffset, DL, MVT::i32);
8425       return;
8426     }
8427   }
8428   if (DAG.isBaseWithConstantOffset(CombinedOffset)) {
8429     SDValue N0 = CombinedOffset.getOperand(0);
8430     SDValue N1 = CombinedOffset.getOperand(1);
8431     uint32_t SOffset, ImmOffset;
8432     int Offset = cast<ConstantSDNode>(N1)->getSExtValue();
8433     if (Offset >= 0 && AMDGPU::splitMUBUFOffset(Offset, SOffset, ImmOffset,
8434                                                 Subtarget, Alignment)) {
8435       Offsets[0] = N0;
8436       Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32);
8437       Offsets[2] = DAG.getTargetConstant(ImmOffset, DL, MVT::i32);
8438       return;
8439     }
8440   }
8441   Offsets[0] = CombinedOffset;
8442   Offsets[1] = DAG.getConstant(0, DL, MVT::i32);
8443   Offsets[2] = DAG.getTargetConstant(0, DL, MVT::i32);
8444 }
8445 
8446 // Handle 8 bit and 16 bit buffer loads
8447 SDValue SITargetLowering::handleByteShortBufferLoads(SelectionDAG &DAG,
8448                                                      EVT LoadVT, SDLoc DL,
8449                                                      ArrayRef<SDValue> Ops,
8450                                                      MemSDNode *M) const {
8451   EVT IntVT = LoadVT.changeTypeToInteger();
8452   unsigned Opc = (LoadVT.getScalarType() == MVT::i8) ?
8453          AMDGPUISD::BUFFER_LOAD_UBYTE : AMDGPUISD::BUFFER_LOAD_USHORT;
8454 
8455   SDVTList ResList = DAG.getVTList(MVT::i32, MVT::Other);
8456   SDValue BufferLoad = DAG.getMemIntrinsicNode(Opc, DL, ResList,
8457                                                Ops, IntVT,
8458                                                M->getMemOperand());
8459   SDValue LoadVal = DAG.getNode(ISD::TRUNCATE, DL, IntVT, BufferLoad);
8460   LoadVal = DAG.getNode(ISD::BITCAST, DL, LoadVT, LoadVal);
8461 
8462   return DAG.getMergeValues({LoadVal, BufferLoad.getValue(1)}, DL);
8463 }
8464 
8465 // Handle 8 bit and 16 bit buffer stores
8466 SDValue SITargetLowering::handleByteShortBufferStores(SelectionDAG &DAG,
8467                                                       EVT VDataType, SDLoc DL,
8468                                                       SDValue Ops[],
8469                                                       MemSDNode *M) const {
8470   if (VDataType == MVT::f16)
8471     Ops[1] = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Ops[1]);
8472 
8473   SDValue BufferStoreExt = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Ops[1]);
8474   Ops[1] = BufferStoreExt;
8475   unsigned Opc = (VDataType == MVT::i8) ? AMDGPUISD::BUFFER_STORE_BYTE :
8476                                  AMDGPUISD::BUFFER_STORE_SHORT;
8477   ArrayRef<SDValue> OpsRef = makeArrayRef(&Ops[0], 9);
8478   return DAG.getMemIntrinsicNode(Opc, DL, M->getVTList(), OpsRef, VDataType,
8479                                      M->getMemOperand());
8480 }
8481 
8482 static SDValue getLoadExtOrTrunc(SelectionDAG &DAG,
8483                                  ISD::LoadExtType ExtType, SDValue Op,
8484                                  const SDLoc &SL, EVT VT) {
8485   if (VT.bitsLT(Op.getValueType()))
8486     return DAG.getNode(ISD::TRUNCATE, SL, VT, Op);
8487 
8488   switch (ExtType) {
8489   case ISD::SEXTLOAD:
8490     return DAG.getNode(ISD::SIGN_EXTEND, SL, VT, Op);
8491   case ISD::ZEXTLOAD:
8492     return DAG.getNode(ISD::ZERO_EXTEND, SL, VT, Op);
8493   case ISD::EXTLOAD:
8494     return DAG.getNode(ISD::ANY_EXTEND, SL, VT, Op);
8495   case ISD::NON_EXTLOAD:
8496     return Op;
8497   }
8498 
8499   llvm_unreachable("invalid ext type");
8500 }
8501 
8502 SDValue SITargetLowering::widenLoad(LoadSDNode *Ld, DAGCombinerInfo &DCI) const {
8503   SelectionDAG &DAG = DCI.DAG;
8504   if (Ld->getAlign() < Align(4) || Ld->isDivergent())
8505     return SDValue();
8506 
8507   // FIXME: Constant loads should all be marked invariant.
8508   unsigned AS = Ld->getAddressSpace();
8509   if (AS != AMDGPUAS::CONSTANT_ADDRESS &&
8510       AS != AMDGPUAS::CONSTANT_ADDRESS_32BIT &&
8511       (AS != AMDGPUAS::GLOBAL_ADDRESS || !Ld->isInvariant()))
8512     return SDValue();
8513 
8514   // Don't do this early, since it may interfere with adjacent load merging for
8515   // illegal types. We can avoid losing alignment information for exotic types
8516   // pre-legalize.
8517   EVT MemVT = Ld->getMemoryVT();
8518   if ((MemVT.isSimple() && !DCI.isAfterLegalizeDAG()) ||
8519       MemVT.getSizeInBits() >= 32)
8520     return SDValue();
8521 
8522   SDLoc SL(Ld);
8523 
8524   assert((!MemVT.isVector() || Ld->getExtensionType() == ISD::NON_EXTLOAD) &&
8525          "unexpected vector extload");
8526 
8527   // TODO: Drop only high part of range.
8528   SDValue Ptr = Ld->getBasePtr();
8529   SDValue NewLoad = DAG.getLoad(
8530       ISD::UNINDEXED, ISD::NON_EXTLOAD, MVT::i32, SL, Ld->getChain(), Ptr,
8531       Ld->getOffset(), Ld->getPointerInfo(), MVT::i32, Ld->getAlign(),
8532       Ld->getMemOperand()->getFlags(), Ld->getAAInfo(),
8533       nullptr); // Drop ranges
8534 
8535   EVT TruncVT = EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits());
8536   if (MemVT.isFloatingPoint()) {
8537     assert(Ld->getExtensionType() == ISD::NON_EXTLOAD &&
8538            "unexpected fp extload");
8539     TruncVT = MemVT.changeTypeToInteger();
8540   }
8541 
8542   SDValue Cvt = NewLoad;
8543   if (Ld->getExtensionType() == ISD::SEXTLOAD) {
8544     Cvt = DAG.getNode(ISD::SIGN_EXTEND_INREG, SL, MVT::i32, NewLoad,
8545                       DAG.getValueType(TruncVT));
8546   } else if (Ld->getExtensionType() == ISD::ZEXTLOAD ||
8547              Ld->getExtensionType() == ISD::NON_EXTLOAD) {
8548     Cvt = DAG.getZeroExtendInReg(NewLoad, SL, TruncVT);
8549   } else {
8550     assert(Ld->getExtensionType() == ISD::EXTLOAD);
8551   }
8552 
8553   EVT VT = Ld->getValueType(0);
8554   EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
8555 
8556   DCI.AddToWorklist(Cvt.getNode());
8557 
8558   // We may need to handle exotic cases, such as i16->i64 extloads, so insert
8559   // the appropriate extension from the 32-bit load.
8560   Cvt = getLoadExtOrTrunc(DAG, Ld->getExtensionType(), Cvt, SL, IntVT);
8561   DCI.AddToWorklist(Cvt.getNode());
8562 
8563   // Handle conversion back to floating point if necessary.
8564   Cvt = DAG.getNode(ISD::BITCAST, SL, VT, Cvt);
8565 
8566   return DAG.getMergeValues({ Cvt, NewLoad.getValue(1) }, SL);
8567 }
8568 
8569 SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
8570   SDLoc DL(Op);
8571   LoadSDNode *Load = cast<LoadSDNode>(Op);
8572   ISD::LoadExtType ExtType = Load->getExtensionType();
8573   EVT MemVT = Load->getMemoryVT();
8574 
8575   if (ExtType == ISD::NON_EXTLOAD && MemVT.getSizeInBits() < 32) {
8576     if (MemVT == MVT::i16 && isTypeLegal(MVT::i16))
8577       return SDValue();
8578 
8579     // FIXME: Copied from PPC
8580     // First, load into 32 bits, then truncate to 1 bit.
8581 
8582     SDValue Chain = Load->getChain();
8583     SDValue BasePtr = Load->getBasePtr();
8584     MachineMemOperand *MMO = Load->getMemOperand();
8585 
8586     EVT RealMemVT = (MemVT == MVT::i1) ? MVT::i8 : MVT::i16;
8587 
8588     SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain,
8589                                    BasePtr, RealMemVT, MMO);
8590 
8591     if (!MemVT.isVector()) {
8592       SDValue Ops[] = {
8593         DAG.getNode(ISD::TRUNCATE, DL, MemVT, NewLD),
8594         NewLD.getValue(1)
8595       };
8596 
8597       return DAG.getMergeValues(Ops, DL);
8598     }
8599 
8600     SmallVector<SDValue, 3> Elts;
8601     for (unsigned I = 0, N = MemVT.getVectorNumElements(); I != N; ++I) {
8602       SDValue Elt = DAG.getNode(ISD::SRL, DL, MVT::i32, NewLD,
8603                                 DAG.getConstant(I, DL, MVT::i32));
8604 
8605       Elts.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Elt));
8606     }
8607 
8608     SDValue Ops[] = {
8609       DAG.getBuildVector(MemVT, DL, Elts),
8610       NewLD.getValue(1)
8611     };
8612 
8613     return DAG.getMergeValues(Ops, DL);
8614   }
8615 
8616   if (!MemVT.isVector())
8617     return SDValue();
8618 
8619   assert(Op.getValueType().getVectorElementType() == MVT::i32 &&
8620          "Custom lowering for non-i32 vectors hasn't been implemented.");
8621 
8622   Align Alignment = Load->getAlign();
8623   unsigned AS = Load->getAddressSpace();
8624   if (Subtarget->hasLDSMisalignedBug() && AS == AMDGPUAS::FLAT_ADDRESS &&
8625       Alignment.value() < MemVT.getStoreSize() && MemVT.getSizeInBits() > 32) {
8626     return SplitVectorLoad(Op, DAG);
8627   }
8628 
8629   MachineFunction &MF = DAG.getMachineFunction();
8630   SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
8631   // If there is a possibility that flat instruction access scratch memory
8632   // then we need to use the same legalization rules we use for private.
8633   if (AS == AMDGPUAS::FLAT_ADDRESS &&
8634       !Subtarget->hasMultiDwordFlatScratchAddressing())
8635     AS = MFI->hasFlatScratchInit() ?
8636          AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS;
8637 
8638   unsigned NumElements = MemVT.getVectorNumElements();
8639 
8640   if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
8641       AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT) {
8642     if (!Op->isDivergent() && Alignment >= Align(4) && NumElements < 32) {
8643       if (MemVT.isPow2VectorType())
8644         return SDValue();
8645       return WidenOrSplitVectorLoad(Op, DAG);
8646     }
8647     // Non-uniform loads will be selected to MUBUF instructions, so they
8648     // have the same legalization requirements as global and private
8649     // loads.
8650     //
8651   }
8652 
8653   if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
8654       AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
8655       AS == AMDGPUAS::GLOBAL_ADDRESS) {
8656     if (Subtarget->getScalarizeGlobalBehavior() && !Op->isDivergent() &&
8657         Load->isSimple() && isMemOpHasNoClobberedMemOperand(Load) &&
8658         Alignment >= Align(4) && NumElements < 32) {
8659       if (MemVT.isPow2VectorType())
8660         return SDValue();
8661       return WidenOrSplitVectorLoad(Op, DAG);
8662     }
8663     // Non-uniform loads will be selected to MUBUF instructions, so they
8664     // have the same legalization requirements as global and private
8665     // loads.
8666     //
8667   }
8668   if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
8669       AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
8670       AS == AMDGPUAS::GLOBAL_ADDRESS ||
8671       AS == AMDGPUAS::FLAT_ADDRESS) {
8672     if (NumElements > 4)
8673       return SplitVectorLoad(Op, DAG);
8674     // v3 loads not supported on SI.
8675     if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
8676       return WidenOrSplitVectorLoad(Op, DAG);
8677 
8678     // v3 and v4 loads are supported for private and global memory.
8679     return SDValue();
8680   }
8681   if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
8682     // Depending on the setting of the private_element_size field in the
8683     // resource descriptor, we can only make private accesses up to a certain
8684     // size.
8685     switch (Subtarget->getMaxPrivateElementSize()) {
8686     case 4: {
8687       SDValue Ops[2];
8688       std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(Load, DAG);
8689       return DAG.getMergeValues(Ops, DL);
8690     }
8691     case 8:
8692       if (NumElements > 2)
8693         return SplitVectorLoad(Op, DAG);
8694       return SDValue();
8695     case 16:
8696       // Same as global/flat
8697       if (NumElements > 4)
8698         return SplitVectorLoad(Op, DAG);
8699       // v3 loads not supported on SI.
8700       if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
8701         return WidenOrSplitVectorLoad(Op, DAG);
8702 
8703       return SDValue();
8704     default:
8705       llvm_unreachable("unsupported private_element_size");
8706     }
8707   } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
8708     bool Fast = false;
8709     auto Flags = Load->getMemOperand()->getFlags();
8710     if (allowsMisalignedMemoryAccessesImpl(MemVT.getSizeInBits(), AS,
8711                                            Load->getAlign(), Flags, &Fast) &&
8712         Fast)
8713       return SDValue();
8714 
8715     if (MemVT.isVector())
8716       return SplitVectorLoad(Op, DAG);
8717   }
8718 
8719   if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
8720                                       MemVT, *Load->getMemOperand())) {
8721     SDValue Ops[2];
8722     std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(Load, DAG);
8723     return DAG.getMergeValues(Ops, DL);
8724   }
8725 
8726   return SDValue();
8727 }
8728 
8729 SDValue SITargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
8730   EVT VT = Op.getValueType();
8731   if (VT.getSizeInBits() == 128 || VT.getSizeInBits() == 256)
8732     return splitTernaryVectorOp(Op, DAG);
8733 
8734   assert(VT.getSizeInBits() == 64);
8735 
8736   SDLoc DL(Op);
8737   SDValue Cond = Op.getOperand(0);
8738 
8739   SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
8740   SDValue One = DAG.getConstant(1, DL, MVT::i32);
8741 
8742   SDValue LHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1));
8743   SDValue RHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(2));
8744 
8745   SDValue Lo0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, Zero);
8746   SDValue Lo1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, Zero);
8747 
8748   SDValue Lo = DAG.getSelect(DL, MVT::i32, Cond, Lo0, Lo1);
8749 
8750   SDValue Hi0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, One);
8751   SDValue Hi1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, One);
8752 
8753   SDValue Hi = DAG.getSelect(DL, MVT::i32, Cond, Hi0, Hi1);
8754 
8755   SDValue Res = DAG.getBuildVector(MVT::v2i32, DL, {Lo, Hi});
8756   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
8757 }
8758 
8759 // Catch division cases where we can use shortcuts with rcp and rsq
8760 // instructions.
8761 SDValue SITargetLowering::lowerFastUnsafeFDIV(SDValue Op,
8762                                               SelectionDAG &DAG) const {
8763   SDLoc SL(Op);
8764   SDValue LHS = Op.getOperand(0);
8765   SDValue RHS = Op.getOperand(1);
8766   EVT VT = Op.getValueType();
8767   const SDNodeFlags Flags = Op->getFlags();
8768 
8769   bool AllowInaccurateRcp = Flags.hasApproximateFuncs();
8770 
8771   // Without !fpmath accuracy information, we can't do more because we don't
8772   // know exactly whether rcp is accurate enough to meet !fpmath requirement.
8773   if (!AllowInaccurateRcp)
8774     return SDValue();
8775 
8776   if (const ConstantFPSDNode *CLHS = dyn_cast<ConstantFPSDNode>(LHS)) {
8777     if (CLHS->isExactlyValue(1.0)) {
8778       // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to
8779       // the CI documentation has a worst case error of 1 ulp.
8780       // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to
8781       // use it as long as we aren't trying to use denormals.
8782       //
8783       // v_rcp_f16 and v_rsq_f16 DO support denormals.
8784 
8785       // 1.0 / sqrt(x) -> rsq(x)
8786 
8787       // XXX - Is UnsafeFPMath sufficient to do this for f64? The maximum ULP
8788       // error seems really high at 2^29 ULP.
8789       if (RHS.getOpcode() == ISD::FSQRT)
8790         return DAG.getNode(AMDGPUISD::RSQ, SL, VT, RHS.getOperand(0));
8791 
8792       // 1.0 / x -> rcp(x)
8793       return DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
8794     }
8795 
8796     // Same as for 1.0, but expand the sign out of the constant.
8797     if (CLHS->isExactlyValue(-1.0)) {
8798       // -1.0 / x -> rcp (fneg x)
8799       SDValue FNegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
8800       return DAG.getNode(AMDGPUISD::RCP, SL, VT, FNegRHS);
8801     }
8802   }
8803 
8804   // Turn into multiply by the reciprocal.
8805   // x / y -> x * (1.0 / y)
8806   SDValue Recip = DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
8807   return DAG.getNode(ISD::FMUL, SL, VT, LHS, Recip, Flags);
8808 }
8809 
8810 SDValue SITargetLowering::lowerFastUnsafeFDIV64(SDValue Op,
8811                                                 SelectionDAG &DAG) const {
8812   SDLoc SL(Op);
8813   SDValue X = Op.getOperand(0);
8814   SDValue Y = Op.getOperand(1);
8815   EVT VT = Op.getValueType();
8816   const SDNodeFlags Flags = Op->getFlags();
8817 
8818   bool AllowInaccurateDiv = Flags.hasApproximateFuncs() ||
8819                             DAG.getTarget().Options.UnsafeFPMath;
8820   if (!AllowInaccurateDiv)
8821     return SDValue();
8822 
8823   SDValue NegY = DAG.getNode(ISD::FNEG, SL, VT, Y);
8824   SDValue One = DAG.getConstantFP(1.0, SL, VT);
8825 
8826   SDValue R = DAG.getNode(AMDGPUISD::RCP, SL, VT, Y);
8827   SDValue Tmp0 = DAG.getNode(ISD::FMA, SL, VT, NegY, R, One);
8828 
8829   R = DAG.getNode(ISD::FMA, SL, VT, Tmp0, R, R);
8830   SDValue Tmp1 = DAG.getNode(ISD::FMA, SL, VT, NegY, R, One);
8831   R = DAG.getNode(ISD::FMA, SL, VT, Tmp1, R, R);
8832   SDValue Ret = DAG.getNode(ISD::FMUL, SL, VT, X, R);
8833   SDValue Tmp2 = DAG.getNode(ISD::FMA, SL, VT, NegY, Ret, X);
8834   return DAG.getNode(ISD::FMA, SL, VT, Tmp2, R, Ret);
8835 }
8836 
8837 static SDValue getFPBinOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL,
8838                           EVT VT, SDValue A, SDValue B, SDValue GlueChain,
8839                           SDNodeFlags Flags) {
8840   if (GlueChain->getNumValues() <= 1) {
8841     return DAG.getNode(Opcode, SL, VT, A, B, Flags);
8842   }
8843 
8844   assert(GlueChain->getNumValues() == 3);
8845 
8846   SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue);
8847   switch (Opcode) {
8848   default: llvm_unreachable("no chain equivalent for opcode");
8849   case ISD::FMUL:
8850     Opcode = AMDGPUISD::FMUL_W_CHAIN;
8851     break;
8852   }
8853 
8854   return DAG.getNode(Opcode, SL, VTList,
8855                      {GlueChain.getValue(1), A, B, GlueChain.getValue(2)},
8856                      Flags);
8857 }
8858 
8859 static SDValue getFPTernOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL,
8860                            EVT VT, SDValue A, SDValue B, SDValue C,
8861                            SDValue GlueChain, SDNodeFlags Flags) {
8862   if (GlueChain->getNumValues() <= 1) {
8863     return DAG.getNode(Opcode, SL, VT, {A, B, C}, Flags);
8864   }
8865 
8866   assert(GlueChain->getNumValues() == 3);
8867 
8868   SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue);
8869   switch (Opcode) {
8870   default: llvm_unreachable("no chain equivalent for opcode");
8871   case ISD::FMA:
8872     Opcode = AMDGPUISD::FMA_W_CHAIN;
8873     break;
8874   }
8875 
8876   return DAG.getNode(Opcode, SL, VTList,
8877                      {GlueChain.getValue(1), A, B, C, GlueChain.getValue(2)},
8878                      Flags);
8879 }
8880 
8881 SDValue SITargetLowering::LowerFDIV16(SDValue Op, SelectionDAG &DAG) const {
8882   if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG))
8883     return FastLowered;
8884 
8885   SDLoc SL(Op);
8886   SDValue Src0 = Op.getOperand(0);
8887   SDValue Src1 = Op.getOperand(1);
8888 
8889   SDValue CvtSrc0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0);
8890   SDValue CvtSrc1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1);
8891 
8892   SDValue RcpSrc1 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, CvtSrc1);
8893   SDValue Quot = DAG.getNode(ISD::FMUL, SL, MVT::f32, CvtSrc0, RcpSrc1);
8894 
8895   SDValue FPRoundFlag = DAG.getTargetConstant(0, SL, MVT::i32);
8896   SDValue BestQuot = DAG.getNode(ISD::FP_ROUND, SL, MVT::f16, Quot, FPRoundFlag);
8897 
8898   return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f16, BestQuot, Src1, Src0);
8899 }
8900 
8901 // Faster 2.5 ULP division that does not support denormals.
8902 SDValue SITargetLowering::lowerFDIV_FAST(SDValue Op, SelectionDAG &DAG) const {
8903   SDLoc SL(Op);
8904   SDValue LHS = Op.getOperand(1);
8905   SDValue RHS = Op.getOperand(2);
8906 
8907   SDValue r1 = DAG.getNode(ISD::FABS, SL, MVT::f32, RHS);
8908 
8909   const APFloat K0Val(BitsToFloat(0x6f800000));
8910   const SDValue K0 = DAG.getConstantFP(K0Val, SL, MVT::f32);
8911 
8912   const APFloat K1Val(BitsToFloat(0x2f800000));
8913   const SDValue K1 = DAG.getConstantFP(K1Val, SL, MVT::f32);
8914 
8915   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
8916 
8917   EVT SetCCVT =
8918     getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32);
8919 
8920   SDValue r2 = DAG.getSetCC(SL, SetCCVT, r1, K0, ISD::SETOGT);
8921 
8922   SDValue r3 = DAG.getNode(ISD::SELECT, SL, MVT::f32, r2, K1, One);
8923 
8924   // TODO: Should this propagate fast-math-flags?
8925   r1 = DAG.getNode(ISD::FMUL, SL, MVT::f32, RHS, r3);
8926 
8927   // rcp does not support denormals.
8928   SDValue r0 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, r1);
8929 
8930   SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f32, LHS, r0);
8931 
8932   return DAG.getNode(ISD::FMUL, SL, MVT::f32, r3, Mul);
8933 }
8934 
8935 // Returns immediate value for setting the F32 denorm mode when using the
8936 // S_DENORM_MODE instruction.
8937 static SDValue getSPDenormModeValue(int SPDenormMode, SelectionDAG &DAG,
8938                                     const SDLoc &SL, const GCNSubtarget *ST) {
8939   assert(ST->hasDenormModeInst() && "Requires S_DENORM_MODE");
8940   int DPDenormModeDefault = hasFP64FP16Denormals(DAG.getMachineFunction())
8941                                 ? FP_DENORM_FLUSH_NONE
8942                                 : FP_DENORM_FLUSH_IN_FLUSH_OUT;
8943 
8944   int Mode = SPDenormMode | (DPDenormModeDefault << 2);
8945   return DAG.getTargetConstant(Mode, SL, MVT::i32);
8946 }
8947 
8948 SDValue SITargetLowering::LowerFDIV32(SDValue Op, SelectionDAG &DAG) const {
8949   if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG))
8950     return FastLowered;
8951 
8952   // The selection matcher assumes anything with a chain selecting to a
8953   // mayRaiseFPException machine instruction. Since we're introducing a chain
8954   // here, we need to explicitly report nofpexcept for the regular fdiv
8955   // lowering.
8956   SDNodeFlags Flags = Op->getFlags();
8957   Flags.setNoFPExcept(true);
8958 
8959   SDLoc SL(Op);
8960   SDValue LHS = Op.getOperand(0);
8961   SDValue RHS = Op.getOperand(1);
8962 
8963   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
8964 
8965   SDVTList ScaleVT = DAG.getVTList(MVT::f32, MVT::i1);
8966 
8967   SDValue DenominatorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT,
8968                                           {RHS, RHS, LHS}, Flags);
8969   SDValue NumeratorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT,
8970                                         {LHS, RHS, LHS}, Flags);
8971 
8972   // Denominator is scaled to not be denormal, so using rcp is ok.
