1 //===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// Custom DAG lowering for SI
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SIISelLowering.h"
15 #include "AMDGPU.h"
16 #include "AMDGPUInstrInfo.h"
17 #include "AMDGPUTargetMachine.h"
18 #include "SIMachineFunctionInfo.h"
19 #include "SIRegisterInfo.h"
20 #include "llvm/ADT/FloatingPointMode.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
23 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
24 #include "llvm/BinaryFormat/ELF.h"
25 #include "llvm/CodeGen/Analysis.h"
26 #include "llvm/CodeGen/FunctionLoweringInfo.h"
27 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h"
28 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
29 #include "llvm/CodeGen/MachineFrameInfo.h"
30 #include "llvm/CodeGen/MachineFunction.h"
31 #include "llvm/CodeGen/MachineLoopInfo.h"
32 #include "llvm/IR/DiagnosticInfo.h"
33 #include "llvm/IR/IRBuilder.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/IntrinsicsAMDGPU.h"
36 #include "llvm/IR/IntrinsicsR600.h"
37 #include "llvm/Support/CommandLine.h"
38 #include "llvm/Support/ModRef.h"
39 #include "llvm/Support/KnownBits.h"
40 
41 using namespace llvm;
42 
43 #define DEBUG_TYPE "si-lower"
44 
45 STATISTIC(NumTailCalls, "Number of tail calls");
46 
47 static cl::opt<bool> DisableLoopAlignment(
48   "amdgpu-disable-loop-alignment",
49   cl::desc("Do not align and prefetch loops"),
50   cl::init(false));
51 
52 static cl::opt<bool> UseDivergentRegisterIndexing(
53   "amdgpu-use-divergent-register-indexing",
54   cl::Hidden,
55   cl::desc("Use indirect register addressing for divergent indexes"),
56   cl::init(false));
57 
58 static bool hasFP32Denormals(const MachineFunction &MF) {
59   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
60   return Info->getMode().allFP32Denormals();
61 }
62 
63 static bool hasFP64FP16Denormals(const MachineFunction &MF) {
64   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
65   return Info->getMode().allFP64FP16Denormals();
66 }
67 
68 static unsigned findFirstFreeSGPR(CCState &CCInfo) {
69   unsigned NumSGPRs = AMDGPU::SGPR_32RegClass.getNumRegs();
70   for (unsigned Reg = 0; Reg < NumSGPRs; ++Reg) {
71     if (!CCInfo.isAllocated(AMDGPU::SGPR0 + Reg)) {
72       return AMDGPU::SGPR0 + Reg;
73     }
74   }
75   llvm_unreachable("Cannot allocate sgpr");
76 }
77 
78 SITargetLowering::SITargetLowering(const TargetMachine &TM,
79                                    const GCNSubtarget &STI)
80     : AMDGPUTargetLowering(TM, STI),
81       Subtarget(&STI) {
82   addRegisterClass(MVT::i1, &AMDGPU::VReg_1RegClass);
83   addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass);
84 
85   addRegisterClass(MVT::i32, &AMDGPU::SReg_32RegClass);
86   addRegisterClass(MVT::f32, &AMDGPU::VGPR_32RegClass);
87 
88   addRegisterClass(MVT::v2i32, &AMDGPU::SReg_64RegClass);
89 
90   const SIRegisterInfo *TRI = STI.getRegisterInfo();
91   const TargetRegisterClass *V64RegClass = TRI->getVGPR64Class();
92 
93   addRegisterClass(MVT::f64, V64RegClass);
94   addRegisterClass(MVT::v2f32, V64RegClass);
95 
96   addRegisterClass(MVT::v3i32, &AMDGPU::SGPR_96RegClass);
97   addRegisterClass(MVT::v3f32, TRI->getVGPRClassForBitWidth(96));
98 
99   addRegisterClass(MVT::v2i64, &AMDGPU::SGPR_128RegClass);
100   addRegisterClass(MVT::v2f64, &AMDGPU::SGPR_128RegClass);
101 
102   addRegisterClass(MVT::v4i32, &AMDGPU::SGPR_128RegClass);
103   addRegisterClass(MVT::v4f32, TRI->getVGPRClassForBitWidth(128));
104 
105   addRegisterClass(MVT::v5i32, &AMDGPU::SGPR_160RegClass);
106   addRegisterClass(MVT::v5f32, TRI->getVGPRClassForBitWidth(160));
107 
108   addRegisterClass(MVT::v6i32, &AMDGPU::SGPR_192RegClass);
109   addRegisterClass(MVT::v6f32, TRI->getVGPRClassForBitWidth(192));
110 
111   addRegisterClass(MVT::v3i64, &AMDGPU::SGPR_192RegClass);
112   addRegisterClass(MVT::v3f64, TRI->getVGPRClassForBitWidth(192));
113 
114   addRegisterClass(MVT::v7i32, &AMDGPU::SGPR_224RegClass);
115   addRegisterClass(MVT::v7f32, TRI->getVGPRClassForBitWidth(224));
116 
117   addRegisterClass(MVT::v8i32, &AMDGPU::SGPR_256RegClass);
118   addRegisterClass(MVT::v8f32, TRI->getVGPRClassForBitWidth(256));
119 
120   addRegisterClass(MVT::v4i64, &AMDGPU::SGPR_256RegClass);
121   addRegisterClass(MVT::v4f64, TRI->getVGPRClassForBitWidth(256));
122 
123   addRegisterClass(MVT::v9i32, &AMDGPU::SGPR_288RegClass);
124   addRegisterClass(MVT::v9f32, TRI->getVGPRClassForBitWidth(288));
125 
126   addRegisterClass(MVT::v10i32, &AMDGPU::SGPR_320RegClass);
127   addRegisterClass(MVT::v10f32, TRI->getVGPRClassForBitWidth(320));
128 
129   addRegisterClass(MVT::v11i32, &AMDGPU::SGPR_352RegClass);
130   addRegisterClass(MVT::v11f32, TRI->getVGPRClassForBitWidth(352));
131 
132   addRegisterClass(MVT::v12i32, &AMDGPU::SGPR_384RegClass);
133   addRegisterClass(MVT::v12f32, TRI->getVGPRClassForBitWidth(384));
134 
135   addRegisterClass(MVT::v16i32, &AMDGPU::SGPR_512RegClass);
136   addRegisterClass(MVT::v16f32, TRI->getVGPRClassForBitWidth(512));
137 
138   addRegisterClass(MVT::v8i64, &AMDGPU::SGPR_512RegClass);
139   addRegisterClass(MVT::v8f64, TRI->getVGPRClassForBitWidth(512));
140 
141   addRegisterClass(MVT::v16i64, &AMDGPU::SGPR_1024RegClass);
142   addRegisterClass(MVT::v16f64, TRI->getVGPRClassForBitWidth(1024));
143 
144   if (Subtarget->has16BitInsts()) {
145     addRegisterClass(MVT::i16, &AMDGPU::SReg_32RegClass);
146     addRegisterClass(MVT::f16, &AMDGPU::SReg_32RegClass);
147 
148     // Unless there are also VOP3P operations, not operations are really legal.
149     addRegisterClass(MVT::v2i16, &AMDGPU::SReg_32RegClass);
150     addRegisterClass(MVT::v2f16, &AMDGPU::SReg_32RegClass);
151     addRegisterClass(MVT::v4i16, &AMDGPU::SReg_64RegClass);
152     addRegisterClass(MVT::v4f16, &AMDGPU::SReg_64RegClass);
153     addRegisterClass(MVT::v8i16, &AMDGPU::SGPR_128RegClass);
154     addRegisterClass(MVT::v8f16, &AMDGPU::SGPR_128RegClass);
155     addRegisterClass(MVT::v16i16, &AMDGPU::SGPR_256RegClass);
156     addRegisterClass(MVT::v16f16, &AMDGPU::SGPR_256RegClass);
157   }
158 
159   addRegisterClass(MVT::v32i32, &AMDGPU::VReg_1024RegClass);
160   addRegisterClass(MVT::v32f32, TRI->getVGPRClassForBitWidth(1024));
161 
162   computeRegisterProperties(Subtarget->getRegisterInfo());
163 
164   // The boolean content concept here is too inflexible. Compares only ever
165   // really produce a 1-bit result. Any copy/extend from these will turn into a
166   // select, and zext/1 or sext/-1 are equally cheap. Arbitrarily choose 0/1, as
167   // it's what most targets use.
168   setBooleanContents(ZeroOrOneBooleanContent);
169   setBooleanVectorContents(ZeroOrOneBooleanContent);
170 
171   // We need to custom lower vector stores from local memory
172   setOperationAction(ISD::LOAD,
173                      {MVT::v2i32,  MVT::v3i32,  MVT::v4i32,  MVT::v5i32,
174                       MVT::v6i32,  MVT::v7i32,  MVT::v8i32,  MVT::v9i32,
175                       MVT::v10i32, MVT::v11i32, MVT::v12i32, MVT::v16i32,
176                       MVT::i1,     MVT::v32i32},
177                      Custom);
178 
179   setOperationAction(ISD::STORE,
180                      {MVT::v2i32,  MVT::v3i32,  MVT::v4i32,  MVT::v5i32,
181                       MVT::v6i32,  MVT::v7i32,  MVT::v8i32,  MVT::v9i32,
182                       MVT::v10i32, MVT::v11i32, MVT::v12i32, MVT::v16i32,
183                       MVT::i1,     MVT::v32i32},
184                      Custom);
185 
186   setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand);
187   setTruncStoreAction(MVT::v3i32, MVT::v3i16, Expand);
188   setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand);
189   setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand);
190   setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand);
191   setTruncStoreAction(MVT::v32i32, MVT::v32i16, Expand);
192   setTruncStoreAction(MVT::v2i32, MVT::v2i8, Expand);
193   setTruncStoreAction(MVT::v4i32, MVT::v4i8, Expand);
194   setTruncStoreAction(MVT::v8i32, MVT::v8i8, Expand);
195   setTruncStoreAction(MVT::v16i32, MVT::v16i8, Expand);
196   setTruncStoreAction(MVT::v32i32, MVT::v32i8, Expand);
197   setTruncStoreAction(MVT::v2i16, MVT::v2i8, Expand);
198   setTruncStoreAction(MVT::v4i16, MVT::v4i8, Expand);
199   setTruncStoreAction(MVT::v8i16, MVT::v8i8, Expand);
200   setTruncStoreAction(MVT::v16i16, MVT::v16i8, Expand);
201   setTruncStoreAction(MVT::v32i16, MVT::v32i8, Expand);
202 
203   setTruncStoreAction(MVT::v3i64, MVT::v3i16, Expand);
204   setTruncStoreAction(MVT::v3i64, MVT::v3i32, Expand);
205   setTruncStoreAction(MVT::v4i64, MVT::v4i8, Expand);
206   setTruncStoreAction(MVT::v8i64, MVT::v8i8, Expand);
207   setTruncStoreAction(MVT::v8i64, MVT::v8i16, Expand);
208   setTruncStoreAction(MVT::v8i64, MVT::v8i32, Expand);
209   setTruncStoreAction(MVT::v16i64, MVT::v16i32, Expand);
210 
211   setOperationAction(ISD::GlobalAddress, {MVT::i32, MVT::i64}, Custom);
212 
213   setOperationAction(ISD::SELECT, MVT::i1, Promote);
214   setOperationAction(ISD::SELECT, MVT::i64, Custom);
215   setOperationAction(ISD::SELECT, MVT::f64, Promote);
216   AddPromotedToType(ISD::SELECT, MVT::f64, MVT::i64);
217 
218   setOperationAction(ISD::SELECT_CC,
219                      {MVT::f32, MVT::i32, MVT::i64, MVT::f64, MVT::i1}, Expand);
220 
221   setOperationAction(ISD::SETCC, MVT::i1, Promote);
222   setOperationAction(ISD::SETCC, {MVT::v2i1, MVT::v4i1}, Expand);
223   AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
224 
225   setOperationAction(ISD::TRUNCATE,
226                      {MVT::v2i32,  MVT::v3i32,  MVT::v4i32,  MVT::v5i32,
227                       MVT::v6i32,  MVT::v7i32,  MVT::v8i32,  MVT::v9i32,
228                       MVT::v10i32, MVT::v11i32, MVT::v12i32, MVT::v16i32},
229                      Expand);
230   setOperationAction(ISD::FP_ROUND,
231                      {MVT::v2f32,  MVT::v3f32,  MVT::v4f32,  MVT::v5f32,
232                       MVT::v6f32,  MVT::v7f32,  MVT::v8f32,  MVT::v9f32,
233                       MVT::v10f32, MVT::v11f32, MVT::v12f32, MVT::v16f32},
234                      Expand);
235 
236   setOperationAction(ISD::SIGN_EXTEND_INREG,
237                      {MVT::v2i1, MVT::v4i1, MVT::v2i8, MVT::v4i8, MVT::v2i16,
238                       MVT::v3i16, MVT::v4i16, MVT::Other},
239                      Custom);
240 
241   setOperationAction(ISD::BRCOND, MVT::Other, Custom);
242   setOperationAction(ISD::BR_CC,
243                      {MVT::i1, MVT::i32, MVT::i64, MVT::f32, MVT::f64}, Expand);
244 
245   setOperationAction({ISD::UADDO, ISD::USUBO}, MVT::i32, Legal);
246 
247   setOperationAction({ISD::ADDCARRY, ISD::SUBCARRY}, MVT::i32, Legal);
248 
249   setOperationAction({ISD::SHL_PARTS, ISD::SRA_PARTS, ISD::SRL_PARTS}, MVT::i64,
250                      Expand);
251 
252 #if 0
253   setOperationAction({ISD::ADDCARRY, ISD::SUBCARRY}, MVT::i64, Legal);
254 #endif
255 
256   // We only support LOAD/STORE and vector manipulation ops for vectors
257   // with > 4 elements.
258   for (MVT VT :
259        {MVT::v8i32,  MVT::v8f32,  MVT::v9i32,   MVT::v9f32,  MVT::v10i32,
260         MVT::v10f32, MVT::v11i32, MVT::v11f32,  MVT::v12i32, MVT::v12f32,
261         MVT::v16i32, MVT::v16f32, MVT::v2i64,   MVT::v2f64,  MVT::v4i16,
262         MVT::v4f16,  MVT::v3i64,  MVT::v3f64,   MVT::v6i32,  MVT::v6f32,
263         MVT::v4i64,  MVT::v4f64,  MVT::v8i64,   MVT::v8f64,  MVT::v8i16,
264         MVT::v8f16,  MVT::v16i16, MVT::v16f16,  MVT::v16i64, MVT::v16f64,
265         MVT::v32i32, MVT::v32f32}) {
266     for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
267       switch (Op) {
268       case ISD::LOAD:
269       case ISD::STORE:
270       case ISD::BUILD_VECTOR:
271       case ISD::BITCAST:
272       case ISD::UNDEF:
273       case ISD::EXTRACT_VECTOR_ELT:
274       case ISD::INSERT_VECTOR_ELT:
275       case ISD::EXTRACT_SUBVECTOR:
276       case ISD::SCALAR_TO_VECTOR:
277       case ISD::IS_FPCLASS:
278         break;
279       case ISD::INSERT_SUBVECTOR:
280       case ISD::CONCAT_VECTORS:
281         setOperationAction(Op, VT, Custom);
282         break;
283       default:
284         setOperationAction(Op, VT, Expand);
285         break;
286       }
287     }
288   }
289 
290   setOperationAction(ISD::FP_EXTEND, MVT::v4f32, Expand);
291 
292   // TODO: For dynamic 64-bit vector inserts/extracts, should emit a pseudo that
293   // is expanded to avoid having two separate loops in case the index is a VGPR.
294 
295   // Most operations are naturally 32-bit vector operations. We only support
296   // load and store of i64 vectors, so promote v2i64 vector operations to v4i32.
297   for (MVT Vec64 : { MVT::v2i64, MVT::v2f64 }) {
298     setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
299     AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v4i32);
300 
301     setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
302     AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v4i32);
303 
304     setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
305     AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v4i32);
306 
307     setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
308     AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v4i32);
309   }
310 
311   for (MVT Vec64 : { MVT::v3i64, MVT::v3f64 }) {
312     setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
313     AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v6i32);
314 
315     setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
316     AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v6i32);
317 
318     setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
319     AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v6i32);
320 
321     setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
322     AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v6i32);
323   }
324 
325   for (MVT Vec64 : { MVT::v4i64, MVT::v4f64 }) {
326     setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
327     AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v8i32);
328 
329     setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
330     AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v8i32);
331 
332     setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
333     AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v8i32);
334 
335     setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
336     AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v8i32);
337   }
338 
339   for (MVT Vec64 : { MVT::v8i64, MVT::v8f64 }) {
340     setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
341     AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v16i32);
342 
343     setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
344     AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v16i32);
345 
346     setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
347     AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v16i32);
348 
349     setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
350     AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v16i32);
351   }
352 
353   for (MVT Vec64 : { MVT::v16i64, MVT::v16f64 }) {
354     setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
355     AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v32i32);
356 
357     setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
358     AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v32i32);
359 
360     setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
361     AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v32i32);
362 
363     setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
364     AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v32i32);
365   }
366 
367   setOperationAction(ISD::VECTOR_SHUFFLE,
368                      {MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32},
369                      Expand);
370 
371   setOperationAction(ISD::BUILD_VECTOR, {MVT::v4f16, MVT::v4i16}, Custom);
372 
373   // Avoid stack access for these.
374   // TODO: Generalize to more vector types.
375   setOperationAction({ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT},
376                      {MVT::v2i16, MVT::v2f16, MVT::v2i8, MVT::v4i8, MVT::v8i8,
377                       MVT::v4i16, MVT::v4f16},
378                      Custom);
379 
380   // Deal with vec3 vector operations when widened to vec4.
381   setOperationAction(ISD::INSERT_SUBVECTOR,
382                      {MVT::v3i32, MVT::v3f32, MVT::v4i32, MVT::v4f32}, Custom);
383 
384   // Deal with vec5/6/7 vector operations when widened to vec8.
385   setOperationAction(ISD::INSERT_SUBVECTOR,
386                      {MVT::v5i32,  MVT::v5f32,  MVT::v6i32,  MVT::v6f32,
387                       MVT::v7i32,  MVT::v7f32,  MVT::v8i32,  MVT::v8f32,
388                       MVT::v9i32,  MVT::v9f32,  MVT::v10i32, MVT::v10f32,
389                       MVT::v11i32, MVT::v11f32, MVT::v12i32, MVT::v12f32},
390                      Custom);
391 
392   // BUFFER/FLAT_ATOMIC_CMP_SWAP on GCN GPUs needs input marshalling,
393   // and output demarshalling
394   setOperationAction(ISD::ATOMIC_CMP_SWAP, {MVT::i32, MVT::i64}, Custom);
395 
396   // We can't return success/failure, only the old value,
397   // let LLVM add the comparison
398   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, {MVT::i32, MVT::i64},
399                      Expand);
400 
401   setOperationAction(ISD::ADDRSPACECAST, {MVT::i32, MVT::i64}, Custom);
402 
403   setOperationAction(ISD::BITREVERSE, {MVT::i32, MVT::i64}, Legal);
404 
405   // FIXME: This should be narrowed to i32, but that only happens if i64 is
406   // illegal.
407   // FIXME: Should lower sub-i32 bswaps to bit-ops without v_perm_b32.
408   setOperationAction(ISD::BSWAP, {MVT::i64, MVT::i32}, Legal);
409 
410   // On SI this is s_memtime and s_memrealtime on VI.
411   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
412   setOperationAction({ISD::TRAP, ISD::DEBUGTRAP}, MVT::Other, Custom);
413 
414   if (Subtarget->has16BitInsts()) {
415     setOperationAction({ISD::FPOW, ISD::FPOWI}, MVT::f16, Promote);
416     setOperationAction({ISD::FLOG, ISD::FEXP, ISD::FLOG10}, MVT::f16, Custom);
417   }
418 
419   if (Subtarget->hasMadMacF32Insts())
420     setOperationAction(ISD::FMAD, MVT::f32, Legal);
421 
422   if (!Subtarget->hasBFI())
423     // fcopysign can be done in a single instruction with BFI.
424     setOperationAction(ISD::FCOPYSIGN, {MVT::f32, MVT::f64}, Expand);
425 
426   if (!Subtarget->hasBCNT(32))
427     setOperationAction(ISD::CTPOP, MVT::i32, Expand);
428 
429   if (!Subtarget->hasBCNT(64))
430     setOperationAction(ISD::CTPOP, MVT::i64, Expand);
431 
432   if (Subtarget->hasFFBH())
433     setOperationAction({ISD::CTLZ, ISD::CTLZ_ZERO_UNDEF}, MVT::i32, Custom);
434 
435   if (Subtarget->hasFFBL())
436     setOperationAction({ISD::CTTZ, ISD::CTTZ_ZERO_UNDEF}, MVT::i32, Custom);
437 
438   // We only really have 32-bit BFE instructions (and 16-bit on VI).
439   //
440   // On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any
441   // effort to match them now. We want this to be false for i64 cases when the
442   // extraction isn't restricted to the upper or lower half. Ideally we would
443   // have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that
444   // span the midpoint are probably relatively rare, so don't worry about them
445   // for now.
446   if (Subtarget->hasBFE())
447     setHasExtractBitsInsn(true);
448 
449   // Clamp modifier on add/sub
450   if (Subtarget->hasIntClamp())
451     setOperationAction({ISD::UADDSAT, ISD::USUBSAT}, MVT::i32, Legal);
452 
453   if (Subtarget->hasAddNoCarry())
454     setOperationAction({ISD::SADDSAT, ISD::SSUBSAT}, {MVT::i16, MVT::i32},
455                        Legal);
456 
457   setOperationAction({ISD::FMINNUM, ISD::FMAXNUM}, {MVT::f32, MVT::f64},
458                      Custom);
459 
460   // These are really only legal for ieee_mode functions. We should be avoiding
461   // them for functions that don't have ieee_mode enabled, so just say they are
462   // legal.
463   setOperationAction({ISD::FMINNUM_IEEE, ISD::FMAXNUM_IEEE},
464                      {MVT::f32, MVT::f64}, Legal);
465 
466   if (Subtarget->haveRoundOpsF64())
467     setOperationAction({ISD::FTRUNC, ISD::FCEIL, ISD::FRINT}, MVT::f64, Legal);
468   else
469     setOperationAction({ISD::FCEIL, ISD::FTRUNC, ISD::FRINT, ISD::FFLOOR},
470                        MVT::f64, Custom);
471 
472   setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
473 
474   setOperationAction({ISD::FSIN, ISD::FCOS, ISD::FDIV}, MVT::f32, Custom);
475   setOperationAction(ISD::FDIV, MVT::f64, Custom);
476 
477   setOperationAction(ISD::BF16_TO_FP, {MVT::i16, MVT::f32, MVT::f64}, Expand);
478   setOperationAction(ISD::FP_TO_BF16, {MVT::i16, MVT::f32, MVT::f64}, Expand);
479 
480   if (Subtarget->has16BitInsts()) {
481     setOperationAction({ISD::Constant, ISD::SMIN, ISD::SMAX, ISD::UMIN,
482                         ISD::UMAX, ISD::UADDSAT, ISD::USUBSAT},
483                        MVT::i16, Legal);
484 
485     AddPromotedToType(ISD::SIGN_EXTEND, MVT::i16, MVT::i32);
486 
487     setOperationAction({ISD::ROTR, ISD::ROTL, ISD::SELECT_CC, ISD::BR_CC},
488                        MVT::i16, Expand);
489 
490     setOperationAction({ISD::SIGN_EXTEND, ISD::SDIV, ISD::UDIV, ISD::SREM,
491                         ISD::UREM, ISD::BITREVERSE, ISD::CTTZ,
492                         ISD::CTTZ_ZERO_UNDEF, ISD::CTLZ, ISD::CTLZ_ZERO_UNDEF,
493                         ISD::CTPOP},
494                        MVT::i16, Promote);
495 
496     setOperationAction(ISD::LOAD, MVT::i16, Custom);
497 
498     setTruncStoreAction(MVT::i64, MVT::i16, Expand);
499 
500     setOperationAction(ISD::FP16_TO_FP, MVT::i16, Promote);
501     AddPromotedToType(ISD::FP16_TO_FP, MVT::i16, MVT::i32);
502     setOperationAction(ISD::FP_TO_FP16, MVT::i16, Promote);
503     AddPromotedToType(ISD::FP_TO_FP16, MVT::i16, MVT::i32);
504 
505     setOperationAction({ISD::FP_TO_SINT, ISD::FP_TO_UINT}, MVT::i16, Custom);
506 
507     // F16 - Constant Actions.
508     setOperationAction(ISD::ConstantFP, MVT::f16, Legal);
509 
510     // F16 - Load/Store Actions.
511     setOperationAction(ISD::LOAD, MVT::f16, Promote);
512     AddPromotedToType(ISD::LOAD, MVT::f16, MVT::i16);
513     setOperationAction(ISD::STORE, MVT::f16, Promote);
514     AddPromotedToType(ISD::STORE, MVT::f16, MVT::i16);
515 
516     // F16 - VOP1 Actions.
517     setOperationAction(
518         {ISD::FP_ROUND, ISD::FCOS, ISD::FSIN, ISD::FROUND, ISD::FPTRUNC_ROUND},
519         MVT::f16, Custom);
520 
521     setOperationAction({ISD::SINT_TO_FP, ISD::UINT_TO_FP}, MVT::i16, Custom);
522 
523     setOperationAction(
524         {ISD::FP_TO_SINT, ISD::FP_TO_UINT, ISD::SINT_TO_FP, ISD::UINT_TO_FP},
525         MVT::f16, Promote);
526 
527     // F16 - VOP2 Actions.
528     setOperationAction({ISD::BR_CC, ISD::SELECT_CC}, MVT::f16, Expand);
529 
530     setOperationAction(ISD::FDIV, MVT::f16, Custom);
531 
532     // F16 - VOP3 Actions.
533     setOperationAction(ISD::FMA, MVT::f16, Legal);
534     if (STI.hasMadF16())
535       setOperationAction(ISD::FMAD, MVT::f16, Legal);
536 
537     for (MVT VT : {MVT::v2i16, MVT::v2f16, MVT::v4i16, MVT::v4f16, MVT::v8i16,
538                    MVT::v8f16, MVT::v16i16, MVT::v16f16}) {
539       for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
540         switch (Op) {
541         case ISD::LOAD:
542         case ISD::STORE:
543         case ISD::BUILD_VECTOR:
544         case ISD::BITCAST:
545         case ISD::UNDEF:
546         case ISD::EXTRACT_VECTOR_ELT:
547         case ISD::INSERT_VECTOR_ELT:
548         case ISD::INSERT_SUBVECTOR:
549         case ISD::EXTRACT_SUBVECTOR:
550         case ISD::SCALAR_TO_VECTOR:
551         case ISD::IS_FPCLASS:
552           break;
553         case ISD::CONCAT_VECTORS:
554           setOperationAction(Op, VT, Custom);
555           break;
556         default:
557           setOperationAction(Op, VT, Expand);
558           break;
559         }
560       }
561     }
562 
563     // v_perm_b32 can handle either of these.
564     setOperationAction(ISD::BSWAP, {MVT::i16, MVT::v2i16}, Legal);
565     setOperationAction(ISD::BSWAP, MVT::v4i16, Custom);
566 
567     // XXX - Do these do anything? Vector constants turn into build_vector.
568     setOperationAction(ISD::Constant, {MVT::v2i16, MVT::v2f16}, Legal);
569 
570     setOperationAction(ISD::UNDEF, {MVT::v2i16, MVT::v2f16}, Legal);
571 
572     setOperationAction(ISD::STORE, MVT::v2i16, Promote);
573     AddPromotedToType(ISD::STORE, MVT::v2i16, MVT::i32);
574     setOperationAction(ISD::STORE, MVT::v2f16, Promote);
575     AddPromotedToType(ISD::STORE, MVT::v2f16, MVT::i32);
576 
577     setOperationAction(ISD::LOAD, MVT::v2i16, Promote);
578     AddPromotedToType(ISD::LOAD, MVT::v2i16, MVT::i32);
579     setOperationAction(ISD::LOAD, MVT::v2f16, Promote);
580     AddPromotedToType(ISD::LOAD, MVT::v2f16, MVT::i32);
581 
582     setOperationAction(ISD::AND, MVT::v2i16, Promote);
583     AddPromotedToType(ISD::AND, MVT::v2i16, MVT::i32);
584     setOperationAction(ISD::OR, MVT::v2i16, Promote);
585     AddPromotedToType(ISD::OR, MVT::v2i16, MVT::i32);
586     setOperationAction(ISD::XOR, MVT::v2i16, Promote);
587     AddPromotedToType(ISD::XOR, MVT::v2i16, MVT::i32);
588 
589     setOperationAction(ISD::LOAD, MVT::v4i16, Promote);
590     AddPromotedToType(ISD::LOAD, MVT::v4i16, MVT::v2i32);
591     setOperationAction(ISD::LOAD, MVT::v4f16, Promote);
592     AddPromotedToType(ISD::LOAD, MVT::v4f16, MVT::v2i32);
593 
594     setOperationAction(ISD::STORE, MVT::v4i16, Promote);
595     AddPromotedToType(ISD::STORE, MVT::v4i16, MVT::v2i32);
596     setOperationAction(ISD::STORE, MVT::v4f16, Promote);
597     AddPromotedToType(ISD::STORE, MVT::v4f16, MVT::v2i32);
598 
599     setOperationAction(ISD::LOAD, MVT::v8i16, Promote);
600     AddPromotedToType(ISD::LOAD, MVT::v8i16, MVT::v4i32);
601     setOperationAction(ISD::LOAD, MVT::v8f16, Promote);
602     AddPromotedToType(ISD::LOAD, MVT::v8f16, MVT::v4i32);
603 
604     setOperationAction(ISD::STORE, MVT::v4i16, Promote);
605     AddPromotedToType(ISD::STORE, MVT::v4i16, MVT::v2i32);
606     setOperationAction(ISD::STORE, MVT::v4f16, Promote);
607     AddPromotedToType(ISD::STORE, MVT::v4f16, MVT::v2i32);
608 
609     setOperationAction(ISD::STORE, MVT::v8i16, Promote);
610     AddPromotedToType(ISD::STORE, MVT::v8i16, MVT::v4i32);
611     setOperationAction(ISD::STORE, MVT::v8f16, Promote);
612     AddPromotedToType(ISD::STORE, MVT::v8f16, MVT::v4i32);
613 
614     setOperationAction(ISD::LOAD, MVT::v16i16, Promote);
615     AddPromotedToType(ISD::LOAD, MVT::v16i16, MVT::v8i32);
616     setOperationAction(ISD::LOAD, MVT::v16f16, Promote);
617     AddPromotedToType(ISD::LOAD, MVT::v16f16, MVT::v8i32);
618 
619     setOperationAction(ISD::STORE, MVT::v16i16, Promote);
620     AddPromotedToType(ISD::STORE, MVT::v16i16, MVT::v8i32);
621     setOperationAction(ISD::STORE, MVT::v16f16, Promote);
622     AddPromotedToType(ISD::STORE, MVT::v16f16, MVT::v8i32);
623 
624     setOperationAction({ISD::ANY_EXTEND, ISD::ZERO_EXTEND, ISD::SIGN_EXTEND},
625                        MVT::v2i32, Expand);
626     setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Expand);
627 
628     setOperationAction({ISD::ANY_EXTEND, ISD::ZERO_EXTEND, ISD::SIGN_EXTEND},
629                        MVT::v4i32, Expand);
630 
631     setOperationAction({ISD::ANY_EXTEND, ISD::ZERO_EXTEND, ISD::SIGN_EXTEND},
632                        MVT::v8i32, Expand);
633 
634     if (!Subtarget->hasVOP3PInsts())
635       setOperationAction(ISD::BUILD_VECTOR, {MVT::v2i16, MVT::v2f16}, Custom);
636 
637     setOperationAction(ISD::FNEG, MVT::v2f16, Legal);
638     // This isn't really legal, but this avoids the legalizer unrolling it (and
639     // allows matching fneg (fabs x) patterns)
640     setOperationAction(ISD::FABS, MVT::v2f16, Legal);
641 
642     setOperationAction({ISD::FMAXNUM, ISD::FMINNUM}, MVT::f16, Custom);
643     setOperationAction({ISD::FMAXNUM_IEEE, ISD::FMINNUM_IEEE}, MVT::f16, Legal);
644 
645     setOperationAction({ISD::FMINNUM_IEEE, ISD::FMAXNUM_IEEE},
646                        {MVT::v4f16, MVT::v8f16, MVT::v16f16}, Custom);
647 
648     setOperationAction({ISD::FMINNUM, ISD::FMAXNUM},
649                        {MVT::v4f16, MVT::v8f16, MVT::v16f16}, Expand);
650 
651     for (MVT Vec16 : {MVT::v8i16, MVT::v8f16, MVT::v16i16, MVT::v16f16}) {
652       setOperationAction(
653           {ISD::BUILD_VECTOR, ISD::EXTRACT_VECTOR_ELT, ISD::SCALAR_TO_VECTOR},
654           Vec16, Custom);
655       setOperationAction(ISD::INSERT_VECTOR_ELT, Vec16, Expand);
656     }
657   }
658 
659   if (Subtarget->hasVOP3PInsts()) {
660     setOperationAction({ISD::ADD, ISD::SUB, ISD::MUL, ISD::SHL, ISD::SRL,
661                         ISD::SRA, ISD::SMIN, ISD::UMIN, ISD::SMAX, ISD::UMAX,
662                         ISD::UADDSAT, ISD::USUBSAT, ISD::SADDSAT, ISD::SSUBSAT},
663                        MVT::v2i16, Legal);
664 
665     setOperationAction({ISD::FADD, ISD::FMUL, ISD::FMA, ISD::FMINNUM_IEEE,
666                         ISD::FMAXNUM_IEEE, ISD::FCANONICALIZE},
667                        MVT::v2f16, Legal);
668 
669     setOperationAction(ISD::EXTRACT_VECTOR_ELT, {MVT::v2i16, MVT::v2f16},
670                        Custom);
671 
672     setOperationAction(ISD::VECTOR_SHUFFLE,
673                        {MVT::v4f16, MVT::v4i16, MVT::v8f16, MVT::v8i16,
674                         MVT::v16f16, MVT::v16i16},
675                        Custom);
676 
677     for (MVT VT : {MVT::v4i16, MVT::v8i16, MVT::v16i16})
678       // Split vector operations.
679       setOperationAction({ISD::SHL, ISD::SRA, ISD::SRL, ISD::ADD, ISD::SUB,
680                           ISD::MUL, ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX,
681                           ISD::UADDSAT, ISD::SADDSAT, ISD::USUBSAT,
682                           ISD::SSUBSAT},
683                          VT, Custom);
684 
685     for (MVT VT : {MVT::v4f16, MVT::v8f16, MVT::v16f16})
686       // Split vector operations.
687       setOperationAction({ISD::FADD, ISD::FMUL, ISD::FMA, ISD::FCANONICALIZE},
688                          VT, Custom);
689 
690     setOperationAction({ISD::FMAXNUM, ISD::FMINNUM}, {MVT::v2f16, MVT::v4f16},
691                        Custom);
692 
693     setOperationAction(ISD::FEXP, MVT::v2f16, Custom);
694     setOperationAction(ISD::SELECT, {MVT::v4i16, MVT::v4f16}, Custom);
695 
696     if (Subtarget->hasPackedFP32Ops()) {
697       setOperationAction({ISD::FADD, ISD::FMUL, ISD::FMA, ISD::FNEG},
698                          MVT::v2f32, Legal);
699       setOperationAction({ISD::FADD, ISD::FMUL, ISD::FMA},
700                          {MVT::v4f32, MVT::v8f32, MVT::v16f32, MVT::v32f32},
701                          Custom);
702     }
703   }
704 
705   setOperationAction({ISD::FNEG, ISD::FABS}, MVT::v4f16, Custom);
706 
707   if (Subtarget->has16BitInsts()) {
708     setOperationAction(ISD::SELECT, MVT::v2i16, Promote);
709     AddPromotedToType(ISD::SELECT, MVT::v2i16, MVT::i32);
710     setOperationAction(ISD::SELECT, MVT::v2f16, Promote);
711     AddPromotedToType(ISD::SELECT, MVT::v2f16, MVT::i32);
712   } else {
713     // Legalization hack.
714     setOperationAction(ISD::SELECT, {MVT::v2i16, MVT::v2f16}, Custom);
715 
716     setOperationAction({ISD::FNEG, ISD::FABS}, MVT::v2f16, Custom);
717   }
718 
719   setOperationAction(ISD::SELECT,
720                      {MVT::v4i16, MVT::v4f16, MVT::v2i8, MVT::v4i8, MVT::v8i8,
721                       MVT::v8i16, MVT::v8f16, MVT::v16i16, MVT::v16f16},
722                      Custom);
723 
724   setOperationAction({ISD::SMULO, ISD::UMULO}, MVT::i64, Custom);
725 
726   if (Subtarget->hasMad64_32())
727     setOperationAction({ISD::SMUL_LOHI, ISD::UMUL_LOHI}, MVT::i32, Custom);
728 
729   setOperationAction(ISD::INTRINSIC_WO_CHAIN,
730                      {MVT::Other, MVT::f32, MVT::v4f32, MVT::i16, MVT::f16,
731                       MVT::v2i16, MVT::v2f16},
732                      Custom);
733 
734   setOperationAction(ISD::INTRINSIC_W_CHAIN,
735                      {MVT::v2f16, MVT::v2i16, MVT::v3f16, MVT::v3i16,
736                       MVT::v4f16, MVT::v4i16, MVT::v8f16, MVT::Other, MVT::f16,
737                       MVT::i16, MVT::i8},
738                      Custom);
739 
740   setOperationAction(ISD::INTRINSIC_VOID,
741                      {MVT::Other, MVT::v2i16, MVT::v2f16, MVT::v3i16,
742                       MVT::v3f16, MVT::v4f16, MVT::v4i16, MVT::f16, MVT::i16,
743                       MVT::i8},
744                      Custom);
745 
746   setTargetDAGCombine({ISD::ADD,
747                        ISD::ADDCARRY,
748                        ISD::SUB,
749                        ISD::SUBCARRY,
750                        ISD::FADD,
751                        ISD::FSUB,
752                        ISD::FMINNUM,
753                        ISD::FMAXNUM,
754                        ISD::FMINNUM_IEEE,
755                        ISD::FMAXNUM_IEEE,
756                        ISD::FMA,
757                        ISD::SMIN,
758                        ISD::SMAX,
759                        ISD::UMIN,
760                        ISD::UMAX,
761                        ISD::SETCC,
762                        ISD::AND,
763                        ISD::OR,
764                        ISD::XOR,
765                        ISD::SINT_TO_FP,
766                        ISD::UINT_TO_FP,
767                        ISD::FCANONICALIZE,
768                        ISD::SCALAR_TO_VECTOR,
769                        ISD::ZERO_EXTEND,
770                        ISD::SIGN_EXTEND_INREG,
771                        ISD::EXTRACT_VECTOR_ELT,
772                        ISD::INSERT_VECTOR_ELT});
773 
774   // All memory operations. Some folding on the pointer operand is done to help
775   // matching the constant offsets in the addressing modes.
776   setTargetDAGCombine({ISD::LOAD,
777                        ISD::STORE,
778                        ISD::ATOMIC_LOAD,
779                        ISD::ATOMIC_STORE,
780                        ISD::ATOMIC_CMP_SWAP,
781                        ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
782                        ISD::ATOMIC_SWAP,
783                        ISD::ATOMIC_LOAD_ADD,
784                        ISD::ATOMIC_LOAD_SUB,
785                        ISD::ATOMIC_LOAD_AND,
786                        ISD::ATOMIC_LOAD_OR,
787                        ISD::ATOMIC_LOAD_XOR,
788                        ISD::ATOMIC_LOAD_NAND,
789                        ISD::ATOMIC_LOAD_MIN,
790                        ISD::ATOMIC_LOAD_MAX,
791                        ISD::ATOMIC_LOAD_UMIN,
792                        ISD::ATOMIC_LOAD_UMAX,
793                        ISD::ATOMIC_LOAD_FADD,
794                        ISD::INTRINSIC_VOID,
795                        ISD::INTRINSIC_W_CHAIN});
796 
797   // FIXME: In other contexts we pretend this is a per-function property.
798   setStackPointerRegisterToSaveRestore(AMDGPU::SGPR32);
799 
800   setSchedulingPreference(Sched::RegPressure);
801 }
802 
803 const GCNSubtarget *SITargetLowering::getSubtarget() const {
804   return Subtarget;
805 }
806 
807 //===----------------------------------------------------------------------===//
808 // TargetLowering queries
809 //===----------------------------------------------------------------------===//
810 
811 // v_mad_mix* support a conversion from f16 to f32.
812 //
813 // There is only one special case when denormals are enabled we don't currently,
814 // where this is OK to use.
815 bool SITargetLowering::isFPExtFoldable(const SelectionDAG &DAG, unsigned Opcode,
816                                        EVT DestVT, EVT SrcVT) const {
817   return ((Opcode == ISD::FMAD && Subtarget->hasMadMixInsts()) ||
818           (Opcode == ISD::FMA && Subtarget->hasFmaMixInsts())) &&
819     DestVT.getScalarType() == MVT::f32 &&
820     SrcVT.getScalarType() == MVT::f16 &&
821     // TODO: This probably only requires no input flushing?
822     !hasFP32Denormals(DAG.getMachineFunction());
823 }
824 
825 bool SITargetLowering::isFPExtFoldable(const MachineInstr &MI, unsigned Opcode,
826                                        LLT DestTy, LLT SrcTy) const {
827   return ((Opcode == TargetOpcode::G_FMAD && Subtarget->hasMadMixInsts()) ||
828           (Opcode == TargetOpcode::G_FMA && Subtarget->hasFmaMixInsts())) &&
829          DestTy.getScalarSizeInBits() == 32 &&
830          SrcTy.getScalarSizeInBits() == 16 &&
831          // TODO: This probably only requires no input flushing?
832          !hasFP32Denormals(*MI.getMF());
833 }
834 
835 bool SITargetLowering::isShuffleMaskLegal(ArrayRef<int>, EVT) const {
836   // SI has some legal vector types, but no legal vector operations. Say no
837   // shuffles are legal in order to prefer scalarizing some vector operations.
838   return false;
839 }
840 
841 MVT SITargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
842                                                     CallingConv::ID CC,
843                                                     EVT VT) const {
844   if (CC == CallingConv::AMDGPU_KERNEL)
845     return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
846 
847   if (VT.isVector()) {
848     EVT ScalarVT = VT.getScalarType();
849     unsigned Size = ScalarVT.getSizeInBits();
850     if (Size == 16) {
851       if (Subtarget->has16BitInsts()) {
852         if (VT.isInteger())
853           return MVT::v2i16;
854         return (ScalarVT == MVT::bf16 ? MVT::i32 : MVT::v2f16);
855       }
856       return VT.isInteger() ? MVT::i32 : MVT::f32;
857     }
858 
859     if (Size < 16)
860       return Subtarget->has16BitInsts() ? MVT::i16 : MVT::i32;
861     return Size == 32 ? ScalarVT.getSimpleVT() : MVT::i32;
862   }
863 
864   if (VT.getSizeInBits() > 32)
865     return MVT::i32;
866 
867   return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
868 }
869 
870 unsigned SITargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
871                                                          CallingConv::ID CC,
872                                                          EVT VT) const {
873   if (CC == CallingConv::AMDGPU_KERNEL)
874     return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
875 
876   if (VT.isVector()) {
877     unsigned NumElts = VT.getVectorNumElements();
878     EVT ScalarVT = VT.getScalarType();
879     unsigned Size = ScalarVT.getSizeInBits();
880 
881     // FIXME: Should probably promote 8-bit vectors to i16.
882     if (Size == 16 && Subtarget->has16BitInsts())
883       return (NumElts + 1) / 2;
884 
885     if (Size <= 32)
886       return NumElts;
887 
888     if (Size > 32)
889       return NumElts * ((Size + 31) / 32);
890   } else if (VT.getSizeInBits() > 32)
891     return (VT.getSizeInBits() + 31) / 32;
892 
893   return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
894 }
895 
896 unsigned SITargetLowering::getVectorTypeBreakdownForCallingConv(
897   LLVMContext &Context, CallingConv::ID CC,
898   EVT VT, EVT &IntermediateVT,
899   unsigned &NumIntermediates, MVT &RegisterVT) const {
900   if (CC != CallingConv::AMDGPU_KERNEL && VT.isVector()) {
901     unsigned NumElts = VT.getVectorNumElements();
902     EVT ScalarVT = VT.getScalarType();
903     unsigned Size = ScalarVT.getSizeInBits();
904     // FIXME: We should fix the ABI to be the same on targets without 16-bit
905     // support, but unless we can properly handle 3-vectors, it will be still be
906     // inconsistent.
907     if (Size == 16 && Subtarget->has16BitInsts()) {
908       if (ScalarVT == MVT::bf16) {
909         RegisterVT = MVT::i32;
910         IntermediateVT = MVT::v2bf16;
911       } else {
912         RegisterVT = VT.isInteger() ? MVT::v2i16 : MVT::v2f16;
913         IntermediateVT = RegisterVT;
914       }
915       NumIntermediates = (NumElts + 1) / 2;
916       return NumIntermediates;
917     }
918 
919     if (Size == 32) {
920       RegisterVT = ScalarVT.getSimpleVT();
921       IntermediateVT = RegisterVT;
922       NumIntermediates = NumElts;
923       return NumIntermediates;
924     }
925 
926     if (Size < 16 && Subtarget->has16BitInsts()) {
927       // FIXME: Should probably form v2i16 pieces
928       RegisterVT = MVT::i16;
929       IntermediateVT = ScalarVT;
930       NumIntermediates = NumElts;
931       return NumIntermediates;
932     }
933 
934 
935     if (Size != 16 && Size <= 32) {
936       RegisterVT = MVT::i32;
937       IntermediateVT = ScalarVT;
938       NumIntermediates = NumElts;
939       return NumIntermediates;
940     }
941 
942     if (Size > 32) {
943       RegisterVT = MVT::i32;
944       IntermediateVT = RegisterVT;
945       NumIntermediates = NumElts * ((Size + 31) / 32);
946       return NumIntermediates;
947     }
948   }
949 
950   return TargetLowering::getVectorTypeBreakdownForCallingConv(
951     Context, CC, VT, IntermediateVT, NumIntermediates, RegisterVT);
952 }
953 
954 static EVT memVTFromLoadIntrData(Type *Ty, unsigned MaxNumLanes) {
955   assert(MaxNumLanes != 0);
956 
957   if (auto *VT = dyn_cast<FixedVectorType>(Ty)) {
958     unsigned NumElts = std::min(MaxNumLanes, VT->getNumElements());
959     return EVT::getVectorVT(Ty->getContext(),
960                             EVT::getEVT(VT->getElementType()),
961                             NumElts);
962   }
963 
964   return EVT::getEVT(Ty);
965 }
966 
967 // Peek through TFE struct returns to only use the data size.
968 static EVT memVTFromLoadIntrReturn(Type *Ty, unsigned MaxNumLanes) {
969   auto *ST = dyn_cast<StructType>(Ty);
970   if (!ST)
971     return memVTFromLoadIntrData(Ty, MaxNumLanes);
972 
973   // TFE intrinsics return an aggregate type.
974   assert(ST->getNumContainedTypes() == 2 &&
975          ST->getContainedType(1)->isIntegerTy(32));
976   return memVTFromLoadIntrData(ST->getContainedType(0), MaxNumLanes);
977 }
978 
979 bool SITargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
980                                           const CallInst &CI,
981                                           MachineFunction &MF,
982                                           unsigned IntrID) const {
983   Info.flags = MachineMemOperand::MONone;
984   if (CI.hasMetadata(LLVMContext::MD_invariant_load))
985     Info.flags |= MachineMemOperand::MOInvariant;
986 
987   if (const AMDGPU::RsrcIntrinsic *RsrcIntr =
988           AMDGPU::lookupRsrcIntrinsic(IntrID)) {
989     AttributeList Attr = Intrinsic::getAttributes(CI.getContext(),
990                                                   (Intrinsic::ID)IntrID);
991     MemoryEffects ME = Attr.getMemoryEffects();
992     if (ME.doesNotAccessMemory())
993       return false;
994 
995     // TODO: Should images get their own address space?
996     Info.fallbackAddressSpace = AMDGPUAS::BUFFER_FAT_POINTER;
997 
998     if (RsrcIntr->IsImage)
999       Info.align.reset();
1000 
1001     Info.flags |= MachineMemOperand::MODereferenceable;
1002     if (ME.onlyReadsMemory()) {
1003       unsigned MaxNumLanes = 4;
1004 
1005       if (RsrcIntr->IsImage) {
1006         const AMDGPU::ImageDimIntrinsicInfo *Intr
1007           = AMDGPU::getImageDimIntrinsicInfo(IntrID);
1008         const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
1009           AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode);
1010 
1011         if (!BaseOpcode->Gather4) {
1012           // If this isn't a gather, we may have excess loaded elements in the
1013           // IR type. Check the dmask for the real number of elements loaded.
1014           unsigned DMask
1015             = cast<ConstantInt>(CI.getArgOperand(0))->getZExtValue();
1016           MaxNumLanes = DMask == 0 ? 1 : llvm::popcount(DMask);
1017         }
1018       }
1019 
1020       Info.memVT = memVTFromLoadIntrReturn(CI.getType(), MaxNumLanes);
1021 
1022       // FIXME: What does alignment mean for an image?
1023       Info.opc = ISD::INTRINSIC_W_CHAIN;
1024       Info.flags |= MachineMemOperand::MOLoad;
1025     } else if (ME.onlyWritesMemory()) {
1026       Info.opc = ISD::INTRINSIC_VOID;
1027 
1028       Type *DataTy = CI.getArgOperand(0)->getType();
1029       if (RsrcIntr->IsImage) {
1030         unsigned DMask = cast<ConstantInt>(CI.getArgOperand(1))->getZExtValue();
1031         unsigned DMaskLanes = DMask == 0 ? 1 : llvm::popcount(DMask);
1032         Info.memVT = memVTFromLoadIntrData(DataTy, DMaskLanes);
1033       } else
1034         Info.memVT = EVT::getEVT(DataTy);
1035 
1036       Info.flags |= MachineMemOperand::MOStore;
1037     } else {
1038       // Atomic
1039       Info.opc = CI.getType()->isVoidTy() ? ISD::INTRINSIC_VOID :
1040                                             ISD::INTRINSIC_W_CHAIN;
1041       Info.memVT = MVT::getVT(CI.getArgOperand(0)->getType());
1042       Info.flags |= MachineMemOperand::MOLoad |
1043                     MachineMemOperand::MOStore |
1044                     MachineMemOperand::MODereferenceable;
1045 
1046       // XXX - Should this be volatile without known ordering?
1047       Info.flags |= MachineMemOperand::MOVolatile;
1048 
1049       switch (IntrID) {
1050       default:
1051         break;
1052       case Intrinsic::amdgcn_raw_buffer_load_lds:
1053       case Intrinsic::amdgcn_struct_buffer_load_lds: {
1054         unsigned Width = cast<ConstantInt>(CI.getArgOperand(2))->getZExtValue();
1055         Info.memVT = EVT::getIntegerVT(CI.getContext(), Width * 8);
1056         return true;
1057       }
1058       }
1059     }
1060     return true;
1061   }
1062 
1063   switch (IntrID) {
1064   case Intrinsic::amdgcn_atomic_inc:
1065   case Intrinsic::amdgcn_atomic_dec:
1066   case Intrinsic::amdgcn_ds_ordered_add:
1067   case Intrinsic::amdgcn_ds_ordered_swap:
1068   case Intrinsic::amdgcn_ds_fadd:
1069   case Intrinsic::amdgcn_ds_fmin:
1070   case Intrinsic::amdgcn_ds_fmax: {
1071     Info.opc = ISD::INTRINSIC_W_CHAIN;
1072     Info.memVT = MVT::getVT(CI.getType());
1073     Info.ptrVal = CI.getOperand(0);
1074     Info.align.reset();
1075     Info.flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1076 
1077     const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(4));
1078     if (!Vol->isZero())
1079       Info.flags |= MachineMemOperand::MOVolatile;
1080 
1081     return true;
1082   }
1083   case Intrinsic::amdgcn_buffer_atomic_fadd: {
1084     Info.opc = ISD::INTRINSIC_W_CHAIN;
1085     Info.memVT = MVT::getVT(CI.getOperand(0)->getType());
1086     Info.fallbackAddressSpace = AMDGPUAS::BUFFER_FAT_POINTER;
1087     Info.align.reset();
1088     Info.flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1089 
1090     const ConstantInt *Vol = dyn_cast<ConstantInt>(CI.getOperand(4));
1091     if (!Vol || !Vol->isZero())
1092       Info.flags |= MachineMemOperand::MOVolatile;
1093 
1094     return true;
1095   }
1096   case Intrinsic::amdgcn_ds_append:
1097   case Intrinsic::amdgcn_ds_consume: {
1098     Info.opc = ISD::INTRINSIC_W_CHAIN;
1099     Info.memVT = MVT::getVT(CI.getType());
1100     Info.ptrVal = CI.getOperand(0);
1101     Info.align.reset();
1102     Info.flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1103 
1104     const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(1));
1105     if (!Vol->isZero())
1106       Info.flags |= MachineMemOperand::MOVolatile;
1107 
1108     return true;
1109   }
1110   case Intrinsic::amdgcn_global_atomic_csub: {
1111     Info.opc = ISD::INTRINSIC_W_CHAIN;
1112     Info.memVT = MVT::getVT(CI.getType());
1113     Info.ptrVal = CI.getOperand(0);
1114     Info.align.reset();
1115     Info.flags |= MachineMemOperand::MOLoad |
1116                   MachineMemOperand::MOStore |
1117                   MachineMemOperand::MOVolatile;
1118     return true;
1119   }
1120   case Intrinsic::amdgcn_image_bvh_intersect_ray: {
1121     Info.opc = ISD::INTRINSIC_W_CHAIN;
1122     Info.memVT = MVT::getVT(CI.getType()); // XXX: what is correct VT?
1123 
1124     Info.fallbackAddressSpace = AMDGPUAS::BUFFER_FAT_POINTER;
1125     Info.align.reset();
1126     Info.flags |= MachineMemOperand::MOLoad |
1127                   MachineMemOperand::MODereferenceable;
1128     return true;
1129   }
1130   case Intrinsic::amdgcn_global_atomic_fadd:
1131   case Intrinsic::amdgcn_global_atomic_fmin:
1132   case Intrinsic::amdgcn_global_atomic_fmax:
1133   case Intrinsic::amdgcn_flat_atomic_fadd:
1134   case Intrinsic::amdgcn_flat_atomic_fmin:
1135   case Intrinsic::amdgcn_flat_atomic_fmax:
1136   case Intrinsic::amdgcn_global_atomic_fadd_v2bf16:
1137   case Intrinsic::amdgcn_flat_atomic_fadd_v2bf16: {
1138     Info.opc = ISD::INTRINSIC_W_CHAIN;
1139     Info.memVT = MVT::getVT(CI.getType());
1140     Info.ptrVal = CI.getOperand(0);
1141     Info.align.reset();
1142     Info.flags |= MachineMemOperand::MOLoad |
1143                   MachineMemOperand::MOStore |
1144                   MachineMemOperand::MODereferenceable |
1145                   MachineMemOperand::MOVolatile;
1146     return true;
1147   }
1148   case Intrinsic::amdgcn_ds_gws_init:
1149   case Intrinsic::amdgcn_ds_gws_barrier:
1150   case Intrinsic::amdgcn_ds_gws_sema_v:
1151   case Intrinsic::amdgcn_ds_gws_sema_br:
1152   case Intrinsic::amdgcn_ds_gws_sema_p:
1153   case Intrinsic::amdgcn_ds_gws_sema_release_all: {
1154     Info.opc = ISD::INTRINSIC_VOID;
1155 
1156     const GCNTargetMachine &TM =
1157         static_cast<const GCNTargetMachine &>(getTargetMachine());
1158 
1159     SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1160     Info.ptrVal = MFI->getGWSPSV(TM);
1161 
1162     // This is an abstract access, but we need to specify a type and size.
1163     Info.memVT = MVT::i32;
1164     Info.size = 4;
1165     Info.align = Align(4);
1166 
1167     if (IntrID == Intrinsic::amdgcn_ds_gws_barrier)
1168       Info.flags |= MachineMemOperand::MOLoad;
1169     else
1170       Info.flags |= MachineMemOperand::MOStore;
1171     return true;
1172   }
1173   case Intrinsic::amdgcn_global_load_lds: {
1174     Info.opc = ISD::INTRINSIC_VOID;
1175     unsigned Width = cast<ConstantInt>(CI.getArgOperand(2))->getZExtValue();
1176     Info.memVT = EVT::getIntegerVT(CI.getContext(), Width * 8);
1177     Info.flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore |
1178                   MachineMemOperand::MOVolatile;
1179     return true;
1180   }
1181   case Intrinsic::amdgcn_ds_bvh_stack_rtn: {
1182     Info.opc = ISD::INTRINSIC_W_CHAIN;
1183 
1184     const GCNTargetMachine &TM =
1185         static_cast<const GCNTargetMachine &>(getTargetMachine());
1186 
1187     SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1188     Info.ptrVal = MFI->getGWSPSV(TM);
1189 
1190     // This is an abstract access, but we need to specify a type and size.
1191     Info.memVT = MVT::i32;
1192     Info.size = 4;
1193     Info.align = Align(4);
1194 
1195     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1196     return true;
1197   }
1198   default:
1199     return false;
1200   }
1201 }
1202 
1203 bool SITargetLowering::getAddrModeArguments(IntrinsicInst *II,
1204                                             SmallVectorImpl<Value*> &Ops,
1205                                             Type *&AccessTy) const {
1206   switch (II->getIntrinsicID()) {
1207   case Intrinsic::amdgcn_atomic_inc:
1208   case Intrinsic::amdgcn_atomic_dec:
1209   case Intrinsic::amdgcn_ds_ordered_add:
1210   case Intrinsic::amdgcn_ds_ordered_swap:
1211   case Intrinsic::amdgcn_ds_append:
1212   case Intrinsic::amdgcn_ds_consume:
1213   case Intrinsic::amdgcn_ds_fadd:
1214   case Intrinsic::amdgcn_ds_fmin:
1215   case Intrinsic::amdgcn_ds_fmax:
1216   case Intrinsic::amdgcn_global_atomic_fadd:
1217   case Intrinsic::amdgcn_flat_atomic_fadd:
1218   case Intrinsic::amdgcn_flat_atomic_fmin:
1219   case Intrinsic::amdgcn_flat_atomic_fmax:
1220   case Intrinsic::amdgcn_global_atomic_fadd_v2bf16:
1221   case Intrinsic::amdgcn_flat_atomic_fadd_v2bf16:
1222   case Intrinsic::amdgcn_global_atomic_csub: {
1223     Value *Ptr = II->getArgOperand(0);
1224     AccessTy = II->getType();
1225     Ops.push_back(Ptr);
1226     return true;
1227   }
1228   default:
1229     return false;
1230   }
1231 }
1232 
1233 bool SITargetLowering::isLegalFlatAddressingMode(const AddrMode &AM) const {
1234   if (!Subtarget->hasFlatInstOffsets()) {
1235     // Flat instructions do not have offsets, and only have the register
1236     // address.
1237     return AM.BaseOffs == 0 && AM.Scale == 0;
1238   }
1239 
1240   return AM.Scale == 0 &&
1241          (AM.BaseOffs == 0 ||
1242           Subtarget->getInstrInfo()->isLegalFLATOffset(
1243               AM.BaseOffs, AMDGPUAS::FLAT_ADDRESS, SIInstrFlags::FLAT));
1244 }
1245 
1246 bool SITargetLowering::isLegalGlobalAddressingMode(const AddrMode &AM) const {
1247   if (Subtarget->hasFlatGlobalInsts())
1248     return AM.Scale == 0 &&
1249            (AM.BaseOffs == 0 || Subtarget->getInstrInfo()->isLegalFLATOffset(
1250                                     AM.BaseOffs, AMDGPUAS::GLOBAL_ADDRESS,
1251                                     SIInstrFlags::FlatGlobal));
1252 
1253   if (!Subtarget->hasAddr64() || Subtarget->useFlatForGlobal()) {
1254       // Assume the we will use FLAT for all global memory accesses
1255       // on VI.
1256       // FIXME: This assumption is currently wrong.  On VI we still use
1257       // MUBUF instructions for the r + i addressing mode.  As currently
1258       // implemented, the MUBUF instructions only work on buffer < 4GB.
1259       // It may be possible to support > 4GB buffers with MUBUF instructions,
1260       // by setting the stride value in the resource descriptor which would
1261       // increase the size limit to (stride * 4GB).  However, this is risky,
1262       // because it has never been validated.
1263     return isLegalFlatAddressingMode(AM);
1264   }
1265 
1266   return isLegalMUBUFAddressingMode(AM);
1267 }
1268 
1269 bool SITargetLowering::isLegalMUBUFAddressingMode(const AddrMode &AM) const {
1270   // MUBUF / MTBUF instructions have a 12-bit unsigned byte offset, and
1271   // additionally can do r + r + i with addr64. 32-bit has more addressing
1272   // mode options. Depending on the resource constant, it can also do
1273   // (i64 r0) + (i32 r1) * (i14 i).
1274   //
1275   // Private arrays end up using a scratch buffer most of the time, so also
1276   // assume those use MUBUF instructions. Scratch loads / stores are currently
1277   // implemented as mubuf instructions with offen bit set, so slightly
1278   // different than the normal addr64.
1279   if (!SIInstrInfo::isLegalMUBUFImmOffset(AM.BaseOffs))
1280     return false;
1281 
1282   // FIXME: Since we can split immediate into soffset and immediate offset,
1283   // would it make sense to allow any immediate?
1284 
1285   switch (AM.Scale) {
1286   case 0: // r + i or just i, depending on HasBaseReg.
1287     return true;
1288   case 1:
1289     return true; // We have r + r or r + i.
1290   case 2:
1291     if (AM.HasBaseReg) {
1292       // Reject 2 * r + r.
1293       return false;
1294     }
1295 
1296     // Allow 2 * r as r + r
1297     // Or  2 * r + i is allowed as r + r + i.
1298     return true;
1299   default: // Don't allow n * r
1300     return false;
1301   }
1302 }
1303 
1304 bool SITargetLowering::isLegalAddressingMode(const DataLayout &DL,
1305                                              const AddrMode &AM, Type *Ty,
1306                                              unsigned AS, Instruction *I) const {
1307   // No global is ever allowed as a base.
1308   if (AM.BaseGV)
1309     return false;
1310 
1311   if (AS == AMDGPUAS::GLOBAL_ADDRESS)
1312     return isLegalGlobalAddressingMode(AM);
1313 
1314   if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
1315       AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
1316       AS == AMDGPUAS::BUFFER_FAT_POINTER) {
1317     // If the offset isn't a multiple of 4, it probably isn't going to be
1318     // correctly aligned.
1319     // FIXME: Can we get the real alignment here?
1320     if (AM.BaseOffs % 4 != 0)
1321       return isLegalMUBUFAddressingMode(AM);
1322 
1323     // There are no SMRD extloads, so if we have to do a small type access we
1324     // will use a MUBUF load.
1325     // FIXME?: We also need to do this if unaligned, but we don't know the
1326     // alignment here.
1327     if (Ty->isSized() && DL.getTypeStoreSize(Ty) < 4)
1328       return isLegalGlobalAddressingMode(AM);
1329 
1330     if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) {
1331       // SMRD instructions have an 8-bit, dword offset on SI.
1332       if (!isUInt<8>(AM.BaseOffs / 4))
1333         return false;
1334     } else if (Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS) {
1335       // On CI+, this can also be a 32-bit literal constant offset. If it fits
1336       // in 8-bits, it can use a smaller encoding.
1337       if (!isUInt<32>(AM.BaseOffs / 4))
1338         return false;
1339     } else if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) {
1340       // On VI, these use the SMEM format and the offset is 20-bit in bytes.
1341       if (!isUInt<20>(AM.BaseOffs))
1342         return false;
1343     } else
1344       llvm_unreachable("unhandled generation");
1345 
1346     if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
1347       return true;
1348 
1349     if (AM.Scale == 1 && AM.HasBaseReg)
1350       return true;
1351 
1352     return false;
1353 
1354   } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
1355     return isLegalMUBUFAddressingMode(AM);
1356   } else if (AS == AMDGPUAS::LOCAL_ADDRESS ||
1357              AS == AMDGPUAS::REGION_ADDRESS) {
1358     // Basic, single offset DS instructions allow a 16-bit unsigned immediate
1359     // field.
1360     // XXX - If doing a 4-byte aligned 8-byte type access, we effectively have
1361     // an 8-bit dword offset but we don't know the alignment here.
1362     if (!isUInt<16>(AM.BaseOffs))
1363       return false;
1364 
1365     if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
1366       return true;
1367 
1368     if (AM.Scale == 1 && AM.HasBaseReg)
1369       return true;
1370 
1371     return false;
1372   } else if (AS == AMDGPUAS::FLAT_ADDRESS ||
1373              AS == AMDGPUAS::UNKNOWN_ADDRESS_SPACE) {
1374     // For an unknown address space, this usually means that this is for some
1375     // reason being used for pure arithmetic, and not based on some addressing
1376     // computation. We don't have instructions that compute pointers with any
1377     // addressing modes, so treat them as having no offset like flat
1378     // instructions.
1379     return isLegalFlatAddressingMode(AM);
1380   }
1381 
1382   // Assume a user alias of global for unknown address spaces.
1383   return isLegalGlobalAddressingMode(AM);
1384 }
1385 
1386 bool SITargetLowering::canMergeStoresTo(unsigned AS, EVT MemVT,
1387                                         const MachineFunction &MF) const {
1388   if (AS == AMDGPUAS::GLOBAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) {
1389     return (MemVT.getSizeInBits() <= 4 * 32);
1390   } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
1391     unsigned MaxPrivateBits = 8 * getSubtarget()->getMaxPrivateElementSize();
1392     return (MemVT.getSizeInBits() <= MaxPrivateBits);
1393   } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
1394     return (MemVT.getSizeInBits() <= 2 * 32);
1395   }
1396   return true;
1397 }
1398 
1399 bool SITargetLowering::allowsMisalignedMemoryAccessesImpl(
1400     unsigned Size, unsigned AddrSpace, Align Alignment,
1401     MachineMemOperand::Flags Flags, unsigned *IsFast) const {
1402   if (IsFast)
1403     *IsFast = 0;
1404 
1405   if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
1406       AddrSpace == AMDGPUAS::REGION_ADDRESS) {
1407     // Check if alignment requirements for ds_read/write instructions are
1408     // disabled.
1409     if (!Subtarget->hasUnalignedDSAccessEnabled() && Alignment < Align(4))
1410       return false;
1411 
1412     Align RequiredAlignment(PowerOf2Ceil(Size/8)); // Natural alignment.
1413     if (Subtarget->hasLDSMisalignedBug() && Size > 32 &&
1414         Alignment < RequiredAlignment)
1415       return false;
1416 
1417     // Either, the alignment requirements are "enabled", or there is an
1418     // unaligned LDS access related hardware bug though alignment requirements
1419     // are "disabled". In either case, we need to check for proper alignment
1420     // requirements.
1421     //
1422     switch (Size) {
1423     case 64:
1424       // SI has a hardware bug in the LDS / GDS bounds checking: if the base
1425       // address is negative, then the instruction is incorrectly treated as
1426       // out-of-bounds even if base + offsets is in bounds. Split vectorized
1427       // loads here to avoid emitting ds_read2_b32. We may re-combine the
1428       // load later in the SILoadStoreOptimizer.
1429       if (!Subtarget->hasUsableDSOffset() && Alignment < Align(8))
1430         return false;
1431 
1432       // 8 byte accessing via ds_read/write_b64 require 8-byte alignment, but we
1433       // can do a 4 byte aligned, 8 byte access in a single operation using
1434       // ds_read2/write2_b32 with adjacent offsets.
1435       RequiredAlignment = Align(4);
1436 
1437       if (Subtarget->hasUnalignedDSAccessEnabled()) {
1438         // We will either select ds_read_b64/ds_write_b64 or ds_read2_b32/
1439         // ds_write2_b32 depending on the alignment. In either case with either
1440         // alignment there is no faster way of doing this.
1441 
1442         // The numbers returned here and below are not additive, it is a 'speed
1443         // rank'. They are just meant to be compared to decide if a certain way
1444         // of lowering an operation is faster than another. For that purpose
1445         // naturally aligned operation gets it bitsize to indicate that "it
1446         // operates with a speed comparable to N-bit wide load". With the full
1447         // alignment ds128 is slower than ds96 for example. If underaligned it
1448         // is comparable to a speed of a single dword access, which would then
1449         // mean 32 < 128 and it is faster to issue a wide load regardless.
1450         // 1 is simply "slow, don't do it". I.e. comparing an aligned load to a
1451         // wider load which will not be aligned anymore the latter is slower.
1452         if (IsFast)
1453           *IsFast = (Alignment >= RequiredAlignment) ? 64
1454                     : (Alignment < Align(4))         ? 32
1455                                                      : 1;
1456         return true;
1457       }
1458 
1459       break;
1460     case 96:
1461       if (!Subtarget->hasDS96AndDS128())
1462         return false;
1463 
1464       // 12 byte accessing via ds_read/write_b96 require 16-byte alignment on
1465       // gfx8 and older.
1466 
1467       if (Subtarget->hasUnalignedDSAccessEnabled()) {
1468         // Naturally aligned access is fastest. However, also report it is Fast
1469         // if memory is aligned less than DWORD. A narrow load or store will be
1470         // be equally slow as a single ds_read_b96/ds_write_b96, but there will
1471         // be more of them, so overall we will pay less penalty issuing a single
1472         // instruction.
1473 
1474         // See comment on the values above.
1475         if (IsFast)
1476           *IsFast = (Alignment >= RequiredAlignment) ? 96
1477                     : (Alignment < Align(4))         ? 32
1478                                                      : 1;
1479         return true;
1480       }
1481 
1482       break;
1483     case 128:
1484       if (!Subtarget->hasDS96AndDS128() || !Subtarget->useDS128())
1485         return false;
1486 
1487       // 16 byte accessing via ds_read/write_b128 require 16-byte alignment on
1488       // gfx8 and older, but  we can do a 8 byte aligned, 16 byte access in a
1489       // single operation using ds_read2/write2_b64.
1490       RequiredAlignment = Align(8);
1491 
1492       if (Subtarget->hasUnalignedDSAccessEnabled()) {
1493         // Naturally aligned access is fastest. However, also report it is Fast
1494         // if memory is aligned less than DWORD. A narrow load or store will be
1495         // be equally slow as a single ds_read_b128/ds_write_b128, but there
1496         // will be more of them, so overall we will pay less penalty issuing a
1497         // single instruction.
1498 
1499         // See comment on the values above.
1500         if (IsFast)
1501           *IsFast = (Alignment >= RequiredAlignment) ? 128
1502                     : (Alignment < Align(4))         ? 32
1503                                                      : 1;
1504         return true;
1505       }
1506 
1507       break;
1508     default:
1509       if (Size > 32)
1510         return false;
1511 
1512       break;
1513     }
1514 
1515     // See comment on the values above.
1516     // Note that we have a single-dword or sub-dword here, so if underaligned
1517     // it is a slowest possible access, hence returned value is 0.
1518     if (IsFast)
1519       *IsFast = (Alignment >= RequiredAlignment) ? Size : 0;
1520 
1521     return Alignment >= RequiredAlignment ||
1522            Subtarget->hasUnalignedDSAccessEnabled();
1523   }
1524 
1525   if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) {
1526     bool AlignedBy4 = Alignment >= Align(4);
1527     if (IsFast)
1528       *IsFast = AlignedBy4;
1529 
1530     return AlignedBy4 ||
1531            Subtarget->enableFlatScratch() ||
1532            Subtarget->hasUnalignedScratchAccess();
1533   }
1534 
1535   // FIXME: We have to be conservative here and assume that flat operations
1536   // will access scratch.  If we had access to the IR function, then we
1537   // could determine if any private memory was used in the function.
1538   if (AddrSpace == AMDGPUAS::FLAT_ADDRESS &&
1539       !Subtarget->hasUnalignedScratchAccess()) {
1540     bool AlignedBy4 = Alignment >= Align(4);
1541     if (IsFast)
1542       *IsFast = AlignedBy4;
1543 
1544     return AlignedBy4;
1545   }
1546 
1547   if (Subtarget->hasUnalignedBufferAccessEnabled()) {
1548     // If we have a uniform constant load, it still requires using a slow
1549     // buffer instruction if unaligned.
1550     if (IsFast) {
1551       // Accesses can really be issued as 1-byte aligned or 4-byte aligned, so
1552       // 2-byte alignment is worse than 1 unless doing a 2-byte access.
1553       *IsFast = (AddrSpace == AMDGPUAS::CONSTANT_ADDRESS ||
1554                  AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT) ?
1555         Alignment >= Align(4) : Alignment != Align(2);
1556     }
1557 
1558     return true;
1559   }
1560 
1561   // Smaller than dword value must be aligned.
1562   if (Size < 32)
1563     return false;
1564 
1565   // 8.1.6 - For Dword or larger reads or writes, the two LSBs of the
1566   // byte-address are ignored, thus forcing Dword alignment.
1567   // This applies to private, global, and constant memory.
1568   if (IsFast)
1569     *IsFast = 1;
1570 
1571   return Size >= 32 && Alignment >= Align(4);
1572 }
1573 
1574 bool SITargetLowering::allowsMisalignedMemoryAccesses(
1575     EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
1576     unsigned *IsFast) const {
1577   return allowsMisalignedMemoryAccessesImpl(VT.getSizeInBits(), AddrSpace,
1578                                             Alignment, Flags, IsFast);
1579 }
1580 
1581 EVT SITargetLowering::getOptimalMemOpType(
1582     const MemOp &Op, const AttributeList &FuncAttributes) const {
1583   // FIXME: Should account for address space here.
1584 
1585   // The default fallback uses the private pointer size as a guess for a type to
1586   // use. Make sure we switch these to 64-bit accesses.
1587 
1588   if (Op.size() >= 16 &&
1589       Op.isDstAligned(Align(4))) // XXX: Should only do for global
1590     return MVT::v4i32;
1591 
1592   if (Op.size() >= 8 && Op.isDstAligned(Align(4)))
1593     return MVT::v2i32;
1594 
1595   // Use the default.
1596   return MVT::Other;
1597 }
1598 
1599 bool SITargetLowering::isMemOpHasNoClobberedMemOperand(const SDNode *N) const {
1600   const MemSDNode *MemNode = cast<MemSDNode>(N);
1601   return MemNode->getMemOperand()->getFlags() & MONoClobber;
1602 }
1603 
1604 bool SITargetLowering::isNonGlobalAddrSpace(unsigned AS) {
1605   return AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS ||
1606          AS == AMDGPUAS::PRIVATE_ADDRESS;
1607 }
1608 
1609 bool SITargetLowering::isFreeAddrSpaceCast(unsigned SrcAS,
1610                                            unsigned DestAS) const {
1611   // Flat -> private/local is a simple truncate.
1612   // Flat -> global is no-op
1613   if (SrcAS == AMDGPUAS::FLAT_ADDRESS)
1614     return true;
1615 
1616   const GCNTargetMachine &TM =
1617       static_cast<const GCNTargetMachine &>(getTargetMachine());
1618   return TM.isNoopAddrSpaceCast(SrcAS, DestAS);
1619 }
1620 
1621 bool SITargetLowering::isMemOpUniform(const SDNode *N) const {
1622   const MemSDNode *MemNode = cast<MemSDNode>(N);
1623 
1624   return AMDGPUInstrInfo::isUniformMMO(MemNode->getMemOperand());
1625 }
1626 
1627 TargetLoweringBase::LegalizeTypeAction
1628 SITargetLowering::getPreferredVectorAction(MVT VT) const {
1629   if (!VT.isScalableVector() && VT.getVectorNumElements() != 1 &&
1630       VT.getScalarType().bitsLE(MVT::i16))
1631     return VT.isPow2VectorType() ? TypeSplitVector : TypeWidenVector;
1632   return TargetLoweringBase::getPreferredVectorAction(VT);
1633 }
1634 
1635 bool SITargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
1636                                                          Type *Ty) const {
1637   // FIXME: Could be smarter if called for vector constants.
