1 //===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// Custom DAG lowering for SI
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #if defined(_MSC_VER) || defined(__MINGW32__)
15 // Provide M_PI.
16 #define _USE_MATH_DEFINES
17 #endif
18 
19 #include "SIISelLowering.h"
20 #include "AMDGPU.h"
21 #include "AMDGPUSubtarget.h"
22 #include "AMDGPUTargetMachine.h"
23 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
24 #include "SIDefines.h"
25 #include "SIInstrInfo.h"
26 #include "SIMachineFunctionInfo.h"
27 #include "SIRegisterInfo.h"
28 #include "Utils/AMDGPUBaseInfo.h"
29 #include "llvm/ADT/APFloat.h"
30 #include "llvm/ADT/APInt.h"
31 #include "llvm/ADT/ArrayRef.h"
32 #include "llvm/ADT/BitVector.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/ADT/StringRef.h"
36 #include "llvm/ADT/StringSwitch.h"
37 #include "llvm/ADT/Twine.h"
38 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
39 #include "llvm/CodeGen/Analysis.h"
40 #include "llvm/CodeGen/CallingConvLower.h"
41 #include "llvm/CodeGen/DAGCombine.h"
42 #include "llvm/CodeGen/ISDOpcodes.h"
43 #include "llvm/CodeGen/MachineBasicBlock.h"
44 #include "llvm/CodeGen/MachineFrameInfo.h"
45 #include "llvm/CodeGen/MachineFunction.h"
46 #include "llvm/CodeGen/MachineInstr.h"
47 #include "llvm/CodeGen/MachineInstrBuilder.h"
48 #include "llvm/CodeGen/MachineLoopInfo.h"
49 #include "llvm/CodeGen/MachineMemOperand.h"
50 #include "llvm/CodeGen/MachineModuleInfo.h"
51 #include "llvm/CodeGen/MachineOperand.h"
52 #include "llvm/CodeGen/MachineRegisterInfo.h"
53 #include "llvm/CodeGen/SelectionDAG.h"
54 #include "llvm/CodeGen/SelectionDAGNodes.h"
55 #include "llvm/CodeGen/TargetCallingConv.h"
56 #include "llvm/CodeGen/TargetRegisterInfo.h"
57 #include "llvm/CodeGen/ValueTypes.h"
58 #include "llvm/IR/Constants.h"
59 #include "llvm/IR/DataLayout.h"
60 #include "llvm/IR/DebugLoc.h"
61 #include "llvm/IR/DerivedTypes.h"
62 #include "llvm/IR/DiagnosticInfo.h"
63 #include "llvm/IR/Function.h"
64 #include "llvm/IR/GlobalValue.h"
65 #include "llvm/IR/InstrTypes.h"
66 #include "llvm/IR/Instruction.h"
67 #include "llvm/IR/Instructions.h"
68 #include "llvm/IR/IntrinsicInst.h"
69 #include "llvm/IR/Type.h"
70 #include "llvm/Support/Casting.h"
71 #include "llvm/Support/CodeGen.h"
72 #include "llvm/Support/CommandLine.h"
73 #include "llvm/Support/Compiler.h"
74 #include "llvm/Support/ErrorHandling.h"
75 #include "llvm/Support/KnownBits.h"
76 #include "llvm/Support/MachineValueType.h"
77 #include "llvm/Support/MathExtras.h"
78 #include "llvm/Target/TargetOptions.h"
79 #include <cassert>
80 #include <cmath>
81 #include <cstdint>
82 #include <iterator>
83 #include <tuple>
84 #include <utility>
85 #include <vector>
86 
87 using namespace llvm;
88 
89 #define DEBUG_TYPE "si-lower"
90 
91 STATISTIC(NumTailCalls, "Number of tail calls");
92 
93 static cl::opt<bool> DisableLoopAlignment(
94   "amdgpu-disable-loop-alignment",
95   cl::desc("Do not align and prefetch loops"),
96   cl::init(false));
97 
98 static bool hasFP32Denormals(const MachineFunction &MF) {
99   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
100   return Info->getMode().FP32Denormals;
101 }
102 
103 static bool hasFP64FP16Denormals(const MachineFunction &MF) {
104   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
105   return Info->getMode().FP64FP16Denormals;
106 }
107 
108 static unsigned findFirstFreeSGPR(CCState &CCInfo) {
109   unsigned NumSGPRs = AMDGPU::SGPR_32RegClass.getNumRegs();
110   for (unsigned Reg = 0; Reg < NumSGPRs; ++Reg) {
111     if (!CCInfo.isAllocated(AMDGPU::SGPR0 + Reg)) {
112       return AMDGPU::SGPR0 + Reg;
113     }
114   }
115   llvm_unreachable("Cannot allocate sgpr");
116 }
117 
118 SITargetLowering::SITargetLowering(const TargetMachine &TM,
119                                    const GCNSubtarget &STI)
120     : AMDGPUTargetLowering(TM, STI),
121       Subtarget(&STI) {
122   addRegisterClass(MVT::i1, &AMDGPU::VReg_1RegClass);
123   addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass);
124 
125   addRegisterClass(MVT::i32, &AMDGPU::SReg_32RegClass);
126   addRegisterClass(MVT::f32, &AMDGPU::VGPR_32RegClass);
127 
128   addRegisterClass(MVT::f64, &AMDGPU::VReg_64RegClass);
129   addRegisterClass(MVT::v2i32, &AMDGPU::SReg_64RegClass);
130   addRegisterClass(MVT::v2f32, &AMDGPU::VReg_64RegClass);
131 
132   addRegisterClass(MVT::v3i32, &AMDGPU::SGPR_96RegClass);
133   addRegisterClass(MVT::v3f32, &AMDGPU::VReg_96RegClass);
134 
135   addRegisterClass(MVT::v2i64, &AMDGPU::SGPR_128RegClass);
136   addRegisterClass(MVT::v2f64, &AMDGPU::SGPR_128RegClass);
137 
138   addRegisterClass(MVT::v4i32, &AMDGPU::SGPR_128RegClass);
139   addRegisterClass(MVT::v4f32, &AMDGPU::VReg_128RegClass);
140 
141   addRegisterClass(MVT::v5i32, &AMDGPU::SGPR_160RegClass);
142   addRegisterClass(MVT::v5f32, &AMDGPU::VReg_160RegClass);
143 
144   addRegisterClass(MVT::v8i32, &AMDGPU::SReg_256RegClass);
145   addRegisterClass(MVT::v8f32, &AMDGPU::VReg_256RegClass);
146 
147   addRegisterClass(MVT::v16i32, &AMDGPU::SReg_512RegClass);
148   addRegisterClass(MVT::v16f32, &AMDGPU::VReg_512RegClass);
149 
150   if (Subtarget->has16BitInsts()) {
151     addRegisterClass(MVT::i16, &AMDGPU::SReg_32RegClass);
152     addRegisterClass(MVT::f16, &AMDGPU::SReg_32RegClass);
153 
154     // Unless there are also VOP3P operations, not operations are really legal.