8973   SDValue ApproxRcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32,
8974                                   DenominatorScaled, Flags);
8975   SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f32,
8976                                      DenominatorScaled, Flags);
8977 
8978   const unsigned Denorm32Reg = AMDGPU::Hwreg::ID_MODE |
8979                                (4 << AMDGPU::Hwreg::OFFSET_SHIFT_) |
8980                                (1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_);
8981   const SDValue BitField = DAG.getTargetConstant(Denorm32Reg, SL, MVT::i32);
8982 
8983   const bool HasFP32Denormals = hasFP32Denormals(DAG.getMachineFunction());
8984 
8985   if (!HasFP32Denormals) {
8986     // Note we can't use the STRICT_FMA/STRICT_FMUL for the non-strict FDIV
8987     // lowering. The chain dependence is insufficient, and we need glue. We do
8988     // not need the glue variants in a strictfp function.
8989 
8990     SDVTList BindParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
8991 
8992     SDNode *EnableDenorm;
8993     if (Subtarget->hasDenormModeInst()) {
8994       const SDValue EnableDenormValue =
8995           getSPDenormModeValue(FP_DENORM_FLUSH_NONE, DAG, SL, Subtarget);
8996 
8997       EnableDenorm = DAG.getNode(AMDGPUISD::DENORM_MODE, SL, BindParamVTs,
8998                                  DAG.getEntryNode(), EnableDenormValue).getNode();
8999     } else {
9000       const SDValue EnableDenormValue = DAG.getConstant(FP_DENORM_FLUSH_NONE,
9001                                                         SL, MVT::i32);
9002       EnableDenorm =
9003           DAG.getMachineNode(AMDGPU::S_SETREG_B32, SL, BindParamVTs,
9004                              {EnableDenormValue, BitField, DAG.getEntryNode()});
9005     }
9006 
9007     SDValue Ops[3] = {
9008       NegDivScale0,
9009       SDValue(EnableDenorm, 0),
9010       SDValue(EnableDenorm, 1)
9011     };
9012 
9013     NegDivScale0 = DAG.getMergeValues(Ops, SL);
9014   }
9015 
9016   SDValue Fma0 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0,
9017                              ApproxRcp, One, NegDivScale0, Flags);
9018 
9019   SDValue Fma1 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, Fma0, ApproxRcp,
9020                              ApproxRcp, Fma0, Flags);
9021 
9022   SDValue Mul = getFPBinOp(DAG, ISD::FMUL, SL, MVT::f32, NumeratorScaled,
9023                            Fma1, Fma1, Flags);
9024 
9025   SDValue Fma2 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Mul,
9026                              NumeratorScaled, Mul, Flags);
9027 
9028   SDValue Fma3 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32,
9029                              Fma2, Fma1, Mul, Fma2, Flags);
9030 
9031   SDValue Fma4 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Fma3,
9032                              NumeratorScaled, Fma3, Flags);
9033 
9034   if (!HasFP32Denormals) {
9035     SDNode *DisableDenorm;
9036     if (Subtarget->hasDenormModeInst()) {
9037       const SDValue DisableDenormValue =
9038           getSPDenormModeValue(FP_DENORM_FLUSH_IN_FLUSH_OUT, DAG, SL, Subtarget);
9039 
9040       DisableDenorm = DAG.getNode(AMDGPUISD::DENORM_MODE, SL, MVT::Other,
9041                                   Fma4.getValue(1), DisableDenormValue,
9042                                   Fma4.getValue(2)).getNode();
9043     } else {
9044       const SDValue DisableDenormValue =
9045           DAG.getConstant(FP_DENORM_FLUSH_IN_FLUSH_OUT, SL, MVT::i32);
9046 
9047       DisableDenorm = DAG.getMachineNode(
9048           AMDGPU::S_SETREG_B32, SL, MVT::Other,
9049           {DisableDenormValue, BitField, Fma4.getValue(1), Fma4.getValue(2)});
9050     }
9051 
9052     SDValue OutputChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other,
9053                                       SDValue(DisableDenorm, 0), DAG.getRoot());
9054     DAG.setRoot(OutputChain);
9055   }
9056 
9057   SDValue Scale = NumeratorScaled.getValue(1);
9058   SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f32,
9059                              {Fma4, Fma1, Fma3, Scale}, Flags);
9060 
9061   return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f32, Fmas, RHS, LHS, Flags);
9062 }
9063 
9064 SDValue SITargetLowering::LowerFDIV64(SDValue Op, SelectionDAG &DAG) const {
9065   if (SDValue FastLowered = lowerFastUnsafeFDIV64(Op, DAG))
9066     return FastLowered;
9067 
9068   SDLoc SL(Op);
9069   SDValue X = Op.getOperand(0);
9070   SDValue Y = Op.getOperand(1);
9071 
9072   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
9073 
9074   SDVTList ScaleVT = DAG.getVTList(MVT::f64, MVT::i1);
9075 
9076   SDValue DivScale0 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, Y, Y, X);
9077 
9078   SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f64, DivScale0);
9079 
9080   SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f64, DivScale0);
9081 
9082   SDValue Fma0 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Rcp, One);
9083 
9084   SDValue Fma1 = DAG.getNode(ISD::FMA, SL, MVT::f64, Rcp, Fma0, Rcp);
9085 
9086   SDValue Fma2 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Fma1, One);
9087 
9088   SDValue DivScale1 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, X, Y, X);
9089 
9090   SDValue Fma3 = DAG.getNode(ISD::FMA, SL, MVT::f64, Fma1, Fma2, Fma1);
9091   SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, DivScale1, Fma3);
9092 
9093   SDValue Fma4 = DAG.getNode(ISD::FMA, SL, MVT::f64,
9094                              NegDivScale0, Mul, DivScale1);
9095 
9096   SDValue Scale;
9097 
9098   if (!Subtarget->hasUsableDivScaleConditionOutput()) {
9099     // Workaround a hardware bug on SI where the condition output from div_scale
9100     // is not usable.
9101 
9102     const SDValue Hi = DAG.getConstant(1, SL, MVT::i32);
9103 
9104     // Figure out if the scale to use for div_fmas.
9105     SDValue NumBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X);
9106     SDValue DenBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Y);
9107     SDValue Scale0BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale0);
9108     SDValue Scale1BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale1);
9109 
9110     SDValue NumHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, NumBC, Hi);
9111     SDValue DenHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, DenBC, Hi);
9112 
9113     SDValue Scale0Hi
9114       = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale0BC, Hi);
9115     SDValue Scale1Hi
9116       = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale1BC, Hi);
9117 
9118     SDValue CmpDen = DAG.getSetCC(SL, MVT::i1, DenHi, Scale0Hi, ISD::SETEQ);
9119     SDValue CmpNum = DAG.getSetCC(SL, MVT::i1, NumHi, Scale1Hi, ISD::SETEQ);
9120     Scale = DAG.getNode(ISD::XOR, SL, MVT::i1, CmpNum, CmpDen);
9121   } else {
9122     Scale = DivScale1.getValue(1);
9123   }
9124 
9125   SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f64,
9126                              Fma4, Fma3, Mul, Scale);
9127 
9128   return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f64, Fmas, Y, X);
9129 }
9130 
9131 SDValue SITargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const {
9132   EVT VT = Op.getValueType();
9133 
9134   if (VT == MVT::f32)
9135     return LowerFDIV32(Op, DAG);
9136 
9137   if (VT == MVT::f64)
9138     return LowerFDIV64(Op, DAG);
9139 
9140   if (VT == MVT::f16)
9141     return LowerFDIV16(Op, DAG);
9142 
9143   llvm_unreachable("Unexpected type for fdiv");
9144 }
9145 
9146 SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
9147   SDLoc DL(Op);
9148   StoreSDNode *Store = cast<StoreSDNode>(Op);
9149   EVT VT = Store->getMemoryVT();
9150 
9151   if (VT == MVT::i1) {
9152     return DAG.getTruncStore(Store->getChain(), DL,
9153        DAG.getSExtOrTrunc(Store->getValue(), DL, MVT::i32),
9154        Store->getBasePtr(), MVT::i1, Store->getMemOperand());
9155   }
9156 
9157   assert(VT.isVector() &&
9158          Store->getValue().getValueType().getScalarType() == MVT::i32);
9159 
9160   unsigned AS = Store->getAddressSpace();
9161   if (Subtarget->hasLDSMisalignedBug() &&
9162       AS == AMDGPUAS::FLAT_ADDRESS &&
9163       Store->getAlign().value() < VT.getStoreSize() && VT.getSizeInBits() > 32) {
9164     return SplitVectorStore(Op, DAG);
9165   }
9166 
9167   MachineFunction &MF = DAG.getMachineFunction();
9168   SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
9169   // If there is a possibility that flat instruction access scratch memory
9170   // then we need to use the same legalization rules we use for private.
9171   if (AS == AMDGPUAS::FLAT_ADDRESS &&
9172       !Subtarget->hasMultiDwordFlatScratchAddressing())
9173     AS = MFI->hasFlatScratchInit() ?
9174          AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS;
9175 
9176   unsigned NumElements = VT.getVectorNumElements();
9177   if (AS == AMDGPUAS::GLOBAL_ADDRESS ||
9178       AS == AMDGPUAS::FLAT_ADDRESS) {
9179     if (NumElements > 4)
9180       return SplitVectorStore(Op, DAG);
9181     // v3 stores not supported on SI.
9182     if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
9183       return SplitVectorStore(Op, DAG);
9184 
9185     if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
9186                                         VT, *Store->getMemOperand()))
9187       return expandUnalignedStore(Store, DAG);
9188 
9189     return SDValue();
9190   } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
9191     switch (Subtarget->getMaxPrivateElementSize()) {
9192     case 4:
9193       return scalarizeVectorStore(Store, DAG);
9194     case 8:
9195       if (NumElements > 2)
9196         return SplitVectorStore(Op, DAG);
9197       return SDValue();
9198     case 16:
9199       if (NumElements > 4 ||
9200           (NumElements == 3 && !Subtarget->enableFlatScratch()))
9201         return SplitVectorStore(Op, DAG);
9202       return SDValue();
9203     default:
9204       llvm_unreachable("unsupported private_element_size");
9205     }
9206   } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
9207     bool Fast = false;
9208     auto Flags = Store->getMemOperand()->getFlags();
9209     if (allowsMisalignedMemoryAccessesImpl(VT.getSizeInBits(), AS,
9210                                            Store->getAlign(), Flags, &Fast) &&
9211         Fast)
9212       return SDValue();
9213 
9214     if (VT.isVector())
9215       return SplitVectorStore(Op, DAG);
9216 
9217     return expandUnalignedStore(Store, DAG);
9218   }
9219 
9220   // Probably an invalid store. If so we'll end up emitting a selection error.
9221   return SDValue();
9222 }
9223 
9224 SDValue SITargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const {
9225   SDLoc DL(Op);
9226   EVT VT = Op.getValueType();
9227   SDValue Arg = Op.getOperand(0);
9228   SDValue TrigVal;
9229 
9230   // Propagate fast-math flags so that the multiply we introduce can be folded
9231   // if Arg is already the result of a multiply by constant.
9232   auto Flags = Op->getFlags();
9233 
9234   SDValue OneOver2Pi = DAG.getConstantFP(0.5 * numbers::inv_pi, DL, VT);
9235 
9236   if (Subtarget->hasTrigReducedRange()) {
9237     SDValue MulVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi, Flags);
9238     TrigVal = DAG.getNode(AMDGPUISD::FRACT, DL, VT, MulVal, Flags);
9239   } else {
9240     TrigVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi, Flags);
9241   }
9242 
9243   switch (Op.getOpcode()) {
9244   case ISD::FCOS:
9245     return DAG.getNode(AMDGPUISD::COS_HW, SDLoc(Op), VT, TrigVal, Flags);
9246   case ISD::FSIN:
9247     return DAG.getNode(AMDGPUISD::SIN_HW, SDLoc(Op), VT, TrigVal, Flags);
9248   default:
9249     llvm_unreachable("Wrong trig opcode");
9250   }
9251 }
9252 
9253 SDValue SITargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
9254   AtomicSDNode *AtomicNode = cast<AtomicSDNode>(Op);
9255   assert(AtomicNode->isCompareAndSwap());
9256   unsigned AS = AtomicNode->getAddressSpace();
9257 
9258   // No custom lowering required for local address space
9259   if (!AMDGPU::isFlatGlobalAddrSpace(AS))
9260     return Op;
9261 
9262   // Non-local address space requires custom lowering for atomic compare
9263   // and swap; cmp and swap should be in a v2i32 or v2i64 in case of _X2
9264   SDLoc DL(Op);
9265   SDValue ChainIn = Op.getOperand(0);
9266   SDValue Addr = Op.getOperand(1);
9267   SDValue Old = Op.getOperand(2);
9268   SDValue New = Op.getOperand(3);
9269   EVT VT = Op.getValueType();
9270   MVT SimpleVT = VT.getSimpleVT();
9271   MVT VecType = MVT::getVectorVT(SimpleVT, 2);
9272 
9273   SDValue NewOld = DAG.getBuildVector(VecType, DL, {New, Old});
9274   SDValue Ops[] = { ChainIn, Addr, NewOld };
9275 
9276   return DAG.getMemIntrinsicNode(AMDGPUISD::ATOMIC_CMP_SWAP, DL, Op->getVTList(),
9277                                  Ops, VT, AtomicNode->getMemOperand());
9278 }
9279 
9280 //===----------------------------------------------------------------------===//
9281 // Custom DAG optimizations
9282 //===----------------------------------------------------------------------===//
9283 
9284 SDValue SITargetLowering::performUCharToFloatCombine(SDNode *N,
9285                                                      DAGCombinerInfo &DCI) const {
9286   EVT VT = N->getValueType(0);
9287   EVT ScalarVT = VT.getScalarType();
9288   if (ScalarVT != MVT::f32 && ScalarVT != MVT::f16)
9289     return SDValue();
9290 
9291   SelectionDAG &DAG = DCI.DAG;
9292   SDLoc DL(N);
9293 
9294   SDValue Src = N->getOperand(0);
9295   EVT SrcVT = Src.getValueType();
9296 
9297   // TODO: We could try to match extracting the higher bytes, which would be
9298   // easier if i8 vectors weren't promoted to i32 vectors, particularly after
9299   // types are legalized. v4i8 -> v4f32 is probably the only case to worry
9300   // about in practice.
9301   if (DCI.isAfterLegalizeDAG() && SrcVT == MVT::i32) {
9302     if (DAG.MaskedValueIsZero(Src, APInt::getHighBitsSet(32, 24))) {
9303       SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, MVT::f32, Src);
9304       DCI.AddToWorklist(Cvt.getNode());
9305 
9306       // For the f16 case, fold to a cast to f32 and then cast back to f16.
9307       if (ScalarVT != MVT::f32) {
9308         Cvt = DAG.getNode(ISD::FP_ROUND, DL, VT, Cvt,
9309                           DAG.getTargetConstant(0, DL, MVT::i32));
9310       }
9311       return Cvt;
9312     }
9313   }
9314 
9315   return SDValue();
9316 }
9317 
9318 // (shl (add x, c1), c2) -> add (shl x, c2), (shl c1, c2)
9319 
9320 // This is a variant of
9321 // (mul (add x, c1), c2) -> add (mul x, c2), (mul c1, c2),
9322 //
9323 // The normal DAG combiner will do this, but only if the add has one use since
9324 // that would increase the number of instructions.
9325 //
9326 // This prevents us from seeing a constant offset that can be folded into a
9327 // memory instruction's addressing mode. If we know the resulting add offset of
9328 // a pointer can be folded into an addressing offset, we can replace the pointer
9329 // operand with the add of new constant offset. This eliminates one of the uses,
9330 // and may allow the remaining use to also be simplified.
9331 //
9332 SDValue SITargetLowering::performSHLPtrCombine(SDNode *N,
9333                                                unsigned AddrSpace,
9334                                                EVT MemVT,
9335                                                DAGCombinerInfo &DCI) const {
9336   SDValue N0 = N->getOperand(0);
9337   SDValue N1 = N->getOperand(1);
9338 
9339   // We only do this to handle cases where it's profitable when there are
9340   // multiple uses of the add, so defer to the standard combine.
9341   if ((N0.getOpcode() != ISD::ADD && N0.getOpcode() != ISD::OR) ||
9342       N0->hasOneUse())
9343     return SDValue();
9344 
9345   const ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N1);
9346   if (!CN1)
9347     return SDValue();
9348 
9349   const ConstantSDNode *CAdd = dyn_cast<ConstantSDNode>(N0.getOperand(1));
9350   if (!CAdd)
9351     return SDValue();
9352 
9353   // If the resulting offset is too large, we can't fold it into the addressing
9354   // mode offset.
9355   APInt Offset = CAdd->getAPIntValue() << CN1->getAPIntValue();
9356   Type *Ty = MemVT.getTypeForEVT(*DCI.DAG.getContext());
9357 
9358   AddrMode AM;
9359   AM.HasBaseReg = true;
9360   AM.BaseOffs = Offset.getSExtValue();
9361   if (!isLegalAddressingMode(DCI.DAG.getDataLayout(), AM, Ty, AddrSpace))
9362     return SDValue();
9363 
9364   SelectionDAG &DAG = DCI.DAG;
9365   SDLoc SL(N);
9366   EVT VT = N->getValueType(0);
9367 
9368   SDValue ShlX = DAG.getNode(ISD::SHL, SL, VT, N0.getOperand(0), N1);
9369   SDValue COffset = DAG.getConstant(Offset, SL, VT);
9370 
9371   SDNodeFlags Flags;
9372   Flags.setNoUnsignedWrap(N->getFlags().hasNoUnsignedWrap() &&
9373                           (N0.getOpcode() == ISD::OR ||
9374                            N0->getFlags().hasNoUnsignedWrap()));
9375 
9376   return DAG.getNode(ISD::ADD, SL, VT, ShlX, COffset, Flags);
9377 }
9378 
9379 /// MemSDNode::getBasePtr() does not work for intrinsics, which needs to offset
9380 /// by the chain and intrinsic ID. Theoretically we would also need to check the
9381 /// specific intrinsic, but they all place the pointer operand first.
9382 static unsigned getBasePtrIndex(const MemSDNode *N) {
9383   switch (N->getOpcode()) {
9384   case ISD::STORE:
9385   case ISD::INTRINSIC_W_CHAIN:
9386   case ISD::INTRINSIC_VOID:
9387     return 2;
9388   default:
9389     return 1;
9390   }
9391 }
9392 
9393 SDValue SITargetLowering::performMemSDNodeCombine(MemSDNode *N,
9394                                                   DAGCombinerInfo &DCI) const {
9395   SelectionDAG &DAG = DCI.DAG;
9396   SDLoc SL(N);
9397 
9398   unsigned PtrIdx = getBasePtrIndex(N);
9399   SDValue Ptr = N->getOperand(PtrIdx);
9400 
9401   // TODO: We could also do this for multiplies.
9402   if (Ptr.getOpcode() == ISD::SHL) {
9403     SDValue NewPtr = performSHLPtrCombine(Ptr.getNode(),  N->getAddressSpace(),
9404                                           N->getMemoryVT(), DCI);
9405     if (NewPtr) {
9406       SmallVector<SDValue, 8> NewOps(N->op_begin(), N->op_end());
9407 
9408       NewOps[PtrIdx] = NewPtr;
9409       return SDValue(DAG.UpdateNodeOperands(N, NewOps), 0);
9410     }
9411   }
9412 
9413   return SDValue();
9414 }
9415 
9416 static bool bitOpWithConstantIsReducible(unsigned Opc, uint32_t Val) {
9417   return (Opc == ISD::AND && (Val == 0 || Val == 0xffffffff)) ||
9418          (Opc == ISD::OR && (Val == 0xffffffff || Val == 0)) ||
9419          (Opc == ISD::XOR && Val == 0);
9420 }
9421 
9422 // Break up 64-bit bit operation of a constant into two 32-bit and/or/xor. This
9423 // will typically happen anyway for a VALU 64-bit and. This exposes other 32-bit
9424 // integer combine opportunities since most 64-bit operations are decomposed
9425 // this way.  TODO: We won't want this for SALU especially if it is an inline
9426 // immediate.
9427 SDValue SITargetLowering::splitBinaryBitConstantOp(
9428   DAGCombinerInfo &DCI,
9429   const SDLoc &SL,
9430   unsigned Opc, SDValue LHS,
9431   const ConstantSDNode *CRHS) const {
9432   uint64_t Val = CRHS->getZExtValue();
9433   uint32_t ValLo = Lo_32(Val);
9434   uint32_t ValHi = Hi_32(Val);
9435   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
9436 
9437     if ((bitOpWithConstantIsReducible(Opc, ValLo) ||
9438          bitOpWithConstantIsReducible(Opc, ValHi)) ||
9439         (CRHS->hasOneUse() && !TII->isInlineConstant(CRHS->getAPIntValue()))) {
9440     // If we need to materialize a 64-bit immediate, it will be split up later
9441     // anyway. Avoid creating the harder to understand 64-bit immediate
9442     // materialization.
9443     return splitBinaryBitConstantOpImpl(DCI, SL, Opc, LHS, ValLo, ValHi);
9444   }
9445 
9446   return SDValue();
9447 }
9448 
9449 // Returns true if argument is a boolean value which is not serialized into
9450 // memory or argument and does not require v_cndmask_b32 to be deserialized.
9451 static bool isBoolSGPR(SDValue V) {
9452   if (V.getValueType() != MVT::i1)
9453     return false;
9454   switch (V.getOpcode()) {
9455   default:
9456     break;
9457   case ISD::SETCC:
9458   case AMDGPUISD::FP_CLASS:
9459     return true;
9460   case ISD::AND:
9461   case ISD::OR:
9462   case ISD::XOR:
9463     return isBoolSGPR(V.getOperand(0)) && isBoolSGPR(V.getOperand(1));
9464   }
9465   return false;
9466 }
9467 
9468 // If a constant has all zeroes or all ones within each byte return it.
9469 // Otherwise return 0.
9470 static uint32_t getConstantPermuteMask(uint32_t C) {
9471   // 0xff for any zero byte in the mask
9472   uint32_t ZeroByteMask = 0;
9473   if (!(C & 0x000000ff)) ZeroByteMask |= 0x000000ff;
9474   if (!(C & 0x0000ff00)) ZeroByteMask |= 0x0000ff00;
9475   if (!(C & 0x00ff0000)) ZeroByteMask |= 0x00ff0000;
9476   if (!(C & 0xff000000)) ZeroByteMask |= 0xff000000;
9477   uint32_t NonZeroByteMask = ~ZeroByteMask; // 0xff for any non-zero byte
9478   if ((NonZeroByteMask & C) != NonZeroByteMask)
9479     return 0; // Partial bytes selected.
9480   return C;
9481 }
9482 
9483 // Check if a node selects whole bytes from its operand 0 starting at a byte
9484 // boundary while masking the rest. Returns select mask as in the v_perm_b32
9485 // or -1 if not succeeded.
9486 // Note byte select encoding:
9487 // value 0-3 selects corresponding source byte;
9488 // value 0xc selects zero;
9489 // value 0xff selects 0xff.
9490 static uint32_t getPermuteMask(SelectionDAG &DAG, SDValue V) {
9491   assert(V.getValueSizeInBits() == 32);
9492 
9493   if (V.getNumOperands() != 2)
9494     return ~0;
9495 
9496   ConstantSDNode *N1 = dyn_cast<ConstantSDNode>(V.getOperand(1));
9497   if (!N1)
9498     return ~0;
9499 
9500   uint32_t C = N1->getZExtValue();
9501 
9502   switch (V.getOpcode()) {
9503   default:
9504     break;
9505   case ISD::AND:
9506     if (uint32_t ConstMask = getConstantPermuteMask(C)) {
9507       return (0x03020100 & ConstMask) | (0x0c0c0c0c & ~ConstMask);
9508     }
9509     break;
9510 
9511   case ISD::OR:
9512     if (uint32_t ConstMask = getConstantPermuteMask(C)) {
9513       return (0x03020100 & ~ConstMask) | ConstMask;
9514     }
9515     break;
9516 
9517   case ISD::SHL:
9518     if (C % 8)
9519       return ~0;
9520 
9521     return uint32_t((0x030201000c0c0c0cull << C) >> 32);
9522 
9523   case ISD::SRL:
9524     if (C % 8)
9525       return ~0;
9526 
9527     return uint32_t(0x0c0c0c0c03020100ull >> C);
9528   }
9529 
9530   return ~0;
9531 }
9532 
9533 SDValue SITargetLowering::performAndCombine(SDNode *N,
9534                                             DAGCombinerInfo &DCI) const {
9535   if (DCI.isBeforeLegalize())
9536     return SDValue();
9537 
9538   SelectionDAG &DAG = DCI.DAG;
9539   EVT VT = N->getValueType(0);
9540   SDValue LHS = N->getOperand(0);
9541   SDValue RHS = N->getOperand(1);
9542 
9543 
9544   const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS);
9545   if (VT == MVT::i64 && CRHS) {
9546     if (SDValue Split
9547         = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::AND, LHS, CRHS))
9548       return Split;
9549   }
9550 
9551   if (CRHS && VT == MVT::i32) {
9552     // and (srl x, c), mask => shl (bfe x, nb + c, mask >> nb), nb
9553     // nb = number of trailing zeroes in mask
9554     // It can be optimized out using SDWA for GFX8+ in the SDWA peephole pass,
9555     // given that we are selecting 8 or 16 bit fields starting at byte boundary.