1638   return true;
1639 }
1640 
1641 bool SITargetLowering::isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
1642                                                unsigned Index) const {
1643   if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, ResVT))
1644     return false;
1645 
1646   // TODO: Add more cases that are cheap.
1647   return Index == 0;
1648 }
1649 
1650 bool SITargetLowering::isTypeDesirableForOp(unsigned Op, EVT VT) const {
1651   if (Subtarget->has16BitInsts() && VT == MVT::i16) {
1652     switch (Op) {
1653     case ISD::LOAD:
1654     case ISD::STORE:
1655 
1656     // These operations are done with 32-bit instructions anyway.
1657     case ISD::AND:
1658     case ISD::OR:
1659     case ISD::XOR:
1660     case ISD::SELECT:
1661       // TODO: Extensions?
1662       return true;
1663     default:
1664       return false;
1665     }
1666   }
1667 
1668   // SimplifySetCC uses this function to determine whether or not it should
1669   // create setcc with i1 operands.  We don't have instructions for i1 setcc.
1670   if (VT == MVT::i1 && Op == ISD::SETCC)
1671     return false;
1672 
1673   return TargetLowering::isTypeDesirableForOp(Op, VT);
1674 }
1675 
1676 SDValue SITargetLowering::lowerKernArgParameterPtr(SelectionDAG &DAG,
1677                                                    const SDLoc &SL,
1678                                                    SDValue Chain,
1679                                                    uint64_t Offset) const {
1680   const DataLayout &DL = DAG.getDataLayout();
1681   MachineFunction &MF = DAG.getMachineFunction();
1682   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1683 
1684   const ArgDescriptor *InputPtrReg;
1685   const TargetRegisterClass *RC;
1686   LLT ArgTy;
1687   MVT PtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS);
1688 
1689   std::tie(InputPtrReg, RC, ArgTy) =
1690       Info->getPreloadedValue(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
1691 
1692   // We may not have the kernarg segment argument if we have no kernel
1693   // arguments.
1694   if (!InputPtrReg)
1695     return DAG.getConstant(0, SL, PtrVT);
1696 
1697   MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1698   SDValue BasePtr = DAG.getCopyFromReg(Chain, SL,
1699     MRI.getLiveInVirtReg(InputPtrReg->getRegister()), PtrVT);
1700 
1701   return DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Offset));
1702 }
1703 
1704 SDValue SITargetLowering::getImplicitArgPtr(SelectionDAG &DAG,
1705                                             const SDLoc &SL) const {
1706   uint64_t Offset = getImplicitParameterOffset(DAG.getMachineFunction(),
1707                                                FIRST_IMPLICIT);
1708   return lowerKernArgParameterPtr(DAG, SL, DAG.getEntryNode(), Offset);
1709 }
1710 
1711 SDValue SITargetLowering::getLDSKernelId(SelectionDAG &DAG,
1712                                          const SDLoc &SL) const {
1713 
1714   Function &F = DAG.getMachineFunction().getFunction();
1715   std::optional<uint32_t> KnownSize =
1716       AMDGPUMachineFunction::getLDSKernelIdMetadata(F);
1717   if (KnownSize.has_value())
1718     return DAG.getConstant(*KnownSize, SL, MVT::i32);
1719   return SDValue();
1720 }
1721 
1722 SDValue SITargetLowering::convertArgType(SelectionDAG &DAG, EVT VT, EVT MemVT,
1723                                          const SDLoc &SL, SDValue Val,
1724                                          bool Signed,
1725                                          const ISD::InputArg *Arg) const {
1726   // First, if it is a widened vector, narrow it.
1727   if (VT.isVector() &&
1728       VT.getVectorNumElements() != MemVT.getVectorNumElements()) {
1729     EVT NarrowedVT =
1730         EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(),
1731                          VT.getVectorNumElements());
1732     Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, NarrowedVT, Val,
1733                       DAG.getConstant(0, SL, MVT::i32));
1734   }
1735 
1736   // Then convert the vector elements or scalar value.
1737   if (Arg && (Arg->Flags.isSExt() || Arg->Flags.isZExt()) &&
1738       VT.bitsLT(MemVT)) {
1739     unsigned Opc = Arg->Flags.isZExt() ? ISD::AssertZext : ISD::AssertSext;
1740     Val = DAG.getNode(Opc, SL, MemVT, Val, DAG.getValueType(VT));
1741   }
1742 
1743   if (MemVT.isFloatingPoint())
1744     Val = getFPExtOrFPRound(DAG, Val, SL, VT);
1745   else if (Signed)
1746     Val = DAG.getSExtOrTrunc(Val, SL, VT);
1747   else
1748     Val = DAG.getZExtOrTrunc(Val, SL, VT);
1749 
1750   return Val;
1751 }
1752 
1753 SDValue SITargetLowering::lowerKernargMemParameter(
1754     SelectionDAG &DAG, EVT VT, EVT MemVT, const SDLoc &SL, SDValue Chain,
1755     uint64_t Offset, Align Alignment, bool Signed,
1756     const ISD::InputArg *Arg) const {
1757   MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
1758 
1759   // Try to avoid using an extload by loading earlier than the argument address,
1760   // and extracting the relevant bits. The load should hopefully be merged with
1761   // the previous argument.
1762   if (MemVT.getStoreSize() < 4 && Alignment < 4) {
1763     // TODO: Handle align < 4 and size >= 4 (can happen with packed structs).
1764     int64_t AlignDownOffset = alignDown(Offset, 4);
1765     int64_t OffsetDiff = Offset - AlignDownOffset;
1766 
1767     EVT IntVT = MemVT.changeTypeToInteger();
1768 
1769     // TODO: If we passed in the base kernel offset we could have a better
1770     // alignment than 4, but we don't really need it.
1771     SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, AlignDownOffset);
1772     SDValue Load = DAG.getLoad(MVT::i32, SL, Chain, Ptr, PtrInfo, Align(4),
1773                                MachineMemOperand::MODereferenceable |
1774                                    MachineMemOperand::MOInvariant);
1775 
1776     SDValue ShiftAmt = DAG.getConstant(OffsetDiff * 8, SL, MVT::i32);
1777     SDValue Extract = DAG.getNode(ISD::SRL, SL, MVT::i32, Load, ShiftAmt);
1778 
1779     SDValue ArgVal = DAG.getNode(ISD::TRUNCATE, SL, IntVT, Extract);
1780     ArgVal = DAG.getNode(ISD::BITCAST, SL, MemVT, ArgVal);
1781     ArgVal = convertArgType(DAG, VT, MemVT, SL, ArgVal, Signed, Arg);
1782 
1783 
1784     return DAG.getMergeValues({ ArgVal, Load.getValue(1) }, SL);
1785   }
1786 
1787   SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, Offset);
1788   SDValue Load = DAG.getLoad(MemVT, SL, Chain, Ptr, PtrInfo, Alignment,
1789                              MachineMemOperand::MODereferenceable |
1790                                  MachineMemOperand::MOInvariant);
1791 
1792   SDValue Val = convertArgType(DAG, VT, MemVT, SL, Load, Signed, Arg);
1793   return DAG.getMergeValues({ Val, Load.getValue(1) }, SL);
1794 }
1795 
1796 SDValue SITargetLowering::lowerStackParameter(SelectionDAG &DAG, CCValAssign &VA,
1797                                               const SDLoc &SL, SDValue Chain,
1798                                               const ISD::InputArg &Arg) const {
1799   MachineFunction &MF = DAG.getMachineFunction();
1800   MachineFrameInfo &MFI = MF.getFrameInfo();
1801 
1802   if (Arg.Flags.isByVal()) {
1803     unsigned Size = Arg.Flags.getByValSize();
1804     int FrameIdx = MFI.CreateFixedObject(Size, VA.getLocMemOffset(), false);
1805     return DAG.getFrameIndex(FrameIdx, MVT::i32);
1806   }
1807 
1808   unsigned ArgOffset = VA.getLocMemOffset();
1809   unsigned ArgSize = VA.getValVT().getStoreSize();
1810 
1811   int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, true);
1812 
1813   // Create load nodes to retrieve arguments from the stack.
1814   SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1815   SDValue ArgValue;
1816 
1817   // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT)
1818   ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
1819   MVT MemVT = VA.getValVT();
1820 
1821   switch (VA.getLocInfo()) {
1822   default:
1823     break;
1824   case CCValAssign::BCvt:
1825     MemVT = VA.getLocVT();
1826     break;
1827   case CCValAssign::SExt:
1828     ExtType = ISD::SEXTLOAD;
1829     break;
1830   case CCValAssign::ZExt:
1831     ExtType = ISD::ZEXTLOAD;
1832     break;
1833   case CCValAssign::AExt:
1834     ExtType = ISD::EXTLOAD;
1835     break;
1836   }
1837 
1838   ArgValue = DAG.getExtLoad(
1839     ExtType, SL, VA.getLocVT(), Chain, FIN,
1840     MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
1841     MemVT);
1842   return ArgValue;
1843 }
1844 
1845 SDValue SITargetLowering::getPreloadedValue(SelectionDAG &DAG,
1846   const SIMachineFunctionInfo &MFI,
1847   EVT VT,
1848   AMDGPUFunctionArgInfo::PreloadedValue PVID) const {
1849   const ArgDescriptor *Reg;
1850   const TargetRegisterClass *RC;
1851   LLT Ty;
1852 
1853   std::tie(Reg, RC, Ty) = MFI.getPreloadedValue(PVID);
1854   if (!Reg) {
1855     if (PVID == AMDGPUFunctionArgInfo::PreloadedValue::KERNARG_SEGMENT_PTR) {
1856       // It's possible for a kernarg intrinsic call to appear in a kernel with
1857       // no allocated segment, in which case we do not add the user sgpr
1858       // argument, so just return null.
1859       return DAG.getConstant(0, SDLoc(), VT);
1860     }
1861 
1862     // It's undefined behavior if a function marked with the amdgpu-no-*
1863     // attributes uses the corresponding intrinsic.
1864     return DAG.getUNDEF(VT);
1865   }
1866 
1867   return CreateLiveInRegister(DAG, RC, Reg->getRegister(), VT);
1868 }
1869 
1870 static void processPSInputArgs(SmallVectorImpl<ISD::InputArg> &Splits,
1871                                CallingConv::ID CallConv,
1872                                ArrayRef<ISD::InputArg> Ins, BitVector &Skipped,
1873                                FunctionType *FType,
1874                                SIMachineFunctionInfo *Info) {
1875   for (unsigned I = 0, E = Ins.size(), PSInputNum = 0; I != E; ++I) {
1876     const ISD::InputArg *Arg = &Ins[I];
1877 
1878     assert((!Arg->VT.isVector() || Arg->VT.getScalarSizeInBits() == 16) &&
1879            "vector type argument should have been split");
1880 
1881     // First check if it's a PS input addr.
1882     if (CallConv == CallingConv::AMDGPU_PS &&
1883         !Arg->Flags.isInReg() && PSInputNum <= 15) {
1884       bool SkipArg = !Arg->Used && !Info->isPSInputAllocated(PSInputNum);
1885 
1886       // Inconveniently only the first part of the split is marked as isSplit,
1887       // so skip to the end. We only want to increment PSInputNum once for the
1888       // entire split argument.
1889       if (Arg->Flags.isSplit()) {
1890         while (!Arg->Flags.isSplitEnd()) {
1891           assert((!Arg->VT.isVector() ||
1892                   Arg->VT.getScalarSizeInBits() == 16) &&
1893                  "unexpected vector split in ps argument type");
1894           if (!SkipArg)
1895             Splits.push_back(*Arg);
1896           Arg = &Ins[++I];
1897         }
1898       }
1899 
1900       if (SkipArg) {
1901         // We can safely skip PS inputs.
1902         Skipped.set(Arg->getOrigArgIndex());
1903         ++PSInputNum;
1904         continue;
1905       }
1906 
1907       Info->markPSInputAllocated(PSInputNum);
1908       if (Arg->Used)
1909         Info->markPSInputEnabled(PSInputNum);
1910 
1911       ++PSInputNum;
1912     }
1913 
1914     Splits.push_back(*Arg);
1915   }
1916 }
1917 
1918 // Allocate special inputs passed in VGPRs.
1919 void SITargetLowering::allocateSpecialEntryInputVGPRs(CCState &CCInfo,
1920                                                       MachineFunction &MF,
1921                                                       const SIRegisterInfo &TRI,
1922                                                       SIMachineFunctionInfo &Info) const {
1923   const LLT S32 = LLT::scalar(32);
1924   MachineRegisterInfo &MRI = MF.getRegInfo();
1925 
1926   if (Info.hasWorkItemIDX()) {
1927     Register Reg = AMDGPU::VGPR0;
1928     MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32);
1929 
1930     CCInfo.AllocateReg(Reg);
1931     unsigned Mask = (Subtarget->hasPackedTID() &&
1932                      Info.hasWorkItemIDY()) ? 0x3ff : ~0u;
1933     Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg, Mask));
1934   }
1935 
1936   if (Info.hasWorkItemIDY()) {
1937     assert(Info.hasWorkItemIDX());
1938     if (Subtarget->hasPackedTID()) {
1939       Info.setWorkItemIDY(ArgDescriptor::createRegister(AMDGPU::VGPR0,
1940                                                         0x3ff << 10));
1941     } else {
1942       unsigned Reg = AMDGPU::VGPR1;
1943       MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32);
1944 
1945       CCInfo.AllocateReg(Reg);
1946       Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg));
1947     }
1948   }
1949 
1950   if (Info.hasWorkItemIDZ()) {
1951     assert(Info.hasWorkItemIDX() && Info.hasWorkItemIDY());
1952     if (Subtarget->hasPackedTID()) {
1953       Info.setWorkItemIDZ(ArgDescriptor::createRegister(AMDGPU::VGPR0,
1954                                                         0x3ff << 20));
1955     } else {
1956       unsigned Reg = AMDGPU::VGPR2;
1957       MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32);
1958 
1959       CCInfo.AllocateReg(Reg);
1960       Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg));
1961     }
1962   }
1963 }
1964 
1965 // Try to allocate a VGPR at the end of the argument list, or if no argument
1966 // VGPRs are left allocating a stack slot.
1967 // If \p Mask is is given it indicates bitfield position in the register.
1968 // If \p Arg is given use it with new ]p Mask instead of allocating new.
1969 static ArgDescriptor allocateVGPR32Input(CCState &CCInfo, unsigned Mask = ~0u,
1970                                          ArgDescriptor Arg = ArgDescriptor()) {
1971   if (Arg.isSet())
1972     return ArgDescriptor::createArg(Arg, Mask);
1973 
1974   ArrayRef<MCPhysReg> ArgVGPRs = ArrayRef(AMDGPU::VGPR_32RegClass.begin(), 32);
1975   unsigned RegIdx = CCInfo.getFirstUnallocated(ArgVGPRs);
1976   if (RegIdx == ArgVGPRs.size()) {
1977     // Spill to stack required.
1978     int64_t Offset = CCInfo.AllocateStack(4, Align(4));
1979 
1980     return ArgDescriptor::createStack(Offset, Mask);
1981   }
1982 
1983   unsigned Reg = ArgVGPRs[RegIdx];
1984   Reg = CCInfo.AllocateReg(Reg);
1985   assert(Reg != AMDGPU::NoRegister);
1986 
1987   MachineFunction &MF = CCInfo.getMachineFunction();
1988   Register LiveInVReg = MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
1989   MF.getRegInfo().setType(LiveInVReg, LLT::scalar(32));
1990   return ArgDescriptor::createRegister(Reg, Mask);
1991 }
1992 
1993 static ArgDescriptor allocateSGPR32InputImpl(CCState &CCInfo,
1994                                              const TargetRegisterClass *RC,
1995                                              unsigned NumArgRegs) {
1996   ArrayRef<MCPhysReg> ArgSGPRs = ArrayRef(RC->begin(), 32);
1997   unsigned RegIdx = CCInfo.getFirstUnallocated(ArgSGPRs);
1998   if (RegIdx == ArgSGPRs.size())
1999     report_fatal_error("ran out of SGPRs for arguments");
2000 
2001   unsigned Reg = ArgSGPRs[RegIdx];
2002   Reg = CCInfo.AllocateReg(Reg);
2003   assert(Reg != AMDGPU::NoRegister);
2004 
2005   MachineFunction &MF = CCInfo.getMachineFunction();
2006   MF.addLiveIn(Reg, RC);
2007   return ArgDescriptor::createRegister(Reg);
2008 }
2009 
2010 // If this has a fixed position, we still should allocate the register in the
2011 // CCInfo state. Technically we could get away with this for values passed
2012 // outside of the normal argument range.
2013 static void allocateFixedSGPRInputImpl(CCState &CCInfo,
2014                                        const TargetRegisterClass *RC,
2015                                        MCRegister Reg) {
2016   Reg = CCInfo.AllocateReg(Reg);
2017   assert(Reg != AMDGPU::NoRegister);
2018   MachineFunction &MF = CCInfo.getMachineFunction();
2019   MF.addLiveIn(Reg, RC);
2020 }
2021 
2022 static void allocateSGPR32Input(CCState &CCInfo, ArgDescriptor &Arg) {
2023   if (Arg) {
2024     allocateFixedSGPRInputImpl(CCInfo, &AMDGPU::SGPR_32RegClass,
2025                                Arg.getRegister());
2026   } else
2027     Arg = allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_32RegClass, 32);
2028 }
2029 
2030 static void allocateSGPR64Input(CCState &CCInfo, ArgDescriptor &Arg) {
2031   if (Arg) {
2032     allocateFixedSGPRInputImpl(CCInfo, &AMDGPU::SGPR_64RegClass,
2033                                Arg.getRegister());
2034   } else
2035     Arg = allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_64RegClass, 16);
2036 }
2037 
2038 /// Allocate implicit function VGPR arguments at the end of allocated user
2039 /// arguments.
2040 void SITargetLowering::allocateSpecialInputVGPRs(
2041   CCState &CCInfo, MachineFunction &MF,
2042   const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const {
2043   const unsigned Mask = 0x3ff;
2044   ArgDescriptor Arg;
2045 
2046   if (Info.hasWorkItemIDX()) {
2047     Arg = allocateVGPR32Input(CCInfo, Mask);
2048     Info.setWorkItemIDX(Arg);
2049   }
2050 
2051   if (Info.hasWorkItemIDY()) {
2052     Arg = allocateVGPR32Input(CCInfo, Mask << 10, Arg);
2053     Info.setWorkItemIDY(Arg);
2054   }
2055 
2056   if (Info.hasWorkItemIDZ())
2057     Info.setWorkItemIDZ(allocateVGPR32Input(CCInfo, Mask << 20, Arg));
2058 }
2059 
2060 /// Allocate implicit function VGPR arguments in fixed registers.
2061 void SITargetLowering::allocateSpecialInputVGPRsFixed(
2062   CCState &CCInfo, MachineFunction &MF,
2063   const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const {
2064   Register Reg = CCInfo.AllocateReg(AMDGPU::VGPR31);
2065   if (!Reg)
2066     report_fatal_error("failed to allocated VGPR for implicit arguments");
2067 
2068   const unsigned Mask = 0x3ff;
2069   Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg, Mask));
2070   Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg, Mask << 10));
2071   Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg, Mask << 20));
2072 }
2073 
2074 void SITargetLowering::allocateSpecialInputSGPRs(
2075   CCState &CCInfo,
2076   MachineFunction &MF,
2077   const SIRegisterInfo &TRI,
2078   SIMachineFunctionInfo &Info) const {
2079   auto &ArgInfo = Info.getArgInfo();
2080 
2081   // TODO: Unify handling with private memory pointers.
2082   if (Info.hasDispatchPtr())
2083     allocateSGPR64Input(CCInfo, ArgInfo.DispatchPtr);
2084 
2085   if (Info.hasQueuePtr() && AMDGPU::getAmdhsaCodeObjectVersion() < 5)
2086     allocateSGPR64Input(CCInfo, ArgInfo.QueuePtr);
2087 
2088   // Implicit arg ptr takes the place of the kernarg segment pointer. This is a
2089   // constant offset from the kernarg segment.
2090   if (Info.hasImplicitArgPtr())
2091     allocateSGPR64Input(CCInfo, ArgInfo.ImplicitArgPtr);
2092 
2093   if (Info.hasDispatchID())
2094     allocateSGPR64Input(CCInfo, ArgInfo.DispatchID);
2095 
2096   // flat_scratch_init is not applicable for non-kernel functions.
2097 
2098   if (Info.hasWorkGroupIDX())
2099     allocateSGPR32Input(CCInfo, ArgInfo.WorkGroupIDX);
2100 
2101   if (Info.hasWorkGroupIDY())
2102     allocateSGPR32Input(CCInfo, ArgInfo.WorkGroupIDY);
2103 
2104   if (Info.hasWorkGroupIDZ())
2105     allocateSGPR32Input(CCInfo, ArgInfo.WorkGroupIDZ);
2106 
2107   if (Info.hasLDSKernelId())
2108     allocateSGPR32Input(CCInfo, ArgInfo.LDSKernelId);
2109 }
2110 
2111 // Allocate special inputs passed in user SGPRs.
2112 void SITargetLowering::allocateHSAUserSGPRs(CCState &CCInfo,
2113                                             MachineFunction &MF,
2114                                             const SIRegisterInfo &TRI,
2115                                             SIMachineFunctionInfo &Info) const {
2116   if (Info.hasImplicitBufferPtr()) {
2117     Register ImplicitBufferPtrReg = Info.addImplicitBufferPtr(TRI);
2118     MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass);
2119     CCInfo.AllocateReg(ImplicitBufferPtrReg);
2120   }
2121 
2122   // FIXME: How should these inputs interact with inreg / custom SGPR inputs?
2123   if (Info.hasPrivateSegmentBuffer()) {
2124     Register PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI);
2125     MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass);
2126     CCInfo.AllocateReg(PrivateSegmentBufferReg);
2127   }
2128 
2129   if (Info.hasDispatchPtr()) {
2130     Register DispatchPtrReg = Info.addDispatchPtr(TRI);
2131     MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass);
2132     CCInfo.AllocateReg(DispatchPtrReg);
2133   }
2134 
2135   if (Info.hasQueuePtr() && AMDGPU::getAmdhsaCodeObjectVersion() < 5) {
2136     Register QueuePtrReg = Info.addQueuePtr(TRI);
2137     MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass);
2138     CCInfo.AllocateReg(QueuePtrReg);
2139   }
2140 
2141   if (Info.hasKernargSegmentPtr()) {
2142     MachineRegisterInfo &MRI = MF.getRegInfo();
2143     Register InputPtrReg = Info.addKernargSegmentPtr(TRI);
2144     CCInfo.AllocateReg(InputPtrReg);
2145 
2146     Register VReg = MF.addLiveIn(InputPtrReg, &AMDGPU::SGPR_64RegClass);
2147     MRI.setType(VReg, LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64));
2148   }
2149 
2150   if (Info.hasDispatchID()) {
2151     Register DispatchIDReg = Info.addDispatchID(TRI);
2152     MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass);
2153     CCInfo.AllocateReg(DispatchIDReg);
2154   }
2155 
2156   if (Info.hasFlatScratchInit() && !getSubtarget()->isAmdPalOS()) {
2157     Register FlatScratchInitReg = Info.addFlatScratchInit(TRI);
2158     MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass);
2159     CCInfo.AllocateReg(FlatScratchInitReg);
2160   }
2161 
2162   if (Info.hasLDSKernelId()) {
2163     Register Reg = Info.addLDSKernelId();
2164     MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2165     CCInfo.AllocateReg(Reg);
2166   }
2167 
2168   // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read
2169   // these from the dispatch pointer.
2170 }
2171 
2172 // Allocate special input registers that are initialized per-wave.
2173 void SITargetLowering::allocateSystemSGPRs(CCState &CCInfo,
2174                                            MachineFunction &MF,
2175                                            SIMachineFunctionInfo &Info,
2176                                            CallingConv::ID CallConv,
2177                                            bool IsShader) const {
2178   if (Subtarget->hasUserSGPRInit16Bug() && !IsShader) {
2179     // Note: user SGPRs are handled by the front-end for graphics shaders
2180     // Pad up the used user SGPRs with dead inputs.
2181     unsigned CurrentUserSGPRs = Info.getNumUserSGPRs();
2182 
2183     // Note we do not count the PrivateSegmentWaveByteOffset. We do not want to
2184     // rely on it to reach 16 since if we end up having no stack usage, it will
2185     // not really be added.
2186     unsigned NumRequiredSystemSGPRs = Info.hasWorkGroupIDX() +
2187                                       Info.hasWorkGroupIDY() +
2188                                       Info.hasWorkGroupIDZ() +
2189                                       Info.hasWorkGroupInfo();
2190     for (unsigned i = NumRequiredSystemSGPRs + CurrentUserSGPRs; i < 16; ++i) {
2191       Register Reg = Info.addReservedUserSGPR();
2192       MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2193       CCInfo.AllocateReg(Reg);
2194     }
2195   }
2196 
2197   if (Info.hasWorkGroupIDX()) {
2198     Register Reg = Info.addWorkGroupIDX();
2199     MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2200     CCInfo.AllocateReg(Reg);
2201   }
2202 
2203   if (Info.hasWorkGroupIDY()) {
2204     Register Reg = Info.addWorkGroupIDY();
2205     MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2206     CCInfo.AllocateReg(Reg);
2207   }
2208 
2209   if (Info.hasWorkGroupIDZ()) {
2210     Register Reg = Info.addWorkGroupIDZ();
2211     MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2212     CCInfo.AllocateReg(Reg);
2213   }
2214 
2215   if (Info.hasWorkGroupInfo()) {
2216     Register Reg = Info.addWorkGroupInfo();
2217     MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2218     CCInfo.AllocateReg(Reg);
2219   }
2220 
2221   if (Info.hasPrivateSegmentWaveByteOffset()) {
2222     // Scratch wave offset passed in system SGPR.
2223     unsigned PrivateSegmentWaveByteOffsetReg;
2224 
2225     if (IsShader) {
2226       PrivateSegmentWaveByteOffsetReg =
2227         Info.getPrivateSegmentWaveByteOffsetSystemSGPR();
2228 
2229       // This is true if the scratch wave byte offset doesn't have a fixed
2230       // location.
2231       if (PrivateSegmentWaveByteOffsetReg == AMDGPU::NoRegister) {
2232         PrivateSegmentWaveByteOffsetReg = findFirstFreeSGPR(CCInfo);
2233         Info.setPrivateSegmentWaveByteOffset(PrivateSegmentWaveByteOffsetReg);
2234       }
2235     } else
2236       PrivateSegmentWaveByteOffsetReg = Info.addPrivateSegmentWaveByteOffset();
2237 
2238     MF.addLiveIn(PrivateSegmentWaveByteOffsetReg, &AMDGPU::SGPR_32RegClass);
2239     CCInfo.AllocateReg(PrivateSegmentWaveByteOffsetReg);
2240   }
2241 
2242   assert(!Subtarget->hasUserSGPRInit16Bug() || IsShader ||
2243          Info.getNumPreloadedSGPRs() >= 16);
2244 }
2245 
2246 static void reservePrivateMemoryRegs(const TargetMachine &TM,
2247                                      MachineFunction &MF,
2248                                      const SIRegisterInfo &TRI,
2249                                      SIMachineFunctionInfo &Info) {
2250   // Now that we've figured out where the scratch register inputs are, see if
2251   // should reserve the arguments and use them directly.
2252   MachineFrameInfo &MFI = MF.getFrameInfo();
2253   bool HasStackObjects = MFI.hasStackObjects();
2254   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
2255 
2256   // Record that we know we have non-spill stack objects so we don't need to
2257   // check all stack objects later.
2258   if (HasStackObjects)
2259     Info.setHasNonSpillStackObjects(true);
2260 
2261   // Everything live out of a block is spilled with fast regalloc, so it's
2262   // almost certain that spilling will be required.
2263   if (TM.getOptLevel() == CodeGenOpt::None)
2264     HasStackObjects = true;
2265 
2266   // For now assume stack access is needed in any callee functions, so we need
2267   // the scratch registers to pass in.
2268   bool RequiresStackAccess = HasStackObjects || MFI.hasCalls();
2269 
2270   if (!ST.enableFlatScratch()) {
2271     if (RequiresStackAccess && ST.isAmdHsaOrMesa(MF.getFunction())) {
2272       // If we have stack objects, we unquestionably need the private buffer
2273       // resource. For the Code Object V2 ABI, this will be the first 4 user
2274       // SGPR inputs. We can reserve those and use them directly.
2275 
2276       Register PrivateSegmentBufferReg =
2277           Info.getPreloadedReg(AMDGPUFunctionArgInfo::PRIVATE_SEGMENT_BUFFER);
2278       Info.setScratchRSrcReg(PrivateSegmentBufferReg);
2279     } else {
2280       unsigned ReservedBufferReg = TRI.reservedPrivateSegmentBufferReg(MF);
2281       // We tentatively reserve the last registers (skipping the last registers
2282       // which may contain VCC, FLAT_SCR, and XNACK). After register allocation,
2283       // we'll replace these with the ones immediately after those which were
2284       // really allocated. In the prologue copies will be inserted from the
2285       // argument to these reserved registers.
2286 
2287       // Without HSA, relocations are used for the scratch pointer and the
2288       // buffer resource setup is always inserted in the prologue. Scratch wave
2289       // offset is still in an input SGPR.
2290       Info.setScratchRSrcReg(ReservedBufferReg);
2291     }
2292   }
2293 
2294   MachineRegisterInfo &MRI = MF.getRegInfo();
2295 
2296   // For entry functions we have to set up the stack pointer if we use it,
2297   // whereas non-entry functions get this "for free". This means there is no
2298   // intrinsic advantage to using S32 over S34 in cases where we do not have
2299   // calls but do need a frame pointer (i.e. if we are requested to have one
2300   // because frame pointer elimination is disabled). To keep things simple we
2301   // only ever use S32 as the call ABI stack pointer, and so using it does not
2302   // imply we need a separate frame pointer.
2303   //
2304   // Try to use s32 as the SP, but move it if it would interfere with input
2305   // arguments. This won't work with calls though.
2306   //
2307   // FIXME: Move SP to avoid any possible inputs, or find a way to spill input
2308   // registers.
2309   if (!MRI.isLiveIn(AMDGPU::SGPR32)) {
2310     Info.setStackPtrOffsetReg(AMDGPU::SGPR32);
2311   } else {
2312     assert(AMDGPU::isShader(MF.getFunction().getCallingConv()));
2313 
2314     if (MFI.hasCalls())
2315       report_fatal_error("call in graphics shader with too many input SGPRs");
2316 
2317     for (unsigned Reg : AMDGPU::SGPR_32RegClass) {
2318       if (!MRI.isLiveIn(Reg)) {
2319         Info.setStackPtrOffsetReg(Reg);
2320         break;
2321       }
2322     }
2323 
2324     if (Info.getStackPtrOffsetReg() == AMDGPU::SP_REG)
2325       report_fatal_error("failed to find register for SP");
2326   }
2327 
2328   // hasFP should be accurate for entry functions even before the frame is
2329   // finalized, because it does not rely on the known stack size, only
2330   // properties like whether variable sized objects are present.
2331   if (ST.getFrameLowering()->hasFP(MF)) {
2332     Info.setFrameOffsetReg(AMDGPU::SGPR33);
2333   }
2334 }
2335 
2336 bool SITargetLowering::supportSplitCSR(MachineFunction *MF) const {
2337   const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>();
2338   return !Info->isEntryFunction();
2339 }
2340 
2341 void SITargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
2342 
2343 }
2344 
2345 void SITargetLowering::insertCopiesSplitCSR(
2346   MachineBasicBlock *Entry,
2347   const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
2348   const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2349 
2350   const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
2351   if (!IStart)
2352     return;
2353 
2354   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
2355   MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
2356   MachineBasicBlock::iterator MBBI = Entry->begin();
2357   for (const MCPhysReg *I = IStart; *I; ++I) {
2358     const TargetRegisterClass *RC = nullptr;
2359     if (AMDGPU::SReg_64RegClass.contains(*I))
2360       RC = &AMDGPU::SGPR_64RegClass;
2361     else if (AMDGPU::SReg_32RegClass.contains(*I))
2362       RC = &AMDGPU::SGPR_32RegClass;
2363     else
2364       llvm_unreachable("Unexpected register class in CSRsViaCopy!");
2365 
2366     Register NewVR = MRI->createVirtualRegister(RC);
2367     // Create copy from CSR to a virtual register.
2368     Entry->addLiveIn(*I);
2369     BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
2370       .addReg(*I);
2371 
2372     // Insert the copy-back instructions right before the terminator.
2373     for (auto *Exit : Exits)
2374       BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
2375               TII->get(TargetOpcode::COPY), *I)
2376         .addReg(NewVR);
2377   }
2378 }
2379 
2380 SDValue SITargetLowering::LowerFormalArguments(
2381     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
2382     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
2383     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
2384   const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2385 
2386   MachineFunction &MF = DAG.getMachineFunction();
2387   const Function &Fn = MF.getFunction();
2388   FunctionType *FType = MF.getFunction().getFunctionType();
2389   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
2390 
2391   if (Subtarget->isAmdHsaOS() && AMDGPU::isGraphics(CallConv)) {
2392     DiagnosticInfoUnsupported NoGraphicsHSA(
2393         Fn, "unsupported non-compute shaders with HSA", DL.getDebugLoc());
2394     DAG.getContext()->diagnose(NoGraphicsHSA);
2395     return DAG.getEntryNode();
2396   }
2397 
2398   Info->allocateKnownAddressLDSGlobal(Fn);
2399 
2400   SmallVector<ISD::InputArg, 16> Splits;
2401   SmallVector<CCValAssign, 16> ArgLocs;
2402   BitVector Skipped(Ins.size());
2403   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
2404                  *DAG.getContext());
2405 
2406   bool IsGraphics = AMDGPU::isGraphics(CallConv);
2407   bool IsKernel = AMDGPU::isKernel(CallConv);
2408   bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CallConv);
2409 
2410   if (IsGraphics) {
2411     assert(!Info->hasDispatchPtr() && !Info->hasKernargSegmentPtr() &&
2412            (!Info->hasFlatScratchInit() || Subtarget->enableFlatScratch()) &&
2413            !Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() &&
2414            !Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() &&
2415            !Info->hasLDSKernelId() && !Info->hasWorkItemIDX() &&
2416            !Info->hasWorkItemIDY() && !Info->hasWorkItemIDZ());
2417   }
2418 
2419   if (CallConv == CallingConv::AMDGPU_PS) {
2420     processPSInputArgs(Splits, CallConv, Ins, Skipped, FType, Info);
2421 
2422     // At least one interpolation mode must be enabled or else the GPU will
2423     // hang.
2424     //
2425     // Check PSInputAddr instead of PSInputEnable. The idea is that if the user
2426     // set PSInputAddr, the user wants to enable some bits after the compilation
2427     // based on run-time states. Since we can't know what the final PSInputEna
2428     // will look like, so we shouldn't do anything here and the user should take
2429     // responsibility for the correct programming.
2430     //
2431     // Otherwise, the following restrictions apply:
2432     // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled.
2433     // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be
2434     //   enabled too.
2435     if ((Info->getPSInputAddr() & 0x7F) == 0 ||
2436         ((Info->getPSInputAddr() & 0xF) == 0 && Info->isPSInputAllocated(11))) {
2437       CCInfo.AllocateReg(AMDGPU::VGPR0);
2438       CCInfo.AllocateReg(AMDGPU::VGPR1);
2439       Info->markPSInputAllocated(0);
2440       Info->markPSInputEnabled(0);
2441     }
2442     if (Subtarget->isAmdPalOS()) {
2443       // For isAmdPalOS, the user does not enable some bits after compilation
2444       // based on run-time states; the register values being generated here are
2445       // the final ones set in hardware. Therefore we need to apply the
2446       // workaround to PSInputAddr and PSInputEnable together.  (The case where
2447       // a bit is set in PSInputAddr but not PSInputEnable is where the
2448       // frontend set up an input arg for a particular interpolation mode, but
2449       // nothing uses that input arg. Really we should have an earlier pass
2450       // that removes such an arg.)
2451       unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable();
2452       if ((PsInputBits & 0x7F) == 0 ||
2453           ((PsInputBits & 0xF) == 0 && (PsInputBits >> 11 & 1)))
2454         Info->markPSInputEnabled(countTrailingZeros(Info->getPSInputAddr()));
2455     }
2456   } else if (IsKernel) {
2457     assert(Info->hasWorkGroupIDX() && Info->hasWorkItemIDX());
2458   } else {
2459     Splits.append(Ins.begin(), Ins.end());
2460   }
2461 
2462   if (IsEntryFunc) {
2463     allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info);
2464     allocateHSAUserSGPRs(CCInfo, MF, *TRI, *Info);
2465   } else if (!IsGraphics) {
2466     // For the fixed ABI, pass workitem IDs in the last argument register.
2467     allocateSpecialInputVGPRsFixed(CCInfo, MF, *TRI, *Info);
2468   }
2469 
2470   if (IsKernel) {
2471     analyzeFormalArgumentsCompute(CCInfo, Ins);
2472   } else {
2473     CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, isVarArg);
2474     CCInfo.AnalyzeFormalArguments(Splits, AssignFn);
2475   }
2476 
2477   SmallVector<SDValue, 16> Chains;
2478 
2479   // FIXME: This is the minimum kernel argument alignment. We should improve
2480   // this to the maximum alignment of the arguments.
2481   //
2482   // FIXME: Alignment of explicit arguments totally broken with non-0 explicit
2483   // kern arg offset.
2484   const Align KernelArgBaseAlign = Align(16);
2485 
2486   for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) {
2487     const ISD::InputArg &Arg = Ins[i];
2488     if (Arg.isOrigArg() && Skipped[Arg.getOrigArgIndex()]) {
2489       InVals.push_back(DAG.getUNDEF(Arg.VT));
2490       continue;
2491     }
2492 
2493     CCValAssign &VA = ArgLocs[ArgIdx++];
2494     MVT VT = VA.getLocVT();
2495 
2496     if (IsEntryFunc && VA.isMemLoc()) {
2497       VT = Ins[i].VT;
2498       EVT MemVT = VA.getLocVT();
2499 
2500       const uint64_t Offset = VA.getLocMemOffset();
2501       Align Alignment = commonAlignment(KernelArgBaseAlign, Offset);
2502 
2503       if (Arg.Flags.isByRef()) {
2504         SDValue Ptr = lowerKernArgParameterPtr(DAG, DL, Chain, Offset);
2505 
2506         const GCNTargetMachine &TM =
2507             static_cast<const GCNTargetMachine &>(getTargetMachine());
2508         if (!TM.isNoopAddrSpaceCast(AMDGPUAS::CONSTANT_ADDRESS,
2509                                     Arg.Flags.getPointerAddrSpace())) {
2510           Ptr = DAG.getAddrSpaceCast(DL, VT, Ptr, AMDGPUAS::CONSTANT_ADDRESS,
2511                                      Arg.Flags.getPointerAddrSpace());
2512         }
2513 
2514         InVals.push_back(Ptr);
2515         continue;
2516       }
2517 
2518       SDValue Arg = lowerKernargMemParameter(
2519         DAG, VT, MemVT, DL, Chain, Offset, Alignment, Ins[i].Flags.isSExt(), &Ins[i]);
2520       Chains.push_back(Arg.getValue(1));
2521 
2522       auto *ParamTy =
2523         dyn_cast<PointerType>(FType->getParamType(Ins[i].getOrigArgIndex()));
2524       if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS &&
2525           ParamTy && (ParamTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
2526                       ParamTy->getAddressSpace() == AMDGPUAS::REGION_ADDRESS)) {
2527         // On SI local pointers are just offsets into LDS, so they are always
2528         // less than 16-bits.  On CI and newer they could potentially be
2529         // real pointers, so we can't guarantee their size.
2530         Arg = DAG.getNode(ISD::AssertZext, DL, Arg.getValueType(), Arg,
2531                           DAG.getValueType(MVT::i16));
2532       }
2533 
2534       InVals.push_back(Arg);
2535       continue;
2536     } else if (!IsEntryFunc && VA.isMemLoc()) {
2537       SDValue Val = lowerStackParameter(DAG, VA, DL, Chain, Arg);
2538       InVals.push_back(Val);
2539       if (!Arg.Flags.isByVal())
2540         Chains.push_back(Val.getValue(1));
2541       continue;
2542     }
2543 
2544     assert(VA.isRegLoc() && "Parameter must be in a register!");
2545 
2546     Register Reg = VA.getLocReg();
2547     const TargetRegisterClass *RC = nullptr;
2548     if (AMDGPU::VGPR_32RegClass.contains(Reg))
2549       RC = &AMDGPU::VGPR_32RegClass;
2550     else if (AMDGPU::SGPR_32RegClass.contains(Reg))
2551       RC = &AMDGPU::SGPR_32RegClass;
2552     else
2553       llvm_unreachable("Unexpected register class in LowerFormalArguments!");
2554     EVT ValVT = VA.getValVT();
2555 
2556     Reg = MF.addLiveIn(Reg, RC);
2557     SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT);
2558 
2559     if (Arg.Flags.isSRet()) {
2560       // The return object should be reasonably addressable.
2561 
2562       // FIXME: This helps when the return is a real sret. If it is a
2563       // automatically inserted sret (i.e. CanLowerReturn returns false), an
2564       // extra copy is inserted in SelectionDAGBuilder which obscures this.
2565       unsigned NumBits
2566         = 32 - getSubtarget()->getKnownHighZeroBitsForFrameIndex();
2567       Val = DAG.getNode(ISD::AssertZext, DL, VT, Val,
2568         DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), NumBits)));
2569     }
2570 
2571     // If this is an 8 or 16-bit value, it is really passed promoted
2572     // to 32 bits. Insert an assert[sz]ext to capture this, then
2573     // truncate to the right size.
2574     switch (VA.getLocInfo()) {
2575     case CCValAssign::Full:
2576       break;
2577     case CCValAssign::BCvt:
2578       Val = DAG.getNode(ISD::BITCAST, DL, ValVT, Val);
2579       break;
2580     case CCValAssign::SExt:
2581       Val = DAG.getNode(ISD::AssertSext, DL, VT, Val,
2582                         DAG.getValueType(ValVT));
2583       Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
2584       break;
2585     case CCValAssign::ZExt:
2586       Val = DAG.getNode(ISD::AssertZext, DL, VT, Val,
2587                         DAG.getValueType(ValVT));
2588       Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
2589       break;
2590     case CCValAssign::AExt:
2591       Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
2592       break;
2593     default:
2594       llvm_unreachable("Unknown loc info!");
2595     }
2596 
2597     InVals.push_back(Val);
2598   }
2599 
2600   // Start adding system SGPRs.
2601   if (IsEntryFunc) {
2602     allocateSystemSGPRs(CCInfo, MF, *Info, CallConv, IsGraphics);
2603   } else {
2604     CCInfo.AllocateReg(Info->getScratchRSrcReg());
2605     if (!IsGraphics)
2606       allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info);
2607   }
2608 
2609   auto &ArgUsageInfo =
2610     DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>();
2611   ArgUsageInfo.setFuncArgInfo(Fn, Info->getArgInfo());
2612 
2613   unsigned StackArgSize = CCInfo.getNextStackOffset();
2614   Info->setBytesInStackArgArea(StackArgSize);
2615 
2616   return Chains.empty() ? Chain :
2617     DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
2618 }
2619 
2620 // TODO: If return values can't fit in registers, we should return as many as
2621 // possible in registers before passing on stack.
2622 bool SITargetLowering::CanLowerReturn(
2623   CallingConv::ID CallConv,
2624   MachineFunction &MF, bool IsVarArg,
2625   const SmallVectorImpl<ISD::OutputArg> &Outs,
2626   LLVMContext &Context) const {
2627   // Replacing returns with sret/stack usage doesn't make sense for shaders.
2628   // FIXME: Also sort of a workaround for custom vector splitting in LowerReturn
2629   // for shaders. Vector types should be explicitly handled by CC.
2630   if (AMDGPU::isEntryFunctionCC(CallConv))
2631     return true;
2632 
2633   SmallVector<CCValAssign, 16> RVLocs;
2634   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
2635   return CCInfo.CheckReturn(Outs, CCAssignFnForReturn(CallConv, IsVarArg));
2636 }
2637 
2638 SDValue
2639 SITargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
2640                               bool isVarArg,
2641                               const SmallVectorImpl<ISD::OutputArg> &Outs,
2642                               const SmallVectorImpl<SDValue> &OutVals,
2643                               const SDLoc &DL, SelectionDAG &DAG) const {
2644   MachineFunction &MF = DAG.getMachineFunction();
2645   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
2646 
2647   if (AMDGPU::isKernel(CallConv)) {
2648     return AMDGPUTargetLowering::LowerReturn(Chain, CallConv, isVarArg, Outs,
2649                                              OutVals, DL, DAG);
2650   }
2651 
2652   bool IsShader = AMDGPU::isShader(CallConv);
2653 
2654   Info->setIfReturnsVoid(Outs.empty());
2655   bool IsWaveEnd = Info->returnsVoid() && IsShader;
2656 
2657   // CCValAssign - represent the assignment of the return value to a location.
2658   SmallVector<CCValAssign, 48> RVLocs;
2659   SmallVector<ISD::OutputArg, 48> Splits;
2660 
2661   // CCState - Info about the registers and stack slots.
2662   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
2663                  *DAG.getContext());
2664 
2665   // Analyze outgoing return values.
2666   CCInfo.AnalyzeReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg));
2667 
2668   SDValue Flag;
2669   SmallVector<SDValue, 48> RetOps;
2670   RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
2671 
2672   // Copy the result values into the output registers.
2673   for (unsigned I = 0, RealRVLocIdx = 0, E = RVLocs.size(); I != E;
2674        ++I, ++RealRVLocIdx) {
2675     CCValAssign &VA = RVLocs[I];
2676     assert(VA.isRegLoc() && "Can only return in registers!");
2677     // TODO: Partially return in registers if return values don't fit.
2678     SDValue Arg = OutVals[RealRVLocIdx];
2679 
2680     // Copied from other backends.
2681     switch (VA.getLocInfo()) {
2682     case CCValAssign::Full:
2683       break;
2684     case CCValAssign::BCvt:
2685       Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
2686       break;
2687     case CCValAssign::SExt:
2688       Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
2689       break;
2690     case CCValAssign::ZExt:
2691       Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
2692       break;
2693     case CCValAssign::AExt:
2694       Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
2695       break;
2696     default:
2697       llvm_unreachable("Unknown loc info!");
2698     }
2699 
2700     Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag);
2701     Flag = Chain.getValue(1);
2702     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2703   }
2704 
2705   // FIXME: Does sret work properly?
2706   if (!Info->isEntryFunction()) {
2707     const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
2708     const MCPhysReg *I =
2709       TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
2710     if (I) {
2711       for (; *I; ++I) {
2712         if (AMDGPU::SReg_64RegClass.contains(*I))
2713           RetOps.push_back(DAG.getRegister(*I, MVT::i64));
2714         else if (AMDGPU::SReg_32RegClass.contains(*I))
2715           RetOps.push_back(DAG.getRegister(*I, MVT::i32));
2716         else
2717           llvm_unreachable("Unexpected register class in CSRsViaCopy!");
2718       }
2719     }
2720   }
2721 
2722   // Update chain and glue.
2723   RetOps[0] = Chain;
2724   if (Flag.getNode())
2725     RetOps.push_back(Flag);
2726 
2727   unsigned Opc = AMDGPUISD::ENDPGM;
2728   if (!IsWaveEnd)
2729     Opc = IsShader ? AMDGPUISD::RETURN_TO_EPILOG : AMDGPUISD::RET_FLAG;
2730   return DAG.getNode(Opc, DL, MVT::Other, RetOps);
2731 }
2732 
2733 SDValue SITargetLowering::LowerCallResult(
2734     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg,
2735     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
2736     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool IsThisReturn,
2737     SDValue ThisVal) const {
2738   CCAssignFn *RetCC = CCAssignFnForReturn(CallConv, IsVarArg);
2739 
2740   // Assign locations to each value returned by this call.
2741   SmallVector<CCValAssign, 16> RVLocs;
2742   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
2743                  *DAG.getContext());
2744   CCInfo.AnalyzeCallResult(Ins, RetCC);
2745 
2746   // Copy all of the result registers out of their specified physreg.
2747   for (unsigned i = 0; i != RVLocs.size(); ++i) {
2748     CCValAssign VA = RVLocs[i];
2749     SDValue Val;
2750 
2751     if (VA.isRegLoc()) {
2752       Val = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag);
2753       Chain = Val.getValue(1);
2754       InFlag = Val.getValue(2);
2755     } else if (VA.isMemLoc()) {
2756       report_fatal_error("TODO: return values in memory");
2757     } else
2758       llvm_unreachable("unknown argument location type");
2759 
2760     switch (VA.getLocInfo()) {
2761     case CCValAssign::Full:
2762       break;
2763     case CCValAssign::BCvt:
2764       Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
2765       break;
2766     case CCValAssign::ZExt:
2767       Val = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Val,
2768                         DAG.getValueType(VA.getValVT()));
2769       Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
2770       break;
2771     case CCValAssign::SExt:
2772       Val = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Val,
2773                         DAG.getValueType(VA.getValVT()));
2774       Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
2775       break;
2776     case CCValAssign::AExt:
2777       Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
2778       break;
2779     default:
2780       llvm_unreachable("Unknown loc info!");
2781     }
2782 
2783     InVals.push_back(Val);
2784   }
2785 
2786   return Chain;
2787 }
2788 
2789 // Add code to pass special inputs required depending on used features separate
2790 // from the explicit user arguments present in the IR.
2791 void SITargetLowering::passSpecialInputs(
2792     CallLoweringInfo &CLI,
2793     CCState &CCInfo,
2794     const SIMachineFunctionInfo &Info,
2795     SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass,
2796     SmallVectorImpl<SDValue> &MemOpChains,
2797     SDValue Chain) const {
2798   // If we don't have a call site, this was a call inserted by
2799   // legalization. These can never use special inputs.
2800   if (!CLI.CB)
2801     return;
2802 
2803   SelectionDAG &DAG = CLI.DAG;
2804   const SDLoc &DL = CLI.DL;
2805   const Function &F = DAG.getMachineFunction().getFunction();
2806 
2807   const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
2808   const AMDGPUFunctionArgInfo &CallerArgInfo = Info.getArgInfo();
2809 
2810   const AMDGPUFunctionArgInfo *CalleeArgInfo
2811     = &AMDGPUArgumentUsageInfo::FixedABIFunctionInfo;
2812   if (const Function *CalleeFunc = CLI.CB->getCalledFunction()) {
2813     auto &ArgUsageInfo =
2814       DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>();
2815     CalleeArgInfo = &ArgUsageInfo.lookupFuncArgInfo(*CalleeFunc);
2816   }
2817 
2818   // TODO: Unify with private memory register handling. This is complicated by
2819   // the fact that at least in kernels, the input argument is not necessarily
2820   // in the same location as the input.
2821   static constexpr std::pair<AMDGPUFunctionArgInfo::PreloadedValue,
2822                              StringLiteral> ImplicitAttrs[] = {
2823     {AMDGPUFunctionArgInfo::DISPATCH_PTR, "amdgpu-no-dispatch-ptr"},
2824     {AMDGPUFunctionArgInfo::QUEUE_PTR, "amdgpu-no-queue-ptr" },
2825     {AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR, "amdgpu-no-implicitarg-ptr"},
2826     {AMDGPUFunctionArgInfo::DISPATCH_ID, "amdgpu-no-dispatch-id"},
2827     {AMDGPUFunctionArgInfo::WORKGROUP_ID_X, "amdgpu-no-workgroup-id-x"},
2828     {AMDGPUFunctionArgInfo::WORKGROUP_ID_Y,"amdgpu-no-workgroup-id-y"},
2829     {AMDGPUFunctionArgInfo::WORKGROUP_ID_Z,"amdgpu-no-workgroup-id-z"},
2830     {AMDGPUFunctionArgInfo::LDS_KERNEL_ID,"amdgpu-no-lds-kernel-id"},
2831   };
2832 
2833   for (auto Attr : ImplicitAttrs) {
2834     const ArgDescriptor *OutgoingArg;
2835     const TargetRegisterClass *ArgRC;
2836     LLT ArgTy;
2837 
2838     AMDGPUFunctionArgInfo::PreloadedValue InputID = Attr.first;
2839 
2840     // If the callee does not use the attribute value, skip copying the value.
2841     if (CLI.CB->hasFnAttr(Attr.second))
2842       continue;
2843 
2844     std::tie(OutgoingArg, ArgRC, ArgTy) =
2845         CalleeArgInfo->getPreloadedValue(InputID);
2846     if (!OutgoingArg)
2847       continue;
2848 
2849     const ArgDescriptor *IncomingArg;
2850     const TargetRegisterClass *IncomingArgRC;
2851     LLT Ty;
2852     std::tie(IncomingArg, IncomingArgRC, Ty) =
2853         CallerArgInfo.getPreloadedValue(InputID);
2854     assert(IncomingArgRC == ArgRC);
2855 
2856     // All special arguments are ints for now.
2857     EVT ArgVT = TRI->getSpillSize(*ArgRC) == 8 ? MVT::i64 : MVT::i32;
2858     SDValue InputReg;
2859 
2860     if (IncomingArg) {
2861       InputReg = loadInputValue(DAG, ArgRC, ArgVT, DL, *IncomingArg);
2862     } else if (InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR) {
2863       // The implicit arg ptr is special because it doesn't have a corresponding
2864       // input for kernels, and is computed from the kernarg segment pointer.
2865       InputReg = getImplicitArgPtr(DAG, DL);
2866     } else if (InputID == AMDGPUFunctionArgInfo::LDS_KERNEL_ID) {
2867       std::optional<uint32_t> Id =
2868           AMDGPUMachineFunction::getLDSKernelIdMetadata(F);
2869       if (Id.has_value()) {
2870         InputReg = DAG.getConstant(*Id, DL, ArgVT);
2871       } else {
2872         InputReg = DAG.getUNDEF(ArgVT);
2873       }
2874     } else {
2875       // We may have proven the input wasn't needed, although the ABI is
2876       // requiring it. We just need to allocate the register appropriately.
2877       InputReg = DAG.getUNDEF(ArgVT);
2878     }
2879 
2880     if (OutgoingArg->isRegister()) {
2881       RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg);
2882       if (!CCInfo.AllocateReg(OutgoingArg->getRegister()))
2883         report_fatal_error("failed to allocate implicit input argument");
2884     } else {
2885       unsigned SpecialArgOffset =
2886           CCInfo.AllocateStack(ArgVT.getStoreSize(), Align(4));
2887       SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg,
2888                                               SpecialArgOffset);
2889       MemOpChains.push_back(ArgStore);
2890     }
2891   }
2892 
2893   // Pack workitem IDs into a single register or pass it as is if already
2894   // packed.
2895   const ArgDescriptor *OutgoingArg;
2896   const TargetRegisterClass *ArgRC;
2897   LLT Ty;
2898 
2899   std::tie(OutgoingArg, ArgRC, Ty) =
2900       CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X);
2901   if (!OutgoingArg)
2902     std::tie(OutgoingArg, ArgRC, Ty) =
2903         CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y);
2904   if (!OutgoingArg)
2905     std::tie(OutgoingArg, ArgRC, Ty) =
2906         CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z);
2907   if (!OutgoingArg)
2908     return;
2909 
2910   const ArgDescriptor *IncomingArgX = std::get<0>(
2911       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X));
2912   const ArgDescriptor *IncomingArgY = std::get<0>(
2913       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y));
2914   const ArgDescriptor *IncomingArgZ = std::get<0>(
2915       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z));
2916 
2917   SDValue InputReg;
2918   SDLoc SL;
2919 
2920   const bool NeedWorkItemIDX = !CLI.CB->hasFnAttr("amdgpu-no-workitem-id-x");
2921   const bool NeedWorkItemIDY = !CLI.CB->hasFnAttr("amdgpu-no-workitem-id-y");
2922   const bool NeedWorkItemIDZ = !CLI.CB->hasFnAttr("amdgpu-no-workitem-id-z");
2923 
2924   // If incoming ids are not packed we need to pack them.
2925   if (IncomingArgX && !IncomingArgX->isMasked() && CalleeArgInfo->WorkItemIDX &&
2926       NeedWorkItemIDX) {
2927     if (Subtarget->getMaxWorkitemID(F, 0) != 0) {
2928       InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgX);
2929     } else {
2930       InputReg = DAG.getConstant(0, DL, MVT::i32);
2931     }
2932   }
2933 
2934   if (IncomingArgY && !IncomingArgY->isMasked() && CalleeArgInfo->WorkItemIDY &&
2935       NeedWorkItemIDY && Subtarget->getMaxWorkitemID(F, 1) != 0) {
2936     SDValue Y = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgY);
2937     Y = DAG.getNode(ISD::SHL, SL, MVT::i32, Y,
2938                     DAG.getShiftAmountConstant(10, MVT::i32, SL));
2939     InputReg = InputReg.getNode() ?
2940                  DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Y) : Y;
2941   }
2942 
2943   if (IncomingArgZ && !IncomingArgZ->isMasked() && CalleeArgInfo->WorkItemIDZ &&
2944       NeedWorkItemIDZ && Subtarget->getMaxWorkitemID(F, 2) != 0) {
2945     SDValue Z = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgZ);
2946     Z = DAG.getNode(ISD::SHL, SL, MVT::i32, Z,
2947                     DAG.getShiftAmountConstant(20, MVT::i32, SL));
2948     InputReg = InputReg.getNode() ?
2949                  DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Z) : Z;
2950   }
2951 
2952   if (!InputReg && (NeedWorkItemIDX || NeedWorkItemIDY || NeedWorkItemIDZ)) {
2953     if (!IncomingArgX && !IncomingArgY && !IncomingArgZ) {
2954       // We're in a situation where the outgoing function requires the workitem
2955       // ID, but the calling function does not have it (e.g a graphics function
2956       // calling a C calling convention function). This is illegal, but we need
2957       // to produce something.
2958       InputReg = DAG.getUNDEF(MVT::i32);
2959     } else {
2960       // Workitem ids are already packed, any of present incoming arguments
2961       // will carry all required fields.
2962       ArgDescriptor IncomingArg = ArgDescriptor::createArg(
2963         IncomingArgX ? *IncomingArgX :
2964         IncomingArgY ? *IncomingArgY :
2965         *IncomingArgZ, ~0u);
2966       InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, IncomingArg);
2967     }
2968   }
2969 
2970   if (OutgoingArg->isRegister()) {
2971     if (InputReg)
2972       RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg);
2973 
2974     CCInfo.AllocateReg(OutgoingArg->getRegister());
2975   } else {
2976     unsigned SpecialArgOffset = CCInfo.AllocateStack(4, Align(4));
2977     if (InputReg) {
2978       SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg,
2979                                               SpecialArgOffset);
2980       MemOpChains.push_back(ArgStore);
2981     }
2982   }
2983 }
2984 
2985 static bool canGuaranteeTCO(CallingConv::ID CC) {
2986   return CC == CallingConv::Fast;
2987 }
2988 
2989 /// Return true if we might ever do TCO for calls with this calling convention.
2990 static bool mayTailCallThisCC(CallingConv::ID CC) {
2991   switch (CC) {
2992   case CallingConv::C:
2993   case CallingConv::AMDGPU_Gfx:
2994     return true;
2995   default:
2996     return canGuaranteeTCO(CC);
2997   }
2998 }
2999 
3000 bool SITargetLowering::isEligibleForTailCallOptimization(
3001     SDValue Callee, CallingConv::ID CalleeCC, bool IsVarArg,
3002     const SmallVectorImpl<ISD::OutputArg> &Outs,
3003     const SmallVectorImpl<SDValue> &OutVals,
3004     const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
3005   if (!mayTailCallThisCC(CalleeCC))
3006     return false;
3007 
3008   // For a divergent call target, we need to do a waterfall loop over the
3009   // possible callees which precludes us from using a simple jump.
3010   if (Callee->isDivergent())
3011     return false;
3012 
3013   MachineFunction &MF = DAG.getMachineFunction();
3014   const Function &CallerF = MF.getFunction();
3015   CallingConv::ID CallerCC = CallerF.getCallingConv();
3016   const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
3017   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
3018 
3019   // Kernels aren't callable, and don't have a live in return address so it
3020   // doesn't make sense to do a tail call with entry functions.
3021   if (!CallerPreserved)
3022     return false;
3023 
3024   bool CCMatch = CallerCC == CalleeCC;
3025 
3026   if (DAG.getTarget().Options.GuaranteedTailCallOpt) {
3027     if (canGuaranteeTCO(CalleeCC) && CCMatch)
3028       return true;
3029     return false;
3030   }
3031 
3032   // TODO: Can we handle var args?
3033   if (IsVarArg)
3034     return false;
3035 
3036   for (const Argument &Arg : CallerF.args()) {
3037     if (Arg.hasByValAttr())
3038       return false;
3039   }
3040 
3041   LLVMContext &Ctx = *DAG.getContext();
3042 
3043   // Check that the call results are passed in the same way.
3044   if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, Ctx, Ins,
3045                                   CCAssignFnForCall(CalleeCC, IsVarArg),
3046                                   CCAssignFnForCall(CallerCC, IsVarArg)))
3047     return false;
3048 
3049   // The callee has to preserve all registers the caller needs to preserve.
3050   if (!CCMatch) {
3051     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
3052     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
3053       return false;
3054   }
3055 
3056   // Nothing more to check if the callee is taking no arguments.
3057   if (Outs.empty())
3058     return true;
3059 
3060   SmallVector<CCValAssign, 16> ArgLocs;
3061   CCState CCInfo(CalleeCC, IsVarArg, MF, ArgLocs, Ctx);
3062 
3063   CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, IsVarArg));
3064 
3065   const SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>();
3066   // If the stack arguments for this call do not fit into our own save area then
3067   // the call cannot be made tail.
3068   // TODO: Is this really necessary?
3069   if (CCInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea())
3070     return false;
3071 
3072   const MachineRegisterInfo &MRI = MF.getRegInfo();
3073   return parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals);
3074 }
3075 
3076 bool SITargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
3077   if (!CI->isTailCall())
3078     return false;
3079 
3080   const Function *ParentFn = CI->getParent()->getParent();
3081   if (AMDGPU::isEntryFunctionCC(ParentFn->getCallingConv()))
3082     return false;
3083   return true;
3084 }
3085 
3086 // The wave scratch offset register is used as the global base pointer.
3087 SDValue SITargetLowering::LowerCall(CallLoweringInfo &CLI,
3088                                     SmallVectorImpl<SDValue> &InVals) const {
3089   SelectionDAG &DAG = CLI.DAG;
3090   const SDLoc &DL = CLI.DL;
3091   SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
3092   SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
3093   SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
3094   SDValue Chain = CLI.Chain;
3095   SDValue Callee = CLI.Callee;
3096   bool &IsTailCall = CLI.IsTailCall;
3097   CallingConv::ID CallConv = CLI.CallConv;
3098   bool IsVarArg = CLI.IsVarArg;
3099   bool IsSibCall = false;
3100   bool IsThisReturn = false;
3101   MachineFunction &MF = DAG.getMachineFunction();
3102 
3103   if (Callee.isUndef() || isNullConstant(Callee)) {
3104     if (!CLI.IsTailCall) {
3105       for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I)
3106         InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT));
3107     }
3108 
3109     return Chain;
3110   }
3111 
3112   if (IsVarArg) {
3113     return lowerUnhandledCall(CLI, InVals,
3114                               "unsupported call to variadic function ");
3115   }
3116 
3117   if (!CLI.CB)
3118     report_fatal_error("unsupported libcall legalization");
3119 
3120   if (IsTailCall && MF.getTarget().Options.GuaranteedTailCallOpt) {
3121     return lowerUnhandledCall(CLI, InVals,
3122                               "unsupported required tail call to function ");
3123   }
3124 
3125   if (AMDGPU::isShader(CallConv)) {
3126     // Note the issue is with the CC of the called function, not of the call
3127     // itself.
3128     return lowerUnhandledCall(CLI, InVals,
3129                               "unsupported call to a shader function ");
3130   }
3131 
3132   if (AMDGPU::isShader(MF.getFunction().getCallingConv()) &&
3133       CallConv != CallingConv::AMDGPU_Gfx) {
3134     // Only allow calls with specific calling conventions.
3135     return lowerUnhandledCall(CLI, InVals,
3136                               "unsupported calling convention for call from "
3137                               "graphics shader of function ");
3138   }
3139 
3140   if (IsTailCall) {
3141     IsTailCall = isEligibleForTailCallOptimization(
3142       Callee, CallConv, IsVarArg, Outs, OutVals, Ins, DAG);
3143     if (!IsTailCall && CLI.CB && CLI.CB->isMustTailCall()) {
3144       report_fatal_error("failed to perform tail call elimination on a call "
3145                          "site marked musttail");
3146     }
3147 
3148     bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
3149 
3150     // A sibling call is one where we're under the usual C ABI and not planning
3151     // to change that but can still do a tail call:
3152     if (!TailCallOpt && IsTailCall)
3153       IsSibCall = true;
3154 
3155     if (IsTailCall)
3156       ++NumTailCalls;
3157   }
3158 
3159   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
3160   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
3161   SmallVector<SDValue, 8> MemOpChains;
3162 
3163   // Analyze operands of the call, assigning locations to each operand.
3164   SmallVector<CCValAssign, 16> ArgLocs;
3165   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
3166   CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, IsVarArg);
3167 
3168   if (CallConv != CallingConv::AMDGPU_Gfx) {
3169     // With a fixed ABI, allocate fixed registers before user arguments.
3170     passSpecialInputs(CLI, CCInfo, *Info, RegsToPass, MemOpChains, Chain);
3171   }
3172 
3173   CCInfo.AnalyzeCallOperands(Outs, AssignFn);
3174 
3175   // Get a count of how many bytes are to be pushed on the stack.
3176   unsigned NumBytes = CCInfo.getNextStackOffset();
3177 
3178   if (IsSibCall) {
3179     // Since we're not changing the ABI to make this a tail call, the memory
3180     // operands are already available in the caller's incoming argument space.
3181     NumBytes = 0;
3182   }
3183 
3184   // FPDiff is the byte offset of the call's argument area from the callee's.
3185   // Stores to callee stack arguments will be placed in FixedStackSlots offset
3186   // by this amount for a tail call. In a sibling call it must be 0 because the
3187   // caller will deallocate the entire stack and the callee still expects its
3188   // arguments to begin at SP+0. Completely unused for non-tail calls.
3189   int32_t FPDiff = 0;
3190   MachineFrameInfo &MFI = MF.getFrameInfo();
3191 
3192   // Adjust the stack pointer for the new arguments...
3193   // These operations are automatically eliminated by the prolog/epilog pass
3194   if (!IsSibCall) {
3195     Chain = DAG.getCALLSEQ_START(Chain, 0, 0, DL);
3196 
3197     if (!Subtarget->enableFlatScratch()) {
3198       SmallVector<SDValue, 4> CopyFromChains;
3199 
3200       // In the HSA case, this should be an identity copy.
3201       SDValue ScratchRSrcReg
3202         = DAG.getCopyFromReg(Chain, DL, Info->getScratchRSrcReg(), MVT::v4i32);
3203       RegsToPass.emplace_back(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, ScratchRSrcReg);
3204       CopyFromChains.push_back(ScratchRSrcReg.getValue(1));
3205       Chain = DAG.getTokenFactor(DL, CopyFromChains);
3206     }
3207   }
3208 
3209   MVT PtrVT = MVT::i32;
3210 
3211   // Walk the register/memloc assignments, inserting copies/loads.
3212   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3213     CCValAssign &VA = ArgLocs[i];
3214     SDValue Arg = OutVals[i];
3215 
3216     // Promote the value if needed.
3217     switch (VA.getLocInfo()) {
3218     case CCValAssign::Full:
3219       break;
3220     case CCValAssign::BCvt:
3221       Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
3222       break;
3223     case CCValAssign::ZExt:
3224       Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
3225       break;
3226     case CCValAssign::SExt:
3227       Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
3228       break;
3229     case CCValAssign::AExt:
3230       Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
3231       break;
3232     case CCValAssign::FPExt:
3233       Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg);
3234       break;
3235     default:
3236       llvm_unreachable("Unknown loc info!");
3237     }
3238 
3239     if (VA.isRegLoc()) {
3240       RegsToPass.push_back(std::pair(VA.getLocReg(), Arg));
3241     } else {
3242       assert(VA.isMemLoc());
3243 
3244       SDValue DstAddr;
3245       MachinePointerInfo DstInfo;
3246 
3247       unsigned LocMemOffset = VA.getLocMemOffset();
3248       int32_t Offset = LocMemOffset;
3249 
3250       SDValue PtrOff = DAG.getConstant(Offset, DL, PtrVT);
3251       MaybeAlign Alignment;
3252 
3253       if (IsTailCall) {
3254         ISD::ArgFlagsTy Flags = Outs[i].Flags;
3255         unsigned OpSize = Flags.isByVal() ?
3256           Flags.getByValSize() : VA.getValVT().getStoreSize();
3257 
3258         // FIXME: We can have better than the minimum byval required alignment.
3259         Alignment =
3260             Flags.isByVal()
3261                 ? Flags.getNonZeroByValAlign()
3262                 : commonAlignment(Subtarget->getStackAlignment(), Offset);
3263 
3264         Offset = Offset + FPDiff;
3265         int FI = MFI.CreateFixedObject(OpSize, Offset, true);
3266 
3267         DstAddr = DAG.getFrameIndex(FI, PtrVT);
3268         DstInfo = MachinePointerInfo::getFixedStack(MF, FI);
3269 
3270         // Make sure any stack arguments overlapping with where we're storing
3271         // are loaded before this eventual operation. Otherwise they'll be
3272         // clobbered.
3273 
3274         // FIXME: Why is this really necessary? This seems to just result in a
3275         // lot of code to copy the stack and write them back to the same
3276         // locations, which are supposed to be immutable?
3277         Chain = addTokenForArgument(Chain, DAG, MFI, FI);
3278       } else {
3279         // Stores to the argument stack area are relative to the stack pointer.
3280         SDValue SP = DAG.getCopyFromReg(Chain, DL, Info->getStackPtrOffsetReg(),
3281                                         MVT::i32);
3282         DstAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, SP, PtrOff);
3283         DstInfo = MachinePointerInfo::getStack(MF, LocMemOffset);
3284         Alignment =
3285             commonAlignment(Subtarget->getStackAlignment(), LocMemOffset);
3286       }
3287 
3288       if (Outs[i].Flags.isByVal()) {
3289         SDValue SizeNode =
3290             DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i32);
3291         SDValue Cpy =
3292             DAG.getMemcpy(Chain, DL, DstAddr, Arg, SizeNode,
3293                           Outs[i].Flags.getNonZeroByValAlign(),
3294                           /*isVol = */ false, /*AlwaysInline = */ true,
3295                           /*isTailCall = */ false, DstInfo,
3296                           MachinePointerInfo(AMDGPUAS::PRIVATE_ADDRESS));
3297 
3298         MemOpChains.push_back(Cpy);
3299       } else {
3300         SDValue Store =
3301             DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo, Alignment);
3302         MemOpChains.push_back(Store);
3303       }
3304     }
3305   }
3306 
3307   if (!MemOpChains.empty())
3308     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
3309 
3310   // Build a sequence of copy-to-reg nodes chained together with token chain
3311   // and flag operands which copy the outgoing args into the appropriate regs.
3312   SDValue InFlag;
3313   for (auto &RegToPass : RegsToPass) {
3314     Chain = DAG.getCopyToReg(Chain, DL, RegToPass.first,
3315                              RegToPass.second, InFlag);
3316     InFlag = Chain.getValue(1);
3317   }
3318 
3319 
3320   // We don't usually want to end the call-sequence here because we would tidy
3321   // the frame up *after* the call, however in the ABI-changing tail-call case
3322   // we've carefully laid out the parameters so that when sp is reset they'll be
3323   // in the correct location.
3324   if (IsTailCall && !IsSibCall) {
3325     Chain = DAG.getCALLSEQ_END(Chain, NumBytes, 0, InFlag, DL);
3326     InFlag = Chain.getValue(1);
3327   }
3328 
3329   std::vector<SDValue> Ops;
3330   Ops.push_back(Chain);
3331   Ops.push_back(Callee);
3332   // Add a redundant copy of the callee global which will not be legalized, as
3333   // we need direct access to the callee later.
3334   if (GlobalAddressSDNode *GSD = dyn_cast<GlobalAddressSDNode>(Callee)) {
3335     const GlobalValue *GV = GSD->getGlobal();
3336     Ops.push_back(DAG.getTargetGlobalAddress(GV, DL, MVT::i64));
3337   } else {
3338     Ops.push_back(DAG.getTargetConstant(0, DL, MVT::i64));
3339   }
3340 
3341   if (IsTailCall) {
3342     // Each tail call may have to adjust the stack by a different amount, so
3343     // this information must travel along with the operation for eventual
3344     // consumption by emitEpilogue.
3345     Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32));
3346   }
3347 
3348   // Add argument registers to the end of the list so that they are known live
3349   // into the call.
3350   for (auto &RegToPass : RegsToPass) {
3351     Ops.push_back(DAG.getRegister(RegToPass.first,
3352                                   RegToPass.second.getValueType()));
3353   }
3354 
3355   // Add a register mask operand representing the call-preserved registers.
3356 
3357   auto *TRI = static_cast<const SIRegisterInfo*>(Subtarget->getRegisterInfo());
3358   const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
3359   assert(Mask && "Missing call preserved mask for calling convention");
3360   Ops.push_back(DAG.getRegisterMask(Mask));
3361 
3362   if (InFlag.getNode())
3363     Ops.push_back(InFlag);
3364 
3365   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3366 
3367   // If we're doing a tall call, use a TC_RETURN here rather than an
3368   // actual call instruction.
3369   if (IsTailCall) {
3370     MFI.setHasTailCall();
3371     return DAG.getNode(AMDGPUISD::TC_RETURN, DL, NodeTys, Ops);
3372   }
3373 
3374   // Returns a chain and a flag for retval copy to use.
3375   SDValue Call = DAG.getNode(AMDGPUISD::CALL, DL, NodeTys, Ops);
3376   Chain = Call.getValue(0);
3377   InFlag = Call.getValue(1);
3378 
3379   uint64_t CalleePopBytes = NumBytes;
3380   Chain = DAG.getCALLSEQ_END(Chain, 0, CalleePopBytes, InFlag, DL);
3381   if (!Ins.empty())
3382     InFlag = Chain.getValue(1);
3383 
3384   // Handle result values, copying them out of physregs into vregs that we
3385   // return.
3386   return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
3387                          InVals, IsThisReturn,
3388                          IsThisReturn ? OutVals[0] : SDValue());
3389 }
3390 
3391 // This is identical to the default implementation in ExpandDYNAMIC_STACKALLOC,
3392 // except for applying the wave size scale to the increment amount.
3393 SDValue SITargetLowering::lowerDYNAMIC_STACKALLOCImpl(
3394     SDValue Op, SelectionDAG &DAG) const {
3395   const MachineFunction &MF = DAG.getMachineFunction();
3396   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
3397 
3398   SDLoc dl(Op);
3399   EVT VT = Op.getValueType();
3400   SDValue Tmp1 = Op;
3401   SDValue Tmp2 = Op.getValue(1);
3402   SDValue Tmp3 = Op.getOperand(2);
3403   SDValue Chain = Tmp1.getOperand(0);
3404 
3405   Register SPReg = Info->getStackPtrOffsetReg();
3406 
3407   // Chain the dynamic stack allocation so that it doesn't modify the stack
3408   // pointer when other instructions are using the stack.