9556     uint64_t Mask = CRHS->getZExtValue();
9557     unsigned Bits = countPopulation(Mask);
9558     if (getSubtarget()->hasSDWA() && LHS->getOpcode() == ISD::SRL &&
9559         (Bits == 8 || Bits == 16) && isShiftedMask_64(Mask) && !(Mask & 1)) {
9560       if (auto *CShift = dyn_cast<ConstantSDNode>(LHS->getOperand(1))) {
9561         unsigned Shift = CShift->getZExtValue();
9562         unsigned NB = CRHS->getAPIntValue().countTrailingZeros();
9563         unsigned Offset = NB + Shift;
9564         if ((Offset & (Bits - 1)) == 0) { // Starts at a byte or word boundary.
9565           SDLoc SL(N);
9566           SDValue BFE = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32,
9567                                     LHS->getOperand(0),
9568                                     DAG.getConstant(Offset, SL, MVT::i32),
9569                                     DAG.getConstant(Bits, SL, MVT::i32));
9570           EVT NarrowVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
9571           SDValue Ext = DAG.getNode(ISD::AssertZext, SL, VT, BFE,
9572                                     DAG.getValueType(NarrowVT));
9573           SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(LHS), VT, Ext,
9574                                     DAG.getConstant(NB, SDLoc(CRHS), MVT::i32));
9575           return Shl;
9576         }
9577       }
9578     }
9579 
9580     // and (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2)
9581     if (LHS.hasOneUse() && LHS.getOpcode() == AMDGPUISD::PERM &&
9582         isa<ConstantSDNode>(LHS.getOperand(2))) {
9583       uint32_t Sel = getConstantPermuteMask(Mask);
9584       if (!Sel)
9585         return SDValue();
9586 
9587       // Select 0xc for all zero bytes
9588       Sel = (LHS.getConstantOperandVal(2) & Sel) | (~Sel & 0x0c0c0c0c);
9589       SDLoc DL(N);
9590       return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0),
9591                          LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32));
9592     }
9593   }
9594 
9595   // (and (fcmp ord x, x), (fcmp une (fabs x), inf)) ->
9596   // fp_class x, ~(s_nan | q_nan | n_infinity | p_infinity)
9597   if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == ISD::SETCC) {
9598     ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
9599     ISD::CondCode RCC = cast<CondCodeSDNode>(RHS.getOperand(2))->get();
9600 
9601     SDValue X = LHS.getOperand(0);
9602     SDValue Y = RHS.getOperand(0);
9603     if (Y.getOpcode() != ISD::FABS || Y.getOperand(0) != X)
9604       return SDValue();
9605 
9606     if (LCC == ISD::SETO) {
9607       if (X != LHS.getOperand(1))
9608         return SDValue();
9609 
9610       if (RCC == ISD::SETUNE) {
9611         const ConstantFPSDNode *C1 = dyn_cast<ConstantFPSDNode>(RHS.getOperand(1));
9612         if (!C1 || !C1->isInfinity() || C1->isNegative())
9613           return SDValue();
9614 
9615         const uint32_t Mask = SIInstrFlags::N_NORMAL |
9616                               SIInstrFlags::N_SUBNORMAL |
9617                               SIInstrFlags::N_ZERO |
9618                               SIInstrFlags::P_ZERO |
9619                               SIInstrFlags::P_SUBNORMAL |
9620                               SIInstrFlags::P_NORMAL;
9621 
9622         static_assert(((~(SIInstrFlags::S_NAN |
9623                           SIInstrFlags::Q_NAN |
9624                           SIInstrFlags::N_INFINITY |
9625                           SIInstrFlags::P_INFINITY)) & 0x3ff) == Mask,
9626                       "mask not equal");
9627 
9628         SDLoc DL(N);
9629         return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
9630                            X, DAG.getConstant(Mask, DL, MVT::i32));
9631       }
9632     }
9633   }
9634 
9635   if (RHS.getOpcode() == ISD::SETCC && LHS.getOpcode() == AMDGPUISD::FP_CLASS)
9636     std::swap(LHS, RHS);
9637 
9638   if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == AMDGPUISD::FP_CLASS &&
9639       RHS.hasOneUse()) {
9640     ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
9641     // and (fcmp seto), (fp_class x, mask) -> fp_class x, mask & ~(p_nan | n_nan)
9642     // and (fcmp setuo), (fp_class x, mask) -> fp_class x, mask & (p_nan | n_nan)
9643     const ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
9644     if ((LCC == ISD::SETO || LCC == ISD::SETUO) && Mask &&
9645         (RHS.getOperand(0) == LHS.getOperand(0) &&
9646          LHS.getOperand(0) == LHS.getOperand(1))) {
9647       const unsigned OrdMask = SIInstrFlags::S_NAN | SIInstrFlags::Q_NAN;
9648       unsigned NewMask = LCC == ISD::SETO ?
9649         Mask->getZExtValue() & ~OrdMask :
9650         Mask->getZExtValue() & OrdMask;
9651 
9652       SDLoc DL(N);
9653       return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, RHS.getOperand(0),
9654                          DAG.getConstant(NewMask, DL, MVT::i32));
9655     }
9656   }
9657 
9658   if (VT == MVT::i32 &&
9659       (RHS.getOpcode() == ISD::SIGN_EXTEND || LHS.getOpcode() == ISD::SIGN_EXTEND)) {
9660     // and x, (sext cc from i1) => select cc, x, 0
9661     if (RHS.getOpcode() != ISD::SIGN_EXTEND)
9662       std::swap(LHS, RHS);
9663     if (isBoolSGPR(RHS.getOperand(0)))
9664       return DAG.getSelect(SDLoc(N), MVT::i32, RHS.getOperand(0),
9665                            LHS, DAG.getConstant(0, SDLoc(N), MVT::i32));
9666   }
9667 
9668   // and (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2)
9669   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
9670   if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() &&
9671       N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32_e64) != -1) {
9672     uint32_t LHSMask = getPermuteMask(DAG, LHS);
9673     uint32_t RHSMask = getPermuteMask(DAG, RHS);
9674     if (LHSMask != ~0u && RHSMask != ~0u) {
9675       // Canonicalize the expression in an attempt to have fewer unique masks
9676       // and therefore fewer registers used to hold the masks.
9677       if (LHSMask > RHSMask) {
9678         std::swap(LHSMask, RHSMask);
9679         std::swap(LHS, RHS);
9680       }
9681 
9682       // Select 0xc for each lane used from source operand. Zero has 0xc mask
9683       // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range.
9684       uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
9685       uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
9686 
9687       // Check of we need to combine values from two sources within a byte.
9688       if (!(LHSUsedLanes & RHSUsedLanes) &&
9689           // If we select high and lower word keep it for SDWA.
9690           // TODO: teach SDWA to work with v_perm_b32 and remove the check.
9691           !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) {
9692         // Each byte in each mask is either selector mask 0-3, or has higher
9693         // bits set in either of masks, which can be 0xff for 0xff or 0x0c for
9694         // zero. If 0x0c is in either mask it shall always be 0x0c. Otherwise
9695         // mask which is not 0xff wins. By anding both masks we have a correct
9696         // result except that 0x0c shall be corrected to give 0x0c only.
9697         uint32_t Mask = LHSMask & RHSMask;
9698         for (unsigned I = 0; I < 32; I += 8) {
9699           uint32_t ByteSel = 0xff << I;
9700           if ((LHSMask & ByteSel) == 0x0c || (RHSMask & ByteSel) == 0x0c)
9701             Mask &= (0x0c << I) & 0xffffffff;
9702         }
9703 
9704         // Add 4 to each active LHS lane. It will not affect any existing 0xff
9705         // or 0x0c.
9706         uint32_t Sel = Mask | (LHSUsedLanes & 0x04040404);
9707         SDLoc DL(N);
9708 
9709         return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32,
9710                            LHS.getOperand(0), RHS.getOperand(0),
9711                            DAG.getConstant(Sel, DL, MVT::i32));
9712       }
9713     }
9714   }
9715 
9716   return SDValue();
9717 }
9718 
9719 SDValue SITargetLowering::performOrCombine(SDNode *N,
9720                                            DAGCombinerInfo &DCI) const {
9721   SelectionDAG &DAG = DCI.DAG;
9722   SDValue LHS = N->getOperand(0);
9723   SDValue RHS = N->getOperand(1);
9724 
9725   EVT VT = N->getValueType(0);
9726   if (VT == MVT::i1) {
9727     // or (fp_class x, c1), (fp_class x, c2) -> fp_class x, (c1 | c2)
9728     if (LHS.getOpcode() == AMDGPUISD::FP_CLASS &&
9729         RHS.getOpcode() == AMDGPUISD::FP_CLASS) {
9730       SDValue Src = LHS.getOperand(0);
9731       if (Src != RHS.getOperand(0))
9732         return SDValue();
9733 
9734       const ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
9735       const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
9736       if (!CLHS || !CRHS)
9737         return SDValue();
9738 
9739       // Only 10 bits are used.
9740       static const uint32_t MaxMask = 0x3ff;
9741 
9742       uint32_t NewMask = (CLHS->getZExtValue() | CRHS->getZExtValue()) & MaxMask;
9743       SDLoc DL(N);
9744       return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
9745                          Src, DAG.getConstant(NewMask, DL, MVT::i32));
9746     }
9747 
9748     return SDValue();
9749   }
9750 
9751   // or (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2)
9752   if (isa<ConstantSDNode>(RHS) && LHS.hasOneUse() &&
9753       LHS.getOpcode() == AMDGPUISD::PERM &&
9754       isa<ConstantSDNode>(LHS.getOperand(2))) {
9755     uint32_t Sel = getConstantPermuteMask(N->getConstantOperandVal(1));
9756     if (!Sel)
9757       return SDValue();
9758 
9759     Sel |= LHS.getConstantOperandVal(2);
9760     SDLoc DL(N);
9761     return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0),
9762                        LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32));
9763   }
9764 
9765   // or (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2)
9766   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
9767   if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() &&
9768       N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32_e64) != -1) {
9769     uint32_t LHSMask = getPermuteMask(DAG, LHS);
9770     uint32_t RHSMask = getPermuteMask(DAG, RHS);
9771     if (LHSMask != ~0u && RHSMask != ~0u) {
9772       // Canonicalize the expression in an attempt to have fewer unique masks
9773       // and therefore fewer registers used to hold the masks.
9774       if (LHSMask > RHSMask) {
9775         std::swap(LHSMask, RHSMask);
9776         std::swap(LHS, RHS);
9777       }
9778 
9779       // Select 0xc for each lane used from source operand. Zero has 0xc mask
9780       // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range.
9781       uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
9782       uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
9783 
9784       // Check of we need to combine values from two sources within a byte.
9785       if (!(LHSUsedLanes & RHSUsedLanes) &&
9786           // If we select high and lower word keep it for SDWA.
9787           // TODO: teach SDWA to work with v_perm_b32 and remove the check.
9788           !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) {
9789         // Kill zero bytes selected by other mask. Zero value is 0xc.
9790         LHSMask &= ~RHSUsedLanes;
9791         RHSMask &= ~LHSUsedLanes;
9792         // Add 4 to each active LHS lane
9793         LHSMask |= LHSUsedLanes & 0x04040404;
9794         // Combine masks
9795         uint32_t Sel = LHSMask | RHSMask;
9796         SDLoc DL(N);
9797 
9798         return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32,
9799                            LHS.getOperand(0), RHS.getOperand(0),
9800                            DAG.getConstant(Sel, DL, MVT::i32));
9801       }
9802     }
9803   }
9804 
9805   if (VT != MVT::i64 || DCI.isBeforeLegalizeOps())
9806     return SDValue();
9807 
9808   // TODO: This could be a generic combine with a predicate for extracting the
9809   // high half of an integer being free.
9810 
9811   // (or i64:x, (zero_extend i32:y)) ->
9812   //   i64 (bitcast (v2i32 build_vector (or i32:y, lo_32(x)), hi_32(x)))
9813   if (LHS.getOpcode() == ISD::ZERO_EXTEND &&
9814       RHS.getOpcode() != ISD::ZERO_EXTEND)
9815     std::swap(LHS, RHS);
9816 
9817   if (RHS.getOpcode() == ISD::ZERO_EXTEND) {
9818     SDValue ExtSrc = RHS.getOperand(0);
9819     EVT SrcVT = ExtSrc.getValueType();
9820     if (SrcVT == MVT::i32) {
9821       SDLoc SL(N);
9822       SDValue LowLHS, HiBits;
9823       std::tie(LowLHS, HiBits) = split64BitValue(LHS, DAG);
9824       SDValue LowOr = DAG.getNode(ISD::OR, SL, MVT::i32, LowLHS, ExtSrc);
9825 
9826       DCI.AddToWorklist(LowOr.getNode());
9827       DCI.AddToWorklist(HiBits.getNode());
9828 
9829       SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
9830                                 LowOr, HiBits);
9831       return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
9832     }
9833   }
9834 
9835   const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
9836   if (CRHS) {
9837     if (SDValue Split
9838           = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::OR,
9839                                      N->getOperand(0), CRHS))
9840       return Split;
9841   }
9842 
9843   return SDValue();
9844 }
9845 
9846 SDValue SITargetLowering::performXorCombine(SDNode *N,
9847                                             DAGCombinerInfo &DCI) const {
9848   if (SDValue RV = reassociateScalarOps(N, DCI.DAG))
9849     return RV;
9850 
9851   EVT VT = N->getValueType(0);
9852   if (VT != MVT::i64)
9853     return SDValue();
9854 
9855   SDValue LHS = N->getOperand(0);
9856   SDValue RHS = N->getOperand(1);
9857 
9858   const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS);
9859   if (CRHS) {
9860     if (SDValue Split
9861           = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::XOR, LHS, CRHS))
9862       return Split;
9863   }
9864 
9865   return SDValue();
9866 }
9867 
9868 SDValue SITargetLowering::performZeroExtendCombine(SDNode *N,
9869                                                    DAGCombinerInfo &DCI) const {
9870   if (!Subtarget->has16BitInsts() ||
9871       DCI.getDAGCombineLevel() < AfterLegalizeDAG)
9872     return SDValue();
9873 
9874   EVT VT = N->getValueType(0);
9875   if (VT != MVT::i32)
9876     return SDValue();
9877 
9878   SDValue Src = N->getOperand(0);
9879   if (Src.getValueType() != MVT::i16)
9880     return SDValue();
9881 
9882   return SDValue();
9883 }
9884 
9885 SDValue SITargetLowering::performSignExtendInRegCombine(SDNode *N,
9886                                                         DAGCombinerInfo &DCI)
9887                                                         const {
9888   SDValue Src = N->getOperand(0);
9889   auto *VTSign = cast<VTSDNode>(N->getOperand(1));
9890 
9891   if (((Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE &&
9892       VTSign->getVT() == MVT::i8) ||
9893       (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_USHORT &&
9894       VTSign->getVT() == MVT::i16)) &&
9895       Src.hasOneUse()) {
9896     auto *M = cast<MemSDNode>(Src);
9897     SDValue Ops[] = {
9898       Src.getOperand(0), // Chain
9899       Src.getOperand(1), // rsrc
9900       Src.getOperand(2), // vindex
9901       Src.getOperand(3), // voffset
9902       Src.getOperand(4), // soffset
9903       Src.getOperand(5), // offset
9904       Src.getOperand(6),
9905       Src.getOperand(7)
9906     };
9907     // replace with BUFFER_LOAD_BYTE/SHORT
9908     SDVTList ResList = DCI.DAG.getVTList(MVT::i32,
9909                                          Src.getOperand(0).getValueType());
9910     unsigned Opc = (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE) ?
9911                    AMDGPUISD::BUFFER_LOAD_BYTE : AMDGPUISD::BUFFER_LOAD_SHORT;
9912     SDValue BufferLoadSignExt = DCI.DAG.getMemIntrinsicNode(Opc, SDLoc(N),
9913                                                           ResList,
9914                                                           Ops, M->getMemoryVT(),
9915                                                           M->getMemOperand());
9916     return DCI.DAG.getMergeValues({BufferLoadSignExt,
9917                                   BufferLoadSignExt.getValue(1)}, SDLoc(N));
9918   }
9919   return SDValue();
9920 }
9921 
9922 SDValue SITargetLowering::performClassCombine(SDNode *N,
9923                                               DAGCombinerInfo &DCI) const {
9924   SelectionDAG &DAG = DCI.DAG;
9925   SDValue Mask = N->getOperand(1);
9926 
9927   // fp_class x, 0 -> false
9928   if (const ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Mask)) {
9929     if (CMask->isZero())
9930       return DAG.getConstant(0, SDLoc(N), MVT::i1);
9931   }
9932 
9933   if (N->getOperand(0).isUndef())
9934     return DAG.getUNDEF(MVT::i1);
9935 
9936   return SDValue();
9937 }
9938 
9939 SDValue SITargetLowering::performRcpCombine(SDNode *N,
9940                                             DAGCombinerInfo &DCI) const {
9941   EVT VT = N->getValueType(0);
9942   SDValue N0 = N->getOperand(0);
9943 
9944   if (N0.isUndef())
9945     return N0;
9946 
9947   if (VT == MVT::f32 && (N0.getOpcode() == ISD::UINT_TO_FP ||
9948                          N0.getOpcode() == ISD::SINT_TO_FP)) {
9949     return DCI.DAG.getNode(AMDGPUISD::RCP_IFLAG, SDLoc(N), VT, N0,
9950                            N->getFlags());
9951   }
9952 
9953   if ((VT == MVT::f32 || VT == MVT::f16) && N0.getOpcode() == ISD::FSQRT) {
9954     return DCI.DAG.getNode(AMDGPUISD::RSQ, SDLoc(N), VT,
9955                            N0.getOperand(0), N->getFlags());
9956   }
9957 
9958   return AMDGPUTargetLowering::performRcpCombine(N, DCI);
9959 }
9960 
9961 bool SITargetLowering::isCanonicalized(SelectionDAG &DAG, SDValue Op,
9962                                        unsigned MaxDepth) const {
9963   unsigned Opcode = Op.getOpcode();
9964   if (Opcode == ISD::FCANONICALIZE)
9965     return true;
9966 
9967   if (auto *CFP = dyn_cast<ConstantFPSDNode>(Op)) {
9968     auto F = CFP->getValueAPF();
9969     if (F.isNaN() && F.isSignaling())
9970       return false;
9971     return !F.isDenormal() || denormalsEnabledForType(DAG, Op.getValueType());
9972   }
9973 
9974   // If source is a result of another standard FP operation it is already in
9975   // canonical form.
9976   if (MaxDepth == 0)
9977     return false;
9978 
9979   switch (Opcode) {
9980   // These will flush denorms if required.
9981   case ISD::FADD:
9982   case ISD::FSUB:
9983   case ISD::FMUL:
9984   case ISD::FCEIL:
9985   case ISD::FFLOOR:
9986   case ISD::FMA:
9987   case ISD::FMAD:
9988   case ISD::FSQRT:
9989   case ISD::FDIV:
9990   case ISD::FREM:
9991   case ISD::FP_ROUND:
9992   case ISD::FP_EXTEND:
9993   case AMDGPUISD::FMUL_LEGACY:
9994   case AMDGPUISD::FMAD_FTZ:
9995   case AMDGPUISD::RCP:
9996   case AMDGPUISD::RSQ:
9997   case AMDGPUISD::RSQ_CLAMP:
9998   case AMDGPUISD::RCP_LEGACY:
9999   case AMDGPUISD::RCP_IFLAG:
10000   case AMDGPUISD::DIV_SCALE:
10001   case AMDGPUISD::DIV_FMAS:
10002   case AMDGPUISD::DIV_FIXUP:
10003   case AMDGPUISD::FRACT:
10004   case AMDGPUISD::LDEXP:
10005   case AMDGPUISD::CVT_PKRTZ_F16_F32:
10006   case AMDGPUISD::CVT_F32_UBYTE0:
10007   case AMDGPUISD::CVT_F32_UBYTE1:
10008   case AMDGPUISD::CVT_F32_UBYTE2:
10009   case AMDGPUISD::CVT_F32_UBYTE3:
10010     return true;
10011 
10012   // It can/will be lowered or combined as a bit operation.
10013   // Need to check their input recursively to handle.
10014   case ISD::FNEG:
10015   case ISD::FABS:
10016   case ISD::FCOPYSIGN:
10017     return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1);
10018 
10019   case ISD::FSIN:
10020   case ISD::FCOS:
10021   case ISD::FSINCOS:
10022     return Op.getValueType().getScalarType() != MVT::f16;
10023 
10024   case ISD::FMINNUM:
10025   case ISD::FMAXNUM:
10026   case ISD::FMINNUM_IEEE:
10027   case ISD::FMAXNUM_IEEE:
10028   case AMDGPUISD::CLAMP:
10029   case AMDGPUISD::FMED3:
10030   case AMDGPUISD::FMAX3:
10031   case AMDGPUISD::FMIN3: {
10032     // FIXME: Shouldn't treat the generic operations different based these.
10033     // However, we aren't really required to flush the result from
10034     // minnum/maxnum..
10035 
10036     // snans will be quieted, so we only need to worry about denormals.
10037     if (Subtarget->supportsMinMaxDenormModes() ||
10038         denormalsEnabledForType(DAG, Op.getValueType()))
10039       return true;
10040 
10041     // Flushing may be required.
10042     // In pre-GFX9 targets V_MIN_F32 and others do not flush denorms. For such
10043     // targets need to check their input recursively.
10044 
10045     // FIXME: Does this apply with clamp? It's implemented with max.
10046     for (unsigned I = 0, E = Op.getNumOperands(); I != E; ++I) {
10047       if (!isCanonicalized(DAG, Op.getOperand(I), MaxDepth - 1))
10048         return false;
10049     }
10050 
10051     return true;
10052   }
10053   case ISD::SELECT: {
10054     return isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1) &&
10055            isCanonicalized(DAG, Op.getOperand(2), MaxDepth - 1);
10056   }
10057   case ISD::BUILD_VECTOR: {
10058     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
10059       SDValue SrcOp = Op.getOperand(i);
10060       if (!isCanonicalized(DAG, SrcOp, MaxDepth - 1))
10061         return false;
10062     }
10063 
10064     return true;
10065   }
10066   case ISD::EXTRACT_VECTOR_ELT:
10067   case ISD::EXTRACT_SUBVECTOR: {
10068     return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1);
10069   }
10070   case ISD::INSERT_VECTOR_ELT: {
10071     return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1) &&
10072            isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1);
10073   }
10074   case ISD::UNDEF:
10075     // Could be anything.
10076     return false;
10077 
10078   case ISD::BITCAST:
10079     return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1);
10080   case ISD::TRUNCATE: {
10081     // Hack round the mess we make when legalizing extract_vector_elt
10082     if (Op.getValueType() == MVT::i16) {
10083       SDValue TruncSrc = Op.getOperand(0);
10084       if (TruncSrc.getValueType() == MVT::i32 &&
10085           TruncSrc.getOpcode() == ISD::BITCAST &&
10086           TruncSrc.getOperand(0).getValueType() == MVT::v2f16) {
10087         return isCanonicalized(DAG, TruncSrc.getOperand(0), MaxDepth - 1);
10088       }
10089     }
10090     return false;
10091   }
10092   case ISD::INTRINSIC_WO_CHAIN: {
10093     unsigned IntrinsicID
10094       = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
10095     // TODO: Handle more intrinsics
10096     switch (IntrinsicID) {
10097     case Intrinsic::amdgcn_cvt_pkrtz:
10098     case Intrinsic::amdgcn_cubeid:
10099     case Intrinsic::amdgcn_frexp_mant:
10100     case Intrinsic::amdgcn_fdot2:
10101     case Intrinsic::amdgcn_rcp:
10102     case Intrinsic::amdgcn_rsq:
10103     case Intrinsic::amdgcn_rsq_clamp:
10104     case Intrinsic::amdgcn_rcp_legacy:
10105     case Intrinsic::amdgcn_rsq_legacy:
10106     case Intrinsic::amdgcn_trig_preop:
10107       return true;
10108     default:
10109       break;
10110     }
10111 
10112     LLVM_FALLTHROUGH;
10113   }
10114   default:
10115     return denormalsEnabledForType(DAG, Op.getValueType()) &&
10116            DAG.isKnownNeverSNaN(Op);
10117   }
10118 
10119   llvm_unreachable("invalid operation");
10120 }
10121 
10122 bool SITargetLowering::isCanonicalized(Register Reg, MachineFunction &MF,
10123                                        unsigned MaxDepth) const {
10124   MachineRegisterInfo &MRI = MF.getRegInfo();
10125   MachineInstr *MI = MRI.getVRegDef(Reg);
10126   unsigned Opcode = MI->getOpcode();
10127 
10128   if (Opcode == AMDGPU::G_FCANONICALIZE)
10129     return true;
10130 
10131   Optional<FPValueAndVReg> FCR;
10132   // Constant splat (can be padded with undef) or scalar constant.
10133   if (mi_match(Reg, MRI, MIPatternMatch::m_GFCstOrSplat(FCR))) {
10134     if (FCR->Value.isSignaling())
10135       return false;
10136     return !FCR->Value.isDenormal() ||
10137            denormalsEnabledForType(MRI.getType(FCR->VReg), MF);
10138   }
10139 
10140   if (MaxDepth == 0)
10141     return false;
10142 
10143   switch (Opcode) {
10144   case AMDGPU::G_FMINNUM_IEEE:
10145   case AMDGPU::G_FMAXNUM_IEEE: {
10146     if (Subtarget->supportsMinMaxDenormModes() ||
10147         denormalsEnabledForType(MRI.getType(Reg), MF))
10148       return true;
10149     for (const MachineOperand &MO : llvm::drop_begin(MI->operands()))
10150       if (!isCanonicalized(MO.getReg(), MF, MaxDepth - 1))
10151         return false;
10152     return true;
10153   }
10154   default:
10155     return denormalsEnabledForType(MRI.getType(Reg), MF) &&
10156            isKnownNeverSNaN(Reg, MRI);
10157   }
10158 
10159   llvm_unreachable("invalid operation");
10160 }
10161 
10162 // Constant fold canonicalize.
10163 SDValue SITargetLowering::getCanonicalConstantFP(
10164   SelectionDAG &DAG, const SDLoc &SL, EVT VT, const APFloat &C) const {
10165   // Flush denormals to 0 if not enabled.
10166   if (C.isDenormal() && !denormalsEnabledForType(DAG, VT))
10167     return DAG.getConstantFP(0.0, SL, VT);
10168 
10169   if (C.isNaN()) {
10170     APFloat CanonicalQNaN = APFloat::getQNaN(C.getSemantics());
10171     if (C.isSignaling()) {
10172       // Quiet a signaling NaN.
10173       // FIXME: Is this supposed to preserve payload bits?
10174       return DAG.getConstantFP(CanonicalQNaN, SL, VT);
10175     }
10176 
10177     // Make sure it is the canonical NaN bitpattern.
10178     //
10179     // TODO: Can we use -1 as the canonical NaN value since it's an inline
10180     // immediate?
10181     if (C.bitcastToAPInt() != CanonicalQNaN.bitcastToAPInt())
10182       return DAG.getConstantFP(CanonicalQNaN, SL, VT);
10183   }
10184 
10185   // Already canonical.
10186   return DAG.getConstantFP(C, SL, VT);
10187 }
10188 
10189 static bool vectorEltWillFoldAway(SDValue Op) {
10190   return Op.isUndef() || isa<ConstantFPSDNode>(Op);
10191 }
10192 
10193 SDValue SITargetLowering::performFCanonicalizeCombine(
10194   SDNode *N,
10195   DAGCombinerInfo &DCI) const {
10196   SelectionDAG &DAG = DCI.DAG;
10197   SDValue N0 = N->getOperand(0);
10198   EVT VT = N->getValueType(0);
10199 
10200   // fcanonicalize undef -> qnan
10201   if (N0.isUndef()) {
10202     APFloat QNaN = APFloat::getQNaN(SelectionDAG::EVTToAPFloatSemantics(VT));
10203     return DAG.getConstantFP(QNaN, SDLoc(N), VT);
10204   }
10205 
10206   if (ConstantFPSDNode *CFP = isConstOrConstSplatFP(N0)) {
10207     EVT VT = N->getValueType(0);
10208     return getCanonicalConstantFP(DAG, SDLoc(N), VT, CFP->getValueAPF());
10209   }
10210 
10211   // fcanonicalize (build_vector x, k) -> build_vector (fcanonicalize x),
10212   //                                                   (fcanonicalize k)
10213   //
10214   // fcanonicalize (build_vector x, undef) -> build_vector (fcanonicalize x), 0
10215 
10216   // TODO: This could be better with wider vectors that will be split to v2f16,
10217   // and to consider uses since there aren't that many packed operations.
10218   if (N0.getOpcode() == ISD::BUILD_VECTOR && VT == MVT::v2f16 &&
10219       isTypeLegal(MVT::v2f16)) {
10220     SDLoc SL(N);
10221     SDValue NewElts[2];
10222     SDValue Lo = N0.getOperand(0);
10223     SDValue Hi = N0.getOperand(1);
10224     EVT EltVT = Lo.getValueType();
10225 
10226     if (vectorEltWillFoldAway(Lo) || vectorEltWillFoldAway(Hi)) {
10227       for (unsigned I = 0; I != 2; ++I) {
10228         SDValue Op = N0.getOperand(I);
10229         if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) {
10230           NewElts[I] = getCanonicalConstantFP(DAG, SL, EltVT,
10231                                               CFP->getValueAPF());
10232         } else if (Op.isUndef()) {
10233           // Handled below based on what the other operand is.
10234           NewElts[I] = Op;
10235         } else {
10236           NewElts[I] = DAG.getNode(ISD::FCANONICALIZE, SL, EltVT, Op);
10237         }
10238       }
10239 
10240       // If one half is undef, and one is constant, prefer a splat vector rather
10241       // than the normal qNaN. If it's a register, prefer 0.0 since that's
10242       // cheaper to use and may be free with a packed operation.
10243       if (NewElts[0].isUndef()) {
10244         if (isa<ConstantFPSDNode>(NewElts[1]))
10245           NewElts[0] = isa<ConstantFPSDNode>(NewElts[1]) ?
10246             NewElts[1]: DAG.getConstantFP(0.0f, SL, EltVT);
10247       }
10248 
10249       if (NewElts[1].isUndef()) {
10250         NewElts[1] = isa<ConstantFPSDNode>(NewElts[0]) ?
10251           NewElts[0] : DAG.getConstantFP(0.0f, SL, EltVT);
10252       }
10253 
10254       return DAG.getBuildVector(VT, SL, NewElts);
10255     }
10256   }
10257 
10258   unsigned SrcOpc = N0.getOpcode();
10259 
10260   // If it's free to do so, push canonicalizes further up the source, which may
10261   // find a canonical source.
10262   //
10263   // TODO: More opcodes. Note this is unsafe for the the _ieee minnum/maxnum for
10264   // sNaNs.
10265   if (SrcOpc == ISD::FMINNUM || SrcOpc == ISD::FMAXNUM) {
10266     auto *CRHS = dyn_cast<ConstantFPSDNode>(N0.getOperand(1));
10267     if (CRHS && N0.hasOneUse()) {
10268       SDLoc SL(N);
10269       SDValue Canon0 = DAG.getNode(ISD::FCANONICALIZE, SL, VT,
10270                                    N0.getOperand(0));
10271       SDValue Canon1 = getCanonicalConstantFP(DAG, SL, VT, CRHS->getValueAPF());
10272       DCI.AddToWorklist(Canon0.getNode());
10273 
10274       return DAG.getNode(N0.getOpcode(), SL, VT, Canon0, Canon1);
10275     }
10276   }
10277 
10278   return isCanonicalized(DAG, N0) ? N0 : SDValue();
10279 }
10280 
10281 static unsigned minMaxOpcToMin3Max3Opc(unsigned Opc) {
10282   switch (Opc) {
10283   case ISD::FMAXNUM:
10284   case ISD::FMAXNUM_IEEE:
10285     return AMDGPUISD::FMAX3;
10286   case ISD::SMAX:
10287     return AMDGPUISD::SMAX3;
10288   case ISD::UMAX:
10289     return AMDGPUISD::UMAX3;
10290   case ISD::FMINNUM:
10291   case ISD::FMINNUM_IEEE:
10292     return AMDGPUISD::FMIN3;
10293   case ISD::SMIN:
10294     return AMDGPUISD::SMIN3;
10295   case ISD::UMIN:
10296     return AMDGPUISD::UMIN3;
10297   default:
10298     llvm_unreachable("Not a min/max opcode");
10299   }
10300 }
10301 
10302 SDValue SITargetLowering::performIntMed3ImmCombine(
10303   SelectionDAG &DAG, const SDLoc &SL,
10304   SDValue Op0, SDValue Op1, bool Signed) const {
10305   ConstantSDNode *K1 = dyn_cast<ConstantSDNode>(Op1);
10306   if (!K1)
10307     return SDValue();
10308 
10309   ConstantSDNode *K0 = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
10310   if (!K0)
10311     return SDValue();
10312 
10313   if (Signed) {
10314     if (K0->getAPIntValue().sge(K1->getAPIntValue()))
10315       return SDValue();
10316   } else {
10317     if (K0->getAPIntValue().uge(K1->getAPIntValue()))
10318       return SDValue();
10319   }
10320 
10321   EVT VT = K0->getValueType(0);
10322   unsigned Med3Opc = Signed ? AMDGPUISD::SMED3 : AMDGPUISD::UMED3;
10323   if (VT == MVT::i32 || (VT == MVT::i16 && Subtarget->hasMed3_16())) {
10324     return DAG.getNode(Med3Opc, SL, VT,
10325                        Op0.getOperand(0), SDValue(K0, 0), SDValue(K1, 0));
10326   }
10327 
10328   // If there isn't a 16-bit med3 operation, convert to 32-bit.
10329   if (VT == MVT::i16) {
10330     MVT NVT = MVT::i32;
10331     unsigned ExtOp = Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
10332 
10333     SDValue Tmp1 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(0));
10334     SDValue Tmp2 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(1));
10335     SDValue Tmp3 = DAG.getNode(ExtOp, SL, NVT, Op1);
10336 
10337     SDValue Med3 = DAG.getNode(Med3Opc, SL, NVT, Tmp1, Tmp2, Tmp3);
10338     return DAG.getNode(ISD::TRUNCATE, SL, VT, Med3);
10339   }
10340 
10341   return SDValue();
10342 }
10343 
10344 static ConstantFPSDNode *getSplatConstantFP(SDValue Op) {
10345   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
10346     return C;
10347 
10348   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op)) {
10349     if (ConstantFPSDNode *C = BV->getConstantFPSplatNode())
10350       return C;
10351   }
10352 
10353   return nullptr;
10354 }
10355 
10356 SDValue SITargetLowering::performFPMed3ImmCombine(SelectionDAG &DAG,
10357                                                   const SDLoc &SL,
10358                                                   SDValue Op0,
10359                                                   SDValue Op1) const {
10360   ConstantFPSDNode *K1 = getSplatConstantFP(Op1);
10361   if (!K1)
10362     return SDValue();
10363 
10364   ConstantFPSDNode *K0 = getSplatConstantFP(Op0.getOperand(1));
10365   if (!K0)
10366     return SDValue();
10367 
10368   // Ordered >= (although NaN inputs should have folded away by now).
10369   if (K0->getValueAPF() > K1->getValueAPF())
10370     return SDValue();
10371 
10372   const MachineFunction &MF = DAG.getMachineFunction();
10373   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
10374 
10375   // TODO: Check IEEE bit enabled?
10376   EVT VT = Op0.getValueType();
10377   if (Info->getMode().DX10Clamp) {
10378     // If dx10_clamp is enabled, NaNs clamp to 0.0. This is the same as the
10379     // hardware fmed3 behavior converting to a min.
10380     // FIXME: Should this be allowing -0.0?
10381     if (K1->isExactlyValue(1.0) && K0->isExactlyValue(0.0))
10382       return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Op0.getOperand(0));
10383   }
10384 
10385   // med3 for f16 is only available on gfx9+, and not available for v2f16.
10386   if (VT == MVT::f32 || (VT == MVT::f16 && Subtarget->hasMed3_16())) {
10387     // This isn't safe with signaling NaNs because in IEEE mode, min/max on a
10388     // signaling NaN gives a quiet NaN. The quiet NaN input to the min would
10389     // then give the other result, which is different from med3 with a NaN
10390     // input.
10391     SDValue Var = Op0.getOperand(0);
10392     if (!DAG.isKnownNeverSNaN(Var))
10393       return SDValue();
10394 
10395     const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
10396 
10397     if ((!K0->hasOneUse() ||
10398          TII->isInlineConstant(K0->getValueAPF().bitcastToAPInt())) &&
10399         (!K1->hasOneUse() ||
10400          TII->isInlineConstant(K1->getValueAPF().bitcastToAPInt()))) {
10401       return DAG.getNode(AMDGPUISD::FMED3, SL, K0->getValueType(0),
10402                          Var, SDValue(K0, 0), SDValue(K1, 0));
10403     }
10404   }
10405 
10406   return SDValue();
10407 }
10408 
10409 SDValue SITargetLowering::performMinMaxCombine(SDNode *N,
10410                                                DAGCombinerInfo &DCI) const {
10411   SelectionDAG &DAG = DCI.DAG;
10412 
10413   EVT VT = N->getValueType(0);
10414   unsigned Opc = N->getOpcode();
10415   SDValue Op0 = N->getOperand(0);
10416   SDValue Op1 = N->getOperand(1);
10417 
10418   // Only do this if the inner op has one use since this will just increases
10419   // register pressure for no benefit.
10420 
10421   if (Opc != AMDGPUISD::FMIN_LEGACY && Opc != AMDGPUISD::FMAX_LEGACY &&
10422       !VT.isVector() &&
10423       (VT == MVT::i32 || VT == MVT::f32 ||
10424        ((VT == MVT::f16 || VT == MVT::i16) && Subtarget->hasMin3Max3_16()))) {
10425     // max(max(a, b), c) -> max3(a, b, c)
10426     // min(min(a, b), c) -> min3(a, b, c)
10427     if (Op0.getOpcode() == Opc && Op0.hasOneUse()) {
10428       SDLoc DL(N);
10429       return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
10430                          DL,
10431                          N->getValueType(0),
10432                          Op0.getOperand(0),
10433                          Op0.getOperand(1),
10434                          Op1);
10435     }
10436 
10437     // Try commuted.
10438     // max(a, max(b, c)) -> max3(a, b, c)
10439     // min(a, min(b, c)) -> min3(a, b, c)
10440     if (Op1.getOpcode() == Opc && Op1.hasOneUse()) {
10441       SDLoc DL(N);
10442       return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
10443                          DL,
10444                          N->getValueType(0),
10445                          Op0,
10446                          Op1.getOperand(0),
10447                          Op1.getOperand(1));
10448     }
10449   }
10450 
10451   // min(max(x, K0), K1), K0 < K1 -> med3(x, K0, K1)
10452   if (Opc == ISD::SMIN && Op0.getOpcode() == ISD::SMAX && Op0.hasOneUse()) {
10453     if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, true))
10454       return Med3;
10455   }
10456 
10457   if (Opc == ISD::UMIN && Op0.getOpcode() == ISD::UMAX && Op0.hasOneUse()) {
10458     if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, false))
10459       return Med3;
10460   }
10461 
10462   // fminnum(fmaxnum(x, K0), K1), K0 < K1 && !is_snan(x) -> fmed3(x, K0, K1)
10463   if (((Opc == ISD::FMINNUM && Op0.getOpcode() == ISD::FMAXNUM) ||
10464        (Opc == ISD::FMINNUM_IEEE && Op0.getOpcode() == ISD::FMAXNUM_IEEE) ||
10465        (Opc == AMDGPUISD::FMIN_LEGACY &&
10466         Op0.getOpcode() == AMDGPUISD::FMAX_LEGACY)) &&
10467       (VT == MVT::f32 || VT == MVT::f64 ||
10468        (VT == MVT::f16 && Subtarget->has16BitInsts()) ||
10469        (VT == MVT::v2f16 && Subtarget->hasVOP3PInsts())) &&
10470       Op0.hasOneUse()) {
10471     if (SDValue Res = performFPMed3ImmCombine(DAG, SDLoc(N), Op0, Op1))
10472       return Res;
10473   }
10474 
10475   return SDValue();
10476 }
10477 
10478 static bool isClampZeroToOne(SDValue A, SDValue B) {
10479   if (ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) {
10480     if (ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) {
10481       // FIXME: Should this be allowing -0.0?
10482       return (CA->isExactlyValue(0.0) && CB->isExactlyValue(1.0)) ||
10483              (CA->isExactlyValue(1.0) && CB->isExactlyValue(0.0));
10484     }
10485   }
10486 
10487   return false;
10488 }
10489 
10490 // FIXME: Should only worry about snans for version with chain.
10491 SDValue SITargetLowering::performFMed3Combine(SDNode *N,
10492                                               DAGCombinerInfo &DCI) const {
10493   EVT VT = N->getValueType(0);
10494   // v_med3_f32 and v_max_f32 behave identically wrt denorms, exceptions and
10495   // NaNs. With a NaN input, the order of the operands may change the result.
10496 
10497   SelectionDAG &DAG = DCI.DAG;
10498   SDLoc SL(N);
10499 
10500   SDValue Src0 = N->getOperand(0);
10501   SDValue Src1 = N->getOperand(1);
10502   SDValue Src2 = N->getOperand(2);
10503 
10504   if (isClampZeroToOne(Src0, Src1)) {
10505     // const_a, const_b, x -> clamp is safe in all cases including signaling
10506     // nans.
10507     // FIXME: Should this be allowing -0.0?
10508     return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src2);
10509   }
10510 
10511   const MachineFunction &MF = DAG.getMachineFunction();
10512   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
10513 
10514   // FIXME: dx10_clamp behavior assumed in instcombine. Should we really bother
10515   // handling no dx10-clamp?
10516   if (Info->getMode().DX10Clamp) {
10517     // If NaNs is clamped to 0, we are free to reorder the inputs.
10518 
10519     if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1))
10520       std::swap(Src0, Src1);
10521 
10522     if (isa<ConstantFPSDNode>(Src1) && !isa<ConstantFPSDNode>(Src2))
10523       std::swap(Src1, Src2);
10524 
10525     if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1))
10526       std::swap(Src0, Src1);
10527 
10528     if (isClampZeroToOne(Src1, Src2))
10529       return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src0);
10530   }
10531 
10532   return SDValue();
10533 }
10534 
10535 SDValue SITargetLowering::performCvtPkRTZCombine(SDNode *N,
10536                                                  DAGCombinerInfo &DCI) const {
10537   SDValue Src0 = N->getOperand(0);
10538   SDValue Src1 = N->getOperand(1);
10539   if (Src0.isUndef() && Src1.isUndef())
10540     return DCI.DAG.getUNDEF(N->getValueType(0));
10541   return SDValue();
10542 }
10543 
10544 // Check if EXTRACT_VECTOR_ELT/INSERT_VECTOR_ELT (<n x e>, var-idx) should be
10545 // expanded into a set of cmp/select instructions.
10546 bool SITargetLowering::shouldExpandVectorDynExt(unsigned EltSize,
10547                                                 unsigned NumElem,
10548                                                 bool IsDivergentIdx,
10549                                                 const GCNSubtarget *Subtarget) {
10550   if (UseDivergentRegisterIndexing)
10551     return false;
10552 
10553   unsigned VecSize = EltSize * NumElem;
10554 
10555   // Sub-dword vectors of size 2 dword or less have better implementation.
10556   if (VecSize <= 64 && EltSize < 32)
10557     return false;
10558 
10559   // Always expand the rest of sub-dword instructions, otherwise it will be
10560   // lowered via memory.
10561   if (EltSize < 32)
10562     return true;
10563 
10564   // Always do this if var-idx is divergent, otherwise it will become a loop.
10565   if (IsDivergentIdx)
10566     return true;
10567 
10568   // Large vectors would yield too many compares and v_cndmask_b32 instructions.
10569   unsigned NumInsts = NumElem /* Number of compares */ +
10570                       ((EltSize + 31) / 32) * NumElem /* Number of cndmasks */;
10571 
10572   // On some architectures (GFX9) movrel is not available and it's better
10573   // to expand.
10574   if (!Subtarget->hasMovrel())
10575     return NumInsts <= 16;
10576 
10577   // If movrel is available, use it instead of expanding for vector of 8
10578   // elements.
10579   return NumInsts <= 15;
10580 }
10581 
10582 bool SITargetLowering::shouldExpandVectorDynExt(SDNode *N) const {
10583   SDValue Idx = N->getOperand(N->getNumOperands() - 1);
10584   if (isa<ConstantSDNode>(Idx))
10585     return false;
10586 
10587   SDValue Vec = N->getOperand(0);
10588   EVT VecVT = Vec.getValueType();
10589   EVT EltVT = VecVT.getVectorElementType();
10590   unsigned EltSize = EltVT.getSizeInBits();
10591   unsigned NumElem = VecVT.getVectorNumElements();
10592 
10593   return SITargetLowering::shouldExpandVectorDynExt(
10594       EltSize, NumElem, Idx->isDivergent(), getSubtarget());
10595 }
10596 
10597 SDValue SITargetLowering::performExtractVectorEltCombine(
10598   SDNode *N, DAGCombinerInfo &DCI) const {
10599   SDValue Vec = N->getOperand(0);
10600   SelectionDAG &DAG = DCI.DAG;
10601 
10602   EVT VecVT = Vec.getValueType();
10603   EVT EltVT = VecVT.getVectorElementType();
10604 
10605   if ((Vec.getOpcode() == ISD::FNEG ||
10606        Vec.getOpcode() == ISD::FABS) && allUsesHaveSourceMods(N)) {
10607     SDLoc SL(N);
10608     EVT EltVT = N->getValueType(0);
10609     SDValue Idx = N->getOperand(1);
10610     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
10611                               Vec.getOperand(0), Idx);
10612     return DAG.getNode(Vec.getOpcode(), SL, EltVT, Elt);
10613   }
10614 
10615   // ScalarRes = EXTRACT_VECTOR_ELT ((vector-BINOP Vec1, Vec2), Idx)
10616   //    =>
10617   // Vec1Elt = EXTRACT_VECTOR_ELT(Vec1, Idx)
10618   // Vec2Elt = EXTRACT_VECTOR_ELT(Vec2, Idx)
10619   // ScalarRes = scalar-BINOP Vec1Elt, Vec2Elt
10620   if (Vec.hasOneUse() && DCI.isBeforeLegalize()) {
10621     SDLoc SL(N);
10622     EVT EltVT = N->getValueType(0);
10623     SDValue Idx = N->getOperand(1);
10624     unsigned Opc = Vec.getOpcode();
10625 
10626     switch(Opc) {
10627     default:
10628       break;
10629       // TODO: Support other binary operations.
10630     case ISD::FADD:
10631     case ISD::FSUB:
10632     case ISD::FMUL:
10633     case ISD::ADD:
10634     case ISD::UMIN:
10635     case ISD::UMAX:
10636     case ISD::SMIN:
10637     case ISD::SMAX:
10638     case ISD::FMAXNUM:
10639     case ISD::FMINNUM:
10640     case ISD::FMAXNUM_IEEE:
10641     case ISD::FMINNUM_IEEE: {
10642       SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
10643                                  Vec.getOperand(0), Idx);
10644       SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
10645                                  Vec.getOperand(1), Idx);
10646 
10647       DCI.AddToWorklist(Elt0.getNode());
10648       DCI.AddToWorklist(Elt1.getNode());
10649       return DAG.getNode(Opc, SL, EltVT, Elt0, Elt1, Vec->getFlags());
10650     }
10651     }
10652   }
10653 
10654   unsigned VecSize = VecVT.getSizeInBits();
10655   unsigned EltSize = EltVT.getSizeInBits();
10656 
10657   // EXTRACT_VECTOR_ELT (<n x e>, var-idx) => n x select (e, const-idx)
10658   if (shouldExpandVectorDynExt(N)) {
10659     SDLoc SL(N);
10660     SDValue Idx = N->getOperand(1);
10661     SDValue V;
10662     for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) {
10663       SDValue IC = DAG.getVectorIdxConstant(I, SL);
10664       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec, IC);
10665       if (I == 0)
10666         V = Elt;
10667       else
10668         V = DAG.getSelectCC(SL, Idx, IC, Elt, V, ISD::SETEQ);
10669     }
10670     return V;
10671   }
10672 
10673   if (!DCI.isBeforeLegalize())
10674     return SDValue();
10675 
10676   // Try to turn sub-dword accesses of vectors into accesses of the same 32-bit
10677   // elements. This exposes more load reduction opportunities by replacing
10678   // multiple small extract_vector_elements with a single 32-bit extract.