3409   Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl);
3410 
3411   SDValue Size  = Tmp2.getOperand(1);
3412   SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
3413   Chain = SP.getValue(1);
3414   MaybeAlign Alignment = cast<ConstantSDNode>(Tmp3)->getMaybeAlignValue();
3415   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
3416   const TargetFrameLowering *TFL = ST.getFrameLowering();
3417   unsigned Opc =
3418     TFL->getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp ?
3419     ISD::ADD : ISD::SUB;
3420 
3421   SDValue ScaledSize = DAG.getNode(
3422       ISD::SHL, dl, VT, Size,
3423       DAG.getConstant(ST.getWavefrontSizeLog2(), dl, MVT::i32));
3424 
3425   Align StackAlign = TFL->getStackAlign();
3426   Tmp1 = DAG.getNode(Opc, dl, VT, SP, ScaledSize); // Value
3427   if (Alignment && *Alignment > StackAlign) {
3428     Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1,
3429                        DAG.getConstant(-(uint64_t)Alignment->value()
3430                                            << ST.getWavefrontSizeLog2(),
3431                                        dl, VT));
3432   }
3433 
3434   Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1);    // Output chain
3435   Tmp2 = DAG.getCALLSEQ_END(Chain, 0, 0, SDValue(), dl);
3436 
3437   return DAG.getMergeValues({Tmp1, Tmp2}, dl);
3438 }
3439 
3440 SDValue SITargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
3441                                                   SelectionDAG &DAG) const {
3442   // We only handle constant sizes here to allow non-entry block, static sized
3443   // allocas. A truly dynamic value is more difficult to support because we
3444   // don't know if the size value is uniform or not. If the size isn't uniform,
3445   // we would need to do a wave reduction to get the maximum size to know how
3446   // much to increment the uniform stack pointer.
3447   SDValue Size = Op.getOperand(1);
3448   if (isa<ConstantSDNode>(Size))
3449       return lowerDYNAMIC_STACKALLOCImpl(Op, DAG); // Use "generic" expansion.
3450 
3451   return AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(Op, DAG);
3452 }
3453 
3454 Register SITargetLowering::getRegisterByName(const char* RegName, LLT VT,
3455                                              const MachineFunction &MF) const {
3456   Register Reg = StringSwitch<Register>(RegName)
3457     .Case("m0", AMDGPU::M0)
3458     .Case("exec", AMDGPU::EXEC)
3459     .Case("exec_lo", AMDGPU::EXEC_LO)
3460     .Case("exec_hi", AMDGPU::EXEC_HI)
3461     .Case("flat_scratch", AMDGPU::FLAT_SCR)
3462     .Case("flat_scratch_lo", AMDGPU::FLAT_SCR_LO)
3463     .Case("flat_scratch_hi", AMDGPU::FLAT_SCR_HI)
3464     .Default(Register());
3465 
3466   if (Reg == AMDGPU::NoRegister) {
3467     report_fatal_error(Twine("invalid register name \""
3468                              + StringRef(RegName)  + "\"."));
3469 
3470   }
3471 
3472   if (!Subtarget->hasFlatScrRegister() &&
3473        Subtarget->getRegisterInfo()->regsOverlap(Reg, AMDGPU::FLAT_SCR)) {
3474     report_fatal_error(Twine("invalid register \""
3475                              + StringRef(RegName)  + "\" for subtarget."));
3476   }
3477 
3478   switch (Reg) {
3479   case AMDGPU::M0:
3480   case AMDGPU::EXEC_LO:
3481   case AMDGPU::EXEC_HI:
3482   case AMDGPU::FLAT_SCR_LO:
3483   case AMDGPU::FLAT_SCR_HI:
3484     if (VT.getSizeInBits() == 32)
3485       return Reg;
3486     break;
3487   case AMDGPU::EXEC:
3488   case AMDGPU::FLAT_SCR:
3489     if (VT.getSizeInBits() == 64)
3490       return Reg;
3491     break;
3492   default:
3493     llvm_unreachable("missing register type checking");
3494   }
3495 
3496   report_fatal_error(Twine("invalid type for register \""
3497                            + StringRef(RegName) + "\"."));
3498 }
3499 
3500 // If kill is not the last instruction, split the block so kill is always a
3501 // proper terminator.
3502 MachineBasicBlock *
3503 SITargetLowering::splitKillBlock(MachineInstr &MI,
3504                                  MachineBasicBlock *BB) const {
3505   MachineBasicBlock *SplitBB = BB->splitAt(MI, false /*UpdateLiveIns*/);
3506   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3507   MI.setDesc(TII->getKillTerminatorFromPseudo(MI.getOpcode()));
3508   return SplitBB;
3509 }
3510 
3511 // Split block \p MBB at \p MI, as to insert a loop. If \p InstInLoop is true,
3512 // \p MI will be the only instruction in the loop body block. Otherwise, it will
3513 // be the first instruction in the remainder block.
3514 //
3515 /// \returns { LoopBody, Remainder }
3516 static std::pair<MachineBasicBlock *, MachineBasicBlock *>
3517 splitBlockForLoop(MachineInstr &MI, MachineBasicBlock &MBB, bool InstInLoop) {
3518   MachineFunction *MF = MBB.getParent();
3519   MachineBasicBlock::iterator I(&MI);
3520 
3521   // To insert the loop we need to split the block. Move everything after this
3522   // point to a new block, and insert a new empty block between the two.
3523   MachineBasicBlock *LoopBB = MF->CreateMachineBasicBlock();
3524   MachineBasicBlock *RemainderBB = MF->CreateMachineBasicBlock();
3525   MachineFunction::iterator MBBI(MBB);
3526   ++MBBI;
3527 
3528   MF->insert(MBBI, LoopBB);
3529   MF->insert(MBBI, RemainderBB);
3530 
3531   LoopBB->addSuccessor(LoopBB);
3532   LoopBB->addSuccessor(RemainderBB);
3533 
3534   // Move the rest of the block into a new block.
3535   RemainderBB->transferSuccessorsAndUpdatePHIs(&MBB);
3536 
3537   if (InstInLoop) {
3538     auto Next = std::next(I);
3539 
3540     // Move instruction to loop body.
3541     LoopBB->splice(LoopBB->begin(), &MBB, I, Next);
3542 
3543     // Move the rest of the block.
3544     RemainderBB->splice(RemainderBB->begin(), &MBB, Next, MBB.end());
3545   } else {
3546     RemainderBB->splice(RemainderBB->begin(), &MBB, I, MBB.end());
3547   }
3548 
3549   MBB.addSuccessor(LoopBB);
3550 
3551   return std::pair(LoopBB, RemainderBB);
3552 }
3553 
3554 /// Insert \p MI into a BUNDLE with an S_WAITCNT 0 immediately following it.
3555 void SITargetLowering::bundleInstWithWaitcnt(MachineInstr &MI) const {
3556   MachineBasicBlock *MBB = MI.getParent();
3557   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3558   auto I = MI.getIterator();
3559   auto E = std::next(I);
3560 
3561   BuildMI(*MBB, E, MI.getDebugLoc(), TII->get(AMDGPU::S_WAITCNT))
3562     .addImm(0);
3563 
3564   MIBundleBuilder Bundler(*MBB, I, E);
3565   finalizeBundle(*MBB, Bundler.begin());
3566 }
3567 
3568 MachineBasicBlock *
3569 SITargetLowering::emitGWSMemViolTestLoop(MachineInstr &MI,
3570                                          MachineBasicBlock *BB) const {
3571   const DebugLoc &DL = MI.getDebugLoc();
3572 
3573   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
3574 
3575   MachineBasicBlock *LoopBB;
3576   MachineBasicBlock *RemainderBB;
3577   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3578 
3579   // Apparently kill flags are only valid if the def is in the same block?
3580   if (MachineOperand *Src = TII->getNamedOperand(MI, AMDGPU::OpName::data0))
3581     Src->setIsKill(false);
3582 
3583   std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, *BB, true);
3584 
3585   MachineBasicBlock::iterator I = LoopBB->end();
3586 
3587   const unsigned EncodedReg = AMDGPU::Hwreg::encodeHwreg(
3588     AMDGPU::Hwreg::ID_TRAPSTS, AMDGPU::Hwreg::OFFSET_MEM_VIOL, 1);
3589 
3590   // Clear TRAP_STS.MEM_VIOL
3591   BuildMI(*LoopBB, LoopBB->begin(), DL, TII->get(AMDGPU::S_SETREG_IMM32_B32))
3592     .addImm(0)
3593     .addImm(EncodedReg);
3594 
3595   bundleInstWithWaitcnt(MI);
3596 
3597   Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
3598 
3599   // Load and check TRAP_STS.MEM_VIOL
3600   BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_GETREG_B32), Reg)
3601     .addImm(EncodedReg);
3602 
3603   // FIXME: Do we need to use an isel pseudo that may clobber scc?
3604   BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CMP_LG_U32))
3605     .addReg(Reg, RegState::Kill)
3606     .addImm(0);
3607   BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_SCC1))
3608     .addMBB(LoopBB);
3609 
3610   return RemainderBB;
3611 }
3612 
3613 // Do a v_movrels_b32 or v_movreld_b32 for each unique value of \p IdxReg in the
3614 // wavefront. If the value is uniform and just happens to be in a VGPR, this
3615 // will only do one iteration. In the worst case, this will loop 64 times.
3616 //
3617 // TODO: Just use v_readlane_b32 if we know the VGPR has a uniform value.
3618 static MachineBasicBlock::iterator
3619 emitLoadM0FromVGPRLoop(const SIInstrInfo *TII, MachineRegisterInfo &MRI,
3620                        MachineBasicBlock &OrigBB, MachineBasicBlock &LoopBB,
3621                        const DebugLoc &DL, const MachineOperand &Idx,
3622                        unsigned InitReg, unsigned ResultReg, unsigned PhiReg,
3623                        unsigned InitSaveExecReg, int Offset, bool UseGPRIdxMode,
3624                        Register &SGPRIdxReg) {
3625 
3626   MachineFunction *MF = OrigBB.getParent();
3627   const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3628   const SIRegisterInfo *TRI = ST.getRegisterInfo();
3629   MachineBasicBlock::iterator I = LoopBB.begin();
3630 
3631   const TargetRegisterClass *BoolRC = TRI->getBoolRC();
3632   Register PhiExec = MRI.createVirtualRegister(BoolRC);
3633   Register NewExec = MRI.createVirtualRegister(BoolRC);
3634   Register CurrentIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
3635   Register CondReg = MRI.createVirtualRegister(BoolRC);
3636 
3637   BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiReg)
3638     .addReg(InitReg)
3639     .addMBB(&OrigBB)
3640     .addReg(ResultReg)
3641     .addMBB(&LoopBB);
3642 
3643   BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiExec)
3644     .addReg(InitSaveExecReg)
3645     .addMBB(&OrigBB)
3646     .addReg(NewExec)
3647     .addMBB(&LoopBB);
3648 
3649   // Read the next variant <- also loop target.
3650   BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), CurrentIdxReg)
3651       .addReg(Idx.getReg(), getUndefRegState(Idx.isUndef()));
3652 
3653   // Compare the just read M0 value to all possible Idx values.
3654   BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_CMP_EQ_U32_e64), CondReg)
3655       .addReg(CurrentIdxReg)
3656       .addReg(Idx.getReg(), 0, Idx.getSubReg());
3657 
3658   // Update EXEC, save the original EXEC value to VCC.
3659   BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_AND_SAVEEXEC_B32
3660                                                 : AMDGPU::S_AND_SAVEEXEC_B64),
3661           NewExec)
3662     .addReg(CondReg, RegState::Kill);
3663 
3664   MRI.setSimpleHint(NewExec, CondReg);
3665 
3666   if (UseGPRIdxMode) {
3667     if (Offset == 0) {
3668       SGPRIdxReg = CurrentIdxReg;
3669     } else {
3670       SGPRIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
3671       BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), SGPRIdxReg)
3672           .addReg(CurrentIdxReg, RegState::Kill)
3673           .addImm(Offset);
3674     }
3675   } else {
3676     // Move index from VCC into M0
3677     if (Offset == 0) {
3678       BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
3679         .addReg(CurrentIdxReg, RegState::Kill);
3680     } else {
3681       BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0)
3682         .addReg(CurrentIdxReg, RegState::Kill)
3683         .addImm(Offset);
3684     }
3685   }
3686 
3687   // Update EXEC, switch all done bits to 0 and all todo bits to 1.
3688   unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
3689   MachineInstr *InsertPt =
3690     BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_XOR_B32_term
3691                                                   : AMDGPU::S_XOR_B64_term), Exec)
3692       .addReg(Exec)
3693       .addReg(NewExec);
3694 
3695   // XXX - s_xor_b64 sets scc to 1 if the result is nonzero, so can we use
3696   // s_cbranch_scc0?
3697 
3698   // Loop back to V_READFIRSTLANE_B32 if there are still variants to cover.
3699   BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ))
3700     .addMBB(&LoopBB);
3701 
3702   return InsertPt->getIterator();
3703 }
3704 
3705 // This has slightly sub-optimal regalloc when the source vector is killed by
3706 // the read. The register allocator does not understand that the kill is
3707 // per-workitem, so is kept alive for the whole loop so we end up not re-using a
3708 // subregister from it, using 1 more VGPR than necessary. This was saved when
3709 // this was expanded after register allocation.
3710 static MachineBasicBlock::iterator
3711 loadM0FromVGPR(const SIInstrInfo *TII, MachineBasicBlock &MBB, MachineInstr &MI,
3712                unsigned InitResultReg, unsigned PhiReg, int Offset,
3713                bool UseGPRIdxMode, Register &SGPRIdxReg) {
3714   MachineFunction *MF = MBB.getParent();
3715   const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3716   const SIRegisterInfo *TRI = ST.getRegisterInfo();
3717   MachineRegisterInfo &MRI = MF->getRegInfo();
3718   const DebugLoc &DL = MI.getDebugLoc();
3719   MachineBasicBlock::iterator I(&MI);
3720 
3721   const auto *BoolXExecRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
3722   Register DstReg = MI.getOperand(0).getReg();
3723   Register SaveExec = MRI.createVirtualRegister(BoolXExecRC);
3724   Register TmpExec = MRI.createVirtualRegister(BoolXExecRC);
3725   unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
3726   unsigned MovExecOpc = ST.isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64;
3727 
3728   BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), TmpExec);
3729 
3730   // Save the EXEC mask
3731   BuildMI(MBB, I, DL, TII->get(MovExecOpc), SaveExec)
3732     .addReg(Exec);
3733 
3734   MachineBasicBlock *LoopBB;
3735   MachineBasicBlock *RemainderBB;
3736   std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, MBB, false);
3737 
3738   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3739 
3740   auto InsPt = emitLoadM0FromVGPRLoop(TII, MRI, MBB, *LoopBB, DL, *Idx,
3741                                       InitResultReg, DstReg, PhiReg, TmpExec,
3742                                       Offset, UseGPRIdxMode, SGPRIdxReg);
3743 
3744   MachineBasicBlock* LandingPad = MF->CreateMachineBasicBlock();
3745   MachineFunction::iterator MBBI(LoopBB);
3746   ++MBBI;
3747   MF->insert(MBBI, LandingPad);
3748   LoopBB->removeSuccessor(RemainderBB);
3749   LandingPad->addSuccessor(RemainderBB);
3750   LoopBB->addSuccessor(LandingPad);
3751   MachineBasicBlock::iterator First = LandingPad->begin();
3752   BuildMI(*LandingPad, First, DL, TII->get(MovExecOpc), Exec)
3753     .addReg(SaveExec);
3754 
3755   return InsPt;
3756 }
3757 
3758 // Returns subreg index, offset
3759 static std::pair<unsigned, int>
3760 computeIndirectRegAndOffset(const SIRegisterInfo &TRI,
3761                             const TargetRegisterClass *SuperRC,
3762                             unsigned VecReg,
3763                             int Offset) {
3764   int NumElts = TRI.getRegSizeInBits(*SuperRC) / 32;
3765 
3766   // Skip out of bounds offsets, or else we would end up using an undefined
3767   // register.
3768   if (Offset >= NumElts || Offset < 0)
3769     return std::pair(AMDGPU::sub0, Offset);
3770 
3771   return std::pair(SIRegisterInfo::getSubRegFromChannel(Offset), 0);
3772 }
3773 
3774 static void setM0ToIndexFromSGPR(const SIInstrInfo *TII,
3775                                  MachineRegisterInfo &MRI, MachineInstr &MI,
3776                                  int Offset) {
3777   MachineBasicBlock *MBB = MI.getParent();
3778   const DebugLoc &DL = MI.getDebugLoc();
3779   MachineBasicBlock::iterator I(&MI);
3780 
3781   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3782 
3783   assert(Idx->getReg() != AMDGPU::NoRegister);
3784 
3785   if (Offset == 0) {
3786     BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0).add(*Idx);
3787   } else {
3788     BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0)
3789         .add(*Idx)
3790         .addImm(Offset);
3791   }
3792 }
3793 
3794 static Register getIndirectSGPRIdx(const SIInstrInfo *TII,
3795                                    MachineRegisterInfo &MRI, MachineInstr &MI,
3796                                    int Offset) {
3797   MachineBasicBlock *MBB = MI.getParent();
3798   const DebugLoc &DL = MI.getDebugLoc();
3799   MachineBasicBlock::iterator I(&MI);
3800 
3801   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3802 
3803   if (Offset == 0)
3804     return Idx->getReg();
3805 
3806   Register Tmp = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
3807   BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), Tmp)
3808       .add(*Idx)
3809       .addImm(Offset);
3810   return Tmp;
3811 }
3812 
3813 static MachineBasicBlock *emitIndirectSrc(MachineInstr &MI,
3814                                           MachineBasicBlock &MBB,
3815                                           const GCNSubtarget &ST) {
3816   const SIInstrInfo *TII = ST.getInstrInfo();
3817   const SIRegisterInfo &TRI = TII->getRegisterInfo();
3818   MachineFunction *MF = MBB.getParent();
3819   MachineRegisterInfo &MRI = MF->getRegInfo();
3820 
3821   Register Dst = MI.getOperand(0).getReg();
3822   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3823   Register SrcReg = TII->getNamedOperand(MI, AMDGPU::OpName::src)->getReg();
3824   int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm();
3825 
3826   const TargetRegisterClass *VecRC = MRI.getRegClass(SrcReg);
3827   const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg());
3828 
3829   unsigned SubReg;
3830   std::tie(SubReg, Offset)
3831     = computeIndirectRegAndOffset(TRI, VecRC, SrcReg, Offset);
3832 
3833   const bool UseGPRIdxMode = ST.useVGPRIndexMode();
3834 
3835   // Check for a SGPR index.
3836   if (TII->getRegisterInfo().isSGPRClass(IdxRC)) {
3837     MachineBasicBlock::iterator I(&MI);
3838     const DebugLoc &DL = MI.getDebugLoc();
3839 
3840     if (UseGPRIdxMode) {
3841       // TODO: Look at the uses to avoid the copy. This may require rescheduling
3842       // to avoid interfering with other uses, so probably requires a new
3843       // optimization pass.
3844       Register Idx = getIndirectSGPRIdx(TII, MRI, MI, Offset);
3845 
3846       const MCInstrDesc &GPRIDXDesc =
3847           TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), true);
3848       BuildMI(MBB, I, DL, GPRIDXDesc, Dst)
3849           .addReg(SrcReg)
3850           .addReg(Idx)
3851           .addImm(SubReg);
3852     } else {
3853       setM0ToIndexFromSGPR(TII, MRI, MI, Offset);
3854 
3855       BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst)
3856         .addReg(SrcReg, 0, SubReg)
3857         .addReg(SrcReg, RegState::Implicit);
3858     }
3859 
3860     MI.eraseFromParent();
3861 
3862     return &MBB;
3863   }
3864 
3865   // Control flow needs to be inserted if indexing with a VGPR.
3866   const DebugLoc &DL = MI.getDebugLoc();
3867   MachineBasicBlock::iterator I(&MI);
3868 
3869   Register PhiReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
3870   Register InitReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
3871 
3872   BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), InitReg);
3873 
3874   Register SGPRIdxReg;
3875   auto InsPt = loadM0FromVGPR(TII, MBB, MI, InitReg, PhiReg, Offset,
3876                               UseGPRIdxMode, SGPRIdxReg);
3877 
3878   MachineBasicBlock *LoopBB = InsPt->getParent();
3879 
3880   if (UseGPRIdxMode) {
3881     const MCInstrDesc &GPRIDXDesc =
3882         TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), true);
3883 
3884     BuildMI(*LoopBB, InsPt, DL, GPRIDXDesc, Dst)
3885         .addReg(SrcReg)
3886         .addReg(SGPRIdxReg)
3887         .addImm(SubReg);
3888   } else {
3889     BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst)
3890       .addReg(SrcReg, 0, SubReg)
3891       .addReg(SrcReg, RegState::Implicit);
3892   }
3893 
3894   MI.eraseFromParent();
3895 
3896   return LoopBB;
3897 }
3898 
3899 static MachineBasicBlock *emitIndirectDst(MachineInstr &MI,
3900                                           MachineBasicBlock &MBB,
3901                                           const GCNSubtarget &ST) {
3902   const SIInstrInfo *TII = ST.getInstrInfo();
3903   const SIRegisterInfo &TRI = TII->getRegisterInfo();
3904   MachineFunction *MF = MBB.getParent();
3905   MachineRegisterInfo &MRI = MF->getRegInfo();
3906 
3907   Register Dst = MI.getOperand(0).getReg();
3908   const MachineOperand *SrcVec = TII->getNamedOperand(MI, AMDGPU::OpName::src);
3909   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3910   const MachineOperand *Val = TII->getNamedOperand(MI, AMDGPU::OpName::val);
3911   int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm();
3912   const TargetRegisterClass *VecRC = MRI.getRegClass(SrcVec->getReg());
3913   const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg());
3914 
3915   // This can be an immediate, but will be folded later.
3916   assert(Val->getReg());
3917 
3918   unsigned SubReg;
3919   std::tie(SubReg, Offset) = computeIndirectRegAndOffset(TRI, VecRC,
3920                                                          SrcVec->getReg(),
3921                                                          Offset);
3922   const bool UseGPRIdxMode = ST.useVGPRIndexMode();
3923 
3924   if (Idx->getReg() == AMDGPU::NoRegister) {
3925     MachineBasicBlock::iterator I(&MI);
3926     const DebugLoc &DL = MI.getDebugLoc();
3927 
3928     assert(Offset == 0);
3929 
3930     BuildMI(MBB, I, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dst)
3931         .add(*SrcVec)
3932         .add(*Val)
3933         .addImm(SubReg);
3934 
3935     MI.eraseFromParent();
3936     return &MBB;
3937   }
3938 
3939   // Check for a SGPR index.
3940   if (TII->getRegisterInfo().isSGPRClass(IdxRC)) {
3941     MachineBasicBlock::iterator I(&MI);
3942     const DebugLoc &DL = MI.getDebugLoc();
3943 
3944     if (UseGPRIdxMode) {
3945       Register Idx = getIndirectSGPRIdx(TII, MRI, MI, Offset);
3946 
3947       const MCInstrDesc &GPRIDXDesc =
3948           TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), false);
3949       BuildMI(MBB, I, DL, GPRIDXDesc, Dst)
3950           .addReg(SrcVec->getReg())
3951           .add(*Val)
3952           .addReg(Idx)
3953           .addImm(SubReg);
3954     } else {
3955       setM0ToIndexFromSGPR(TII, MRI, MI, Offset);
3956 
3957       const MCInstrDesc &MovRelDesc = TII->getIndirectRegWriteMovRelPseudo(
3958           TRI.getRegSizeInBits(*VecRC), 32, false);
3959       BuildMI(MBB, I, DL, MovRelDesc, Dst)
3960           .addReg(SrcVec->getReg())
3961           .add(*Val)
3962           .addImm(SubReg);
3963     }
3964     MI.eraseFromParent();
3965     return &MBB;
3966   }
3967 
3968   // Control flow needs to be inserted if indexing with a VGPR.
3969   if (Val->isReg())
3970     MRI.clearKillFlags(Val->getReg());
3971 
3972   const DebugLoc &DL = MI.getDebugLoc();
3973 
3974   Register PhiReg = MRI.createVirtualRegister(VecRC);
3975 
3976   Register SGPRIdxReg;
3977   auto InsPt = loadM0FromVGPR(TII, MBB, MI, SrcVec->getReg(), PhiReg, Offset,
3978                               UseGPRIdxMode, SGPRIdxReg);
3979   MachineBasicBlock *LoopBB = InsPt->getParent();
3980 
3981   if (UseGPRIdxMode) {
3982     const MCInstrDesc &GPRIDXDesc =
3983         TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), false);
3984 
3985     BuildMI(*LoopBB, InsPt, DL, GPRIDXDesc, Dst)
3986         .addReg(PhiReg)
3987         .add(*Val)
3988         .addReg(SGPRIdxReg)
3989         .addImm(AMDGPU::sub0);
3990   } else {
3991     const MCInstrDesc &MovRelDesc = TII->getIndirectRegWriteMovRelPseudo(
3992         TRI.getRegSizeInBits(*VecRC), 32, false);
3993     BuildMI(*LoopBB, InsPt, DL, MovRelDesc, Dst)
3994         .addReg(PhiReg)
3995         .add(*Val)
3996         .addImm(AMDGPU::sub0);
3997   }
3998 
3999   MI.eraseFromParent();
4000   return LoopBB;
4001 }
4002 
4003 MachineBasicBlock *SITargetLowering::EmitInstrWithCustomInserter(
4004   MachineInstr &MI, MachineBasicBlock *BB) const {
4005 
4006   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
4007   MachineFunction *MF = BB->getParent();
4008   SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
4009 
4010   switch (MI.getOpcode()) {
4011   case AMDGPU::S_UADDO_PSEUDO:
4012   case AMDGPU::S_USUBO_PSEUDO: {
4013     const DebugLoc &DL = MI.getDebugLoc();
4014     MachineOperand &Dest0 = MI.getOperand(0);
4015     MachineOperand &Dest1 = MI.getOperand(1);
4016     MachineOperand &Src0 = MI.getOperand(2);
4017     MachineOperand &Src1 = MI.getOperand(3);
4018 
4019     unsigned Opc = (MI.getOpcode() == AMDGPU::S_UADDO_PSEUDO)
4020                        ? AMDGPU::S_ADD_I32
4021                        : AMDGPU::S_SUB_I32;
4022     BuildMI(*BB, MI, DL, TII->get(Opc), Dest0.getReg()).add(Src0).add(Src1);
4023 
4024     BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CSELECT_B64), Dest1.getReg())
4025         .addImm(1)
4026         .addImm(0);
4027 
4028     MI.eraseFromParent();
4029     return BB;
4030   }
4031   case AMDGPU::S_ADD_U64_PSEUDO:
4032   case AMDGPU::S_SUB_U64_PSEUDO: {
4033     MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
4034     const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
4035     const SIRegisterInfo *TRI = ST.getRegisterInfo();
4036     const TargetRegisterClass *BoolRC = TRI->getBoolRC();
4037     const DebugLoc &DL = MI.getDebugLoc();
4038 
4039     MachineOperand &Dest = MI.getOperand(0);
4040     MachineOperand &Src0 = MI.getOperand(1);
4041     MachineOperand &Src1 = MI.getOperand(2);
4042 
4043     Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
4044     Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
4045 
4046     MachineOperand Src0Sub0 = TII->buildExtractSubRegOrImm(
4047         MI, MRI, Src0, BoolRC, AMDGPU::sub0, &AMDGPU::SReg_32RegClass);
4048     MachineOperand Src0Sub1 = TII->buildExtractSubRegOrImm(
4049         MI, MRI, Src0, BoolRC, AMDGPU::sub1, &AMDGPU::SReg_32RegClass);
4050 
4051     MachineOperand Src1Sub0 = TII->buildExtractSubRegOrImm(
4052         MI, MRI, Src1, BoolRC, AMDGPU::sub0, &AMDGPU::SReg_32RegClass);
4053     MachineOperand Src1Sub1 = TII->buildExtractSubRegOrImm(
4054         MI, MRI, Src1, BoolRC, AMDGPU::sub1, &AMDGPU::SReg_32RegClass);
4055 
4056     bool IsAdd = (MI.getOpcode() == AMDGPU::S_ADD_U64_PSEUDO);
4057 
4058     unsigned LoOpc = IsAdd ? AMDGPU::S_ADD_U32 : AMDGPU::S_SUB_U32;
4059     unsigned HiOpc = IsAdd ? AMDGPU::S_ADDC_U32 : AMDGPU::S_SUBB_U32;
4060     BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0).add(Src0Sub0).add(Src1Sub0);
4061     BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1).add(Src0Sub1).add(Src1Sub1);
4062     BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg())
4063         .addReg(DestSub0)
4064         .addImm(AMDGPU::sub0)
4065         .addReg(DestSub1)
4066         .addImm(AMDGPU::sub1);
4067     MI.eraseFromParent();
4068     return BB;
4069   }
4070   case AMDGPU::V_ADD_U64_PSEUDO:
4071   case AMDGPU::V_SUB_U64_PSEUDO: {
4072     MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
4073     const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
4074     const SIRegisterInfo *TRI = ST.getRegisterInfo();
4075     const DebugLoc &DL = MI.getDebugLoc();
4076 
4077     bool IsAdd = (MI.getOpcode() == AMDGPU::V_ADD_U64_PSEUDO);
4078 
4079     MachineOperand &Dest = MI.getOperand(0);
4080     MachineOperand &Src0 = MI.getOperand(1);
4081     MachineOperand &Src1 = MI.getOperand(2);
4082 
4083     if (IsAdd && ST.hasLshlAddB64()) {
4084       auto Add = BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_LSHL_ADD_U64_e64),
4085                          Dest.getReg())
4086                      .add(Src0)
4087                      .addImm(0)
4088                      .add(Src1);
4089       TII->legalizeOperands(*Add);
4090       MI.eraseFromParent();
4091       return BB;
4092     }
4093 
4094     const auto *CarryRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
4095 
4096     Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
4097     Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
4098 
4099     Register CarryReg = MRI.createVirtualRegister(CarryRC);
4100     Register DeadCarryReg = MRI.createVirtualRegister(CarryRC);
4101 
4102     const TargetRegisterClass *Src0RC = Src0.isReg()
4103                                             ? MRI.getRegClass(Src0.getReg())
4104                                             : &AMDGPU::VReg_64RegClass;
4105     const TargetRegisterClass *Src1RC = Src1.isReg()
4106                                             ? MRI.getRegClass(Src1.getReg())
4107                                             : &AMDGPU::VReg_64RegClass;
4108 
4109     const TargetRegisterClass *Src0SubRC =
4110         TRI->getSubRegisterClass(Src0RC, AMDGPU::sub0);
4111     const TargetRegisterClass *Src1SubRC =
4112         TRI->getSubRegisterClass(Src1RC, AMDGPU::sub1);
4113 
4114     MachineOperand SrcReg0Sub0 = TII->buildExtractSubRegOrImm(
4115         MI, MRI, Src0, Src0RC, AMDGPU::sub0, Src0SubRC);
4116     MachineOperand SrcReg1Sub0 = TII->buildExtractSubRegOrImm(
4117         MI, MRI, Src1, Src1RC, AMDGPU::sub0, Src1SubRC);
4118 
4119     MachineOperand SrcReg0Sub1 = TII->buildExtractSubRegOrImm(
4120         MI, MRI, Src0, Src0RC, AMDGPU::sub1, Src0SubRC);
4121     MachineOperand SrcReg1Sub1 = TII->buildExtractSubRegOrImm(
4122         MI, MRI, Src1, Src1RC, AMDGPU::sub1, Src1SubRC);
4123 
4124     unsigned LoOpc = IsAdd ? AMDGPU::V_ADD_CO_U32_e64 : AMDGPU::V_SUB_CO_U32_e64;
4125     MachineInstr *LoHalf = BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0)
4126                                .addReg(CarryReg, RegState::Define)
4127                                .add(SrcReg0Sub0)
4128                                .add(SrcReg1Sub0)
4129                                .addImm(0); // clamp bit
4130 
4131     unsigned HiOpc = IsAdd ? AMDGPU::V_ADDC_U32_e64 : AMDGPU::V_SUBB_U32_e64;
4132     MachineInstr *HiHalf =
4133         BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1)
4134             .addReg(DeadCarryReg, RegState::Define | RegState::Dead)
4135             .add(SrcReg0Sub1)
4136             .add(SrcReg1Sub1)
4137             .addReg(CarryReg, RegState::Kill)
4138             .addImm(0); // clamp bit
4139 
4140     BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg())
4141         .addReg(DestSub0)
4142         .addImm(AMDGPU::sub0)
4143         .addReg(DestSub1)
4144         .addImm(AMDGPU::sub1);
4145     TII->legalizeOperands(*LoHalf);
4146     TII->legalizeOperands(*HiHalf);
4147     MI.eraseFromParent();
4148     return BB;
4149   }
4150   case AMDGPU::S_ADD_CO_PSEUDO:
4151   case AMDGPU::S_SUB_CO_PSEUDO: {
4152     // This pseudo has a chance to be selected
4153     // only from uniform add/subcarry node. All the VGPR operands
4154     // therefore assumed to be splat vectors.
4155     MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
4156     const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
4157     const SIRegisterInfo *TRI = ST.getRegisterInfo();
4158     MachineBasicBlock::iterator MII = MI;
4159     const DebugLoc &DL = MI.getDebugLoc();
4160     MachineOperand &Dest = MI.getOperand(0);
4161     MachineOperand &CarryDest = MI.getOperand(1);
4162     MachineOperand &Src0 = MI.getOperand(2);
4163     MachineOperand &Src1 = MI.getOperand(3);
4164     MachineOperand &Src2 = MI.getOperand(4);
4165     unsigned Opc = (MI.getOpcode() == AMDGPU::S_ADD_CO_PSEUDO)
4166                        ? AMDGPU::S_ADDC_U32
4167                        : AMDGPU::S_SUBB_U32;
4168     if (Src0.isReg() && TRI->isVectorRegister(MRI, Src0.getReg())) {
4169       Register RegOp0 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
4170       BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp0)
4171           .addReg(Src0.getReg());
4172       Src0.setReg(RegOp0);
4173     }
4174     if (Src1.isReg() && TRI->isVectorRegister(MRI, Src1.getReg())) {
4175       Register RegOp1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
4176       BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp1)
4177           .addReg(Src1.getReg());
4178       Src1.setReg(RegOp1);
4179     }
4180     Register RegOp2 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
4181     if (TRI->isVectorRegister(MRI, Src2.getReg())) {
4182       BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp2)
4183           .addReg(Src2.getReg());
4184       Src2.setReg(RegOp2);
4185     }
4186 
4187     const TargetRegisterClass *Src2RC = MRI.getRegClass(Src2.getReg());
4188     unsigned WaveSize = TRI->getRegSizeInBits(*Src2RC);
4189     assert(WaveSize == 64 || WaveSize == 32);
4190 
4191     if (WaveSize == 64) {
4192       if (ST.hasScalarCompareEq64()) {
4193         BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMP_LG_U64))
4194             .addReg(Src2.getReg())
4195             .addImm(0);
4196       } else {
4197         const TargetRegisterClass *SubRC =
4198             TRI->getSubRegisterClass(Src2RC, AMDGPU::sub0);
4199         MachineOperand Src2Sub0 = TII->buildExtractSubRegOrImm(
4200             MII, MRI, Src2, Src2RC, AMDGPU::sub0, SubRC);
4201         MachineOperand Src2Sub1 = TII->buildExtractSubRegOrImm(
4202             MII, MRI, Src2, Src2RC, AMDGPU::sub1, SubRC);
4203         Register Src2_32 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
4204 
4205         BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_OR_B32), Src2_32)
4206             .add(Src2Sub0)
4207             .add(Src2Sub1);
4208 
4209         BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMP_LG_U32))
4210             .addReg(Src2_32, RegState::Kill)
4211             .addImm(0);
4212       }
4213     } else {
4214       BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMP_LG_U32))
4215           .addReg(Src2.getReg())
4216           .addImm(0);
4217     }
4218 
4219     BuildMI(*BB, MII, DL, TII->get(Opc), Dest.getReg()).add(Src0).add(Src1);
4220 
4221     unsigned SelOpc =
4222         (WaveSize == 64) ? AMDGPU::S_CSELECT_B64 : AMDGPU::S_CSELECT_B32;
4223 
4224     BuildMI(*BB, MII, DL, TII->get(SelOpc), CarryDest.getReg())
4225         .addImm(-1)
4226         .addImm(0);
4227 
4228     MI.eraseFromParent();
4229     return BB;
4230   }
4231   case AMDGPU::SI_INIT_M0: {
4232     BuildMI(*BB, MI.getIterator(), MI.getDebugLoc(),
4233             TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
4234         .add(MI.getOperand(0));
4235     MI.eraseFromParent();
4236     return BB;
4237   }
4238   case AMDGPU::GET_GROUPSTATICSIZE: {
4239     assert(getTargetMachine().getTargetTriple().getOS() == Triple::AMDHSA ||
4240            getTargetMachine().getTargetTriple().getOS() == Triple::AMDPAL);
4241     DebugLoc DL = MI.getDebugLoc();
4242     BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_MOV_B32))
4243         .add(MI.getOperand(0))
4244         .addImm(MFI->getLDSSize());
4245     MI.eraseFromParent();
4246     return BB;
4247   }
4248   case AMDGPU::SI_INDIRECT_SRC_V1:
4249   case AMDGPU::SI_INDIRECT_SRC_V2:
4250   case AMDGPU::SI_INDIRECT_SRC_V4:
4251   case AMDGPU::SI_INDIRECT_SRC_V8:
4252   case AMDGPU::SI_INDIRECT_SRC_V9:
4253   case AMDGPU::SI_INDIRECT_SRC_V10:
4254   case AMDGPU::SI_INDIRECT_SRC_V11:
4255   case AMDGPU::SI_INDIRECT_SRC_V12:
4256   case AMDGPU::SI_INDIRECT_SRC_V16:
4257   case AMDGPU::SI_INDIRECT_SRC_V32:
4258     return emitIndirectSrc(MI, *BB, *getSubtarget());
4259   case AMDGPU::SI_INDIRECT_DST_V1:
4260   case AMDGPU::SI_INDIRECT_DST_V2:
4261   case AMDGPU::SI_INDIRECT_DST_V4:
4262   case AMDGPU::SI_INDIRECT_DST_V8:
4263   case AMDGPU::SI_INDIRECT_DST_V9:
4264   case AMDGPU::SI_INDIRECT_DST_V10:
4265   case AMDGPU::SI_INDIRECT_DST_V11:
4266   case AMDGPU::SI_INDIRECT_DST_V12:
4267   case AMDGPU::SI_INDIRECT_DST_V16:
4268   case AMDGPU::SI_INDIRECT_DST_V32:
4269     return emitIndirectDst(MI, *BB, *getSubtarget());
4270   case AMDGPU::SI_KILL_F32_COND_IMM_PSEUDO:
4271   case AMDGPU::SI_KILL_I1_PSEUDO:
4272     return splitKillBlock(MI, BB);
4273   case AMDGPU::V_CNDMASK_B64_PSEUDO: {
4274     MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
4275     const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
4276     const SIRegisterInfo *TRI = ST.getRegisterInfo();
4277 
4278     Register Dst = MI.getOperand(0).getReg();
4279     Register Src0 = MI.getOperand(1).getReg();
4280     Register Src1 = MI.getOperand(2).getReg();
4281     const DebugLoc &DL = MI.getDebugLoc();
4282     Register SrcCond = MI.getOperand(3).getReg();
4283 
4284     Register DstLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
4285     Register DstHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
4286     const auto *CondRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
4287     Register SrcCondCopy = MRI.createVirtualRegister(CondRC);
4288 
4289     BuildMI(*BB, MI, DL, TII->get(AMDGPU::COPY), SrcCondCopy)
4290       .addReg(SrcCond);
4291     BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstLo)
4292       .addImm(0)
4293       .addReg(Src0, 0, AMDGPU::sub0)
4294       .addImm(0)
4295       .addReg(Src1, 0, AMDGPU::sub0)
4296       .addReg(SrcCondCopy);
4297     BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstHi)
4298       .addImm(0)
4299       .addReg(Src0, 0, AMDGPU::sub1)
4300       .addImm(0)
4301       .addReg(Src1, 0, AMDGPU::sub1)
4302       .addReg(SrcCondCopy);
4303 
4304     BuildMI(*BB, MI, DL, TII->get(AMDGPU::REG_SEQUENCE), Dst)
4305       .addReg(DstLo)
4306       .addImm(AMDGPU::sub0)
4307       .addReg(DstHi)
4308       .addImm(AMDGPU::sub1);
4309     MI.eraseFromParent();
4310     return BB;
4311   }
4312   case AMDGPU::SI_BR_UNDEF: {
4313     const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
4314     const DebugLoc &DL = MI.getDebugLoc();
4315     MachineInstr *Br = BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CBRANCH_SCC1))
4316                            .add(MI.getOperand(0));
4317     Br->getOperand(1).setIsUndef(); // read undef SCC
4318     MI.eraseFromParent();
4319     return BB;
4320   }
4321   case AMDGPU::ADJCALLSTACKUP:
4322   case AMDGPU::ADJCALLSTACKDOWN: {
4323     const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>();
4324     MachineInstrBuilder MIB(*MF, &MI);
4325     MIB.addReg(Info->getStackPtrOffsetReg(), RegState::ImplicitDefine)
4326        .addReg(Info->getStackPtrOffsetReg(), RegState::Implicit);
4327     return BB;
4328   }
4329   case AMDGPU::SI_CALL_ISEL: {
4330     const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
4331     const DebugLoc &DL = MI.getDebugLoc();
4332 
4333     unsigned ReturnAddrReg = TII->getRegisterInfo().getReturnAddressReg(*MF);
4334 
4335     MachineInstrBuilder MIB;
4336     MIB = BuildMI(*BB, MI, DL, TII->get(AMDGPU::SI_CALL), ReturnAddrReg);
4337 
4338     for (const MachineOperand &MO : MI.operands())
4339       MIB.add(MO);
4340 
4341     MIB.cloneMemRefs(MI);
4342     MI.eraseFromParent();
4343     return BB;
4344   }
4345   case AMDGPU::V_ADD_CO_U32_e32:
4346   case AMDGPU::V_SUB_CO_U32_e32:
4347   case AMDGPU::V_SUBREV_CO_U32_e32: {
4348     // TODO: Define distinct V_*_I32_Pseudo instructions instead.
4349     const DebugLoc &DL = MI.getDebugLoc();
4350     unsigned Opc = MI.getOpcode();
4351 
4352     bool NeedClampOperand = false;
4353     if (TII->pseudoToMCOpcode(Opc) == -1) {
4354       Opc = AMDGPU::getVOPe64(Opc);
4355       NeedClampOperand = true;
4356     }
4357 
4358     auto I = BuildMI(*BB, MI, DL, TII->get(Opc), MI.getOperand(0).getReg());
4359     if (TII->isVOP3(*I)) {
4360       const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
4361       const SIRegisterInfo *TRI = ST.getRegisterInfo();
4362       I.addReg(TRI->getVCC(), RegState::Define);
4363     }
4364     I.add(MI.getOperand(1))
4365      .add(MI.getOperand(2));
4366     if (NeedClampOperand)
4367       I.addImm(0); // clamp bit for e64 encoding
4368 
4369     TII->legalizeOperands(*I);
4370 
4371     MI.eraseFromParent();
4372     return BB;
4373   }
4374   case AMDGPU::V_ADDC_U32_e32:
4375   case AMDGPU::V_SUBB_U32_e32:
4376   case AMDGPU::V_SUBBREV_U32_e32:
4377     // These instructions have an implicit use of vcc which counts towards the
4378     // constant bus limit.
4379     TII->legalizeOperands(MI);
4380     return BB;
4381   case AMDGPU::DS_GWS_INIT:
4382   case AMDGPU::DS_GWS_SEMA_BR:
4383   case AMDGPU::DS_GWS_BARRIER:
4384     TII->enforceOperandRCAlignment(MI, AMDGPU::OpName::data0);
4385     [[fallthrough]];
4386   case AMDGPU::DS_GWS_SEMA_V:
4387   case AMDGPU::DS_GWS_SEMA_P:
4388   case AMDGPU::DS_GWS_SEMA_RELEASE_ALL:
4389     // A s_waitcnt 0 is required to be the instruction immediately following.
4390     if (getSubtarget()->hasGWSAutoReplay()) {
4391       bundleInstWithWaitcnt(MI);
4392       return BB;
4393     }
4394 
4395     return emitGWSMemViolTestLoop(MI, BB);
4396   case AMDGPU::S_SETREG_B32: {
4397     // Try to optimize cases that only set the denormal mode or rounding mode.
4398     //
4399     // If the s_setreg_b32 fully sets all of the bits in the rounding mode or
4400     // denormal mode to a constant, we can use s_round_mode or s_denorm_mode
4401     // instead.
4402     //
4403     // FIXME: This could be predicates on the immediate, but tablegen doesn't
4404     // allow you to have a no side effect instruction in the output of a
4405     // sideeffecting pattern.
4406     unsigned ID, Offset, Width;
4407     AMDGPU::Hwreg::decodeHwreg(MI.getOperand(1).getImm(), ID, Offset, Width);
4408     if (ID != AMDGPU::Hwreg::ID_MODE)
4409       return BB;
4410 
4411     const unsigned WidthMask = maskTrailingOnes<unsigned>(Width);
4412     const unsigned SetMask = WidthMask << Offset;
4413 
4414     if (getSubtarget()->hasDenormModeInst()) {
4415       unsigned SetDenormOp = 0;
4416       unsigned SetRoundOp = 0;
4417 
4418       // The dedicated instructions can only set the whole denorm or round mode
4419       // at once, not a subset of bits in either.
4420       if (SetMask ==
4421           (AMDGPU::Hwreg::FP_ROUND_MASK | AMDGPU::Hwreg::FP_DENORM_MASK)) {
4422         // If this fully sets both the round and denorm mode, emit the two
4423         // dedicated instructions for these.
4424         SetRoundOp = AMDGPU::S_ROUND_MODE;
4425         SetDenormOp = AMDGPU::S_DENORM_MODE;
4426       } else if (SetMask == AMDGPU::Hwreg::FP_ROUND_MASK) {
4427         SetRoundOp = AMDGPU::S_ROUND_MODE;
4428       } else if (SetMask == AMDGPU::Hwreg::FP_DENORM_MASK) {
4429         SetDenormOp = AMDGPU::S_DENORM_MODE;
4430       }
4431 
4432       if (SetRoundOp || SetDenormOp) {
4433         MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
4434         MachineInstr *Def = MRI.getVRegDef(MI.getOperand(0).getReg());
4435         if (Def && Def->isMoveImmediate() && Def->getOperand(1).isImm()) {
4436           unsigned ImmVal = Def->getOperand(1).getImm();
4437           if (SetRoundOp) {
4438             BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(SetRoundOp))
4439                 .addImm(ImmVal & 0xf);
4440 
4441             // If we also have the denorm mode, get just the denorm mode bits.
4442             ImmVal >>= 4;
4443           }
4444 
4445           if (SetDenormOp) {
4446             BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(SetDenormOp))
4447                 .addImm(ImmVal & 0xf);
4448           }
4449 
4450           MI.eraseFromParent();
4451           return BB;
4452         }
4453       }
4454     }
4455 
4456     // If only FP bits are touched, used the no side effects pseudo.
4457     if ((SetMask & (AMDGPU::Hwreg::FP_ROUND_MASK |
4458                     AMDGPU::Hwreg::FP_DENORM_MASK)) == SetMask)
4459       MI.setDesc(TII->get(AMDGPU::S_SETREG_B32_mode));
4460 
4461     return BB;
4462   }
4463   default:
4464     return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB);
4465   }
4466 }
4467 
4468 bool SITargetLowering::hasBitPreservingFPLogic(EVT VT) const {
4469   return isTypeLegal(VT.getScalarType());
4470 }
4471 
4472 bool SITargetLowering::hasAtomicFaddRtnForTy(SDValue &Op) const {
4473   switch (Op.getValue(0).getSimpleValueType().SimpleTy) {
4474   case MVT::f32:
4475     return Subtarget->hasAtomicFaddRtnInsts();
4476   case MVT::v2f16:
4477   case MVT::f64:
4478     return Subtarget->hasGFX90AInsts();
4479   default:
4480     return false;
4481   }
4482 }
4483 
4484 bool SITargetLowering::enableAggressiveFMAFusion(EVT VT) const {
4485   // This currently forces unfolding various combinations of fsub into fma with
4486   // free fneg'd operands. As long as we have fast FMA (controlled by
4487   // isFMAFasterThanFMulAndFAdd), we should perform these.
4488 
4489   // When fma is quarter rate, for f64 where add / sub are at best half rate,
4490   // most of these combines appear to be cycle neutral but save on instruction
4491   // count / code size.
4492   return true;
4493 }
4494 
4495 bool SITargetLowering::enableAggressiveFMAFusion(LLT Ty) const { return true; }
4496 
4497 EVT SITargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &Ctx,
4498                                          EVT VT) const {
4499   if (!VT.isVector()) {
4500     return MVT::i1;
4501   }
4502   return EVT::getVectorVT(Ctx, MVT::i1, VT.getVectorNumElements());
4503 }
4504 
4505 MVT SITargetLowering::getScalarShiftAmountTy(const DataLayout &, EVT VT) const {
4506   // TODO: Should i16 be used always if legal? For now it would force VALU
4507   // shifts.
4508   return (VT == MVT::i16) ? MVT::i16 : MVT::i32;
4509 }
4510 
4511 LLT SITargetLowering::getPreferredShiftAmountTy(LLT Ty) const {
4512   return (Ty.getScalarSizeInBits() <= 16 && Subtarget->has16BitInsts())
4513              ? Ty.changeElementSize(16)
4514              : Ty.changeElementSize(32);
4515 }
4516 
4517 // Answering this is somewhat tricky and depends on the specific device which
4518 // have different rates for fma or all f64 operations.
4519 //
4520 // v_fma_f64 and v_mul_f64 always take the same number of cycles as each other
4521 // regardless of which device (although the number of cycles differs between
4522 // devices), so it is always profitable for f64.
4523 //
4524 // v_fma_f32 takes 4 or 16 cycles depending on the device, so it is profitable
4525 // only on full rate devices. Normally, we should prefer selecting v_mad_f32
4526 // which we can always do even without fused FP ops since it returns the same
4527 // result as the separate operations and since it is always full
4528 // rate. Therefore, we lie and report that it is not faster for f32. v_mad_f32
4529 // however does not support denormals, so we do report fma as faster if we have
4530 // a fast fma device and require denormals.
4531 //
4532 bool SITargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
4533                                                   EVT VT) const {
4534   VT = VT.getScalarType();
4535 
4536   switch (VT.getSimpleVT().SimpleTy) {
4537   case MVT::f32: {
4538     // If mad is not available this depends only on if f32 fma is full rate.
4539     if (!Subtarget->hasMadMacF32Insts())
4540       return Subtarget->hasFastFMAF32();
4541 
4542     // Otherwise f32 mad is always full rate and returns the same result as
4543     // the separate operations so should be preferred over fma.
4544     // However does not support denormals.
4545     if (hasFP32Denormals(MF))
4546       return Subtarget->hasFastFMAF32() || Subtarget->hasDLInsts();
4547 
4548     // If the subtarget has v_fmac_f32, that's just as good as v_mac_f32.
4549     return Subtarget->hasFastFMAF32() && Subtarget->hasDLInsts();
4550   }
4551   case MVT::f64:
4552     return true;
4553   case MVT::f16:
4554     return Subtarget->has16BitInsts() && hasFP64FP16Denormals(MF);
4555   default:
4556     break;
4557   }
4558 
4559   return false;
4560 }
4561 
4562 bool SITargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
4563                                                   LLT Ty) const {
4564   switch (Ty.getScalarSizeInBits()) {
4565   case 16:
4566     return isFMAFasterThanFMulAndFAdd(MF, MVT::f16);
4567   case 32:
4568     return isFMAFasterThanFMulAndFAdd(MF, MVT::f32);
4569   case 64:
4570     return isFMAFasterThanFMulAndFAdd(MF, MVT::f64);
4571   default:
4572     break;
4573   }
4574 
4575   return false;
4576 }
4577 
4578 bool SITargetLowering::isFMADLegal(const MachineInstr &MI, LLT Ty) const {
4579   if (!Ty.isScalar())
4580     return false;
4581 
4582   if (Ty.getScalarSizeInBits() == 16)
4583     return Subtarget->hasMadF16() && !hasFP64FP16Denormals(*MI.getMF());
4584   if (Ty.getScalarSizeInBits() == 32)
4585     return Subtarget->hasMadMacF32Insts() && !hasFP32Denormals(*MI.getMF());
4586 
4587   return false;
4588 }
4589 
4590 bool SITargetLowering::isFMADLegal(const SelectionDAG &DAG,
4591                                    const SDNode *N) const {
4592   // TODO: Check future ftz flag
4593   // v_mad_f32/v_mac_f32 do not support denormals.
4594   EVT VT = N->getValueType(0);
4595   if (VT == MVT::f32)
4596     return Subtarget->hasMadMacF32Insts() &&
4597            !hasFP32Denormals(DAG.getMachineFunction());
4598   if (VT == MVT::f16) {
4599     return Subtarget->hasMadF16() &&
4600            !hasFP64FP16Denormals(DAG.getMachineFunction());
4601   }
4602 
4603   return false;
4604 }
4605 
4606 //===----------------------------------------------------------------------===//
4607 // Custom DAG Lowering Operations
4608 //===----------------------------------------------------------------------===//
4609 
4610 // Work around LegalizeDAG doing the wrong thing and fully scalarizing if the
4611 // wider vector type is legal.
4612 SDValue SITargetLowering::splitUnaryVectorOp(SDValue Op,
4613                                              SelectionDAG &DAG) const {
4614   unsigned Opc = Op.getOpcode();
4615   EVT VT = Op.getValueType();
4616   assert(VT == MVT::v4f16 || VT == MVT::v4i16);
4617 
4618   SDValue Lo, Hi;
4619   std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0);
4620 
4621   SDLoc SL(Op);
4622   SDValue OpLo = DAG.getNode(Opc, SL, Lo.getValueType(), Lo,
4623                              Op->getFlags());
4624   SDValue OpHi = DAG.getNode(Opc, SL, Hi.getValueType(), Hi,
4625                              Op->getFlags());
4626 
4627   return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
4628 }
4629 
4630 // Work around LegalizeDAG doing the wrong thing and fully scalarizing if the
4631 // wider vector type is legal.
4632 SDValue SITargetLowering::splitBinaryVectorOp(SDValue Op,
4633                                               SelectionDAG &DAG) const {
4634   unsigned Opc = Op.getOpcode();
4635   EVT VT = Op.getValueType();
4636   assert(VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4f32 ||
4637          VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v16i16 ||
4638          VT == MVT::v16f16 || VT == MVT::v8f32 || VT == MVT::v16f32 ||
4639          VT == MVT::v32f32);
4640 
4641   SDValue Lo0, Hi0;
4642   std::tie(Lo0, Hi0) = DAG.SplitVectorOperand(Op.getNode(), 0);
4643   SDValue Lo1, Hi1;
4644   std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1);
4645 
4646   SDLoc SL(Op);
4647 
4648   SDValue OpLo = DAG.getNode(Opc, SL, Lo0.getValueType(), Lo0, Lo1,
4649                              Op->getFlags());
4650   SDValue OpHi = DAG.getNode(Opc, SL, Hi0.getValueType(), Hi0, Hi1,
4651                              Op->getFlags());
4652 
4653   return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
4654 }
4655 
4656 SDValue SITargetLowering::splitTernaryVectorOp(SDValue Op,
4657                                               SelectionDAG &DAG) const {
4658   unsigned Opc = Op.getOpcode();
4659   EVT VT = Op.getValueType();
4660   assert(VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v8i16 ||
4661          VT == MVT::v8f16 || VT == MVT::v4f32 || VT == MVT::v16i16 ||
4662          VT == MVT::v16f16 || VT == MVT::v8f32 || VT == MVT::v16f32 ||
4663          VT == MVT::v32f32);
4664 
4665   SDValue Lo0, Hi0;
4666   SDValue Op0 = Op.getOperand(0);
4667   std::tie(Lo0, Hi0) = Op0.getValueType().isVector()
4668                            ? DAG.SplitVectorOperand(Op.getNode(), 0)
4669                            : std::pair(Op0, Op0);
4670   SDValue Lo1, Hi1;
4671   std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1);
4672   SDValue Lo2, Hi2;
4673   std::tie(Lo2, Hi2) = DAG.SplitVectorOperand(Op.getNode(), 2);
4674 
4675   SDLoc SL(Op);
4676   auto ResVT = DAG.GetSplitDestVTs(VT);
4677 
4678   SDValue OpLo = DAG.getNode(Opc, SL, ResVT.first, Lo0, Lo1, Lo2,
4679                              Op->getFlags());
4680   SDValue OpHi = DAG.getNode(Opc, SL, ResVT.second, Hi0, Hi1, Hi2,
4681                              Op->getFlags());
4682 
4683   return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
4684 }
4685 
4686 
4687 SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
4688   switch (Op.getOpcode()) {
4689   default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
4690   case ISD::BRCOND: return LowerBRCOND(Op, DAG);
4691   case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
4692   case ISD::LOAD: {
4693     SDValue Result = LowerLOAD(Op, DAG);
4694     assert((!Result.getNode() ||
4695             Result.getNode()->getNumValues() == 2) &&
4696            "Load should return a value and a chain");
4697     return Result;
4698   }
4699 
4700   case ISD::FSIN:
4701   case ISD::FCOS:
4702     return LowerTrig(Op, DAG);
4703   case ISD::SELECT: return LowerSELECT(Op, DAG);
4704   case ISD::FDIV: return LowerFDIV(Op, DAG);
4705   case ISD::ATOMIC_CMP_SWAP: return LowerATOMIC_CMP_SWAP(Op, DAG);
4706   case ISD::STORE: return LowerSTORE(Op, DAG);
4707   case ISD::GlobalAddress: {
4708     MachineFunction &MF = DAG.getMachineFunction();
4709     SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
4710     return LowerGlobalAddress(MFI, Op, DAG);
4711   }
4712   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
4713   case ISD::INTRINSIC_W_CHAIN: return LowerINTRINSIC_W_CHAIN(Op, DAG);
4714   case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG);
4715   case ISD::ADDRSPACECAST: return lowerADDRSPACECAST(Op, DAG);
4716   case ISD::INSERT_SUBVECTOR:
4717     return lowerINSERT_SUBVECTOR(Op, DAG);
4718   case ISD::INSERT_VECTOR_ELT:
4719     return lowerINSERT_VECTOR_ELT(Op, DAG);
4720   case ISD::EXTRACT_VECTOR_ELT:
4721     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
4722   case ISD::VECTOR_SHUFFLE:
4723     return lowerVECTOR_SHUFFLE(Op, DAG);
4724   case ISD::SCALAR_TO_VECTOR:
4725     return lowerSCALAR_TO_VECTOR(Op, DAG);
4726   case ISD::BUILD_VECTOR:
4727     return lowerBUILD_VECTOR(Op, DAG);
4728   case ISD::FP_ROUND:
4729     return lowerFP_ROUND(Op, DAG);
4730   case ISD::FPTRUNC_ROUND: {
4731     unsigned Opc;
4732     SDLoc DL(Op);
4733 
4734     if (Op.getOperand(0)->getValueType(0) != MVT::f32)
4735       return SDValue();
4736 
4737     // Get the rounding mode from the last operand
4738     int RoundMode = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4739     if (RoundMode == (int)RoundingMode::TowardPositive)
4740       Opc = AMDGPUISD::FPTRUNC_ROUND_UPWARD;
4741     else if (RoundMode == (int)RoundingMode::TowardNegative)
4742       Opc = AMDGPUISD::FPTRUNC_ROUND_DOWNWARD;
4743     else
4744       return SDValue();
4745 
4746     return DAG.getNode(Opc, DL, Op.getNode()->getVTList(), Op->getOperand(0));
4747   }
4748   case ISD::TRAP:
4749     return lowerTRAP(Op, DAG);
4750   case ISD::DEBUGTRAP:
4751     return lowerDEBUGTRAP(Op, DAG);
4752   case ISD::FABS:
4753   case ISD::FNEG:
4754   case ISD::FCANONICALIZE:
4755   case ISD::BSWAP:
4756     return splitUnaryVectorOp(Op, DAG);
4757   case ISD::FMINNUM:
4758   case ISD::FMAXNUM:
4759     return lowerFMINNUM_FMAXNUM(Op, DAG);
4760   case ISD::FMA:
4761     return splitTernaryVectorOp(Op, DAG);
4762   case ISD::FP_TO_SINT:
4763   case ISD::FP_TO_UINT:
4764     return LowerFP_TO_INT(Op, DAG);
4765   case ISD::SHL:
4766   case ISD::SRA:
4767   case ISD::SRL:
4768   case ISD::ADD:
4769   case ISD::SUB:
4770   case ISD::MUL:
4771   case ISD::SMIN:
4772   case ISD::SMAX:
4773   case ISD::UMIN:
4774   case ISD::UMAX:
4775   case ISD::FADD:
4776   case ISD::FMUL:
4777   case ISD::FMINNUM_IEEE:
4778   case ISD::FMAXNUM_IEEE:
4779   case ISD::UADDSAT:
4780   case ISD::USUBSAT:
4781   case ISD::SADDSAT:
4782   case ISD::SSUBSAT:
4783     return splitBinaryVectorOp(Op, DAG);
4784   case ISD::SMULO:
4785   case ISD::UMULO:
4786     return lowerXMULO(Op, DAG);
4787   case ISD::SMUL_LOHI:
4788   case ISD::UMUL_LOHI:
4789     return lowerXMUL_LOHI(Op, DAG);
4790   case ISD::DYNAMIC_STACKALLOC:
4791     return LowerDYNAMIC_STACKALLOC(Op, DAG);
4792   }
4793   return SDValue();
4794 }
4795 
4796 // Used for D16: Casts the result of an instruction into the right vector,
4797 // packs values if loads return unpacked values.
4798 static SDValue adjustLoadValueTypeImpl(SDValue Result, EVT LoadVT,
4799                                        const SDLoc &DL,
4800                                        SelectionDAG &DAG, bool Unpacked) {
4801   if (!LoadVT.isVector())
4802     return Result;
4803 
4804   // Cast back to the original packed type or to a larger type that is a
4805   // multiple of 32 bit for D16. Widening the return type is a required for
4806   // legalization.
4807   EVT FittingLoadVT = LoadVT;
4808   if ((LoadVT.getVectorNumElements() % 2) == 1) {
4809     FittingLoadVT =
4810         EVT::getVectorVT(*DAG.getContext(), LoadVT.getVectorElementType(),
4811                          LoadVT.getVectorNumElements() + 1);
4812   }
4813 
4814   if (Unpacked) { // From v2i32/v4i32 back to v2f16/v4f16.
4815     // Truncate to v2i16/v4i16.
4816     EVT IntLoadVT = FittingLoadVT.changeTypeToInteger();
4817 
4818     // Workaround legalizer not scalarizing truncate after vector op
4819     // legalization but not creating intermediate vector trunc.
4820     SmallVector<SDValue, 4> Elts;
4821     DAG.ExtractVectorElements(Result, Elts);
4822     for (SDValue &Elt : Elts)
4823       Elt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Elt);
4824 
4825     // Pad illegal v1i16/v3fi6 to v4i16
4826     if ((LoadVT.getVectorNumElements() % 2) == 1)
4827       Elts.push_back(DAG.getUNDEF(MVT::i16));
4828 
4829     Result = DAG.getBuildVector(IntLoadVT, DL, Elts);
4830 
4831     // Bitcast to original type (v2f16/v4f16).
4832     return DAG.getNode(ISD::BITCAST, DL, FittingLoadVT, Result);
4833   }
4834 
4835   // Cast back to the original packed type.
4836   return DAG.getNode(ISD::BITCAST, DL, FittingLoadVT, Result);
4837 }
4838 
4839 SDValue SITargetLowering::adjustLoadValueType(unsigned Opcode,
4840                                               MemSDNode *M,
4841                                               SelectionDAG &DAG,
4842                                               ArrayRef<SDValue> Ops,
4843                                               bool IsIntrinsic) const {
4844   SDLoc DL(M);
4845 
4846   bool Unpacked = Subtarget->hasUnpackedD16VMem();
4847   EVT LoadVT = M->getValueType(0);
4848 
4849   EVT EquivLoadVT = LoadVT;
4850   if (LoadVT.isVector()) {
4851     if (Unpacked) {
4852       EquivLoadVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32,
4853                                      LoadVT.getVectorNumElements());
4854     } else if ((LoadVT.getVectorNumElements() % 2) == 1) {
4855       // Widen v3f16 to legal type
4856       EquivLoadVT =
4857           EVT::getVectorVT(*DAG.getContext(), LoadVT.getVectorElementType(),
4858                            LoadVT.getVectorNumElements() + 1);
4859     }
4860   }
4861 
4862   // Change from v4f16/v2f16 to EquivLoadVT.
4863   SDVTList VTList = DAG.getVTList(EquivLoadVT, MVT::Other);
4864 
4865   SDValue Load
4866     = DAG.getMemIntrinsicNode(
4867       IsIntrinsic ? (unsigned)ISD::INTRINSIC_W_CHAIN : Opcode, DL,
4868       VTList, Ops, M->getMemoryVT(),
4869       M->getMemOperand());
4870 
4871   SDValue Adjusted = adjustLoadValueTypeImpl(Load, LoadVT, DL, DAG, Unpacked);
4872 
4873   return DAG.getMergeValues({ Adjusted, Load.getValue(1) }, DL);
4874 }
4875 
4876 SDValue SITargetLowering::lowerIntrinsicLoad(MemSDNode *M, bool IsFormat,
4877                                              SelectionDAG &DAG,
4878                                              ArrayRef<SDValue> Ops) const {
4879   SDLoc DL(M);
4880   EVT LoadVT = M->getValueType(0);
4881   EVT EltType = LoadVT.getScalarType();
4882   EVT IntVT = LoadVT.changeTypeToInteger();
4883 
4884   bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16);
4885 
4886   assert(M->getNumValues() == 2 || M->getNumValues() == 3);
4887   bool IsTFE = M->getNumValues() == 3;
4888 
4889   unsigned Opc;
4890   if (IsFormat) {
4891     Opc = IsTFE ? AMDGPUISD::BUFFER_LOAD_FORMAT_TFE
4892                 : AMDGPUISD::BUFFER_LOAD_FORMAT;
4893   } else {
4894     // TODO: Support non-format TFE loads.
4895     if (IsTFE)
4896       return SDValue();
4897     Opc = AMDGPUISD::BUFFER_LOAD;
4898   }
4899 
4900   if (IsD16) {
4901     return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16, M, DAG, Ops);
4902   }
4903 
4904   // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics
4905   if (!IsD16 && !LoadVT.isVector() && EltType.getSizeInBits() < 32)
4906     return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M);
4907 
4908   if (isTypeLegal(LoadVT)) {
4909     return getMemIntrinsicNode(Opc, DL, M->getVTList(), Ops, IntVT,
4910                                M->getMemOperand(), DAG);
4911   }
4912 
4913   EVT CastVT = getEquivalentMemType(*DAG.getContext(), LoadVT);
4914   SDVTList VTList = DAG.getVTList(CastVT, MVT::Other);
4915   SDValue MemNode = getMemIntrinsicNode(Opc, DL, VTList, Ops, CastVT,
4916                                         M->getMemOperand(), DAG);
4917   return DAG.getMergeValues(
4918       {DAG.getNode(ISD::BITCAST, DL, LoadVT, MemNode), MemNode.getValue(1)},
4919       DL);
4920 }
4921 
4922 static SDValue lowerICMPIntrinsic(const SITargetLowering &TLI,
4923                                   SDNode *N, SelectionDAG &DAG) {
4924   EVT VT = N->getValueType(0);
4925   const auto *CD = cast<ConstantSDNode>(N->getOperand(3));
4926   unsigned CondCode = CD->getZExtValue();
4927   if (!ICmpInst::isIntPredicate(static_cast<ICmpInst::Predicate>(CondCode)))
4928     return DAG.getUNDEF(VT);
4929 
4930   ICmpInst::Predicate IcInput = static_cast<ICmpInst::Predicate>(CondCode);
4931 
4932   SDValue LHS = N->getOperand(1);
4933   SDValue RHS = N->getOperand(2);
4934 
4935   SDLoc DL(N);
4936 
4937   EVT CmpVT = LHS.getValueType();
4938   if (CmpVT == MVT::i16 && !TLI.isTypeLegal(MVT::i16)) {
4939     unsigned PromoteOp = ICmpInst::isSigned(IcInput) ?
4940       ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
4941     LHS = DAG.getNode(PromoteOp, DL, MVT::i32, LHS);
4942     RHS = DAG.getNode(PromoteOp, DL, MVT::i32, RHS);
4943   }
4944 
4945   ISD::CondCode CCOpcode = getICmpCondCode(IcInput);
4946 
4947   unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize();
4948   EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize);
4949 
4950   SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, DL, CCVT, LHS, RHS,
4951                               DAG.getCondCode(CCOpcode));
4952   if (VT.bitsEq(CCVT))
4953     return SetCC;
4954   return DAG.getZExtOrTrunc(SetCC, DL, VT);
4955 }
4956 
4957 static SDValue lowerFCMPIntrinsic(const SITargetLowering &TLI,
4958                                   SDNode *N, SelectionDAG &DAG) {
4959   EVT VT = N->getValueType(0);
4960   const auto *CD = cast<ConstantSDNode>(N->getOperand(3));
4961 
4962   unsigned CondCode = CD->getZExtValue();
4963   if (!FCmpInst::isFPPredicate(static_cast<FCmpInst::Predicate>(CondCode)))
4964     return DAG.getUNDEF(VT);
4965 
4966   SDValue Src0 = N->getOperand(1);
4967   SDValue Src1 = N->getOperand(2);
4968   EVT CmpVT = Src0.getValueType();
4969   SDLoc SL(N);
4970 
4971   if (CmpVT == MVT::f16 && !TLI.isTypeLegal(CmpVT)) {
4972     Src0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0);
4973     Src1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1);
4974   }
4975 
4976   FCmpInst::Predicate IcInput = static_cast<FCmpInst::Predicate>(CondCode);
4977   ISD::CondCode CCOpcode = getFCmpCondCode(IcInput);
4978   unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize();
4979   EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize);
4980   SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, SL, CCVT, Src0,
4981                               Src1, DAG.getCondCode(CCOpcode));
4982   if (VT.bitsEq(CCVT))
4983     return SetCC;
4984   return DAG.getZExtOrTrunc(SetCC, SL, VT);
4985 }
4986 
4987 static SDValue lowerBALLOTIntrinsic(const SITargetLowering &TLI, SDNode *N,
4988                                     SelectionDAG &DAG) {
4989   EVT VT = N->getValueType(0);
4990   SDValue Src = N->getOperand(1);
4991   SDLoc SL(N);
4992 
4993   if (Src.getOpcode() == ISD::SETCC) {
4994     // (ballot (ISD::SETCC ...)) -> (AMDGPUISD::SETCC ...)
4995     return DAG.getNode(AMDGPUISD::SETCC, SL, VT, Src.getOperand(0),
4996                        Src.getOperand(1), Src.getOperand(2));
4997   }
4998   if (const ConstantSDNode *Arg = dyn_cast<ConstantSDNode>(Src)) {
4999     // (ballot 0) -> 0
5000     if (Arg->isZero())
5001       return DAG.getConstant(0, SL, VT);
5002 
5003     // (ballot 1) -> EXEC/EXEC_LO
5004     if (Arg->isOne()) {
5005       Register Exec;
5006       if (VT.getScalarSizeInBits() == 32)
5007         Exec = AMDGPU::EXEC_LO;
5008       else if (VT.getScalarSizeInBits() == 64)
5009         Exec = AMDGPU::EXEC;
5010       else
5011         return SDValue();
5012 
5013       return DAG.getCopyFromReg(DAG.getEntryNode(), SL, Exec, VT);
5014     }
5015   }
5016 
5017   // (ballot (i1 $src)) -> (AMDGPUISD::SETCC (i32 (zext $src)) (i32 0)
5018   // ISD::SETNE)
5019   return DAG.getNode(
5020       AMDGPUISD::SETCC, SL, VT, DAG.getZExtOrTrunc(Src, SL, MVT::i32),
5021       DAG.getConstant(0, SL, MVT::i32), DAG.getCondCode(ISD::SETNE));
5022 }
5023 
5024 void SITargetLowering::ReplaceNodeResults(SDNode *N,
5025                                           SmallVectorImpl<SDValue> &Results,
5026                                           SelectionDAG &DAG) const {
5027   switch (N->getOpcode()) {
5028   case ISD::INSERT_VECTOR_ELT: {
5029     if (SDValue Res = lowerINSERT_VECTOR_ELT(SDValue(N, 0), DAG))
5030       Results.push_back(Res);
5031     return;
5032   }
5033   case ISD::EXTRACT_VECTOR_ELT: {
5034     if (SDValue Res = lowerEXTRACT_VECTOR_ELT(SDValue(N, 0), DAG))
5035       Results.push_back(Res);
5036     return;
5037   }
5038   case ISD::INTRINSIC_WO_CHAIN: {
5039     unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
5040     switch (IID) {
5041     case Intrinsic::amdgcn_cvt_pkrtz: {
5042       SDValue Src0 = N->getOperand(1);
5043       SDValue Src1 = N->getOperand(2);
5044       SDLoc SL(N);
5045       SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_PKRTZ_F16_F32, SL, MVT::i32,
5046                                 Src0, Src1);
5047       Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Cvt));
5048       return;
5049     }
5050     case Intrinsic::amdgcn_cvt_pknorm_i16:
5051     case Intrinsic::amdgcn_cvt_pknorm_u16:
5052     case Intrinsic::amdgcn_cvt_pk_i16:
5053     case Intrinsic::amdgcn_cvt_pk_u16: {
5054       SDValue Src0 = N->getOperand(1);
5055       SDValue Src1 = N->getOperand(2);
5056       SDLoc SL(N);
5057       unsigned Opcode;
5058 
5059       if (IID == Intrinsic::amdgcn_cvt_pknorm_i16)
5060         Opcode = AMDGPUISD::CVT_PKNORM_I16_F32;
5061       else if (IID == Intrinsic::amdgcn_cvt_pknorm_u16)
5062         Opcode = AMDGPUISD::CVT_PKNORM_U16_F32;
5063       else if (IID == Intrinsic::amdgcn_cvt_pk_i16)
5064         Opcode = AMDGPUISD::CVT_PK_I16_I32;
5065       else
5066         Opcode = AMDGPUISD::CVT_PK_U16_U32;
5067 
5068       EVT VT = N->getValueType(0);
5069       if (isTypeLegal(VT))
5070         Results.push_back(DAG.getNode(Opcode, SL, VT, Src0, Src1));
5071       else {
5072         SDValue Cvt = DAG.getNode(Opcode, SL, MVT::i32, Src0, Src1);
5073         Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, Cvt));
5074       }
5075       return;
5076     }
5077     }
5078     break;
5079   }
5080   case ISD::INTRINSIC_W_CHAIN: {
5081     if (SDValue Res = LowerINTRINSIC_W_CHAIN(SDValue(N, 0), DAG)) {
5082       if (Res.getOpcode() == ISD::MERGE_VALUES) {
5083         // FIXME: Hacky
5084         for (unsigned I = 0; I < Res.getNumOperands(); I++) {
5085           Results.push_back(Res.getOperand(I));
5086         }
5087       } else {
5088         Results.push_back(Res);
5089         Results.push_back(Res.getValue(1));
5090       }
5091       return;
5092     }
5093 
5094     break;
5095   }
5096   case ISD::SELECT: {
5097     SDLoc SL(N);
5098     EVT VT = N->getValueType(0);
5099     EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
5100     SDValue LHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(1));
5101     SDValue RHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(2));
5102 
5103     EVT SelectVT = NewVT;
5104     if (NewVT.bitsLT(MVT::i32)) {
5105       LHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, LHS);
5106       RHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, RHS);
5107       SelectVT = MVT::i32;
5108     }
5109 
5110     SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, SelectVT,
5111                                     N->getOperand(0), LHS, RHS);
5112 
5113     if (NewVT != SelectVT)
5114       NewSelect = DAG.getNode(ISD::TRUNCATE, SL, NewVT, NewSelect);
5115     Results.push_back(DAG.getNode(ISD::BITCAST, SL, VT, NewSelect));
5116     return;
5117   }
5118   case ISD::FNEG: {
5119     if (N->getValueType(0) != MVT::v2f16)
5120       break;
5121 
5122     SDLoc SL(N);
5123     SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0));
5124 
5125     SDValue Op = DAG.getNode(ISD::XOR, SL, MVT::i32,
5126                              BC,
5127                              DAG.getConstant(0x80008000, SL, MVT::i32));
5128     Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op));
5129     return;
5130   }
5131   case ISD::FABS: {
5132     if (N->getValueType(0) != MVT::v2f16)
5133       break;
5134 
5135     SDLoc SL(N);
5136     SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0));
5137 
5138     SDValue Op = DAG.getNode(ISD::AND, SL, MVT::i32,
5139                              BC,
5140                              DAG.getConstant(0x7fff7fff, SL, MVT::i32));
5141     Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op));
5142     return;
5143   }
5144   default:
5145     break;
5146   }
5147 }
5148 
5149 /// Helper function for LowerBRCOND
5150 static SDNode *findUser(SDValue Value, unsigned Opcode) {
5151 
5152   SDNode *Parent = Value.getNode();
5153   for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end();
5154        I != E; ++I) {
5155 
5156     if (I.getUse().get() != Value)
5157       continue;
5158 
5159     if (I->getOpcode() == Opcode)
5160       return *I;
5161   }
5162   return nullptr;
5163 }
5164 
5165 unsigned SITargetLowering::isCFIntrinsic(const SDNode *Intr) const {
5166   if (Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
5167     switch (cast<ConstantSDNode>(Intr->getOperand(1))->getZExtValue()) {
5168     case Intrinsic::amdgcn_if:
5169       return AMDGPUISD::IF;
5170     case Intrinsic::amdgcn_else:
5171       return AMDGPUISD::ELSE;
5172     case Intrinsic::amdgcn_loop:
5173       return AMDGPUISD::LOOP;
5174     case Intrinsic::amdgcn_end_cf:
5175       llvm_unreachable("should not occur");
5176     default:
5177       return 0;
5178     }
5179   }
5180 
5181   // break, if_break, else_break are all only used as inputs to loop, not
5182   // directly as branch conditions.