10679   auto *Idx = dyn_cast<ConstantSDNode>(N->getOperand(1));
10680   if (isa<MemSDNode>(Vec) &&
10681       EltSize <= 16 &&
10682       EltVT.isByteSized() &&
10683       VecSize > 32 &&
10684       VecSize % 32 == 0 &&
10685       Idx) {
10686     EVT NewVT = getEquivalentMemType(*DAG.getContext(), VecVT);
10687 
10688     unsigned BitIndex = Idx->getZExtValue() * EltSize;
10689     unsigned EltIdx = BitIndex / 32;
10690     unsigned LeftoverBitIdx = BitIndex % 32;
10691     SDLoc SL(N);
10692 
10693     SDValue Cast = DAG.getNode(ISD::BITCAST, SL, NewVT, Vec);
10694     DCI.AddToWorklist(Cast.getNode());
10695 
10696     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Cast,
10697                               DAG.getConstant(EltIdx, SL, MVT::i32));
10698     DCI.AddToWorklist(Elt.getNode());
10699     SDValue Srl = DAG.getNode(ISD::SRL, SL, MVT::i32, Elt,
10700                               DAG.getConstant(LeftoverBitIdx, SL, MVT::i32));
10701     DCI.AddToWorklist(Srl.getNode());
10702 
10703     SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, EltVT.changeTypeToInteger(), Srl);
10704     DCI.AddToWorklist(Trunc.getNode());
10705     return DAG.getNode(ISD::BITCAST, SL, EltVT, Trunc);
10706   }
10707 
10708   return SDValue();
10709 }
10710 
10711 SDValue
10712 SITargetLowering::performInsertVectorEltCombine(SDNode *N,
10713                                                 DAGCombinerInfo &DCI) const {
10714   SDValue Vec = N->getOperand(0);
10715   SDValue Idx = N->getOperand(2);
10716   EVT VecVT = Vec.getValueType();
10717   EVT EltVT = VecVT.getVectorElementType();
10718 
10719   // INSERT_VECTOR_ELT (<n x e>, var-idx)
10720   // => BUILD_VECTOR n x select (e, const-idx)
10721   if (!shouldExpandVectorDynExt(N))
10722     return SDValue();
10723 
10724   SelectionDAG &DAG = DCI.DAG;
10725   SDLoc SL(N);
10726   SDValue Ins = N->getOperand(1);
10727   EVT IdxVT = Idx.getValueType();
10728 
10729   SmallVector<SDValue, 16> Ops;
10730   for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) {
10731     SDValue IC = DAG.getConstant(I, SL, IdxVT);
10732     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec, IC);
10733     SDValue V = DAG.getSelectCC(SL, Idx, IC, Ins, Elt, ISD::SETEQ);
10734     Ops.push_back(V);
10735   }
10736 
10737   return DAG.getBuildVector(VecVT, SL, Ops);
10738 }
10739 
10740 unsigned SITargetLowering::getFusedOpcode(const SelectionDAG &DAG,
10741                                           const SDNode *N0,
10742                                           const SDNode *N1) const {
10743   EVT VT = N0->getValueType(0);
10744 
10745   // Only do this if we are not trying to support denormals. v_mad_f32 does not
10746   // support denormals ever.
10747   if (((VT == MVT::f32 && !hasFP32Denormals(DAG.getMachineFunction())) ||
10748        (VT == MVT::f16 && !hasFP64FP16Denormals(DAG.getMachineFunction()) &&
10749         getSubtarget()->hasMadF16())) &&
10750        isOperationLegal(ISD::FMAD, VT))
10751     return ISD::FMAD;
10752 
10753   const TargetOptions &Options = DAG.getTarget().Options;
10754   if ((Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath ||
10755        (N0->getFlags().hasAllowContract() &&
10756         N1->getFlags().hasAllowContract())) &&
10757       isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
10758     return ISD::FMA;
10759   }
10760 
10761   return 0;
10762 }
10763 
10764 // For a reassociatable opcode perform:
10765 // op x, (op y, z) -> op (op x, z), y, if x and z are uniform
10766 SDValue SITargetLowering::reassociateScalarOps(SDNode *N,
10767                                                SelectionDAG &DAG) const {
10768   EVT VT = N->getValueType(0);
10769   if (VT != MVT::i32 && VT != MVT::i64)
10770     return SDValue();
10771 
10772   if (DAG.isBaseWithConstantOffset(SDValue(N, 0)))
10773     return SDValue();
10774 
10775   unsigned Opc = N->getOpcode();
10776   SDValue Op0 = N->getOperand(0);
10777   SDValue Op1 = N->getOperand(1);
10778 
10779   if (!(Op0->isDivergent() ^ Op1->isDivergent()))
10780     return SDValue();
10781 
10782   if (Op0->isDivergent())
10783     std::swap(Op0, Op1);
10784 
10785   if (Op1.getOpcode() != Opc || !Op1.hasOneUse())
10786     return SDValue();
10787 
10788   SDValue Op2 = Op1.getOperand(1);
10789   Op1 = Op1.getOperand(0);
10790   if (!(Op1->isDivergent() ^ Op2->isDivergent()))
10791     return SDValue();
10792 
10793   if (Op1->isDivergent())
10794     std::swap(Op1, Op2);
10795 
10796   SDLoc SL(N);
10797   SDValue Add1 = DAG.getNode(Opc, SL, VT, Op0, Op1);
10798   return DAG.getNode(Opc, SL, VT, Add1, Op2);
10799 }
10800 
10801 static SDValue getMad64_32(SelectionDAG &DAG, const SDLoc &SL,
10802                            EVT VT,
10803                            SDValue N0, SDValue N1, SDValue N2,
10804                            bool Signed) {
10805   unsigned MadOpc = Signed ? AMDGPUISD::MAD_I64_I32 : AMDGPUISD::MAD_U64_U32;
10806   SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i1);
10807   SDValue Mad = DAG.getNode(MadOpc, SL, VTs, N0, N1, N2);
10808   return DAG.getNode(ISD::TRUNCATE, SL, VT, Mad);
10809 }
10810 
10811 // Fold (add (mul x, y), z) --> (mad_[iu]64_[iu]32 x, y, z) plus high
10812 // multiplies, if any.
10813 //
10814 // Full 64-bit multiplies that feed into an addition are lowered here instead
10815 // of using the generic expansion. The generic expansion ends up with
10816 // a tree of ADD nodes that prevents us from using the "add" part of the
10817 // MAD instruction. The expansion produced here results in a chain of ADDs
10818 // instead of a tree.
10819 SDValue SITargetLowering::tryFoldToMad64_32(SDNode *N,
10820                                             DAGCombinerInfo &DCI) const {
10821   assert(N->getOpcode() == ISD::ADD);
10822 
10823   SelectionDAG &DAG = DCI.DAG;
10824   EVT VT = N->getValueType(0);
10825   SDLoc SL(N);
10826   SDValue LHS = N->getOperand(0);
10827   SDValue RHS = N->getOperand(1);
10828 
10829   if (VT.isVector())
10830     return SDValue();
10831 
10832   // S_MUL_HI_[IU]32 was added in gfx9, which allows us to keep the overall
10833   // result in scalar registers for uniform values.
10834   if (!N->isDivergent() && Subtarget->hasSMulHi())
10835     return SDValue();
10836 
10837   unsigned NumBits = VT.getScalarSizeInBits();
10838   if (NumBits <= 32 || NumBits > 64)
10839     return SDValue();
10840 
10841   if (LHS.getOpcode() != ISD::MUL) {
10842     assert(RHS.getOpcode() == ISD::MUL);
10843     std::swap(LHS, RHS);
10844   }
10845 
10846   // Avoid the fold if it would unduly increase the number of multiplies due to
10847   // multiple uses, except on hardware with full-rate multiply-add (which is
10848   // part of full-rate 64-bit ops).
10849   if (!Subtarget->hasFullRate64Ops()) {
10850     unsigned NumUsers = 0;
10851     for (SDNode *Use : LHS->uses()) {
10852       // There is a use that does not feed into addition, so the multiply can't
10853       // be removed. We prefer MUL + ADD + ADDC over MAD + MUL.
10854       if (Use->getOpcode() != ISD::ADD)
10855         return SDValue();
10856 
10857       // We prefer 2xMAD over MUL + 2xADD + 2xADDC (code density), and prefer
10858       // MUL + 3xADD + 3xADDC over 3xMAD.
10859       ++NumUsers;
10860       if (NumUsers >= 3)
10861         return SDValue();
10862     }
10863   }
10864 
10865   SDValue MulLHS = LHS.getOperand(0);
10866   SDValue MulRHS = LHS.getOperand(1);
10867   SDValue AddRHS = RHS;
10868 
10869   // Always check whether operands are small unsigned values, since that
10870   // knowledge is useful in more cases. Check for small signed values only if
10871   // doing so can unlock a shorter code sequence.
10872   bool MulLHSUnsigned32 = numBitsUnsigned(MulLHS, DAG) <= 32;
10873   bool MulRHSUnsigned32 = numBitsUnsigned(MulRHS, DAG) <= 32;
10874 
10875   bool MulSignedLo = false;
10876   if (!MulLHSUnsigned32 || !MulRHSUnsigned32) {
10877     MulSignedLo = numBitsSigned(MulLHS, DAG) <= 32 &&
10878                   numBitsSigned(MulRHS, DAG) <= 32;
10879   }
10880 
10881   // The operands and final result all have the same number of bits. If
10882   // operands need to be extended, they can be extended with garbage. The
10883   // resulting garbage in the high bits of the mad_[iu]64_[iu]32 result is
10884   // truncated away in the end.
10885   if (VT != MVT::i64) {
10886     MulLHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i64, MulLHS);
10887     MulRHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i64, MulRHS);
10888     AddRHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i64, AddRHS);
10889   }
10890 
10891   // The basic code generated is conceptually straightforward. Pseudo code:
10892   //
10893   //   accum = mad_64_32 lhs.lo, rhs.lo, accum
10894   //   accum.hi = add (mul lhs.hi, rhs.lo), accum.hi
10895   //   accum.hi = add (mul lhs.lo, rhs.hi), accum.hi
10896   //
10897   // The second and third lines are optional, depending on whether the factors
10898   // are {sign,zero}-extended or not.
10899   //
10900   // The actual DAG is noisier than the pseudo code, but only due to
10901   // instructions that disassemble values into low and high parts, and
10902   // assemble the final result.
10903   SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
10904   SDValue One = DAG.getConstant(1, SL, MVT::i32);
10905 
10906   auto MulLHSLo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, MulLHS);
10907   auto MulRHSLo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, MulRHS);
10908   SDValue Accum =
10909       getMad64_32(DAG, SL, MVT::i64, MulLHSLo, MulRHSLo, AddRHS, MulSignedLo);
10910 
10911   if (!MulSignedLo && (!MulLHSUnsigned32 || !MulRHSUnsigned32)) {
10912     auto AccumLo = DAG.getNode(ISD::EXTRACT_ELEMENT, SL, MVT::i32, Accum, Zero);
10913     auto AccumHi = DAG.getNode(ISD::EXTRACT_ELEMENT, SL, MVT::i32, Accum, One);
10914 
10915     if (!MulLHSUnsigned32) {
10916       auto MulLHSHi =
10917           DAG.getNode(ISD::EXTRACT_ELEMENT, SL, MVT::i32, MulLHS, One);
10918       SDValue MulHi = DAG.getNode(ISD::MUL, SL, MVT::i32, MulLHSHi, MulRHSLo);
10919       AccumHi = DAG.getNode(ISD::ADD, SL, MVT::i32, MulHi, AccumHi);
10920     }
10921 
10922     if (!MulRHSUnsigned32) {
10923       auto MulRHSHi =
10924           DAG.getNode(ISD::EXTRACT_ELEMENT, SL, MVT::i32, MulRHS, One);
10925       SDValue MulHi = DAG.getNode(ISD::MUL, SL, MVT::i32, MulLHSLo, MulRHSHi);
10926       AccumHi = DAG.getNode(ISD::ADD, SL, MVT::i32, MulHi, AccumHi);
10927     }
10928 
10929     Accum = DAG.getBuildVector(MVT::v2i32, SL, {AccumLo, AccumHi});
10930     Accum = DAG.getBitcast(MVT::i64, Accum);
10931   }
10932 
10933   if (VT != MVT::i64)
10934     Accum = DAG.getNode(ISD::TRUNCATE, SL, VT, Accum);
10935   return Accum;
10936 }
10937 
10938 SDValue SITargetLowering::performAddCombine(SDNode *N,
10939                                             DAGCombinerInfo &DCI) const {
10940   SelectionDAG &DAG = DCI.DAG;
10941   EVT VT = N->getValueType(0);
10942   SDLoc SL(N);
10943   SDValue LHS = N->getOperand(0);
10944   SDValue RHS = N->getOperand(1);
10945 
10946   if (LHS.getOpcode() == ISD::MUL || RHS.getOpcode() == ISD::MUL) {
10947     if (Subtarget->hasMad64_32()) {
10948       if (SDValue Folded = tryFoldToMad64_32(N, DCI))
10949         return Folded;
10950     }
10951 
10952     return SDValue();
10953   }
10954 
10955   if (SDValue V = reassociateScalarOps(N, DAG)) {
10956     return V;
10957   }
10958 
10959   if (VT != MVT::i32 || !DCI.isAfterLegalizeDAG())
10960     return SDValue();
10961 
10962   // add x, zext (setcc) => addcarry x, 0, setcc
10963   // add x, sext (setcc) => subcarry x, 0, setcc
10964   unsigned Opc = LHS.getOpcode();
10965   if (Opc == ISD::ZERO_EXTEND || Opc == ISD::SIGN_EXTEND ||
10966       Opc == ISD::ANY_EXTEND || Opc == ISD::ADDCARRY)
10967     std::swap(RHS, LHS);
10968 
10969   Opc = RHS.getOpcode();
10970   switch (Opc) {
10971   default: break;
10972   case ISD::ZERO_EXTEND:
10973   case ISD::SIGN_EXTEND:
10974   case ISD::ANY_EXTEND: {
10975     auto Cond = RHS.getOperand(0);
10976     // If this won't be a real VOPC output, we would still need to insert an
10977     // extra instruction anyway.
10978     if (!isBoolSGPR(Cond))
10979       break;
10980     SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1);
10981     SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond };
10982     Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::SUBCARRY : ISD::ADDCARRY;
10983     return DAG.getNode(Opc, SL, VTList, Args);
10984   }
10985   case ISD::ADDCARRY: {
10986     // add x, (addcarry y, 0, cc) => addcarry x, y, cc
10987     auto C = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
10988     if (!C || C->getZExtValue() != 0) break;
10989     SDValue Args[] = { LHS, RHS.getOperand(0), RHS.getOperand(2) };
10990     return DAG.getNode(ISD::ADDCARRY, SDLoc(N), RHS->getVTList(), Args);
10991   }
10992   }
10993   return SDValue();
10994 }
10995 
10996 SDValue SITargetLowering::performSubCombine(SDNode *N,
10997                                             DAGCombinerInfo &DCI) const {
10998   SelectionDAG &DAG = DCI.DAG;
10999   EVT VT = N->getValueType(0);
11000 
11001   if (VT != MVT::i32)
11002     return SDValue();
11003 
11004   SDLoc SL(N);
11005   SDValue LHS = N->getOperand(0);
11006   SDValue RHS = N->getOperand(1);
11007 
11008   // sub x, zext (setcc) => subcarry x, 0, setcc
11009   // sub x, sext (setcc) => addcarry x, 0, setcc
11010   unsigned Opc = RHS.getOpcode();
11011   switch (Opc) {
11012   default: break;
11013   case ISD::ZERO_EXTEND:
11014   case ISD::SIGN_EXTEND:
11015   case ISD::ANY_EXTEND: {
11016     auto Cond = RHS.getOperand(0);
11017     // If this won't be a real VOPC output, we would still need to insert an
11018     // extra instruction anyway.
11019     if (!isBoolSGPR(Cond))
11020       break;
11021     SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1);
11022     SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond };
11023     Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::ADDCARRY : ISD::SUBCARRY;
11024     return DAG.getNode(Opc, SL, VTList, Args);
11025   }
11026   }
11027 
11028   if (LHS.getOpcode() == ISD::SUBCARRY) {
11029     // sub (subcarry x, 0, cc), y => subcarry x, y, cc
11030     auto C = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
11031     if (!C || !C->isZero())
11032       return SDValue();
11033     SDValue Args[] = { LHS.getOperand(0), RHS, LHS.getOperand(2) };
11034     return DAG.getNode(ISD::SUBCARRY, SDLoc(N), LHS->getVTList(), Args);
11035   }
11036   return SDValue();
11037 }
11038 
11039 SDValue SITargetLowering::performAddCarrySubCarryCombine(SDNode *N,
11040   DAGCombinerInfo &DCI) const {
11041 
11042   if (N->getValueType(0) != MVT::i32)
11043     return SDValue();
11044 
11045   auto C = dyn_cast<ConstantSDNode>(N->getOperand(1));
11046   if (!C || C->getZExtValue() != 0)
11047     return SDValue();
11048 
11049   SelectionDAG &DAG = DCI.DAG;
11050   SDValue LHS = N->getOperand(0);
11051 
11052   // addcarry (add x, y), 0, cc => addcarry x, y, cc
11053   // subcarry (sub x, y), 0, cc => subcarry x, y, cc
11054   unsigned LHSOpc = LHS.getOpcode();
11055   unsigned Opc = N->getOpcode();
11056   if ((LHSOpc == ISD::ADD && Opc == ISD::ADDCARRY) ||
11057       (LHSOpc == ISD::SUB && Opc == ISD::SUBCARRY)) {
11058     SDValue Args[] = { LHS.getOperand(0), LHS.getOperand(1), N->getOperand(2) };
11059     return DAG.getNode(Opc, SDLoc(N), N->getVTList(), Args);
11060   }
11061   return SDValue();
11062 }
11063 
11064 SDValue SITargetLowering::performFAddCombine(SDNode *N,
11065                                              DAGCombinerInfo &DCI) const {
11066   if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
11067     return SDValue();
11068 
11069   SelectionDAG &DAG = DCI.DAG;
11070   EVT VT = N->getValueType(0);
11071 
11072   SDLoc SL(N);
11073   SDValue LHS = N->getOperand(0);
11074   SDValue RHS = N->getOperand(1);
11075 
11076   // These should really be instruction patterns, but writing patterns with
11077   // source modifiers is a pain.
11078 
11079   // fadd (fadd (a, a), b) -> mad 2.0, a, b
11080   if (LHS.getOpcode() == ISD::FADD) {
11081     SDValue A = LHS.getOperand(0);
11082     if (A == LHS.getOperand(1)) {
11083       unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode());
11084       if (FusedOp != 0) {
11085         const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
11086         return DAG.getNode(FusedOp, SL, VT, A, Two, RHS);
11087       }
11088     }
11089   }
11090 
11091   // fadd (b, fadd (a, a)) -> mad 2.0, a, b
11092   if (RHS.getOpcode() == ISD::FADD) {
11093     SDValue A = RHS.getOperand(0);
11094     if (A == RHS.getOperand(1)) {
11095       unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode());
11096       if (FusedOp != 0) {
11097         const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
11098         return DAG.getNode(FusedOp, SL, VT, A, Two, LHS);
11099       }
11100     }
11101   }
11102 
11103   return SDValue();
11104 }
11105 
11106 SDValue SITargetLowering::performFSubCombine(SDNode *N,
11107                                              DAGCombinerInfo &DCI) const {
11108   if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
11109     return SDValue();
11110 
11111   SelectionDAG &DAG = DCI.DAG;
11112   SDLoc SL(N);
11113   EVT VT = N->getValueType(0);
11114   assert(!VT.isVector());
11115 
11116   // Try to get the fneg to fold into the source modifier. This undoes generic
11117   // DAG combines and folds them into the mad.
11118   //
11119   // Only do this if we are not trying to support denormals. v_mad_f32 does
11120   // not support denormals ever.
11121   SDValue LHS = N->getOperand(0);
11122   SDValue RHS = N->getOperand(1);
11123   if (LHS.getOpcode() == ISD::FADD) {
11124     // (fsub (fadd a, a), c) -> mad 2.0, a, (fneg c)
11125     SDValue A = LHS.getOperand(0);
11126     if (A == LHS.getOperand(1)) {
11127       unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode());
11128       if (FusedOp != 0){
11129         const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
11130         SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
11131 
11132         return DAG.getNode(FusedOp, SL, VT, A, Two, NegRHS);
11133       }
11134     }
11135   }
11136 
11137   if (RHS.getOpcode() == ISD::FADD) {
11138     // (fsub c, (fadd a, a)) -> mad -2.0, a, c
11139 
11140     SDValue A = RHS.getOperand(0);
11141     if (A == RHS.getOperand(1)) {
11142       unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode());
11143       if (FusedOp != 0){
11144         const SDValue NegTwo = DAG.getConstantFP(-2.0, SL, VT);
11145         return DAG.getNode(FusedOp, SL, VT, A, NegTwo, LHS);
11146       }
11147     }
11148   }
11149 
11150   return SDValue();
11151 }
11152 
11153 SDValue SITargetLowering::performFMACombine(SDNode *N,
11154                                             DAGCombinerInfo &DCI) const {
11155   SelectionDAG &DAG = DCI.DAG;
11156   EVT VT = N->getValueType(0);
11157   SDLoc SL(N);
11158 
11159   if (!Subtarget->hasDot7Insts() || VT != MVT::f32)
11160     return SDValue();
11161 
11162   // FMA((F32)S0.x, (F32)S1. x, FMA((F32)S0.y, (F32)S1.y, (F32)z)) ->
11163   //   FDOT2((V2F16)S0, (V2F16)S1, (F32)z))
11164   SDValue Op1 = N->getOperand(0);
11165   SDValue Op2 = N->getOperand(1);
11166   SDValue FMA = N->getOperand(2);
11167 
11168   if (FMA.getOpcode() != ISD::FMA ||
11169       Op1.getOpcode() != ISD::FP_EXTEND ||
11170       Op2.getOpcode() != ISD::FP_EXTEND)
11171     return SDValue();
11172 
11173   // fdot2_f32_f16 always flushes fp32 denormal operand and output to zero,
11174   // regardless of the denorm mode setting. Therefore,
11175   // unsafe-fp-math/fp-contract is sufficient to allow generating fdot2.
11176   const TargetOptions &Options = DAG.getTarget().Options;
11177   if (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath ||
11178       (N->getFlags().hasAllowContract() &&
11179        FMA->getFlags().hasAllowContract())) {
11180     Op1 = Op1.getOperand(0);
11181     Op2 = Op2.getOperand(0);
11182     if (Op1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
11183         Op2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
11184       return SDValue();
11185 
11186     SDValue Vec1 = Op1.getOperand(0);
11187     SDValue Idx1 = Op1.getOperand(1);
11188     SDValue Vec2 = Op2.getOperand(0);
11189 
11190     SDValue FMAOp1 = FMA.getOperand(0);
11191     SDValue FMAOp2 = FMA.getOperand(1);
11192     SDValue FMAAcc = FMA.getOperand(2);
11193 
11194     if (FMAOp1.getOpcode() != ISD::FP_EXTEND ||
11195         FMAOp2.getOpcode() != ISD::FP_EXTEND)
11196       return SDValue();
11197 
11198     FMAOp1 = FMAOp1.getOperand(0);
11199     FMAOp2 = FMAOp2.getOperand(0);
11200     if (FMAOp1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
11201         FMAOp2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
11202       return SDValue();
11203 
11204     SDValue Vec3 = FMAOp1.getOperand(0);
11205     SDValue Vec4 = FMAOp2.getOperand(0);
11206     SDValue Idx2 = FMAOp1.getOperand(1);
11207 
11208     if (Idx1 != Op2.getOperand(1) || Idx2 != FMAOp2.getOperand(1) ||
11209         // Idx1 and Idx2 cannot be the same.
11210         Idx1 == Idx2)
11211       return SDValue();
11212 
11213     if (Vec1 == Vec2 || Vec3 == Vec4)
11214       return SDValue();
11215 
11216     if (Vec1.getValueType() != MVT::v2f16 || Vec2.getValueType() != MVT::v2f16)
11217       return SDValue();
11218 
11219     if ((Vec1 == Vec3 && Vec2 == Vec4) ||
11220         (Vec1 == Vec4 && Vec2 == Vec3)) {
11221       return DAG.getNode(AMDGPUISD::FDOT2, SL, MVT::f32, Vec1, Vec2, FMAAcc,
11222                          DAG.getTargetConstant(0, SL, MVT::i1));
11223     }
11224   }
11225   return SDValue();
11226 }
11227 
11228 SDValue SITargetLowering::performSetCCCombine(SDNode *N,
11229                                               DAGCombinerInfo &DCI) const {
11230   SelectionDAG &DAG = DCI.DAG;
11231   SDLoc SL(N);
11232 
11233   SDValue LHS = N->getOperand(0);
11234   SDValue RHS = N->getOperand(1);
11235   EVT VT = LHS.getValueType();
11236   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
11237 
11238   auto CRHS = dyn_cast<ConstantSDNode>(RHS);
11239   if (!CRHS) {
11240     CRHS = dyn_cast<ConstantSDNode>(LHS);
11241     if (CRHS) {
11242       std::swap(LHS, RHS);
11243       CC = getSetCCSwappedOperands(CC);
11244     }
11245   }
11246 
11247   if (CRHS) {
11248     if (VT == MVT::i32 && LHS.getOpcode() == ISD::SIGN_EXTEND &&
11249         isBoolSGPR(LHS.getOperand(0))) {
11250       // setcc (sext from i1 cc), -1, ne|sgt|ult) => not cc => xor cc, -1
11251       // setcc (sext from i1 cc), -1, eq|sle|uge) => cc
11252       // setcc (sext from i1 cc),  0, eq|sge|ule) => not cc => xor cc, -1
11253       // setcc (sext from i1 cc),  0, ne|ugt|slt) => cc
11254       if ((CRHS->isAllOnes() &&
11255            (CC == ISD::SETNE || CC == ISD::SETGT || CC == ISD::SETULT)) ||
11256           (CRHS->isZero() &&
11257            (CC == ISD::SETEQ || CC == ISD::SETGE || CC == ISD::SETULE)))
11258         return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0),
11259                            DAG.getConstant(-1, SL, MVT::i1));
11260       if ((CRHS->isAllOnes() &&
11261            (CC == ISD::SETEQ || CC == ISD::SETLE || CC == ISD::SETUGE)) ||
11262           (CRHS->isZero() &&
11263            (CC == ISD::SETNE || CC == ISD::SETUGT || CC == ISD::SETLT)))
11264         return LHS.getOperand(0);
11265     }
11266 
11267     const APInt &CRHSVal = CRHS->getAPIntValue();
11268     if ((CC == ISD::SETEQ || CC == ISD::SETNE) &&
11269         LHS.getOpcode() == ISD::SELECT &&
11270         isa<ConstantSDNode>(LHS.getOperand(1)) &&
11271         isa<ConstantSDNode>(LHS.getOperand(2)) &&
11272         LHS.getConstantOperandVal(1) != LHS.getConstantOperandVal(2) &&
11273         isBoolSGPR(LHS.getOperand(0))) {
11274       // Given CT != FT:
11275       // setcc (select cc, CT, CF), CF, eq => xor cc, -1
11276       // setcc (select cc, CT, CF), CF, ne => cc
11277       // setcc (select cc, CT, CF), CT, ne => xor cc, -1
11278       // setcc (select cc, CT, CF), CT, eq => cc
11279       const APInt &CT = LHS.getConstantOperandAPInt(1);
11280       const APInt &CF = LHS.getConstantOperandAPInt(2);
11281 
11282       if ((CF == CRHSVal && CC == ISD::SETEQ) ||
11283           (CT == CRHSVal && CC == ISD::SETNE))
11284         return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0),
11285                            DAG.getConstant(-1, SL, MVT::i1));
11286       if ((CF == CRHSVal && CC == ISD::SETNE) ||
11287           (CT == CRHSVal && CC == ISD::SETEQ))
11288         return LHS.getOperand(0);
11289     }
11290   }
11291 
11292   if (VT != MVT::f32 && VT != MVT::f64 && (Subtarget->has16BitInsts() &&
11293                                            VT != MVT::f16))
11294     return SDValue();
11295 
11296   // Match isinf/isfinite pattern
11297   // (fcmp oeq (fabs x), inf) -> (fp_class x, (p_infinity | n_infinity))
11298   // (fcmp one (fabs x), inf) -> (fp_class x,
11299   // (p_normal | n_normal | p_subnormal | n_subnormal | p_zero | n_zero)
11300   if ((CC == ISD::SETOEQ || CC == ISD::SETONE) && LHS.getOpcode() == ISD::FABS) {
11301     const ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS);
11302     if (!CRHS)
11303       return SDValue();
11304 
11305     const APFloat &APF = CRHS->getValueAPF();
11306     if (APF.isInfinity() && !APF.isNegative()) {
11307       const unsigned IsInfMask = SIInstrFlags::P_INFINITY |
11308                                  SIInstrFlags::N_INFINITY;
11309       const unsigned IsFiniteMask = SIInstrFlags::N_ZERO |
11310                                     SIInstrFlags::P_ZERO |
11311                                     SIInstrFlags::N_NORMAL |
11312                                     SIInstrFlags::P_NORMAL |
11313                                     SIInstrFlags::N_SUBNORMAL |
11314                                     SIInstrFlags::P_SUBNORMAL;
11315       unsigned Mask = CC == ISD::SETOEQ ? IsInfMask : IsFiniteMask;
11316       return DAG.getNode(AMDGPUISD::FP_CLASS, SL, MVT::i1, LHS.getOperand(0),
11317                          DAG.getConstant(Mask, SL, MVT::i32));
11318     }
11319   }
11320 
11321   return SDValue();
11322 }
11323 
11324 SDValue SITargetLowering::performCvtF32UByteNCombine(SDNode *N,
11325                                                      DAGCombinerInfo &DCI) const {
11326   SelectionDAG &DAG = DCI.DAG;
11327   SDLoc SL(N);
11328   unsigned Offset = N->getOpcode() - AMDGPUISD::CVT_F32_UBYTE0;
11329 
11330   SDValue Src = N->getOperand(0);
11331   SDValue Shift = N->getOperand(0);
11332 
11333   // TODO: Extend type shouldn't matter (assuming legal types).
11334   if (Shift.getOpcode() == ISD::ZERO_EXTEND)
11335     Shift = Shift.getOperand(0);
11336 
11337   if (Shift.getOpcode() == ISD::SRL || Shift.getOpcode() == ISD::SHL) {
11338     // cvt_f32_ubyte1 (shl x,  8) -> cvt_f32_ubyte0 x
11339     // cvt_f32_ubyte3 (shl x, 16) -> cvt_f32_ubyte1 x
11340     // cvt_f32_ubyte0 (srl x, 16) -> cvt_f32_ubyte2 x
11341     // cvt_f32_ubyte1 (srl x, 16) -> cvt_f32_ubyte3 x
11342     // cvt_f32_ubyte0 (srl x,  8) -> cvt_f32_ubyte1 x
11343     if (auto *C = dyn_cast<ConstantSDNode>(Shift.getOperand(1))) {
11344       SDValue Shifted = DAG.getZExtOrTrunc(Shift.getOperand(0),
11345                                  SDLoc(Shift.getOperand(0)), MVT::i32);
11346 
11347       unsigned ShiftOffset = 8 * Offset;
11348       if (Shift.getOpcode() == ISD::SHL)
11349         ShiftOffset -= C->getZExtValue();
11350       else
11351         ShiftOffset += C->getZExtValue();
11352 
11353       if (ShiftOffset < 32 && (ShiftOffset % 8) == 0) {
11354         return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0 + ShiftOffset / 8, SL,
11355                            MVT::f32, Shifted);
11356       }
11357     }
11358   }
11359 
11360   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11361   APInt DemandedBits = APInt::getBitsSet(32, 8 * Offset, 8 * Offset + 8);
11362   if (TLI.SimplifyDemandedBits(Src, DemandedBits, DCI)) {
11363     // We simplified Src. If this node is not dead, visit it again so it is
11364     // folded properly.
11365     if (N->getOpcode() != ISD::DELETED_NODE)
11366       DCI.AddToWorklist(N);
11367     return SDValue(N, 0);
11368   }
11369 
11370   // Handle (or x, (srl y, 8)) pattern when known bits are zero.
11371   if (SDValue DemandedSrc =
11372           TLI.SimplifyMultipleUseDemandedBits(Src, DemandedBits, DAG))
11373     return DAG.getNode(N->getOpcode(), SL, MVT::f32, DemandedSrc);
11374 
11375   return SDValue();
11376 }
11377 
11378 SDValue SITargetLowering::performClampCombine(SDNode *N,
11379                                               DAGCombinerInfo &DCI) const {
11380   ConstantFPSDNode *CSrc = dyn_cast<ConstantFPSDNode>(N->getOperand(0));
11381   if (!CSrc)
11382     return SDValue();
11383 
11384   const MachineFunction &MF = DCI.DAG.getMachineFunction();
11385   const APFloat &F = CSrc->getValueAPF();
11386   APFloat Zero = APFloat::getZero(F.getSemantics());
11387   if (F < Zero ||
11388       (F.isNaN() && MF.getInfo<SIMachineFunctionInfo>()->getMode().DX10Clamp)) {
11389     return DCI.DAG.getConstantFP(Zero, SDLoc(N), N->getValueType(0));
11390   }
11391 
11392   APFloat One(F.getSemantics(), "1.0");
11393   if (F > One)
11394     return DCI.DAG.getConstantFP(One, SDLoc(N), N->getValueType(0));
11395 
11396   return SDValue(CSrc, 0);
11397 }
11398 
11399 
11400 SDValue SITargetLowering::PerformDAGCombine(SDNode *N,
11401                                             DAGCombinerInfo &DCI) const {
11402   if (getTargetMachine().getOptLevel() == CodeGenOpt::None)
11403     return SDValue();
11404   switch (N->getOpcode()) {
11405   case ISD::ADD:
11406     return performAddCombine(N, DCI);
11407   case ISD::SUB:
11408     return performSubCombine(N, DCI);
11409   case ISD::ADDCARRY:
11410   case ISD::SUBCARRY:
11411     return performAddCarrySubCarryCombine(N, DCI);
11412   case ISD::FADD:
11413     return performFAddCombine(N, DCI);
11414   case ISD::FSUB:
11415     return performFSubCombine(N, DCI);
11416   case ISD::SETCC:
11417     return performSetCCCombine(N, DCI);
11418   case ISD::FMAXNUM:
11419   case ISD::FMINNUM:
11420   case ISD::FMAXNUM_IEEE:
11421   case ISD::FMINNUM_IEEE:
11422   case ISD::SMAX:
11423   case ISD::SMIN:
11424   case ISD::UMAX:
11425   case ISD::UMIN:
11426   case AMDGPUISD::FMIN_LEGACY:
11427   case AMDGPUISD::FMAX_LEGACY:
11428     return performMinMaxCombine(N, DCI);
11429   case ISD::FMA:
11430     return performFMACombine(N, DCI);
11431   case ISD::AND:
11432     return performAndCombine(N, DCI);
11433   case ISD::OR:
11434     return performOrCombine(N, DCI);
11435   case ISD::XOR:
11436     return performXorCombine(N, DCI);
11437   case ISD::ZERO_EXTEND:
11438     return performZeroExtendCombine(N, DCI);
11439   case ISD::SIGN_EXTEND_INREG:
11440     return performSignExtendInRegCombine(N , DCI);
11441   case AMDGPUISD::FP_CLASS:
11442     return performClassCombine(N, DCI);
11443   case ISD::FCANONICALIZE:
11444     return performFCanonicalizeCombine(N, DCI);
11445   case AMDGPUISD::RCP:
11446     return performRcpCombine(N, DCI);
11447   case AMDGPUISD::FRACT:
11448   case AMDGPUISD::RSQ:
11449   case AMDGPUISD::RCP_LEGACY:
11450   case AMDGPUISD::RCP_IFLAG:
11451   case AMDGPUISD::RSQ_CLAMP:
11452   case AMDGPUISD::LDEXP: {
11453     // FIXME: This is probably wrong. If src is an sNaN, it won't be quieted
11454     SDValue Src = N->getOperand(0);
11455     if (Src.isUndef())
11456       return Src;
11457     break;
11458   }
11459   case ISD::SINT_TO_FP:
11460   case ISD::UINT_TO_FP:
11461     return performUCharToFloatCombine(N, DCI);
11462   case AMDGPUISD::CVT_F32_UBYTE0:
11463   case AMDGPUISD::CVT_F32_UBYTE1:
11464   case AMDGPUISD::CVT_F32_UBYTE2:
11465   case AMDGPUISD::CVT_F32_UBYTE3:
11466     return performCvtF32UByteNCombine(N, DCI);
11467   case AMDGPUISD::FMED3:
11468     return performFMed3Combine(N, DCI);
11469   case AMDGPUISD::CVT_PKRTZ_F16_F32:
11470     return performCvtPkRTZCombine(N, DCI);
11471   case AMDGPUISD::CLAMP:
11472     return performClampCombine(N, DCI);
11473   case ISD::SCALAR_TO_VECTOR: {
11474     SelectionDAG &DAG = DCI.DAG;
11475     EVT VT = N->getValueType(0);
11476 
11477     // v2i16 (scalar_to_vector i16:x) -> v2i16 (bitcast (any_extend i16:x))
11478     if (VT == MVT::v2i16 || VT == MVT::v2f16) {
11479       SDLoc SL(N);
11480       SDValue Src = N->getOperand(0);
11481       EVT EltVT = Src.getValueType();
11482       if (EltVT == MVT::f16)
11483         Src = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Src);
11484 
11485       SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Src);
11486       return DAG.getNode(ISD::BITCAST, SL, VT, Ext);
11487     }
11488 
11489     break;
11490   }
11491   case ISD::EXTRACT_VECTOR_ELT:
11492     return performExtractVectorEltCombine(N, DCI);
11493   case ISD::INSERT_VECTOR_ELT:
11494     return performInsertVectorEltCombine(N, DCI);
11495   case ISD::LOAD: {
11496     if (SDValue Widended = widenLoad(cast<LoadSDNode>(N), DCI))
11497       return Widended;
11498     LLVM_FALLTHROUGH;
11499   }
11500   default: {
11501     if (!DCI.isBeforeLegalize()) {
11502       if (MemSDNode *MemNode = dyn_cast<MemSDNode>(N))
11503         return performMemSDNodeCombine(MemNode, DCI);
11504     }
11505 
11506     break;
11507   }
11508   }
11509 
11510   return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
11511 }
11512 
11513 /// Helper function for adjustWritemask
11514 static unsigned SubIdx2Lane(unsigned Idx) {
11515   switch (Idx) {
11516   default: return ~0u;
11517   case AMDGPU::sub0: return 0;
11518   case AMDGPU::sub1: return 1;
11519   case AMDGPU::sub2: return 2;
11520   case AMDGPU::sub3: return 3;
11521   case AMDGPU::sub4: return 4; // Possible with TFE/LWE
11522   }
11523 }
11524 
11525 /// Adjust the writemask of MIMG instructions
11526 SDNode *SITargetLowering::adjustWritemask(MachineSDNode *&Node,
11527                                           SelectionDAG &DAG) const {
11528   unsigned Opcode = Node->getMachineOpcode();
11529 
11530   // Subtract 1 because the vdata output is not a MachineSDNode operand.
11531   int D16Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::d16) - 1;
11532   if (D16Idx >= 0 && Node->getConstantOperandVal(D16Idx))
11533     return Node; // not implemented for D16
11534 
11535   SDNode *Users[5] = { nullptr };
11536   unsigned Lane = 0;
11537   unsigned DmaskIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::dmask) - 1;
11538   unsigned OldDmask = Node->getConstantOperandVal(DmaskIdx);
11539   unsigned NewDmask = 0;
11540   unsigned TFEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::tfe) - 1;
11541   unsigned LWEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::lwe) - 1;
11542   bool UsesTFC = ((int(TFEIdx) >= 0 && Node->getConstantOperandVal(TFEIdx)) ||
11543                   Node->getConstantOperandVal(LWEIdx))
11544                      ? true
11545                      : false;
11546   unsigned TFCLane = 0;
11547   bool HasChain = Node->getNumValues() > 1;
11548 
11549   if (OldDmask == 0) {
11550     // These are folded out, but on the chance it happens don't assert.
11551     return Node;
11552   }
11553 
11554   unsigned OldBitsSet = countPopulation(OldDmask);
11555   // Work out which is the TFE/LWE lane if that is enabled.
11556   if (UsesTFC) {
11557     TFCLane = OldBitsSet;
11558   }
11559 
11560   // Try to figure out the used register components
11561   for (SDNode::use_iterator I = Node->use_begin(), E = Node->use_end();
11562        I != E; ++I) {
11563 
11564     // Don't look at users of the chain.
11565     if (I.getUse().getResNo() != 0)
11566       continue;
11567 
11568     // Abort if we can't understand the usage
11569     if (!I->isMachineOpcode() ||
11570         I->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG)
11571       return Node;
11572 
11573     // Lane means which subreg of %vgpra_vgprb_vgprc_vgprd is used.
11574     // Note that subregs are packed, i.e. Lane==0 is the first bit set
11575     // in OldDmask, so it can be any of X,Y,Z,W; Lane==1 is the second bit
11576     // set, etc.
11577     Lane = SubIdx2Lane(I->getConstantOperandVal(1));
11578     if (Lane == ~0u)
11579       return Node;
11580 
11581     // Check if the use is for the TFE/LWE generated result at VGPRn+1.
11582     if (UsesTFC && Lane == TFCLane) {
11583       Users[Lane] = *I;
11584     } else {
11585       // Set which texture component corresponds to the lane.
11586       unsigned Comp;
11587       for (unsigned i = 0, Dmask = OldDmask; (i <= Lane) && (Dmask != 0); i++) {
11588         Comp = countTrailingZeros(Dmask);
11589         Dmask &= ~(1 << Comp);
11590       }
11591 
11592       // Abort if we have more than one user per component.
11593       if (Users[Lane])
11594         return Node;
11595 
11596       Users[Lane] = *I;
11597       NewDmask |= 1 << Comp;
11598     }
11599   }
11600 
11601   // Don't allow 0 dmask, as hardware assumes one channel enabled.
11602   bool NoChannels = !NewDmask;
11603   if (NoChannels) {
11604     if (!UsesTFC) {
11605       // No uses of the result and not using TFC. Then do nothing.
11606       return Node;
11607     }
11608     // If the original dmask has one channel - then nothing to do
11609     if (OldBitsSet == 1)
11610       return Node;
11611     // Use an arbitrary dmask - required for the instruction to work
11612     NewDmask = 1;
11613   }
11614   // Abort if there's no change
11615   if (NewDmask == OldDmask)
11616     return Node;
11617 
11618   unsigned BitsSet = countPopulation(NewDmask);
11619 
11620   // Check for TFE or LWE - increase the number of channels by one to account
11621   // for the extra return value
11622   // This will need adjustment for D16 if this is also included in
11623   // adjustWriteMask (this function) but at present D16 are excluded.
11624   unsigned NewChannels = BitsSet + UsesTFC;
11625 
11626   int NewOpcode =
11627       AMDGPU::getMaskedMIMGOp(Node->getMachineOpcode(), NewChannels);
11628   assert(NewOpcode != -1 &&
11629          NewOpcode != static_cast<int>(Node->getMachineOpcode()) &&
11630          "failed to find equivalent MIMG op");
11631 
11632   // Adjust the writemask in the node
11633   SmallVector<SDValue, 12> Ops;
11634   Ops.insert(Ops.end(), Node->op_begin(), Node->op_begin() + DmaskIdx);
11635   Ops.push_back(DAG.getTargetConstant(NewDmask, SDLoc(Node), MVT::i32));
11636   Ops.insert(Ops.end(), Node->op_begin() + DmaskIdx + 1, Node->op_end());
11637 
11638   MVT SVT = Node->getValueType(0).getVectorElementType().getSimpleVT();
11639 
11640   MVT ResultVT = NewChannels == 1 ?
11641     SVT : MVT::getVectorVT(SVT, NewChannels == 3 ? 4 :
11642                            NewChannels == 5 ? 8 : NewChannels);
11643   SDVTList NewVTList = HasChain ?
11644     DAG.getVTList(ResultVT, MVT::Other) : DAG.getVTList(ResultVT);
11645 
11646 
11647   MachineSDNode *NewNode = DAG.getMachineNode(NewOpcode, SDLoc(Node),
11648                                               NewVTList, Ops);
11649 
11650   if (HasChain) {
11651     // Update chain.
11652     DAG.setNodeMemRefs(NewNode, Node->memoperands());
11653     DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), SDValue(NewNode, 1));
11654   }
11655 
11656   if (NewChannels == 1) {
11657     assert(Node->hasNUsesOfValue(1, 0));
11658     SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY,
11659                                       SDLoc(Node), Users[Lane]->getValueType(0),
11660                                       SDValue(NewNode, 0));
11661     DAG.ReplaceAllUsesWith(Users[Lane], Copy);
11662     return nullptr;
11663   }
11664 
11665   // Update the users of the node with the new indices
11666   for (unsigned i = 0, Idx = AMDGPU::sub0; i < 5; ++i) {
11667     SDNode *User = Users[i];
11668     if (!User) {
11669       // Handle the special case of NoChannels. We set NewDmask to 1 above, but
11670       // Users[0] is still nullptr because channel 0 doesn't really have a use.
11671       if (i || !NoChannels)
11672         continue;
11673     } else {
11674       SDValue Op = DAG.getTargetConstant(Idx, SDLoc(User), MVT::i32);
11675       DAG.UpdateNodeOperands(User, SDValue(NewNode, 0), Op);
11676     }
11677 
11678     switch (Idx) {
11679     default: break;
11680     case AMDGPU::sub0: Idx = AMDGPU::sub1; break;
11681     case AMDGPU::sub1: Idx = AMDGPU::sub2; break;
11682     case AMDGPU::sub2: Idx = AMDGPU::sub3; break;
11683     case AMDGPU::sub3: Idx = AMDGPU::sub4; break;
11684     }
11685   }
11686 
11687   DAG.RemoveDeadNode(Node);
11688   return nullptr;
11689 }
11690 
11691 static bool isFrameIndexOp(SDValue Op) {
11692   if (Op.getOpcode() == ISD::AssertZext)
11693     Op = Op.getOperand(0);
11694 
11695   return isa<FrameIndexSDNode>(Op);
11696 }
11697 
11698 /// Legalize target independent instructions (e.g. INSERT_SUBREG)
11699 /// with frame index operands.
11700 /// LLVM assumes that inputs are to these instructions are registers.
11701 SDNode *SITargetLowering::legalizeTargetIndependentNode(SDNode *Node,
11702                                                         SelectionDAG &DAG) const {
11703   if (Node->getOpcode() == ISD::CopyToReg) {
11704     RegisterSDNode *DestReg = cast<RegisterSDNode>(Node->getOperand(1));
11705     SDValue SrcVal = Node->getOperand(2);
11706 
11707     // Insert a copy to a VReg_1 virtual register so LowerI1Copies doesn't have
11708     // to try understanding copies to physical registers.
11709     if (SrcVal.getValueType() == MVT::i1 && DestReg->getReg().isPhysical()) {
11710       SDLoc SL(Node);
11711       MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
11712       SDValue VReg = DAG.getRegister(
11713         MRI.createVirtualRegister(&AMDGPU::VReg_1RegClass), MVT::i1);
11714 
11715       SDNode *Glued = Node->getGluedNode();
11716       SDValue ToVReg
11717         = DAG.getCopyToReg(Node->getOperand(0), SL, VReg, SrcVal,
11718                          SDValue(Glued, Glued ? Glued->getNumValues() - 1 : 0));
11719       SDValue ToResultReg
11720         = DAG.getCopyToReg(ToVReg, SL, SDValue(DestReg, 0),
11721                            VReg, ToVReg.getValue(1));
11722       DAG.ReplaceAllUsesWith(Node, ToResultReg.getNode());
11723       DAG.RemoveDeadNode(Node);
11724       return ToResultReg.getNode();
11725     }
11726   }
11727 
11728   SmallVector<SDValue, 8> Ops;
11729   for (unsigned i = 0; i < Node->getNumOperands(); ++i) {
11730     if (!isFrameIndexOp(Node->getOperand(i))) {
11731       Ops.push_back(Node->getOperand(i));
11732       continue;
11733     }
11734 
11735     SDLoc DL(Node);
11736     Ops.push_back(SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL,
11737                                      Node->getOperand(i).getValueType(),
11738                                      Node->getOperand(i)), 0));
11739   }
11740 
11741   return DAG.UpdateNodeOperands(Node, Ops);
11742 }
11743 
11744 /// Fold the instructions after selecting them.
11745 /// Returns null if users were already updated.
11746 SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node,
11747                                           SelectionDAG &DAG) const {
11748   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
11749   unsigned Opcode = Node->getMachineOpcode();
11750 
11751   if (TII->isMIMG(Opcode) && !TII->get(Opcode).mayStore() &&
11752       !TII->isGather4(Opcode) &&
11753       AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::dmask) != -1) {
11754     return adjustWritemask(Node, DAG);
11755   }
11756 
11757   if (Opcode == AMDGPU::INSERT_SUBREG ||
11758       Opcode == AMDGPU::REG_SEQUENCE) {
11759     legalizeTargetIndependentNode(Node, DAG);
11760     return Node;
11761   }
11762 
11763   switch (Opcode) {
11764   case AMDGPU::V_DIV_SCALE_F32_e64:
11765   case AMDGPU::V_DIV_SCALE_F64_e64: {
11766     // Satisfy the operand register constraint when one of the inputs is
11767     // undefined. Ordinarily each undef value will have its own implicit_def of
11768     // a vreg, so force these to use a single register.
11769     SDValue Src0 = Node->getOperand(1);
11770     SDValue Src1 = Node->getOperand(3);
11771     SDValue Src2 = Node->getOperand(5);
11772 
11773     if ((Src0.isMachineOpcode() &&
11774          Src0.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) &&
11775         (Src0 == Src1 || Src0 == Src2))
11776       break;
11777 
11778     MVT VT = Src0.getValueType().getSimpleVT();
11779     const TargetRegisterClass *RC =
11780         getRegClassFor(VT, Src0.getNode()->isDivergent());
11781 
11782     MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
11783     SDValue UndefReg = DAG.getRegister(MRI.createVirtualRegister(RC), VT);
11784 
11785     SDValue ImpDef = DAG.getCopyToReg(DAG.getEntryNode(), SDLoc(Node),
11786                                       UndefReg, Src0, SDValue());
11787 
11788     // src0 must be the same register as src1 or src2, even if the value is
11789     // undefined, so make sure we don't violate this constraint.