5183   return 0;
5184 }
5185 
5186 bool SITargetLowering::shouldEmitFixup(const GlobalValue *GV) const {
5187   const Triple &TT = getTargetMachine().getTargetTriple();
5188   return (GV->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
5189           GV->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
5190          AMDGPU::shouldEmitConstantsToTextSection(TT);
5191 }
5192 
5193 bool SITargetLowering::shouldEmitGOTReloc(const GlobalValue *GV) const {
5194   // FIXME: Either avoid relying on address space here or change the default
5195   // address space for functions to avoid the explicit check.
5196   return (GV->getValueType()->isFunctionTy() ||
5197           !isNonGlobalAddrSpace(GV->getAddressSpace())) &&
5198          !shouldEmitFixup(GV) &&
5199          !getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
5200 }
5201 
5202 bool SITargetLowering::shouldEmitPCReloc(const GlobalValue *GV) const {
5203   return !shouldEmitFixup(GV) && !shouldEmitGOTReloc(GV);
5204 }
5205 
5206 bool SITargetLowering::shouldUseLDSConstAddress(const GlobalValue *GV) const {
5207   if (!GV->hasExternalLinkage())
5208     return true;
5209 
5210   const auto OS = getTargetMachine().getTargetTriple().getOS();
5211   return OS == Triple::AMDHSA || OS == Triple::AMDPAL;
5212 }
5213 
5214 /// This transforms the control flow intrinsics to get the branch destination as
5215 /// last parameter, also switches branch target with BR if the need arise
5216 SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND,
5217                                       SelectionDAG &DAG) const {
5218   SDLoc DL(BRCOND);
5219 
5220   SDNode *Intr = BRCOND.getOperand(1).getNode();
5221   SDValue Target = BRCOND.getOperand(2);
5222   SDNode *BR = nullptr;
5223   SDNode *SetCC = nullptr;
5224 
5225   if (Intr->getOpcode() == ISD::SETCC) {
5226     // As long as we negate the condition everything is fine
5227     SetCC = Intr;
5228     Intr = SetCC->getOperand(0).getNode();
5229 
5230   } else {
5231     // Get the target from BR if we don't negate the condition
5232     BR = findUser(BRCOND, ISD::BR);
5233     assert(BR && "brcond missing unconditional branch user");
5234     Target = BR->getOperand(1);
5235   }
5236 
5237   unsigned CFNode = isCFIntrinsic(Intr);
5238   if (CFNode == 0) {
5239     // This is a uniform branch so we don't need to legalize.
5240     return BRCOND;
5241   }
5242 
5243   bool HaveChain = Intr->getOpcode() == ISD::INTRINSIC_VOID ||
5244                    Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN;
5245 
5246   assert(!SetCC ||
5247         (SetCC->getConstantOperandVal(1) == 1 &&
5248          cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() ==
5249                                                              ISD::SETNE));
5250 
5251   // operands of the new intrinsic call
5252   SmallVector<SDValue, 4> Ops;
5253   if (HaveChain)
5254     Ops.push_back(BRCOND.getOperand(0));
5255 
5256   Ops.append(Intr->op_begin() + (HaveChain ?  2 : 1), Intr->op_end());
5257   Ops.push_back(Target);
5258 
5259   ArrayRef<EVT> Res(Intr->value_begin() + 1, Intr->value_end());
5260 
5261   // build the new intrinsic call
5262   SDNode *Result = DAG.getNode(CFNode, DL, DAG.getVTList(Res), Ops).getNode();
5263 
5264   if (!HaveChain) {
5265     SDValue Ops[] =  {
5266       SDValue(Result, 0),
5267       BRCOND.getOperand(0)
5268     };
5269 
5270     Result = DAG.getMergeValues(Ops, DL).getNode();
5271   }
5272 
5273   if (BR) {
5274     // Give the branch instruction our target
5275     SDValue Ops[] = {
5276       BR->getOperand(0),
5277       BRCOND.getOperand(2)
5278     };
5279     SDValue NewBR = DAG.getNode(ISD::BR, DL, BR->getVTList(), Ops);
5280     DAG.ReplaceAllUsesWith(BR, NewBR.getNode());
5281   }
5282 
5283   SDValue Chain = SDValue(Result, Result->getNumValues() - 1);
5284 
5285   // Copy the intrinsic results to registers
5286   for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) {
5287     SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg);
5288     if (!CopyToReg)
5289       continue;
5290 
5291     Chain = DAG.getCopyToReg(
5292       Chain, DL,
5293       CopyToReg->getOperand(1),
5294       SDValue(Result, i - 1),
5295       SDValue());
5296 
5297     DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0));
5298   }
5299 
5300   // Remove the old intrinsic from the chain
5301   DAG.ReplaceAllUsesOfValueWith(
5302     SDValue(Intr, Intr->getNumValues() - 1),
5303     Intr->getOperand(0));
5304 
5305   return Chain;
5306 }
5307 
5308 SDValue SITargetLowering::LowerRETURNADDR(SDValue Op,
5309                                           SelectionDAG &DAG) const {
5310   MVT VT = Op.getSimpleValueType();
5311   SDLoc DL(Op);
5312   // Checking the depth
5313   if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() != 0)
5314     return DAG.getConstant(0, DL, VT);
5315 
5316   MachineFunction &MF = DAG.getMachineFunction();
5317   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
5318   // Check for kernel and shader functions
5319   if (Info->isEntryFunction())
5320     return DAG.getConstant(0, DL, VT);
5321 
5322   MachineFrameInfo &MFI = MF.getFrameInfo();
5323   // There is a call to @llvm.returnaddress in this function
5324   MFI.setReturnAddressIsTaken(true);
5325 
5326   const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
5327   // Get the return address reg and mark it as an implicit live-in
5328   Register Reg = MF.addLiveIn(TRI->getReturnAddressReg(MF), getRegClassFor(VT, Op.getNode()->isDivergent()));
5329 
5330   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT);
5331 }
5332 
5333 SDValue SITargetLowering::getFPExtOrFPRound(SelectionDAG &DAG,
5334                                             SDValue Op,
5335                                             const SDLoc &DL,
5336                                             EVT VT) const {
5337   return Op.getValueType().bitsLE(VT) ?
5338       DAG.getNode(ISD::FP_EXTEND, DL, VT, Op) :
5339     DAG.getNode(ISD::FP_ROUND, DL, VT, Op,
5340                 DAG.getTargetConstant(0, DL, MVT::i32));
5341 }
5342 
5343 SDValue SITargetLowering::lowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
5344   assert(Op.getValueType() == MVT::f16 &&
5345          "Do not know how to custom lower FP_ROUND for non-f16 type");
5346 
5347   SDValue Src = Op.getOperand(0);
5348   EVT SrcVT = Src.getValueType();
5349   if (SrcVT != MVT::f64)
5350     return Op;
5351 
5352   SDLoc DL(Op);
5353 
5354   SDValue FpToFp16 = DAG.getNode(ISD::FP_TO_FP16, DL, MVT::i32, Src);
5355   SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FpToFp16);
5356   return DAG.getNode(ISD::BITCAST, DL, MVT::f16, Trunc);
5357 }
5358 
5359 SDValue SITargetLowering::lowerFMINNUM_FMAXNUM(SDValue Op,
5360                                                SelectionDAG &DAG) const {
5361   EVT VT = Op.getValueType();
5362   const MachineFunction &MF = DAG.getMachineFunction();
5363   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
5364   bool IsIEEEMode = Info->getMode().IEEE;
5365 
5366   // FIXME: Assert during selection that this is only selected for
5367   // ieee_mode. Currently a combine can produce the ieee version for non-ieee
5368   // mode functions, but this happens to be OK since it's only done in cases
5369   // where there is known no sNaN.
5370   if (IsIEEEMode)
5371     return expandFMINNUM_FMAXNUM(Op.getNode(), DAG);
5372 
5373   if (VT == MVT::v4f16 || VT == MVT::v8f16 || VT == MVT::v16f16)
5374     return splitBinaryVectorOp(Op, DAG);
5375   return Op;
5376 }
5377 
5378 SDValue SITargetLowering::lowerXMULO(SDValue Op, SelectionDAG &DAG) const {
5379   EVT VT = Op.getValueType();
5380   SDLoc SL(Op);
5381   SDValue LHS = Op.getOperand(0);
5382   SDValue RHS = Op.getOperand(1);
5383   bool isSigned = Op.getOpcode() == ISD::SMULO;
5384 
5385   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
5386     const APInt &C = RHSC->getAPIntValue();
5387     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
5388     if (C.isPowerOf2()) {
5389       // smulo(x, signed_min) is same as umulo(x, signed_min).
5390       bool UseArithShift = isSigned && !C.isMinSignedValue();
5391       SDValue ShiftAmt = DAG.getConstant(C.logBase2(), SL, MVT::i32);
5392       SDValue Result = DAG.getNode(ISD::SHL, SL, VT, LHS, ShiftAmt);
5393       SDValue Overflow = DAG.getSetCC(SL, MVT::i1,
5394           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
5395                       SL, VT, Result, ShiftAmt),
5396           LHS, ISD::SETNE);
5397       return DAG.getMergeValues({ Result, Overflow }, SL);
5398     }
5399   }
5400 
5401   SDValue Result = DAG.getNode(ISD::MUL, SL, VT, LHS, RHS);
5402   SDValue Top = DAG.getNode(isSigned ? ISD::MULHS : ISD::MULHU,
5403                             SL, VT, LHS, RHS);
5404 
5405   SDValue Sign = isSigned
5406     ? DAG.getNode(ISD::SRA, SL, VT, Result,
5407                   DAG.getConstant(VT.getScalarSizeInBits() - 1, SL, MVT::i32))
5408     : DAG.getConstant(0, SL, VT);
5409   SDValue Overflow = DAG.getSetCC(SL, MVT::i1, Top, Sign, ISD::SETNE);
5410 
5411   return DAG.getMergeValues({ Result, Overflow }, SL);
5412 }
5413 
5414 SDValue SITargetLowering::lowerXMUL_LOHI(SDValue Op, SelectionDAG &DAG) const {
5415   if (Op->isDivergent()) {
5416     // Select to V_MAD_[IU]64_[IU]32.
5417     return Op;
5418   }
5419   if (Subtarget->hasSMulHi()) {
5420     // Expand to S_MUL_I32 + S_MUL_HI_[IU]32.
5421     return SDValue();
5422   }
5423   // The multiply is uniform but we would have to use V_MUL_HI_[IU]32 to
5424   // calculate the high part, so we might as well do the whole thing with
5425   // V_MAD_[IU]64_[IU]32.
5426   return Op;
5427 }
5428 
5429 SDValue SITargetLowering::lowerTRAP(SDValue Op, SelectionDAG &DAG) const {
5430   if (!Subtarget->isTrapHandlerEnabled() ||
5431       Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbi::AMDHSA)
5432     return lowerTrapEndpgm(Op, DAG);
5433 
5434   if (std::optional<uint8_t> HsaAbiVer = AMDGPU::getHsaAbiVersion(Subtarget)) {
5435     switch (*HsaAbiVer) {
5436     case ELF::ELFABIVERSION_AMDGPU_HSA_V2:
5437     case ELF::ELFABIVERSION_AMDGPU_HSA_V3:
5438       return lowerTrapHsaQueuePtr(Op, DAG);
5439     case ELF::ELFABIVERSION_AMDGPU_HSA_V4:
5440     case ELF::ELFABIVERSION_AMDGPU_HSA_V5:
5441       return Subtarget->supportsGetDoorbellID() ?
5442           lowerTrapHsa(Op, DAG) : lowerTrapHsaQueuePtr(Op, DAG);
5443     }
5444   }
5445 
5446   llvm_unreachable("Unknown trap handler");
5447 }
5448 
5449 SDValue SITargetLowering::lowerTrapEndpgm(
5450     SDValue Op, SelectionDAG &DAG) const {
5451   SDLoc SL(Op);
5452   SDValue Chain = Op.getOperand(0);
5453   return DAG.getNode(AMDGPUISD::ENDPGM, SL, MVT::Other, Chain);
5454 }
5455 
5456 SDValue SITargetLowering::loadImplicitKernelArgument(SelectionDAG &DAG, MVT VT,
5457     const SDLoc &DL, Align Alignment, ImplicitParameter Param) const {
5458   MachineFunction &MF = DAG.getMachineFunction();
5459   uint64_t Offset = getImplicitParameterOffset(MF, Param);
5460   SDValue Ptr = lowerKernArgParameterPtr(DAG, DL, DAG.getEntryNode(), Offset);
5461   MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
5462   return DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, PtrInfo, Alignment,
5463                      MachineMemOperand::MODereferenceable |
5464                          MachineMemOperand::MOInvariant);
5465 }
5466 
5467 SDValue SITargetLowering::lowerTrapHsaQueuePtr(
5468     SDValue Op, SelectionDAG &DAG) const {
5469   SDLoc SL(Op);
5470   SDValue Chain = Op.getOperand(0);
5471 
5472   SDValue QueuePtr;
5473   // For code object version 5, QueuePtr is passed through implicit kernarg.
5474   if (AMDGPU::getAmdhsaCodeObjectVersion() == 5) {
5475     QueuePtr =
5476         loadImplicitKernelArgument(DAG, MVT::i64, SL, Align(8), QUEUE_PTR);
5477   } else {
5478     MachineFunction &MF = DAG.getMachineFunction();
5479     SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
5480     Register UserSGPR = Info->getQueuePtrUserSGPR();
5481 
5482     if (UserSGPR == AMDGPU::NoRegister) {
5483       // We probably are in a function incorrectly marked with
5484       // amdgpu-no-queue-ptr. This is undefined. We don't want to delete the
5485       // trap, so just use a null pointer.
5486       QueuePtr = DAG.getConstant(0, SL, MVT::i64);
5487     } else {
5488       QueuePtr = CreateLiveInRegister(DAG, &AMDGPU::SReg_64RegClass, UserSGPR,
5489                                       MVT::i64);
5490     }
5491   }
5492 
5493   SDValue SGPR01 = DAG.getRegister(AMDGPU::SGPR0_SGPR1, MVT::i64);
5494   SDValue ToReg = DAG.getCopyToReg(Chain, SL, SGPR01,
5495                                    QueuePtr, SDValue());
5496 
5497   uint64_t TrapID = static_cast<uint64_t>(GCNSubtarget::TrapID::LLVMAMDHSATrap);
5498   SDValue Ops[] = {
5499     ToReg,
5500     DAG.getTargetConstant(TrapID, SL, MVT::i16),
5501     SGPR01,
5502     ToReg.getValue(1)
5503   };
5504   return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops);
5505 }
5506 
5507 SDValue SITargetLowering::lowerTrapHsa(
5508     SDValue Op, SelectionDAG &DAG) const {
5509   SDLoc SL(Op);
5510   SDValue Chain = Op.getOperand(0);
5511 
5512   uint64_t TrapID = static_cast<uint64_t>(GCNSubtarget::TrapID::LLVMAMDHSATrap);
5513   SDValue Ops[] = {
5514     Chain,
5515     DAG.getTargetConstant(TrapID, SL, MVT::i16)
5516   };
5517   return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops);
5518 }
5519 
5520 SDValue SITargetLowering::lowerDEBUGTRAP(SDValue Op, SelectionDAG &DAG) const {
5521   SDLoc SL(Op);
5522   SDValue Chain = Op.getOperand(0);
5523   MachineFunction &MF = DAG.getMachineFunction();
5524 
5525   if (!Subtarget->isTrapHandlerEnabled() ||
5526       Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbi::AMDHSA) {
5527     DiagnosticInfoUnsupported NoTrap(MF.getFunction(),
5528                                      "debugtrap handler not supported",
5529                                      Op.getDebugLoc(),
5530                                      DS_Warning);
5531     LLVMContext &Ctx = MF.getFunction().getContext();
5532     Ctx.diagnose(NoTrap);
5533     return Chain;
5534   }
5535 
5536   uint64_t TrapID = static_cast<uint64_t>(GCNSubtarget::TrapID::LLVMAMDHSADebugTrap);
5537   SDValue Ops[] = {
5538     Chain,
5539     DAG.getTargetConstant(TrapID, SL, MVT::i16)
5540   };
5541   return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops);
5542 }
5543 
5544 SDValue SITargetLowering::getSegmentAperture(unsigned AS, const SDLoc &DL,
5545                                              SelectionDAG &DAG) const {
5546   if (Subtarget->hasApertureRegs()) {
5547     const unsigned ApertureRegNo = (AS == AMDGPUAS::LOCAL_ADDRESS)
5548                                        ? AMDGPU::SRC_SHARED_BASE
5549                                        : AMDGPU::SRC_PRIVATE_BASE;
5550     // Note: this feature (register) is broken. When used as a 32-bit operand,
5551     // it returns a wrong value (all zeroes?). The real value is in the upper 32
5552     // bits.
5553     //
5554     // To work around the issue, directly emit a 64 bit mov from this register
5555     // then extract the high bits. Note that this shouldn't even result in a
5556     // shift being emitted and simply become a pair of registers (e.g.):
5557     //    s_mov_b64 s[6:7], src_shared_base
5558     //    v_mov_b32_e32 v1, s7
5559     //
5560     // FIXME: It would be more natural to emit a CopyFromReg here, but then copy
5561     // coalescing would kick in and it would think it's okay to use the "HI"
5562     // subregister directly (instead of extracting the HI 32 bits) which is an
5563     // artificial (unusable) register.
5564     //  Register TableGen definitions would need an overhaul to get rid of the
5565     //  artificial "HI" aperture registers and prevent this kind of issue from
5566     //  happening.
5567     SDNode *Mov = DAG.getMachineNode(AMDGPU::S_MOV_B64, DL, MVT::i64,
5568                                      DAG.getRegister(ApertureRegNo, MVT::i64));
5569     return DAG.getNode(
5570         ISD::TRUNCATE, DL, MVT::i32,
5571         DAG.getNode(ISD::SRL, DL, MVT::i64,
5572                     {SDValue(Mov, 0), DAG.getConstant(32, DL, MVT::i64)}));
5573   }
5574 
5575   // For code object version 5, private_base and shared_base are passed through
5576   // implicit kernargs.
5577   if (AMDGPU::getAmdhsaCodeObjectVersion() == 5) {
5578     ImplicitParameter Param =
5579         (AS == AMDGPUAS::LOCAL_ADDRESS) ? SHARED_BASE : PRIVATE_BASE;
5580     return loadImplicitKernelArgument(DAG, MVT::i32, DL, Align(4), Param);
5581   }
5582 
5583   MachineFunction &MF = DAG.getMachineFunction();
5584   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
5585   Register UserSGPR = Info->getQueuePtrUserSGPR();
5586   if (UserSGPR == AMDGPU::NoRegister) {
5587     // We probably are in a function incorrectly marked with
5588     // amdgpu-no-queue-ptr. This is undefined.
5589     return DAG.getUNDEF(MVT::i32);
5590   }
5591 
5592   SDValue QueuePtr = CreateLiveInRegister(
5593     DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64);
5594 
5595   // Offset into amd_queue_t for group_segment_aperture_base_hi /
5596   // private_segment_aperture_base_hi.
5597   uint32_t StructOffset = (AS == AMDGPUAS::LOCAL_ADDRESS) ? 0x40 : 0x44;
5598 
5599   SDValue Ptr =
5600       DAG.getObjectPtrOffset(DL, QueuePtr, TypeSize::Fixed(StructOffset));
5601 
5602   // TODO: Use custom target PseudoSourceValue.
5603   // TODO: We should use the value from the IR intrinsic call, but it might not
5604   // be available and how do we get it?
5605   MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
5606   return DAG.getLoad(MVT::i32, DL, QueuePtr.getValue(1), Ptr, PtrInfo,
5607                      commonAlignment(Align(64), StructOffset),
5608                      MachineMemOperand::MODereferenceable |
5609                          MachineMemOperand::MOInvariant);
5610 }
5611 
5612 /// Return true if the value is a known valid address, such that a null check is
5613 /// not necessary.
5614 static bool isKnownNonNull(SDValue Val, SelectionDAG &DAG,
5615                            const AMDGPUTargetMachine &TM, unsigned AddrSpace) {
5616   if (isa<FrameIndexSDNode>(Val) || isa<GlobalAddressSDNode>(Val) ||
5617       isa<BasicBlockSDNode>(Val))
5618     return true;
5619 
5620   if (auto *ConstVal = dyn_cast<ConstantSDNode>(Val))
5621     return ConstVal->getSExtValue() != TM.getNullPointerValue(AddrSpace);
5622 
5623   // TODO: Search through arithmetic, handle arguments and loads
5624   // marked nonnull.
5625   return false;
5626 }
5627 
5628 SDValue SITargetLowering::lowerADDRSPACECAST(SDValue Op,
5629                                              SelectionDAG &DAG) const {
5630   SDLoc SL(Op);
5631   const AddrSpaceCastSDNode *ASC = cast<AddrSpaceCastSDNode>(Op);
5632 
5633   SDValue Src = ASC->getOperand(0);
5634   SDValue FlatNullPtr = DAG.getConstant(0, SL, MVT::i64);
5635   unsigned SrcAS = ASC->getSrcAddressSpace();
5636 
5637   const AMDGPUTargetMachine &TM =
5638     static_cast<const AMDGPUTargetMachine &>(getTargetMachine());
5639 
5640   // flat -> local/private
5641   if (SrcAS == AMDGPUAS::FLAT_ADDRESS) {
5642     unsigned DestAS = ASC->getDestAddressSpace();
5643 
5644     if (DestAS == AMDGPUAS::LOCAL_ADDRESS ||
5645         DestAS == AMDGPUAS::PRIVATE_ADDRESS) {
5646       SDValue Ptr = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src);
5647 
5648       if (isKnownNonNull(Src, DAG, TM, SrcAS))
5649         return Ptr;
5650 
5651       unsigned NullVal = TM.getNullPointerValue(DestAS);
5652       SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32);
5653       SDValue NonNull = DAG.getSetCC(SL, MVT::i1, Src, FlatNullPtr, ISD::SETNE);
5654 
5655       return DAG.getNode(ISD::SELECT, SL, MVT::i32, NonNull, Ptr,
5656                          SegmentNullPtr);
5657     }
5658   }
5659 
5660   // local/private -> flat
5661   if (ASC->getDestAddressSpace() == AMDGPUAS::FLAT_ADDRESS) {
5662     if (SrcAS == AMDGPUAS::LOCAL_ADDRESS ||
5663         SrcAS == AMDGPUAS::PRIVATE_ADDRESS) {
5664 
5665       SDValue Aperture = getSegmentAperture(ASC->getSrcAddressSpace(), SL, DAG);
5666       SDValue CvtPtr =
5667           DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Src, Aperture);
5668       CvtPtr = DAG.getNode(ISD::BITCAST, SL, MVT::i64, CvtPtr);
5669 
5670       if (isKnownNonNull(Src, DAG, TM, SrcAS))
5671         return CvtPtr;
5672 
5673       unsigned NullVal = TM.getNullPointerValue(SrcAS);
5674       SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32);
5675 
5676       SDValue NonNull
5677         = DAG.getSetCC(SL, MVT::i1, Src, SegmentNullPtr, ISD::SETNE);
5678 
5679       return DAG.getNode(ISD::SELECT, SL, MVT::i64, NonNull, CvtPtr,
5680                          FlatNullPtr);
5681     }
5682   }
5683 
5684   if (SrcAS == AMDGPUAS::CONSTANT_ADDRESS_32BIT &&
5685       Op.getValueType() == MVT::i64) {
5686     const SIMachineFunctionInfo *Info =
5687         DAG.getMachineFunction().getInfo<SIMachineFunctionInfo>();
5688     SDValue Hi = DAG.getConstant(Info->get32BitAddressHighBits(), SL, MVT::i32);
5689     SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Src, Hi);
5690     return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
5691   }
5692 
5693   if (ASC->getDestAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT &&
5694       Src.getValueType() == MVT::i64)
5695     return DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src);
5696 
5697   // global <-> flat are no-ops and never emitted.
5698 
5699   const MachineFunction &MF = DAG.getMachineFunction();
5700   DiagnosticInfoUnsupported InvalidAddrSpaceCast(
5701     MF.getFunction(), "invalid addrspacecast", SL.getDebugLoc());
5702   DAG.getContext()->diagnose(InvalidAddrSpaceCast);
5703 
5704   return DAG.getUNDEF(ASC->getValueType(0));
5705 }
5706 
5707 // This lowers an INSERT_SUBVECTOR by extracting the individual elements from
5708 // the small vector and inserting them into the big vector. That is better than
5709 // the default expansion of doing it via a stack slot. Even though the use of
5710 // the stack slot would be optimized away afterwards, the stack slot itself
5711 // remains.
5712 SDValue SITargetLowering::lowerINSERT_SUBVECTOR(SDValue Op,
5713                                                 SelectionDAG &DAG) const {
5714   SDValue Vec = Op.getOperand(0);
5715   SDValue Ins = Op.getOperand(1);
5716   SDValue Idx = Op.getOperand(2);
5717   EVT VecVT = Vec.getValueType();
5718   EVT InsVT = Ins.getValueType();
5719   EVT EltVT = VecVT.getVectorElementType();
5720   unsigned InsNumElts = InsVT.getVectorNumElements();
5721   unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
5722   SDLoc SL(Op);
5723 
5724   for (unsigned I = 0; I != InsNumElts; ++I) {
5725     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Ins,
5726                               DAG.getConstant(I, SL, MVT::i32));
5727     Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, VecVT, Vec, Elt,
5728                       DAG.getConstant(IdxVal + I, SL, MVT::i32));
5729   }
5730   return Vec;
5731 }
5732 
5733 SDValue SITargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
5734                                                  SelectionDAG &DAG) const {
5735   SDValue Vec = Op.getOperand(0);
5736   SDValue InsVal = Op.getOperand(1);
5737   SDValue Idx = Op.getOperand(2);
5738   EVT VecVT = Vec.getValueType();
5739   EVT EltVT = VecVT.getVectorElementType();
5740   unsigned VecSize = VecVT.getSizeInBits();
5741   unsigned EltSize = EltVT.getSizeInBits();
5742   SDLoc SL(Op);
5743 
5744   // Specially handle the case of v4i16 with static indexing.
5745   unsigned NumElts = VecVT.getVectorNumElements();
5746   auto KIdx = dyn_cast<ConstantSDNode>(Idx);
5747   if (NumElts == 4 && EltSize == 16 && KIdx) {
5748     SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Vec);
5749 
5750     SDValue LoHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec,
5751                                  DAG.getConstant(0, SL, MVT::i32));
5752     SDValue HiHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec,
5753                                  DAG.getConstant(1, SL, MVT::i32));
5754 
5755     SDValue LoVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, LoHalf);
5756     SDValue HiVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, HiHalf);
5757 
5758     unsigned Idx = KIdx->getZExtValue();
5759     bool InsertLo = Idx < 2;
5760     SDValue InsHalf = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, MVT::v2i16,
5761       InsertLo ? LoVec : HiVec,
5762       DAG.getNode(ISD::BITCAST, SL, MVT::i16, InsVal),
5763       DAG.getConstant(InsertLo ? Idx : (Idx - 2), SL, MVT::i32));
5764 
5765     InsHalf = DAG.getNode(ISD::BITCAST, SL, MVT::i32, InsHalf);
5766 
5767     SDValue Concat = InsertLo ?
5768       DAG.getBuildVector(MVT::v2i32, SL, { InsHalf, HiHalf }) :
5769       DAG.getBuildVector(MVT::v2i32, SL, { LoHalf, InsHalf });
5770 
5771     return DAG.getNode(ISD::BITCAST, SL, VecVT, Concat);
5772   }
5773 
5774   // Static indexing does not lower to stack access, and hence there is no need
5775   // for special custom lowering to avoid stack access.
5776   if (isa<ConstantSDNode>(Idx))
5777     return SDValue();
5778 
5779   // Avoid stack access for dynamic indexing by custom lowering to
5780   // v_bfi_b32 (v_bfm_b32 16, (shl idx, 16)), val, vec
5781 
5782   assert(VecSize <= 64 && "Expected target vector size to be <= 64 bits");
5783 
5784   MVT IntVT = MVT::getIntegerVT(VecSize);
5785 
5786   // Convert vector index to bit-index and get the required bit mask.
5787   assert(isPowerOf2_32(EltSize));
5788   const auto EltMask = maskTrailingOnes<uint64_t>(EltSize);
5789   SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32);
5790   SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor);
5791   SDValue BFM = DAG.getNode(ISD::SHL, SL, IntVT,
5792                             DAG.getConstant(EltMask, SL, IntVT), ScaledIdx);
5793 
5794   // 1. Create a congruent vector with the target value in each element.
5795   SDValue ExtVal = DAG.getNode(ISD::BITCAST, SL, IntVT,
5796                                DAG.getSplatBuildVector(VecVT, SL, InsVal));
5797 
5798   // 2. Mask off all other indicies except the required index within (1).
5799   SDValue LHS = DAG.getNode(ISD::AND, SL, IntVT, BFM, ExtVal);
5800 
5801   // 3. Mask off the required index within the target vector.
5802   SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec);
5803   SDValue RHS = DAG.getNode(ISD::AND, SL, IntVT,
5804                             DAG.getNOT(SL, BFM, IntVT), BCVec);
5805 
5806   // 4. Get (2) and (3) ORed into the target vector.
5807   SDValue BFI = DAG.getNode(ISD::OR, SL, IntVT, LHS, RHS);
5808 
5809   return DAG.getNode(ISD::BITCAST, SL, VecVT, BFI);
5810 }
5811 
5812 SDValue SITargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
5813                                                   SelectionDAG &DAG) const {
5814   SDLoc SL(Op);
5815 
5816   EVT ResultVT = Op.getValueType();
5817   SDValue Vec = Op.getOperand(0);
5818   SDValue Idx = Op.getOperand(1);
5819   EVT VecVT = Vec.getValueType();
5820   unsigned VecSize = VecVT.getSizeInBits();
5821   EVT EltVT = VecVT.getVectorElementType();
5822 
5823   DAGCombinerInfo DCI(DAG, AfterLegalizeVectorOps, true, nullptr);
5824 
5825   // Make sure we do any optimizations that will make it easier to fold
5826   // source modifiers before obscuring it with bit operations.
5827 
5828   // XXX - Why doesn't this get called when vector_shuffle is expanded?
5829   if (SDValue Combined = performExtractVectorEltCombine(Op.getNode(), DCI))
5830     return Combined;
5831 
5832   if (VecSize == 128 || VecSize == 256) {
5833     SDValue Lo, Hi;
5834     EVT LoVT, HiVT;
5835     std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT);
5836 
5837     if (VecSize == 128) {
5838       SDValue V2 = DAG.getBitcast(MVT::v2i64, Vec);
5839       Lo = DAG.getBitcast(LoVT,
5840                           DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i64, V2,
5841                                       DAG.getConstant(0, SL, MVT::i32)));
5842       Hi = DAG.getBitcast(HiVT,
5843                           DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i64, V2,
5844                                       DAG.getConstant(1, SL, MVT::i32)));
5845     } else {
5846       assert(VecSize == 256);
5847 
5848       SDValue V2 = DAG.getBitcast(MVT::v4i64, Vec);
5849       SDValue Parts[4];
5850       for (unsigned P = 0; P < 4; ++P) {
5851         Parts[P] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i64, V2,
5852                                DAG.getConstant(P, SL, MVT::i32));
5853       }
5854 
5855       Lo = DAG.getBitcast(LoVT, DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i64,
5856                                             Parts[0], Parts[1]));
5857       Hi = DAG.getBitcast(HiVT, DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i64,
5858                                             Parts[2], Parts[3]));
5859     }
5860 
5861     EVT IdxVT = Idx.getValueType();
5862     unsigned NElem = VecVT.getVectorNumElements();
5863     assert(isPowerOf2_32(NElem));
5864     SDValue IdxMask = DAG.getConstant(NElem / 2 - 1, SL, IdxVT);
5865     SDValue NewIdx = DAG.getNode(ISD::AND, SL, IdxVT, Idx, IdxMask);
5866     SDValue Half = DAG.getSelectCC(SL, Idx, IdxMask, Hi, Lo, ISD::SETUGT);
5867     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Half, NewIdx);
5868   }
5869 
5870   assert(VecSize <= 64);
5871 
5872   MVT IntVT = MVT::getIntegerVT(VecSize);
5873 
5874   // If Vec is just a SCALAR_TO_VECTOR, then use the scalar integer directly.
5875   SDValue VecBC = peekThroughBitcasts(Vec);
5876   if (VecBC.getOpcode() == ISD::SCALAR_TO_VECTOR) {
5877     SDValue Src = VecBC.getOperand(0);
5878     Src = DAG.getBitcast(Src.getValueType().changeTypeToInteger(), Src);
5879     Vec = DAG.getAnyExtOrTrunc(Src, SL, IntVT);
5880   }
5881 
5882   unsigned EltSize = EltVT.getSizeInBits();
5883   assert(isPowerOf2_32(EltSize));
5884 
5885   SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32);
5886 
5887   // Convert vector index to bit-index (* EltSize)
5888   SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor);
5889 
5890   SDValue BC = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec);
5891   SDValue Elt = DAG.getNode(ISD::SRL, SL, IntVT, BC, ScaledIdx);
5892 
5893   if (ResultVT == MVT::f16) {
5894     SDValue Result = DAG.getNode(ISD::TRUNCATE, SL, MVT::i16, Elt);
5895     return DAG.getNode(ISD::BITCAST, SL, ResultVT, Result);
5896   }
5897 
5898   return DAG.getAnyExtOrTrunc(Elt, SL, ResultVT);
5899 }
5900 
5901 static bool elementPairIsContiguous(ArrayRef<int> Mask, int Elt) {
5902   assert(Elt % 2 == 0);
5903   return Mask[Elt + 1] == Mask[Elt] + 1 && (Mask[Elt] % 2 == 0);
5904 }
5905 
5906 SDValue SITargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
5907                                               SelectionDAG &DAG) const {
5908   SDLoc SL(Op);
5909   EVT ResultVT = Op.getValueType();
5910   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
5911 
5912   EVT PackVT = ResultVT.isInteger() ? MVT::v2i16 : MVT::v2f16;
5913   EVT EltVT = PackVT.getVectorElementType();
5914   int SrcNumElts = Op.getOperand(0).getValueType().getVectorNumElements();
5915 
5916   // vector_shuffle <0,1,6,7> lhs, rhs
5917   // -> concat_vectors (extract_subvector lhs, 0), (extract_subvector rhs, 2)
5918   //
5919   // vector_shuffle <6,7,2,3> lhs, rhs
5920   // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 2)
5921   //
5922   // vector_shuffle <6,7,0,1> lhs, rhs
5923   // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 0)
5924 
5925   // Avoid scalarizing when both halves are reading from consecutive elements.
5926   SmallVector<SDValue, 4> Pieces;
5927   for (int I = 0, N = ResultVT.getVectorNumElements(); I != N; I += 2) {
5928     if (elementPairIsContiguous(SVN->getMask(), I)) {
5929       const int Idx = SVN->getMaskElt(I);
5930       int VecIdx = Idx < SrcNumElts ? 0 : 1;
5931       int EltIdx = Idx < SrcNumElts ? Idx : Idx - SrcNumElts;
5932       SDValue SubVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL,
5933                                     PackVT, SVN->getOperand(VecIdx),
5934                                     DAG.getConstant(EltIdx, SL, MVT::i32));
5935       Pieces.push_back(SubVec);
5936     } else {
5937       const int Idx0 = SVN->getMaskElt(I);
5938       const int Idx1 = SVN->getMaskElt(I + 1);
5939       int VecIdx0 = Idx0 < SrcNumElts ? 0 : 1;
5940       int VecIdx1 = Idx1 < SrcNumElts ? 0 : 1;
5941       int EltIdx0 = Idx0 < SrcNumElts ? Idx0 : Idx0 - SrcNumElts;
5942       int EltIdx1 = Idx1 < SrcNumElts ? Idx1 : Idx1 - SrcNumElts;
5943 
5944       SDValue Vec0 = SVN->getOperand(VecIdx0);
5945       SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
5946                                  Vec0, DAG.getConstant(EltIdx0, SL, MVT::i32));
5947 
5948       SDValue Vec1 = SVN->getOperand(VecIdx1);
5949       SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
5950                                  Vec1, DAG.getConstant(EltIdx1, SL, MVT::i32));
5951       Pieces.push_back(DAG.getBuildVector(PackVT, SL, { Elt0, Elt1 }));
5952     }
5953   }
5954 
5955   return DAG.getNode(ISD::CONCAT_VECTORS, SL, ResultVT, Pieces);
5956 }
5957 
5958 SDValue SITargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op,
5959                                                 SelectionDAG &DAG) const {
5960   SDValue SVal = Op.getOperand(0);
5961   EVT ResultVT = Op.getValueType();
5962   EVT SValVT = SVal.getValueType();
5963   SDValue UndefVal = DAG.getUNDEF(SValVT);
5964   SDLoc SL(Op);
5965 
5966   SmallVector<SDValue, 8> VElts;
5967   VElts.push_back(SVal);
5968   for (int I = 1, E = ResultVT.getVectorNumElements(); I < E; ++I)
5969     VElts.push_back(UndefVal);
5970 
5971   return DAG.getBuildVector(ResultVT, SL, VElts);
5972 }
5973 
5974 SDValue SITargetLowering::lowerBUILD_VECTOR(SDValue Op,
5975                                             SelectionDAG &DAG) const {
5976   SDLoc SL(Op);
5977   EVT VT = Op.getValueType();
5978 
5979   if (VT == MVT::v4i16 || VT == MVT::v4f16 ||
5980       VT == MVT::v8i16 || VT == MVT::v8f16) {
5981     EVT HalfVT = MVT::getVectorVT(VT.getVectorElementType().getSimpleVT(),
5982                                   VT.getVectorNumElements() / 2);
5983     MVT HalfIntVT = MVT::getIntegerVT(HalfVT.getSizeInBits());
5984 
5985     // Turn into pair of packed build_vectors.
5986     // TODO: Special case for constants that can be materialized with s_mov_b64.
5987     SmallVector<SDValue, 4> LoOps, HiOps;
5988     for (unsigned I = 0, E = VT.getVectorNumElements() / 2; I != E; ++I) {
5989       LoOps.push_back(Op.getOperand(I));
5990       HiOps.push_back(Op.getOperand(I + E));
5991     }
5992     SDValue Lo = DAG.getBuildVector(HalfVT, SL, LoOps);
5993     SDValue Hi = DAG.getBuildVector(HalfVT, SL, HiOps);
5994 
5995     SDValue CastLo = DAG.getNode(ISD::BITCAST, SL, HalfIntVT, Lo);
5996     SDValue CastHi = DAG.getNode(ISD::BITCAST, SL, HalfIntVT, Hi);
5997 
5998     SDValue Blend = DAG.getBuildVector(MVT::getVectorVT(HalfIntVT, 2), SL,
5999                                        { CastLo, CastHi });
6000     return DAG.getNode(ISD::BITCAST, SL, VT, Blend);
6001   }
6002 
6003   if (VT == MVT::v16i16 || VT == MVT::v16f16) {
6004     EVT QuarterVT = MVT::getVectorVT(VT.getVectorElementType().getSimpleVT(),
6005                                      VT.getVectorNumElements() / 4);
6006     MVT QuarterIntVT = MVT::getIntegerVT(QuarterVT.getSizeInBits());
6007 
6008     SmallVector<SDValue, 4> Parts[4];
6009     for (unsigned I = 0, E = VT.getVectorNumElements() / 4; I != E; ++I) {
6010       for (unsigned P = 0; P < 4; ++P)
6011         Parts[P].push_back(Op.getOperand(I + P * E));
6012     }
6013     SDValue Casts[4];
6014     for (unsigned P = 0; P < 4; ++P) {
6015       SDValue Vec = DAG.getBuildVector(QuarterVT, SL, Parts[P]);
6016       Casts[P] = DAG.getNode(ISD::BITCAST, SL, QuarterIntVT, Vec);
6017     }
6018 
6019     SDValue Blend =
6020         DAG.getBuildVector(MVT::getVectorVT(QuarterIntVT, 4), SL, Casts);
6021     return DAG.getNode(ISD::BITCAST, SL, VT, Blend);
6022   }
6023 
6024   assert(VT == MVT::v2f16 || VT == MVT::v2i16);
6025   assert(!Subtarget->hasVOP3PInsts() && "this should be legal");
6026 
6027   SDValue Lo = Op.getOperand(0);
6028   SDValue Hi = Op.getOperand(1);
6029 
6030   // Avoid adding defined bits with the zero_extend.
6031   if (Hi.isUndef()) {
6032     Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo);
6033     SDValue ExtLo = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Lo);
6034     return DAG.getNode(ISD::BITCAST, SL, VT, ExtLo);
6035   }
6036 
6037   Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Hi);
6038   Hi = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Hi);
6039 
6040   SDValue ShlHi = DAG.getNode(ISD::SHL, SL, MVT::i32, Hi,
6041                               DAG.getConstant(16, SL, MVT::i32));
6042   if (Lo.isUndef())
6043     return DAG.getNode(ISD::BITCAST, SL, VT, ShlHi);
6044 
6045   Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo);
6046   Lo = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Lo);
6047 
6048   SDValue Or = DAG.getNode(ISD::OR, SL, MVT::i32, Lo, ShlHi);
6049   return DAG.getNode(ISD::BITCAST, SL, VT, Or);
6050 }
6051 
6052 bool
6053 SITargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
6054   // We can fold offsets for anything that doesn't require a GOT relocation.
6055   return (GA->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS ||
6056           GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
6057           GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
6058          !shouldEmitGOTReloc(GA->getGlobal());
6059 }
6060 
6061 static SDValue
6062 buildPCRelGlobalAddress(SelectionDAG &DAG, const GlobalValue *GV,
6063                         const SDLoc &DL, int64_t Offset, EVT PtrVT,
6064                         unsigned GAFlags = SIInstrInfo::MO_NONE) {
6065   assert(isInt<32>(Offset + 4) && "32-bit offset is expected!");
6066   // In order to support pc-relative addressing, the PC_ADD_REL_OFFSET SDNode is
6067   // lowered to the following code sequence:
6068   //
6069   // For constant address space:
6070   //   s_getpc_b64 s[0:1]
6071   //   s_add_u32 s0, s0, $symbol
6072   //   s_addc_u32 s1, s1, 0
6073   //
6074   //   s_getpc_b64 returns the address of the s_add_u32 instruction and then
6075   //   a fixup or relocation is emitted to replace $symbol with a literal
6076   //   constant, which is a pc-relative offset from the encoding of the $symbol
6077   //   operand to the global variable.
6078   //
6079   // For global address space:
6080   //   s_getpc_b64 s[0:1]
6081   //   s_add_u32 s0, s0, $symbol@{gotpc}rel32@lo
6082   //   s_addc_u32 s1, s1, $symbol@{gotpc}rel32@hi
6083   //
6084   //   s_getpc_b64 returns the address of the s_add_u32 instruction and then
6085   //   fixups or relocations are emitted to replace $symbol@*@lo and
6086   //   $symbol@*@hi with lower 32 bits and higher 32 bits of a literal constant,
6087   //   which is a 64-bit pc-relative offset from the encoding of the $symbol
6088   //   operand to the global variable.
6089   //
6090   // What we want here is an offset from the value returned by s_getpc
6091   // (which is the address of the s_add_u32 instruction) to the global
6092   // variable, but since the encoding of $symbol starts 4 bytes after the start
6093   // of the s_add_u32 instruction, we end up with an offset that is 4 bytes too
6094   // small. This requires us to add 4 to the global variable offset in order to
6095   // compute the correct address. Similarly for the s_addc_u32 instruction, the
6096   // encoding of $symbol starts 12 bytes after the start of the s_add_u32
6097   // instruction.
6098   SDValue PtrLo =
6099       DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 4, GAFlags);
6100   SDValue PtrHi;
6101   if (GAFlags == SIInstrInfo::MO_NONE) {
6102     PtrHi = DAG.getTargetConstant(0, DL, MVT::i32);
6103   } else {
6104     PtrHi =
6105         DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 12, GAFlags + 1);
6106   }
6107   return DAG.getNode(AMDGPUISD::PC_ADD_REL_OFFSET, DL, PtrVT, PtrLo, PtrHi);
6108 }
6109 
6110 SDValue SITargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI,
6111                                              SDValue Op,
6112                                              SelectionDAG &DAG) const {
6113   GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op);
6114   SDLoc DL(GSD);
6115   EVT PtrVT = Op.getValueType();
6116 
6117   const GlobalValue *GV = GSD->getGlobal();
6118   if ((GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS &&
6119        shouldUseLDSConstAddress(GV)) ||
6120       GSD->getAddressSpace() == AMDGPUAS::REGION_ADDRESS ||
6121       GSD->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) {
6122     if (GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS &&
6123         GV->hasExternalLinkage()) {
6124       Type *Ty = GV->getValueType();
6125       // HIP uses an unsized array `extern __shared__ T s[]` or similar
6126       // zero-sized type in other languages to declare the dynamic shared
6127       // memory which size is not known at the compile time. They will be
6128       // allocated by the runtime and placed directly after the static
6129       // allocated ones. They all share the same offset.
6130       if (DAG.getDataLayout().getTypeAllocSize(Ty).isZero()) {
6131         assert(PtrVT == MVT::i32 && "32-bit pointer is expected.");
6132         // Adjust alignment for that dynamic shared memory array.
6133         MFI->setDynLDSAlign(DAG.getDataLayout(), *cast<GlobalVariable>(GV));
6134         return SDValue(
6135             DAG.getMachineNode(AMDGPU::GET_GROUPSTATICSIZE, DL, PtrVT), 0);
6136       }
6137     }
6138     return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG);
6139   }
6140 
6141   if (GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) {
6142     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, GSD->getOffset(),
6143                                             SIInstrInfo::MO_ABS32_LO);
6144     return DAG.getNode(AMDGPUISD::LDS, DL, MVT::i32, GA);
6145   }
6146 
6147   if (shouldEmitFixup(GV))
6148     return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT);
6149   else if (shouldEmitPCReloc(GV))
6150     return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT,
6151                                    SIInstrInfo::MO_REL32);
6152 
6153   SDValue GOTAddr = buildPCRelGlobalAddress(DAG, GV, DL, 0, PtrVT,
6154                                             SIInstrInfo::MO_GOTPCREL32);
6155 
6156   Type *Ty = PtrVT.getTypeForEVT(*DAG.getContext());
6157   PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS);
6158   const DataLayout &DataLayout = DAG.getDataLayout();
6159   Align Alignment = DataLayout.getABITypeAlign(PtrTy);
6160   MachinePointerInfo PtrInfo
6161     = MachinePointerInfo::getGOT(DAG.getMachineFunction());
6162 
6163   return DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), GOTAddr, PtrInfo, Alignment,
6164                      MachineMemOperand::MODereferenceable |
6165                          MachineMemOperand::MOInvariant);
6166 }
6167 
6168 SDValue SITargetLowering::copyToM0(SelectionDAG &DAG, SDValue Chain,
6169                                    const SDLoc &DL, SDValue V) const {
6170   // We can't use S_MOV_B32 directly, because there is no way to specify m0 as
6171   // the destination register.
6172   //
6173   // We can't use CopyToReg, because MachineCSE won't combine COPY instructions,
6174   // so we will end up with redundant moves to m0.
6175   //
6176   // We use a pseudo to ensure we emit s_mov_b32 with m0 as the direct result.
6177 
6178   // A Null SDValue creates a glue result.
6179   SDNode *M0 = DAG.getMachineNode(AMDGPU::SI_INIT_M0, DL, MVT::Other, MVT::Glue,
6180                                   V, Chain);
6181   return SDValue(M0, 0);
6182 }
6183 
6184 SDValue SITargetLowering::lowerImplicitZextParam(SelectionDAG &DAG,
6185                                                  SDValue Op,
6186                                                  MVT VT,
6187                                                  unsigned Offset) const {
6188   SDLoc SL(Op);
6189   SDValue Param = lowerKernargMemParameter(
6190       DAG, MVT::i32, MVT::i32, SL, DAG.getEntryNode(), Offset, Align(4), false);
6191   // The local size values will have the hi 16-bits as zero.
6192   return DAG.getNode(ISD::AssertZext, SL, MVT::i32, Param,
6193                      DAG.getValueType(VT));
6194 }
6195 
6196 static SDValue emitNonHSAIntrinsicError(SelectionDAG &DAG, const SDLoc &DL,
6197                                         EVT VT) {
6198   DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(),
6199                                       "non-hsa intrinsic with hsa target",
6200                                       DL.getDebugLoc());
6201   DAG.getContext()->diagnose(BadIntrin);
6202   return DAG.getUNDEF(VT);
6203 }
6204 
6205 static SDValue emitRemovedIntrinsicError(SelectionDAG &DAG, const SDLoc &DL,
6206                                          EVT VT) {
6207   DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(),
6208                                       "intrinsic not supported on subtarget",
6209                                       DL.getDebugLoc());
6210   DAG.getContext()->diagnose(BadIntrin);
6211   return DAG.getUNDEF(VT);
6212 }
6213 
6214 static SDValue getBuildDwordsVector(SelectionDAG &DAG, SDLoc DL,
6215                                     ArrayRef<SDValue> Elts) {
6216   assert(!Elts.empty());
6217   MVT Type;
6218   unsigned NumElts = Elts.size();
6219 
6220   if (NumElts <= 12) {
6221     Type = MVT::getVectorVT(MVT::f32, NumElts);
6222   } else {
6223     assert(Elts.size() <= 16);
6224     Type = MVT::v16f32;
6225     NumElts = 16;
6226   }
6227 
6228   SmallVector<SDValue, 16> VecElts(NumElts);
6229   for (unsigned i = 0; i < Elts.size(); ++i) {
6230     SDValue Elt = Elts[i];
6231     if (Elt.getValueType() != MVT::f32)
6232       Elt = DAG.getBitcast(MVT::f32, Elt);
6233     VecElts[i] = Elt;
6234   }
6235   for (unsigned i = Elts.size(); i < NumElts; ++i)
6236     VecElts[i] = DAG.getUNDEF(MVT::f32);
6237 
6238   if (NumElts == 1)
6239     return VecElts[0];
6240   return DAG.getBuildVector(Type, DL, VecElts);
6241 }
6242 
6243 static SDValue padEltsToUndef(SelectionDAG &DAG, const SDLoc &DL, EVT CastVT,
6244                               SDValue Src, int ExtraElts) {
6245   EVT SrcVT = Src.getValueType();
6246 
6247   SmallVector<SDValue, 8> Elts;
6248 
6249   if (SrcVT.isVector())
6250     DAG.ExtractVectorElements(Src, Elts);
6251   else
6252     Elts.push_back(Src);
6253 
6254   SDValue Undef = DAG.getUNDEF(SrcVT.getScalarType());
6255   while (ExtraElts--)
6256     Elts.push_back(Undef);
6257 
6258   return DAG.getBuildVector(CastVT, DL, Elts);
6259 }
6260 
6261 // Re-construct the required return value for a image load intrinsic.
6262 // This is more complicated due to the optional use TexFailCtrl which means the required
6263 // return type is an aggregate
6264 static SDValue constructRetValue(SelectionDAG &DAG,
6265                                  MachineSDNode *Result,
6266                                  ArrayRef<EVT> ResultTypes,
6267                                  bool IsTexFail, bool Unpacked, bool IsD16,
6268                                  int DMaskPop, int NumVDataDwords,
6269                                  const SDLoc &DL) {
6270   // Determine the required return type. This is the same regardless of IsTexFail flag
6271   EVT ReqRetVT = ResultTypes[0];
6272   int ReqRetNumElts = ReqRetVT.isVector() ? ReqRetVT.getVectorNumElements() : 1;
6273   int NumDataDwords = (!IsD16 || (IsD16 && Unpacked)) ?
6274     ReqRetNumElts : (ReqRetNumElts + 1) / 2;
6275 
6276   int MaskPopDwords = (!IsD16 || (IsD16 && Unpacked)) ?
6277     DMaskPop : (DMaskPop + 1) / 2;
6278 
6279   MVT DataDwordVT = NumDataDwords == 1 ?
6280     MVT::i32 : MVT::getVectorVT(MVT::i32, NumDataDwords);
6281 
6282   MVT MaskPopVT = MaskPopDwords == 1 ?
6283     MVT::i32 : MVT::getVectorVT(MVT::i32, MaskPopDwords);
6284 
6285   SDValue Data(Result, 0);
6286   SDValue TexFail;
6287 
6288   if (DMaskPop > 0 && Data.getValueType() != MaskPopVT) {
6289     SDValue ZeroIdx = DAG.getConstant(0, DL, MVT::i32);
6290     if (MaskPopVT.isVector()) {
6291       Data = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MaskPopVT,
6292                          SDValue(Result, 0), ZeroIdx);
6293     } else {
6294       Data = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MaskPopVT,
6295                          SDValue(Result, 0), ZeroIdx);
6296     }
6297   }
6298 
6299   if (DataDwordVT.isVector())
6300     Data = padEltsToUndef(DAG, DL, DataDwordVT, Data,
6301                           NumDataDwords - MaskPopDwords);
6302 
6303   if (IsD16)
6304     Data = adjustLoadValueTypeImpl(Data, ReqRetVT, DL, DAG, Unpacked);
6305 
6306   EVT LegalReqRetVT = ReqRetVT;
6307   if (!ReqRetVT.isVector()) {
6308     if (!Data.getValueType().isInteger())
6309       Data = DAG.getNode(ISD::BITCAST, DL,
6310                          Data.getValueType().changeTypeToInteger(), Data);
6311     Data = DAG.getNode(ISD::TRUNCATE, DL, ReqRetVT.changeTypeToInteger(), Data);
6312   } else {
6313     // We need to widen the return vector to a legal type
6314     if ((ReqRetVT.getVectorNumElements() % 2) == 1 &&
6315         ReqRetVT.getVectorElementType().getSizeInBits() == 16) {
6316       LegalReqRetVT =
6317           EVT::getVectorVT(*DAG.getContext(), ReqRetVT.getVectorElementType(),
6318                            ReqRetVT.getVectorNumElements() + 1);
6319     }
6320   }
6321   Data = DAG.getNode(ISD::BITCAST, DL, LegalReqRetVT, Data);
6322 
6323   if (IsTexFail) {
6324     TexFail =
6325         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, SDValue(Result, 0),
6326                     DAG.getConstant(MaskPopDwords, DL, MVT::i32));
6327 
6328     return DAG.getMergeValues({Data, TexFail, SDValue(Result, 1)}, DL);
6329   }
6330 
6331   if (Result->getNumValues() == 1)
6332     return Data;
6333 
6334   return DAG.getMergeValues({Data, SDValue(Result, 1)}, DL);
6335 }
6336 
6337 static bool parseTexFail(SDValue TexFailCtrl, SelectionDAG &DAG, SDValue *TFE,
6338                          SDValue *LWE, bool &IsTexFail) {
6339   auto TexFailCtrlConst = cast<ConstantSDNode>(TexFailCtrl.getNode());
6340 
6341   uint64_t Value = TexFailCtrlConst->getZExtValue();
6342   if (Value) {
6343     IsTexFail = true;
6344   }
6345 
6346   SDLoc DL(TexFailCtrlConst);
6347   *TFE = DAG.getTargetConstant((Value & 0x1) ? 1 : 0, DL, MVT::i32);
6348   Value &= ~(uint64_t)0x1;
6349   *LWE = DAG.getTargetConstant((Value & 0x2) ? 1 : 0, DL, MVT::i32);
6350   Value &= ~(uint64_t)0x2;
6351 
6352   return Value == 0;
6353 }
6354 
6355 static void packImage16bitOpsToDwords(SelectionDAG &DAG, SDValue Op,
6356                                       MVT PackVectorVT,
6357                                       SmallVectorImpl<SDValue> &PackedAddrs,
6358                                       unsigned DimIdx, unsigned EndIdx,
6359                                       unsigned NumGradients) {
6360   SDLoc DL(Op);
6361   for (unsigned I = DimIdx; I < EndIdx; I++) {
6362     SDValue Addr = Op.getOperand(I);
6363 
6364     // Gradients are packed with undef for each coordinate.
6365     // In <hi 16 bit>,<lo 16 bit> notation, the registers look like this:
6366     // 1D: undef,dx/dh; undef,dx/dv
6367     // 2D: dy/dh,dx/dh; dy/dv,dx/dv
6368     // 3D: dy/dh,dx/dh; undef,dz/dh; dy/dv,dx/dv; undef,dz/dv
6369     if (((I + 1) >= EndIdx) ||
6370         ((NumGradients / 2) % 2 == 1 && (I == DimIdx + (NumGradients / 2) - 1 ||
6371                                          I == DimIdx + NumGradients - 1))) {
6372       if (Addr.getValueType() != MVT::i16)
6373         Addr = DAG.getBitcast(MVT::i16, Addr);
6374       Addr = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Addr);
6375     } else {
6376       Addr = DAG.getBuildVector(PackVectorVT, DL, {Addr, Op.getOperand(I + 1)});
6377       I++;
6378     }
6379     Addr = DAG.getBitcast(MVT::f32, Addr);
6380     PackedAddrs.push_back(Addr);
6381   }
6382 }
6383 
6384 SDValue SITargetLowering::lowerImage(SDValue Op,
6385                                      const AMDGPU::ImageDimIntrinsicInfo *Intr,
6386                                      SelectionDAG &DAG, bool WithChain) const {
6387   SDLoc DL(Op);
6388   MachineFunction &MF = DAG.getMachineFunction();
6389   const GCNSubtarget* ST = &MF.getSubtarget<GCNSubtarget>();
6390   const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
6391       AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode);
6392   const AMDGPU::MIMGDimInfo *DimInfo = AMDGPU::getMIMGDimInfo(Intr->Dim);
6393   unsigned IntrOpcode = Intr->BaseOpcode;
6394   bool IsGFX10Plus = AMDGPU::isGFX10Plus(*Subtarget);
6395   bool IsGFX11Plus = AMDGPU::isGFX11Plus(*Subtarget);
6396 
6397   SmallVector<EVT, 3> ResultTypes(Op->values());
6398   SmallVector<EVT, 3> OrigResultTypes(Op->values());
6399   bool IsD16 = false;
6400   bool IsG16 = false;
6401   bool IsA16 = false;
6402   SDValue VData;
6403   int NumVDataDwords;
6404   bool AdjustRetType = false;
6405 
6406   // Offset of intrinsic arguments
6407   const unsigned ArgOffset = WithChain ? 2 : 1;
6408 
6409   unsigned DMask;
6410   unsigned DMaskLanes = 0;
6411 
6412   if (BaseOpcode->Atomic) {
6413     VData = Op.getOperand(2);
6414 
6415     bool Is64Bit = VData.getValueType() == MVT::i64;
6416     if (BaseOpcode->AtomicX2) {
6417       SDValue VData2 = Op.getOperand(3);
6418       VData = DAG.getBuildVector(Is64Bit ? MVT::v2i64 : MVT::v2i32, DL,
6419                                  {VData, VData2});
6420       if (Is64Bit)
6421         VData = DAG.getBitcast(MVT::v4i32, VData);
6422 
6423       ResultTypes[0] = Is64Bit ? MVT::v2i64 : MVT::v2i32;
6424       DMask = Is64Bit ? 0xf : 0x3;
6425       NumVDataDwords = Is64Bit ? 4 : 2;
6426     } else {
6427       DMask = Is64Bit ? 0x3 : 0x1;
6428       NumVDataDwords = Is64Bit ? 2 : 1;
6429     }
6430   } else {
6431     auto *DMaskConst =
6432         cast<ConstantSDNode>(Op.getOperand(ArgOffset + Intr->DMaskIndex));
6433     DMask = DMaskConst->getZExtValue();
6434     DMaskLanes = BaseOpcode->Gather4 ? 4 : llvm::popcount(DMask);
6435 
6436     if (BaseOpcode->Store) {
6437       VData = Op.getOperand(2);
6438 
6439       MVT StoreVT = VData.getSimpleValueType();
6440       if (StoreVT.getScalarType() == MVT::f16) {
6441         if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16)
6442           return Op; // D16 is unsupported for this instruction
6443 
6444         IsD16 = true;
6445         VData = handleD16VData(VData, DAG, true);
6446       }
6447 
6448       NumVDataDwords = (VData.getValueType().getSizeInBits() + 31) / 32;
6449     } else {
6450       // Work out the num dwords based on the dmask popcount and underlying type
6451       // and whether packing is supported.
6452       MVT LoadVT = ResultTypes[0].getSimpleVT();
6453       if (LoadVT.getScalarType() == MVT::f16) {
6454         if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16)
6455           return Op; // D16 is unsupported for this instruction
6456 
6457         IsD16 = true;
6458       }
6459 
6460       // Confirm that the return type is large enough for the dmask specified
6461       if ((LoadVT.isVector() && LoadVT.getVectorNumElements() < DMaskLanes) ||
6462           (!LoadVT.isVector() && DMaskLanes > 1))
6463           return Op;
6464 
6465       // The sq block of gfx8 and gfx9 do not estimate register use correctly
6466       // for d16 image_gather4, image_gather4_l, and image_gather4_lz
6467       // instructions.
6468       if (IsD16 && !Subtarget->hasUnpackedD16VMem() &&
6469           !(BaseOpcode->Gather4 && Subtarget->hasImageGather4D16Bug()))
6470         NumVDataDwords = (DMaskLanes + 1) / 2;
6471       else
6472         NumVDataDwords = DMaskLanes;
6473 
6474       AdjustRetType = true;
6475     }
6476   }
6477 
6478   unsigned VAddrEnd = ArgOffset + Intr->VAddrEnd;
6479   SmallVector<SDValue, 4> VAddrs;
6480 
6481   // Check for 16 bit addresses or derivatives and pack if true.
6482   MVT VAddrVT =
6483       Op.getOperand(ArgOffset + Intr->GradientStart).getSimpleValueType();
6484   MVT VAddrScalarVT = VAddrVT.getScalarType();
6485   MVT GradPackVectorVT = VAddrScalarVT == MVT::f16 ? MVT::v2f16 : MVT::v2i16;
6486   IsG16 = VAddrScalarVT == MVT::f16 || VAddrScalarVT == MVT::i16;
6487 
6488   VAddrVT = Op.getOperand(ArgOffset + Intr->CoordStart).getSimpleValueType();
6489   VAddrScalarVT = VAddrVT.getScalarType();
6490   MVT AddrPackVectorVT = VAddrScalarVT == MVT::f16 ? MVT::v2f16 : MVT::v2i16;
6491   IsA16 = VAddrScalarVT == MVT::f16 || VAddrScalarVT == MVT::i16;
6492 
6493   // Push back extra arguments.
6494   for (unsigned I = Intr->VAddrStart; I < Intr->GradientStart; I++) {
6495     if (IsA16 && (Op.getOperand(ArgOffset + I).getValueType() == MVT::f16)) {
6496       assert(I == Intr->BiasIndex && "Got unexpected 16-bit extra argument");
6497       // Special handling of bias when A16 is on. Bias is of type half but
6498       // occupies full 32-bit.
6499       SDValue Bias = DAG.getBuildVector(
6500           MVT::v2f16, DL,
6501           {Op.getOperand(ArgOffset + I), DAG.getUNDEF(MVT::f16)});
6502       VAddrs.push_back(Bias);
6503     } else {
6504       assert((!IsA16 || Intr->NumBiasArgs == 0 || I != Intr->BiasIndex) &&
6505              "Bias needs to be converted to 16 bit in A16 mode");
6506       VAddrs.push_back(Op.getOperand(ArgOffset + I));
6507     }
6508   }
6509 
6510   if (BaseOpcode->Gradients && !ST->hasG16() && (IsA16 != IsG16)) {
6511     // 16 bit gradients are supported, but are tied to the A16 control
6512     // so both gradients and addresses must be 16 bit
6513     LLVM_DEBUG(
6514         dbgs() << "Failed to lower image intrinsic: 16 bit addresses "
6515                   "require 16 bit args for both gradients and addresses");
6516     return Op;
6517   }
6518 
6519   if (IsA16) {
6520     if (!ST->hasA16()) {
6521       LLVM_DEBUG(dbgs() << "Failed to lower image intrinsic: Target does not "
6522                            "support 16 bit addresses\n");
6523       return Op;
6524     }
6525   }
6526 
6527   // We've dealt with incorrect input so we know that if IsA16, IsG16
6528   // are set then we have to compress/pack operands (either address,
6529   // gradient or both)
6530   // In the case where a16 and gradients are tied (no G16 support) then we
6531   // have already verified that both IsA16 and IsG16 are true
6532   if (BaseOpcode->Gradients && IsG16 && ST->hasG16()) {
6533     // Activate g16
6534     const AMDGPU::MIMGG16MappingInfo *G16MappingInfo =
6535         AMDGPU::getMIMGG16MappingInfo(Intr->BaseOpcode);
6536     IntrOpcode = G16MappingInfo->G16; // set new opcode to variant with _g16
6537   }
6538 
6539   // Add gradients (packed or unpacked)
6540   if (IsG16) {
6541     // Pack the gradients
6542     // const int PackEndIdx = IsA16 ? VAddrEnd : (ArgOffset + Intr->CoordStart);
6543     packImage16bitOpsToDwords(DAG, Op, GradPackVectorVT, VAddrs,
6544                               ArgOffset + Intr->GradientStart,
6545                               ArgOffset + Intr->CoordStart, Intr->NumGradients);
6546   } else {
6547     for (unsigned I = ArgOffset + Intr->GradientStart;
6548          I < ArgOffset + Intr->CoordStart; I++)
6549       VAddrs.push_back(Op.getOperand(I));
6550   }
6551 
6552   // Add addresses (packed or unpacked)
6553   if (IsA16) {
6554     packImage16bitOpsToDwords(DAG, Op, AddrPackVectorVT, VAddrs,
6555                               ArgOffset + Intr->CoordStart, VAddrEnd,
6556                               0 /* No gradients */);
6557   } else {
6558     // Add uncompressed address
6559     for (unsigned I = ArgOffset + Intr->CoordStart; I < VAddrEnd; I++)
6560       VAddrs.push_back(Op.getOperand(I));
6561   }
6562 
6563   // If the register allocator cannot place the address registers contiguously
6564   // without introducing moves, then using the non-sequential address encoding
6565   // is always preferable, since it saves VALU instructions and is usually a
6566   // wash in terms of code size or even better.
6567   //
6568   // However, we currently have no way of hinting to the register allocator that
6569   // MIMG addresses should be placed contiguously when it is possible to do so,
6570   // so force non-NSA for the common 2-address case as a heuristic.
6571   //
6572   // SIShrinkInstructions will convert NSA encodings to non-NSA after register
6573   // allocation when possible.
6574   //
6575   // TODO: we can actually allow partial NSA where the final register is a
6576   // contiguous set of the remaining addresses.
6577   // This could help where there are more addresses than supported.
6578   bool UseNSA = ST->hasFeature(AMDGPU::FeatureNSAEncoding) &&
6579                 VAddrs.size() >= (unsigned)ST->getNSAThreshold(MF) &&
6580                 VAddrs.size() <= (unsigned)ST->getNSAMaxSize();
6581   SDValue VAddr;
6582   if (!UseNSA)
6583     VAddr = getBuildDwordsVector(DAG, DL, VAddrs);
6584 
6585   SDValue True = DAG.getTargetConstant(1, DL, MVT::i1);
6586   SDValue False = DAG.getTargetConstant(0, DL, MVT::i1);
6587   SDValue Unorm;
6588   if (!BaseOpcode->Sampler) {
6589     Unorm = True;
6590   } else {
6591     auto UnormConst =
6592         cast<ConstantSDNode>(Op.getOperand(ArgOffset + Intr->UnormIndex));
6593 
6594     Unorm = UnormConst->getZExtValue() ? True : False;
6595   }
6596 
6597   SDValue TFE;
6598   SDValue LWE;
6599   SDValue TexFail = Op.getOperand(ArgOffset + Intr->TexFailCtrlIndex);
6600   bool IsTexFail = false;
6601   if (!parseTexFail(TexFail, DAG, &TFE, &LWE, IsTexFail))
6602     return Op;
6603 
6604   if (IsTexFail) {
6605     if (!DMaskLanes) {
6606       // Expecting to get an error flag since TFC is on - and dmask is 0
6607       // Force dmask to be at least 1 otherwise the instruction will fail
6608       DMask = 0x1;
6609       DMaskLanes = 1;
6610       NumVDataDwords = 1;
6611     }
6612     NumVDataDwords += 1;
6613     AdjustRetType = true;
6614   }
6615 
6616   // Has something earlier tagged that the return type needs adjusting
6617   // This happens if the instruction is a load or has set TexFailCtrl flags
6618   if (AdjustRetType) {
6619     // NumVDataDwords reflects the true number of dwords required in the return type
6620     if (DMaskLanes == 0 && !BaseOpcode->Store) {
6621       // This is a no-op load. This can be eliminated
6622       SDValue Undef = DAG.getUNDEF(Op.getValueType());
6623       if (isa<MemSDNode>(Op))
6624         return DAG.getMergeValues({Undef, Op.getOperand(0)}, DL);
6625       return Undef;
6626     }
6627 
6628     EVT NewVT = NumVDataDwords > 1 ?
6629                   EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumVDataDwords)
6630                 : MVT::i32;
6631 
6632     ResultTypes[0] = NewVT;
6633     if (ResultTypes.size() == 3) {
6634       // Original result was aggregate type used for TexFailCtrl results
6635       // The actual instruction returns as a vector type which has now been
6636       // created. Remove the aggregate result.
6637       ResultTypes.erase(&ResultTypes[1]);
6638     }
6639   }
6640 
6641   unsigned CPol = cast<ConstantSDNode>(
6642       Op.getOperand(ArgOffset + Intr->CachePolicyIndex))->getZExtValue();
6643   if (BaseOpcode->Atomic)
6644     CPol |= AMDGPU::CPol::GLC; // TODO no-return optimization
6645   if (CPol & ~AMDGPU::CPol::ALL)
6646     return Op;
6647 
6648   SmallVector<SDValue, 26> Ops;
6649   if (BaseOpcode->Store || BaseOpcode->Atomic)
6650     Ops.push_back(VData); // vdata
6651   if (UseNSA)
6652     append_range(Ops, VAddrs);
6653   else
6654     Ops.push_back(VAddr);
6655   Ops.push_back(Op.getOperand(ArgOffset + Intr->RsrcIndex));
6656   if (BaseOpcode->Sampler)
6657     Ops.push_back(Op.getOperand(ArgOffset + Intr->SampIndex));
6658   Ops.push_back(DAG.getTargetConstant(DMask, DL, MVT::i32));
6659   if (IsGFX10Plus)
6660     Ops.push_back(DAG.getTargetConstant(DimInfo->Encoding, DL, MVT::i32));
6661   Ops.push_back(Unorm);
6662   Ops.push_back(DAG.getTargetConstant(CPol, DL, MVT::i32));
6663   Ops.push_back(IsA16 &&  // r128, a16 for gfx9
6664                 ST->hasFeature(AMDGPU::FeatureR128A16) ? True : False);
6665   if (IsGFX10Plus)
6666     Ops.push_back(IsA16 ? True : False);
6667   if (!Subtarget->hasGFX90AInsts()) {
6668     Ops.push_back(TFE); //tfe
6669   } else if (cast<ConstantSDNode>(TFE)->getZExtValue()) {
6670     report_fatal_error("TFE is not supported on this GPU");
6671   }
6672   Ops.push_back(LWE); // lwe
6673   if (!IsGFX10Plus)
6674     Ops.push_back(DimInfo->DA ? True : False);
6675   if (BaseOpcode->HasD16)
6676     Ops.push_back(IsD16 ? True : False);
6677   if (isa<MemSDNode>(Op))
6678     Ops.push_back(Op.getOperand(0)); // chain
6679 
6680   int NumVAddrDwords =
6681       UseNSA ? VAddrs.size() : VAddr.getValueType().getSizeInBits() / 32;
6682   int Opcode = -1;
6683 
6684   if (IsGFX11Plus) {
6685     Opcode = AMDGPU::getMIMGOpcode(IntrOpcode,
6686                                    UseNSA ? AMDGPU::MIMGEncGfx11NSA
6687                                           : AMDGPU::MIMGEncGfx11Default,
6688                                    NumVDataDwords, NumVAddrDwords);
6689   } else if (IsGFX10Plus) {
6690     Opcode = AMDGPU::getMIMGOpcode(IntrOpcode,
6691                                    UseNSA ? AMDGPU::MIMGEncGfx10NSA
6692                                           : AMDGPU::MIMGEncGfx10Default,
6693                                    NumVDataDwords, NumVAddrDwords);
6694   } else {
6695     if (Subtarget->hasGFX90AInsts()) {
6696       Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx90a,
6697                                      NumVDataDwords, NumVAddrDwords);
6698       if (Opcode == -1)
6699         return makeV_ILLEGAL(Op, DAG);
6700     }
6701     if (Opcode == -1 &&
6702         Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
6703       Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx8,
6704                                      NumVDataDwords, NumVAddrDwords);
6705     if (Opcode == -1)
6706       Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx6,
6707                                      NumVDataDwords, NumVAddrDwords);
6708   }
6709   assert(Opcode != -1);
6710 
6711   MachineSDNode *NewNode = DAG.getMachineNode(Opcode, DL, ResultTypes, Ops);
6712   if (auto MemOp = dyn_cast<MemSDNode>(Op)) {
6713     MachineMemOperand *MemRef = MemOp->getMemOperand();
6714     DAG.setNodeMemRefs(NewNode, {MemRef});
6715   }
6716 
6717   if (BaseOpcode->AtomicX2) {
6718     SmallVector<SDValue, 1> Elt;
6719     DAG.ExtractVectorElements(SDValue(NewNode, 0), Elt, 0, 1);
6720     return DAG.getMergeValues({Elt[0], SDValue(NewNode, 1)}, DL);
6721   }
6722   if (BaseOpcode->Store)
6723     return SDValue(NewNode, 0);
6724   return constructRetValue(DAG, NewNode,
6725                            OrigResultTypes, IsTexFail,
6726                            Subtarget->hasUnpackedD16VMem(), IsD16,
6727                            DMaskLanes, NumVDataDwords, DL);
6728 }
6729 
6730 SDValue SITargetLowering::lowerSBuffer(EVT VT, SDLoc DL, SDValue Rsrc,
6731                                        SDValue Offset, SDValue CachePolicy,
6732                                        SelectionDAG &DAG) const {
6733   MachineFunction &MF = DAG.getMachineFunction();
6734 
6735   const DataLayout &DataLayout = DAG.getDataLayout();
6736   Align Alignment =
6737       DataLayout.getABITypeAlign(VT.getTypeForEVT(*DAG.getContext()));
6738 
6739   MachineMemOperand *MMO = MF.getMachineMemOperand(
6740       MachinePointerInfo(),
6741       MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
6742           MachineMemOperand::MOInvariant,
6743       VT.getStoreSize(), Alignment);
6744 
6745   if (!Offset->isDivergent()) {
6746     SDValue Ops[] = {
6747         Rsrc,
6748         Offset, // Offset
6749         CachePolicy
6750     };
6751 
6752     // Widen vec3 load to vec4.