11790     if (Src0.isMachineOpcode() &&
11791         Src0.getMachineOpcode() == AMDGPU::IMPLICIT_DEF) {
11792       if (Src1.isMachineOpcode() &&
11793           Src1.getMachineOpcode() != AMDGPU::IMPLICIT_DEF)
11794         Src0 = Src1;
11795       else if (Src2.isMachineOpcode() &&
11796                Src2.getMachineOpcode() != AMDGPU::IMPLICIT_DEF)
11797         Src0 = Src2;
11798       else {
11799         assert(Src1.getMachineOpcode() == AMDGPU::IMPLICIT_DEF);
11800         Src0 = UndefReg;
11801         Src1 = UndefReg;
11802       }
11803     } else
11804       break;
11805 
11806     SmallVector<SDValue, 9> Ops(Node->op_begin(), Node->op_end());
11807     Ops[1] = Src0;
11808     Ops[3] = Src1;
11809     Ops[5] = Src2;
11810     Ops.push_back(ImpDef.getValue(1));
11811     return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
11812   }
11813   default:
11814     break;
11815   }
11816 
11817   return Node;
11818 }
11819 
11820 // Any MIMG instructions that use tfe or lwe require an initialization of the
11821 // result register that will be written in the case of a memory access failure.
11822 // The required code is also added to tie this init code to the result of the
11823 // img instruction.
11824 void SITargetLowering::AddIMGInit(MachineInstr &MI) const {
11825   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
11826   const SIRegisterInfo &TRI = TII->getRegisterInfo();
11827   MachineRegisterInfo &MRI = MI.getMF()->getRegInfo();
11828   MachineBasicBlock &MBB = *MI.getParent();
11829 
11830   MachineOperand *TFE = TII->getNamedOperand(MI, AMDGPU::OpName::tfe);
11831   MachineOperand *LWE = TII->getNamedOperand(MI, AMDGPU::OpName::lwe);
11832   MachineOperand *D16 = TII->getNamedOperand(MI, AMDGPU::OpName::d16);
11833 
11834   if (!TFE && !LWE) // intersect_ray
11835     return;
11836 
11837   unsigned TFEVal = TFE ? TFE->getImm() : 0;
11838   unsigned LWEVal = LWE->getImm();
11839   unsigned D16Val = D16 ? D16->getImm() : 0;
11840 
11841   if (!TFEVal && !LWEVal)
11842     return;
11843 
11844   // At least one of TFE or LWE are non-zero
11845   // We have to insert a suitable initialization of the result value and
11846   // tie this to the dest of the image instruction.
11847 
11848   const DebugLoc &DL = MI.getDebugLoc();
11849 
11850   int DstIdx =
11851       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vdata);
11852 
11853   // Calculate which dword we have to initialize to 0.
11854   MachineOperand *MO_Dmask = TII->getNamedOperand(MI, AMDGPU::OpName::dmask);
11855 
11856   // check that dmask operand is found.
11857   assert(MO_Dmask && "Expected dmask operand in instruction");
11858 
11859   unsigned dmask = MO_Dmask->getImm();
11860   // Determine the number of active lanes taking into account the
11861   // Gather4 special case
11862   unsigned ActiveLanes = TII->isGather4(MI) ? 4 : countPopulation(dmask);
11863 
11864   bool Packed = !Subtarget->hasUnpackedD16VMem();
11865 
11866   unsigned InitIdx =
11867       D16Val && Packed ? ((ActiveLanes + 1) >> 1) + 1 : ActiveLanes + 1;
11868 
11869   // Abandon attempt if the dst size isn't large enough
11870   // - this is in fact an error but this is picked up elsewhere and
11871   // reported correctly.
11872   uint32_t DstSize = TRI.getRegSizeInBits(*TII->getOpRegClass(MI, DstIdx)) / 32;
11873   if (DstSize < InitIdx)
11874     return;
11875 
11876   // Create a register for the initialization value.
11877   Register PrevDst = MRI.createVirtualRegister(TII->getOpRegClass(MI, DstIdx));
11878   unsigned NewDst = 0; // Final initialized value will be in here
11879 
11880   // If PRTStrictNull feature is enabled (the default) then initialize
11881   // all the result registers to 0, otherwise just the error indication
11882   // register (VGPRn+1)
11883   unsigned SizeLeft = Subtarget->usePRTStrictNull() ? InitIdx : 1;
11884   unsigned CurrIdx = Subtarget->usePRTStrictNull() ? 0 : (InitIdx - 1);
11885 
11886   BuildMI(MBB, MI, DL, TII->get(AMDGPU::IMPLICIT_DEF), PrevDst);
11887   for (; SizeLeft; SizeLeft--, CurrIdx++) {
11888     NewDst = MRI.createVirtualRegister(TII->getOpRegClass(MI, DstIdx));
11889     // Initialize dword
11890     Register SubReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
11891     BuildMI(MBB, MI, DL, TII->get(AMDGPU::V_MOV_B32_e32), SubReg)
11892       .addImm(0);
11893     // Insert into the super-reg
11894     BuildMI(MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewDst)
11895       .addReg(PrevDst)
11896       .addReg(SubReg)
11897       .addImm(SIRegisterInfo::getSubRegFromChannel(CurrIdx));
11898 
11899     PrevDst = NewDst;
11900   }
11901 
11902   // Add as an implicit operand
11903   MI.addOperand(MachineOperand::CreateReg(NewDst, false, true));
11904 
11905   // Tie the just added implicit operand to the dst
11906   MI.tieOperands(DstIdx, MI.getNumOperands() - 1);
11907 }
11908 
11909 /// Assign the register class depending on the number of
11910 /// bits set in the writemask
11911 void SITargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
11912                                                      SDNode *Node) const {
11913   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
11914 
11915   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
11916 
11917   if (TII->isVOP3(MI.getOpcode())) {
11918     // Make sure constant bus requirements are respected.
11919     TII->legalizeOperandsVOP3(MRI, MI);
11920 
11921     // Prefer VGPRs over AGPRs in mAI instructions where possible.
11922     // This saves a chain-copy of registers and better balance register
11923     // use between vgpr and agpr as agpr tuples tend to be big.
11924     if (MI.getDesc().OpInfo) {
11925       unsigned Opc = MI.getOpcode();
11926       const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
11927       for (auto I : { AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0),
11928                       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1) }) {
11929         if (I == -1)
11930           break;
11931         MachineOperand &Op = MI.getOperand(I);
11932         if (!Op.isReg() || !Op.getReg().isVirtual())
11933           continue;
11934         auto *RC = TRI->getRegClassForReg(MRI, Op.getReg());
11935         if (!TRI->hasAGPRs(RC))
11936           continue;
11937         auto *Src = MRI.getUniqueVRegDef(Op.getReg());
11938         if (!Src || !Src->isCopy() ||
11939             !TRI->isSGPRReg(MRI, Src->getOperand(1).getReg()))
11940           continue;
11941         auto *NewRC = TRI->getEquivalentVGPRClass(RC);
11942         // All uses of agpr64 and agpr32 can also accept vgpr except for
11943         // v_accvgpr_read, but we do not produce agpr reads during selection,
11944         // so no use checks are needed.
11945         MRI.setRegClass(Op.getReg(), NewRC);
11946       }
11947 
11948       // Resolve the rest of AV operands to AGPRs.
11949       if (auto *Src2 = TII->getNamedOperand(MI, AMDGPU::OpName::src2)) {
11950         if (Src2->isReg() && Src2->getReg().isVirtual()) {
11951           auto *RC = TRI->getRegClassForReg(MRI, Src2->getReg());
11952           if (TRI->isVectorSuperClass(RC)) {
11953             auto *NewRC = TRI->getEquivalentAGPRClass(RC);
11954             MRI.setRegClass(Src2->getReg(), NewRC);
11955             if (Src2->isTied())
11956               MRI.setRegClass(MI.getOperand(0).getReg(), NewRC);
11957           }
11958         }
11959       }
11960     }
11961 
11962     return;
11963   }
11964 
11965   if (TII->isMIMG(MI)) {
11966     if (!MI.mayStore())
11967       AddIMGInit(MI);
11968     TII->enforceOperandRCAlignment(MI, AMDGPU::OpName::vaddr);
11969   }
11970 }
11971 
11972 static SDValue buildSMovImm32(SelectionDAG &DAG, const SDLoc &DL,
11973                               uint64_t Val) {
11974   SDValue K = DAG.getTargetConstant(Val, DL, MVT::i32);
11975   return SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, K), 0);
11976 }
11977 
11978 MachineSDNode *SITargetLowering::wrapAddr64Rsrc(SelectionDAG &DAG,
11979                                                 const SDLoc &DL,
11980                                                 SDValue Ptr) const {
11981   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
11982 
11983   // Build the half of the subregister with the constants before building the
11984   // full 128-bit register. If we are building multiple resource descriptors,
11985   // this will allow CSEing of the 2-component register.
11986   const SDValue Ops0[] = {
11987     DAG.getTargetConstant(AMDGPU::SGPR_64RegClassID, DL, MVT::i32),
11988     buildSMovImm32(DAG, DL, 0),
11989     DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
11990     buildSMovImm32(DAG, DL, TII->getDefaultRsrcDataFormat() >> 32),
11991     DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32)
11992   };
11993 
11994   SDValue SubRegHi = SDValue(DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL,
11995                                                 MVT::v2i32, Ops0), 0);
11996 
11997   // Combine the constants and the pointer.
11998   const SDValue Ops1[] = {
11999     DAG.getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32),
12000     Ptr,
12001     DAG.getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32),
12002     SubRegHi,
12003     DAG.getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32)
12004   };
12005 
12006   return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops1);
12007 }
12008 
12009 /// Return a resource descriptor with the 'Add TID' bit enabled
12010 ///        The TID (Thread ID) is multiplied by the stride value (bits [61:48]
12011 ///        of the resource descriptor) to create an offset, which is added to
12012 ///        the resource pointer.
12013 MachineSDNode *SITargetLowering::buildRSRC(SelectionDAG &DAG, const SDLoc &DL,
12014                                            SDValue Ptr, uint32_t RsrcDword1,
12015                                            uint64_t RsrcDword2And3) const {
12016   SDValue PtrLo = DAG.getTargetExtractSubreg(AMDGPU::sub0, DL, MVT::i32, Ptr);
12017   SDValue PtrHi = DAG.getTargetExtractSubreg(AMDGPU::sub1, DL, MVT::i32, Ptr);
12018   if (RsrcDword1) {
12019     PtrHi = SDValue(DAG.getMachineNode(AMDGPU::S_OR_B32, DL, MVT::i32, PtrHi,
12020                                      DAG.getConstant(RsrcDword1, DL, MVT::i32)),
12021                     0);
12022   }
12023 
12024   SDValue DataLo = buildSMovImm32(DAG, DL,
12025                                   RsrcDword2And3 & UINT64_C(0xFFFFFFFF));
12026   SDValue DataHi = buildSMovImm32(DAG, DL, RsrcDword2And3 >> 32);
12027 
12028   const SDValue Ops[] = {
12029     DAG.getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32),
12030     PtrLo,
12031     DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
12032     PtrHi,
12033     DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32),
12034     DataLo,
12035     DAG.getTargetConstant(AMDGPU::sub2, DL, MVT::i32),
12036     DataHi,
12037     DAG.getTargetConstant(AMDGPU::sub3, DL, MVT::i32)
12038   };
12039 
12040   return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops);
12041 }
12042 
12043 //===----------------------------------------------------------------------===//
12044 //                         SI Inline Assembly Support
12045 //===----------------------------------------------------------------------===//
12046 
12047 std::pair<unsigned, const TargetRegisterClass *>
12048 SITargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI_,
12049                                                StringRef Constraint,
12050                                                MVT VT) const {
12051   const SIRegisterInfo *TRI = static_cast<const SIRegisterInfo *>(TRI_);
12052 
12053   const TargetRegisterClass *RC = nullptr;
12054   if (Constraint.size() == 1) {
12055     const unsigned BitWidth = VT.getSizeInBits();
12056     switch (Constraint[0]) {
12057     default:
12058       return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
12059     case 's':
12060     case 'r':
12061       switch (BitWidth) {
12062       case 16:
12063         RC = &AMDGPU::SReg_32RegClass;
12064         break;
12065       case 64:
12066         RC = &AMDGPU::SGPR_64RegClass;
12067         break;
12068       default:
12069         RC = SIRegisterInfo::getSGPRClassForBitWidth(BitWidth);
12070         if (!RC)
12071           return std::make_pair(0U, nullptr);
12072         break;
12073       }
12074       break;
12075     case 'v':
12076       switch (BitWidth) {
12077       case 16:
12078         RC = &AMDGPU::VGPR_32RegClass;
12079         break;
12080       default:
12081         RC = TRI->getVGPRClassForBitWidth(BitWidth);
12082         if (!RC)
12083           return std::make_pair(0U, nullptr);
12084         break;
12085       }
12086       break;
12087     case 'a':
12088       if (!Subtarget->hasMAIInsts())
12089         break;
12090       switch (BitWidth) {
12091       case 16:
12092         RC = &AMDGPU::AGPR_32RegClass;
12093         break;
12094       default:
12095         RC = TRI->getAGPRClassForBitWidth(BitWidth);
12096         if (!RC)
12097           return std::make_pair(0U, nullptr);
12098         break;
12099       }
12100       break;
12101     }
12102     // We actually support i128, i16 and f16 as inline parameters
12103     // even if they are not reported as legal
12104     if (RC && (isTypeLegal(VT) || VT.SimpleTy == MVT::i128 ||
12105                VT.SimpleTy == MVT::i16 || VT.SimpleTy == MVT::f16))
12106       return std::make_pair(0U, RC);
12107   }
12108 
12109   if (Constraint.startswith("{") && Constraint.endswith("}")) {
12110     StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
12111     if (RegName.consume_front("v")) {
12112       RC = &AMDGPU::VGPR_32RegClass;
12113     } else if (RegName.consume_front("s")) {
12114       RC = &AMDGPU::SGPR_32RegClass;
12115     } else if (RegName.consume_front("a")) {
12116       RC = &AMDGPU::AGPR_32RegClass;
12117     }
12118 
12119     if (RC) {
12120       uint32_t Idx;
12121       if (RegName.consume_front("[")) {
12122         uint32_t End;
12123         bool Failed = RegName.consumeInteger(10, Idx);
12124         Failed |= !RegName.consume_front(":");
12125         Failed |= RegName.consumeInteger(10, End);
12126         Failed |= !RegName.consume_back("]");
12127         if (!Failed) {
12128           uint32_t Width = (End - Idx + 1) * 32;
12129           MCRegister Reg = RC->getRegister(Idx);
12130           if (SIRegisterInfo::isVGPRClass(RC))
12131             RC = TRI->getVGPRClassForBitWidth(Width);
12132           else if (SIRegisterInfo::isSGPRClass(RC))
12133             RC = TRI->getSGPRClassForBitWidth(Width);
12134           else if (SIRegisterInfo::isAGPRClass(RC))
12135             RC = TRI->getAGPRClassForBitWidth(Width);
12136           if (RC) {
12137             Reg = TRI->getMatchingSuperReg(Reg, AMDGPU::sub0, RC);
12138             return std::make_pair(Reg, RC);
12139           }
12140         }
12141       } else {
12142         bool Failed = RegName.getAsInteger(10, Idx);
12143         if (!Failed && Idx < RC->getNumRegs())
12144           return std::make_pair(RC->getRegister(Idx), RC);
12145       }
12146     }
12147   }
12148 
12149   auto Ret = TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
12150   if (Ret.first)
12151     Ret.second = TRI->getPhysRegClass(Ret.first);
12152 
12153   return Ret;
12154 }
12155 
12156 static bool isImmConstraint(StringRef Constraint) {
12157   if (Constraint.size() == 1) {
12158     switch (Constraint[0]) {
12159     default: break;
12160     case 'I':
12161     case 'J':
12162     case 'A':
12163     case 'B':
12164     case 'C':
12165       return true;
12166     }
12167   } else if (Constraint == "DA" ||
12168              Constraint == "DB") {
12169     return true;
12170   }
12171   return false;
12172 }
12173 
12174 SITargetLowering::ConstraintType
12175 SITargetLowering::getConstraintType(StringRef Constraint) const {
12176   if (Constraint.size() == 1) {
12177     switch (Constraint[0]) {
12178     default: break;
12179     case 's':
12180     case 'v':
12181     case 'a':
12182       return C_RegisterClass;
12183     }
12184   }
12185   if (isImmConstraint(Constraint)) {
12186     return C_Other;
12187   }
12188   return TargetLowering::getConstraintType(Constraint);
12189 }
12190 
12191 static uint64_t clearUnusedBits(uint64_t Val, unsigned Size) {
12192   if (!AMDGPU::isInlinableIntLiteral(Val)) {
12193     Val = Val & maskTrailingOnes<uint64_t>(Size);
12194   }
12195   return Val;
12196 }
12197 
12198 void SITargetLowering::LowerAsmOperandForConstraint(SDValue Op,
12199                                                     std::string &Constraint,
12200                                                     std::vector<SDValue> &Ops,
12201                                                     SelectionDAG &DAG) const {
12202   if (isImmConstraint(Constraint)) {
12203     uint64_t Val;
12204     if (getAsmOperandConstVal(Op, Val) &&
12205         checkAsmConstraintVal(Op, Constraint, Val)) {
12206       Val = clearUnusedBits(Val, Op.getScalarValueSizeInBits());
12207       Ops.push_back(DAG.getTargetConstant(Val, SDLoc(Op), MVT::i64));
12208     }
12209   } else {
12210     TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
12211   }
12212 }
12213 
12214 bool SITargetLowering::getAsmOperandConstVal(SDValue Op, uint64_t &Val) const {
12215   unsigned Size = Op.getScalarValueSizeInBits();
12216   if (Size > 64)
12217     return false;
12218 
12219   if (Size == 16 && !Subtarget->has16BitInsts())
12220     return false;
12221 
12222   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
12223     Val = C->getSExtValue();
12224     return true;
12225   }
12226   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
12227     Val = C->getValueAPF().bitcastToAPInt().getSExtValue();
12228     return true;
12229   }
12230   if (BuildVectorSDNode *V = dyn_cast<BuildVectorSDNode>(Op)) {
12231     if (Size != 16 || Op.getNumOperands() != 2)
12232       return false;
12233     if (Op.getOperand(0).isUndef() || Op.getOperand(1).isUndef())
12234       return false;
12235     if (ConstantSDNode *C = V->getConstantSplatNode()) {
12236       Val = C->getSExtValue();
12237       return true;
12238     }
12239     if (ConstantFPSDNode *C = V->getConstantFPSplatNode()) {
12240       Val = C->getValueAPF().bitcastToAPInt().getSExtValue();
12241       return true;
12242     }
12243   }
12244 
12245   return false;
12246 }
12247 
12248 bool SITargetLowering::checkAsmConstraintVal(SDValue Op,
12249                                              const std::string &Constraint,
12250                                              uint64_t Val) const {
12251   if (Constraint.size() == 1) {
12252     switch (Constraint[0]) {
12253     case 'I':
12254       return AMDGPU::isInlinableIntLiteral(Val);
12255     case 'J':
12256       return isInt<16>(Val);
12257     case 'A':
12258       return checkAsmConstraintValA(Op, Val);
12259     case 'B':
12260       return isInt<32>(Val);
12261     case 'C':
12262       return isUInt<32>(clearUnusedBits(Val, Op.getScalarValueSizeInBits())) ||
12263              AMDGPU::isInlinableIntLiteral(Val);
12264     default:
12265       break;
12266     }
12267   } else if (Constraint.size() == 2) {
12268     if (Constraint == "DA") {
12269       int64_t HiBits = static_cast<int32_t>(Val >> 32);
12270       int64_t LoBits = static_cast<int32_t>(Val);
12271       return checkAsmConstraintValA(Op, HiBits, 32) &&
12272              checkAsmConstraintValA(Op, LoBits, 32);
12273     }
12274     if (Constraint == "DB") {
12275       return true;
12276     }
12277   }
12278   llvm_unreachable("Invalid asm constraint");
12279 }
12280 
12281 bool SITargetLowering::checkAsmConstraintValA(SDValue Op,
12282                                               uint64_t Val,
12283                                               unsigned MaxSize) const {
12284   unsigned Size = std::min<unsigned>(Op.getScalarValueSizeInBits(), MaxSize);
12285   bool HasInv2Pi = Subtarget->hasInv2PiInlineImm();
12286   if ((Size == 16 && AMDGPU::isInlinableLiteral16(Val, HasInv2Pi)) ||
12287       (Size == 32 && AMDGPU::isInlinableLiteral32(Val, HasInv2Pi)) ||
12288       (Size == 64 && AMDGPU::isInlinableLiteral64(Val, HasInv2Pi))) {
12289     return true;
12290   }
12291   return false;
12292 }
12293 
12294 static int getAlignedAGPRClassID(unsigned UnalignedClassID) {
12295   switch (UnalignedClassID) {
12296   case AMDGPU::VReg_64RegClassID:
12297     return AMDGPU::VReg_64_Align2RegClassID;
12298   case AMDGPU::VReg_96RegClassID:
12299     return AMDGPU::VReg_96_Align2RegClassID;
12300   case AMDGPU::VReg_128RegClassID:
12301     return AMDGPU::VReg_128_Align2RegClassID;
12302   case AMDGPU::VReg_160RegClassID:
12303     return AMDGPU::VReg_160_Align2RegClassID;
12304   case AMDGPU::VReg_192RegClassID:
12305     return AMDGPU::VReg_192_Align2RegClassID;
12306   case AMDGPU::VReg_224RegClassID:
12307     return AMDGPU::VReg_224_Align2RegClassID;
12308   case AMDGPU::VReg_256RegClassID:
12309     return AMDGPU::VReg_256_Align2RegClassID;
12310   case AMDGPU::VReg_512RegClassID:
12311     return AMDGPU::VReg_512_Align2RegClassID;
12312   case AMDGPU::VReg_1024RegClassID:
12313     return AMDGPU::VReg_1024_Align2RegClassID;
12314   case AMDGPU::AReg_64RegClassID:
12315     return AMDGPU::AReg_64_Align2RegClassID;
12316   case AMDGPU::AReg_96RegClassID:
12317     return AMDGPU::AReg_96_Align2RegClassID;
12318   case AMDGPU::AReg_128RegClassID:
12319     return AMDGPU::AReg_128_Align2RegClassID;
12320   case AMDGPU::AReg_160RegClassID:
12321     return AMDGPU::AReg_160_Align2RegClassID;
12322   case AMDGPU::AReg_192RegClassID:
12323     return AMDGPU::AReg_192_Align2RegClassID;
12324   case AMDGPU::AReg_256RegClassID:
12325     return AMDGPU::AReg_256_Align2RegClassID;
12326   case AMDGPU::AReg_512RegClassID:
12327     return AMDGPU::AReg_512_Align2RegClassID;
12328   case AMDGPU::AReg_1024RegClassID:
12329     return AMDGPU::AReg_1024_Align2RegClassID;
12330   default:
12331     return -1;
12332   }
12333 }
12334 
12335 // Figure out which registers should be reserved for stack access. Only after
12336 // the function is legalized do we know all of the non-spill stack objects or if
12337 // calls are present.
12338 void SITargetLowering::finalizeLowering(MachineFunction &MF) const {
12339   MachineRegisterInfo &MRI = MF.getRegInfo();
12340   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
12341   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
12342   const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
12343   const SIInstrInfo *TII = ST.getInstrInfo();
12344 
12345   if (Info->isEntryFunction()) {
12346     // Callable functions have fixed registers used for stack access.
12347     reservePrivateMemoryRegs(getTargetMachine(), MF, *TRI, *Info);
12348   }
12349 
12350   assert(!TRI->isSubRegister(Info->getScratchRSrcReg(),
12351                              Info->getStackPtrOffsetReg()));
12352   if (Info->getStackPtrOffsetReg() != AMDGPU::SP_REG)
12353     MRI.replaceRegWith(AMDGPU::SP_REG, Info->getStackPtrOffsetReg());
12354 
12355   // We need to worry about replacing the default register with itself in case
12356   // of MIR testcases missing the MFI.
12357   if (Info->getScratchRSrcReg() != AMDGPU::PRIVATE_RSRC_REG)
12358     MRI.replaceRegWith(AMDGPU::PRIVATE_RSRC_REG, Info->getScratchRSrcReg());
12359 
12360   if (Info->getFrameOffsetReg() != AMDGPU::FP_REG)
12361     MRI.replaceRegWith(AMDGPU::FP_REG, Info->getFrameOffsetReg());
12362 
12363   Info->limitOccupancy(MF);
12364 
12365   if (ST.isWave32() && !MF.empty()) {
12366     for (auto &MBB : MF) {
12367       for (auto &MI : MBB) {
12368         TII->fixImplicitOperands(MI);
12369       }
12370     }
12371   }
12372 
12373   // FIXME: This is a hack to fixup AGPR classes to use the properly aligned
12374   // classes if required. Ideally the register class constraints would differ
12375   // per-subtarget, but there's no easy way to achieve that right now. This is
12376   // not a problem for VGPRs because the correctly aligned VGPR class is implied
12377   // from using them as the register class for legal types.
12378   if (ST.needsAlignedVGPRs()) {
12379     for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) {
12380       const Register Reg = Register::index2VirtReg(I);
12381       const TargetRegisterClass *RC = MRI.getRegClassOrNull(Reg);
12382       if (!RC)
12383         continue;
12384       int NewClassID = getAlignedAGPRClassID(RC->getID());
12385       if (NewClassID != -1)
12386         MRI.setRegClass(Reg, TRI->getRegClass(NewClassID));
12387     }
12388   }
12389 
12390   TargetLoweringBase::finalizeLowering(MF);
12391 }
12392 
12393 void SITargetLowering::computeKnownBitsForFrameIndex(
12394   const int FI, KnownBits &Known, const MachineFunction &MF) const {
12395   TargetLowering::computeKnownBitsForFrameIndex(FI, Known, MF);
12396 
12397   // Set the high bits to zero based on the maximum allowed scratch size per
12398   // wave. We can't use vaddr in MUBUF instructions if we don't know the address
12399   // calculation won't overflow, so assume the sign bit is never set.