6753     if (VT.isVector() && VT.getVectorNumElements() == 3) {
6754       EVT WidenedVT =
6755           EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4);
6756       auto WidenedOp = DAG.getMemIntrinsicNode(
6757           AMDGPUISD::SBUFFER_LOAD, DL, DAG.getVTList(WidenedVT), Ops, WidenedVT,
6758           MF.getMachineMemOperand(MMO, 0, WidenedVT.getStoreSize()));
6759       auto Subvector = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, WidenedOp,
6760                                    DAG.getVectorIdxConstant(0, DL));
6761       return Subvector;
6762     }
6763 
6764     return DAG.getMemIntrinsicNode(AMDGPUISD::SBUFFER_LOAD, DL,
6765                                    DAG.getVTList(VT), Ops, VT, MMO);
6766   }
6767 
6768   // We have a divergent offset. Emit a MUBUF buffer load instead. We can
6769   // assume that the buffer is unswizzled.
6770   SmallVector<SDValue, 4> Loads;
6771   unsigned NumLoads = 1;
6772   MVT LoadVT = VT.getSimpleVT();
6773   unsigned NumElts = LoadVT.isVector() ? LoadVT.getVectorNumElements() : 1;
6774   assert((LoadVT.getScalarType() == MVT::i32 ||
6775           LoadVT.getScalarType() == MVT::f32));
6776 
6777   if (NumElts == 8 || NumElts == 16) {
6778     NumLoads = NumElts / 4;
6779     LoadVT = MVT::getVectorVT(LoadVT.getScalarType(), 4);
6780   }
6781 
6782   SDVTList VTList = DAG.getVTList({LoadVT, MVT::Glue});
6783   SDValue Ops[] = {
6784       DAG.getEntryNode(),                               // Chain
6785       Rsrc,                                             // rsrc
6786       DAG.getConstant(0, DL, MVT::i32),                 // vindex
6787       {},                                               // voffset
6788       {},                                               // soffset
6789       {},                                               // offset
6790       CachePolicy,                                      // cachepolicy
6791       DAG.getTargetConstant(0, DL, MVT::i1),            // idxen
6792   };
6793 
6794   // Use the alignment to ensure that the required offsets will fit into the
6795   // immediate offsets.
6796   setBufferOffsets(Offset, DAG, &Ops[3],
6797                    NumLoads > 1 ? Align(16 * NumLoads) : Align(4));
6798 
6799   uint64_t InstOffset = cast<ConstantSDNode>(Ops[5])->getZExtValue();
6800   for (unsigned i = 0; i < NumLoads; ++i) {
6801     Ops[5] = DAG.getTargetConstant(InstOffset + 16 * i, DL, MVT::i32);
6802     Loads.push_back(getMemIntrinsicNode(AMDGPUISD::BUFFER_LOAD, DL, VTList, Ops,
6803                                         LoadVT, MMO, DAG));
6804   }
6805 
6806   if (NumElts == 8 || NumElts == 16)
6807     return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Loads);
6808 
6809   return Loads[0];
6810 }
6811 
6812 SDValue SITargetLowering::lowerWorkitemID(SelectionDAG &DAG, SDValue Op,
6813                                           unsigned Dim,
6814                                           const ArgDescriptor &Arg) const {
6815   SDLoc SL(Op);
6816   MachineFunction &MF = DAG.getMachineFunction();
6817   unsigned MaxID = Subtarget->getMaxWorkitemID(MF.getFunction(), Dim);
6818   if (MaxID == 0)
6819     return DAG.getConstant(0, SL, MVT::i32);
6820 
6821   SDValue Val = loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
6822                                SDLoc(DAG.getEntryNode()), Arg);
6823 
6824   // Don't bother inserting AssertZext for packed IDs since we're emitting the
6825   // masking operations anyway.
6826   //
6827   // TODO: We could assert the top bit is 0 for the source copy.
6828   if (Arg.isMasked())
6829     return Val;
6830 
6831   // Preserve the known bits after expansion to a copy.
6832   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), llvm::bit_width(MaxID));
6833   return DAG.getNode(ISD::AssertZext, SL, MVT::i32, Val,
6834                      DAG.getValueType(SmallVT));
6835 }
6836 
6837 SDValue SITargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
6838                                                   SelectionDAG &DAG) const {
6839   MachineFunction &MF = DAG.getMachineFunction();
6840   auto MFI = MF.getInfo<SIMachineFunctionInfo>();
6841 
6842   EVT VT = Op.getValueType();
6843   SDLoc DL(Op);
6844   unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6845 
6846   // TODO: Should this propagate fast-math-flags?
6847 
6848   switch (IntrinsicID) {
6849   case Intrinsic::amdgcn_implicit_buffer_ptr: {
6850     if (getSubtarget()->isAmdHsaOrMesa(MF.getFunction()))
6851       return emitNonHSAIntrinsicError(DAG, DL, VT);
6852     return getPreloadedValue(DAG, *MFI, VT,
6853                              AMDGPUFunctionArgInfo::IMPLICIT_BUFFER_PTR);
6854   }
6855   case Intrinsic::amdgcn_dispatch_ptr:
6856   case Intrinsic::amdgcn_queue_ptr: {
6857     if (!Subtarget->isAmdHsaOrMesa(MF.getFunction())) {
6858       DiagnosticInfoUnsupported BadIntrin(
6859           MF.getFunction(), "unsupported hsa intrinsic without hsa target",
6860           DL.getDebugLoc());
6861       DAG.getContext()->diagnose(BadIntrin);
6862       return DAG.getUNDEF(VT);
6863     }
6864 
6865     auto RegID = IntrinsicID == Intrinsic::amdgcn_dispatch_ptr ?
6866       AMDGPUFunctionArgInfo::DISPATCH_PTR : AMDGPUFunctionArgInfo::QUEUE_PTR;
6867     return getPreloadedValue(DAG, *MFI, VT, RegID);
6868   }
6869   case Intrinsic::amdgcn_implicitarg_ptr: {
6870     if (MFI->isEntryFunction())
6871       return getImplicitArgPtr(DAG, DL);
6872     return getPreloadedValue(DAG, *MFI, VT,
6873                              AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR);
6874   }
6875   case Intrinsic::amdgcn_kernarg_segment_ptr: {
6876     if (!AMDGPU::isKernel(MF.getFunction().getCallingConv())) {
6877       // This only makes sense to call in a kernel, so just lower to null.
6878       return DAG.getConstant(0, DL, VT);
6879     }
6880 
6881     return getPreloadedValue(DAG, *MFI, VT,
6882                              AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
6883   }
6884   case Intrinsic::amdgcn_dispatch_id: {
6885     return getPreloadedValue(DAG, *MFI, VT, AMDGPUFunctionArgInfo::DISPATCH_ID);
6886   }
6887   case Intrinsic::amdgcn_rcp:
6888     return DAG.getNode(AMDGPUISD::RCP, DL, VT, Op.getOperand(1));
6889   case Intrinsic::amdgcn_rsq:
6890     return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
6891   case Intrinsic::amdgcn_rsq_legacy:
6892     if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
6893       return emitRemovedIntrinsicError(DAG, DL, VT);
6894     return SDValue();
6895   case Intrinsic::amdgcn_rcp_legacy:
6896     if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
6897       return emitRemovedIntrinsicError(DAG, DL, VT);
6898     return DAG.getNode(AMDGPUISD::RCP_LEGACY, DL, VT, Op.getOperand(1));
6899   case Intrinsic::amdgcn_rsq_clamp: {
6900     if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS)
6901       return DAG.getNode(AMDGPUISD::RSQ_CLAMP, DL, VT, Op.getOperand(1));
6902 
6903     Type *Type = VT.getTypeForEVT(*DAG.getContext());
6904     APFloat Max = APFloat::getLargest(Type->getFltSemantics());
6905     APFloat Min = APFloat::getLargest(Type->getFltSemantics(), true);
6906 
6907     SDValue Rsq = DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
6908     SDValue Tmp = DAG.getNode(ISD::FMINNUM, DL, VT, Rsq,
6909                               DAG.getConstantFP(Max, DL, VT));
6910     return DAG.getNode(ISD::FMAXNUM, DL, VT, Tmp,
6911                        DAG.getConstantFP(Min, DL, VT));
6912   }
6913   case Intrinsic::r600_read_ngroups_x:
6914     if (Subtarget->isAmdHsaOS())
6915       return emitNonHSAIntrinsicError(DAG, DL, VT);
6916 
6917     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6918                                     SI::KernelInputOffsets::NGROUPS_X, Align(4),
6919                                     false);
6920   case Intrinsic::r600_read_ngroups_y:
6921     if (Subtarget->isAmdHsaOS())
6922       return emitNonHSAIntrinsicError(DAG, DL, VT);
6923 
6924     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6925                                     SI::KernelInputOffsets::NGROUPS_Y, Align(4),
6926                                     false);
6927   case Intrinsic::r600_read_ngroups_z:
6928     if (Subtarget->isAmdHsaOS())
6929       return emitNonHSAIntrinsicError(DAG, DL, VT);
6930 
6931     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6932                                     SI::KernelInputOffsets::NGROUPS_Z, Align(4),
6933                                     false);
6934   case Intrinsic::r600_read_global_size_x:
6935     if (Subtarget->isAmdHsaOS())
6936       return emitNonHSAIntrinsicError(DAG, DL, VT);
6937 
6938     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6939                                     SI::KernelInputOffsets::GLOBAL_SIZE_X,
6940                                     Align(4), false);
6941   case Intrinsic::r600_read_global_size_y:
6942     if (Subtarget->isAmdHsaOS())
6943       return emitNonHSAIntrinsicError(DAG, DL, VT);
6944 
6945     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6946                                     SI::KernelInputOffsets::GLOBAL_SIZE_Y,
6947                                     Align(4), false);
6948   case Intrinsic::r600_read_global_size_z:
6949     if (Subtarget->isAmdHsaOS())
6950       return emitNonHSAIntrinsicError(DAG, DL, VT);
6951 
6952     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6953                                     SI::KernelInputOffsets::GLOBAL_SIZE_Z,
6954                                     Align(4), false);
6955   case Intrinsic::r600_read_local_size_x:
6956     if (Subtarget->isAmdHsaOS())
6957       return emitNonHSAIntrinsicError(DAG, DL, VT);
6958 
6959     return lowerImplicitZextParam(DAG, Op, MVT::i16,
6960                                   SI::KernelInputOffsets::LOCAL_SIZE_X);
6961   case Intrinsic::r600_read_local_size_y:
6962     if (Subtarget->isAmdHsaOS())
6963       return emitNonHSAIntrinsicError(DAG, DL, VT);
6964 
6965     return lowerImplicitZextParam(DAG, Op, MVT::i16,
6966                                   SI::KernelInputOffsets::LOCAL_SIZE_Y);
6967   case Intrinsic::r600_read_local_size_z:
6968     if (Subtarget->isAmdHsaOS())
6969       return emitNonHSAIntrinsicError(DAG, DL, VT);
6970 
6971     return lowerImplicitZextParam(DAG, Op, MVT::i16,
6972                                   SI::KernelInputOffsets::LOCAL_SIZE_Z);
6973   case Intrinsic::amdgcn_workgroup_id_x:
6974     return getPreloadedValue(DAG, *MFI, VT,
6975                              AMDGPUFunctionArgInfo::WORKGROUP_ID_X);
6976   case Intrinsic::amdgcn_workgroup_id_y:
6977     return getPreloadedValue(DAG, *MFI, VT,
6978                              AMDGPUFunctionArgInfo::WORKGROUP_ID_Y);
6979   case Intrinsic::amdgcn_workgroup_id_z:
6980     return getPreloadedValue(DAG, *MFI, VT,
6981                              AMDGPUFunctionArgInfo::WORKGROUP_ID_Z);
6982   case Intrinsic::amdgcn_lds_kernel_id: {
6983     if (MFI->isEntryFunction())
6984       return getLDSKernelId(DAG, DL);
6985     return getPreloadedValue(DAG, *MFI, VT,
6986                              AMDGPUFunctionArgInfo::LDS_KERNEL_ID);
6987   }
6988   case Intrinsic::amdgcn_workitem_id_x:
6989     return lowerWorkitemID(DAG, Op, 0, MFI->getArgInfo().WorkItemIDX);
6990   case Intrinsic::amdgcn_workitem_id_y:
6991     return lowerWorkitemID(DAG, Op, 1, MFI->getArgInfo().WorkItemIDY);
6992   case Intrinsic::amdgcn_workitem_id_z:
6993     return lowerWorkitemID(DAG, Op, 2, MFI->getArgInfo().WorkItemIDZ);
6994   case Intrinsic::amdgcn_wavefrontsize:
6995     return DAG.getConstant(MF.getSubtarget<GCNSubtarget>().getWavefrontSize(),
6996                            SDLoc(Op), MVT::i32);
6997   case Intrinsic::amdgcn_s_buffer_load: {
6998     unsigned CPol = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
6999     if (CPol & ~AMDGPU::CPol::ALL)
7000       return Op;
7001     return lowerSBuffer(VT, DL, Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
7002                         DAG);
7003   }
7004   case Intrinsic::amdgcn_fdiv_fast:
7005     return lowerFDIV_FAST(Op, DAG);
7006   case Intrinsic::amdgcn_sin:
7007     return DAG.getNode(AMDGPUISD::SIN_HW, DL, VT, Op.getOperand(1));
7008 
7009   case Intrinsic::amdgcn_cos:
7010     return DAG.getNode(AMDGPUISD::COS_HW, DL, VT, Op.getOperand(1));
7011 
7012   case Intrinsic::amdgcn_mul_u24:
7013     return DAG.getNode(AMDGPUISD::MUL_U24, DL, VT, Op.getOperand(1), Op.getOperand(2));
7014   case Intrinsic::amdgcn_mul_i24:
7015     return DAG.getNode(AMDGPUISD::MUL_I24, DL, VT, Op.getOperand(1), Op.getOperand(2));
7016 
7017   case Intrinsic::amdgcn_log_clamp: {
7018     if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS)
7019       return SDValue();
7020 
7021     return emitRemovedIntrinsicError(DAG, DL, VT);
7022   }
7023   case Intrinsic::amdgcn_ldexp:
7024     return DAG.getNode(AMDGPUISD::LDEXP, DL, VT,
7025                        Op.getOperand(1), Op.getOperand(2));
7026 
7027   case Intrinsic::amdgcn_fract:
7028     return DAG.getNode(AMDGPUISD::FRACT, DL, VT, Op.getOperand(1));
7029 
7030   case Intrinsic::amdgcn_class:
7031     return DAG.getNode(AMDGPUISD::FP_CLASS, DL, VT,
7032                        Op.getOperand(1), Op.getOperand(2));
7033   case Intrinsic::amdgcn_div_fmas:
7034     return DAG.getNode(AMDGPUISD::DIV_FMAS, DL, VT,
7035                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
7036                        Op.getOperand(4));
7037 
7038   case Intrinsic::amdgcn_div_fixup:
7039     return DAG.getNode(AMDGPUISD::DIV_FIXUP, DL, VT,
7040                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
7041 
7042   case Intrinsic::amdgcn_div_scale: {
7043     const ConstantSDNode *Param = cast<ConstantSDNode>(Op.getOperand(3));
7044 
7045     // Translate to the operands expected by the machine instruction. The
7046     // first parameter must be the same as the first instruction.
7047     SDValue Numerator = Op.getOperand(1);
7048     SDValue Denominator = Op.getOperand(2);
7049 
7050     // Note this order is opposite of the machine instruction's operations,
7051     // which is s0.f = Quotient, s1.f = Denominator, s2.f = Numerator. The
7052     // intrinsic has the numerator as the first operand to match a normal
7053     // division operation.
7054 
7055     SDValue Src0 = Param->isAllOnes() ? Numerator : Denominator;
7056 
7057     return DAG.getNode(AMDGPUISD::DIV_SCALE, DL, Op->getVTList(), Src0,
7058                        Denominator, Numerator);
7059   }
7060   case Intrinsic::amdgcn_icmp: {
7061     // There is a Pat that handles this variant, so return it as-is.
7062     if (Op.getOperand(1).getValueType() == MVT::i1 &&
7063         Op.getConstantOperandVal(2) == 0 &&
7064         Op.getConstantOperandVal(3) == ICmpInst::Predicate::ICMP_NE)
7065       return Op;
7066     return lowerICMPIntrinsic(*this, Op.getNode(), DAG);
7067   }
7068   case Intrinsic::amdgcn_fcmp: {
7069     return lowerFCMPIntrinsic(*this, Op.getNode(), DAG);
7070   }
7071   case Intrinsic::amdgcn_ballot:
7072     return lowerBALLOTIntrinsic(*this, Op.getNode(), DAG);
7073   case Intrinsic::amdgcn_fmed3:
7074     return DAG.getNode(AMDGPUISD::FMED3, DL, VT,
7075                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
7076   case Intrinsic::amdgcn_fdot2:
7077     return DAG.getNode(AMDGPUISD::FDOT2, DL, VT,
7078                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
7079                        Op.getOperand(4));
7080   case Intrinsic::amdgcn_fmul_legacy:
7081     return DAG.getNode(AMDGPUISD::FMUL_LEGACY, DL, VT,
7082                        Op.getOperand(1), Op.getOperand(2));
7083   case Intrinsic::amdgcn_sffbh:
7084     return DAG.getNode(AMDGPUISD::FFBH_I32, DL, VT, Op.getOperand(1));
7085   case Intrinsic::amdgcn_sbfe:
7086     return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT,
7087                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
7088   case Intrinsic::amdgcn_ubfe:
7089     return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT,
7090                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
7091   case Intrinsic::amdgcn_cvt_pkrtz:
7092   case Intrinsic::amdgcn_cvt_pknorm_i16:
7093   case Intrinsic::amdgcn_cvt_pknorm_u16:
7094   case Intrinsic::amdgcn_cvt_pk_i16:
7095   case Intrinsic::amdgcn_cvt_pk_u16: {
7096     // FIXME: Stop adding cast if v2f16/v2i16 are legal.
7097     EVT VT = Op.getValueType();
7098     unsigned Opcode;
7099 
7100     if (IntrinsicID == Intrinsic::amdgcn_cvt_pkrtz)
7101       Opcode = AMDGPUISD::CVT_PKRTZ_F16_F32;
7102     else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_i16)
7103       Opcode = AMDGPUISD::CVT_PKNORM_I16_F32;
7104     else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_u16)
7105       Opcode = AMDGPUISD::CVT_PKNORM_U16_F32;
7106     else if (IntrinsicID == Intrinsic::amdgcn_cvt_pk_i16)
7107       Opcode = AMDGPUISD::CVT_PK_I16_I32;
7108     else
7109       Opcode = AMDGPUISD::CVT_PK_U16_U32;
7110 
7111     if (isTypeLegal(VT))
7112       return DAG.getNode(Opcode, DL, VT, Op.getOperand(1), Op.getOperand(2));
7113 
7114     SDValue Node = DAG.getNode(Opcode, DL, MVT::i32,
7115                                Op.getOperand(1), Op.getOperand(2));
7116     return DAG.getNode(ISD::BITCAST, DL, VT, Node);
7117   }
7118   case Intrinsic::amdgcn_fmad_ftz:
7119     return DAG.getNode(AMDGPUISD::FMAD_FTZ, DL, VT, Op.getOperand(1),
7120                        Op.getOperand(2), Op.getOperand(3));
7121 
7122   case Intrinsic::amdgcn_if_break:
7123     return SDValue(DAG.getMachineNode(AMDGPU::SI_IF_BREAK, DL, VT,
7124                                       Op->getOperand(1), Op->getOperand(2)), 0);
7125 
7126   case Intrinsic::amdgcn_groupstaticsize: {
7127     Triple::OSType OS = getTargetMachine().getTargetTriple().getOS();
7128     if (OS == Triple::AMDHSA || OS == Triple::AMDPAL)
7129       return Op;
7130 
7131     const Module *M = MF.getFunction().getParent();
7132     const GlobalValue *GV =
7133         M->getNamedValue(Intrinsic::getName(Intrinsic::amdgcn_groupstaticsize));
7134     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, 0,
7135                                             SIInstrInfo::MO_ABS32_LO);
7136     return {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, GA), 0};
7137   }
7138   case Intrinsic::amdgcn_is_shared:
7139   case Intrinsic::amdgcn_is_private: {
7140     SDLoc SL(Op);
7141     unsigned AS = (IntrinsicID == Intrinsic::amdgcn_is_shared) ?
7142       AMDGPUAS::LOCAL_ADDRESS : AMDGPUAS::PRIVATE_ADDRESS;
7143     SDValue Aperture = getSegmentAperture(AS, SL, DAG);
7144     SDValue SrcVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32,
7145                                  Op.getOperand(1));
7146 
7147     SDValue SrcHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, SrcVec,
7148                                 DAG.getConstant(1, SL, MVT::i32));
7149     return DAG.getSetCC(SL, MVT::i1, SrcHi, Aperture, ISD::SETEQ);
7150   }
7151   case Intrinsic::amdgcn_perm:
7152     return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, Op.getOperand(1),
7153                        Op.getOperand(2), Op.getOperand(3));
7154   case Intrinsic::amdgcn_reloc_constant: {
7155     Module *M = const_cast<Module *>(MF.getFunction().getParent());
7156     const MDNode *Metadata = cast<MDNodeSDNode>(Op.getOperand(1))->getMD();
7157     auto SymbolName = cast<MDString>(Metadata->getOperand(0))->getString();
7158     auto RelocSymbol = cast<GlobalVariable>(
7159         M->getOrInsertGlobal(SymbolName, Type::getInt32Ty(M->getContext())));
7160     SDValue GA = DAG.getTargetGlobalAddress(RelocSymbol, DL, MVT::i32, 0,
7161                                             SIInstrInfo::MO_ABS32_LO);
7162     return {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, GA), 0};
7163   }
7164   default:
7165     if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
7166             AMDGPU::getImageDimIntrinsicInfo(IntrinsicID))
7167       return lowerImage(Op, ImageDimIntr, DAG, false);
7168 
7169     return Op;
7170   }
7171 }
7172 
7173 /// Update \p MMO based on the offset inputs to an intrinsic.
7174 static void updateBufferMMO(MachineMemOperand *MMO, SDValue VOffset,
7175                             SDValue SOffset, SDValue Offset,
7176                             SDValue VIndex = SDValue()) {
7177   if (!isa<ConstantSDNode>(VOffset) || !isa<ConstantSDNode>(SOffset) ||
7178       !isa<ConstantSDNode>(Offset)) {
7179     // The combined offset is not known to be constant, so we cannot represent
7180     // it in the MMO. Give up.
7181     MMO->setValue((Value *)nullptr);
7182     return;
7183   }
7184 
7185   if (VIndex && (!isa<ConstantSDNode>(VIndex) ||
7186                  !cast<ConstantSDNode>(VIndex)->isZero())) {
7187     // The strided index component of the address is not known to be zero, so we
7188     // cannot represent it in the MMO. Give up.
7189     MMO->setValue((Value *)nullptr);
7190     return;
7191   }
7192 
7193   MMO->setOffset(cast<ConstantSDNode>(VOffset)->getSExtValue() +
7194                  cast<ConstantSDNode>(SOffset)->getSExtValue() +
7195                  cast<ConstantSDNode>(Offset)->getSExtValue());
7196 }
7197 
7198 SDValue SITargetLowering::lowerRawBufferAtomicIntrin(SDValue Op,
7199                                                      SelectionDAG &DAG,
7200                                                      unsigned NewOpcode) const {
7201   SDLoc DL(Op);
7202 
7203   SDValue VData = Op.getOperand(2);
7204   auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
7205   SDValue Ops[] = {
7206     Op.getOperand(0), // Chain
7207     VData,            // vdata
7208     Op.getOperand(3), // rsrc
7209     DAG.getConstant(0, DL, MVT::i32), // vindex
7210     Offsets.first,    // voffset
7211     Op.getOperand(5), // soffset
7212     Offsets.second,   // offset
7213     Op.getOperand(6), // cachepolicy
7214     DAG.getTargetConstant(0, DL, MVT::i1), // idxen
7215   };
7216 
7217   auto *M = cast<MemSDNode>(Op);
7218   updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6]);
7219 
7220   EVT MemVT = VData.getValueType();
7221   return DAG.getMemIntrinsicNode(NewOpcode, DL, Op->getVTList(), Ops, MemVT,
7222                                  M->getMemOperand());
7223 }
7224 
7225 // Return a value to use for the idxen operand by examining the vindex operand.
7226 static unsigned getIdxEn(SDValue VIndex) {
7227   if (auto VIndexC = dyn_cast<ConstantSDNode>(VIndex))
7228     // No need to set idxen if vindex is known to be zero.
7229     return VIndexC->getZExtValue() != 0;
7230   return 1;
7231 }
7232 
7233 SDValue
7234 SITargetLowering::lowerStructBufferAtomicIntrin(SDValue Op, SelectionDAG &DAG,
7235                                                 unsigned NewOpcode) const {
7236   SDLoc DL(Op);
7237 
7238   SDValue VData = Op.getOperand(2);
7239   auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
7240   SDValue Ops[] = {
7241     Op.getOperand(0), // Chain
7242     VData,            // vdata
7243     Op.getOperand(3), // rsrc
7244     Op.getOperand(4), // vindex
7245     Offsets.first,    // voffset
7246     Op.getOperand(6), // soffset
7247     Offsets.second,   // offset
7248     Op.getOperand(7), // cachepolicy
7249     DAG.getTargetConstant(1, DL, MVT::i1), // idxen
7250   };
7251 
7252   auto *M = cast<MemSDNode>(Op);
7253   updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6], Ops[3]);
7254 
7255   EVT MemVT = VData.getValueType();
7256   return DAG.getMemIntrinsicNode(NewOpcode, DL, Op->getVTList(), Ops, MemVT,
7257                                  M->getMemOperand());
7258 }
7259 
7260 SDValue SITargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
7261                                                  SelectionDAG &DAG) const {
7262   unsigned IntrID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7263   SDLoc DL(Op);
7264 
7265   switch (IntrID) {
7266   case Intrinsic::amdgcn_ds_ordered_add:
7267   case Intrinsic::amdgcn_ds_ordered_swap: {
7268     MemSDNode *M = cast<MemSDNode>(Op);
7269     SDValue Chain = M->getOperand(0);
7270     SDValue M0 = M->getOperand(2);
7271     SDValue Value = M->getOperand(3);
7272     unsigned IndexOperand = M->getConstantOperandVal(7);
7273     unsigned WaveRelease = M->getConstantOperandVal(8);
7274     unsigned WaveDone = M->getConstantOperandVal(9);
7275 
7276     unsigned OrderedCountIndex = IndexOperand & 0x3f;
7277     IndexOperand &= ~0x3f;
7278     unsigned CountDw = 0;
7279 
7280     if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10) {
7281       CountDw = (IndexOperand >> 24) & 0xf;
7282       IndexOperand &= ~(0xf << 24);
7283 
7284       if (CountDw < 1 || CountDw > 4) {
7285         report_fatal_error(
7286             "ds_ordered_count: dword count must be between 1 and 4");
7287       }
7288     }
7289 
7290     if (IndexOperand)
7291       report_fatal_error("ds_ordered_count: bad index operand");
7292 
7293     if (WaveDone && !WaveRelease)
7294       report_fatal_error("ds_ordered_count: wave_done requires wave_release");
7295 
7296     unsigned Instruction = IntrID == Intrinsic::amdgcn_ds_ordered_add ? 0 : 1;
7297     unsigned ShaderType =
7298         SIInstrInfo::getDSShaderTypeValue(DAG.getMachineFunction());
7299     unsigned Offset0 = OrderedCountIndex << 2;
7300     unsigned Offset1 = WaveRelease | (WaveDone << 1) | (Instruction << 4);
7301 
7302     if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10)
7303       Offset1 |= (CountDw - 1) << 6;
7304 
7305     if (Subtarget->getGeneration() < AMDGPUSubtarget::GFX11)
7306       Offset1 |= ShaderType << 2;
7307 
7308     unsigned Offset = Offset0 | (Offset1 << 8);
7309 
7310     SDValue Ops[] = {
7311       Chain,
7312       Value,
7313       DAG.getTargetConstant(Offset, DL, MVT::i16),
7314       copyToM0(DAG, Chain, DL, M0).getValue(1), // Glue
7315     };
7316     return DAG.getMemIntrinsicNode(AMDGPUISD::DS_ORDERED_COUNT, DL,
7317                                    M->getVTList(), Ops, M->getMemoryVT(),
7318                                    M->getMemOperand());
7319   }
7320   case Intrinsic::amdgcn_ds_fadd: {
7321     MemSDNode *M = cast<MemSDNode>(Op);
7322     unsigned Opc;
7323     switch (IntrID) {
7324     case Intrinsic::amdgcn_ds_fadd:
7325       Opc = ISD::ATOMIC_LOAD_FADD;
7326       break;
7327     }
7328 
7329     return DAG.getAtomic(Opc, SDLoc(Op), M->getMemoryVT(),
7330                          M->getOperand(0), M->getOperand(2), M->getOperand(3),
7331                          M->getMemOperand());
7332   }
7333   case Intrinsic::amdgcn_atomic_inc:
7334   case Intrinsic::amdgcn_atomic_dec:
7335   case Intrinsic::amdgcn_ds_fmin:
7336   case Intrinsic::amdgcn_ds_fmax: {
7337     MemSDNode *M = cast<MemSDNode>(Op);
7338     unsigned Opc;
7339     switch (IntrID) {
7340     case Intrinsic::amdgcn_atomic_inc:
7341       Opc = AMDGPUISD::ATOMIC_INC;
7342       break;
7343     case Intrinsic::amdgcn_atomic_dec:
7344       Opc = AMDGPUISD::ATOMIC_DEC;
7345       break;
7346     case Intrinsic::amdgcn_ds_fmin:
7347       Opc = AMDGPUISD::ATOMIC_LOAD_FMIN;
7348       break;
7349     case Intrinsic::amdgcn_ds_fmax:
7350       Opc = AMDGPUISD::ATOMIC_LOAD_FMAX;
7351       break;
7352     default:
7353       llvm_unreachable("Unknown intrinsic!");
7354     }
7355     SDValue Ops[] = {
7356       M->getOperand(0), // Chain
7357       M->getOperand(2), // Ptr
7358       M->getOperand(3)  // Value
7359     };
7360 
7361     return DAG.getMemIntrinsicNode(Opc, SDLoc(Op), M->getVTList(), Ops,
7362                                    M->getMemoryVT(), M->getMemOperand());
7363   }
7364   case Intrinsic::amdgcn_buffer_load:
7365   case Intrinsic::amdgcn_buffer_load_format: {
7366     unsigned Glc = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
7367     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue();
7368     unsigned IdxEn = getIdxEn(Op.getOperand(3));
7369     SDValue Ops[] = {
7370       Op.getOperand(0), // Chain
7371       Op.getOperand(2), // rsrc
7372       Op.getOperand(3), // vindex
7373       SDValue(),        // voffset -- will be set by setBufferOffsets
7374       SDValue(),        // soffset -- will be set by setBufferOffsets
7375       SDValue(),        // offset -- will be set by setBufferOffsets
7376       DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
7377       DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
7378     };
7379     setBufferOffsets(Op.getOperand(4), DAG, &Ops[3]);
7380 
7381     unsigned Opc = (IntrID == Intrinsic::amdgcn_buffer_load) ?
7382         AMDGPUISD::BUFFER_LOAD : AMDGPUISD::BUFFER_LOAD_FORMAT;
7383 
7384     EVT VT = Op.getValueType();
7385     EVT IntVT = VT.changeTypeToInteger();
7386     auto *M = cast<MemSDNode>(Op);
7387     updateBufferMMO(M->getMemOperand(), Ops[3], Ops[4], Ops[5], Ops[2]);
7388     EVT LoadVT = Op.getValueType();
7389 
7390     if (LoadVT.getScalarType() == MVT::f16)
7391       return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16,
7392                                  M, DAG, Ops);
7393 
7394     // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics
7395     if (LoadVT.getScalarType() == MVT::i8 ||
7396         LoadVT.getScalarType() == MVT::i16)
7397       return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M);
7398 
7399     return getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, IntVT,
7400                                M->getMemOperand(), DAG);
7401   }
7402   case Intrinsic::amdgcn_raw_buffer_load:
7403   case Intrinsic::amdgcn_raw_buffer_load_format: {
7404     const bool IsFormat = IntrID == Intrinsic::amdgcn_raw_buffer_load_format;
7405 
7406     auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG);
7407     SDValue Ops[] = {
7408       Op.getOperand(0), // Chain
7409       Op.getOperand(2), // rsrc
7410       DAG.getConstant(0, DL, MVT::i32), // vindex
7411       Offsets.first,    // voffset
7412       Op.getOperand(4), // soffset
7413       Offsets.second,   // offset
7414       Op.getOperand(5), // cachepolicy, swizzled buffer
7415       DAG.getTargetConstant(0, DL, MVT::i1), // idxen
7416     };
7417 
7418     auto *M = cast<MemSDNode>(Op);
7419     updateBufferMMO(M->getMemOperand(), Ops[3], Ops[4], Ops[5]);
7420     return lowerIntrinsicLoad(M, IsFormat, DAG, Ops);
7421   }
7422   case Intrinsic::amdgcn_struct_buffer_load:
7423   case Intrinsic::amdgcn_struct_buffer_load_format: {
7424     const bool IsFormat = IntrID == Intrinsic::amdgcn_struct_buffer_load_format;
7425 
7426     auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
7427     SDValue Ops[] = {
7428       Op.getOperand(0), // Chain
7429       Op.getOperand(2), // rsrc
7430       Op.getOperand(3), // vindex
7431       Offsets.first,    // voffset
7432       Op.getOperand(5), // soffset
7433       Offsets.second,   // offset
7434       Op.getOperand(6), // cachepolicy, swizzled buffer
7435       DAG.getTargetConstant(1, DL, MVT::i1), // idxen
7436     };
7437 
7438     auto *M = cast<MemSDNode>(Op);
7439     updateBufferMMO(M->getMemOperand(), Ops[3], Ops[4], Ops[5], Ops[2]);
7440     return lowerIntrinsicLoad(cast<MemSDNode>(Op), IsFormat, DAG, Ops);
7441   }
7442   case Intrinsic::amdgcn_tbuffer_load: {
7443     MemSDNode *M = cast<MemSDNode>(Op);
7444     EVT LoadVT = Op.getValueType();
7445 
7446     unsigned Dfmt = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue();
7447     unsigned Nfmt = cast<ConstantSDNode>(Op.getOperand(8))->getZExtValue();
7448     unsigned Glc = cast<ConstantSDNode>(Op.getOperand(9))->getZExtValue();
7449     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(10))->getZExtValue();
7450     unsigned IdxEn = getIdxEn(Op.getOperand(3));
7451     SDValue Ops[] = {
7452       Op.getOperand(0),  // Chain
7453       Op.getOperand(2),  // rsrc
7454       Op.getOperand(3),  // vindex
7455       Op.getOperand(4),  // voffset
7456       Op.getOperand(5),  // soffset
7457       Op.getOperand(6),  // offset
7458       DAG.getTargetConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format
7459       DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
7460       DAG.getTargetConstant(IdxEn, DL, MVT::i1) // idxen
7461     };
7462 
7463     if (LoadVT.getScalarType() == MVT::f16)
7464       return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16,
7465                                  M, DAG, Ops);
7466     return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
7467                                Op->getVTList(), Ops, LoadVT, M->getMemOperand(),
7468                                DAG);
7469   }
7470   case Intrinsic::amdgcn_raw_tbuffer_load: {
7471     MemSDNode *M = cast<MemSDNode>(Op);
7472     EVT LoadVT = Op.getValueType();
7473     auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG);
7474 
7475     SDValue Ops[] = {
7476       Op.getOperand(0),  // Chain
7477       Op.getOperand(2),  // rsrc
7478       DAG.getConstant(0, DL, MVT::i32), // vindex
7479       Offsets.first,     // voffset
7480       Op.getOperand(4),  // soffset
7481       Offsets.second,    // offset
7482       Op.getOperand(5),  // format
7483       Op.getOperand(6),  // cachepolicy, swizzled buffer
7484       DAG.getTargetConstant(0, DL, MVT::i1), // idxen
7485     };
7486 
7487     if (LoadVT.getScalarType() == MVT::f16)
7488       return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16,
7489                                  M, DAG, Ops);
7490     return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
7491                                Op->getVTList(), Ops, LoadVT, M->getMemOperand(),
7492                                DAG);
7493   }
7494   case Intrinsic::amdgcn_struct_tbuffer_load: {
7495     MemSDNode *M = cast<MemSDNode>(Op);
7496     EVT LoadVT = Op.getValueType();
7497     auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
7498 
7499     SDValue Ops[] = {
7500       Op.getOperand(0),  // Chain
7501       Op.getOperand(2),  // rsrc
7502       Op.getOperand(3),  // vindex
7503       Offsets.first,     // voffset
7504       Op.getOperand(5),  // soffset
7505       Offsets.second,    // offset
7506       Op.getOperand(6),  // format
7507       Op.getOperand(7),  // cachepolicy, swizzled buffer
7508       DAG.getTargetConstant(1, DL, MVT::i1), // idxen
7509     };
7510 
7511     if (LoadVT.getScalarType() == MVT::f16)
7512       return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16,
7513                                  M, DAG, Ops);
7514     return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
7515                                Op->getVTList(), Ops, LoadVT, M->getMemOperand(),
7516                                DAG);
7517   }
7518   case Intrinsic::amdgcn_buffer_atomic_swap:
7519   case Intrinsic::amdgcn_buffer_atomic_add:
7520   case Intrinsic::amdgcn_buffer_atomic_sub:
7521   case Intrinsic::amdgcn_buffer_atomic_csub:
7522   case Intrinsic::amdgcn_buffer_atomic_smin:
7523   case Intrinsic::amdgcn_buffer_atomic_umin:
7524   case Intrinsic::amdgcn_buffer_atomic_smax:
7525   case Intrinsic::amdgcn_buffer_atomic_umax:
7526   case Intrinsic::amdgcn_buffer_atomic_and:
7527   case Intrinsic::amdgcn_buffer_atomic_or:
7528   case Intrinsic::amdgcn_buffer_atomic_xor:
7529   case Intrinsic::amdgcn_buffer_atomic_fadd: {
7530     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue();
7531     unsigned IdxEn = getIdxEn(Op.getOperand(4));
7532     SDValue Ops[] = {
7533       Op.getOperand(0), // Chain
7534       Op.getOperand(2), // vdata
7535       Op.getOperand(3), // rsrc
7536       Op.getOperand(4), // vindex
7537       SDValue(),        // voffset -- will be set by setBufferOffsets
7538       SDValue(),        // soffset -- will be set by setBufferOffsets
7539       SDValue(),        // offset -- will be set by setBufferOffsets
7540       DAG.getTargetConstant(Slc << 1, DL, MVT::i32), // cachepolicy
7541       DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
7542     };
7543     setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]);
7544 
7545     EVT VT = Op.getValueType();
7546 
7547     auto *M = cast<MemSDNode>(Op);
7548     updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6], Ops[3]);
7549     unsigned Opcode = 0;
7550 
7551     switch (IntrID) {
7552     case Intrinsic::amdgcn_buffer_atomic_swap:
7553       Opcode = AMDGPUISD::BUFFER_ATOMIC_SWAP;
7554       break;
7555     case Intrinsic::amdgcn_buffer_atomic_add:
7556       Opcode = AMDGPUISD::BUFFER_ATOMIC_ADD;
7557       break;
7558     case Intrinsic::amdgcn_buffer_atomic_sub:
7559       Opcode = AMDGPUISD::BUFFER_ATOMIC_SUB;
7560       break;
7561     case Intrinsic::amdgcn_buffer_atomic_csub:
7562       Opcode = AMDGPUISD::BUFFER_ATOMIC_CSUB;
7563       break;
7564     case Intrinsic::amdgcn_buffer_atomic_smin:
7565       Opcode = AMDGPUISD::BUFFER_ATOMIC_SMIN;
7566       break;
7567     case Intrinsic::amdgcn_buffer_atomic_umin:
7568       Opcode = AMDGPUISD::BUFFER_ATOMIC_UMIN;
7569       break;
7570     case Intrinsic::amdgcn_buffer_atomic_smax:
7571       Opcode = AMDGPUISD::BUFFER_ATOMIC_SMAX;
7572       break;
7573     case Intrinsic::amdgcn_buffer_atomic_umax:
7574       Opcode = AMDGPUISD::BUFFER_ATOMIC_UMAX;
7575       break;
7576     case Intrinsic::amdgcn_buffer_atomic_and:
7577       Opcode = AMDGPUISD::BUFFER_ATOMIC_AND;
7578       break;
7579     case Intrinsic::amdgcn_buffer_atomic_or:
7580       Opcode = AMDGPUISD::BUFFER_ATOMIC_OR;
7581       break;
7582     case Intrinsic::amdgcn_buffer_atomic_xor:
7583       Opcode = AMDGPUISD::BUFFER_ATOMIC_XOR;
7584       break;
7585     case Intrinsic::amdgcn_buffer_atomic_fadd:
7586       Opcode = AMDGPUISD::BUFFER_ATOMIC_FADD;
7587       break;
7588     default:
7589       llvm_unreachable("unhandled atomic opcode");
7590     }
7591 
7592     return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT,
7593                                    M->getMemOperand());
7594   }
7595   case Intrinsic::amdgcn_raw_buffer_atomic_fadd:
7596     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FADD);
7597   case Intrinsic::amdgcn_struct_buffer_atomic_fadd:
7598     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FADD);
7599   case Intrinsic::amdgcn_raw_buffer_atomic_fmin:
7600     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMIN);
7601   case Intrinsic::amdgcn_struct_buffer_atomic_fmin:
7602     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMIN);
7603   case Intrinsic::amdgcn_raw_buffer_atomic_fmax:
7604     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMAX);
7605   case Intrinsic::amdgcn_struct_buffer_atomic_fmax:
7606     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMAX);
7607   case Intrinsic::amdgcn_raw_buffer_atomic_swap:
7608     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SWAP);
7609   case Intrinsic::amdgcn_raw_buffer_atomic_add:
7610     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_ADD);
7611   case Intrinsic::amdgcn_raw_buffer_atomic_sub:
7612     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SUB);
7613   case Intrinsic::amdgcn_raw_buffer_atomic_smin:
7614     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SMIN);
7615   case Intrinsic::amdgcn_raw_buffer_atomic_umin:
7616     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_UMIN);
7617   case Intrinsic::amdgcn_raw_buffer_atomic_smax:
7618     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SMAX);
7619   case Intrinsic::amdgcn_raw_buffer_atomic_umax:
7620     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_UMAX);
7621   case Intrinsic::amdgcn_raw_buffer_atomic_and:
7622     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_AND);
7623   case Intrinsic::amdgcn_raw_buffer_atomic_or:
7624     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_OR);
7625   case Intrinsic::amdgcn_raw_buffer_atomic_xor:
7626     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_XOR);
7627   case Intrinsic::amdgcn_raw_buffer_atomic_inc:
7628     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_INC);
7629   case Intrinsic::amdgcn_raw_buffer_atomic_dec:
7630     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_DEC);
7631   case Intrinsic::amdgcn_struct_buffer_atomic_swap:
7632     return lowerStructBufferAtomicIntrin(Op, DAG,
7633                                          AMDGPUISD::BUFFER_ATOMIC_SWAP);
7634   case Intrinsic::amdgcn_struct_buffer_atomic_add:
7635     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_ADD);
7636   case Intrinsic::amdgcn_struct_buffer_atomic_sub:
7637     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SUB);
7638   case Intrinsic::amdgcn_struct_buffer_atomic_smin:
7639     return lowerStructBufferAtomicIntrin(Op, DAG,
7640                                          AMDGPUISD::BUFFER_ATOMIC_SMIN);
7641   case Intrinsic::amdgcn_struct_buffer_atomic_umin:
7642     return lowerStructBufferAtomicIntrin(Op, DAG,
7643                                          AMDGPUISD::BUFFER_ATOMIC_UMIN);
7644   case Intrinsic::amdgcn_struct_buffer_atomic_smax:
7645     return lowerStructBufferAtomicIntrin(Op, DAG,
7646                                          AMDGPUISD::BUFFER_ATOMIC_SMAX);
7647   case Intrinsic::amdgcn_struct_buffer_atomic_umax:
7648     return lowerStructBufferAtomicIntrin(Op, DAG,
7649                                          AMDGPUISD::BUFFER_ATOMIC_UMAX);
7650   case Intrinsic::amdgcn_struct_buffer_atomic_and:
7651     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_AND);
7652   case Intrinsic::amdgcn_struct_buffer_atomic_or:
7653     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_OR);
7654   case Intrinsic::amdgcn_struct_buffer_atomic_xor:
7655     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_XOR);
7656   case Intrinsic::amdgcn_struct_buffer_atomic_inc:
7657     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_INC);
7658   case Intrinsic::amdgcn_struct_buffer_atomic_dec:
7659     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_DEC);
7660 
7661   case Intrinsic::amdgcn_buffer_atomic_cmpswap: {
7662     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue();
7663     unsigned IdxEn = getIdxEn(Op.getOperand(5));
7664     SDValue Ops[] = {
7665       Op.getOperand(0), // Chain
7666       Op.getOperand(2), // src
7667       Op.getOperand(3), // cmp
7668       Op.getOperand(4), // rsrc
7669       Op.getOperand(5), // vindex
7670       SDValue(),        // voffset -- will be set by setBufferOffsets
7671       SDValue(),        // soffset -- will be set by setBufferOffsets
7672       SDValue(),        // offset -- will be set by setBufferOffsets
7673       DAG.getTargetConstant(Slc << 1, DL, MVT::i32), // cachepolicy
7674       DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
7675     };
7676     setBufferOffsets(Op.getOperand(6), DAG, &Ops[5]);
7677 
7678     EVT VT = Op.getValueType();
7679     auto *M = cast<MemSDNode>(Op);
7680     updateBufferMMO(M->getMemOperand(), Ops[5], Ops[6], Ops[7], Ops[4]);
7681 
7682     return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
7683                                    Op->getVTList(), Ops, VT, M->getMemOperand());
7684   }
7685   case Intrinsic::amdgcn_raw_buffer_atomic_cmpswap: {
7686     auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
7687     SDValue Ops[] = {
7688       Op.getOperand(0), // Chain
7689       Op.getOperand(2), // src
7690       Op.getOperand(3), // cmp
7691       Op.getOperand(4), // rsrc
7692       DAG.getConstant(0, DL, MVT::i32), // vindex
7693       Offsets.first,    // voffset
7694       Op.getOperand(6), // soffset
7695       Offsets.second,   // offset
7696       Op.getOperand(7), // cachepolicy
7697       DAG.getTargetConstant(0, DL, MVT::i1), // idxen
7698     };
7699     EVT VT = Op.getValueType();
7700     auto *M = cast<MemSDNode>(Op);
7701     updateBufferMMO(M->getMemOperand(), Ops[5], Ops[6], Ops[7]);
7702 
7703     return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
7704                                    Op->getVTList(), Ops, VT, M->getMemOperand());
7705   }
7706   case Intrinsic::amdgcn_struct_buffer_atomic_cmpswap: {
7707     auto Offsets = splitBufferOffsets(Op.getOperand(6), DAG);
7708     SDValue Ops[] = {
7709       Op.getOperand(0), // Chain
7710       Op.getOperand(2), // src
7711       Op.getOperand(3), // cmp
7712       Op.getOperand(4), // rsrc
7713       Op.getOperand(5), // vindex
7714       Offsets.first,    // voffset
7715       Op.getOperand(7), // soffset
7716       Offsets.second,   // offset
7717       Op.getOperand(8), // cachepolicy
7718       DAG.getTargetConstant(1, DL, MVT::i1), // idxen
7719     };
7720     EVT VT = Op.getValueType();
7721     auto *M = cast<MemSDNode>(Op);
7722     updateBufferMMO(M->getMemOperand(), Ops[5], Ops[6], Ops[7], Ops[4]);
7723 
7724     return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
7725                                    Op->getVTList(), Ops, VT, M->getMemOperand());
7726   }
7727   case Intrinsic::amdgcn_image_bvh_intersect_ray: {
7728     MemSDNode *M = cast<MemSDNode>(Op);
7729     SDValue NodePtr = M->getOperand(2);
7730     SDValue RayExtent = M->getOperand(3);
7731     SDValue RayOrigin = M->getOperand(4);
7732     SDValue RayDir = M->getOperand(5);
7733     SDValue RayInvDir = M->getOperand(6);
7734     SDValue TDescr = M->getOperand(7);
7735 
7736     assert(NodePtr.getValueType() == MVT::i32 ||
7737            NodePtr.getValueType() == MVT::i64);
7738     assert(RayDir.getValueType() == MVT::v3f16 ||
7739            RayDir.getValueType() == MVT::v3f32);
7740 
7741     if (!Subtarget->hasGFX10_AEncoding()) {
7742       emitRemovedIntrinsicError(DAG, DL, Op.getValueType());
7743       return SDValue();
7744     }
7745 
7746     const bool IsGFX11Plus = AMDGPU::isGFX11Plus(*Subtarget);
7747     const bool IsA16 = RayDir.getValueType().getVectorElementType() == MVT::f16;
7748     const bool Is64 = NodePtr.getValueType() == MVT::i64;
7749     const unsigned NumVDataDwords = 4;
7750     const unsigned NumVAddrDwords = IsA16 ? (Is64 ? 9 : 8) : (Is64 ? 12 : 11);
7751     const unsigned NumVAddrs = IsGFX11Plus ? (IsA16 ? 4 : 5) : NumVAddrDwords;
7752     const bool UseNSA =
7753         Subtarget->hasNSAEncoding() && NumVAddrs <= Subtarget->getNSAMaxSize();
7754     const unsigned BaseOpcodes[2][2] = {
7755         {AMDGPU::IMAGE_BVH_INTERSECT_RAY, AMDGPU::IMAGE_BVH_INTERSECT_RAY_a16},
7756         {AMDGPU::IMAGE_BVH64_INTERSECT_RAY,
7757          AMDGPU::IMAGE_BVH64_INTERSECT_RAY_a16}};
7758     int Opcode;
7759     if (UseNSA) {
7760       Opcode = AMDGPU::getMIMGOpcode(BaseOpcodes[Is64][IsA16],
7761                                      IsGFX11Plus ? AMDGPU::MIMGEncGfx11NSA
7762                                                  : AMDGPU::MIMGEncGfx10NSA,
7763                                      NumVDataDwords, NumVAddrDwords);
7764     } else {
7765       Opcode =
7766           AMDGPU::getMIMGOpcode(BaseOpcodes[Is64][IsA16],
7767                                 IsGFX11Plus ? AMDGPU::MIMGEncGfx11Default
7768                                             : AMDGPU::MIMGEncGfx10Default,
7769                                 NumVDataDwords, NumVAddrDwords);
7770     }
7771     assert(Opcode != -1);
7772 
7773     SmallVector<SDValue, 16> Ops;
7774 
7775     auto packLanes = [&DAG, &Ops, &DL] (SDValue Op, bool IsAligned) {
7776       SmallVector<SDValue, 3> Lanes;
7777       DAG.ExtractVectorElements(Op, Lanes, 0, 3);
7778       if (Lanes[0].getValueSizeInBits() == 32) {
7779         for (unsigned I = 0; I < 3; ++I)
7780           Ops.push_back(DAG.getBitcast(MVT::i32, Lanes[I]));
7781       } else {
7782         if (IsAligned) {
7783           Ops.push_back(
7784             DAG.getBitcast(MVT::i32,
7785                            DAG.getBuildVector(MVT::v2f16, DL,
7786                                               { Lanes[0], Lanes[1] })));
7787           Ops.push_back(Lanes[2]);
7788         } else {
7789           SDValue Elt0 = Ops.pop_back_val();
7790           Ops.push_back(
7791             DAG.getBitcast(MVT::i32,
7792                            DAG.getBuildVector(MVT::v2f16, DL,
7793                                               { Elt0, Lanes[0] })));
7794           Ops.push_back(
7795             DAG.getBitcast(MVT::i32,
7796                            DAG.getBuildVector(MVT::v2f16, DL,
7797                                               { Lanes[1], Lanes[2] })));
7798         }
7799       }
7800     };
7801 
7802     if (UseNSA && IsGFX11Plus) {
7803       Ops.push_back(NodePtr);
7804       Ops.push_back(DAG.getBitcast(MVT::i32, RayExtent));
7805       Ops.push_back(RayOrigin);
7806       if (IsA16) {
7807         SmallVector<SDValue, 3> DirLanes, InvDirLanes, MergedLanes;
7808         DAG.ExtractVectorElements(RayDir, DirLanes, 0, 3);
7809         DAG.ExtractVectorElements(RayInvDir, InvDirLanes, 0, 3);
7810         for (unsigned I = 0; I < 3; ++I) {
7811           MergedLanes.push_back(DAG.getBitcast(
7812               MVT::i32, DAG.getBuildVector(MVT::v2f16, DL,
7813                                            {DirLanes[I], InvDirLanes[I]})));
7814         }
7815         Ops.push_back(DAG.getBuildVector(MVT::v3i32, DL, MergedLanes));
7816       } else {
7817         Ops.push_back(RayDir);
7818         Ops.push_back(RayInvDir);
7819       }
7820     } else {
7821       if (Is64)
7822         DAG.ExtractVectorElements(DAG.getBitcast(MVT::v2i32, NodePtr), Ops, 0,
7823                                   2);
7824       else
7825         Ops.push_back(NodePtr);
7826 
7827       Ops.push_back(DAG.getBitcast(MVT::i32, RayExtent));
7828       packLanes(RayOrigin, true);
7829       packLanes(RayDir, true);
7830       packLanes(RayInvDir, false);
7831     }
7832 
7833     if (!UseNSA) {
7834       // Build a single vector containing all the operands so far prepared.
7835       if (NumVAddrDwords > 12) {
7836         SDValue Undef = DAG.getUNDEF(MVT::i32);
7837         Ops.append(16 - Ops.size(), Undef);
7838       }
7839       assert(Ops.size() >= 8 && Ops.size() <= 12);
7840       SDValue MergedOps = DAG.getBuildVector(
7841           MVT::getVectorVT(MVT::i32, Ops.size()), DL, Ops);
7842       Ops.clear();
7843       Ops.push_back(MergedOps);
7844     }
7845 
7846     Ops.push_back(TDescr);
7847     if (IsA16)
7848       Ops.push_back(DAG.getTargetConstant(1, DL, MVT::i1));
7849     Ops.push_back(M->getChain());
7850 
7851     auto *NewNode = DAG.getMachineNode(Opcode, DL, M->getVTList(), Ops);
7852     MachineMemOperand *MemRef = M->getMemOperand();
7853     DAG.setNodeMemRefs(NewNode, {MemRef});
7854     return SDValue(NewNode, 0);
7855   }
7856   case Intrinsic::amdgcn_global_atomic_fadd: {
7857     if (!Subtarget->hasAtomicFaddNoRtnInsts())
7858       return makeV_ILLEGAL(Op, DAG);
7859     return SDValue();
7860   }
7861   case Intrinsic::amdgcn_global_atomic_fmin:
7862   case Intrinsic::amdgcn_global_atomic_fmax:
7863   case Intrinsic::amdgcn_flat_atomic_fmin:
7864   case Intrinsic::amdgcn_flat_atomic_fmax: {
7865     MemSDNode *M = cast<MemSDNode>(Op);
7866     SDValue Ops[] = {
7867       M->getOperand(0), // Chain
7868       M->getOperand(2), // Ptr
7869       M->getOperand(3)  // Value
7870     };
7871     unsigned Opcode = 0;
7872     switch (IntrID) {
7873     case Intrinsic::amdgcn_global_atomic_fmin:
7874     case Intrinsic::amdgcn_flat_atomic_fmin: {
7875       Opcode = AMDGPUISD::ATOMIC_LOAD_FMIN;
7876       break;
7877     }
7878     case Intrinsic::amdgcn_global_atomic_fmax:
7879     case Intrinsic::amdgcn_flat_atomic_fmax: {
7880       Opcode = AMDGPUISD::ATOMIC_LOAD_FMAX;
7881       break;
7882     }
7883     default:
7884       llvm_unreachable("unhandled atomic opcode");
7885     }
7886     return DAG.getMemIntrinsicNode(Opcode, SDLoc(Op),
7887                                    M->getVTList(), Ops, M->getMemoryVT(),
7888                                    M->getMemOperand());
7889   }
7890   default:
7891 
7892     if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
7893             AMDGPU::getImageDimIntrinsicInfo(IntrID))
7894       return lowerImage(Op, ImageDimIntr, DAG, true);
7895 
7896     return SDValue();
7897   }
7898 }
7899 
7900 // Call DAG.getMemIntrinsicNode for a load, but first widen a dwordx3 type to
7901 // dwordx4 if on SI and handle TFE loads.
7902 SDValue SITargetLowering::getMemIntrinsicNode(unsigned Opcode, const SDLoc &DL,
7903                                               SDVTList VTList,
7904                                               ArrayRef<SDValue> Ops, EVT MemVT,
7905                                               MachineMemOperand *MMO,
7906                                               SelectionDAG &DAG) const {
7907   LLVMContext &C = *DAG.getContext();
7908   MachineFunction &MF = DAG.getMachineFunction();
7909   EVT VT = VTList.VTs[0];
7910 
7911   assert(VTList.NumVTs == 2 || VTList.NumVTs == 3);
7912   bool IsTFE = VTList.NumVTs == 3;
7913   if (IsTFE) {
7914     unsigned NumValueDWords = divideCeil(VT.getSizeInBits(), 32);
7915     unsigned NumOpDWords = NumValueDWords + 1;
7916     EVT OpDWordsVT = EVT::getVectorVT(C, MVT::i32, NumOpDWords);
7917     SDVTList OpDWordsVTList = DAG.getVTList(OpDWordsVT, VTList.VTs[2]);
7918     MachineMemOperand *OpDWordsMMO =
7919         MF.getMachineMemOperand(MMO, 0, NumOpDWords * 4);
7920     SDValue Op = getMemIntrinsicNode(Opcode, DL, OpDWordsVTList, Ops,
7921                                      OpDWordsVT, OpDWordsMMO, DAG);
7922     SDValue Status = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, Op,
7923                                  DAG.getVectorIdxConstant(NumValueDWords, DL));
7924     SDValue ZeroIdx = DAG.getVectorIdxConstant(0, DL);
7925     SDValue ValueDWords =
7926         NumValueDWords == 1
7927             ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, Op, ZeroIdx)
7928             : DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
7929                           EVT::getVectorVT(C, MVT::i32, NumValueDWords), Op,
7930                           ZeroIdx);
7931     SDValue Value = DAG.getNode(ISD::BITCAST, DL, VT, ValueDWords);
7932     return DAG.getMergeValues({Value, Status, SDValue(Op.getNode(), 1)}, DL);
7933   }
7934 
7935   if (!Subtarget->hasDwordx3LoadStores() &&
7936       (VT == MVT::v3i32 || VT == MVT::v3f32)) {
7937     EVT WidenedVT = EVT::getVectorVT(C, VT.getVectorElementType(), 4);
7938     EVT WidenedMemVT = EVT::getVectorVT(C, MemVT.getVectorElementType(), 4);
7939     MachineMemOperand *WidenedMMO = MF.getMachineMemOperand(MMO, 0, 16);
7940     SDVTList WidenedVTList = DAG.getVTList(WidenedVT, VTList.VTs[1]);
7941     SDValue Op = DAG.getMemIntrinsicNode(Opcode, DL, WidenedVTList, Ops,
7942                                          WidenedMemVT, WidenedMMO);
7943     SDValue Value = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Op,
7944                                 DAG.getVectorIdxConstant(0, DL));
7945     return DAG.getMergeValues({Value, SDValue(Op.getNode(), 1)}, DL);
7946   }
7947 
7948   return DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops, MemVT, MMO);
7949 }
7950 
7951 SDValue SITargetLowering::handleD16VData(SDValue VData, SelectionDAG &DAG,
7952                                          bool ImageStore) const {
7953   EVT StoreVT = VData.getValueType();
7954 
7955   // No change for f16 and legal vector D16 types.
7956   if (!StoreVT.isVector())
7957     return VData;
7958 
7959   SDLoc DL(VData);
7960   unsigned NumElements = StoreVT.getVectorNumElements();
7961 
7962   if (Subtarget->hasUnpackedD16VMem()) {
7963     // We need to unpack the packed data to store.
7964     EVT IntStoreVT = StoreVT.changeTypeToInteger();
7965     SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData);
7966 
7967     EVT EquivStoreVT =
7968         EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElements);
7969     SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, EquivStoreVT, IntVData);
7970     return DAG.UnrollVectorOp(ZExt.getNode());
7971   }
7972 
7973   // The sq block of gfx8.1 does not estimate register use correctly for d16
7974   // image store instructions. The data operand is computed as if it were not a
7975   // d16 image instruction.
7976   if (ImageStore && Subtarget->hasImageStoreD16Bug()) {
7977     // Bitcast to i16
7978     EVT IntStoreVT = StoreVT.changeTypeToInteger();
7979     SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData);
7980 
7981     // Decompose into scalars
7982     SmallVector<SDValue, 4> Elts;
7983     DAG.ExtractVectorElements(IntVData, Elts);
7984 
7985     // Group pairs of i16 into v2i16 and bitcast to i32
7986     SmallVector<SDValue, 4> PackedElts;
7987     for (unsigned I = 0; I < Elts.size() / 2; I += 1) {
7988       SDValue Pair =
7989           DAG.getBuildVector(MVT::v2i16, DL, {Elts[I * 2], Elts[I * 2 + 1]});
7990       SDValue IntPair = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Pair);
7991       PackedElts.push_back(IntPair);
7992     }
7993     if ((NumElements % 2) == 1) {
7994       // Handle v3i16
7995       unsigned I = Elts.size() / 2;
7996       SDValue Pair = DAG.getBuildVector(MVT::v2i16, DL,
7997                                         {Elts[I * 2], DAG.getUNDEF(MVT::i16)});
7998       SDValue IntPair = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Pair);
7999       PackedElts.push_back(IntPair);
8000     }
8001 
8002     // Pad using UNDEF
8003     PackedElts.resize(Elts.size(), DAG.getUNDEF(MVT::i32));
8004 
8005     // Build final vector
8006     EVT VecVT =
8007         EVT::getVectorVT(*DAG.getContext(), MVT::i32, PackedElts.size());
8008     return DAG.getBuildVector(VecVT, DL, PackedElts);
8009   }
8010 
8011   if (NumElements == 3) {
8012     EVT IntStoreVT =
8013         EVT::getIntegerVT(*DAG.getContext(), StoreVT.getStoreSizeInBits());
8014     SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData);
8015 
8016     EVT WidenedStoreVT = EVT::getVectorVT(
8017         *DAG.getContext(), StoreVT.getVectorElementType(), NumElements + 1);
8018     EVT WidenedIntVT = EVT::getIntegerVT(*DAG.getContext(),
8019                                          WidenedStoreVT.getStoreSizeInBits());
8020     SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, WidenedIntVT, IntVData);
8021     return DAG.getNode(ISD::BITCAST, DL, WidenedStoreVT, ZExt);
8022   }
8023 
8024   assert(isTypeLegal(StoreVT));
8025   return VData;
8026 }
8027 
8028 SDValue SITargetLowering::LowerINTRINSIC_VOID(SDValue Op,
8029                                               SelectionDAG &DAG) const {
8030   SDLoc DL(Op);
8031   SDValue Chain = Op.getOperand(0);
8032   unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
8033   MachineFunction &MF = DAG.getMachineFunction();
8034 
8035   switch (IntrinsicID) {
8036   case Intrinsic::amdgcn_exp_compr: {
8037     if (!Subtarget->hasCompressedExport()) {
8038       DiagnosticInfoUnsupported BadIntrin(
8039           DAG.getMachineFunction().getFunction(),
8040           "intrinsic not supported on subtarget", DL.getDebugLoc());
8041       DAG.getContext()->diagnose(BadIntrin);
8042     }
8043     SDValue Src0 = Op.getOperand(4);
8044     SDValue Src1 = Op.getOperand(5);
8045     // Hack around illegal type on SI by directly selecting it.
8046     if (isTypeLegal(Src0.getValueType()))
8047       return SDValue();
8048 
8049     const ConstantSDNode *Done = cast<ConstantSDNode>(Op.getOperand(6));
8050     SDValue Undef = DAG.getUNDEF(MVT::f32);
8051     const SDValue Ops[] = {
8052       Op.getOperand(2), // tgt
8053       DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src0), // src0
8054       DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src1), // src1
8055       Undef, // src2
8056       Undef, // src3
8057       Op.getOperand(7), // vm
8058       DAG.getTargetConstant(1, DL, MVT::i1), // compr
8059       Op.getOperand(3), // en
8060       Op.getOperand(0) // Chain
8061     };
8062 
8063     unsigned Opc = Done->isZero() ? AMDGPU::EXP : AMDGPU::EXP_DONE;
8064     return SDValue(DAG.getMachineNode(Opc, DL, Op->getVTList(), Ops), 0);
8065   }
8066   case Intrinsic::amdgcn_s_barrier: {
8067     if (getTargetMachine().getOptLevel() > CodeGenOpt::None) {
8068       const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
8069       unsigned WGSize = ST.getFlatWorkGroupSizes(MF.getFunction()).second;
8070       if (WGSize <= ST.getWavefrontSize())
8071         return SDValue(DAG.getMachineNode(AMDGPU::WAVE_BARRIER, DL, MVT::Other,
8072                                           Op.getOperand(0)), 0);
8073     }
8074     return SDValue();
8075   };
8076   case Intrinsic::amdgcn_tbuffer_store: {
8077     SDValue VData = Op.getOperand(2);
8078     bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
8079     if (IsD16)
8080       VData = handleD16VData(VData, DAG);
8081     unsigned Dfmt = cast<ConstantSDNode>(Op.getOperand(8))->getZExtValue();
8082     unsigned Nfmt = cast<ConstantSDNode>(Op.getOperand(9))->getZExtValue();
8083     unsigned Glc = cast<ConstantSDNode>(Op.getOperand(10))->getZExtValue();
8084     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(11))->getZExtValue();
8085     unsigned IdxEn = getIdxEn(Op.getOperand(4));
8086     SDValue Ops[] = {
8087       Chain,
8088       VData,             // vdata
8089       Op.getOperand(3),  // rsrc
8090       Op.getOperand(4),  // vindex
8091       Op.getOperand(5),  // voffset
8092       Op.getOperand(6),  // soffset
8093       Op.getOperand(7),  // offset
8094       DAG.getTargetConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format
8095       DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
8096       DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
8097     };
8098     unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 :
8099                            AMDGPUISD::TBUFFER_STORE_FORMAT;
8100     MemSDNode *M = cast<MemSDNode>(Op);
8101     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
8102                                    M->getMemoryVT(), M->getMemOperand());
8103   }
8104 
8105   case Intrinsic::amdgcn_struct_tbuffer_store: {
8106     SDValue VData = Op.getOperand(2);
8107     bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
8108     if (IsD16)
8109       VData = handleD16VData(VData, DAG);
8110     auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
8111     SDValue Ops[] = {
8112       Chain,
8113       VData,             // vdata
8114       Op.getOperand(3),  // rsrc
8115       Op.getOperand(4),  // vindex
8116       Offsets.first,     // voffset
8117       Op.getOperand(6),  // soffset
8118       Offsets.second,    // offset
8119       Op.getOperand(7),  // format
8120       Op.getOperand(8),  // cachepolicy, swizzled buffer
8121       DAG.getTargetConstant(1, DL, MVT::i1), // idxen
8122     };
8123     unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 :
8124                            AMDGPUISD::TBUFFER_STORE_FORMAT;
8125     MemSDNode *M = cast<MemSDNode>(Op);
8126     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
8127                                    M->getMemoryVT(), M->getMemOperand());
8128   }
8129 
8130   case Intrinsic::amdgcn_raw_tbuffer_store: {
8131     SDValue VData = Op.getOperand(2);
8132     bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
8133     if (IsD16)
8134       VData = handleD16VData(VData, DAG);
8135     auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
8136     SDValue Ops[] = {
8137       Chain,
8138       VData,             // vdata
8139       Op.getOperand(3),  // rsrc
8140       DAG.getConstant(0, DL, MVT::i32), // vindex
8141       Offsets.first,     // voffset
8142       Op.getOperand(5),  // soffset
8143       Offsets.second,    // offset
8144       Op.getOperand(6),  // format
8145       Op.getOperand(7),  // cachepolicy, swizzled buffer
8146       DAG.getTargetConstant(0, DL, MVT::i1), // idxen
8147     };
8148     unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 :
8149                            AMDGPUISD::TBUFFER_STORE_FORMAT;
8150     MemSDNode *M = cast<MemSDNode>(Op);
8151     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
8152                                    M->getMemoryVT(), M->getMemOperand());
8153   }
8154 
8155   case Intrinsic::amdgcn_buffer_store:
8156   case Intrinsic::amdgcn_buffer_store_format: {
8157     SDValue VData = Op.getOperand(2);
8158     bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
8159     if (IsD16)
8160       VData = handleD16VData(VData, DAG);
8161     unsigned Glc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue();
8162     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue();
8163     unsigned IdxEn = getIdxEn(Op.getOperand(4));
8164     SDValue Ops[] = {
8165       Chain,
8166       VData,
8167       Op.getOperand(3), // rsrc
8168       Op.getOperand(4), // vindex
8169       SDValue(), // voffset -- will be set by setBufferOffsets
8170       SDValue(), // soffset -- will be set by setBufferOffsets
8171       SDValue(), // offset -- will be set by setBufferOffsets
8172       DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
8173       DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
8174     };
8175     setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]);
8176 
8177     unsigned Opc = IntrinsicID == Intrinsic::amdgcn_buffer_store ?
8178                    AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT;
8179     Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
8180     MemSDNode *M = cast<MemSDNode>(Op);
8181     updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6], Ops[3]);
8182 
8183     // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics
8184     EVT VDataType = VData.getValueType().getScalarType();
8185     if (VDataType == MVT::i8 || VDataType == MVT::i16)
8186       return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M);
8187 
8188     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
8189                                    M->getMemoryVT(), M->getMemOperand());
8190   }
8191 
8192   case Intrinsic::amdgcn_raw_buffer_store:
8193   case Intrinsic::amdgcn_raw_buffer_store_format: {
8194     const bool IsFormat =
8195         IntrinsicID == Intrinsic::amdgcn_raw_buffer_store_format;
8196 
8197     SDValue VData = Op.getOperand(2);
8198     EVT VDataVT = VData.getValueType();
8199     EVT EltType = VDataVT.getScalarType();
8200     bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16);
8201     if (IsD16) {
8202       VData = handleD16VData(VData, DAG);
8203       VDataVT = VData.getValueType();
8204     }
8205 
8206     if (!isTypeLegal(VDataVT)) {
8207       VData =
8208           DAG.getNode(ISD::BITCAST, DL,
8209                       getEquivalentMemType(*DAG.getContext(), VDataVT), VData);
8210     }
8211 
8212     auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
8213     SDValue Ops[] = {
8214       Chain,
8215       VData,
8216       Op.getOperand(3), // rsrc
8217       DAG.getConstant(0, DL, MVT::i32), // vindex
8218       Offsets.first,    // voffset
8219       Op.getOperand(5), // soffset
8220       Offsets.second,   // offset
8221       Op.getOperand(6), // cachepolicy, swizzled buffer
8222       DAG.getTargetConstant(0, DL, MVT::i1), // idxen
8223     };
8224     unsigned Opc =
8225         IsFormat ? AMDGPUISD::BUFFER_STORE_FORMAT : AMDGPUISD::BUFFER_STORE;
8226     Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
8227     MemSDNode *M = cast<MemSDNode>(Op);
8228     updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6]);
8229 
8230     // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics
8231     if (!IsD16 && !VDataVT.isVector() && EltType.getSizeInBits() < 32)
8232       return handleByteShortBufferStores(DAG, VDataVT, DL, Ops, M);
8233 
8234     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
8235                                    M->getMemoryVT(), M->getMemOperand());
8236   }
8237 
8238   case Intrinsic::amdgcn_struct_buffer_store:
8239   case Intrinsic::amdgcn_struct_buffer_store_format: {
8240     const bool IsFormat =
8241         IntrinsicID == Intrinsic::amdgcn_struct_buffer_store_format;
8242 
8243     SDValue VData = Op.getOperand(2);
8244     EVT VDataVT = VData.getValueType();
8245     EVT EltType = VDataVT.getScalarType();
8246     bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16);
8247 
8248     if (IsD16) {
8249       VData = handleD16VData(VData, DAG);
8250       VDataVT = VData.getValueType();
8251     }
8252 
8253     if (!isTypeLegal(VDataVT)) {
8254       VData =
8255           DAG.getNode(ISD::BITCAST, DL,
8256                       getEquivalentMemType(*DAG.getContext(), VDataVT), VData);
8257     }
8258 
8259     auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
8260     SDValue Ops[] = {
8261       Chain,
8262       VData,
8263       Op.getOperand(3), // rsrc
8264       Op.getOperand(4), // vindex
8265       Offsets.first,    // voffset
8266       Op.getOperand(6), // soffset
8267       Offsets.second,   // offset
8268       Op.getOperand(7), // cachepolicy, swizzled buffer
8269       DAG.getTargetConstant(1, DL, MVT::i1), // idxen
8270     };
8271     unsigned Opc = IntrinsicID == Intrinsic::amdgcn_struct_buffer_store ?
8272                    AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT;
8273     Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
8274     MemSDNode *M = cast<MemSDNode>(Op);
8275     updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6], Ops[3]);
8276 
8277     // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics
8278     EVT VDataType = VData.getValueType().getScalarType();
8279     if (!IsD16 && !VDataVT.isVector() && EltType.getSizeInBits() < 32)
8280       return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M);
8281 
8282     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
8283                                    M->getMemoryVT(), M->getMemOperand());
8284   }
8285   case Intrinsic::amdgcn_raw_buffer_load_lds:
8286   case Intrinsic::amdgcn_struct_buffer_load_lds: {
8287     unsigned Opc;
8288     bool HasVIndex = IntrinsicID == Intrinsic::amdgcn_struct_buffer_load_lds;
8289     unsigned OpOffset = HasVIndex ? 1 : 0;
8290     SDValue VOffset = Op.getOperand(5 + OpOffset);
8291     auto CVOffset = dyn_cast<ConstantSDNode>(VOffset);
8292     bool HasVOffset = !CVOffset || !CVOffset->isZero();
8293     unsigned Size = Op->getConstantOperandVal(4);
8294 
8295     switch (Size) {
8296     default:
8297       return SDValue();
8298     case 1:
8299       Opc = HasVIndex ? HasVOffset ? AMDGPU::BUFFER_LOAD_UBYTE_LDS_BOTHEN
8300                                    : AMDGPU::BUFFER_LOAD_UBYTE_LDS_IDXEN
8301                       : HasVOffset ? AMDGPU::BUFFER_LOAD_UBYTE_LDS_OFFEN
8302                                    : AMDGPU::BUFFER_LOAD_UBYTE_LDS_OFFSET;
8303       break;
8304     case 2:
8305       Opc = HasVIndex ? HasVOffset ? AMDGPU::BUFFER_LOAD_USHORT_LDS_BOTHEN
8306                                    : AMDGPU::BUFFER_LOAD_USHORT_LDS_IDXEN
8307                       : HasVOffset ? AMDGPU::BUFFER_LOAD_USHORT_LDS_OFFEN
8308                                    : AMDGPU::BUFFER_LOAD_USHORT_LDS_OFFSET;
8309       break;
8310     case 4:
8311       Opc = HasVIndex ? HasVOffset ? AMDGPU::BUFFER_LOAD_DWORD_LDS_BOTHEN
8312                                    : AMDGPU::BUFFER_LOAD_DWORD_LDS_IDXEN
8313                       : HasVOffset ? AMDGPU::BUFFER_LOAD_DWORD_LDS_OFFEN
8314                                    : AMDGPU::BUFFER_LOAD_DWORD_LDS_OFFSET;
8315       break;
8316     }
8317 
8318     SDValue M0Val = copyToM0(DAG, Chain, DL, Op.getOperand(3));
8319 
8320     SmallVector<SDValue, 8> Ops;
8321 
8322     if (HasVIndex && HasVOffset)
8323       Ops.push_back(DAG.getBuildVector(MVT::v2i32, DL,
8324                                        { Op.getOperand(5), // VIndex
8325                                          VOffset }));
8326     else if (HasVIndex)
8327       Ops.push_back(Op.getOperand(5));
8328     else if (HasVOffset)
8329       Ops.push_back(VOffset);
8330 
8331     Ops.push_back(Op.getOperand(2));           // rsrc
8332     Ops.push_back(Op.getOperand(6 + OpOffset)); // soffset
8333     Ops.push_back(Op.getOperand(7 + OpOffset)); // imm offset
8334     unsigned Aux = Op.getConstantOperandVal(8 + OpOffset);
8335     Ops.push_back(
8336       DAG.getTargetConstant(Aux & AMDGPU::CPol::ALL, DL, MVT::i8)); // cpol
8337     Ops.push_back(
8338       DAG.getTargetConstant((Aux >> 3) & 1, DL, MVT::i8));          // swz
8339     Ops.push_back(M0Val.getValue(0)); // Chain
8340     Ops.push_back(M0Val.getValue(1)); // Glue
8341 
8342     auto *M = cast<MemSDNode>(Op);
8343     MachineMemOperand *LoadMMO = M->getMemOperand();
8344     MachinePointerInfo LoadPtrI = LoadMMO->getPointerInfo();
8345     LoadPtrI.Offset = Op->getConstantOperandVal(7 + OpOffset);
8346     MachinePointerInfo StorePtrI = LoadPtrI;
8347     StorePtrI.V = nullptr;
8348     StorePtrI.AddrSpace = AMDGPUAS::LOCAL_ADDRESS;
8349 
8350     auto F = LoadMMO->getFlags() &
8351              ~(MachineMemOperand::MOStore | MachineMemOperand::MOLoad);
8352     LoadMMO = MF.getMachineMemOperand(LoadPtrI, F | MachineMemOperand::MOLoad,
8353                                       Size, LoadMMO->getBaseAlign());
8354 
8355     MachineMemOperand *StoreMMO =
8356         MF.getMachineMemOperand(StorePtrI, F | MachineMemOperand::MOStore,
8357                                 sizeof(int32_t), LoadMMO->getBaseAlign());
8358 
8359     auto Load = DAG.getMachineNode(Opc, DL, M->getVTList(), Ops);
8360     DAG.setNodeMemRefs(Load, {LoadMMO, StoreMMO});
8361 
8362     return SDValue(Load, 0);
8363   }
8364   case Intrinsic::amdgcn_global_load_lds: {
8365     unsigned Opc;
8366     unsigned Size = Op->getConstantOperandVal(4);
8367     switch (Size) {
8368     default:
8369       return SDValue();
8370     case 1:
8371       Opc = AMDGPU::GLOBAL_LOAD_LDS_UBYTE;
8372       break;
8373     case 2:
8374       Opc = AMDGPU::GLOBAL_LOAD_LDS_USHORT;
8375       break;
8376     case 4:
8377       Opc = AMDGPU::GLOBAL_LOAD_LDS_DWORD;
8378       break;
8379     }
8380 
8381     auto *M = cast<MemSDNode>(Op);
8382     SDValue M0Val = copyToM0(DAG, Chain, DL, Op.getOperand(3));
8383 
8384     SmallVector<SDValue, 6> Ops;
8385 
8386     SDValue Addr = Op.getOperand(2); // Global ptr
8387     SDValue VOffset;
8388     // Try to split SAddr and VOffset. Global and LDS pointers share the same
8389     // immediate offset, so we cannot use a regular SelectGlobalSAddr().
8390     if (Addr->isDivergent() && Addr.getOpcode() == ISD::ADD) {
8391       SDValue LHS = Addr.getOperand(0);
8392       SDValue RHS = Addr.getOperand(1);
8393 
8394       if (LHS->isDivergent())
8395         std::swap(LHS, RHS);
8396 
8397       if (!LHS->isDivergent() && RHS.getOpcode() == ISD::ZERO_EXTEND &&
8398           RHS.getOperand(0).getValueType() == MVT::i32) {
8399         // add (i64 sgpr), (zero_extend (i32 vgpr))
8400         Addr = LHS;
8401         VOffset = RHS.getOperand(0);
8402       }
8403     }
8404 
8405     Ops.push_back(Addr);
8406     if (!Addr->isDivergent()) {
8407       Opc = AMDGPU::getGlobalSaddrOp(Opc);
8408       if (!VOffset)
8409         VOffset = SDValue(
8410             DAG.getMachineNode(AMDGPU::V_MOV_B32_e32, DL, MVT::i32,
8411                                DAG.getTargetConstant(0, DL, MVT::i32)), 0);
8412       Ops.push_back(VOffset);
8413     }
8414 
8415     Ops.push_back(Op.getOperand(5));  // Offset
8416     Ops.push_back(Op.getOperand(6));  // CPol
8417     Ops.push_back(M0Val.getValue(0)); // Chain
8418     Ops.push_back(M0Val.getValue(1)); // Glue
8419 
8420     MachineMemOperand *LoadMMO = M->getMemOperand();
8421     MachinePointerInfo LoadPtrI = LoadMMO->getPointerInfo();
8422     LoadPtrI.Offset = Op->getConstantOperandVal(5);
8423     MachinePointerInfo StorePtrI = LoadPtrI;
8424     LoadPtrI.AddrSpace = AMDGPUAS::GLOBAL_ADDRESS;
8425     StorePtrI.AddrSpace = AMDGPUAS::LOCAL_ADDRESS;
8426     auto F = LoadMMO->getFlags() &
8427              ~(MachineMemOperand::MOStore | MachineMemOperand::MOLoad);
8428     LoadMMO = MF.getMachineMemOperand(LoadPtrI, F | MachineMemOperand::MOLoad,
8429                                       Size, LoadMMO->getBaseAlign());
8430     MachineMemOperand *StoreMMO =
8431         MF.getMachineMemOperand(StorePtrI, F | MachineMemOperand::MOStore,
8432                                 sizeof(int32_t), Align(4));
8433 
8434     auto Load = DAG.getMachineNode(Opc, DL, Op->getVTList(), Ops);
8435     DAG.setNodeMemRefs(Load, {LoadMMO, StoreMMO});
8436 
8437     return SDValue(Load, 0);
8438   }
8439   case Intrinsic::amdgcn_end_cf:
8440     return SDValue(DAG.getMachineNode(AMDGPU::SI_END_CF, DL, MVT::Other,
8441                                       Op->getOperand(2), Chain), 0);
8442 
8443   default: {
8444     if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
8445             AMDGPU::getImageDimIntrinsicInfo(IntrinsicID))
8446       return lowerImage(Op, ImageDimIntr, DAG, true);
8447 
8448     return Op;
8449   }
8450   }
8451 }
8452 
8453 SDValue SITargetLowering::makeV_ILLEGAL(SDValue Op, SelectionDAG & DAG) const {
8454   // Create the V_ILLEGAL node.
8455   SDLoc DL(Op);
8456   auto Opcode = Subtarget->getGeneration() < AMDGPUSubtarget::GFX10 ?
8457     AMDGPU::V_ILLEGAL_gfx6_gfx7_gfx8_gfx9 : AMDGPU::V_ILLEGAL;
8458   auto EntryNode = DAG.getEntryNode();
8459   auto IllegalNode = DAG.getMachineNode(Opcode, DL, MVT::Other, EntryNode);
8460   auto IllegalVal = SDValue(IllegalNode, 0u);
8461 
8462   // Add the V_ILLEGAL node to the root chain to prevent its removal.
8463   auto Chains = SmallVector<SDValue, 2u>();
8464   Chains.push_back(IllegalVal);
8465   Chains.push_back(DAG.getRoot());
8466   auto Root = DAG.getTokenFactor(SDLoc(Chains.back()), Chains);
8467   DAG.setRoot(Root);
8468 
8469   // Merge with UNDEF to satisfy return value requirements.
8470   auto UndefVal = DAG.getUNDEF(Op.getValueType());
8471   return DAG.getMergeValues({UndefVal, IllegalVal}, DL);
8472 }
8473 
8474 // The raw.(t)buffer and struct.(t)buffer intrinsics have two offset args:
8475 // offset (the offset that is included in bounds checking and swizzling, to be
8476 // split between the instruction's voffset and immoffset fields) and soffset
8477 // (the offset that is excluded from bounds checking and swizzling, to go in
8478 // the instruction's soffset field).  This function takes the first kind of
8479 // offset and figures out how to split it between voffset and immoffset.
8480 std::pair<SDValue, SDValue> SITargetLowering::splitBufferOffsets(
8481     SDValue Offset, SelectionDAG &DAG) const {
8482   SDLoc DL(Offset);
8483   const unsigned MaxImm = 4095;
8484   SDValue N0 = Offset;
8485   ConstantSDNode *C1 = nullptr;
8486 
8487   if ((C1 = dyn_cast<ConstantSDNode>(N0)))
8488     N0 = SDValue();
8489   else if (DAG.isBaseWithConstantOffset(N0)) {
8490     C1 = cast<ConstantSDNode>(N0.getOperand(1));
8491     N0 = N0.getOperand(0);
8492   }
8493 
8494   if (C1) {
8495     unsigned ImmOffset = C1->getZExtValue();
8496     // If the immediate value is too big for the immoffset field, put the value
8497     // and -4096 into the immoffset field so that the value that is copied/added
8498     // for the voffset field is a multiple of 4096, and it stands more chance
8499     // of being CSEd with the copy/add for another similar load/store.
8500     // However, do not do that rounding down to a multiple of 4096 if that is a
8501     // negative number, as it appears to be illegal to have a negative offset
8502     // in the vgpr, even if adding the immediate offset makes it positive.
8503     unsigned Overflow = ImmOffset & ~MaxImm;
8504     ImmOffset -= Overflow;
8505     if ((int32_t)Overflow < 0) {
8506       Overflow += ImmOffset;
8507       ImmOffset = 0;
8508     }
8509     C1 = cast<ConstantSDNode>(DAG.getTargetConstant(ImmOffset, DL, MVT::i32));
8510     if (Overflow) {
8511       auto OverflowVal = DAG.getConstant(Overflow, DL, MVT::i32);
8512       if (!N0)
8513         N0 = OverflowVal;
8514       else {
8515         SDValue Ops[] = { N0, OverflowVal };
8516         N0 = DAG.getNode(ISD::ADD, DL, MVT::i32, Ops);
8517       }
8518     }
8519   }
8520   if (!N0)
8521     N0 = DAG.getConstant(0, DL, MVT::i32);
8522   if (!C1)
8523     C1 = cast<ConstantSDNode>(DAG.getTargetConstant(0, DL, MVT::i32));
8524   return {N0, SDValue(C1, 0)};
8525 }
8526 
8527 // Analyze a combined offset from an amdgcn_buffer_ intrinsic and store the
8528 // three offsets (voffset, soffset and instoffset) into the SDValue[3] array
8529 // pointed to by Offsets.
8530 void SITargetLowering::setBufferOffsets(SDValue CombinedOffset,
8531                                         SelectionDAG &DAG, SDValue *Offsets,
8532                                         Align Alignment) const {
8533   SDLoc DL(CombinedOffset);
8534   if (auto C = dyn_cast<ConstantSDNode>(CombinedOffset)) {
8535     uint32_t Imm = C->getZExtValue();
8536     uint32_t SOffset, ImmOffset;
8537     if (AMDGPU::splitMUBUFOffset(Imm, SOffset, ImmOffset, Subtarget,
8538                                  Alignment)) {
8539       Offsets[0] = DAG.getConstant(0, DL, MVT::i32);
8540       Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32);
8541       Offsets[2] = DAG.getTargetConstant(ImmOffset, DL, MVT::i32);
8542       return;
8543     }
8544   }
8545   if (DAG.isBaseWithConstantOffset(CombinedOffset)) {
8546     SDValue N0 = CombinedOffset.getOperand(0);
8547     SDValue N1 = CombinedOffset.getOperand(1);
8548     uint32_t SOffset, ImmOffset;
8549     int Offset = cast<ConstantSDNode>(N1)->getSExtValue();
8550     if (Offset >= 0 && AMDGPU::splitMUBUFOffset(Offset, SOffset, ImmOffset,
8551                                                 Subtarget, Alignment)) {
8552       Offsets[0] = N0;
8553       Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32);
8554       Offsets[2] = DAG.getTargetConstant(ImmOffset, DL, MVT::i32);
8555       return;
8556     }
8557   }
8558   Offsets[0] = CombinedOffset;
8559   Offsets[1] = DAG.getConstant(0, DL, MVT::i32);
8560   Offsets[2] = DAG.getTargetConstant(0, DL, MVT::i32);
8561 }
8562 
8563 // Handle 8 bit and 16 bit buffer loads
8564 SDValue SITargetLowering::handleByteShortBufferLoads(SelectionDAG &DAG,
8565                                                      EVT LoadVT, SDLoc DL,
8566                                                      ArrayRef<SDValue> Ops,
8567                                                      MemSDNode *M) const {
8568   EVT IntVT = LoadVT.changeTypeToInteger();
8569   unsigned Opc = (LoadVT.getScalarType() == MVT::i8) ?
8570          AMDGPUISD::BUFFER_LOAD_UBYTE : AMDGPUISD::BUFFER_LOAD_USHORT;
8571 
8572   SDVTList ResList = DAG.getVTList(MVT::i32, MVT::Other);
8573   SDValue BufferLoad = DAG.getMemIntrinsicNode(Opc, DL, ResList,
8574                                                Ops, IntVT,
8575                                                M->getMemOperand());
8576   SDValue LoadVal = DAG.getNode(ISD::TRUNCATE, DL, IntVT, BufferLoad);
8577   LoadVal = DAG.getNode(ISD::BITCAST, DL, LoadVT, LoadVal);
8578 
8579   return DAG.getMergeValues({LoadVal, BufferLoad.getValue(1)}, DL);
8580 }
8581 
8582 // Handle 8 bit and 16 bit buffer stores
8583 SDValue SITargetLowering::handleByteShortBufferStores(SelectionDAG &DAG,
8584                                                       EVT VDataType, SDLoc DL,
8585                                                       SDValue Ops[],
8586                                                       MemSDNode *M) const {
8587   if (VDataType == MVT::f16)
8588     Ops[1] = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Ops[1]);
8589 
8590   SDValue BufferStoreExt = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Ops[1]);
8591   Ops[1] = BufferStoreExt;
8592   unsigned Opc = (VDataType == MVT::i8) ? AMDGPUISD::BUFFER_STORE_BYTE :
8593                                  AMDGPUISD::BUFFER_STORE_SHORT;
8594   ArrayRef<SDValue> OpsRef = ArrayRef(&Ops[0], 9);
8595   return DAG.getMemIntrinsicNode(Opc, DL, M->getVTList(), OpsRef, VDataType,
8596                                      M->getMemOperand());
8597 }
8598 
8599 static SDValue getLoadExtOrTrunc(SelectionDAG &DAG,
8600                                  ISD::LoadExtType ExtType, SDValue Op,
8601                                  const SDLoc &SL, EVT VT) {
8602   if (VT.bitsLT(Op.getValueType()))
8603     return DAG.getNode(ISD::TRUNCATE, SL, VT, Op);
8604 
8605   switch (ExtType) {
8606   case ISD::SEXTLOAD:
8607     return DAG.getNode(ISD::SIGN_EXTEND, SL, VT, Op);
8608   case ISD::ZEXTLOAD:
8609     return DAG.getNode(ISD::ZERO_EXTEND, SL, VT, Op);
8610   case ISD::EXTLOAD:
8611     return DAG.getNode(ISD::ANY_EXTEND, SL, VT, Op);
8612   case ISD::NON_EXTLOAD:
8613     return Op;
8614   }
8615 
8616   llvm_unreachable("invalid ext type");
8617 }
8618 
8619 SDValue SITargetLowering::widenLoad(LoadSDNode *Ld, DAGCombinerInfo &DCI) const {
8620   SelectionDAG &DAG = DCI.DAG;
8621   if (Ld->getAlign() < Align(4) || Ld->isDivergent())
8622     return SDValue();
8623 
8624   // FIXME: Constant loads should all be marked invariant.
8625   unsigned AS = Ld->getAddressSpace();
8626   if (AS != AMDGPUAS::CONSTANT_ADDRESS &&
8627       AS != AMDGPUAS::CONSTANT_ADDRESS_32BIT &&
8628       (AS != AMDGPUAS::GLOBAL_ADDRESS || !Ld->isInvariant()))
8629     return SDValue();
8630 
8631   // Don't do this early, since it may interfere with adjacent load merging for
8632   // illegal types. We can avoid losing alignment information for exotic types
8633   // pre-legalize.
8634   EVT MemVT = Ld->getMemoryVT();
8635   if ((MemVT.isSimple() && !DCI.isAfterLegalizeDAG()) ||
8636       MemVT.getSizeInBits() >= 32)
8637     return SDValue();
8638 
8639   SDLoc SL(Ld);
8640 
8641   assert((!MemVT.isVector() || Ld->getExtensionType() == ISD::NON_EXTLOAD) &&
8642          "unexpected vector extload");
8643 
8644   // TODO: Drop only high part of range.
8645   SDValue Ptr = Ld->getBasePtr();
8646   SDValue NewLoad = DAG.getLoad(
8647       ISD::UNINDEXED, ISD::NON_EXTLOAD, MVT::i32, SL, Ld->getChain(), Ptr,
8648       Ld->getOffset(), Ld->getPointerInfo(), MVT::i32, Ld->getAlign(),
8649       Ld->getMemOperand()->getFlags(), Ld->getAAInfo(),
8650       nullptr); // Drop ranges
8651 
8652   EVT TruncVT = EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits());
8653   if (MemVT.isFloatingPoint()) {
8654     assert(Ld->getExtensionType() == ISD::NON_EXTLOAD &&
8655            "unexpected fp extload");
8656     TruncVT = MemVT.changeTypeToInteger();
8657   }
8658 
8659   SDValue Cvt = NewLoad;
8660   if (Ld->getExtensionType() == ISD::SEXTLOAD) {
8661     Cvt = DAG.getNode(ISD::SIGN_EXTEND_INREG, SL, MVT::i32, NewLoad,
8662                       DAG.getValueType(TruncVT));
8663   } else if (Ld->getExtensionType() == ISD::ZEXTLOAD ||
8664              Ld->getExtensionType() == ISD::NON_EXTLOAD) {
8665     Cvt = DAG.getZeroExtendInReg(NewLoad, SL, TruncVT);
8666   } else {
8667     assert(Ld->getExtensionType() == ISD::EXTLOAD);
8668   }
8669 
8670   EVT VT = Ld->getValueType(0);
8671   EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
8672 
8673   DCI.AddToWorklist(Cvt.getNode());
8674 
8675   // We may need to handle exotic cases, such as i16->i64 extloads, so insert
8676   // the appropriate extension from the 32-bit load.
8677   Cvt = getLoadExtOrTrunc(DAG, Ld->getExtensionType(), Cvt, SL, IntVT);
8678   DCI.AddToWorklist(Cvt.getNode());
8679 
8680   // Handle conversion back to floating point if necessary.
8681   Cvt = DAG.getNode(ISD::BITCAST, SL, VT, Cvt);
8682 
8683   return DAG.getMergeValues({ Cvt, NewLoad.getValue(1) }, SL);
8684 }
8685 
8686 SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
8687   SDLoc DL(Op);
8688   LoadSDNode *Load = cast<LoadSDNode>(Op);
8689   ISD::LoadExtType ExtType = Load->getExtensionType();
8690   EVT MemVT = Load->getMemoryVT();
8691 
8692   if (ExtType == ISD::NON_EXTLOAD && MemVT.getSizeInBits() < 32) {
8693     if (MemVT == MVT::i16 && isTypeLegal(MVT::i16))
8694       return SDValue();
8695 
8696     // FIXME: Copied from PPC
8697     // First, load into 32 bits, then truncate to 1 bit.
8698 
8699     SDValue Chain = Load->getChain();
8700     SDValue BasePtr = Load->getBasePtr();
8701     MachineMemOperand *MMO = Load->getMemOperand();
8702 
8703     EVT RealMemVT = (MemVT == MVT::i1) ? MVT::i8 : MVT::i16;
8704 
8705     SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain,
8706                                    BasePtr, RealMemVT, MMO);
8707 
8708     if (!MemVT.isVector()) {
8709       SDValue Ops[] = {
8710         DAG.getNode(ISD::TRUNCATE, DL, MemVT, NewLD),
8711         NewLD.getValue(1)
8712       };
8713 
8714       return DAG.getMergeValues(Ops, DL);
8715     }
8716 
8717     SmallVector<SDValue, 3> Elts;
8718     for (unsigned I = 0, N = MemVT.getVectorNumElements(); I != N; ++I) {
8719       SDValue Elt = DAG.getNode(ISD::SRL, DL, MVT::i32, NewLD,
8720                                 DAG.getConstant(I, DL, MVT::i32));
8721 
8722       Elts.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Elt));
8723     }
8724 
8725     SDValue Ops[] = {
8726       DAG.getBuildVector(MemVT, DL, Elts),
8727       NewLD.getValue(1)
8728     };
8729 
8730     return DAG.getMergeValues(Ops, DL);
8731   }
8732 
8733   if (!MemVT.isVector())
8734     return SDValue();
8735 
8736   assert(Op.getValueType().getVectorElementType() == MVT::i32 &&
8737          "Custom lowering for non-i32 vectors hasn't been implemented.");
8738 
8739   Align Alignment = Load->getAlign();
8740   unsigned AS = Load->getAddressSpace();
8741   if (Subtarget->hasLDSMisalignedBug() && AS == AMDGPUAS::FLAT_ADDRESS &&
8742       Alignment.value() < MemVT.getStoreSize() && MemVT.getSizeInBits() > 32) {
8743     return SplitVectorLoad(Op, DAG);
8744   }
8745 
8746   MachineFunction &MF = DAG.getMachineFunction();
8747   SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
8748   // If there is a possibility that flat instruction access scratch memory
8749   // then we need to use the same legalization rules we use for private.
8750   if (AS == AMDGPUAS::FLAT_ADDRESS &&
8751       !Subtarget->hasMultiDwordFlatScratchAddressing())
8752     AS = MFI->hasFlatScratchInit() ?
8753          AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS;
8754 
8755   unsigned NumElements = MemVT.getVectorNumElements();
8756 
8757   if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
8758       AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT) {
8759     if (!Op->isDivergent() && Alignment >= Align(4) && NumElements < 32) {
8760       if (MemVT.isPow2VectorType())
8761         return SDValue();
8762       return WidenOrSplitVectorLoad(Op, DAG);
8763     }
8764     // Non-uniform loads will be selected to MUBUF instructions, so they
8765     // have the same legalization requirements as global and private
8766     // loads.
8767     //
8768   }
8769 
8770   if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
8771       AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
8772       AS == AMDGPUAS::GLOBAL_ADDRESS) {
8773     if (Subtarget->getScalarizeGlobalBehavior() && !Op->isDivergent() &&
8774         Load->isSimple() && isMemOpHasNoClobberedMemOperand(Load) &&
8775         Alignment >= Align(4) && NumElements < 32) {
8776       if (MemVT.isPow2VectorType())
8777         return SDValue();
8778       return WidenOrSplitVectorLoad(Op, DAG);
8779     }
8780     // Non-uniform loads will be selected to MUBUF instructions, so they
8781     // have the same legalization requirements as global and private
8782     // loads.
8783     //
8784   }
8785   if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
8786       AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
8787       AS == AMDGPUAS::GLOBAL_ADDRESS ||
8788       AS == AMDGPUAS::FLAT_ADDRESS) {
8789     if (NumElements > 4)
8790       return SplitVectorLoad(Op, DAG);
8791     // v3 loads not supported on SI.
8792     if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
8793       return WidenOrSplitVectorLoad(Op, DAG);
8794 
8795     // v3 and v4 loads are supported for private and global memory.
8796     return SDValue();
8797   }
8798   if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
8799     // Depending on the setting of the private_element_size field in the
8800     // resource descriptor, we can only make private accesses up to a certain
8801     // size.
8802     switch (Subtarget->getMaxPrivateElementSize()) {
8803     case 4: {
8804       SDValue Ops[2];
8805       std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(Load, DAG);
8806       return DAG.getMergeValues(Ops, DL);
8807     }
8808     case 8:
8809       if (NumElements > 2)
8810         return SplitVectorLoad(Op, DAG);
8811       return SDValue();
8812     case 16:
8813       // Same as global/flat
8814       if (NumElements > 4)
8815         return SplitVectorLoad(Op, DAG);
8816       // v3 loads not supported on SI.
8817       if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
8818         return WidenOrSplitVectorLoad(Op, DAG);
8819 
8820       return SDValue();
8821     default:
8822       llvm_unreachable("unsupported private_element_size");
8823     }
8824   } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
8825     unsigned Fast = 0;
8826     auto Flags = Load->getMemOperand()->getFlags();
8827     if (allowsMisalignedMemoryAccessesImpl(MemVT.getSizeInBits(), AS,
8828                                            Load->getAlign(), Flags, &Fast) &&
8829         Fast > 1)
8830       return SDValue();
8831 
8832     if (MemVT.isVector())
8833       return SplitVectorLoad(Op, DAG);
8834   }
8835 
8836   if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
8837                                       MemVT, *Load->getMemOperand())) {
8838     SDValue Ops[2];
8839     std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(Load, DAG);
8840     return DAG.getMergeValues(Ops, DL);
8841   }
8842 
8843   return SDValue();
8844 }
8845 
8846 SDValue SITargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
8847   EVT VT = Op.getValueType();
8848   if (VT.getSizeInBits() == 128 || VT.getSizeInBits() == 256)
8849     return splitTernaryVectorOp(Op, DAG);
8850 
8851   assert(VT.getSizeInBits() == 64);
8852 
8853   SDLoc DL(Op);
8854   SDValue Cond = Op.getOperand(0);
8855 
8856   SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
8857   SDValue One = DAG.getConstant(1, DL, MVT::i32);
8858 
8859   SDValue LHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1));
8860   SDValue RHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(2));
8861 
8862   SDValue Lo0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, Zero);
8863   SDValue Lo1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, Zero);
8864 
8865   SDValue Lo = DAG.getSelect(DL, MVT::i32, Cond, Lo0, Lo1);
8866 
8867   SDValue Hi0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, One);
8868   SDValue Hi1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, One);
8869 
8870   SDValue Hi = DAG.getSelect(DL, MVT::i32, Cond, Hi0, Hi1);
8871 
8872   SDValue Res = DAG.getBuildVector(MVT::v2i32, DL, {Lo, Hi});
8873   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
8874 }
8875 
8876 // Catch division cases where we can use shortcuts with rcp and rsq
8877 // instructions.
8878 SDValue SITargetLowering::lowerFastUnsafeFDIV(SDValue Op,
8879                                               SelectionDAG &DAG) const {
8880   SDLoc SL(Op);
8881   SDValue LHS = Op.getOperand(0);
8882   SDValue RHS = Op.getOperand(1);
8883   EVT VT = Op.getValueType();
8884   const SDNodeFlags Flags = Op->getFlags();
8885 
8886   bool AllowInaccurateRcp = Flags.hasApproximateFuncs();
8887 
8888   // Without !fpmath accuracy information, we can't do more because we don't
8889   // know exactly whether rcp is accurate enough to meet !fpmath requirement.
8890   if (!AllowInaccurateRcp)
8891     return SDValue();
8892 
8893   if (const ConstantFPSDNode *CLHS = dyn_cast<ConstantFPSDNode>(LHS)) {
8894     if (CLHS->isExactlyValue(1.0)) {
8895       // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to
8896       // the CI documentation has a worst case error of 1 ulp.
8897       // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to
8898       // use it as long as we aren't trying to use denormals.
8899       //
8900       // v_rcp_f16 and v_rsq_f16 DO support denormals.
8901 
8902       // 1.0 / sqrt(x) -> rsq(x)
8903 
8904       // XXX - Is UnsafeFPMath sufficient to do this for f64? The maximum ULP
8905       // error seems really high at 2^29 ULP.
8906       if (RHS.getOpcode() == ISD::FSQRT)
8907         return DAG.getNode(AMDGPUISD::RSQ, SL, VT, RHS.getOperand(0));
8908 
8909       // 1.0 / x -> rcp(x)
8910       return DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
8911     }
8912 
8913     // Same as for 1.0, but expand the sign out of the constant.
8914     if (CLHS->isExactlyValue(-1.0)) {
8915       // -1.0 / x -> rcp (fneg x)
8916       SDValue FNegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
8917       return DAG.getNode(AMDGPUISD::RCP, SL, VT, FNegRHS);
8918     }
8919   }
8920 
8921   // Turn into multiply by the reciprocal.
8922   // x / y -> x * (1.0 / y)
8923   SDValue Recip = DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
8924   return DAG.getNode(ISD::FMUL, SL, VT, LHS, Recip, Flags);
8925 }
8926 
8927 SDValue SITargetLowering::lowerFastUnsafeFDIV64(SDValue Op,
8928                                                 SelectionDAG &DAG) const {
8929   SDLoc SL(Op);
8930   SDValue X = Op.getOperand(0);
8931   SDValue Y = Op.getOperand(1);
8932   EVT VT = Op.getValueType();
8933   const SDNodeFlags Flags = Op->getFlags();
8934 
8935   bool AllowInaccurateDiv = Flags.hasApproximateFuncs() ||
8936                             DAG.getTarget().Options.UnsafeFPMath;
8937   if (!AllowInaccurateDiv)
8938     return SDValue();
8939 
8940   SDValue NegY = DAG.getNode(ISD::FNEG, SL, VT, Y);
8941   SDValue One = DAG.getConstantFP(1.0, SL, VT);
8942 
8943   SDValue R = DAG.getNode(AMDGPUISD::RCP, SL, VT, Y);
8944   SDValue Tmp0 = DAG.getNode(ISD::FMA, SL, VT, NegY, R, One);
8945 
8946   R = DAG.getNode(ISD::FMA, SL, VT, Tmp0, R, R);
8947   SDValue Tmp1 = DAG.getNode(ISD::FMA, SL, VT, NegY, R, One);
8948   R = DAG.getNode(ISD::FMA, SL, VT, Tmp1, R, R);
8949   SDValue Ret = DAG.getNode(ISD::FMUL, SL, VT, X, R);
8950   SDValue Tmp2 = DAG.getNode(ISD::FMA, SL, VT, NegY, Ret, X);
8951   return DAG.getNode(ISD::FMA, SL, VT, Tmp2, R, Ret);
8952 }
8953 
8954 static SDValue getFPBinOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL,
8955                           EVT VT, SDValue A, SDValue B, SDValue GlueChain,
8956                           SDNodeFlags Flags) {
8957   if (GlueChain->getNumValues() <= 1) {
8958     return DAG.getNode(Opcode, SL, VT, A, B, Flags);
8959   }
8960 
8961   assert(GlueChain->getNumValues() == 3);
8962 
8963   SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue);
8964   switch (Opcode) {
8965   default: llvm_unreachable("no chain equivalent for opcode");
8966   case ISD::FMUL:
8967     Opcode = AMDGPUISD::FMUL_W_CHAIN;
8968     break;
8969   }
8970 
8971   return DAG.getNode(Opcode, SL, VTList,
8972                      {GlueChain.getValue(1), A, B, GlueChain.getValue(2)},
8973                      Flags);
8974 }
8975 
8976 static SDValue getFPTernOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL,
8977                            EVT VT, SDValue A, SDValue B, SDValue C,
8978                            SDValue GlueChain, SDNodeFlags Flags) {
8979   if (GlueChain->getNumValues() <= 1) {
8980     return DAG.getNode(Opcode, SL, VT, {A, B, C}, Flags);
8981   }
8982 
8983   assert(GlueChain->getNumValues() == 3);
8984 
8985   SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue);
8986   switch (Opcode) {
8987   default: llvm_unreachable("no chain equivalent for opcode");
8988   case ISD::FMA:
8989     Opcode = AMDGPUISD::FMA_W_CHAIN;
8990     break;
8991   }
8992 
8993   return DAG.getNode(Opcode, SL, VTList,
8994                      {GlueChain.getValue(1), A, B, C, GlueChain.getValue(2)},
8995                      Flags);
8996 }
8997 
8998 SDValue SITargetLowering::LowerFDIV16(SDValue Op, SelectionDAG &DAG) const {
8999   if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG))
9000     return FastLowered;
9001 
9002   SDLoc SL(Op);
9003   SDValue Src0 = Op.getOperand(0);
9004   SDValue Src1 = Op.getOperand(1);
9005 
9006   SDValue CvtSrc0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0);
9007   SDValue CvtSrc1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1);
9008 
9009   SDValue RcpSrc1 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, CvtSrc1);
9010   SDValue Quot = DAG.getNode(ISD::FMUL, SL, MVT::f32, CvtSrc0, RcpSrc1);
9011 
9012   SDValue FPRoundFlag = DAG.getTargetConstant(0, SL, MVT::i32);
9013   SDValue BestQuot = DAG.getNode(ISD::FP_ROUND, SL, MVT::f16, Quot, FPRoundFlag);
9014 
9015   return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f16, BestQuot, Src1, Src0);
9016 }
9017 
9018 // Faster 2.5 ULP division that does not support denormals.
9019 SDValue SITargetLowering::lowerFDIV_FAST(SDValue Op, SelectionDAG &DAG) const {
9020   SDLoc SL(Op);
9021   SDValue LHS = Op.getOperand(1);
9022   SDValue RHS = Op.getOperand(2);
9023 
9024   SDValue r1 = DAG.getNode(ISD::FABS, SL, MVT::f32, RHS);
9025 
9026   const APFloat K0Val(BitsToFloat(0x6f800000));
9027   const SDValue K0 = DAG.getConstantFP(K0Val, SL, MVT::f32);
9028 
9029   const APFloat K1Val(BitsToFloat(0x2f800000));
9030   const SDValue K1 = DAG.getConstantFP(K1Val, SL, MVT::f32);
9031 
9032   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
9033 
9034   EVT SetCCVT =
9035     getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32);
9036 
9037   SDValue r2 = DAG.getSetCC(SL, SetCCVT, r1, K0, ISD::SETOGT);
9038 
9039   SDValue r3 = DAG.getNode(ISD::SELECT, SL, MVT::f32, r2, K1, One);
9040 
9041   // TODO: Should this propagate fast-math-flags?
9042   r1 = DAG.getNode(ISD::FMUL, SL, MVT::f32, RHS, r3);
9043 
9044   // rcp does not support denormals.
9045   SDValue r0 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, r1);
9046 
9047   SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f32, LHS, r0);
9048 
9049   return DAG.getNode(ISD::FMUL, SL, MVT::f32, r3, Mul);
9050 }
9051 
9052 // Returns immediate value for setting the F32 denorm mode when using the
9053 // S_DENORM_MODE instruction.
9054 static SDValue getSPDenormModeValue(int SPDenormMode, SelectionDAG &DAG,
9055                                     const SDLoc &SL, const GCNSubtarget *ST) {
9056   assert(ST->hasDenormModeInst() && "Requires S_DENORM_MODE");
9057   int DPDenormModeDefault = hasFP64FP16Denormals(DAG.getMachineFunction())
9058                                 ? FP_DENORM_FLUSH_NONE
9059                                 : FP_DENORM_FLUSH_IN_FLUSH_OUT;
9060 
9061   int Mode = SPDenormMode | (DPDenormModeDefault << 2);
9062   return DAG.getTargetConstant(Mode, SL, MVT::i32);
9063 }
9064 
9065 SDValue SITargetLowering::LowerFDIV32(SDValue Op, SelectionDAG &DAG) const {
9066   if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG))
9067     return FastLowered;
9068 
9069   // The selection matcher assumes anything with a chain selecting to a
9070   // mayRaiseFPException machine instruction. Since we're introducing a chain
9071   // here, we need to explicitly report nofpexcept for the regular fdiv
9072   // lowering.
9073   SDNodeFlags Flags = Op->getFlags();
9074   Flags.setNoFPExcept(true);
9075 
9076   SDLoc SL(Op);
9077   SDValue LHS = Op.getOperand(0);
9078   SDValue RHS = Op.getOperand(1);
9079 
9080   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
9081 
9082   SDVTList ScaleVT = DAG.getVTList(MVT::f32, MVT::i1);
9083 
9084   SDValue DenominatorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT,
9085                                           {RHS, RHS, LHS}, Flags);
9086   SDValue NumeratorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT,
9087                                         {LHS, RHS, LHS}, Flags);
9088 
9089   // Denominator is scaled to not be denormal, so using rcp is ok.
9090   SDValue ApproxRcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32,
9091                                   DenominatorScaled, Flags);
9092   SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f32,
9093                                      DenominatorScaled, Flags);
9094 
9095   const unsigned Denorm32Reg = AMDGPU::Hwreg::ID_MODE |
9096                                (4 << AMDGPU::Hwreg::OFFSET_SHIFT_) |
9097                                (1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_);
9098   const SDValue BitField = DAG.getTargetConstant(Denorm32Reg, SL, MVT::i32);
9099 
9100   const bool HasFP32Denormals = hasFP32Denormals(DAG.getMachineFunction());
9101 
9102   if (!HasFP32Denormals) {
9103     // Note we can't use the STRICT_FMA/STRICT_FMUL for the non-strict FDIV
9104     // lowering. The chain dependence is insufficient, and we need glue. We do
9105     // not need the glue variants in a strictfp function.
9106 
9107     SDVTList BindParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
9108 
9109     SDNode *EnableDenorm;
9110     if (Subtarget->hasDenormModeInst()) {
9111       const SDValue EnableDenormValue =
9112           getSPDenormModeValue(FP_DENORM_FLUSH_NONE, DAG, SL, Subtarget);
9113 
9114       EnableDenorm = DAG.getNode(AMDGPUISD::DENORM_MODE, SL, BindParamVTs,
9115                                  DAG.getEntryNode(), EnableDenormValue).getNode();
9116     } else {
9117       const SDValue EnableDenormValue = DAG.getConstant(FP_DENORM_FLUSH_NONE,
9118                                                         SL, MVT::i32);
9119       EnableDenorm =
9120           DAG.getMachineNode(AMDGPU::S_SETREG_B32, SL, BindParamVTs,
9121                              {EnableDenormValue, BitField, DAG.getEntryNode()});
9122     }
9123 
9124     SDValue Ops[3] = {
9125       NegDivScale0,
9126       SDValue(EnableDenorm, 0),
9127       SDValue(EnableDenorm, 1)
9128     };
9129 
9130     NegDivScale0 = DAG.getMergeValues(Ops, SL);
9131   }
9132 
9133   SDValue Fma0 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0,
9134                              ApproxRcp, One, NegDivScale0, Flags);
9135 
9136   SDValue Fma1 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, Fma0, ApproxRcp,
9137                              ApproxRcp, Fma0, Flags);
9138 
9139   SDValue Mul = getFPBinOp(DAG, ISD::FMUL, SL, MVT::f32, NumeratorScaled,
9140                            Fma1, Fma1, Flags);
9141 
9142   SDValue Fma2 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Mul,
9143                              NumeratorScaled, Mul, Flags);
9144 
9145   SDValue Fma3 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32,
9146                              Fma2, Fma1, Mul, Fma2, Flags);
9147 
9148   SDValue Fma4 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Fma3,
9149                              NumeratorScaled, Fma3, Flags);
9150 
9151   if (!HasFP32Denormals) {
9152     SDNode *DisableDenorm;
9153     if (Subtarget->hasDenormModeInst()) {
9154       const SDValue DisableDenormValue =
9155           getSPDenormModeValue(FP_DENORM_FLUSH_IN_FLUSH_OUT, DAG, SL, Subtarget);
9156 
9157       DisableDenorm = DAG.getNode(AMDGPUISD::DENORM_MODE, SL, MVT::Other,
9158                                   Fma4.getValue(1), DisableDenormValue,
9159                                   Fma4.getValue(2)).getNode();
9160     } else {
9161       const SDValue DisableDenormValue =
9162           DAG.getConstant(FP_DENORM_FLUSH_IN_FLUSH_OUT, SL, MVT::i32);
9163 
9164       DisableDenorm = DAG.getMachineNode(
9165           AMDGPU::S_SETREG_B32, SL, MVT::Other,
9166           {DisableDenormValue, BitField, Fma4.getValue(1), Fma4.getValue(2)});
9167     }
9168 
9169     SDValue OutputChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other,
9170                                       SDValue(DisableDenorm, 0), DAG.getRoot());
9171     DAG.setRoot(OutputChain);
9172   }
9173 
9174   SDValue Scale = NumeratorScaled.getValue(1);
9175   SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f32,
9176                              {Fma4, Fma1, Fma3, Scale}, Flags);
9177 
9178   return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f32, Fmas, RHS, LHS, Flags);
9179 }
9180 
9181 SDValue SITargetLowering::LowerFDIV64(SDValue Op, SelectionDAG &DAG) const {
9182   if (SDValue FastLowered = lowerFastUnsafeFDIV64(Op, DAG))
9183     return FastLowered;
9184 
9185   SDLoc SL(Op);
9186   SDValue X = Op.getOperand(0);
9187   SDValue Y = Op.getOperand(1);
9188 
9189   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
9190 
9191   SDVTList ScaleVT = DAG.getVTList(MVT::f64, MVT::i1);
9192 
9193   SDValue DivScale0 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, Y, Y, X);
9194 
9195   SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f64, DivScale0);
9196 
9197   SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f64, DivScale0);
9198 
9199   SDValue Fma0 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Rcp, One);
9200 
9201   SDValue Fma1 = DAG.getNode(ISD::FMA, SL, MVT::f64, Rcp, Fma0, Rcp);
9202 
9203   SDValue Fma2 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Fma1, One);
9204 
9205   SDValue DivScale1 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, X, Y, X);
9206 
9207   SDValue Fma3 = DAG.getNode(ISD::FMA, SL, MVT::f64, Fma1, Fma2, Fma1);
9208   SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, DivScale1, Fma3);
9209 
9210   SDValue Fma4 = DAG.getNode(ISD::FMA, SL, MVT::f64,
9211                              NegDivScale0, Mul, DivScale1);
9212 
9213   SDValue Scale;
9214 
9215   if (!Subtarget->hasUsableDivScaleConditionOutput()) {
9216     // Workaround a hardware bug on SI where the condition output from div_scale
9217     // is not usable.
9218 
9219     const SDValue Hi = DAG.getConstant(1, SL, MVT::i32);
9220 
9221     // Figure out if the scale to use for div_fmas.
9222     SDValue NumBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X);
9223     SDValue DenBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Y);
9224     SDValue Scale0BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale0);
9225     SDValue Scale1BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale1);
9226 
9227     SDValue NumHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, NumBC, Hi);
9228     SDValue DenHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, DenBC, Hi);
9229 
9230     SDValue Scale0Hi
9231       = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale0BC, Hi);
9232     SDValue Scale1Hi
9233       = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale1BC, Hi);
9234 
9235     SDValue CmpDen = DAG.getSetCC(SL, MVT::i1, DenHi, Scale0Hi, ISD::SETEQ);
9236     SDValue CmpNum = DAG.getSetCC(SL, MVT::i1, NumHi, Scale1Hi, ISD::SETEQ);
9237     Scale = DAG.getNode(ISD::XOR, SL, MVT::i1, CmpNum, CmpDen);
9238   } else {
9239     Scale = DivScale1.getValue(1);
9240   }
9241 
9242   SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f64,
9243                              Fma4, Fma3, Mul, Scale);
9244 
9245   return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f64, Fmas, Y, X);
9246 }
9247 
9248 SDValue SITargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const {
9249   EVT VT = Op.getValueType();
9250 
9251   if (VT == MVT::f32)
9252     return LowerFDIV32(Op, DAG);
9253 
9254   if (VT == MVT::f64)
9255     return LowerFDIV64(Op, DAG);
9256 
9257   if (VT == MVT::f16)
9258     return LowerFDIV16(Op, DAG);
9259 
9260   llvm_unreachable("Unexpected type for fdiv");
9261 }
9262 
9263 SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
9264   SDLoc DL(Op);
9265   StoreSDNode *Store = cast<StoreSDNode>(Op);
9266   EVT VT = Store->getMemoryVT();
9267 
9268   if (VT == MVT::i1) {
9269     return DAG.getTruncStore(Store->getChain(), DL,
9270        DAG.getSExtOrTrunc(Store->getValue(), DL, MVT::i32),
9271        Store->getBasePtr(), MVT::i1, Store->getMemOperand());
9272   }
9273 
9274   assert(VT.isVector() &&
9275          Store->getValue().getValueType().getScalarType() == MVT::i32);
9276 
9277   unsigned AS = Store->getAddressSpace();
9278   if (Subtarget->hasLDSMisalignedBug() &&
9279       AS == AMDGPUAS::FLAT_ADDRESS &&
9280       Store->getAlign().value() < VT.getStoreSize() && VT.getSizeInBits() > 32) {
9281     return SplitVectorStore(Op, DAG);
9282   }
9283 
9284   MachineFunction &MF = DAG.getMachineFunction();
9285   SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
9286   // If there is a possibility that flat instruction access scratch memory
9287   // then we need to use the same legalization rules we use for private.
9288   if (AS == AMDGPUAS::FLAT_ADDRESS &&
9289       !Subtarget->hasMultiDwordFlatScratchAddressing())
9290     AS = MFI->hasFlatScratchInit() ?
9291          AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS;
9292 
9293   unsigned NumElements = VT.getVectorNumElements();
9294   if (AS == AMDGPUAS::GLOBAL_ADDRESS ||
9295       AS == AMDGPUAS::FLAT_ADDRESS) {
9296     if (NumElements > 4)
9297       return SplitVectorStore(Op, DAG);
9298     // v3 stores not supported on SI.
9299     if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
9300       return SplitVectorStore(Op, DAG);
9301 
9302     if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
9303                                         VT, *Store->getMemOperand()))
9304       return expandUnalignedStore(Store, DAG);
9305 
9306     return SDValue();
9307   } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
9308     switch (Subtarget->getMaxPrivateElementSize()) {
9309     case 4:
9310       return scalarizeVectorStore(Store, DAG);
9311     case 8:
9312       if (NumElements > 2)
9313         return SplitVectorStore(Op, DAG);
9314       return SDValue();
9315     case 16:
9316       if (NumElements > 4 ||
9317           (NumElements == 3 && !Subtarget->enableFlatScratch()))
9318         return SplitVectorStore(Op, DAG);
9319       return SDValue();
9320     default:
9321       llvm_unreachable("unsupported private_element_size");
9322     }
9323   } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
9324     unsigned Fast = 0;
9325     auto Flags = Store->getMemOperand()->getFlags();
9326     if (allowsMisalignedMemoryAccessesImpl(VT.getSizeInBits(), AS,
9327                                            Store->getAlign(), Flags, &Fast) &&
9328         Fast > 1)
9329       return SDValue();
9330 
9331     if (VT.isVector())
9332       return SplitVectorStore(Op, DAG);
9333 
9334     return expandUnalignedStore(Store, DAG);
9335   }
9336 
9337   // Probably an invalid store. If so we'll end up emitting a selection error.
9338   return SDValue();
9339 }
9340 
9341 SDValue SITargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const {
9342   SDLoc DL(Op);
9343   EVT VT = Op.getValueType();
9344   SDValue Arg = Op.getOperand(0);
9345   SDValue TrigVal;
9346 
9347   // Propagate fast-math flags so that the multiply we introduce can be folded
9348   // if Arg is already the result of a multiply by constant.
9349   auto Flags = Op->getFlags();
9350 
9351   SDValue OneOver2Pi = DAG.getConstantFP(0.5 * numbers::inv_pi, DL, VT);
9352 
9353   if (Subtarget->hasTrigReducedRange()) {
9354     SDValue MulVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi, Flags);
9355     TrigVal = DAG.getNode(AMDGPUISD::FRACT, DL, VT, MulVal, Flags);
9356   } else {
9357     TrigVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi, Flags);
9358   }
9359 
9360   switch (Op.getOpcode()) {
9361   case ISD::FCOS:
9362     return DAG.getNode(AMDGPUISD::COS_HW, SDLoc(Op), VT, TrigVal, Flags);
9363   case ISD::FSIN:
9364     return DAG.getNode(AMDGPUISD::SIN_HW, SDLoc(Op), VT, TrigVal, Flags);
9365   default:
9366     llvm_unreachable("Wrong trig opcode");
9367   }
9368 }
9369 
9370 SDValue SITargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
9371   AtomicSDNode *AtomicNode = cast<AtomicSDNode>(Op);
9372   assert(AtomicNode->isCompareAndSwap());
9373   unsigned AS = AtomicNode->getAddressSpace();
9374 
9375   // No custom lowering required for local address space
9376   if (!AMDGPU::isFlatGlobalAddrSpace(AS))
9377     return Op;
9378 
9379   // Non-local address space requires custom lowering for atomic compare
9380   // and swap; cmp and swap should be in a v2i32 or v2i64 in case of _X2
9381   SDLoc DL(Op);
9382   SDValue ChainIn = Op.getOperand(0);
9383   SDValue Addr = Op.getOperand(1);
9384   SDValue Old = Op.getOperand(2);
9385   SDValue New = Op.getOperand(3);
9386   EVT VT = Op.getValueType();
9387   MVT SimpleVT = VT.getSimpleVT();
9388   MVT VecType = MVT::getVectorVT(SimpleVT, 2);
9389 
9390   SDValue NewOld = DAG.getBuildVector(VecType, DL, {New, Old});
9391   SDValue Ops[] = { ChainIn, Addr, NewOld };
9392 
9393   return DAG.getMemIntrinsicNode(AMDGPUISD::ATOMIC_CMP_SWAP, DL, Op->getVTList(),
9394                                  Ops, VT, AtomicNode->getMemOperand());
9395 }
9396 
9397 //===----------------------------------------------------------------------===//
9398 // Custom DAG optimizations
9399 //===----------------------------------------------------------------------===//
9400 
9401 SDValue SITargetLowering::performUCharToFloatCombine(SDNode *N,
9402                                                      DAGCombinerInfo &DCI) const {
9403   EVT VT = N->getValueType(0);
9404   EVT ScalarVT = VT.getScalarType();
9405   if (ScalarVT != MVT::f32 && ScalarVT != MVT::f16)
9406     return SDValue();
9407 
9408   SelectionDAG &DAG = DCI.DAG;
9409   SDLoc DL(N);
9410 
9411   SDValue Src = N->getOperand(0);
9412   EVT SrcVT = Src.getValueType();
9413 
9414   // TODO: We could try to match extracting the higher bytes, which would be
9415   // easier if i8 vectors weren't promoted to i32 vectors, particularly after
9416   // types are legalized. v4i8 -> v4f32 is probably the only case to worry
9417   // about in practice.
9418   if (DCI.isAfterLegalizeDAG() && SrcVT == MVT::i32) {
9419     if (DAG.MaskedValueIsZero(Src, APInt::getHighBitsSet(32, 24))) {
9420       SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, MVT::f32, Src);
9421       DCI.AddToWorklist(Cvt.getNode());
9422 
9423       // For the f16 case, fold to a cast to f32 and then cast back to f16.
9424       if (ScalarVT != MVT::f32) {
9425         Cvt = DAG.getNode(ISD::FP_ROUND, DL, VT, Cvt,
9426                           DAG.getTargetConstant(0, DL, MVT::i32));
9427       }
9428       return Cvt;
9429     }
9430   }
9431 
9432   return SDValue();
9433 }
9434 
9435 // (shl (add x, c1), c2) -> add (shl x, c2), (shl c1, c2)
9436 
9437 // This is a variant of
9438 // (mul (add x, c1), c2) -> add (mul x, c2), (mul c1, c2),
9439 //
9440 // The normal DAG combiner will do this, but only if the add has one use since
9441 // that would increase the number of instructions.
9442 //
9443 // This prevents us from seeing a constant offset that can be folded into a
9444 // memory instruction's addressing mode. If we know the resulting add offset of
9445 // a pointer can be folded into an addressing offset, we can replace the pointer
9446 // operand with the add of new constant offset. This eliminates one of the uses,
9447 // and may allow the remaining use to also be simplified.
9448 //
9449 SDValue SITargetLowering::performSHLPtrCombine(SDNode *N,
9450                                                unsigned AddrSpace,
9451                                                EVT MemVT,
9452                                                DAGCombinerInfo &DCI) const {
9453   SDValue N0 = N->getOperand(0);
9454   SDValue N1 = N->getOperand(1);
9455 
9456   // We only do this to handle cases where it's profitable when there are
9457   // multiple uses of the add, so defer to the standard combine.
9458   if ((N0.getOpcode() != ISD::ADD && N0.getOpcode() != ISD::OR) ||
9459       N0->hasOneUse())
9460     return SDValue();
9461 
9462   const ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N1);
9463   if (!CN1)
9464     return SDValue();
9465 
9466   const ConstantSDNode *CAdd = dyn_cast<ConstantSDNode>(N0.getOperand(1));
9467   if (!CAdd)
9468     return SDValue();
9469 
9470   // If the resulting offset is too large, we can't fold it into the addressing
9471   // mode offset.
9472   APInt Offset = CAdd->getAPIntValue() << CN1->getAPIntValue();
9473   Type *Ty = MemVT.getTypeForEVT(*DCI.DAG.getContext());
9474 
9475   AddrMode AM;
9476   AM.HasBaseReg = true;
9477   AM.BaseOffs = Offset.getSExtValue();
9478   if (!isLegalAddressingMode(DCI.DAG.getDataLayout(), AM, Ty, AddrSpace))
9479     return SDValue();
9480 
9481   SelectionDAG &DAG = DCI.DAG;
9482   SDLoc SL(N);
9483   EVT VT = N->getValueType(0);
9484 
9485   SDValue ShlX = DAG.getNode(ISD::SHL, SL, VT, N0.getOperand(0), N1);
9486   SDValue COffset = DAG.getConstant(Offset, SL, VT);
9487 
9488   SDNodeFlags Flags;
9489   Flags.setNoUnsignedWrap(N->getFlags().hasNoUnsignedWrap() &&
9490                           (N0.getOpcode() == ISD::OR ||
9491                            N0->getFlags().hasNoUnsignedWrap()));
9492 
9493   return DAG.getNode(ISD::ADD, SL, VT, ShlX, COffset, Flags);
9494 }
9495 
9496 /// MemSDNode::getBasePtr() does not work for intrinsics, which needs to offset
9497 /// by the chain and intrinsic ID. Theoretically we would also need to check the
9498 /// specific intrinsic, but they all place the pointer operand first.
9499 static unsigned getBasePtrIndex(const MemSDNode *N) {
9500   switch (N->getOpcode()) {
9501   case ISD::STORE:
9502   case ISD::INTRINSIC_W_CHAIN:
9503   case ISD::INTRINSIC_VOID:
9504     return 2;
9505   default:
9506     return 1;
9507   }
9508 }
9509 
9510 SDValue SITargetLowering::performMemSDNodeCombine(MemSDNode *N,
9511                                                   DAGCombinerInfo &DCI) const {
9512   SelectionDAG &DAG = DCI.DAG;
9513   SDLoc SL(N);
9514 
9515   unsigned PtrIdx = getBasePtrIndex(N);
9516   SDValue Ptr = N->getOperand(PtrIdx);
9517 
9518   // TODO: We could also do this for multiplies.
9519   if (Ptr.getOpcode() == ISD::SHL) {
9520     SDValue NewPtr = performSHLPtrCombine(Ptr.getNode(),  N->getAddressSpace(),
9521                                           N->getMemoryVT(), DCI);
9522     if (NewPtr) {
9523       SmallVector<SDValue, 8> NewOps(N->op_begin(), N->op_end());
9524 
9525       NewOps[PtrIdx] = NewPtr;
9526       return SDValue(DAG.UpdateNodeOperands(N, NewOps), 0);
9527     }
9528   }
9529 
9530   return SDValue();
9531 }
9532 
9533 static bool bitOpWithConstantIsReducible(unsigned Opc, uint32_t Val) {
9534   return (Opc == ISD::AND && (Val == 0 || Val == 0xffffffff)) ||
9535          (Opc == ISD::OR && (Val == 0xffffffff || Val == 0)) ||
9536          (Opc == ISD::XOR && Val == 0);
9537 }
9538 
9539 // Break up 64-bit bit operation of a constant into two 32-bit and/or/xor. This
9540 // will typically happen anyway for a VALU 64-bit and. This exposes other 32-bit
9541 // integer combine opportunities since most 64-bit operations are decomposed
9542 // this way.  TODO: We won't want this for SALU especially if it is an inline
9543 // immediate.
9544 SDValue SITargetLowering::splitBinaryBitConstantOp(
9545   DAGCombinerInfo &DCI,
9546   const SDLoc &SL,
9547   unsigned Opc, SDValue LHS,
9548   const ConstantSDNode *CRHS) const {
9549   uint64_t Val = CRHS->getZExtValue();
9550   uint32_t ValLo = Lo_32(Val);
9551   uint32_t ValHi = Hi_32(Val);
9552   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
9553 
9554     if ((bitOpWithConstantIsReducible(Opc, ValLo) ||
9555          bitOpWithConstantIsReducible(Opc, ValHi)) ||
9556         (CRHS->hasOneUse() && !TII->isInlineConstant(CRHS->getAPIntValue()))) {
9557     // If we need to materialize a 64-bit immediate, it will be split up later
9558     // anyway. Avoid creating the harder to understand 64-bit immediate
9559     // materialization.
9560     return splitBinaryBitConstantOpImpl(DCI, SL, Opc, LHS, ValLo, ValHi);
9561   }
9562 
9563   return SDValue();
9564 }
9565 
9566 // Returns true if argument is a boolean value which is not serialized into
9567 // memory or argument and does not require v_cndmask_b32 to be deserialized.
9568 static bool isBoolSGPR(SDValue V) {
9569   if (V.getValueType() != MVT::i1)
9570     return false;
9571   switch (V.getOpcode()) {
9572   default:
9573     break;
9574   case ISD::SETCC:
9575   case AMDGPUISD::FP_CLASS:
9576     return true;
9577   case ISD::AND:
9578   case ISD::OR:
9579   case ISD::XOR:
9580     return isBoolSGPR(V.getOperand(0)) && isBoolSGPR(V.getOperand(1));
9581   }
9582   return false;
9583 }
9584 
9585 // If a constant has all zeroes or all ones within each byte return it.
9586 // Otherwise return 0.
9587 static uint32_t getConstantPermuteMask(uint32_t C) {
9588   // 0xff for any zero byte in the mask
9589   uint32_t ZeroByteMask = 0;
9590   if (!(C & 0x000000ff)) ZeroByteMask |= 0x000000ff;
9591   if (!(C & 0x0000ff00)) ZeroByteMask |= 0x0000ff00;
9592   if (!(C & 0x00ff0000)) ZeroByteMask |= 0x00ff0000;
9593   if (!(C & 0xff000000)) ZeroByteMask |= 0xff000000;
9594   uint32_t NonZeroByteMask = ~ZeroByteMask; // 0xff for any non-zero byte
9595   if ((NonZeroByteMask & C) != NonZeroByteMask)
9596     return 0; // Partial bytes selected.
9597   return C;
9598 }
9599 
9600 // Check if a node selects whole bytes from its operand 0 starting at a byte
9601 // boundary while masking the rest. Returns select mask as in the v_perm_b32
9602 // or -1 if not succeeded.
9603 // Note byte select encoding:
9604 // value 0-3 selects corresponding source byte;
9605 // value 0xc selects zero;
9606 // value 0xff selects 0xff.
9607 static uint32_t getPermuteMask(SelectionDAG &DAG, SDValue V) {
9608   assert(V.getValueSizeInBits() == 32);
9609 
9610   if (V.getNumOperands() != 2)
9611     return ~0;
9612 
9613   ConstantSDNode *N1 = dyn_cast<ConstantSDNode>(V.getOperand(1));
9614   if (!N1)
9615     return ~0;
9616 
9617   uint32_t C = N1->getZExtValue();
9618 
9619   switch (V.getOpcode()) {
9620   default:
9621     break;
9622   case ISD::AND:
9623     if (uint32_t ConstMask = getConstantPermuteMask(C)) {
9624       return (0x03020100 & ConstMask) | (0x0c0c0c0c & ~ConstMask);
9625     }
9626     break;
9627 
9628   case ISD::OR:
9629     if (uint32_t ConstMask = getConstantPermuteMask(C)) {
9630       return (0x03020100 & ~ConstMask) | ConstMask;
9631     }
9632     break;
9633 
9634   case ISD::SHL:
9635     if (C % 8)
9636       return ~0;
9637 
9638     return uint32_t((0x030201000c0c0c0cull << C) >> 32);
9639 
9640   case ISD::SRL:
9641     if (C % 8)
9642       return ~0;
9643 
9644     return uint32_t(0x0c0c0c0c03020100ull >> C);
9645   }
9646 
9647   return ~0;
9648 }
9649 
9650 SDValue SITargetLowering::performAndCombine(SDNode *N,
9651                                             DAGCombinerInfo &DCI) const {
9652   if (DCI.isBeforeLegalize())
9653     return SDValue();
9654 
9655   SelectionDAG &DAG = DCI.DAG;
9656   EVT VT = N->getValueType(0);
9657   SDValue LHS = N->getOperand(0);
9658   SDValue RHS = N->getOperand(1);
9659 
9660 
9661   const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS);
9662   if (VT == MVT::i64 && CRHS) {
9663     if (SDValue Split
9664         = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::AND, LHS, CRHS))
9665       return Split;
9666   }
9667 
9668   if (CRHS && VT == MVT::i32) {
9669     // and (srl x, c), mask => shl (bfe x, nb + c, mask >> nb), nb
9670     // nb = number of trailing zeroes in mask
9671     // It can be optimized out using SDWA for GFX8+ in the SDWA peephole pass,
9672     // given that we are selecting 8 or 16 bit fields starting at byte boundary.
9673     uint64_t Mask = CRHS->getZExtValue();
9674     unsigned Bits = llvm::popcount(Mask);
9675     if (getSubtarget()->hasSDWA() && LHS->getOpcode() == ISD::SRL &&
9676         (Bits == 8 || Bits == 16) && isShiftedMask_64(Mask) && !(Mask & 1)) {
9677       if (auto *CShift = dyn_cast<ConstantSDNode>(LHS->getOperand(1))) {
9678         unsigned Shift = CShift->getZExtValue();
9679         unsigned NB = CRHS->getAPIntValue().countTrailingZeros();
9680         unsigned Offset = NB + Shift;
9681         if ((Offset & (Bits - 1)) == 0) { // Starts at a byte or word boundary.
9682           SDLoc SL(N);
9683           SDValue BFE = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32,
9684                                     LHS->getOperand(0),
9685                                     DAG.getConstant(Offset, SL, MVT::i32),
9686                                     DAG.getConstant(Bits, SL, MVT::i32));
9687           EVT NarrowVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
9688           SDValue Ext = DAG.getNode(ISD::AssertZext, SL, VT, BFE,
9689                                     DAG.getValueType(NarrowVT));
9690           SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(LHS), VT, Ext,
9691                                     DAG.getConstant(NB, SDLoc(CRHS), MVT::i32));
9692           return Shl;
9693         }
9694       }
9695     }
9696 
9697     // and (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2)
9698     if (LHS.hasOneUse() && LHS.getOpcode() == AMDGPUISD::PERM &&
9699         isa<ConstantSDNode>(LHS.getOperand(2))) {
9700       uint32_t Sel = getConstantPermuteMask(Mask);
9701       if (!Sel)
9702         return SDValue();
9703 
9704       // Select 0xc for all zero bytes
9705       Sel = (LHS.getConstantOperandVal(2) & Sel) | (~Sel & 0x0c0c0c0c);
9706       SDLoc DL(N);
9707       return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0),
9708                          LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32));
9709     }
9710   }
9711 
9712   // (and (fcmp ord x, x), (fcmp une (fabs x), inf)) ->
9713   // fp_class x, ~(s_nan | q_nan | n_infinity | p_infinity)
9714   if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == ISD::SETCC) {
9715     ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
9716     ISD::CondCode RCC = cast<CondCodeSDNode>(RHS.getOperand(2))->get();
9717 
9718     SDValue X = LHS.getOperand(0);
9719     SDValue Y = RHS.getOperand(0);
9720     if (Y.getOpcode() != ISD::FABS || Y.getOperand(0) != X ||
9721         !isTypeLegal(X.getValueType()))
9722       return SDValue();
9723 
9724     if (LCC == ISD::SETO) {
9725       if (X != LHS.getOperand(1))
9726         return SDValue();
9727 
9728       if (RCC == ISD::SETUNE) {
9729         const ConstantFPSDNode *C1 = dyn_cast<ConstantFPSDNode>(RHS.getOperand(1));
9730         if (!C1 || !C1->isInfinity() || C1->isNegative())
9731           return SDValue();
9732 
9733         const uint32_t Mask = SIInstrFlags::N_NORMAL |
9734                               SIInstrFlags::N_SUBNORMAL |
9735                               SIInstrFlags::N_ZERO |
9736                               SIInstrFlags::P_ZERO |
9737                               SIInstrFlags::P_SUBNORMAL |
9738                               SIInstrFlags::P_NORMAL;
9739 
9740         static_assert(((~(SIInstrFlags::S_NAN |
9741                           SIInstrFlags::Q_NAN |
9742                           SIInstrFlags::N_INFINITY |
9743                           SIInstrFlags::P_INFINITY)) & 0x3ff) == Mask,
9744                       "mask not equal");
9745 
9746         SDLoc DL(N);
9747         return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
9748                            X, DAG.getConstant(Mask, DL, MVT::i32));
9749       }
9750     }
9751   }
9752 
9753   if (RHS.getOpcode() == ISD::SETCC && LHS.getOpcode() == AMDGPUISD::FP_CLASS)
9754     std::swap(LHS, RHS);
9755 
9756   if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == AMDGPUISD::FP_CLASS &&
9757       RHS.hasOneUse()) {
9758     ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
9759     // and (fcmp seto), (fp_class x, mask) -> fp_class x, mask & ~(p_nan | n_nan)
9760     // and (fcmp setuo), (fp_class x, mask) -> fp_class x, mask & (p_nan | n_nan)
9761     const ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
9762     if ((LCC == ISD::SETO || LCC == ISD::SETUO) && Mask &&
9763         (RHS.getOperand(0) == LHS.getOperand(0) &&
9764          LHS.getOperand(0) == LHS.getOperand(1))) {
9765       const unsigned OrdMask = SIInstrFlags::S_NAN | SIInstrFlags::Q_NAN;
9766       unsigned NewMask = LCC == ISD::SETO ?
9767         Mask->getZExtValue() & ~OrdMask :
9768         Mask->getZExtValue() & OrdMask;
9769 
9770       SDLoc DL(N);
9771       return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, RHS.getOperand(0),
9772                          DAG.getConstant(NewMask, DL, MVT::i32));
9773     }
9774   }
9775 
9776   if (VT == MVT::i32 &&
9777       (RHS.getOpcode() == ISD::SIGN_EXTEND || LHS.getOpcode() == ISD::SIGN_EXTEND)) {
9778     // and x, (sext cc from i1) => select cc, x, 0
9779     if (RHS.getOpcode() != ISD::SIGN_EXTEND)
9780       std::swap(LHS, RHS);
9781     if (isBoolSGPR(RHS.getOperand(0)))
9782       return DAG.getSelect(SDLoc(N), MVT::i32, RHS.getOperand(0),
9783                            LHS, DAG.getConstant(0, SDLoc(N), MVT::i32));
9784   }
9785 
9786   // and (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2)
9787   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
9788   if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() &&
9789       N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32_e64) != -1) {
9790     uint32_t LHSMask = getPermuteMask(DAG, LHS);
9791     uint32_t RHSMask = getPermuteMask(DAG, RHS);
9792     if (LHSMask != ~0u && RHSMask != ~0u) {
9793       // Canonicalize the expression in an attempt to have fewer unique masks
9794       // and therefore fewer registers used to hold the masks.
9795       if (LHSMask > RHSMask) {
9796         std::swap(LHSMask, RHSMask);
9797         std::swap(LHS, RHS);
9798       }
9799 
9800       // Select 0xc for each lane used from source operand. Zero has 0xc mask
9801       // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range.
9802       uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
9803       uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
9804 
9805       // Check of we need to combine values from two sources within a byte.
9806       if (!(LHSUsedLanes & RHSUsedLanes) &&
9807           // If we select high and lower word keep it for SDWA.
9808           // TODO: teach SDWA to work with v_perm_b32 and remove the check.
9809           !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) {
9810         // Each byte in each mask is either selector mask 0-3, or has higher
9811         // bits set in either of masks, which can be 0xff for 0xff or 0x0c for
9812         // zero. If 0x0c is in either mask it shall always be 0x0c. Otherwise
9813         // mask which is not 0xff wins. By anding both masks we have a correct
9814         // result except that 0x0c shall be corrected to give 0x0c only.
9815         uint32_t Mask = LHSMask & RHSMask;
9816         for (unsigned I = 0; I < 32; I += 8) {
9817           uint32_t ByteSel = 0xff << I;
9818           if ((LHSMask & ByteSel) == 0x0c || (RHSMask & ByteSel) == 0x0c)
9819             Mask &= (0x0c << I) & 0xffffffff;
9820         }
9821 
9822         // Add 4 to each active LHS lane. It will not affect any existing 0xff
9823         // or 0x0c.
9824         uint32_t Sel = Mask | (LHSUsedLanes & 0x04040404);
9825         SDLoc DL(N);
9826 
9827         return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32,
9828                            LHS.getOperand(0), RHS.getOperand(0),
9829                            DAG.getConstant(Sel, DL, MVT::i32));
9830       }
9831     }
9832   }
9833 
9834   return SDValue();
9835 }
9836 
9837 SDValue SITargetLowering::performOrCombine(SDNode *N,
9838                                            DAGCombinerInfo &DCI) const {
9839   SelectionDAG &DAG = DCI.DAG;
9840   SDValue LHS = N->getOperand(0);
9841   SDValue RHS = N->getOperand(1);
9842 
9843   EVT VT = N->getValueType(0);
9844   if (VT == MVT::i1) {
9845     // or (fp_class x, c1), (fp_class x, c2) -> fp_class x, (c1 | c2)
9846     if (LHS.getOpcode() == AMDGPUISD::FP_CLASS &&
9847         RHS.getOpcode() == AMDGPUISD::FP_CLASS) {
9848       SDValue Src = LHS.getOperand(0);
9849       if (Src != RHS.getOperand(0))
9850         return SDValue();
9851 
9852       const ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
9853       const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
9854       if (!CLHS || !CRHS)
9855         return SDValue();
9856 
9857       // Only 10 bits are used.
9858       static const uint32_t MaxMask = 0x3ff;
9859 
9860       uint32_t NewMask = (CLHS->getZExtValue() | CRHS->getZExtValue()) & MaxMask;
9861       SDLoc DL(N);
9862       return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
9863                          Src, DAG.getConstant(NewMask, DL, MVT::i32));
9864     }
9865 
9866     return SDValue();
9867   }
9868 
9869   // or (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2)
9870   if (isa<ConstantSDNode>(RHS) && LHS.hasOneUse() &&
9871       LHS.getOpcode() == AMDGPUISD::PERM &&
9872       isa<ConstantSDNode>(LHS.getOperand(2))) {
9873     uint32_t Sel = getConstantPermuteMask(N->getConstantOperandVal(1));
9874     if (!Sel)
9875       return SDValue();
9876 
9877     Sel |= LHS.getConstantOperandVal(2);
9878     SDLoc DL(N);
9879     return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0),
9880                        LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32));
9881   }
9882 
9883   // or (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2)
9884   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
9885   if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() &&
9886       N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32_e64) != -1) {
9887     uint32_t LHSMask = getPermuteMask(DAG, LHS);
9888     uint32_t RHSMask = getPermuteMask(DAG, RHS);
9889     if (LHSMask != ~0u && RHSMask != ~0u) {
9890       // Canonicalize the expression in an attempt to have fewer unique masks
9891       // and therefore fewer registers used to hold the masks.
9892       if (LHSMask > RHSMask) {
9893         std::swap(LHSMask, RHSMask);
9894         std::swap(LHS, RHS);
9895       }
9896 
9897       // Select 0xc for each lane used from source operand. Zero has 0xc mask
9898       // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range.
9899       uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
9900       uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
9901 
9902       // Check of we need to combine values from two sources within a byte.
9903       if (!(LHSUsedLanes & RHSUsedLanes) &&
9904           // If we select high and lower word keep it for SDWA.
9905           // TODO: teach SDWA to work with v_perm_b32 and remove the check.
9906           !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) {
9907         // Kill zero bytes selected by other mask. Zero value is 0xc.
9908         LHSMask &= ~RHSUsedLanes;
9909         RHSMask &= ~LHSUsedLanes;
9910         // Add 4 to each active LHS lane
9911         LHSMask |= LHSUsedLanes & 0x04040404;
9912         // Combine masks
9913         uint32_t Sel = LHSMask | RHSMask;
9914         SDLoc DL(N);
9915 
9916         return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32,
9917                            LHS.getOperand(0), RHS.getOperand(0),
9918                            DAG.getConstant(Sel, DL, MVT::i32));
9919       }
9920     }
9921   }
9922 
9923   if (VT != MVT::i64 || DCI.isBeforeLegalizeOps())
9924     return SDValue();
9925 
9926   // TODO: This could be a generic combine with a predicate for extracting the
9927   // high half of an integer being free.