12400   Known.Zero.setHighBits(getSubtarget()->getKnownHighZeroBitsForFrameIndex());
12401 }
12402 
12403 static void knownBitsForWorkitemID(const GCNSubtarget &ST, GISelKnownBits &KB,
12404                                    KnownBits &Known, unsigned Dim) {
12405   unsigned MaxValue =
12406       ST.getMaxWorkitemID(KB.getMachineFunction().getFunction(), Dim);
12407   Known.Zero.setHighBits(countLeadingZeros(MaxValue));
12408 }
12409 
12410 void SITargetLowering::computeKnownBitsForTargetInstr(
12411     GISelKnownBits &KB, Register R, KnownBits &Known, const APInt &DemandedElts,
12412     const MachineRegisterInfo &MRI, unsigned Depth) const {
12413   const MachineInstr *MI = MRI.getVRegDef(R);
12414   switch (MI->getOpcode()) {
12415   case AMDGPU::G_INTRINSIC: {
12416     switch (MI->getIntrinsicID()) {
12417     case Intrinsic::amdgcn_workitem_id_x:
12418       knownBitsForWorkitemID(*getSubtarget(), KB, Known, 0);
12419       break;
12420     case Intrinsic::amdgcn_workitem_id_y:
12421       knownBitsForWorkitemID(*getSubtarget(), KB, Known, 1);
12422       break;
12423     case Intrinsic::amdgcn_workitem_id_z:
12424       knownBitsForWorkitemID(*getSubtarget(), KB, Known, 2);
12425       break;
12426     case Intrinsic::amdgcn_mbcnt_lo:
12427     case Intrinsic::amdgcn_mbcnt_hi: {
12428       // These return at most the wavefront size - 1.
12429       unsigned Size = MRI.getType(R).getSizeInBits();
12430       Known.Zero.setHighBits(Size - getSubtarget()->getWavefrontSizeLog2());
12431       break;
12432     }
12433     case Intrinsic::amdgcn_groupstaticsize: {
12434       // We can report everything over the maximum size as 0. We can't report
12435       // based on the actual size because we don't know if it's accurate or not
12436       // at any given point.
12437       Known.Zero.setHighBits(countLeadingZeros(getSubtarget()->getLocalMemorySize()));
12438       break;
12439     }
12440     }
12441     break;
12442   }
12443   case AMDGPU::G_AMDGPU_BUFFER_LOAD_UBYTE:
12444     Known.Zero.setHighBits(24);
12445     break;
12446   case AMDGPU::G_AMDGPU_BUFFER_LOAD_USHORT:
12447     Known.Zero.setHighBits(16);
12448     break;
12449   }
12450 }
12451 
12452 Align SITargetLowering::computeKnownAlignForTargetInstr(
12453   GISelKnownBits &KB, Register R, const MachineRegisterInfo &MRI,
12454   unsigned Depth) const {
12455   const MachineInstr *MI = MRI.getVRegDef(R);
12456   switch (MI->getOpcode()) {
12457   case AMDGPU::G_INTRINSIC:
12458   case AMDGPU::G_INTRINSIC_W_SIDE_EFFECTS: {
12459     // FIXME: Can this move to generic code? What about the case where the call
12460     // site specifies a lower alignment?
12461     Intrinsic::ID IID = MI->getIntrinsicID();
12462     LLVMContext &Ctx = KB.getMachineFunction().getFunction().getContext();
12463     AttributeList Attrs = Intrinsic::getAttributes(Ctx, IID);
12464     if (MaybeAlign RetAlign = Attrs.getRetAlignment())
12465       return *RetAlign;
12466     return Align(1);
12467   }
12468   default:
12469     return Align(1);
12470   }
12471 }
12472 
12473 Align SITargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
12474   const Align PrefAlign = TargetLowering::getPrefLoopAlignment(ML);
12475   const Align CacheLineAlign = Align(64);
12476 
12477   // Pre-GFX10 target did not benefit from loop alignment
12478   if (!ML || DisableLoopAlignment ||
12479       (getSubtarget()->getGeneration() < AMDGPUSubtarget::GFX10) ||
12480       getSubtarget()->hasInstFwdPrefetchBug())
12481     return PrefAlign;
12482 
12483   // On GFX10 I$ is 4 x 64 bytes cache lines.
12484   // By default prefetcher keeps one cache line behind and reads two ahead.
12485   // We can modify it with S_INST_PREFETCH for larger loops to have two lines
12486   // behind and one ahead.
12487   // Therefor we can benefit from aligning loop headers if loop fits 192 bytes.
12488   // If loop fits 64 bytes it always spans no more than two cache lines and
12489   // does not need an alignment.
12490   // Else if loop is less or equal 128 bytes we do not need to modify prefetch,
12491   // Else if loop is less or equal 192 bytes we need two lines behind.
12492 
12493   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
12494   const MachineBasicBlock *Header = ML->getHeader();
12495   if (Header->getAlignment() != PrefAlign)
12496     return Header->getAlignment(); // Already processed.
12497 
12498   unsigned LoopSize = 0;
12499   for (const MachineBasicBlock *MBB : ML->blocks()) {
12500     // If inner loop block is aligned assume in average half of the alignment
12501     // size to be added as nops.
12502     if (MBB != Header)
12503       LoopSize += MBB->getAlignment().value() / 2;
12504 
12505     for (const MachineInstr &MI : *MBB) {
12506       LoopSize += TII->getInstSizeInBytes(MI);
12507       if (LoopSize > 192)
12508         return PrefAlign;
12509     }
12510   }
12511 
12512   if (LoopSize <= 64)
12513     return PrefAlign;
12514 
12515   if (LoopSize <= 128)
12516     return CacheLineAlign;
12517 
12518   // If any of parent loops is surrounded by prefetch instructions do not
12519   // insert new for inner loop, which would reset parent's settings.
12520   for (MachineLoop *P = ML->getParentLoop(); P; P = P->getParentLoop()) {
12521     if (MachineBasicBlock *Exit = P->getExitBlock()) {
12522       auto I = Exit->getFirstNonDebugInstr();
12523       if (I != Exit->end() && I->getOpcode() == AMDGPU::S_INST_PREFETCH)
12524         return CacheLineAlign;
12525     }
12526   }
12527 
12528   MachineBasicBlock *Pre = ML->getLoopPreheader();
12529   MachineBasicBlock *Exit = ML->getExitBlock();
12530 
12531   if (Pre && Exit) {
12532     auto PreTerm = Pre->getFirstTerminator();
12533     if (PreTerm == Pre->begin() ||
12534         std::prev(PreTerm)->getOpcode() != AMDGPU::S_INST_PREFETCH)
12535       BuildMI(*Pre, PreTerm, DebugLoc(), TII->get(AMDGPU::S_INST_PREFETCH))
12536           .addImm(1); // prefetch 2 lines behind PC
12537 
12538     auto ExitHead = Exit->getFirstNonDebugInstr();
12539     if (ExitHead == Exit->end() ||
12540         ExitHead->getOpcode() != AMDGPU::S_INST_PREFETCH)
12541       BuildMI(*Exit, ExitHead, DebugLoc(), TII->get(AMDGPU::S_INST_PREFETCH))
12542           .addImm(2); // prefetch 1 line behind PC
12543   }
12544 
12545   return CacheLineAlign;
12546 }
12547 
12548 LLVM_ATTRIBUTE_UNUSED
12549 static bool isCopyFromRegOfInlineAsm(const SDNode *N) {
12550   assert(N->getOpcode() == ISD::CopyFromReg);
12551   do {
12552     // Follow the chain until we find an INLINEASM node.
12553     N = N->getOperand(0).getNode();
12554     if (N->getOpcode() == ISD::INLINEASM ||
12555         N->getOpcode() == ISD::INLINEASM_BR)
12556       return true;
12557   } while (N->getOpcode() == ISD::CopyFromReg);
12558   return false;
12559 }
12560 
12561 bool SITargetLowering::isSDNodeSourceOfDivergence(
12562     const SDNode *N, FunctionLoweringInfo *FLI,
12563     LegacyDivergenceAnalysis *KDA) const {
12564   switch (N->getOpcode()) {
12565   case ISD::CopyFromReg: {
12566     const RegisterSDNode *R = cast<RegisterSDNode>(N->getOperand(1));
12567     const MachineRegisterInfo &MRI = FLI->MF->getRegInfo();
12568     const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
12569     Register Reg = R->getReg();
12570 
12571     // FIXME: Why does this need to consider isLiveIn?
12572     if (Reg.isPhysical() || MRI.isLiveIn(Reg))
12573       return !TRI->isSGPRReg(MRI, Reg);
12574 
12575     if (const Value *V = FLI->getValueFromVirtualReg(R->getReg()))
12576       return KDA->isDivergent(V);
12577 
12578     assert(Reg == FLI->DemoteRegister || isCopyFromRegOfInlineAsm(N));
12579     return !TRI->isSGPRReg(MRI, Reg);
12580   }
12581   case ISD::LOAD: {
12582     const LoadSDNode *L = cast<LoadSDNode>(N);
12583     unsigned AS = L->getAddressSpace();
12584     // A flat load may access private memory.
12585     return AS == AMDGPUAS::PRIVATE_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS;
12586   }
12587   case ISD::CALLSEQ_END:
12588     return true;
12589   case ISD::INTRINSIC_WO_CHAIN:
12590     return AMDGPU::isIntrinsicSourceOfDivergence(
12591         cast<ConstantSDNode>(N->getOperand(0))->getZExtValue());
12592   case ISD::INTRINSIC_W_CHAIN:
12593     return AMDGPU::isIntrinsicSourceOfDivergence(
12594         cast<ConstantSDNode>(N->getOperand(1))->getZExtValue());
12595   case AMDGPUISD::ATOMIC_CMP_SWAP:
12596   case AMDGPUISD::ATOMIC_INC:
12597   case AMDGPUISD::ATOMIC_DEC:
12598   case AMDGPUISD::ATOMIC_LOAD_FMIN:
12599   case AMDGPUISD::ATOMIC_LOAD_FMAX:
12600   case AMDGPUISD::BUFFER_ATOMIC_SWAP:
12601   case AMDGPUISD::BUFFER_ATOMIC_ADD:
12602   case AMDGPUISD::BUFFER_ATOMIC_SUB:
12603   case AMDGPUISD::BUFFER_ATOMIC_SMIN:
12604   case AMDGPUISD::BUFFER_ATOMIC_UMIN:
12605   case AMDGPUISD::BUFFER_ATOMIC_SMAX:
12606   case AMDGPUISD::BUFFER_ATOMIC_UMAX:
12607   case AMDGPUISD::BUFFER_ATOMIC_AND:
12608   case AMDGPUISD::BUFFER_ATOMIC_OR:
12609   case AMDGPUISD::BUFFER_ATOMIC_XOR:
12610   case AMDGPUISD::BUFFER_ATOMIC_INC:
12611   case AMDGPUISD::BUFFER_ATOMIC_DEC:
12612   case AMDGPUISD::BUFFER_ATOMIC_CMPSWAP:
12613   case AMDGPUISD::BUFFER_ATOMIC_CSUB:
12614   case AMDGPUISD::BUFFER_ATOMIC_FADD:
12615   case AMDGPUISD::BUFFER_ATOMIC_FMIN:
12616   case AMDGPUISD::BUFFER_ATOMIC_FMAX:
12617     // Target-specific read-modify-write atomics are sources of divergence.
12618     return true;
12619   default:
12620     if (auto *A = dyn_cast<AtomicSDNode>(N)) {
12621       // Generic read-modify-write atomics are sources of divergence.
12622       return A->readMem() && A->writeMem();
12623     }
12624     return false;
12625   }
12626 }
12627 
12628 bool SITargetLowering::denormalsEnabledForType(const SelectionDAG &DAG,
12629                                                EVT VT) const {
12630   switch (VT.getScalarType().getSimpleVT().SimpleTy) {
12631   case MVT::f32:
12632     return hasFP32Denormals(DAG.getMachineFunction());
12633   case MVT::f64:
12634   case MVT::f16:
12635     return hasFP64FP16Denormals(DAG.getMachineFunction());
12636   default:
12637     return false;
12638   }
12639 }
12640 
12641 bool SITargetLowering::denormalsEnabledForType(LLT Ty,
12642                                                MachineFunction &MF) const {
12643   switch (Ty.getScalarSizeInBits()) {
12644   case 32:
12645     return hasFP32Denormals(MF);
12646   case 64:
12647   case 16:
12648     return hasFP64FP16Denormals(MF);
12649   default:
12650     return false;
12651   }
12652 }
12653 
12654 bool SITargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
12655                                                     const SelectionDAG &DAG,
12656                                                     bool SNaN,
12657                                                     unsigned Depth) const {
12658   if (Op.getOpcode() == AMDGPUISD::CLAMP) {
12659     const MachineFunction &MF = DAG.getMachineFunction();
12660     const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
12661 
12662     if (Info->getMode().DX10Clamp)
12663       return true; // Clamped to 0.
12664     return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
12665   }
12666 
12667   return AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(Op, DAG,
12668                                                             SNaN, Depth);
12669 }
12670 
12671 // Global FP atomic instructions have a hardcoded FP mode and do not support
12672 // FP32 denormals, and only support v2f16 denormals.
12673 static bool fpModeMatchesGlobalFPAtomicMode(const AtomicRMWInst *RMW) {
12674   const fltSemantics &Flt = RMW->getType()->getScalarType()->getFltSemantics();
12675   auto DenormMode = RMW->getParent()->getParent()->getDenormalMode(Flt);
12676   if (&Flt == &APFloat::IEEEsingle())
12677     return DenormMode == DenormalMode::getPreserveSign();
12678   return DenormMode == DenormalMode::getIEEE();
12679 }
12680 
12681 TargetLowering::AtomicExpansionKind
12682 SITargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const {
12683   unsigned AS = RMW->getPointerAddressSpace();
12684   if (AS == AMDGPUAS::PRIVATE_ADDRESS)
12685     return AtomicExpansionKind::NotAtomic;
12686 
12687   auto ReportUnsafeHWInst = [&](TargetLowering::AtomicExpansionKind Kind) {
12688     OptimizationRemarkEmitter ORE(RMW->getFunction());
12689     LLVMContext &Ctx = RMW->getFunction()->getContext();
12690     SmallVector<StringRef> SSNs;
12691     Ctx.getSyncScopeNames(SSNs);
12692     auto MemScope = SSNs[RMW->getSyncScopeID()].empty()
12693                         ? "system"
12694                         : SSNs[RMW->getSyncScopeID()];
12695     ORE.emit([&]() {
12696       return OptimizationRemark(DEBUG_TYPE, "Passed", RMW)
12697              << "Hardware instruction generated for atomic "
12698              << RMW->getOperationName(RMW->getOperation())
12699              << " operation at memory scope " << MemScope
12700              << " due to an unsafe request.";
12701     });
12702     return Kind;
12703   };
12704 
12705   switch (RMW->getOperation()) {
12706   case AtomicRMWInst::FAdd: {
12707     Type *Ty = RMW->getType();
12708 
12709     // We don't have a way to support 16-bit atomics now, so just leave them
12710     // as-is.
12711     if (Ty->isHalfTy())
12712       return AtomicExpansionKind::None;
12713 
12714     if (!Ty->isFloatTy() && (!Subtarget->hasGFX90AInsts() || !Ty->isDoubleTy()))
12715       return AtomicExpansionKind::CmpXChg;
12716 
12717     if ((AS == AMDGPUAS::GLOBAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) &&
12718         Subtarget->hasAtomicFaddNoRtnInsts()) {
12719       if (Subtarget->hasGFX940Insts())
12720         return AtomicExpansionKind::None;
12721 
12722       // The amdgpu-unsafe-fp-atomics attribute enables generation of unsafe
12723       // floating point atomic instructions. May generate more efficient code,
12724       // but may not respect rounding and denormal modes, and may give incorrect
12725       // results for certain memory destinations.
12726       if (RMW->getFunction()
12727               ->getFnAttribute("amdgpu-unsafe-fp-atomics")
12728               .getValueAsString() != "true")
12729         return AtomicExpansionKind::CmpXChg;
12730 
12731       if (Subtarget->hasGFX90AInsts()) {
12732         if (Ty->isFloatTy() && AS == AMDGPUAS::FLAT_ADDRESS)
12733           return AtomicExpansionKind::CmpXChg;
12734 
12735         auto SSID = RMW->getSyncScopeID();
12736         if (SSID == SyncScope::System ||
12737             SSID == RMW->getContext().getOrInsertSyncScopeID("one-as"))
12738           return AtomicExpansionKind::CmpXChg;
12739 
12740         return ReportUnsafeHWInst(AtomicExpansionKind::None);
12741       }
12742 
12743       if (AS == AMDGPUAS::FLAT_ADDRESS)
12744         return AtomicExpansionKind::CmpXChg;
12745 
12746       return RMW->use_empty() ? ReportUnsafeHWInst(AtomicExpansionKind::None)
12747                               : AtomicExpansionKind::CmpXChg;
12748     }
12749 
12750     // DS FP atomics do respect the denormal mode, but the rounding mode is
12751     // fixed to round-to-nearest-even.
12752     // The only exception is DS_ADD_F64 which never flushes regardless of mode.
12753     if (AS == AMDGPUAS::LOCAL_ADDRESS && Subtarget->hasLDSFPAtomicAdd()) {
12754       if (!Ty->isDoubleTy())
12755         return AtomicExpansionKind::None;
12756 
12757       if (fpModeMatchesGlobalFPAtomicMode(RMW))
12758         return AtomicExpansionKind::None;
12759 
12760       return RMW->getFunction()
12761                          ->getFnAttribute("amdgpu-unsafe-fp-atomics")
12762                          .getValueAsString() == "true"
12763                  ? ReportUnsafeHWInst(AtomicExpansionKind::None)
12764                  : AtomicExpansionKind::CmpXChg;
12765     }
12766 
12767     return AtomicExpansionKind::CmpXChg;
12768   }
12769   default:
12770     break;
12771   }
12772 
12773   return AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(RMW);
12774 }
12775 
12776 TargetLowering::AtomicExpansionKind
12777 SITargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
12778   return LI->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS
12779              ? AtomicExpansionKind::NotAtomic
12780              : AtomicExpansionKind::None;
12781 }
12782 
12783 TargetLowering::AtomicExpansionKind
12784 SITargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
12785   return SI->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS
12786              ? AtomicExpansionKind::NotAtomic
12787              : AtomicExpansionKind::None;
12788 }
12789 
12790 TargetLowering::AtomicExpansionKind
12791 SITargetLowering::shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *CmpX) const {
12792   return CmpX->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS
12793              ? AtomicExpansionKind::NotAtomic
12794              : AtomicExpansionKind::None;
12795 }
12796 
12797 const TargetRegisterClass *
12798 SITargetLowering::getRegClassFor(MVT VT, bool isDivergent) const {
12799   const TargetRegisterClass *RC = TargetLoweringBase::getRegClassFor(VT, false);
12800   const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
12801   if (RC == &AMDGPU::VReg_1RegClass && !isDivergent)
12802     return Subtarget->getWavefrontSize() == 64 ? &AMDGPU::SReg_64RegClass
12803                                                : &AMDGPU::SReg_32RegClass;
12804   if (!TRI->isSGPRClass(RC) && !isDivergent)
12805     return TRI->getEquivalentSGPRClass(RC);
12806   else if (TRI->isSGPRClass(RC) && isDivergent)
12807     return TRI->getEquivalentVGPRClass(RC);
12808 
12809   return RC;
12810 }
12811 
12812 // FIXME: This is a workaround for DivergenceAnalysis not understanding always
12813 // uniform values (as produced by the mask results of control flow intrinsics)
12814 // used outside of divergent blocks. The phi users need to also be treated as
12815 // always uniform.
12816 static bool hasCFUser(const Value *V, SmallPtrSet<const Value *, 16> &Visited,
12817                       unsigned WaveSize) {
12818   // FIXME: We assume we never cast the mask results of a control flow
12819   // intrinsic.
12820   // Early exit if the type won't be consistent as a compile time hack.
12821   IntegerType *IT = dyn_cast<IntegerType>(V->getType());
12822   if (!IT || IT->getBitWidth() != WaveSize)
12823     return false;
12824 
12825   if (!isa<Instruction>(V))
12826     return false;
12827   if (!Visited.insert(V).second)
12828     return false;
12829   bool Result = false;
12830   for (auto U : V->users()) {
12831     if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(U)) {
12832       if (V == U->getOperand(1)) {
12833         switch (Intrinsic->getIntrinsicID()) {
12834         default:
12835           Result = false;
12836           break;
12837         case Intrinsic::amdgcn_if_break:
12838         case Intrinsic::amdgcn_if:
12839         case Intrinsic::amdgcn_else:
12840           Result = true;
12841           break;
12842         }
12843       }
12844       if (V == U->getOperand(0)) {
12845         switch (Intrinsic->getIntrinsicID()) {
12846         default:
12847           Result = false;
12848           break;
12849         case Intrinsic::amdgcn_end_cf:
12850         case Intrinsic::amdgcn_loop:
12851           Result = true;
12852           break;
12853         }
12854       }
12855     } else {
12856       Result = hasCFUser(U, Visited, WaveSize);
12857     }
12858     if (Result)
12859       break;
12860   }
12861   return Result;
12862 }
12863 
12864 bool SITargetLowering::requiresUniformRegister(MachineFunction &MF,
12865                                                const Value *V) const {
12866   if (const CallInst *CI = dyn_cast<CallInst>(V)) {
12867     if (CI->isInlineAsm()) {
12868       // FIXME: This cannot give a correct answer. This should only trigger in
12869       // the case where inline asm returns mixed SGPR and VGPR results, used
12870       // outside the defining block. We don't have a specific result to
12871       // consider, so this assumes if any value is SGPR, the overall register
12872       // also needs to be SGPR.
12873       const SIRegisterInfo *SIRI = Subtarget->getRegisterInfo();
12874       TargetLowering::AsmOperandInfoVector TargetConstraints = ParseConstraints(
12875           MF.getDataLayout(), Subtarget->getRegisterInfo(), *CI);
12876       for (auto &TC : TargetConstraints) {
12877         if (TC.Type == InlineAsm::isOutput) {
12878           ComputeConstraintToUse(TC, SDValue());
12879           const TargetRegisterClass *RC = getRegForInlineAsmConstraint(
12880               SIRI, TC.ConstraintCode, TC.ConstraintVT).second;
12881           if (RC && SIRI->isSGPRClass(RC))
12882             return true;
12883         }
12884       }
12885     }
12886   }
12887   SmallPtrSet<const Value *, 16> Visited;
12888   return hasCFUser(V, Visited, Subtarget->getWavefrontSize());
12889 }
12890 
12891 std::pair<InstructionCost, MVT>
12892 SITargetLowering::getTypeLegalizationCost(const DataLayout &DL,
12893                                           Type *Ty) const {
12894   std::pair<InstructionCost, MVT> Cost =
12895       TargetLoweringBase::getTypeLegalizationCost(DL, Ty);
12896   auto Size = DL.getTypeSizeInBits(Ty);
12897   // Maximum load or store can handle 8 dwords for scalar and 4 for
12898   // vector ALU. Let's assume anything above 8 dwords is expensive
12899   // even if legal.
12900   if (Size <= 256)
12901     return Cost;
12902 
12903   Cost.first += (Size + 255) / 256;
12904   return Cost;
12905 }
12906 
12907 bool SITargetLowering::hasMemSDNodeUser(SDNode *N) const {
12908   SDNode::use_iterator I = N->use_begin(), E = N->use_end();
12909   for (; I != E; ++I) {
12910     if (MemSDNode *M = dyn_cast<MemSDNode>(*I)) {
12911       if (getBasePtrIndex(M) == I.getOperandNo())
12912         return true;
12913     }
12914   }
12915   return false;
12916 }
12917 
12918 bool SITargetLowering::isReassocProfitable(SelectionDAG &DAG, SDValue N0,
12919                                            SDValue N1) const {
12920   if (!N0.hasOneUse())
12921     return false;
12922   // Take care of the opportunity to keep N0 uniform
12923   if (N0->isDivergent() || !N1->isDivergent())
12924     return true;
12925   // Check if we have a good chance to form the memory access pattern with the
12926   // base and offset
12927   return (DAG.isBaseWithConstantOffset(N0) &&
12928           hasMemSDNodeUser(*N0->use_begin()));
12929 }
12930 
12931 MachineMemOperand::Flags
12932 SITargetLowering::getTargetMMOFlags(const Instruction &I) const {
12933   // Propagate metadata set by AMDGPUAnnotateUniformValues to the MMO of a load.
12934   if (I.getMetadata("amdgpu.noclobber"))
12935     return MONoClobber;
12936   return MachineMemOperand::MONone;
12937 }
12938