9928 
9929   // (or i64:x, (zero_extend i32:y)) ->
9930   //   i64 (bitcast (v2i32 build_vector (or i32:y, lo_32(x)), hi_32(x)))
9931   if (LHS.getOpcode() == ISD::ZERO_EXTEND &&
9932       RHS.getOpcode() != ISD::ZERO_EXTEND)
9933     std::swap(LHS, RHS);
9934 
9935   if (RHS.getOpcode() == ISD::ZERO_EXTEND) {
9936     SDValue ExtSrc = RHS.getOperand(0);
9937     EVT SrcVT = ExtSrc.getValueType();
9938     if (SrcVT == MVT::i32) {
9939       SDLoc SL(N);
9940       SDValue LowLHS, HiBits;
9941       std::tie(LowLHS, HiBits) = split64BitValue(LHS, DAG);
9942       SDValue LowOr = DAG.getNode(ISD::OR, SL, MVT::i32, LowLHS, ExtSrc);
9943 
9944       DCI.AddToWorklist(LowOr.getNode());
9945       DCI.AddToWorklist(HiBits.getNode());
9946 
9947       SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
9948                                 LowOr, HiBits);
9949       return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
9950     }
9951   }
9952 
9953   const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
9954   if (CRHS) {
9955     if (SDValue Split
9956           = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::OR,
9957                                      N->getOperand(0), CRHS))
9958       return Split;
9959   }
9960 
9961   return SDValue();
9962 }
9963 
9964 SDValue SITargetLowering::performXorCombine(SDNode *N,
9965                                             DAGCombinerInfo &DCI) const {
9966   if (SDValue RV = reassociateScalarOps(N, DCI.DAG))
9967     return RV;
9968 
9969   EVT VT = N->getValueType(0);
9970   if (VT != MVT::i64)
9971     return SDValue();
9972 
9973   SDValue LHS = N->getOperand(0);
9974   SDValue RHS = N->getOperand(1);
9975 
9976   const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS);
9977   if (CRHS) {
9978     if (SDValue Split
9979           = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::XOR, LHS, CRHS))
9980       return Split;
9981   }
9982 
9983   return SDValue();
9984 }
9985 
9986 SDValue SITargetLowering::performZeroExtendCombine(SDNode *N,
9987                                                    DAGCombinerInfo &DCI) const {
9988   if (!Subtarget->has16BitInsts() ||
9989       DCI.getDAGCombineLevel() < AfterLegalizeDAG)
9990     return SDValue();
9991 
9992   EVT VT = N->getValueType(0);
9993   if (VT != MVT::i32)
9994     return SDValue();
9995 
9996   SDValue Src = N->getOperand(0);
9997   if (Src.getValueType() != MVT::i16)
9998     return SDValue();
9999 
10000   return SDValue();
10001 }
10002 
10003 SDValue SITargetLowering::performSignExtendInRegCombine(SDNode *N,
10004                                                         DAGCombinerInfo &DCI)
10005                                                         const {
10006   SDValue Src = N->getOperand(0);
10007   auto *VTSign = cast<VTSDNode>(N->getOperand(1));
10008 
10009   if (((Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE &&
10010       VTSign->getVT() == MVT::i8) ||
10011       (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_USHORT &&
10012       VTSign->getVT() == MVT::i16)) &&
10013       Src.hasOneUse()) {
10014     auto *M = cast<MemSDNode>(Src);
10015     SDValue Ops[] = {
10016       Src.getOperand(0), // Chain
10017       Src.getOperand(1), // rsrc
10018       Src.getOperand(2), // vindex
10019       Src.getOperand(3), // voffset
10020       Src.getOperand(4), // soffset
10021       Src.getOperand(5), // offset
10022       Src.getOperand(6),
10023       Src.getOperand(7)
10024     };
10025     // replace with BUFFER_LOAD_BYTE/SHORT
10026     SDVTList ResList = DCI.DAG.getVTList(MVT::i32,
10027                                          Src.getOperand(0).getValueType());
10028     unsigned Opc = (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE) ?
10029                    AMDGPUISD::BUFFER_LOAD_BYTE : AMDGPUISD::BUFFER_LOAD_SHORT;
10030     SDValue BufferLoadSignExt = DCI.DAG.getMemIntrinsicNode(Opc, SDLoc(N),
10031                                                           ResList,
10032                                                           Ops, M->getMemoryVT(),
10033                                                           M->getMemOperand());
10034     return DCI.DAG.getMergeValues({BufferLoadSignExt,
10035                                   BufferLoadSignExt.getValue(1)}, SDLoc(N));
10036   }
10037   return SDValue();
10038 }
10039 
10040 SDValue SITargetLowering::performClassCombine(SDNode *N,
10041                                               DAGCombinerInfo &DCI) const {
10042   SelectionDAG &DAG = DCI.DAG;
10043   SDValue Mask = N->getOperand(1);
10044 
10045   // fp_class x, 0 -> false
10046   if (const ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Mask)) {
10047     if (CMask->isZero())
10048       return DAG.getConstant(0, SDLoc(N), MVT::i1);
10049   }
10050 
10051   if (N->getOperand(0).isUndef())
10052     return DAG.getUNDEF(MVT::i1);
10053 
10054   return SDValue();
10055 }
10056 
10057 SDValue SITargetLowering::performRcpCombine(SDNode *N,
10058                                             DAGCombinerInfo &DCI) const {
10059   EVT VT = N->getValueType(0);
10060   SDValue N0 = N->getOperand(0);
10061 
10062   if (N0.isUndef()) {
10063     return DCI.DAG.getConstantFP(
10064         APFloat::getQNaN(SelectionDAG::EVTToAPFloatSemantics(VT)), SDLoc(N),
10065         VT);
10066   }
10067 
10068   if (VT == MVT::f32 && (N0.getOpcode() == ISD::UINT_TO_FP ||
10069                          N0.getOpcode() == ISD::SINT_TO_FP)) {
10070     return DCI.DAG.getNode(AMDGPUISD::RCP_IFLAG, SDLoc(N), VT, N0,
10071                            N->getFlags());
10072   }
10073 
10074   if ((VT == MVT::f32 || VT == MVT::f16) && N0.getOpcode() == ISD::FSQRT) {
10075     return DCI.DAG.getNode(AMDGPUISD::RSQ, SDLoc(N), VT,
10076                            N0.getOperand(0), N->getFlags());
10077   }
10078 
10079   return AMDGPUTargetLowering::performRcpCombine(N, DCI);
10080 }
10081 
10082 bool SITargetLowering::isCanonicalized(SelectionDAG &DAG, SDValue Op,
10083                                        unsigned MaxDepth) const {
10084   unsigned Opcode = Op.getOpcode();
10085   if (Opcode == ISD::FCANONICALIZE)
10086     return true;
10087 
10088   if (auto *CFP = dyn_cast<ConstantFPSDNode>(Op)) {
10089     auto F = CFP->getValueAPF();
10090     if (F.isNaN() && F.isSignaling())
10091       return false;
10092     return !F.isDenormal() || denormalsEnabledForType(DAG, Op.getValueType());
10093   }
10094 
10095   // If source is a result of another standard FP operation it is already in
10096   // canonical form.
10097   if (MaxDepth == 0)
10098     return false;
10099 
10100   switch (Opcode) {
10101   // These will flush denorms if required.
10102   case ISD::FADD:
10103   case ISD::FSUB:
10104   case ISD::FMUL:
10105   case ISD::FCEIL:
10106   case ISD::FFLOOR:
10107   case ISD::FMA:
10108   case ISD::FMAD:
10109   case ISD::FSQRT:
10110   case ISD::FDIV:
10111   case ISD::FREM:
10112   case ISD::FP_ROUND:
10113   case ISD::FP_EXTEND:
10114   case AMDGPUISD::FMUL_LEGACY:
10115   case AMDGPUISD::FMAD_FTZ:
10116   case AMDGPUISD::RCP:
10117   case AMDGPUISD::RSQ:
10118   case AMDGPUISD::RSQ_CLAMP:
10119   case AMDGPUISD::RCP_LEGACY:
10120   case AMDGPUISD::RCP_IFLAG:
10121   case AMDGPUISD::DIV_SCALE:
10122   case AMDGPUISD::DIV_FMAS:
10123   case AMDGPUISD::DIV_FIXUP:
10124   case AMDGPUISD::FRACT:
10125   case AMDGPUISD::LDEXP:
10126   case AMDGPUISD::CVT_PKRTZ_F16_F32:
10127   case AMDGPUISD::CVT_F32_UBYTE0:
10128   case AMDGPUISD::CVT_F32_UBYTE1:
10129   case AMDGPUISD::CVT_F32_UBYTE2:
10130   case AMDGPUISD::CVT_F32_UBYTE3:
10131     return true;
10132 
10133   // It can/will be lowered or combined as a bit operation.
10134   // Need to check their input recursively to handle.
10135   case ISD::FNEG:
10136   case ISD::FABS:
10137   case ISD::FCOPYSIGN:
10138     return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1);
10139 
10140   case ISD::FSIN:
10141   case ISD::FCOS:
10142   case ISD::FSINCOS:
10143     return Op.getValueType().getScalarType() != MVT::f16;
10144 
10145   case ISD::FMINNUM:
10146   case ISD::FMAXNUM:
10147   case ISD::FMINNUM_IEEE:
10148   case ISD::FMAXNUM_IEEE:
10149   case AMDGPUISD::CLAMP:
10150   case AMDGPUISD::FMED3:
10151   case AMDGPUISD::FMAX3:
10152   case AMDGPUISD::FMIN3: {
10153     // FIXME: Shouldn't treat the generic operations different based these.
10154     // However, we aren't really required to flush the result from
10155     // minnum/maxnum..
10156 
10157     // snans will be quieted, so we only need to worry about denormals.
10158     if (Subtarget->supportsMinMaxDenormModes() ||
10159         denormalsEnabledForType(DAG, Op.getValueType()))
10160       return true;
10161 
10162     // Flushing may be required.
10163     // In pre-GFX9 targets V_MIN_F32 and others do not flush denorms. For such
10164     // targets need to check their input recursively.
10165 
10166     // FIXME: Does this apply with clamp? It's implemented with max.
10167     for (unsigned I = 0, E = Op.getNumOperands(); I != E; ++I) {
10168       if (!isCanonicalized(DAG, Op.getOperand(I), MaxDepth - 1))
10169         return false;
10170     }
10171 
10172     return true;
10173   }
10174   case ISD::SELECT: {
10175     return isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1) &&
10176            isCanonicalized(DAG, Op.getOperand(2), MaxDepth - 1);
10177   }
10178   case ISD::BUILD_VECTOR: {
10179     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
10180       SDValue SrcOp = Op.getOperand(i);
10181       if (!isCanonicalized(DAG, SrcOp, MaxDepth - 1))
10182         return false;
10183     }
10184 
10185     return true;
10186   }
10187   case ISD::EXTRACT_VECTOR_ELT:
10188   case ISD::EXTRACT_SUBVECTOR: {
10189     return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1);
10190   }
10191   case ISD::INSERT_VECTOR_ELT: {
10192     return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1) &&
10193            isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1);
10194   }
10195   case ISD::UNDEF:
10196     // Could be anything.
10197     return false;
10198 
10199   case ISD::BITCAST:
10200     return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1);
10201   case ISD::TRUNCATE: {
10202     // Hack round the mess we make when legalizing extract_vector_elt
10203     if (Op.getValueType() == MVT::i16) {
10204       SDValue TruncSrc = Op.getOperand(0);
10205       if (TruncSrc.getValueType() == MVT::i32 &&
10206           TruncSrc.getOpcode() == ISD::BITCAST &&
10207           TruncSrc.getOperand(0).getValueType() == MVT::v2f16) {
10208         return isCanonicalized(DAG, TruncSrc.getOperand(0), MaxDepth - 1);
10209       }
10210     }
10211     return false;
10212   }
10213   case ISD::INTRINSIC_WO_CHAIN: {
10214     unsigned IntrinsicID
10215       = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
10216     // TODO: Handle more intrinsics
10217     switch (IntrinsicID) {
10218     case Intrinsic::amdgcn_cvt_pkrtz:
10219     case Intrinsic::amdgcn_cubeid:
10220     case Intrinsic::amdgcn_frexp_mant:
10221     case Intrinsic::amdgcn_fdot2:
10222     case Intrinsic::amdgcn_rcp:
10223     case Intrinsic::amdgcn_rsq:
10224     case Intrinsic::amdgcn_rsq_clamp:
10225     case Intrinsic::amdgcn_rcp_legacy:
10226     case Intrinsic::amdgcn_rsq_legacy:
10227     case Intrinsic::amdgcn_trig_preop:
10228       return true;
10229     default:
10230       break;
10231     }
10232 
10233     [[fallthrough]];
10234   }
10235   default:
10236     return denormalsEnabledForType(DAG, Op.getValueType()) &&
10237            DAG.isKnownNeverSNaN(Op);
10238   }
10239 
10240   llvm_unreachable("invalid operation");
10241 }
10242 
10243 bool SITargetLowering::isCanonicalized(Register Reg, MachineFunction &MF,
10244                                        unsigned MaxDepth) const {
10245   MachineRegisterInfo &MRI = MF.getRegInfo();
10246   MachineInstr *MI = MRI.getVRegDef(Reg);
10247   unsigned Opcode = MI->getOpcode();
10248 
10249   if (Opcode == AMDGPU::G_FCANONICALIZE)
10250     return true;
10251 
10252   std::optional<FPValueAndVReg> FCR;
10253   // Constant splat (can be padded with undef) or scalar constant.
10254   if (mi_match(Reg, MRI, MIPatternMatch::m_GFCstOrSplat(FCR))) {
10255     if (FCR->Value.isSignaling())
10256       return false;
10257     return !FCR->Value.isDenormal() ||
10258            denormalsEnabledForType(MRI.getType(FCR->VReg), MF);
10259   }
10260 
10261   if (MaxDepth == 0)
10262     return false;
10263 
10264   switch (Opcode) {
10265   case AMDGPU::G_FADD:
10266   case AMDGPU::G_FSUB:
10267   case AMDGPU::G_FMUL:
10268   case AMDGPU::G_FCEIL:
10269   case AMDGPU::G_FFLOOR:
10270   case AMDGPU::G_FRINT:
10271   case AMDGPU::G_FNEARBYINT:
10272   case AMDGPU::G_INTRINSIC_FPTRUNC_ROUND:
10273   case AMDGPU::G_INTRINSIC_TRUNC:
10274   case AMDGPU::G_INTRINSIC_ROUNDEVEN:
10275   case AMDGPU::G_FMA:
10276   case AMDGPU::G_FMAD:
10277   case AMDGPU::G_FSQRT:
10278   case AMDGPU::G_FDIV:
10279   case AMDGPU::G_FREM:
10280   case AMDGPU::G_FPOW:
10281   case AMDGPU::G_FPEXT:
10282   case AMDGPU::G_FLOG:
10283   case AMDGPU::G_FLOG2:
10284   case AMDGPU::G_FLOG10:
10285   case AMDGPU::G_FPTRUNC:
10286   case AMDGPU::G_AMDGPU_RCP_IFLAG:
10287   case AMDGPU::G_AMDGPU_CVT_F32_UBYTE0:
10288   case AMDGPU::G_AMDGPU_CVT_F32_UBYTE1:
10289   case AMDGPU::G_AMDGPU_CVT_F32_UBYTE2:
10290   case AMDGPU::G_AMDGPU_CVT_F32_UBYTE3:
10291     return true;
10292   case AMDGPU::G_FNEG:
10293   case AMDGPU::G_FABS:
10294   case AMDGPU::G_FCOPYSIGN:
10295     return isCanonicalized(MI->getOperand(1).getReg(), MF, MaxDepth - 1);
10296   case AMDGPU::G_FMINNUM:
10297   case AMDGPU::G_FMAXNUM:
10298   case AMDGPU::G_FMINNUM_IEEE:
10299   case AMDGPU::G_FMAXNUM_IEEE: {
10300     if (Subtarget->supportsMinMaxDenormModes() ||
10301         denormalsEnabledForType(MRI.getType(Reg), MF))
10302       return true;
10303 
10304     [[fallthrough]];
10305   }
10306   case AMDGPU::G_BUILD_VECTOR:
10307     for (const MachineOperand &MO : llvm::drop_begin(MI->operands()))
10308       if (!isCanonicalized(MO.getReg(), MF, MaxDepth - 1))
10309         return false;
10310     return true;
10311   case AMDGPU::G_INTRINSIC:
10312     switch (MI->getIntrinsicID()) {
10313     case Intrinsic::amdgcn_fmul_legacy:
10314     case Intrinsic::amdgcn_fmad_ftz:
10315     case Intrinsic::amdgcn_sqrt:
10316     case Intrinsic::amdgcn_fmed3:
10317     case Intrinsic::amdgcn_sin:
10318     case Intrinsic::amdgcn_cos:
10319     case Intrinsic::amdgcn_log_clamp:
10320     case Intrinsic::amdgcn_rcp:
10321     case Intrinsic::amdgcn_rcp_legacy:
10322     case Intrinsic::amdgcn_rsq:
10323     case Intrinsic::amdgcn_rsq_clamp:
10324     case Intrinsic::amdgcn_rsq_legacy:
10325     case Intrinsic::amdgcn_div_scale:
10326     case Intrinsic::amdgcn_div_fmas:
10327     case Intrinsic::amdgcn_div_fixup:
10328     case Intrinsic::amdgcn_fract:
10329     case Intrinsic::amdgcn_ldexp:
10330     case Intrinsic::amdgcn_cvt_pkrtz:
10331     case Intrinsic::amdgcn_cubeid:
10332     case Intrinsic::amdgcn_cubema:
10333     case Intrinsic::amdgcn_cubesc:
10334     case Intrinsic::amdgcn_cubetc:
10335     case Intrinsic::amdgcn_frexp_mant:
10336     case Intrinsic::amdgcn_fdot2:
10337     case Intrinsic::amdgcn_trig_preop:
10338       return true;
10339     default:
10340       break;
10341     }
10342 
10343     [[fallthrough]];
10344   default:
10345     return false;
10346   }
10347 
10348   llvm_unreachable("invalid operation");
10349 }
10350 
10351 // Constant fold canonicalize.
10352 SDValue SITargetLowering::getCanonicalConstantFP(
10353   SelectionDAG &DAG, const SDLoc &SL, EVT VT, const APFloat &C) const {
10354   // Flush denormals to 0 if not enabled.
10355   if (C.isDenormal() && !denormalsEnabledForType(DAG, VT)) {
10356     return DAG.getConstantFP(APFloat::getZero(C.getSemantics(),
10357                                               C.isNegative()), SL, VT);
10358   }
10359 
10360   if (C.isNaN()) {
10361     APFloat CanonicalQNaN = APFloat::getQNaN(C.getSemantics());
10362     if (C.isSignaling()) {
10363       // Quiet a signaling NaN.
10364       // FIXME: Is this supposed to preserve payload bits?
10365       return DAG.getConstantFP(CanonicalQNaN, SL, VT);
10366     }
10367 
10368     // Make sure it is the canonical NaN bitpattern.
10369     //
10370     // TODO: Can we use -1 as the canonical NaN value since it's an inline
10371     // immediate?
10372     if (C.bitcastToAPInt() != CanonicalQNaN.bitcastToAPInt())
10373       return DAG.getConstantFP(CanonicalQNaN, SL, VT);
10374   }
10375 
10376   // Already canonical.
10377   return DAG.getConstantFP(C, SL, VT);
10378 }
10379 
10380 static bool vectorEltWillFoldAway(SDValue Op) {
10381   return Op.isUndef() || isa<ConstantFPSDNode>(Op);
10382 }
10383 
10384 SDValue SITargetLowering::performFCanonicalizeCombine(
10385   SDNode *N,
10386   DAGCombinerInfo &DCI) const {
10387   SelectionDAG &DAG = DCI.DAG;
10388   SDValue N0 = N->getOperand(0);
10389   EVT VT = N->getValueType(0);
10390 
10391   // fcanonicalize undef -> qnan
10392   if (N0.isUndef()) {
10393     APFloat QNaN = APFloat::getQNaN(SelectionDAG::EVTToAPFloatSemantics(VT));
10394     return DAG.getConstantFP(QNaN, SDLoc(N), VT);
10395   }
10396 
10397   if (ConstantFPSDNode *CFP = isConstOrConstSplatFP(N0)) {
10398     EVT VT = N->getValueType(0);
10399     return getCanonicalConstantFP(DAG, SDLoc(N), VT, CFP->getValueAPF());
10400   }
10401 
10402   // fcanonicalize (build_vector x, k) -> build_vector (fcanonicalize x),
10403   //                                                   (fcanonicalize k)
10404   //
10405   // fcanonicalize (build_vector x, undef) -> build_vector (fcanonicalize x), 0
10406 
10407   // TODO: This could be better with wider vectors that will be split to v2f16,
10408   // and to consider uses since there aren't that many packed operations.
10409   if (N0.getOpcode() == ISD::BUILD_VECTOR && VT == MVT::v2f16 &&
10410       isTypeLegal(MVT::v2f16)) {
10411     SDLoc SL(N);
10412     SDValue NewElts[2];
10413     SDValue Lo = N0.getOperand(0);
10414     SDValue Hi = N0.getOperand(1);
10415     EVT EltVT = Lo.getValueType();
10416 
10417     if (vectorEltWillFoldAway(Lo) || vectorEltWillFoldAway(Hi)) {
10418       for (unsigned I = 0; I != 2; ++I) {
10419         SDValue Op = N0.getOperand(I);
10420         if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) {
10421           NewElts[I] = getCanonicalConstantFP(DAG, SL, EltVT,
10422                                               CFP->getValueAPF());
10423         } else if (Op.isUndef()) {
10424           // Handled below based on what the other operand is.
10425           NewElts[I] = Op;
10426         } else {
10427           NewElts[I] = DAG.getNode(ISD::FCANONICALIZE, SL, EltVT, Op);
10428         }
10429       }
10430 
10431       // If one half is undef, and one is constant, prefer a splat vector rather
10432       // than the normal qNaN. If it's a register, prefer 0.0 since that's
10433       // cheaper to use and may be free with a packed operation.
10434       if (NewElts[0].isUndef()) {
10435         if (isa<ConstantFPSDNode>(NewElts[1]))
10436           NewElts[0] = isa<ConstantFPSDNode>(NewElts[1]) ?
10437             NewElts[1]: DAG.getConstantFP(0.0f, SL, EltVT);
10438       }
10439 
10440       if (NewElts[1].isUndef()) {
10441         NewElts[1] = isa<ConstantFPSDNode>(NewElts[0]) ?
10442           NewElts[0] : DAG.getConstantFP(0.0f, SL, EltVT);
10443       }
10444 
10445       return DAG.getBuildVector(VT, SL, NewElts);
10446     }
10447   }
10448 
10449   unsigned SrcOpc = N0.getOpcode();
10450 
10451   // If it's free to do so, push canonicalizes further up the source, which may
10452   // find a canonical source.
10453   //
10454   // TODO: More opcodes. Note this is unsafe for the _ieee minnum/maxnum for
10455   // sNaNs.
10456   if (SrcOpc == ISD::FMINNUM || SrcOpc == ISD::FMAXNUM) {
10457     auto *CRHS = dyn_cast<ConstantFPSDNode>(N0.getOperand(1));
10458     if (CRHS && N0.hasOneUse()) {
10459       SDLoc SL(N);
10460       SDValue Canon0 = DAG.getNode(ISD::FCANONICALIZE, SL, VT,
10461                                    N0.getOperand(0));
10462       SDValue Canon1 = getCanonicalConstantFP(DAG, SL, VT, CRHS->getValueAPF());
10463       DCI.AddToWorklist(Canon0.getNode());
10464 
10465       return DAG.getNode(N0.getOpcode(), SL, VT, Canon0, Canon1);
10466     }
10467   }
10468 
10469   return isCanonicalized(DAG, N0) ? N0 : SDValue();
10470 }
10471 
10472 static unsigned minMaxOpcToMin3Max3Opc(unsigned Opc) {
10473   switch (Opc) {
10474   case ISD::FMAXNUM:
10475   case ISD::FMAXNUM_IEEE:
10476     return AMDGPUISD::FMAX3;
10477   case ISD::SMAX:
10478     return AMDGPUISD::SMAX3;
10479   case ISD::UMAX:
10480     return AMDGPUISD::UMAX3;
10481   case ISD::FMINNUM:
10482   case ISD::FMINNUM_IEEE:
10483     return AMDGPUISD::FMIN3;
10484   case ISD::SMIN:
10485     return AMDGPUISD::SMIN3;
10486   case ISD::UMIN:
10487     return AMDGPUISD::UMIN3;
10488   default:
10489     llvm_unreachable("Not a min/max opcode");
10490   }
10491 }
10492 
10493 SDValue SITargetLowering::performIntMed3ImmCombine(
10494   SelectionDAG &DAG, const SDLoc &SL,
10495   SDValue Op0, SDValue Op1, bool Signed) const {
10496   ConstantSDNode *K1 = dyn_cast<ConstantSDNode>(Op1);
10497   if (!K1)
10498     return SDValue();
10499 
10500   ConstantSDNode *K0 = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
10501   if (!K0)
10502     return SDValue();
10503 
10504   if (Signed) {
10505     if (K0->getAPIntValue().sge(K1->getAPIntValue()))
10506       return SDValue();
10507   } else {
10508     if (K0->getAPIntValue().uge(K1->getAPIntValue()))
10509       return SDValue();
10510   }
10511 
10512   EVT VT = K0->getValueType(0);
10513   unsigned Med3Opc = Signed ? AMDGPUISD::SMED3 : AMDGPUISD::UMED3;
10514   if (VT == MVT::i32 || (VT == MVT::i16 && Subtarget->hasMed3_16())) {
10515     return DAG.getNode(Med3Opc, SL, VT,
10516                        Op0.getOperand(0), SDValue(K0, 0), SDValue(K1, 0));
10517   }
10518 
10519   // If there isn't a 16-bit med3 operation, convert to 32-bit.
10520   if (VT == MVT::i16) {
10521     MVT NVT = MVT::i32;
10522     unsigned ExtOp = Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
10523 
10524     SDValue Tmp1 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(0));
10525     SDValue Tmp2 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(1));
10526     SDValue Tmp3 = DAG.getNode(ExtOp, SL, NVT, Op1);
10527 
10528     SDValue Med3 = DAG.getNode(Med3Opc, SL, NVT, Tmp1, Tmp2, Tmp3);
10529     return DAG.getNode(ISD::TRUNCATE, SL, VT, Med3);
10530   }
10531 
10532   return SDValue();
10533 }
10534 
10535 static ConstantFPSDNode *getSplatConstantFP(SDValue Op) {
10536   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
10537     return C;
10538 
10539   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op)) {
10540     if (ConstantFPSDNode *C = BV->getConstantFPSplatNode())
10541       return C;
10542   }
10543 
10544   return nullptr;
10545 }
10546 
10547 SDValue SITargetLowering::performFPMed3ImmCombine(SelectionDAG &DAG,
10548                                                   const SDLoc &SL,
10549                                                   SDValue Op0,
10550                                                   SDValue Op1) const {
10551   ConstantFPSDNode *K1 = getSplatConstantFP(Op1);
10552   if (!K1)
10553     return SDValue();
10554 
10555   ConstantFPSDNode *K0 = getSplatConstantFP(Op0.getOperand(1));
10556   if (!K0)
10557     return SDValue();
10558 
10559   // Ordered >= (although NaN inputs should have folded away by now).
10560   if (K0->getValueAPF() > K1->getValueAPF())
10561     return SDValue();
10562 
10563   const MachineFunction &MF = DAG.getMachineFunction();
10564   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
10565 
10566   // TODO: Check IEEE bit enabled?
10567   EVT VT = Op0.getValueType();
10568   if (Info->getMode().DX10Clamp) {
10569     // If dx10_clamp is enabled, NaNs clamp to 0.0. This is the same as the
10570     // hardware fmed3 behavior converting to a min.
10571     // FIXME: Should this be allowing -0.0?
10572     if (K1->isExactlyValue(1.0) && K0->isExactlyValue(0.0))
10573       return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Op0.getOperand(0));
10574   }
10575 
10576   // med3 for f16 is only available on gfx9+, and not available for v2f16.
10577   if (VT == MVT::f32 || (VT == MVT::f16 && Subtarget->hasMed3_16())) {
10578     // This isn't safe with signaling NaNs because in IEEE mode, min/max on a
10579     // signaling NaN gives a quiet NaN. The quiet NaN input to the min would
10580     // then give the other result, which is different from med3 with a NaN
10581     // input.
10582     SDValue Var = Op0.getOperand(0);
10583     if (!DAG.isKnownNeverSNaN(Var))
10584       return SDValue();
10585 
10586     const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
10587 
10588     if ((!K0->hasOneUse() ||
10589          TII->isInlineConstant(K0->getValueAPF().bitcastToAPInt())) &&
10590         (!K1->hasOneUse() ||
10591          TII->isInlineConstant(K1->getValueAPF().bitcastToAPInt()))) {
10592       return DAG.getNode(AMDGPUISD::FMED3, SL, K0->getValueType(0),
10593                          Var, SDValue(K0, 0), SDValue(K1, 0));
10594     }
10595   }
10596 
10597   return SDValue();
10598 }
10599 
10600 SDValue SITargetLowering::performMinMaxCombine(SDNode *N,
10601                                                DAGCombinerInfo &DCI) const {
10602   SelectionDAG &DAG = DCI.DAG;
10603 
10604   EVT VT = N->getValueType(0);
10605   unsigned Opc = N->getOpcode();
10606   SDValue Op0 = N->getOperand(0);
10607   SDValue Op1 = N->getOperand(1);
10608 
10609   // Only do this if the inner op has one use since this will just increases
10610   // register pressure for no benefit.
10611 
10612   if (Opc != AMDGPUISD::FMIN_LEGACY && Opc != AMDGPUISD::FMAX_LEGACY &&
10613       !VT.isVector() &&
10614       (VT == MVT::i32 || VT == MVT::f32 ||
10615        ((VT == MVT::f16 || VT == MVT::i16) && Subtarget->hasMin3Max3_16()))) {
10616     // max(max(a, b), c) -> max3(a, b, c)
10617     // min(min(a, b), c) -> min3(a, b, c)
10618     if (Op0.getOpcode() == Opc && Op0.hasOneUse()) {
10619       SDLoc DL(N);
10620       return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
10621                          DL,
10622                          N->getValueType(0),
10623                          Op0.getOperand(0),
10624                          Op0.getOperand(1),
10625                          Op1);
10626     }
10627 
10628     // Try commuted.
10629     // max(a, max(b, c)) -> max3(a, b, c)
10630     // min(a, min(b, c)) -> min3(a, b, c)
10631     if (Op1.getOpcode() == Opc && Op1.hasOneUse()) {
10632       SDLoc DL(N);
10633       return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
10634                          DL,
10635                          N->getValueType(0),
10636                          Op0,
10637                          Op1.getOperand(0),
10638                          Op1.getOperand(1));
10639     }
10640   }
10641 
10642   // min(max(x, K0), K1), K0 < K1 -> med3(x, K0, K1)
10643   if (Opc == ISD::SMIN && Op0.getOpcode() == ISD::SMAX && Op0.hasOneUse()) {
10644     if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, true))
10645       return Med3;
10646   }
10647 
10648   if (Opc == ISD::UMIN && Op0.getOpcode() == ISD::UMAX && Op0.hasOneUse()) {
10649     if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, false))
10650       return Med3;
10651   }
10652 
10653   // fminnum(fmaxnum(x, K0), K1), K0 < K1 && !is_snan(x) -> fmed3(x, K0, K1)
10654   if (((Opc == ISD::FMINNUM && Op0.getOpcode() == ISD::FMAXNUM) ||
10655        (Opc == ISD::FMINNUM_IEEE && Op0.getOpcode() == ISD::FMAXNUM_IEEE) ||
10656        (Opc == AMDGPUISD::FMIN_LEGACY &&
10657         Op0.getOpcode() == AMDGPUISD::FMAX_LEGACY)) &&
10658       (VT == MVT::f32 || VT == MVT::f64 ||
10659        (VT == MVT::f16 && Subtarget->has16BitInsts()) ||
10660        (VT == MVT::v2f16 && Subtarget->hasVOP3PInsts())) &&
10661       Op0.hasOneUse()) {
10662     if (SDValue Res = performFPMed3ImmCombine(DAG, SDLoc(N), Op0, Op1))
10663       return Res;
10664   }
10665 
10666   return SDValue();
10667 }
10668 
10669 static bool isClampZeroToOne(SDValue A, SDValue B) {
10670   if (ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) {
10671     if (ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) {
10672       // FIXME: Should this be allowing -0.0?
10673       return (CA->isExactlyValue(0.0) && CB->isExactlyValue(1.0)) ||
10674              (CA->isExactlyValue(1.0) && CB->isExactlyValue(0.0));
10675     }
10676   }
10677 
10678   return false;
10679 }
10680 
10681 // FIXME: Should only worry about snans for version with chain.
10682 SDValue SITargetLowering::performFMed3Combine(SDNode *N,
10683                                               DAGCombinerInfo &DCI) const {
10684   EVT VT = N->getValueType(0);
10685   // v_med3_f32 and v_max_f32 behave identically wrt denorms, exceptions and
10686   // NaNs. With a NaN input, the order of the operands may change the result.
10687 
10688   SelectionDAG &DAG = DCI.DAG;
10689   SDLoc SL(N);
10690 
10691   SDValue Src0 = N->getOperand(0);
10692   SDValue Src1 = N->getOperand(1);
10693   SDValue Src2 = N->getOperand(2);
10694 
10695   if (isClampZeroToOne(Src0, Src1)) {
10696     // const_a, const_b, x -> clamp is safe in all cases including signaling
10697     // nans.
10698     // FIXME: Should this be allowing -0.0?
10699     return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src2);
10700   }
10701 
10702   const MachineFunction &MF = DAG.getMachineFunction();
10703   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
10704 
10705   // FIXME: dx10_clamp behavior assumed in instcombine. Should we really bother
10706   // handling no dx10-clamp?
10707   if (Info->getMode().DX10Clamp) {
10708     // If NaNs is clamped to 0, we are free to reorder the inputs.
10709 
10710     if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1))
10711       std::swap(Src0, Src1);
10712 
10713     if (isa<ConstantFPSDNode>(Src1) && !isa<ConstantFPSDNode>(Src2))
10714       std::swap(Src1, Src2);
10715 
10716     if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1))
10717       std::swap(Src0, Src1);
10718 
10719     if (isClampZeroToOne(Src1, Src2))
10720       return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src0);
10721   }
10722 
10723   return SDValue();
10724 }
10725 
10726 SDValue SITargetLowering::performCvtPkRTZCombine(SDNode *N,
10727                                                  DAGCombinerInfo &DCI) const {
10728   SDValue Src0 = N->getOperand(0);
10729   SDValue Src1 = N->getOperand(1);
10730   if (Src0.isUndef() && Src1.isUndef())
10731     return DCI.DAG.getUNDEF(N->getValueType(0));
10732   return SDValue();
10733 }
10734 
10735 // Check if EXTRACT_VECTOR_ELT/INSERT_VECTOR_ELT (<n x e>, var-idx) should be
10736 // expanded into a set of cmp/select instructions.
10737 bool SITargetLowering::shouldExpandVectorDynExt(unsigned EltSize,
10738                                                 unsigned NumElem,
10739                                                 bool IsDivergentIdx,
10740                                                 const GCNSubtarget *Subtarget) {
10741   if (UseDivergentRegisterIndexing)
10742     return false;
10743 
10744   unsigned VecSize = EltSize * NumElem;
10745 
10746   // Sub-dword vectors of size 2 dword or less have better implementation.
10747   if (VecSize <= 64 && EltSize < 32)
10748     return false;
10749 
10750   // Always expand the rest of sub-dword instructions, otherwise it will be
10751   // lowered via memory.
10752   if (EltSize < 32)
10753     return true;
10754 
10755   // Always do this if var-idx is divergent, otherwise it will become a loop.
10756   if (IsDivergentIdx)
10757     return true;
10758 
10759   // Large vectors would yield too many compares and v_cndmask_b32 instructions.
10760   unsigned NumInsts = NumElem /* Number of compares */ +
10761                       ((EltSize + 31) / 32) * NumElem /* Number of cndmasks */;
10762 
10763   // On some architectures (GFX9) movrel is not available and it's better
10764   // to expand.
10765   if (!Subtarget->hasMovrel())
10766     return NumInsts <= 16;
10767 
10768   // If movrel is available, use it instead of expanding for vector of 8
10769   // elements.
10770   return NumInsts <= 15;
10771 }
10772 
10773 bool SITargetLowering::shouldExpandVectorDynExt(SDNode *N) const {
10774   SDValue Idx = N->getOperand(N->getNumOperands() - 1);
10775   if (isa<ConstantSDNode>(Idx))
10776     return false;
10777 
10778   SDValue Vec = N->getOperand(0);
10779   EVT VecVT = Vec.getValueType();
10780   EVT EltVT = VecVT.getVectorElementType();
10781   unsigned EltSize = EltVT.getSizeInBits();
10782   unsigned NumElem = VecVT.getVectorNumElements();
10783 
10784   return SITargetLowering::shouldExpandVectorDynExt(
10785       EltSize, NumElem, Idx->isDivergent(), getSubtarget());
10786 }
10787 
10788 SDValue SITargetLowering::performExtractVectorEltCombine(
10789   SDNode *N, DAGCombinerInfo &DCI) const {
10790   SDValue Vec = N->getOperand(0);
10791   SelectionDAG &DAG = DCI.DAG;
10792 
10793   EVT VecVT = Vec.getValueType();
10794   EVT VecEltVT = VecVT.getVectorElementType();
10795   EVT ResVT = N->getValueType(0);
10796 
10797   unsigned VecSize = VecVT.getSizeInBits();
10798   unsigned VecEltSize = VecEltVT.getSizeInBits();
10799 
10800   if ((Vec.getOpcode() == ISD::FNEG ||
10801        Vec.getOpcode() == ISD::FABS) && allUsesHaveSourceMods(N)) {
10802     SDLoc SL(N);
10803     SDValue Idx = N->getOperand(1);
10804     SDValue Elt =
10805         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, ResVT, Vec.getOperand(0), Idx);
10806     return DAG.getNode(Vec.getOpcode(), SL, ResVT, Elt);
10807   }
10808 
10809   // ScalarRes = EXTRACT_VECTOR_ELT ((vector-BINOP Vec1, Vec2), Idx)
10810   //    =>
10811   // Vec1Elt = EXTRACT_VECTOR_ELT(Vec1, Idx)
10812   // Vec2Elt = EXTRACT_VECTOR_ELT(Vec2, Idx)
10813   // ScalarRes = scalar-BINOP Vec1Elt, Vec2Elt
10814   if (Vec.hasOneUse() && DCI.isBeforeLegalize() && VecEltVT == ResVT) {
10815     SDLoc SL(N);
10816     SDValue Idx = N->getOperand(1);
10817     unsigned Opc = Vec.getOpcode();
10818 
10819     switch(Opc) {
10820     default:
10821       break;
10822       // TODO: Support other binary operations.
10823     case ISD::FADD:
10824     case ISD::FSUB:
10825     case ISD::FMUL:
10826     case ISD::ADD:
10827     case ISD::UMIN:
10828     case ISD::UMAX:
10829     case ISD::SMIN:
10830     case ISD::SMAX:
10831     case ISD::FMAXNUM:
10832     case ISD::FMINNUM:
10833     case ISD::FMAXNUM_IEEE:
10834     case ISD::FMINNUM_IEEE: {
10835       SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, ResVT,
10836                                  Vec.getOperand(0), Idx);
10837       SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, ResVT,
10838                                  Vec.getOperand(1), Idx);
10839 
10840       DCI.AddToWorklist(Elt0.getNode());
10841       DCI.AddToWorklist(Elt1.getNode());
10842       return DAG.getNode(Opc, SL, ResVT, Elt0, Elt1, Vec->getFlags());
10843     }
10844     }
10845   }
10846 
10847   // EXTRACT_VECTOR_ELT (<n x e>, var-idx) => n x select (e, const-idx)
10848   if (shouldExpandVectorDynExt(N)) {
10849     SDLoc SL(N);
10850     SDValue Idx = N->getOperand(1);
10851     SDValue V;
10852     for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) {
10853       SDValue IC = DAG.getVectorIdxConstant(I, SL);
10854       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, ResVT, Vec, IC);
10855       if (I == 0)
10856         V = Elt;
10857       else
10858         V = DAG.getSelectCC(SL, Idx, IC, Elt, V, ISD::SETEQ);
10859     }
10860     return V;
10861   }
10862 
10863   if (!DCI.isBeforeLegalize())
10864     return SDValue();
10865 
10866   // Try to turn sub-dword accesses of vectors into accesses of the same 32-bit
10867   // elements. This exposes more load reduction opportunities by replacing
10868   // multiple small extract_vector_elements with a single 32-bit extract.
10869   auto *Idx = dyn_cast<ConstantSDNode>(N->getOperand(1));
10870   if (isa<MemSDNode>(Vec) && VecEltSize <= 16 && VecEltVT.isByteSized() &&
10871       VecSize > 32 && VecSize % 32 == 0 && Idx) {
10872     EVT NewVT = getEquivalentMemType(*DAG.getContext(), VecVT);
10873 
10874     unsigned BitIndex = Idx->getZExtValue() * VecEltSize;
10875     unsigned EltIdx = BitIndex / 32;
10876     unsigned LeftoverBitIdx = BitIndex % 32;
10877     SDLoc SL(N);
10878 
10879     SDValue Cast = DAG.getNode(ISD::BITCAST, SL, NewVT, Vec);
10880     DCI.AddToWorklist(Cast.getNode());
10881 
10882     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Cast,
10883                               DAG.getConstant(EltIdx, SL, MVT::i32));
10884     DCI.AddToWorklist(Elt.getNode());
10885     SDValue Srl = DAG.getNode(ISD::SRL, SL, MVT::i32, Elt,
10886                               DAG.getConstant(LeftoverBitIdx, SL, MVT::i32));
10887     DCI.AddToWorklist(Srl.getNode());
10888 
10889     EVT VecEltAsIntVT = VecEltVT.changeTypeToInteger();
10890     SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, VecEltAsIntVT, Srl);
10891     DCI.AddToWorklist(Trunc.getNode());
10892 
10893     if (VecEltVT == ResVT) {
10894       return DAG.getNode(ISD::BITCAST, SL, VecEltVT, Trunc);
10895     }
10896 
10897     assert(ResVT.isScalarInteger());
10898     return DAG.getAnyExtOrTrunc(Trunc, SL, ResVT);
10899   }
10900 
10901   return SDValue();
10902 }
10903 
10904 SDValue
10905 SITargetLowering::performInsertVectorEltCombine(SDNode *N,
10906                                                 DAGCombinerInfo &DCI) const {
10907   SDValue Vec = N->getOperand(0);
10908   SDValue Idx = N->getOperand(2);
10909   EVT VecVT = Vec.getValueType();
10910   EVT EltVT = VecVT.getVectorElementType();
10911 
10912   // INSERT_VECTOR_ELT (<n x e>, var-idx)
10913   // => BUILD_VECTOR n x select (e, const-idx)
10914   if (!shouldExpandVectorDynExt(N))
10915     return SDValue();
10916 
10917   SelectionDAG &DAG = DCI.DAG;
10918   SDLoc SL(N);
10919   SDValue Ins = N->getOperand(1);
10920   EVT IdxVT = Idx.getValueType();
10921 
10922   SmallVector<SDValue, 16> Ops;
10923   for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) {
10924     SDValue IC = DAG.getConstant(I, SL, IdxVT);
10925     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec, IC);
10926     SDValue V = DAG.getSelectCC(SL, Idx, IC, Ins, Elt, ISD::SETEQ);
10927     Ops.push_back(V);
10928   }
10929 
10930   return DAG.getBuildVector(VecVT, SL, Ops);
10931 }
10932 
10933 unsigned SITargetLowering::getFusedOpcode(const SelectionDAG &DAG,
10934                                           const SDNode *N0,
10935                                           const SDNode *N1) const {
10936   EVT VT = N0->getValueType(0);
10937 
10938   // Only do this if we are not trying to support denormals. v_mad_f32 does not
10939   // support denormals ever.
10940   if (((VT == MVT::f32 && !hasFP32Denormals(DAG.getMachineFunction())) ||
10941        (VT == MVT::f16 && !hasFP64FP16Denormals(DAG.getMachineFunction()) &&
10942         getSubtarget()->hasMadF16())) &&
10943        isOperationLegal(ISD::FMAD, VT))
10944     return ISD::FMAD;
10945 
10946   const TargetOptions &Options = DAG.getTarget().Options;
10947   if ((Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath ||
10948        (N0->getFlags().hasAllowContract() &&
10949         N1->getFlags().hasAllowContract())) &&
10950       isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
10951     return ISD::FMA;
10952   }
10953 
10954   return 0;
10955 }
10956 
10957 // For a reassociatable opcode perform:
10958 // op x, (op y, z) -> op (op x, z), y, if x and z are uniform
10959 SDValue SITargetLowering::reassociateScalarOps(SDNode *N,
10960                                                SelectionDAG &DAG) const {
10961   EVT VT = N->getValueType(0);
10962   if (VT != MVT::i32 && VT != MVT::i64)
10963     return SDValue();
10964 
10965   if (DAG.isBaseWithConstantOffset(SDValue(N, 0)))
10966     return SDValue();
10967 
10968   unsigned Opc = N->getOpcode();
10969   SDValue Op0 = N->getOperand(0);
10970   SDValue Op1 = N->getOperand(1);
10971 
10972   if (!(Op0->isDivergent() ^ Op1->isDivergent()))
10973     return SDValue();
10974 
10975   if (Op0->isDivergent())
10976     std::swap(Op0, Op1);
10977 
10978   if (Op1.getOpcode() != Opc || !Op1.hasOneUse())
10979     return SDValue();
10980 
10981   SDValue Op2 = Op1.getOperand(1);
10982   Op1 = Op1.getOperand(0);
10983   if (!(Op1->isDivergent() ^ Op2->isDivergent()))
10984     return SDValue();
10985 
10986   if (Op1->isDivergent())
10987     std::swap(Op1, Op2);
10988 
10989   SDLoc SL(N);
10990   SDValue Add1 = DAG.getNode(Opc, SL, VT, Op0, Op1);
10991   return DAG.getNode(Opc, SL, VT, Add1, Op2);
10992 }
10993 
10994 static SDValue getMad64_32(SelectionDAG &DAG, const SDLoc &SL,
10995                            EVT VT,
10996                            SDValue N0, SDValue N1, SDValue N2,
10997                            bool Signed) {
10998   unsigned MadOpc = Signed ? AMDGPUISD::MAD_I64_I32 : AMDGPUISD::MAD_U64_U32;
10999   SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i1);
11000   SDValue Mad = DAG.getNode(MadOpc, SL, VTs, N0, N1, N2);
11001   return DAG.getNode(ISD::TRUNCATE, SL, VT, Mad);
11002 }
11003 
11004 // Fold (add (mul x, y), z) --> (mad_[iu]64_[iu]32 x, y, z) plus high
11005 // multiplies, if any.
11006 //
11007 // Full 64-bit multiplies that feed into an addition are lowered here instead
11008 // of using the generic expansion. The generic expansion ends up with
11009 // a tree of ADD nodes that prevents us from using the "add" part of the
11010 // MAD instruction. The expansion produced here results in a chain of ADDs
11011 // instead of a tree.
11012 SDValue SITargetLowering::tryFoldToMad64_32(SDNode *N,
11013                                             DAGCombinerInfo &DCI) const {
11014   assert(N->getOpcode() == ISD::ADD);
11015 
11016   SelectionDAG &DAG = DCI.DAG;
11017   EVT VT = N->getValueType(0);
11018   SDLoc SL(N);
11019   SDValue LHS = N->getOperand(0);
11020   SDValue RHS = N->getOperand(1);
11021 
11022   if (VT.isVector())
11023     return SDValue();
11024 
11025   // S_MUL_HI_[IU]32 was added in gfx9, which allows us to keep the overall
11026   // result in scalar registers for uniform values.
11027   if (!N->isDivergent() && Subtarget->hasSMulHi())
11028     return SDValue();
11029 
11030   unsigned NumBits = VT.getScalarSizeInBits();
11031   if (NumBits <= 32 || NumBits > 64)
11032     return SDValue();
11033 
11034   if (LHS.getOpcode() != ISD::MUL) {
11035     assert(RHS.getOpcode() == ISD::MUL);
11036     std::swap(LHS, RHS);
11037   }
11038 
11039   // Avoid the fold if it would unduly increase the number of multiplies due to
11040   // multiple uses, except on hardware with full-rate multiply-add (which is
11041   // part of full-rate 64-bit ops).
11042   if (!Subtarget->hasFullRate64Ops()) {
11043     unsigned NumUsers = 0;
11044     for (SDNode *Use : LHS->uses()) {
11045       // There is a use that does not feed into addition, so the multiply can't
11046       // be removed. We prefer MUL + ADD + ADDC over MAD + MUL.
11047       if (Use->getOpcode() != ISD::ADD)
11048         return SDValue();
11049 
11050       // We prefer 2xMAD over MUL + 2xADD + 2xADDC (code density), and prefer
11051       // MUL + 3xADD + 3xADDC over 3xMAD.
11052       ++NumUsers;
11053       if (NumUsers >= 3)
11054         return SDValue();
11055     }
11056   }
11057 
11058   SDValue MulLHS = LHS.getOperand(0);
11059   SDValue MulRHS = LHS.getOperand(1);
11060   SDValue AddRHS = RHS;
11061 
11062   // Always check whether operands are small unsigned values, since that
11063   // knowledge is useful in more cases. Check for small signed values only if
11064   // doing so can unlock a shorter code sequence.
11065   bool MulLHSUnsigned32 = numBitsUnsigned(MulLHS, DAG) <= 32;
11066   bool MulRHSUnsigned32 = numBitsUnsigned(MulRHS, DAG) <= 32;
11067 
11068   bool MulSignedLo = false;
11069   if (!MulLHSUnsigned32 || !MulRHSUnsigned32) {
11070     MulSignedLo = numBitsSigned(MulLHS, DAG) <= 32 &&
11071                   numBitsSigned(MulRHS, DAG) <= 32;
11072   }
11073 
11074   // The operands and final result all have the same number of bits. If
11075   // operands need to be extended, they can be extended with garbage. The
11076   // resulting garbage in the high bits of the mad_[iu]64_[iu]32 result is
11077   // truncated away in the end.
11078   if (VT != MVT::i64) {
11079     MulLHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i64, MulLHS);
11080     MulRHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i64, MulRHS);
11081     AddRHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i64, AddRHS);
11082   }
11083 
11084   // The basic code generated is conceptually straightforward. Pseudo code:
11085   //
11086   //   accum = mad_64_32 lhs.lo, rhs.lo, accum
11087   //   accum.hi = add (mul lhs.hi, rhs.lo), accum.hi
11088   //   accum.hi = add (mul lhs.lo, rhs.hi), accum.hi
11089   //
11090   // The second and third lines are optional, depending on whether the factors
11091   // are {sign,zero}-extended or not.
11092   //
11093   // The actual DAG is noisier than the pseudo code, but only due to
11094   // instructions that disassemble values into low and high parts, and
11095   // assemble the final result.
11096   SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
11097   SDValue One = DAG.getConstant(1, SL, MVT::i32);
11098 
11099   auto MulLHSLo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, MulLHS);
11100   auto MulRHSLo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, MulRHS);
11101   SDValue Accum =
11102       getMad64_32(DAG, SL, MVT::i64, MulLHSLo, MulRHSLo, AddRHS, MulSignedLo);
11103 
11104   if (!MulSignedLo && (!MulLHSUnsigned32 || !MulRHSUnsigned32)) {
11105     auto AccumLo = DAG.getNode(ISD::EXTRACT_ELEMENT, SL, MVT::i32, Accum, Zero);
11106     auto AccumHi = DAG.getNode(ISD::EXTRACT_ELEMENT, SL, MVT::i32, Accum, One);
11107 
11108     if (!MulLHSUnsigned32) {
11109       auto MulLHSHi =
11110           DAG.getNode(ISD::EXTRACT_ELEMENT, SL, MVT::i32, MulLHS, One);
11111       SDValue MulHi = DAG.getNode(ISD::MUL, SL, MVT::i32, MulLHSHi, MulRHSLo);
11112       AccumHi = DAG.getNode(ISD::ADD, SL, MVT::i32, MulHi, AccumHi);
11113     }
11114 
11115     if (!MulRHSUnsigned32) {
11116       auto MulRHSHi =
11117           DAG.getNode(ISD::EXTRACT_ELEMENT, SL, MVT::i32, MulRHS, One);
11118       SDValue MulHi = DAG.getNode(ISD::MUL, SL, MVT::i32, MulLHSLo, MulRHSHi);
11119       AccumHi = DAG.getNode(ISD::ADD, SL, MVT::i32, MulHi, AccumHi);
11120     }
11121 
11122     Accum = DAG.getBuildVector(MVT::v2i32, SL, {AccumLo, AccumHi});
11123     Accum = DAG.getBitcast(MVT::i64, Accum);
11124   }
11125 
11126   if (VT != MVT::i64)
11127     Accum = DAG.getNode(ISD::TRUNCATE, SL, VT, Accum);
11128   return Accum;
11129 }
11130 
11131 SDValue SITargetLowering::performAddCombine(SDNode *N,
11132                                             DAGCombinerInfo &DCI) const {
11133   SelectionDAG &DAG = DCI.DAG;
11134   EVT VT = N->getValueType(0);
11135   SDLoc SL(N);
11136   SDValue LHS = N->getOperand(0);
11137   SDValue RHS = N->getOperand(1);
11138 
11139   if (LHS.getOpcode() == ISD::MUL || RHS.getOpcode() == ISD::MUL) {
11140     if (Subtarget->hasMad64_32()) {
11141       if (SDValue Folded = tryFoldToMad64_32(N, DCI))
11142         return Folded;
11143     }
11144 
11145     return SDValue();
11146   }
11147 
11148   if (SDValue V = reassociateScalarOps(N, DAG)) {
11149     return V;
11150   }
11151 
11152   if (VT != MVT::i32 || !DCI.isAfterLegalizeDAG())
11153     return SDValue();
11154 
11155   // add x, zext (setcc) => addcarry x, 0, setcc
11156   // add x, sext (setcc) => subcarry x, 0, setcc
11157   unsigned Opc = LHS.getOpcode();
11158   if (Opc == ISD::ZERO_EXTEND || Opc == ISD::SIGN_EXTEND ||
11159       Opc == ISD::ANY_EXTEND || Opc == ISD::ADDCARRY)
11160     std::swap(RHS, LHS);
11161 
11162   Opc = RHS.getOpcode();
11163   switch (Opc) {
11164   default: break;
11165   case ISD::ZERO_EXTEND:
11166   case ISD::SIGN_EXTEND:
11167   case ISD::ANY_EXTEND: {
11168     auto Cond = RHS.getOperand(0);
11169     // If this won't be a real VOPC output, we would still need to insert an
11170     // extra instruction anyway.
11171     if (!isBoolSGPR(Cond))
11172       break;
11173     SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1);
11174     SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond };
11175     Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::SUBCARRY : ISD::ADDCARRY;
11176     return DAG.getNode(Opc, SL, VTList, Args);
11177   }
11178   case ISD::ADDCARRY: {
11179     // add x, (addcarry y, 0, cc) => addcarry x, y, cc
11180     auto C = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
11181     if (!C || C->getZExtValue() != 0) break;
11182     SDValue Args[] = { LHS, RHS.getOperand(0), RHS.getOperand(2) };
11183     return DAG.getNode(ISD::ADDCARRY, SDLoc(N), RHS->getVTList(), Args);
11184   }
11185   }
11186   return SDValue();
11187 }
11188 
11189 SDValue SITargetLowering::performSubCombine(SDNode *N,
11190                                             DAGCombinerInfo &DCI) const {
11191   SelectionDAG &DAG = DCI.DAG;
11192   EVT VT = N->getValueType(0);
11193 
11194   if (VT != MVT::i32)
11195     return SDValue();
11196 
11197   SDLoc SL(N);
11198   SDValue LHS = N->getOperand(0);
11199   SDValue RHS = N->getOperand(1);
11200 
11201   // sub x, zext (setcc) => subcarry x, 0, setcc
11202   // sub x, sext (setcc) => addcarry x, 0, setcc
11203   unsigned Opc = RHS.getOpcode();
11204   switch (Opc) {
11205   default: break;
11206   case ISD::ZERO_EXTEND:
11207   case ISD::SIGN_EXTEND:
11208   case ISD::ANY_EXTEND: {
11209     auto Cond = RHS.getOperand(0);
11210     // If this won't be a real VOPC output, we would still need to insert an
11211     // extra instruction anyway.
11212     if (!isBoolSGPR(Cond))
11213       break;
11214     SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1);
11215     SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond };
11216     Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::ADDCARRY : ISD::SUBCARRY;
11217     return DAG.getNode(Opc, SL, VTList, Args);
11218   }
11219   }
11220 
11221   if (LHS.getOpcode() == ISD::SUBCARRY) {
11222     // sub (subcarry x, 0, cc), y => subcarry x, y, cc
11223     auto C = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
11224     if (!C || !C->isZero())
11225       return SDValue();
11226     SDValue Args[] = { LHS.getOperand(0), RHS, LHS.getOperand(2) };
11227     return DAG.getNode(ISD::SUBCARRY, SDLoc(N), LHS->getVTList(), Args);
11228   }
11229   return SDValue();
11230 }
11231 
11232 SDValue SITargetLowering::performAddCarrySubCarryCombine(SDNode *N,
11233   DAGCombinerInfo &DCI) const {
11234 
11235   if (N->getValueType(0) != MVT::i32)
11236     return SDValue();
11237 
11238   auto C = dyn_cast<ConstantSDNode>(N->getOperand(1));
11239   if (!C || C->getZExtValue() != 0)
11240     return SDValue();
11241 
11242   SelectionDAG &DAG = DCI.DAG;
11243   SDValue LHS = N->getOperand(0);
11244 
11245   // addcarry (add x, y), 0, cc => addcarry x, y, cc
11246   // subcarry (sub x, y), 0, cc => subcarry x, y, cc
11247   unsigned LHSOpc = LHS.getOpcode();
11248   unsigned Opc = N->getOpcode();
11249   if ((LHSOpc == ISD::ADD && Opc == ISD::ADDCARRY) ||
11250       (LHSOpc == ISD::SUB && Opc == ISD::SUBCARRY)) {
11251     SDValue Args[] = { LHS.getOperand(0), LHS.getOperand(1), N->getOperand(2) };
11252     return DAG.getNode(Opc, SDLoc(N), N->getVTList(), Args);
11253   }
11254   return SDValue();
11255 }
11256 
11257 SDValue SITargetLowering::performFAddCombine(SDNode *N,
11258                                              DAGCombinerInfo &DCI) const {
11259   if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
11260     return SDValue();
11261 
11262   SelectionDAG &DAG = DCI.DAG;
11263   EVT VT = N->getValueType(0);
11264 
11265   SDLoc SL(N);
11266   SDValue LHS = N->getOperand(0);
11267   SDValue RHS = N->getOperand(1);
11268 
11269   // These should really be instruction patterns, but writing patterns with
11270   // source modifiers is a pain.
11271 
11272   // fadd (fadd (a, a), b) -> mad 2.0, a, b
11273   if (LHS.getOpcode() == ISD::FADD) {
11274     SDValue A = LHS.getOperand(0);
11275     if (A == LHS.getOperand(1)) {
11276       unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode());
11277       if (FusedOp != 0) {
11278         const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
11279         return DAG.getNode(FusedOp, SL, VT, A, Two, RHS);
11280       }
11281     }
11282   }
11283 
11284   // fadd (b, fadd (a, a)) -> mad 2.0, a, b
11285   if (RHS.getOpcode() == ISD::FADD) {
11286     SDValue A = RHS.getOperand(0);
11287     if (A == RHS.getOperand(1)) {
11288       unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode());
11289       if (FusedOp != 0) {
11290         const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
11291         return DAG.getNode(FusedOp, SL, VT, A, Two, LHS);
11292       }
11293     }
11294   }
11295 
11296   return SDValue();
11297 }
11298 
11299 SDValue SITargetLowering::performFSubCombine(SDNode *N,
11300                                              DAGCombinerInfo &DCI) const {
11301   if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
11302     return SDValue();
11303 
11304   SelectionDAG &DAG = DCI.DAG;
11305   SDLoc SL(N);
11306   EVT VT = N->getValueType(0);
11307   assert(!VT.isVector());
11308 
11309   // Try to get the fneg to fold into the source modifier. This undoes generic
11310   // DAG combines and folds them into the mad.
11311   //
11312   // Only do this if we are not trying to support denormals. v_mad_f32 does
11313   // not support denormals ever.
11314   SDValue LHS = N->getOperand(0);
11315   SDValue RHS = N->getOperand(1);
11316   if (LHS.getOpcode() == ISD::FADD) {
11317     // (fsub (fadd a, a), c) -> mad 2.0, a, (fneg c)
11318     SDValue A = LHS.getOperand(0);
11319     if (A == LHS.getOperand(1)) {
11320       unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode());
11321       if (FusedOp != 0){
11322         const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
11323         SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
11324 
11325         return DAG.getNode(FusedOp, SL, VT, A, Two, NegRHS);
11326       }
11327     }
11328   }
11329 
11330   if (RHS.getOpcode() == ISD::FADD) {
11331     // (fsub c, (fadd a, a)) -> mad -2.0, a, c
11332 
11333     SDValue A = RHS.getOperand(0);
11334     if (A == RHS.getOperand(1)) {
11335       unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode());
11336       if (FusedOp != 0){
11337         const SDValue NegTwo = DAG.getConstantFP(-2.0, SL, VT);
11338         return DAG.getNode(FusedOp, SL, VT, A, NegTwo, LHS);
11339       }
11340     }
11341   }
11342 
11343   return SDValue();
11344 }
11345 
11346 SDValue SITargetLowering::performFMACombine(SDNode *N,
11347                                             DAGCombinerInfo &DCI) const {
11348   SelectionDAG &DAG = DCI.DAG;
11349   EVT VT = N->getValueType(0);
11350   SDLoc SL(N);
11351 
11352   if (!Subtarget->hasDot7Insts() || VT != MVT::f32)
11353     return SDValue();
11354 
11355   // FMA((F32)S0.x, (F32)S1. x, FMA((F32)S0.y, (F32)S1.y, (F32)z)) ->
11356   //   FDOT2((V2F16)S0, (V2F16)S1, (F32)z))
11357   SDValue Op1 = N->getOperand(0);
11358   SDValue Op2 = N->getOperand(1);
11359   SDValue FMA = N->getOperand(2);
11360 
11361   if (FMA.getOpcode() != ISD::FMA ||
11362       Op1.getOpcode() != ISD::FP_EXTEND ||
11363       Op2.getOpcode() != ISD::FP_EXTEND)
11364     return SDValue();
11365 
11366   // fdot2_f32_f16 always flushes fp32 denormal operand and output to zero,
11367   // regardless of the denorm mode setting. Therefore,
11368   // unsafe-fp-math/fp-contract is sufficient to allow generating fdot2.
11369   const TargetOptions &Options = DAG.getTarget().Options;
11370   if (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath ||
11371       (N->getFlags().hasAllowContract() &&
11372        FMA->getFlags().hasAllowContract())) {
11373     Op1 = Op1.getOperand(0);
11374     Op2 = Op2.getOperand(0);
11375     if (Op1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
11376         Op2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
11377       return SDValue();
11378 
11379     SDValue Vec1 = Op1.getOperand(0);
11380     SDValue Idx1 = Op1.getOperand(1);
11381     SDValue Vec2 = Op2.getOperand(0);
11382 
11383     SDValue FMAOp1 = FMA.getOperand(0);
11384     SDValue FMAOp2 = FMA.getOperand(1);
11385     SDValue FMAAcc = FMA.getOperand(2);
11386 
11387     if (FMAOp1.getOpcode() != ISD::FP_EXTEND ||
11388         FMAOp2.getOpcode() != ISD::FP_EXTEND)
11389       return SDValue();
11390 
11391     FMAOp1 = FMAOp1.getOperand(0);
11392     FMAOp2 = FMAOp2.getOperand(0);
11393     if (FMAOp1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
11394         FMAOp2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
11395       return SDValue();
11396 
11397     SDValue Vec3 = FMAOp1.getOperand(0);
11398     SDValue Vec4 = FMAOp2.getOperand(0);
11399     SDValue Idx2 = FMAOp1.getOperand(1);
11400 
11401     if (Idx1 != Op2.getOperand(1) || Idx2 != FMAOp2.getOperand(1) ||
11402         // Idx1 and Idx2 cannot be the same.
11403         Idx1 == Idx2)
11404       return SDValue();
11405 
11406     if (Vec1 == Vec2 || Vec3 == Vec4)
11407       return SDValue();
11408 
11409     if (Vec1.getValueType() != MVT::v2f16 || Vec2.getValueType() != MVT::v2f16)
11410       return SDValue();
11411 
11412     if ((Vec1 == Vec3 && Vec2 == Vec4) ||
11413         (Vec1 == Vec4 && Vec2 == Vec3)) {
11414       return DAG.getNode(AMDGPUISD::FDOT2, SL, MVT::f32, Vec1, Vec2, FMAAcc,
11415                          DAG.getTargetConstant(0, SL, MVT::i1));
11416     }
11417   }
11418   return SDValue();
11419 }
11420 
11421 SDValue SITargetLowering::performSetCCCombine(SDNode *N,
11422                                               DAGCombinerInfo &DCI) const {
11423   SelectionDAG &DAG = DCI.DAG;
11424   SDLoc SL(N);
11425 
11426   SDValue LHS = N->getOperand(0);
11427   SDValue RHS = N->getOperand(1);
11428   EVT VT = LHS.getValueType();
11429   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
11430 
11431   auto CRHS = dyn_cast<ConstantSDNode>(RHS);
11432   if (!CRHS) {
11433     CRHS = dyn_cast<ConstantSDNode>(LHS);
11434     if (CRHS) {
11435       std::swap(LHS, RHS);
11436       CC = getSetCCSwappedOperands(CC);
11437     }
11438   }
11439 
11440   if (CRHS) {
11441     if (VT == MVT::i32 && LHS.getOpcode() == ISD::SIGN_EXTEND &&
11442         isBoolSGPR(LHS.getOperand(0))) {
11443       // setcc (sext from i1 cc), -1, ne|sgt|ult) => not cc => xor cc, -1
11444       // setcc (sext from i1 cc), -1, eq|sle|uge) => cc
11445       // setcc (sext from i1 cc),  0, eq|sge|ule) => not cc => xor cc, -1
11446       // setcc (sext from i1 cc),  0, ne|ugt|slt) => cc
11447       if ((CRHS->isAllOnes() &&
11448            (CC == ISD::SETNE || CC == ISD::SETGT || CC == ISD::SETULT)) ||
11449           (CRHS->isZero() &&
11450            (CC == ISD::SETEQ || CC == ISD::SETGE || CC == ISD::SETULE)))
11451         return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0),
11452                            DAG.getConstant(-1, SL, MVT::i1));
11453       if ((CRHS->isAllOnes() &&
11454            (CC == ISD::SETEQ || CC == ISD::SETLE || CC == ISD::SETUGE)) ||
11455           (CRHS->isZero() &&
11456            (CC == ISD::SETNE || CC == ISD::SETUGT || CC == ISD::SETLT)))
11457         return LHS.getOperand(0);
11458     }
11459 
11460     const APInt &CRHSVal = CRHS->getAPIntValue();
11461     if ((CC == ISD::SETEQ || CC == ISD::SETNE) &&
11462         LHS.getOpcode() == ISD::SELECT &&
11463         isa<ConstantSDNode>(LHS.getOperand(1)) &&
11464         isa<ConstantSDNode>(LHS.getOperand(2)) &&
11465         LHS.getConstantOperandVal(1) != LHS.getConstantOperandVal(2) &&
11466         isBoolSGPR(LHS.getOperand(0))) {
11467       // Given CT != FT:
11468       // setcc (select cc, CT, CF), CF, eq => xor cc, -1
11469       // setcc (select cc, CT, CF), CF, ne => cc
11470       // setcc (select cc, CT, CF), CT, ne => xor cc, -1
11471       // setcc (select cc, CT, CF), CT, eq => cc
11472       const APInt &CT = LHS.getConstantOperandAPInt(1);
11473       const APInt &CF = LHS.getConstantOperandAPInt(2);
11474 
11475       if ((CF == CRHSVal && CC == ISD::SETEQ) ||
11476           (CT == CRHSVal && CC == ISD::SETNE))
11477         return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0),
11478                            DAG.getConstant(-1, SL, MVT::i1));
11479       if ((CF == CRHSVal && CC == ISD::SETNE) ||
11480           (CT == CRHSVal && CC == ISD::SETEQ))
11481         return LHS.getOperand(0);
11482     }
11483   }
11484 
11485   if (VT != MVT::f32 && VT != MVT::f64 &&
11486       (!Subtarget->has16BitInsts() || VT != MVT::f16))
11487     return SDValue();
11488 
11489   // Match isinf/isfinite pattern
11490   // (fcmp oeq (fabs x), inf) -> (fp_class x, (p_infinity | n_infinity))
11491   // (fcmp one (fabs x), inf) -> (fp_class x,
11492   // (p_normal | n_normal | p_subnormal | n_subnormal | p_zero | n_zero)
11493   if ((CC == ISD::SETOEQ || CC == ISD::SETONE) && LHS.getOpcode() == ISD::FABS) {
11494     const ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS);
11495     if (!CRHS)
11496       return SDValue();
11497 
11498     const APFloat &APF = CRHS->getValueAPF();
11499     if (APF.isInfinity() && !APF.isNegative()) {
11500       const unsigned IsInfMask = SIInstrFlags::P_INFINITY |
11501                                  SIInstrFlags::N_INFINITY;
11502       const unsigned IsFiniteMask = SIInstrFlags::N_ZERO |
11503                                     SIInstrFlags::P_ZERO |
11504                                     SIInstrFlags::N_NORMAL |
11505                                     SIInstrFlags::P_NORMAL |
11506                                     SIInstrFlags::N_SUBNORMAL |
11507                                     SIInstrFlags::P_SUBNORMAL;
11508       unsigned Mask = CC == ISD::SETOEQ ? IsInfMask : IsFiniteMask;
11509       return DAG.getNode(AMDGPUISD::FP_CLASS, SL, MVT::i1, LHS.getOperand(0),
11510                          DAG.getConstant(Mask, SL, MVT::i32));
11511     }
11512   }
11513 
11514   return SDValue();
11515 }
11516 
11517 SDValue SITargetLowering::performCvtF32UByteNCombine(SDNode *N,
11518                                                      DAGCombinerInfo &DCI) const {
11519   SelectionDAG &DAG = DCI.DAG;
11520   SDLoc SL(N);
11521   unsigned Offset = N->getOpcode() - AMDGPUISD::CVT_F32_UBYTE0;
11522 
11523   SDValue Src = N->getOperand(0);
11524   SDValue Shift = N->getOperand(0);
11525 
11526   // TODO: Extend type shouldn't matter (assuming legal types).
11527   if (Shift.getOpcode() == ISD::ZERO_EXTEND)
11528     Shift = Shift.getOperand(0);
11529 
11530   if (Shift.getOpcode() == ISD::SRL || Shift.getOpcode() == ISD::SHL) {
11531     // cvt_f32_ubyte1 (shl x,  8) -> cvt_f32_ubyte0 x
11532     // cvt_f32_ubyte3 (shl x, 16) -> cvt_f32_ubyte1 x
11533     // cvt_f32_ubyte0 (srl x, 16) -> cvt_f32_ubyte2 x
11534     // cvt_f32_ubyte1 (srl x, 16) -> cvt_f32_ubyte3 x
11535     // cvt_f32_ubyte0 (srl x,  8) -> cvt_f32_ubyte1 x
11536     if (auto *C = dyn_cast<ConstantSDNode>(Shift.getOperand(1))) {
11537       SDValue Shifted = DAG.getZExtOrTrunc(Shift.getOperand(0),
11538                                  SDLoc(Shift.getOperand(0)), MVT::i32);
11539 
11540       unsigned ShiftOffset = 8 * Offset;
11541       if (Shift.getOpcode() == ISD::SHL)
11542         ShiftOffset -= C->getZExtValue();
11543       else
11544         ShiftOffset += C->getZExtValue();
11545 
11546       if (ShiftOffset < 32 && (ShiftOffset % 8) == 0) {
11547         return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0 + ShiftOffset / 8, SL,
11548                            MVT::f32, Shifted);
11549       }
11550     }
11551   }
11552 
11553   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11554   APInt DemandedBits = APInt::getBitsSet(32, 8 * Offset, 8 * Offset + 8);
11555   if (TLI.SimplifyDemandedBits(Src, DemandedBits, DCI)) {
11556     // We simplified Src. If this node is not dead, visit it again so it is
11557     // folded properly.
11558     if (N->getOpcode() != ISD::DELETED_NODE)
11559       DCI.AddToWorklist(N);
11560     return SDValue(N, 0);
11561   }
11562 
11563   // Handle (or x, (srl y, 8)) pattern when known bits are zero.
11564   if (SDValue DemandedSrc =
11565           TLI.SimplifyMultipleUseDemandedBits(Src, DemandedBits, DAG))
11566     return DAG.getNode(N->getOpcode(), SL, MVT::f32, DemandedSrc);
11567 
11568   return SDValue();
11569 }
11570 
11571 SDValue SITargetLowering::performClampCombine(SDNode *N,
11572                                               DAGCombinerInfo &DCI) const {
11573   ConstantFPSDNode *CSrc = dyn_cast<ConstantFPSDNode>(N->getOperand(0));
11574   if (!CSrc)
11575     return SDValue();
11576 
11577   const MachineFunction &MF = DCI.DAG.getMachineFunction();
11578   const APFloat &F = CSrc->getValueAPF();
11579   APFloat Zero = APFloat::getZero(F.getSemantics());
11580   if (F < Zero ||
11581       (F.isNaN() && MF.getInfo<SIMachineFunctionInfo>()->getMode().DX10Clamp)) {
11582     return DCI.DAG.getConstantFP(Zero, SDLoc(N), N->getValueType(0));
11583   }
11584 
11585   APFloat One(F.getSemantics(), "1.0");
11586   if (F > One)
11587     return DCI.DAG.getConstantFP(One, SDLoc(N), N->getValueType(0));
11588 
11589   return SDValue(CSrc, 0);
11590 }
11591 
11592 
11593 SDValue SITargetLowering::PerformDAGCombine(SDNode *N,
11594                                             DAGCombinerInfo &DCI) const {
11595   if (getTargetMachine().getOptLevel() == CodeGenOpt::None)
11596     return SDValue();
11597   switch (N->getOpcode()) {
11598   case ISD::ADD:
11599     return performAddCombine(N, DCI);
11600   case ISD::SUB:
11601     return performSubCombine(N, DCI);
11602   case ISD::ADDCARRY:
11603   case ISD::SUBCARRY:
11604     return performAddCarrySubCarryCombine(N, DCI);
11605   case ISD::FADD:
11606     return performFAddCombine(N, DCI);
11607   case ISD::FSUB:
11608     return performFSubCombine(N, DCI);
11609   case ISD::SETCC:
11610     return performSetCCCombine(N, DCI);
11611   case ISD::FMAXNUM:
11612   case ISD::FMINNUM:
11613   case ISD::FMAXNUM_IEEE:
11614   case ISD::FMINNUM_IEEE:
11615   case ISD::SMAX:
11616   case ISD::SMIN:
11617   case ISD::UMAX:
11618   case ISD::UMIN:
11619   case AMDGPUISD::FMIN_LEGACY:
11620   case AMDGPUISD::FMAX_LEGACY:
11621     return performMinMaxCombine(N, DCI);
11622   case ISD::FMA:
11623     return performFMACombine(N, DCI);
11624   case ISD::AND:
11625     return performAndCombine(N, DCI);
11626   case ISD::OR:
11627     return performOrCombine(N, DCI);
11628   case ISD::XOR:
11629     return performXorCombine(N, DCI);
11630   case ISD::ZERO_EXTEND:
11631     return performZeroExtendCombine(N, DCI);
11632   case ISD::SIGN_EXTEND_INREG:
11633     return performSignExtendInRegCombine(N , DCI);
11634   case AMDGPUISD::FP_CLASS:
11635     return performClassCombine(N, DCI);
11636   case ISD::FCANONICALIZE:
11637     return performFCanonicalizeCombine(N, DCI);
11638   case AMDGPUISD::RCP:
11639     return performRcpCombine(N, DCI);
11640   case AMDGPUISD::FRACT:
11641   case AMDGPUISD::RSQ:
11642   case AMDGPUISD::RCP_LEGACY:
11643   case AMDGPUISD::RCP_IFLAG:
11644   case AMDGPUISD::RSQ_CLAMP:
11645   case AMDGPUISD::LDEXP: {
11646     // FIXME: This is probably wrong. If src is an sNaN, it won't be quieted
11647     SDValue Src = N->getOperand(0);
11648     if (Src.isUndef())
11649       return Src;
11650     break;
11651   }
11652   case ISD::SINT_TO_FP:
11653   case ISD::UINT_TO_FP:
11654     return performUCharToFloatCombine(N, DCI);
11655   case AMDGPUISD::CVT_F32_UBYTE0:
11656   case AMDGPUISD::CVT_F32_UBYTE1:
11657   case AMDGPUISD::CVT_F32_UBYTE2:
11658   case AMDGPUISD::CVT_F32_UBYTE3:
11659     return performCvtF32UByteNCombine(N, DCI);
11660   case AMDGPUISD::FMED3:
11661     return performFMed3Combine(N, DCI);
11662   case AMDGPUISD::CVT_PKRTZ_F16_F32:
11663     return performCvtPkRTZCombine(N, DCI);
11664   case AMDGPUISD::CLAMP:
11665     return performClampCombine(N, DCI);
11666   case ISD::SCALAR_TO_VECTOR: {
11667     SelectionDAG &DAG = DCI.DAG;
11668     EVT VT = N->getValueType(0);
11669 
11670     // v2i16 (scalar_to_vector i16:x) -> v2i16 (bitcast (any_extend i16:x))
11671     if (VT == MVT::v2i16 || VT == MVT::v2f16) {
11672       SDLoc SL(N);
11673       SDValue Src = N->getOperand(0);
11674       EVT EltVT = Src.getValueType();
11675       if (EltVT == MVT::f16)
11676         Src = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Src);
11677 
11678       SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Src);
11679       return DAG.getNode(ISD::BITCAST, SL, VT, Ext);
11680     }
11681 
11682     break;
11683   }
11684   case ISD::EXTRACT_VECTOR_ELT:
11685     return performExtractVectorEltCombine(N, DCI);
11686   case ISD::INSERT_VECTOR_ELT:
11687     return performInsertVectorEltCombine(N, DCI);
11688   case ISD::LOAD: {
11689     if (SDValue Widended = widenLoad(cast<LoadSDNode>(N), DCI))
11690       return Widended;
11691     [[fallthrough]];
11692   }
11693   default: {
11694     if (!DCI.isBeforeLegalize()) {
11695       if (MemSDNode *MemNode = dyn_cast<MemSDNode>(N))
11696         return performMemSDNodeCombine(MemNode, DCI);
11697     }
11698 
11699     break;
11700   }
11701   }
11702 
11703   return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
11704 }
11705 
11706 /// Helper function for adjustWritemask
11707 static unsigned SubIdx2Lane(unsigned Idx) {
11708   switch (Idx) {
11709   default: return ~0u;
11710   case AMDGPU::sub0: return 0;
11711   case AMDGPU::sub1: return 1;
11712   case AMDGPU::sub2: return 2;
11713   case AMDGPU::sub3: return 3;
11714   case AMDGPU::sub4: return 4; // Possible with TFE/LWE
11715   }
11716 }
11717 
11718 /// Adjust the writemask of MIMG instructions
11719 SDNode *SITargetLowering::adjustWritemask(MachineSDNode *&Node,
11720                                           SelectionDAG &DAG) const {
11721   unsigned Opcode = Node->getMachineOpcode();
11722 
11723   // Subtract 1 because the vdata output is not a MachineSDNode operand.
11724   int D16Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::d16) - 1;
11725   if (D16Idx >= 0 && Node->getConstantOperandVal(D16Idx))
11726     return Node; // not implemented for D16
11727 
11728   SDNode *Users[5] = { nullptr };
11729   unsigned Lane = 0;
11730   unsigned DmaskIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::dmask) - 1;
11731   unsigned OldDmask = Node->getConstantOperandVal(DmaskIdx);
11732   unsigned NewDmask = 0;
11733   unsigned TFEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::tfe) - 1;
11734   unsigned LWEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::lwe) - 1;
11735   bool UsesTFC = ((int(TFEIdx) >= 0 && Node->getConstantOperandVal(TFEIdx)) ||
11736                   Node->getConstantOperandVal(LWEIdx))
11737                      ? true
11738                      : false;
11739   unsigned TFCLane = 0;
11740   bool HasChain = Node->getNumValues() > 1;
11741 
11742   if (OldDmask == 0) {
11743     // These are folded out, but on the chance it happens don't assert.
11744     return Node;
11745   }
11746 
11747   unsigned OldBitsSet = llvm::popcount(OldDmask);
11748   // Work out which is the TFE/LWE lane if that is enabled.
11749   if (UsesTFC) {
11750     TFCLane = OldBitsSet;
11751   }
11752 
11753   // Try to figure out the used register components
11754   for (SDNode::use_iterator I = Node->use_begin(), E = Node->use_end();
11755        I != E; ++I) {
11756 
11757     // Don't look at users of the chain.
11758     if (I.getUse().getResNo() != 0)
11759       continue;
11760 
11761     // Abort if we can't understand the usage
11762     if (!I->isMachineOpcode() ||
11763         I->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG)
11764       return Node;
11765 
11766     // Lane means which subreg of %vgpra_vgprb_vgprc_vgprd is used.
11767     // Note that subregs are packed, i.e. Lane==0 is the first bit set
11768     // in OldDmask, so it can be any of X,Y,Z,W; Lane==1 is the second bit
11769     // set, etc.
11770     Lane = SubIdx2Lane(I->getConstantOperandVal(1));
11771     if (Lane == ~0u)
11772       return Node;
11773 
11774     // Check if the use is for the TFE/LWE generated result at VGPRn+1.
11775     if (UsesTFC && Lane == TFCLane) {
11776       Users[Lane] = *I;
11777     } else {
11778       // Set which texture component corresponds to the lane.
11779       unsigned Comp;
11780       for (unsigned i = 0, Dmask = OldDmask; (i <= Lane) && (Dmask != 0); i++) {
11781         Comp = countTrailingZeros(Dmask);
11782         Dmask &= ~(1 << Comp);
11783       }
11784 
11785       // Abort if we have more than one user per component.
11786       if (Users[Lane])
11787         return Node;
11788 
11789       Users[Lane] = *I;
11790       NewDmask |= 1 << Comp;
11791     }
11792   }
11793 
11794   // Don't allow 0 dmask, as hardware assumes one channel enabled.
11795   bool NoChannels = !NewDmask;
11796   if (NoChannels) {
11797     if (!UsesTFC) {
11798       // No uses of the result and not using TFC. Then do nothing.
11799       return Node;
11800     }
11801     // If the original dmask has one channel - then nothing to do
11802     if (OldBitsSet == 1)
11803       return Node;
11804     // Use an arbitrary dmask - required for the instruction to work
11805     NewDmask = 1;
11806   }
11807   // Abort if there's no change
11808   if (NewDmask == OldDmask)
11809     return Node;
11810 
11811   unsigned BitsSet = llvm::popcount(NewDmask);
11812 
11813   // Check for TFE or LWE - increase the number of channels by one to account
11814   // for the extra return value
11815   // This will need adjustment for D16 if this is also included in
11816   // adjustWriteMask (this function) but at present D16 are excluded.
11817   unsigned NewChannels = BitsSet + UsesTFC;
11818 
11819   int NewOpcode =
11820       AMDGPU::getMaskedMIMGOp(Node->getMachineOpcode(), NewChannels);
11821   assert(NewOpcode != -1 &&
11822          NewOpcode != static_cast<int>(Node->getMachineOpcode()) &&
11823          "failed to find equivalent MIMG op");
11824 
11825   // Adjust the writemask in the node
11826   SmallVector<SDValue, 12> Ops;
11827   Ops.insert(Ops.end(), Node->op_begin(), Node->op_begin() + DmaskIdx);
11828   Ops.push_back(DAG.getTargetConstant(NewDmask, SDLoc(Node), MVT::i32));
11829   Ops.insert(Ops.end(), Node->op_begin() + DmaskIdx + 1, Node->op_end());
11830 
11831   MVT SVT = Node->getValueType(0).getVectorElementType().getSimpleVT();
11832 
11833   MVT ResultVT = NewChannels == 1 ?
11834     SVT : MVT::getVectorVT(SVT, NewChannels == 3 ? 4 :
11835                            NewChannels == 5 ? 8 : NewChannels);
11836   SDVTList NewVTList = HasChain ?
11837     DAG.getVTList(ResultVT, MVT::Other) : DAG.getVTList(ResultVT);
11838 
11839 
11840   MachineSDNode *NewNode = DAG.getMachineNode(NewOpcode, SDLoc(Node),
11841                                               NewVTList, Ops);
11842 
11843   if (HasChain) {
11844     // Update chain.
11845     DAG.setNodeMemRefs(NewNode, Node->memoperands());
11846     DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), SDValue(NewNode, 1));
11847   }
11848 
11849   if (NewChannels == 1) {
11850     assert(Node->hasNUsesOfValue(1, 0));
11851     SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY,
11852                                       SDLoc(Node), Users[Lane]->getValueType(0),
11853                                       SDValue(NewNode, 0));
11854     DAG.ReplaceAllUsesWith(Users[Lane], Copy);
11855     return nullptr;
11856   }
11857 
11858   // Update the users of the node with the new indices
11859   for (unsigned i = 0, Idx = AMDGPU::sub0; i < 5; ++i) {
11860     SDNode *User = Users[i];
11861     if (!User) {
11862       // Handle the special case of NoChannels. We set NewDmask to 1 above, but
11863       // Users[0] is still nullptr because channel 0 doesn't really have a use.
11864       if (i || !NoChannels)
11865         continue;
11866     } else {
11867       SDValue Op = DAG.getTargetConstant(Idx, SDLoc(User), MVT::i32);
11868       DAG.UpdateNodeOperands(User, SDValue(NewNode, 0), Op);
11869     }
11870 
11871     switch (Idx) {
11872     default: break;
11873     case AMDGPU::sub0: Idx = AMDGPU::sub1; break;
11874     case AMDGPU::sub1: Idx = AMDGPU::sub2; break;
11875     case AMDGPU::sub2: Idx = AMDGPU::sub3; break;
11876     case AMDGPU::sub3: Idx = AMDGPU::sub4; break;
11877     }
11878   }
11879 
11880   DAG.RemoveDeadNode(Node);
11881   return nullptr;
11882 }
11883 
11884 static bool isFrameIndexOp(SDValue Op) {
11885   if (Op.getOpcode() == ISD::AssertZext)
11886     Op = Op.getOperand(0);
11887 
11888   return isa<FrameIndexSDNode>(Op);
11889 }
11890 
11891 /// Legalize target independent instructions (e.g. INSERT_SUBREG)
11892 /// with frame index operands.
11893 /// LLVM assumes that inputs are to these instructions are registers.
11894 SDNode *SITargetLowering::legalizeTargetIndependentNode(SDNode *Node,
11895                                                         SelectionDAG &DAG) const {
11896   if (Node->getOpcode() == ISD::CopyToReg) {
11897     RegisterSDNode *DestReg = cast<RegisterSDNode>(Node->getOperand(1));
11898     SDValue SrcVal = Node->getOperand(2);
11899 
11900     // Insert a copy to a VReg_1 virtual register so LowerI1Copies doesn't have
11901     // to try understanding copies to physical registers.
11902     if (SrcVal.getValueType() == MVT::i1 && DestReg->getReg().isPhysical()) {
11903       SDLoc SL(Node);
11904       MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
11905       SDValue VReg = DAG.getRegister(
11906         MRI.createVirtualRegister(&AMDGPU::VReg_1RegClass), MVT::i1);
11907 
11908       SDNode *Glued = Node->getGluedNode();
11909       SDValue ToVReg
11910         = DAG.getCopyToReg(Node->getOperand(0), SL, VReg, SrcVal,
11911                          SDValue(Glued, Glued ? Glued->getNumValues() - 1 : 0));
11912       SDValue ToResultReg
11913         = DAG.getCopyToReg(ToVReg, SL, SDValue(DestReg, 0),
11914                            VReg, ToVReg.getValue(1));
11915       DAG.ReplaceAllUsesWith(Node, ToResultReg.getNode());
11916       DAG.RemoveDeadNode(Node);
11917       return ToResultReg.getNode();
11918     }
11919   }
11920 
11921   SmallVector<SDValue, 8> Ops;
11922   for (unsigned i = 0; i < Node->getNumOperands(); ++i) {
11923     if (!isFrameIndexOp(Node->getOperand(i))) {
11924       Ops.push_back(Node->getOperand(i));
11925       continue;
11926     }
11927 
11928     SDLoc DL(Node);
11929     Ops.push_back(SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL,
11930                                      Node->getOperand(i).getValueType(),
11931                                      Node->getOperand(i)), 0));
11932   }
11933 
11934   return DAG.UpdateNodeOperands(Node, Ops);
11935 }
11936 
11937 /// Fold the instructions after selecting them.
11938 /// Returns null if users were already updated.
11939 SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node,
11940                                           SelectionDAG &DAG) const {
11941   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
11942   unsigned Opcode = Node->getMachineOpcode();
11943 
11944   if (TII->isMIMG(Opcode) && !TII->get(Opcode).mayStore() &&
11945       !TII->isGather4(Opcode) &&
11946       AMDGPU::hasNamedOperand(Opcode, AMDGPU::OpName::dmask)) {
11947     return adjustWritemask(Node, DAG);
11948   }
11949 
11950   if (Opcode == AMDGPU::INSERT_SUBREG ||
11951       Opcode == AMDGPU::REG_SEQUENCE) {
11952     legalizeTargetIndependentNode(Node, DAG);
11953     return Node;
11954   }
11955 
11956   switch (Opcode) {
11957   case AMDGPU::V_DIV_SCALE_F32_e64:
11958   case AMDGPU::V_DIV_SCALE_F64_e64: {
11959     // Satisfy the operand register constraint when one of the inputs is
11960     // undefined. Ordinarily each undef value will have its own implicit_def of
11961     // a vreg, so force these to use a single register.
11962     SDValue Src0 = Node->getOperand(1);
11963     SDValue Src1 = Node->getOperand(3);
11964     SDValue Src2 = Node->getOperand(5);
11965 
11966     if ((Src0.isMachineOpcode() &&
11967          Src0.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) &&
11968         (Src0 == Src1 || Src0 == Src2))
11969       break;
11970 
11971     MVT VT = Src0.getValueType().getSimpleVT();
11972     const TargetRegisterClass *RC =
11973         getRegClassFor(VT, Src0.getNode()->isDivergent());
11974 
11975     MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
11976     SDValue UndefReg = DAG.getRegister(MRI.createVirtualRegister(RC), VT);
11977 
11978     SDValue ImpDef = DAG.getCopyToReg(DAG.getEntryNode(), SDLoc(Node),
11979                                       UndefReg, Src0, SDValue());
11980 
11981     // src0 must be the same register as src1 or src2, even if the value is
11982     // undefined, so make sure we don't violate this constraint.
11983     if (Src0.isMachineOpcode() &&
11984         Src0.getMachineOpcode() == AMDGPU::IMPLICIT_DEF) {
11985       if (Src1.isMachineOpcode() &&
11986           Src1.getMachineOpcode() != AMDGPU::IMPLICIT_DEF)
11987         Src0 = Src1;
11988       else if (Src2.isMachineOpcode() &&
11989                Src2.getMachineOpcode() != AMDGPU::IMPLICIT_DEF)
11990         Src0 = Src2;
11991       else {
11992         assert(Src1.getMachineOpcode() == AMDGPU::IMPLICIT_DEF);
11993         Src0 = UndefReg;
11994         Src1 = UndefReg;
11995       }
11996     } else
11997       break;
11998 
11999     SmallVector<SDValue, 9> Ops(Node->op_begin(), Node->op_end());
12000     Ops[1] = Src0;
12001     Ops[3] = Src1;
12002     Ops[5] = Src2;
12003     Ops.push_back(ImpDef.getValue(1));
12004     return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
12005   }
12006   default:
12007     break;
12008   }
12009 
12010   return Node;
12011 }
12012 
12013 // Any MIMG instructions that use tfe or lwe require an initialization of the
12014 // result register that will be written in the case of a memory access failure.
12015 // The required code is also added to tie this init code to the result of the
12016 // img instruction.
12017 void SITargetLowering::AddIMGInit(MachineInstr &MI) const {
12018   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
12019   const SIRegisterInfo &TRI = TII->getRegisterInfo();
12020   MachineRegisterInfo &MRI = MI.getMF()->getRegInfo();
12021   MachineBasicBlock &MBB = *MI.getParent();
12022 
12023   MachineOperand *TFE = TII->getNamedOperand(MI, AMDGPU::OpName::tfe);
12024   MachineOperand *LWE = TII->getNamedOperand(MI, AMDGPU::OpName::lwe);
12025   MachineOperand *D16 = TII->getNamedOperand(MI, AMDGPU::OpName::d16);
12026 
12027   if (!TFE && !LWE) // intersect_ray
12028     return;
12029 
12030   unsigned TFEVal = TFE ? TFE->getImm() : 0;
12031   unsigned LWEVal = LWE->getImm();
12032   unsigned D16Val = D16 ? D16->getImm() : 0;
12033 
12034   if (!TFEVal && !LWEVal)
12035     return;
12036 
12037   // At least one of TFE or LWE are non-zero
12038   // We have to insert a suitable initialization of the result value and
12039   // tie this to the dest of the image instruction.
12040 
12041   const DebugLoc &DL = MI.getDebugLoc();
12042 
12043   int DstIdx =
12044       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vdata);
12045 
12046   // Calculate which dword we have to initialize to 0.
12047   MachineOperand *MO_Dmask = TII->getNamedOperand(MI, AMDGPU::OpName::dmask);
12048 
12049   // check that dmask operand is found.
12050   assert(MO_Dmask && "Expected dmask operand in instruction");
12051 
12052   unsigned dmask = MO_Dmask->getImm();
12053   // Determine the number of active lanes taking into account the
12054   // Gather4 special case
12055   unsigned ActiveLanes = TII->isGather4(MI) ? 4 : llvm::popcount(dmask);
12056 
12057   bool Packed = !Subtarget->hasUnpackedD16VMem();
12058 
12059   unsigned InitIdx =
12060       D16Val && Packed ? ((ActiveLanes + 1) >> 1) + 1 : ActiveLanes + 1;
12061 
12062   // Abandon attempt if the dst size isn't large enough
12063   // - this is in fact an error but this is picked up elsewhere and
12064   // reported correctly.
12065   uint32_t DstSize = TRI.getRegSizeInBits(*TII->getOpRegClass(MI, DstIdx)) / 32;
12066   if (DstSize < InitIdx)
12067     return;
12068 
12069   // Create a register for the initialization value.
12070   Register PrevDst = MRI.createVirtualRegister(TII->getOpRegClass(MI, DstIdx));
12071   unsigned NewDst = 0; // Final initialized value will be in here
12072 
12073   // If PRTStrictNull feature is enabled (the default) then initialize
12074   // all the result registers to 0, otherwise just the error indication
12075   // register (VGPRn+1)
12076   unsigned SizeLeft = Subtarget->usePRTStrictNull() ? InitIdx : 1;
12077   unsigned CurrIdx = Subtarget->usePRTStrictNull() ? 0 : (InitIdx - 1);
12078 
12079   BuildMI(MBB, MI, DL, TII->get(AMDGPU::IMPLICIT_DEF), PrevDst);
12080   for (; SizeLeft; SizeLeft--, CurrIdx++) {
12081     NewDst = MRI.createVirtualRegister(TII->getOpRegClass(MI, DstIdx));
12082     // Initialize dword
12083     Register SubReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
12084     BuildMI(MBB, MI, DL, TII->get(AMDGPU::V_MOV_B32_e32), SubReg)
12085       .addImm(0);
12086     // Insert into the super-reg
12087     BuildMI(MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewDst)
12088       .addReg(PrevDst)
12089       .addReg(SubReg)
12090       .addImm(SIRegisterInfo::getSubRegFromChannel(CurrIdx));
12091 
12092     PrevDst = NewDst;
12093   }
12094 
12095   // Add as an implicit operand
12096   MI.addOperand(MachineOperand::CreateReg(NewDst, false, true));
12097 
12098   // Tie the just added implicit operand to the dst
12099   MI.tieOperands(DstIdx, MI.getNumOperands() - 1);
12100 }
12101 
12102 /// Assign the register class depending on the number of
12103 /// bits set in the writemask
12104 void SITargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
12105                                                      SDNode *Node) const {
12106   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
12107 
12108   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
12109 
12110   if (TII->isVOP3(MI.getOpcode())) {
12111     // Make sure constant bus requirements are respected.
12112     TII->legalizeOperandsVOP3(MRI, MI);
12113 
12114     // Prefer VGPRs over AGPRs in mAI instructions where possible.
12115     // This saves a chain-copy of registers and better balance register
12116     // use between vgpr and agpr as agpr tuples tend to be big.
12117     if (!MI.getDesc().operands().empty()) {
12118       unsigned Opc = MI.getOpcode();
12119       const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
12120       for (auto I : { AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0),
12121                       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1) }) {
12122         if (I == -1)
12123           break;
12124         MachineOperand &Op = MI.getOperand(I);
12125         if (!Op.isReg() || !Op.getReg().isVirtual())
12126           continue;
12127         auto *RC = TRI->getRegClassForReg(MRI, Op.getReg());
12128         if (!TRI->hasAGPRs(RC))
12129           continue;
12130         auto *Src = MRI.getUniqueVRegDef(Op.getReg());
12131         if (!Src || !Src->isCopy() ||
12132             !TRI->isSGPRReg(MRI, Src->getOperand(1).getReg()))
12133           continue;
12134         auto *NewRC = TRI->getEquivalentVGPRClass(RC);
12135         // All uses of agpr64 and agpr32 can also accept vgpr except for
12136         // v_accvgpr_read, but we do not produce agpr reads during selection,
12137         // so no use checks are needed.
12138         MRI.setRegClass(Op.getReg(), NewRC);
12139       }
12140 
12141       // Resolve the rest of AV operands to AGPRs.
12142       if (auto *Src2 = TII->getNamedOperand(MI, AMDGPU::OpName::src2)) {
12143         if (Src2->isReg() && Src2->getReg().isVirtual()) {
12144           auto *RC = TRI->getRegClassForReg(MRI, Src2->getReg());
12145           if (TRI->isVectorSuperClass(RC)) {
12146             auto *NewRC = TRI->getEquivalentAGPRClass(RC);
12147             MRI.setRegClass(Src2->getReg(), NewRC);
12148             if (Src2->isTied())
12149               MRI.setRegClass(MI.getOperand(0).getReg(), NewRC);
12150           }
12151         }
12152       }
12153     }
12154 
12155     return;
12156   }
12157 
12158   if (TII->isMIMG(MI)) {
12159     if (!MI.mayStore())
12160       AddIMGInit(MI);
12161     TII->enforceOperandRCAlignment(MI, AMDGPU::OpName::vaddr);
12162   }
12163 }
12164 
12165 static SDValue buildSMovImm32(SelectionDAG &DAG, const SDLoc &DL,
12166                               uint64_t Val) {
12167   SDValue K = DAG.getTargetConstant(Val, DL, MVT::i32);
12168   return SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, K), 0);
12169 }
12170 
12171 MachineSDNode *SITargetLowering::wrapAddr64Rsrc(SelectionDAG &DAG,
12172                                                 const SDLoc &DL,
12173                                                 SDValue Ptr) const {
12174   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
12175 
12176   // Build the half of the subregister with the constants before building the
12177   // full 128-bit register. If we are building multiple resource descriptors,
12178   // this will allow CSEing of the 2-component register.
12179   const SDValue Ops0[] = {
12180     DAG.getTargetConstant(AMDGPU::SGPR_64RegClassID, DL, MVT::i32),
12181     buildSMovImm32(DAG, DL, 0),
12182     DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
12183     buildSMovImm32(DAG, DL, TII->getDefaultRsrcDataFormat() >> 32),
12184     DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32)
12185   };
12186 
12187   SDValue SubRegHi = SDValue(DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL,
12188                                                 MVT::v2i32, Ops0), 0);
12189 
12190   // Combine the constants and the pointer.
12191   const SDValue Ops1[] = {
12192     DAG.getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32),
12193     Ptr,
12194     DAG.getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32),
12195     SubRegHi,
12196     DAG.getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32)
12197   };
12198 
12199   return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops1);
12200 }
12201 
12202 /// Return a resource descriptor with the 'Add TID' bit enabled
12203 ///        The TID (Thread ID) is multiplied by the stride value (bits [61:48]
12204 ///        of the resource descriptor) to create an offset, which is added to
12205 ///        the resource pointer.
12206 MachineSDNode *SITargetLowering::buildRSRC(SelectionDAG &DAG, const SDLoc &DL,
12207                                            SDValue Ptr, uint32_t RsrcDword1,
12208                                            uint64_t RsrcDword2And3) const {
12209   SDValue PtrLo = DAG.getTargetExtractSubreg(AMDGPU::sub0, DL, MVT::i32, Ptr);
12210   SDValue PtrHi = DAG.getTargetExtractSubreg(AMDGPU::sub1, DL, MVT::i32, Ptr);
12211   if (RsrcDword1) {
12212     PtrHi = SDValue(DAG.getMachineNode(AMDGPU::S_OR_B32, DL, MVT::i32, PtrHi,
12213                                      DAG.getConstant(RsrcDword1, DL, MVT::i32)),
12214                     0);
12215   }
12216 
12217   SDValue DataLo = buildSMovImm32(DAG, DL,
12218                                   RsrcDword2And3 & UINT64_C(0xFFFFFFFF));
12219   SDValue DataHi = buildSMovImm32(DAG, DL, RsrcDword2And3 >> 32);
12220 
12221   const SDValue Ops[] = {
12222     DAG.getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32),
12223     PtrLo,
12224     DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
12225     PtrHi,
12226     DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32),
12227     DataLo,
12228     DAG.getTargetConstant(AMDGPU::sub2, DL, MVT::i32),
12229     DataHi,
12230     DAG.getTargetConstant(AMDGPU::sub3, DL, MVT::i32)
12231   };
12232 
12233   return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops);
12234 }
12235 
12236 //===----------------------------------------------------------------------===//
12237 //                         SI Inline Assembly Support
12238 //===----------------------------------------------------------------------===//
12239 
12240 std::pair<unsigned, const TargetRegisterClass *>
12241 SITargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI_,
12242                                                StringRef Constraint,
12243                                                MVT VT) const {
12244   const SIRegisterInfo *TRI = static_cast<const SIRegisterInfo *>(TRI_);
12245 
12246   const TargetRegisterClass *RC = nullptr;
12247   if (Constraint.size() == 1) {
12248     const unsigned BitWidth = VT.getSizeInBits();
12249     switch (Constraint[0]) {
12250     default:
12251       return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
12252     case 's':
12253     case 'r':
12254       switch (BitWidth) {
12255       case 16:
12256         RC = &AMDGPU::SReg_32RegClass;
12257         break;
12258       case 64:
12259         RC = &AMDGPU::SGPR_64RegClass;
12260         break;
12261       default:
12262         RC = SIRegisterInfo::getSGPRClassForBitWidth(BitWidth);
12263         if (!RC)
12264           return std::pair(0U, nullptr);
12265         break;
12266       }
12267       break;
12268     case 'v':
12269       switch (BitWidth) {
12270       case 16:
12271         RC = &AMDGPU::VGPR_32RegClass;
12272         break;
12273       default:
12274         RC = TRI->getVGPRClassForBitWidth(BitWidth);
12275         if (!RC)
12276           return std::pair(0U, nullptr);
12277         break;
12278       }
12279       break;
12280     case 'a':
12281       if (!Subtarget->hasMAIInsts())
12282         break;
12283       switch (BitWidth) {
12284       case 16:
12285         RC = &AMDGPU::AGPR_32RegClass;
12286         break;
12287       default:
12288         RC = TRI->getAGPRClassForBitWidth(BitWidth);
12289         if (!RC)
12290           return std::pair(0U, nullptr);
12291         break;
12292       }
12293       break;
12294     }
12295     // We actually support i128, i16 and f16 as inline parameters
12296     // even if they are not reported as legal
12297     if (RC && (isTypeLegal(VT) || VT.SimpleTy == MVT::i128 ||
12298                VT.SimpleTy == MVT::i16 || VT.SimpleTy == MVT::f16))
12299       return std::pair(0U, RC);
12300   }
12301 
12302   if (Constraint.startswith("{") && Constraint.endswith("}")) {
12303     StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
12304     if (RegName.consume_front("v")) {
12305       RC = &AMDGPU::VGPR_32RegClass;
12306     } else if (RegName.consume_front("s")) {
12307       RC = &AMDGPU::SGPR_32RegClass;
12308     } else if (RegName.consume_front("a")) {
12309       RC = &AMDGPU::AGPR_32RegClass;
12310     }
12311 
12312     if (RC) {
12313       uint32_t Idx;
12314       if (RegName.consume_front("[")) {
12315         uint32_t End;
12316         bool Failed = RegName.consumeInteger(10, Idx);
12317         Failed |= !RegName.consume_front(":");
12318         Failed |= RegName.consumeInteger(10, End);
12319         Failed |= !RegName.consume_back("]");
12320         if (!Failed) {
12321           uint32_t Width = (End - Idx + 1) * 32;
12322           MCRegister Reg = RC->getRegister(Idx);
12323           if (SIRegisterInfo::isVGPRClass(RC))
12324             RC = TRI->getVGPRClassForBitWidth(Width);
12325           else if (SIRegisterInfo::isSGPRClass(RC))
12326             RC = TRI->getSGPRClassForBitWidth(Width);
12327           else if (SIRegisterInfo::isAGPRClass(RC))
12328             RC = TRI->getAGPRClassForBitWidth(Width);
12329           if (RC) {
12330             Reg = TRI->getMatchingSuperReg(Reg, AMDGPU::sub0, RC);
12331             return std::pair(Reg, RC);
12332           }
12333         }
12334       } else {
12335         bool Failed = RegName.getAsInteger(10, Idx);
12336         if (!Failed && Idx < RC->getNumRegs())
12337           return std::pair(RC->getRegister(Idx), RC);
12338       }
12339     }
12340   }
12341 
12342   auto Ret = TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
12343   if (Ret.first)
12344     Ret.second = TRI->getPhysRegBaseClass(Ret.first);
12345 
12346   return Ret;
12347 }
12348 
12349 static bool isImmConstraint(StringRef Constraint) {
12350   if (Constraint.size() == 1) {
12351     switch (Constraint[0]) {
12352     default: break;
12353     case 'I':
12354     case 'J':
12355     case 'A':
12356     case 'B':
12357     case 'C':
12358       return true;
12359     }
12360   } else if (Constraint == "DA" ||
12361              Constraint == "DB") {
12362     return true;
12363   }
12364   return false;
12365 }
12366 
12367 SITargetLowering::ConstraintType
12368 SITargetLowering::getConstraintType(StringRef Constraint) const {
12369   if (Constraint.size() == 1) {
12370     switch (Constraint[0]) {
12371     default: break;
12372     case 's':
12373     case 'v':
12374     case 'a':
12375       return C_RegisterClass;
12376     }
12377   }
12378   if (isImmConstraint(Constraint)) {
12379     return C_Other;
12380   }
12381   return TargetLowering::getConstraintType(Constraint);
12382 }
12383 
12384 static uint64_t clearUnusedBits(uint64_t Val, unsigned Size) {
12385   if (!AMDGPU::isInlinableIntLiteral(Val)) {
12386     Val = Val & maskTrailingOnes<uint64_t>(Size);
12387   }
12388   return Val;
12389 }
12390 
12391 void SITargetLowering::LowerAsmOperandForConstraint(SDValue Op,
12392                                                     std::string &Constraint,
12393                                                     std::vector<SDValue> &Ops,
12394                                                     SelectionDAG &DAG) const {
12395   if (isImmConstraint(Constraint)) {
12396     uint64_t Val;
12397     if (getAsmOperandConstVal(Op, Val) &&
12398         checkAsmConstraintVal(Op, Constraint, Val)) {
12399       Val = clearUnusedBits(Val, Op.getScalarValueSizeInBits());
12400       Ops.push_back(DAG.getTargetConstant(Val, SDLoc(Op), MVT::i64));
12401     }
12402   } else {
12403     TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
12404   }
12405 }
12406 
12407 bool SITargetLowering::getAsmOperandConstVal(SDValue Op, uint64_t &Val) const {
12408   unsigned Size = Op.getScalarValueSizeInBits();
12409   if (Size > 64)
12410     return false;
12411 
12412   if (Size == 16 && !Subtarget->has16BitInsts())
12413     return false;
12414 
12415   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
12416     Val = C->getSExtValue();
12417     return true;
12418   }
12419   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
12420     Val = C->getValueAPF().bitcastToAPInt().getSExtValue();
12421     return true;
12422   }
12423   if (BuildVectorSDNode *V = dyn_cast<BuildVectorSDNode>(Op)) {
12424     if (Size != 16 || Op.getNumOperands() != 2)
12425       return false;
12426     if (Op.getOperand(0).isUndef() || Op.getOperand(1).isUndef())
12427       return false;
12428     if (ConstantSDNode *C = V->getConstantSplatNode()) {
12429       Val = C->getSExtValue();
12430       return true;
12431     }
12432     if (ConstantFPSDNode *C = V->getConstantFPSplatNode()) {
12433       Val = C->getValueAPF().bitcastToAPInt().getSExtValue();
12434       return true;
12435     }
12436   }
12437 
12438   return false;
12439 }
12440 
12441 bool SITargetLowering::checkAsmConstraintVal(SDValue Op,
12442                                              const std::string &Constraint,
12443                                              uint64_t Val) const {
12444   if (Constraint.size() == 1) {
12445     switch (Constraint[0]) {
12446     case 'I':
12447       return AMDGPU::isInlinableIntLiteral(Val);
12448     case 'J':
12449       return isInt<16>(Val);
12450     case 'A':
12451       return checkAsmConstraintValA(Op, Val);
12452     case 'B':
12453       return isInt<32>(Val);
12454     case 'C':
12455       return isUInt<32>(clearUnusedBits(Val, Op.getScalarValueSizeInBits())) ||
12456              AMDGPU::isInlinableIntLiteral(Val);
12457     default:
12458       break;
12459     }
12460   } else if (Constraint.size() == 2) {
12461     if (Constraint == "DA") {
12462       int64_t HiBits = static_cast<int32_t>(Val >> 32);
12463       int64_t LoBits = static_cast<int32_t>(Val);
12464       return checkAsmConstraintValA(Op, HiBits, 32) &&
12465              checkAsmConstraintValA(Op, LoBits, 32);
12466     }
12467     if (Constraint == "DB") {
12468       return true;
12469     }
12470   }
12471   llvm_unreachable("Invalid asm constraint");
12472 }
12473 
12474 bool SITargetLowering::checkAsmConstraintValA(SDValue Op,
12475                                               uint64_t Val,
12476                                               unsigned MaxSize) const {
12477   unsigned Size = std::min<unsigned>(Op.getScalarValueSizeInBits(), MaxSize);
12478   bool HasInv2Pi = Subtarget->hasInv2PiInlineImm();
12479   if ((Size == 16 && AMDGPU::isInlinableLiteral16(Val, HasInv2Pi)) ||
12480       (Size == 32 && AMDGPU::isInlinableLiteral32(Val, HasInv2Pi)) ||
12481       (Size == 64 && AMDGPU::isInlinableLiteral64(Val, HasInv2Pi))) {
12482     return true;
12483   }
12484   return false;
12485 }
12486 
12487 static int getAlignedAGPRClassID(unsigned UnalignedClassID) {
12488   switch (UnalignedClassID) {
12489   case AMDGPU::VReg_64RegClassID:
12490     return AMDGPU::VReg_64_Align2RegClassID;
12491   case AMDGPU::VReg_96RegClassID:
12492     return AMDGPU::VReg_96_Align2RegClassID;
12493   case AMDGPU::VReg_128RegClassID:
12494     return AMDGPU::VReg_128_Align2RegClassID;
12495   case AMDGPU::VReg_160RegClassID:
12496     return AMDGPU::VReg_160_Align2RegClassID;
12497   case AMDGPU::VReg_192RegClassID:
12498     return AMDGPU::VReg_192_Align2RegClassID;
12499   case AMDGPU::VReg_224RegClassID:
12500     return AMDGPU::VReg_224_Align2RegClassID;
12501   case AMDGPU::VReg_256RegClassID:
12502     return AMDGPU::VReg_256_Align2RegClassID;
12503   case AMDGPU::VReg_288RegClassID:
12504     return AMDGPU::VReg_288_Align2RegClassID;
12505   case AMDGPU::VReg_320RegClassID:
12506     return AMDGPU::VReg_320_Align2RegClassID;
12507   case AMDGPU::VReg_352RegClassID:
12508     return AMDGPU::VReg_352_Align2RegClassID;
12509   case AMDGPU::VReg_384RegClassID:
12510     return AMDGPU::VReg_384_Align2RegClassID;
12511   case AMDGPU::VReg_512RegClassID:
12512     return AMDGPU::VReg_512_Align2RegClassID;
12513   case AMDGPU::VReg_1024RegClassID:
12514     return AMDGPU::VReg_1024_Align2RegClassID;
12515   case AMDGPU::AReg_64RegClassID:
12516     return AMDGPU::AReg_64_Align2RegClassID;
12517   case AMDGPU::AReg_96RegClassID:
12518     return AMDGPU::AReg_96_Align2RegClassID;
12519   case AMDGPU::AReg_128RegClassID:
12520     return AMDGPU::AReg_128_Align2RegClassID;
12521   case AMDGPU::AReg_160RegClassID:
12522     return AMDGPU::AReg_160_Align2RegClassID;
12523   case AMDGPU::AReg_192RegClassID:
12524     return AMDGPU::AReg_192_Align2RegClassID;
12525   case AMDGPU::AReg_256RegClassID:
12526     return AMDGPU::AReg_256_Align2RegClassID;
12527   case AMDGPU::AReg_512RegClassID:
12528     return AMDGPU::AReg_512_Align2RegClassID;
12529   case AMDGPU::AReg_1024RegClassID:
12530     return AMDGPU::AReg_1024_Align2RegClassID;
12531   default:
12532     return -1;
12533   }
12534 }
12535 
12536 // Figure out which registers should be reserved for stack access. Only after
12537 // the function is legalized do we know all of the non-spill stack objects or if
12538 // calls are present.
12539 void SITargetLowering::finalizeLowering(MachineFunction &MF) const {
12540   MachineRegisterInfo &MRI = MF.getRegInfo();
12541   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
12542   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
12543   const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
12544   const SIInstrInfo *TII = ST.getInstrInfo();
12545 
12546   if (Info->isEntryFunction()) {
12547     // Callable functions have fixed registers used for stack access.
12548     reservePrivateMemoryRegs(getTargetMachine(), MF, *TRI, *Info);
12549   }
12550 
12551   assert(!TRI->isSubRegister(Info->getScratchRSrcReg(),
12552                              Info->getStackPtrOffsetReg()));
12553   if (Info->getStackPtrOffsetReg() != AMDGPU::SP_REG)
12554     MRI.replaceRegWith(AMDGPU::SP_REG, Info->getStackPtrOffsetReg());
12555 
12556   // We need to worry about replacing the default register with itself in case
12557   // of MIR testcases missing the MFI.
12558   if (Info->getScratchRSrcReg() != AMDGPU::PRIVATE_RSRC_REG)
12559     MRI.replaceRegWith(AMDGPU::PRIVATE_RSRC_REG, Info->getScratchRSrcReg());
12560 
12561   if (Info->getFrameOffsetReg() != AMDGPU::FP_REG)
12562     MRI.replaceRegWith(AMDGPU::FP_REG, Info->getFrameOffsetReg());
12563 
12564   Info->limitOccupancy(MF);
12565 
12566   if (ST.isWave32() && !MF.empty()) {
12567     for (auto &MBB : MF) {
12568       for (auto &MI : MBB) {
12569         TII->fixImplicitOperands(MI);
12570       }
12571     }
12572   }
12573 
12574   // FIXME: This is a hack to fixup AGPR classes to use the properly aligned
12575   // classes if required. Ideally the register class constraints would differ
12576   // per-subtarget, but there's no easy way to achieve that right now. This is
12577   // not a problem for VGPRs because the correctly aligned VGPR class is implied
12578   // from using them as the register class for legal types.
12579   if (ST.needsAlignedVGPRs()) {
12580     for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) {
12581       const Register Reg = Register::index2VirtReg(I);
12582       const TargetRegisterClass *RC = MRI.getRegClassOrNull(Reg);
12583       if (!RC)
12584         continue;
12585       int NewClassID = getAlignedAGPRClassID(RC->getID());
12586       if (NewClassID != -1)
12587         MRI.setRegClass(Reg, TRI->getRegClass(NewClassID));
12588     }
12589   }
12590 
12591   TargetLoweringBase::finalizeLowering(MF);
12592 }
12593 
12594 void SITargetLowering::computeKnownBitsForFrameIndex(
12595   const int FI, KnownBits &Known, const MachineFunction &MF) const {
12596   TargetLowering::computeKnownBitsForFrameIndex(FI, Known, MF);
12597 
12598   // Set the high bits to zero based on the maximum allowed scratch size per
12599   // wave. We can't use vaddr in MUBUF instructions if we don't know the address
12600   // calculation won't overflow, so assume the sign bit is never set.
12601   Known.Zero.setHighBits(getSubtarget()->getKnownHighZeroBitsForFrameIndex());
12602 }
12603 
12604 static void knownBitsForWorkitemID(const GCNSubtarget &ST, GISelKnownBits &KB,
12605                                    KnownBits &Known, unsigned Dim) {
12606   unsigned MaxValue =
12607       ST.getMaxWorkitemID(KB.getMachineFunction().getFunction(), Dim);
12608   Known.Zero.setHighBits(countLeadingZeros(MaxValue));
12609 }
12610 
12611 void SITargetLowering::computeKnownBitsForTargetInstr(
12612     GISelKnownBits &KB, Register R, KnownBits &Known, const APInt &DemandedElts,
12613     const MachineRegisterInfo &MRI, unsigned Depth) const {
12614   const MachineInstr *MI = MRI.getVRegDef(R);
12615   switch (MI->getOpcode()) {
12616   case AMDGPU::G_INTRINSIC: {
12617     switch (MI->getIntrinsicID()) {
12618     case Intrinsic::amdgcn_workitem_id_x:
12619       knownBitsForWorkitemID(*getSubtarget(), KB, Known, 0);
12620       break;
12621     case Intrinsic::amdgcn_workitem_id_y:
12622       knownBitsForWorkitemID(*getSubtarget(), KB, Known, 1);
12623       break;
12624     case Intrinsic::amdgcn_workitem_id_z:
12625       knownBitsForWorkitemID(*getSubtarget(), KB, Known, 2);
12626       break;
12627     case Intrinsic::amdgcn_mbcnt_lo:
12628     case Intrinsic::amdgcn_mbcnt_hi: {
12629       // These return at most the wavefront size - 1.
12630       unsigned Size = MRI.getType(R).getSizeInBits();
12631       Known.Zero.setHighBits(Size - getSubtarget()->getWavefrontSizeLog2());
12632       break;
12633     }
12634     case Intrinsic::amdgcn_groupstaticsize: {
12635       // We can report everything over the maximum size as 0. We can't report
12636       // based on the actual size because we don't know if it's accurate or not
12637       // at any given point.
12638       Known.Zero.setHighBits(
12639           countLeadingZeros(getSubtarget()->getAddressableLocalMemorySize()));
12640       break;
12641     }
12642     }
12643     break;
12644   }
12645   case AMDGPU::G_AMDGPU_BUFFER_LOAD_UBYTE:
12646     Known.Zero.setHighBits(24);
12647     break;
12648   case AMDGPU::G_AMDGPU_BUFFER_LOAD_USHORT:
12649     Known.Zero.setHighBits(16);
12650     break;
12651   }
12652 }
12653 
12654 Align SITargetLowering::computeKnownAlignForTargetInstr(
12655   GISelKnownBits &KB, Register R, const MachineRegisterInfo &MRI,
12656   unsigned Depth) const {
12657   const MachineInstr *MI = MRI.getVRegDef(R);
12658   switch (MI->getOpcode()) {
12659   case AMDGPU::G_INTRINSIC:
12660   case AMDGPU::G_INTRINSIC_W_SIDE_EFFECTS: {
12661     // FIXME: Can this move to generic code? What about the case where the call
12662     // site specifies a lower alignment?
12663     Intrinsic::ID IID = MI->getIntrinsicID();
12664     LLVMContext &Ctx = KB.getMachineFunction().getFunction().getContext();
12665     AttributeList Attrs = Intrinsic::getAttributes(Ctx, IID);
12666     if (MaybeAlign RetAlign = Attrs.getRetAlignment())
12667       return *RetAlign;
12668     return Align(1);
12669   }
12670   default:
12671     return Align(1);
12672   }
12673 }
12674 
12675 Align SITargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
12676   const Align PrefAlign = TargetLowering::getPrefLoopAlignment(ML);
12677   const Align CacheLineAlign = Align(64);
12678 
12679   // Pre-GFX10 target did not benefit from loop alignment
12680   if (!ML || DisableLoopAlignment || !getSubtarget()->hasInstPrefetch() ||
12681       getSubtarget()->hasInstFwdPrefetchBug())
12682     return PrefAlign;
12683 
12684   // On GFX10 I$ is 4 x 64 bytes cache lines.
12685   // By default prefetcher keeps one cache line behind and reads two ahead.
12686   // We can modify it with S_INST_PREFETCH for larger loops to have two lines
12687   // behind and one ahead.
12688   // Therefor we can benefit from aligning loop headers if loop fits 192 bytes.
12689   // If loop fits 64 bytes it always spans no more than two cache lines and
12690   // does not need an alignment.
12691   // Else if loop is less or equal 128 bytes we do not need to modify prefetch,
12692   // Else if loop is less or equal 192 bytes we need two lines behind.
12693 
12694   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
12695   const MachineBasicBlock *Header = ML->getHeader();
12696   if (Header->getAlignment() != PrefAlign)
12697     return Header->getAlignment(); // Already processed.
12698 
12699   unsigned LoopSize = 0;
12700   for (const MachineBasicBlock *MBB : ML->blocks()) {
12701     // If inner loop block is aligned assume in average half of the alignment
12702     // size to be added as nops.
12703     if (MBB != Header)
12704       LoopSize += MBB->getAlignment().value() / 2;
12705 
12706     for (const MachineInstr &MI : *MBB) {
12707       LoopSize += TII->getInstSizeInBytes(MI);
12708       if (LoopSize > 192)
12709         return PrefAlign;
12710     }
12711   }
12712 
12713   if (LoopSize <= 64)
12714     return PrefAlign;
12715 
12716   if (LoopSize <= 128)
12717     return CacheLineAlign;
12718 
12719   // If any of parent loops is surrounded by prefetch instructions do not
12720   // insert new for inner loop, which would reset parent's settings.
12721   for (MachineLoop *P = ML->getParentLoop(); P; P = P->getParentLoop()) {
12722     if (MachineBasicBlock *Exit = P->getExitBlock()) {
12723       auto I = Exit->getFirstNonDebugInstr();
12724       if (I != Exit->end() && I->getOpcode() == AMDGPU::S_INST_PREFETCH)
12725         return CacheLineAlign;
12726     }
12727   }
12728 
12729   MachineBasicBlock *Pre = ML->getLoopPreheader();
12730   MachineBasicBlock *Exit = ML->getExitBlock();
12731 
12732   if (Pre && Exit) {
12733     auto PreTerm = Pre->getFirstTerminator();
12734     if (PreTerm == Pre->begin() ||
12735         std::prev(PreTerm)->getOpcode() != AMDGPU::S_INST_PREFETCH)
12736       BuildMI(*Pre, PreTerm, DebugLoc(), TII->get(AMDGPU::S_INST_PREFETCH))
12737           .addImm(1); // prefetch 2 lines behind PC
12738 
12739     auto ExitHead = Exit->getFirstNonDebugInstr();
12740     if (ExitHead == Exit->end() ||
12741         ExitHead->getOpcode() != AMDGPU::S_INST_PREFETCH)
12742       BuildMI(*Exit, ExitHead, DebugLoc(), TII->get(AMDGPU::S_INST_PREFETCH))
12743           .addImm(2); // prefetch 1 line behind PC
12744   }
12745 
12746   return CacheLineAlign;
12747 }
12748 
12749 LLVM_ATTRIBUTE_UNUSED
12750 static bool isCopyFromRegOfInlineAsm(const SDNode *N) {
12751   assert(N->getOpcode() == ISD::CopyFromReg);
12752   do {
12753     // Follow the chain until we find an INLINEASM node.
12754     N = N->getOperand(0).getNode();
12755     if (N->getOpcode() == ISD::INLINEASM ||
12756         N->getOpcode() == ISD::INLINEASM_BR)
12757       return true;
12758   } while (N->getOpcode() == ISD::CopyFromReg);
12759   return false;
12760 }
12761 
12762 bool SITargetLowering::isSDNodeSourceOfDivergence(
12763     const SDNode *N, FunctionLoweringInfo *FLI,
12764     LegacyDivergenceAnalysis *KDA) const {
12765   switch (N->getOpcode()) {
12766   case ISD::CopyFromReg: {
12767     const RegisterSDNode *R = cast<RegisterSDNode>(N->getOperand(1));
12768     const MachineRegisterInfo &MRI = FLI->MF->getRegInfo();
12769     const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
12770     Register Reg = R->getReg();
12771 
12772     // FIXME: Why does this need to consider isLiveIn?
12773     if (Reg.isPhysical() || MRI.isLiveIn(Reg))
12774       return !TRI->isSGPRReg(MRI, Reg);
12775 
12776     if (const Value *V = FLI->getValueFromVirtualReg(R->getReg()))
12777       return KDA->isDivergent(V);
12778 
12779     assert(Reg == FLI->DemoteRegister || isCopyFromRegOfInlineAsm(N));
12780     return !TRI->isSGPRReg(MRI, Reg);
12781   }
12782   case ISD::LOAD: {
12783     const LoadSDNode *L = cast<LoadSDNode>(N);
12784     unsigned AS = L->getAddressSpace();
12785     // A flat load may access private memory.
12786     return AS == AMDGPUAS::PRIVATE_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS;
12787   }
12788   case ISD::CALLSEQ_END:
12789     return true;
12790   case ISD::INTRINSIC_WO_CHAIN:
12791     return AMDGPU::isIntrinsicSourceOfDivergence(
12792         cast<ConstantSDNode>(N->getOperand(0))->getZExtValue());
12793   case ISD::INTRINSIC_W_CHAIN:
12794     return AMDGPU::isIntrinsicSourceOfDivergence(
12795         cast<ConstantSDNode>(N->getOperand(1))->getZExtValue());
12796   case AMDGPUISD::ATOMIC_CMP_SWAP:
12797   case AMDGPUISD::ATOMIC_INC:
12798   case AMDGPUISD::ATOMIC_DEC:
12799   case AMDGPUISD::ATOMIC_LOAD_FMIN:
12800   case AMDGPUISD::ATOMIC_LOAD_FMAX:
12801   case AMDGPUISD::BUFFER_ATOMIC_SWAP:
12802   case AMDGPUISD::BUFFER_ATOMIC_ADD:
12803   case AMDGPUISD::BUFFER_ATOMIC_SUB:
12804   case AMDGPUISD::BUFFER_ATOMIC_SMIN:
12805   case AMDGPUISD::BUFFER_ATOMIC_UMIN:
12806   case AMDGPUISD::BUFFER_ATOMIC_SMAX:
12807   case AMDGPUISD::BUFFER_ATOMIC_UMAX:
12808   case AMDGPUISD::BUFFER_ATOMIC_AND:
12809   case AMDGPUISD::BUFFER_ATOMIC_OR:
12810   case AMDGPUISD::BUFFER_ATOMIC_XOR:
12811   case AMDGPUISD::BUFFER_ATOMIC_INC:
12812   case AMDGPUISD::BUFFER_ATOMIC_DEC:
12813   case AMDGPUISD::BUFFER_ATOMIC_CMPSWAP:
12814   case AMDGPUISD::BUFFER_ATOMIC_CSUB:
12815   case AMDGPUISD::BUFFER_ATOMIC_FADD:
12816   case AMDGPUISD::BUFFER_ATOMIC_FMIN:
12817   case AMDGPUISD::BUFFER_ATOMIC_FMAX:
12818     // Target-specific read-modify-write atomics are sources of divergence.
12819     return true;
12820   default:
12821     if (auto *A = dyn_cast<AtomicSDNode>(N)) {
12822       // Generic read-modify-write atomics are sources of divergence.
12823       return A->readMem() && A->writeMem();
12824     }
12825     return false;
12826   }
12827 }
12828 
12829 bool SITargetLowering::denormalsEnabledForType(const SelectionDAG &DAG,
12830                                                EVT VT) const {
12831   switch (VT.getScalarType().getSimpleVT().SimpleTy) {
12832   case MVT::f32:
12833     return hasFP32Denormals(DAG.getMachineFunction());
12834   case MVT::f64:
12835   case MVT::f16:
12836     return hasFP64FP16Denormals(DAG.getMachineFunction());
12837   default:
12838     return false;
12839   }
12840 }
12841 
12842 bool SITargetLowering::denormalsEnabledForType(LLT Ty,
12843                                                MachineFunction &MF) const {
12844   switch (Ty.getScalarSizeInBits()) {
12845   case 32:
12846     return hasFP32Denormals(MF);
12847   case 64:
12848   case 16:
12849     return hasFP64FP16Denormals(MF);
12850   default:
12851     return false;
12852   }
12853 }
12854 
12855 bool SITargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
12856                                                     const SelectionDAG &DAG,
12857                                                     bool SNaN,
12858                                                     unsigned Depth) const {
12859   if (Op.getOpcode() == AMDGPUISD::CLAMP) {
12860     const MachineFunction &MF = DAG.getMachineFunction();
12861     const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
12862 
12863     if (Info->getMode().DX10Clamp)
12864       return true; // Clamped to 0.
12865     return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
12866   }
12867 
12868   return AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(Op, DAG,
12869                                                             SNaN, Depth);
12870 }
12871 
12872 // Global FP atomic instructions have a hardcoded FP mode and do not support
12873 // FP32 denormals, and only support v2f16 denormals.
12874 static bool fpModeMatchesGlobalFPAtomicMode(const AtomicRMWInst *RMW) {
12875   const fltSemantics &Flt = RMW->getType()->getScalarType()->getFltSemantics();
12876   auto DenormMode = RMW->getParent()->getParent()->getDenormalMode(Flt);
12877   if (&Flt == &APFloat::IEEEsingle())
12878     return DenormMode == DenormalMode::getPreserveSign();
12879   return DenormMode == DenormalMode::getIEEE();
12880 }
12881 
12882 // The amdgpu-unsafe-fp-atomics attribute enables generation of unsafe
12883 // floating point atomic instructions. May generate more efficient code,
12884 // but may not respect rounding and denormal modes, and may give incorrect
12885 // results for certain memory destinations.
12886 bool unsafeFPAtomicsDisabled(Function *F) {
12887   return F->getFnAttribute("amdgpu-unsafe-fp-atomics").getValueAsString() !=
12888          "true";
12889 }
12890 
12891 TargetLowering::AtomicExpansionKind
12892 SITargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const {
12893   unsigned AS = RMW->getPointerAddressSpace();
12894   if (AS == AMDGPUAS::PRIVATE_ADDRESS)
12895     return AtomicExpansionKind::NotAtomic;
12896 
12897   auto SSID = RMW->getSyncScopeID();
12898 
12899   auto ReportUnsafeHWInst = [&](TargetLowering::AtomicExpansionKind Kind) {
12900     OptimizationRemarkEmitter ORE(RMW->getFunction());
12901     LLVMContext &Ctx = RMW->getFunction()->getContext();
12902     SmallVector<StringRef> SSNs;
12903     Ctx.getSyncScopeNames(SSNs);
12904     auto MemScope = SSNs[RMW->getSyncScopeID()].empty()
12905                         ? "system"
12906                         : SSNs[RMW->getSyncScopeID()];
12907     ORE.emit([&]() {
12908       return OptimizationRemark(DEBUG_TYPE, "Passed", RMW)
12909              << "Hardware instruction generated for atomic "
12910              << RMW->getOperationName(RMW->getOperation())
12911              << " operation at memory scope " << MemScope
12912              << " due to an unsafe request.";
12913     });
12914     return Kind;
12915   };
12916 
12917   bool HasSystemScope =
12918       SSID == SyncScope::System ||
12919       SSID == RMW->getContext().getOrInsertSyncScopeID("one-as");
12920 
12921   switch (RMW->getOperation()) {
12922   case AtomicRMWInst::FAdd: {
12923     Type *Ty = RMW->getType();
12924 
12925     if (Ty->isHalfTy())
12926       return AtomicExpansionKind::CmpXChg;
12927 
12928     if (!Ty->isFloatTy() && (!Subtarget->hasGFX90AInsts() || !Ty->isDoubleTy()))
12929       return AtomicExpansionKind::CmpXChg;
12930 
12931     if (AMDGPU::isFlatGlobalAddrSpace(AS) &&
12932         Subtarget->hasAtomicFaddNoRtnInsts()) {
12933       if (unsafeFPAtomicsDisabled(RMW->getFunction()))
12934         return AtomicExpansionKind::CmpXChg;
12935 
12936       // Always expand system scope fp atomics.
12937       if (HasSystemScope)
12938         return AtomicExpansionKind::CmpXChg;
12939 
12940       if (AS == AMDGPUAS::GLOBAL_ADDRESS && Ty->isFloatTy()) {
12941         // global atomic fadd f32 no-rtn: gfx908, gfx90a, gfx940, gfx11+.
12942         if (RMW->use_empty() && Subtarget->hasAtomicFaddNoRtnInsts())
12943           return ReportUnsafeHWInst(AtomicExpansionKind::None);
12944         // global atomic fadd f32 rtn: gfx90a, gfx940, gfx11+.
12945         if (!RMW->use_empty() && Subtarget->hasAtomicFaddRtnInsts())
12946           return ReportUnsafeHWInst(AtomicExpansionKind::None);
12947       }
12948 
12949       // flat atomic fadd f32: gfx940, gfx11+.
12950       if (AS == AMDGPUAS::FLAT_ADDRESS && Ty->isFloatTy() &&
12951           Subtarget->hasFlatAtomicFaddF32Inst())
12952         return ReportUnsafeHWInst(AtomicExpansionKind::None);
12953 
12954       // global and flat atomic fadd f64: gfx90a, gfx940.
12955       if (Ty->isDoubleTy() && Subtarget->hasGFX90AInsts())
12956         return ReportUnsafeHWInst(AtomicExpansionKind::None);
12957 
12958       // If it is in flat address space, and the type is float, we will try to
12959       // expand it, if the target supports global and lds atomic fadd. The
12960       // reason we need that is, in the expansion, we emit the check of address
12961       // space. If it is in global address space, we emit the global atomic
12962       // fadd; if it is in shared address space, we emit the LDS atomic fadd.
12963       if (AS == AMDGPUAS::FLAT_ADDRESS && Ty->isFloatTy() &&
12964           Subtarget->hasLDSFPAtomicAdd()) {
12965         if (RMW->use_empty() && Subtarget->hasAtomicFaddNoRtnInsts())
12966           return AtomicExpansionKind::Expand;
12967         if (!RMW->use_empty() && Subtarget->hasAtomicFaddRtnInsts())
12968           return AtomicExpansionKind::Expand;
12969       }
12970 
12971       return AtomicExpansionKind::CmpXChg;
12972     }
12973 
12974     // DS FP atomics do respect the denormal mode, but the rounding mode is
12975     // fixed to round-to-nearest-even.
12976     // The only exception is DS_ADD_F64 which never flushes regardless of mode.
12977     if (AS == AMDGPUAS::LOCAL_ADDRESS && Subtarget->hasLDSFPAtomicAdd()) {
12978       if (!Ty->isDoubleTy())
12979         return AtomicExpansionKind::None;
12980 
12981       if (fpModeMatchesGlobalFPAtomicMode(RMW))
12982         return AtomicExpansionKind::None;
12983 
12984       return RMW->getFunction()
12985                          ->getFnAttribute("amdgpu-unsafe-fp-atomics")
12986                          .getValueAsString() == "true"
12987                  ? ReportUnsafeHWInst(AtomicExpansionKind::None)
12988                  : AtomicExpansionKind::CmpXChg;
12989     }
12990 
12991     return AtomicExpansionKind::CmpXChg;
12992   }
12993   case AtomicRMWInst::FMin:
12994   case AtomicRMWInst::FMax:
12995   case AtomicRMWInst::Min:
12996   case AtomicRMWInst::Max:
12997   case AtomicRMWInst::UMin:
12998   case AtomicRMWInst::UMax: {
12999     if (AMDGPU::isFlatGlobalAddrSpace(AS)) {
13000       if (RMW->getType()->isFloatTy() &&
13001           unsafeFPAtomicsDisabled(RMW->getFunction()))
13002         return AtomicExpansionKind::CmpXChg;
13003 
13004       // Always expand system scope min/max atomics.
13005       if (HasSystemScope)
13006         return AtomicExpansionKind::CmpXChg;
13007     }
13008     break;
13009   }
13010   default:
13011     break;
13012   }
13013 
13014   return AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(RMW);
13015 }
13016 
13017 TargetLowering::AtomicExpansionKind
13018 SITargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
13019   return LI->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS
13020              ? AtomicExpansionKind::NotAtomic
13021              : AtomicExpansionKind::None;
13022 }
13023 
13024 TargetLowering::AtomicExpansionKind
13025 SITargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
13026   return SI->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS
13027              ? AtomicExpansionKind::NotAtomic
13028              : AtomicExpansionKind::None;
13029 }
13030 
13031 TargetLowering::AtomicExpansionKind
13032 SITargetLowering::shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *CmpX) const {
13033   return CmpX->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS
13034              ? AtomicExpansionKind::NotAtomic
13035              : AtomicExpansionKind::None;
13036 }
13037 
13038 const TargetRegisterClass *
13039 SITargetLowering::getRegClassFor(MVT VT, bool isDivergent) const {
13040   const TargetRegisterClass *RC = TargetLoweringBase::getRegClassFor(VT, false);
13041   const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
13042   if (RC == &AMDGPU::VReg_1RegClass && !isDivergent)
13043     return Subtarget->getWavefrontSize() == 64 ? &AMDGPU::SReg_64RegClass
13044                                                : &AMDGPU::SReg_32RegClass;
13045   if (!TRI->isSGPRClass(RC) && !isDivergent)
13046     return TRI->getEquivalentSGPRClass(RC);
13047   else if (TRI->isSGPRClass(RC) && isDivergent)
13048     return TRI->getEquivalentVGPRClass(RC);
13049 
13050   return RC;
13051 }
13052 
13053 // FIXME: This is a workaround for DivergenceAnalysis not understanding always
13054 // uniform values (as produced by the mask results of control flow intrinsics)
13055 // used outside of divergent blocks. The phi users need to also be treated as
13056 // always uniform.
13057 static bool hasCFUser(const Value *V, SmallPtrSet<const Value *, 16> &Visited,
13058                       unsigned WaveSize) {
13059   // FIXME: We assume we never cast the mask results of a control flow
13060   // intrinsic.
13061   // Early exit if the type won't be consistent as a compile time hack.
13062   IntegerType *IT = dyn_cast<IntegerType>(V->getType());
13063   if (!IT || IT->getBitWidth() != WaveSize)
13064     return false;
13065 
13066   if (!isa<Instruction>(V))
13067     return false;
13068   if (!Visited.insert(V).second)
13069     return false;
13070   bool Result = false;
13071   for (const auto *U : V->users()) {
13072     if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(U)) {
13073       if (V == U->getOperand(1)) {
13074         switch (Intrinsic->getIntrinsicID()) {
13075         default:
13076           Result = false;
13077           break;
13078         case Intrinsic::amdgcn_if_break:
13079         case Intrinsic::amdgcn_if:
13080         case Intrinsic::amdgcn_else:
13081           Result = true;
13082           break;
13083         }
13084       }
13085       if (V == U->getOperand(0)) {
13086         switch (Intrinsic->getIntrinsicID()) {
13087         default:
13088           Result = false;
13089           break;
13090         case Intrinsic::amdgcn_end_cf:
13091         case Intrinsic::amdgcn_loop:
13092           Result = true;
13093           break;
13094         }
13095       }
13096     } else {
13097       Result = hasCFUser(U, Visited, WaveSize);
13098     }
13099     if (Result)
13100       break;
13101   }
13102   return Result;
13103 }
13104 
13105 bool SITargetLowering::requiresUniformRegister(MachineFunction &MF,
13106                                                const Value *V) const {
13107   if (const CallInst *CI = dyn_cast<CallInst>(V)) {
13108     if (CI->isInlineAsm()) {
13109       // FIXME: This cannot give a correct answer. This should only trigger in
13110       // the case where inline asm returns mixed SGPR and VGPR results, used
13111       // outside the defining block. We don't have a specific result to
13112       // consider, so this assumes if any value is SGPR, the overall register
13113       // also needs to be SGPR.
13114       const SIRegisterInfo *SIRI = Subtarget->getRegisterInfo();
13115       TargetLowering::AsmOperandInfoVector TargetConstraints = ParseConstraints(
13116           MF.getDataLayout(), Subtarget->getRegisterInfo(), *CI);
13117       for (auto &TC : TargetConstraints) {
13118         if (TC.Type == InlineAsm::isOutput) {
13119           ComputeConstraintToUse(TC, SDValue());
13120           const TargetRegisterClass *RC = getRegForInlineAsmConstraint(
13121               SIRI, TC.ConstraintCode, TC.ConstraintVT).second;
13122           if (RC && SIRI->isSGPRClass(RC))
13123             return true;
13124         }
13125       }
13126     }
13127   }
13128   SmallPtrSet<const Value *, 16> Visited;
13129   return hasCFUser(V, Visited, Subtarget->getWavefrontSize());
13130 }
13131 
13132 bool SITargetLowering::hasMemSDNodeUser(SDNode *N) const {
13133   SDNode::use_iterator I = N->use_begin(), E = N->use_end();
13134   for (; I != E; ++I) {
13135     if (MemSDNode *M = dyn_cast<MemSDNode>(*I)) {
13136       if (getBasePtrIndex(M) == I.getOperandNo())
13137         return true;
13138     }
13139   }
13140   return false;
13141 }
13142 
13143 bool SITargetLowering::isReassocProfitable(SelectionDAG &DAG, SDValue N0,
13144                                            SDValue N1) const {
13145   if (!N0.hasOneUse())
13146     return false;
13147   // Take care of the opportunity to keep N0 uniform
13148   if (N0->isDivergent() || !N1->isDivergent())
13149     return true;
13150   // Check if we have a good chance to form the memory access pattern with the
13151   // base and offset
13152   return (DAG.isBaseWithConstantOffset(N0) &&
13153           hasMemSDNodeUser(*N0->use_begin()));
13154 }
13155 
13156 MachineMemOperand::Flags
13157 SITargetLowering::getTargetMMOFlags(const Instruction &I) const {
13158   // Propagate metadata set by AMDGPUAnnotateUniformValues to the MMO of a load.
13159   if (I.getMetadata("amdgpu.noclobber"))
13160     return MONoClobber;
13161   return MachineMemOperand::MONone;
13162 }
13163 
13164 bool SITargetLowering::checkForPhysRegDependency(
13165     SDNode *Def, SDNode *User, unsigned Op, const TargetRegisterInfo *TRI,
13166     const TargetInstrInfo *TII, unsigned &PhysReg, int &Cost) const {
13167   if (User->getOpcode() != ISD::CopyToReg)
13168     return false;
13169   if (!Def->isMachineOpcode())
13170     return false;
13171   MachineSDNode *MDef = dyn_cast<MachineSDNode>(Def);
13172   if (!MDef)
13173     return false;
13174 
13175   unsigned ResNo = User->getOperand(Op).getResNo();
13176   if (User->getOperand(Op)->getValueType(ResNo) != MVT::i1)
13177     return false;
13178   const MCInstrDesc &II = TII->get(MDef->getMachineOpcode());
13179   if (II.isCompare() && II.hasImplicitDefOfPhysReg(AMDGPU::SCC)) {
13180     PhysReg = AMDGPU::SCC;
13181     const TargetRegisterClass *RC =
13182         TRI->getMinimalPhysRegClass(PhysReg, Def->getSimpleValueType(ResNo));
13183     Cost = RC->getCopyCost();
13184     return true;
13185   }
13186   return false;
13187 }
13188 
13189 void SITargetLowering::emitExpandAtomicRMW(AtomicRMWInst *AI) const {
13190   assert(Subtarget->hasAtomicFaddInsts() &&
13191          "target should have atomic fadd instructions");
13192   assert(AI->getType()->isFloatTy() &&
13193          AI->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS &&
13194          "generic atomicrmw expansion only supports FP32 operand in flat "
13195          "address space");
13196   assert(AI->getOperation() == AtomicRMWInst::FAdd &&
13197          "only fadd is supported for now");
13198 
13199   // Given: atomicrmw fadd float* %addr, float %val ordering
13200   //
13201   // With this expansion we produce the following code:
13202   //   [...]
13203   //   %int8ptr = bitcast float* %addr to i8*
13204   //   br label %atomicrmw.check.shared
13205   //
13206   // atomicrmw.check.shared:
13207   //   %is.shared = call i1 @llvm.amdgcn.is.shared(i8* %int8ptr)
13208   //   br i1 %is.shared, label %atomicrmw.shared, label %atomicrmw.check.private
13209   //
13210   // atomicrmw.shared:
13211   //   %cast.shared = addrspacecast float* %addr to float addrspace(3)*
13212   //   %loaded.shared = atomicrmw fadd float addrspace(3)* %cast.shared,
13213   //                                   float %val ordering
13214   //   br label %atomicrmw.phi
13215   //
13216   // atomicrmw.check.private:
13217   //   %is.private = call i1 @llvm.amdgcn.is.private(i8* %int8ptr)
13218   //   br i1 %is.private, label %atomicrmw.private, label %atomicrmw.global
13219   //
13220   // atomicrmw.private:
13221   //   %cast.private = addrspacecast float* %addr to float addrspace(5)*
13222   //   %loaded.private = load float, float addrspace(5)* %cast.private
13223   //   %val.new = fadd float %loaded.private, %val
13224   //   store float %val.new, float addrspace(5)* %cast.private
13225   //   br label %atomicrmw.phi
13226   //
13227   // atomicrmw.global:
13228   //   %cast.global = addrspacecast float* %addr to float addrspace(1)*
13229   //   %loaded.global = atomicrmw fadd float addrspace(1)* %cast.global,
13230   //                                   float %val ordering
13231   //   br label %atomicrmw.phi
13232   //
13233   // atomicrmw.phi:
13234   //   %loaded.phi = phi float [ %loaded.shared, %atomicrmw.shared ],
13235   //                           [ %loaded.private, %atomicrmw.private ],
13236   //                           [ %loaded.global, %atomicrmw.global ]
13237   //   br label %atomicrmw.end
13238   //
13239   // atomicrmw.end:
13240   //    [...]
13241 
13242   IRBuilder<> Builder(AI);
13243   LLVMContext &Ctx = Builder.getContext();
13244 
13245   BasicBlock *BB = Builder.GetInsertBlock();
13246   Function *F = BB->getParent();
13247   BasicBlock *ExitBB =
13248       BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end");
13249   BasicBlock *CheckSharedBB =
13250       BasicBlock::Create(Ctx, "atomicrmw.check.shared", F, ExitBB);
13251   BasicBlock *SharedBB = BasicBlock::Create(Ctx, "atomicrmw.shared", F, ExitBB);
13252   BasicBlock *CheckPrivateBB =
13253       BasicBlock::Create(Ctx, "atomicrmw.check.private", F, ExitBB);
13254   BasicBlock *PrivateBB =
13255       BasicBlock::Create(Ctx, "atomicrmw.private", F, ExitBB);
13256   BasicBlock *GlobalBB = BasicBlock::Create(Ctx, "atomicrmw.global", F, ExitBB);
13257   BasicBlock *PhiBB = BasicBlock::Create(Ctx, "atomicrmw.phi", F, ExitBB);
13258 
13259   Value *Val = AI->getValOperand();
13260   Type *ValTy = Val->getType();
13261   Value *Addr = AI->getPointerOperand();
13262   PointerType *PtrTy = cast<PointerType>(Addr->getType());
13263 
13264   auto CreateNewAtomicRMW = [AI](IRBuilder<> &Builder, Value *Addr,
13265                                  Value *Val) -> Value * {
13266     AtomicRMWInst *OldVal =
13267         Builder.CreateAtomicRMW(AI->getOperation(), Addr, Val, AI->getAlign(),
13268                                 AI->getOrdering(), AI->getSyncScopeID());
13269     SmallVector<std::pair<unsigned, MDNode *>> MDs;
13270     AI->getAllMetadata(MDs);
13271     for (auto &P : MDs)
13272       OldVal->setMetadata(P.first, P.second);
13273     return OldVal;
13274   };
13275 
13276   std::prev(BB->end())->eraseFromParent();
13277   Builder.SetInsertPoint(BB);
13278   Value *Int8Ptr = Builder.CreateBitCast(Addr, Builder.getInt8PtrTy());
13279   Builder.CreateBr(CheckSharedBB);
13280 
13281   Builder.SetInsertPoint(CheckSharedBB);
13282   CallInst *IsShared = Builder.CreateIntrinsic(Intrinsic::amdgcn_is_shared, {},
13283                                                {Int8Ptr}, nullptr, "is.shared");
13284   Builder.CreateCondBr(IsShared, SharedBB, CheckPrivateBB);
13285 
13286   Builder.SetInsertPoint(SharedBB);
13287   Value *CastToLocal = Builder.CreateAddrSpaceCast(
13288       Addr,
13289       PointerType::getWithSamePointeeType(PtrTy, AMDGPUAS::LOCAL_ADDRESS));
13290   Value *LoadedShared = CreateNewAtomicRMW(Builder, CastToLocal, Val);
13291   Builder.CreateBr(PhiBB);
13292 
13293   Builder.SetInsertPoint(CheckPrivateBB);
13294   CallInst *IsPrivate = Builder.CreateIntrinsic(
13295       Intrinsic::amdgcn_is_private, {}, {Int8Ptr}, nullptr, "is.private");
13296   Builder.CreateCondBr(IsPrivate, PrivateBB, GlobalBB);
13297 
13298   Builder.SetInsertPoint(PrivateBB);
13299   Value *CastToPrivate = Builder.CreateAddrSpaceCast(
13300       Addr,
13301       PointerType::getWithSamePointeeType(PtrTy, AMDGPUAS::PRIVATE_ADDRESS));
13302   Value *LoadedPrivate =
13303       Builder.CreateLoad(ValTy, CastToPrivate, "loaded.private");
13304   Value *NewVal = Builder.CreateFAdd(LoadedPrivate, Val, "val.new");
13305   Builder.CreateStore(NewVal, CastToPrivate);
13306   Builder.CreateBr(PhiBB);
13307 
13308   Builder.SetInsertPoint(GlobalBB);
13309   Value *CastToGlobal = Builder.CreateAddrSpaceCast(
13310       Addr,
13311       PointerType::getWithSamePointeeType(PtrTy, AMDGPUAS::GLOBAL_ADDRESS));
13312   Value *LoadedGlobal = CreateNewAtomicRMW(Builder, CastToGlobal, Val);
13313   Builder.CreateBr(PhiBB);
13314 
13315   Builder.SetInsertPoint(PhiBB);
13316   PHINode *Loaded = Builder.CreatePHI(ValTy, 3, "loaded.phi");
13317   Loaded->addIncoming(LoadedShared, SharedBB);
13318   Loaded->addIncoming(LoadedPrivate, PrivateBB);
13319   Loaded->addIncoming(LoadedGlobal, GlobalBB);
13320   Builder.CreateBr(ExitBB);
13321 
13322   AI->replaceAllUsesWith(Loaded);
13323   AI->eraseFromParent();
13324 }
13325