155     addRegisterClass(MVT::v2i16, &AMDGPU::SReg_32RegClass);
156     addRegisterClass(MVT::v2f16, &AMDGPU::SReg_32RegClass);
157     addRegisterClass(MVT::v4i16, &AMDGPU::SReg_64RegClass);
158     addRegisterClass(MVT::v4f16, &AMDGPU::SReg_64RegClass);
159   }
160 
161   if (Subtarget->hasMAIInsts()) {
162     addRegisterClass(MVT::v32i32, &AMDGPU::VReg_1024RegClass);
163     addRegisterClass(MVT::v32f32, &AMDGPU::VReg_1024RegClass);
164   }
165 
166   computeRegisterProperties(Subtarget->getRegisterInfo());
167 
168   // The boolean content concept here is too inflexible. Compares only ever
169   // really produce a 1-bit result. Any copy/extend from these will turn into a
170   // select, and zext/1 or sext/-1 are equally cheap. Arbitrarily choose 0/1, as
171   // it's what most targets use.
172   setBooleanContents(ZeroOrOneBooleanContent);
173   setBooleanVectorContents(ZeroOrOneBooleanContent);
174 
175   // We need to custom lower vector stores from local memory
176   setOperationAction(ISD::LOAD, MVT::v2i32, Custom);
177   setOperationAction(ISD::LOAD, MVT::v3i32, Custom);
178   setOperationAction(ISD::LOAD, MVT::v4i32, Custom);
179   setOperationAction(ISD::LOAD, MVT::v5i32, Custom);
180   setOperationAction(ISD::LOAD, MVT::v8i32, Custom);
181   setOperationAction(ISD::LOAD, MVT::v16i32, Custom);
182   setOperationAction(ISD::LOAD, MVT::i1, Custom);
183   setOperationAction(ISD::LOAD, MVT::v32i32, Custom);
184 
185   setOperationAction(ISD::STORE, MVT::v2i32, Custom);
186   setOperationAction(ISD::STORE, MVT::v3i32, Custom);
187   setOperationAction(ISD::STORE, MVT::v4i32, Custom);
188   setOperationAction(ISD::STORE, MVT::v5i32, Custom);
189   setOperationAction(ISD::STORE, MVT::v8i32, Custom);
190   setOperationAction(ISD::STORE, MVT::v16i32, Custom);
191   setOperationAction(ISD::STORE, MVT::i1, Custom);
192   setOperationAction(ISD::STORE, MVT::v32i32, Custom);
193 
194   setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand);
195   setTruncStoreAction(MVT::v3i32, MVT::v3i16, Expand);
196   setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand);
197   setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand);
198   setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand);
199   setTruncStoreAction(MVT::v32i32, MVT::v32i16, Expand);
200   setTruncStoreAction(MVT::v2i32, MVT::v2i8, Expand);
201   setTruncStoreAction(MVT::v4i32, MVT::v4i8, Expand);
202   setTruncStoreAction(MVT::v8i32, MVT::v8i8, Expand);
203   setTruncStoreAction(MVT::v16i32, MVT::v16i8, Expand);
204   setTruncStoreAction(MVT::v32i32, MVT::v32i8, Expand);
205 
206   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
207   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
208 
209   setOperationAction(ISD::SELECT, MVT::i1, Promote);
210   setOperationAction(ISD::SELECT, MVT::i64, Custom);
211   setOperationAction(ISD::SELECT, MVT::f64, Promote);
212   AddPromotedToType(ISD::SELECT, MVT::f64, MVT::i64);
213 
214   setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
215   setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
216   setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
217   setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
218   setOperationAction(ISD::SELECT_CC, MVT::i1, Expand);
219 
220   setOperationAction(ISD::SETCC, MVT::i1, Promote);
221   setOperationAction(ISD::SETCC, MVT::v2i1, Expand);
222   setOperationAction(ISD::SETCC, MVT::v4i1, Expand);
223   AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
224 
225   setOperationAction(ISD::TRUNCATE, MVT::v2i32, Expand);
226   setOperationAction(ISD::FP_ROUND, MVT::v2f32, Expand);
227 
228   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i1, Custom);
229   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i1, Custom);
230   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom);
231   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Custom);
232   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom);
233   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v3i16, Custom);
234   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Custom);
235   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Custom);
236 
237   setOperationAction(ISD::BRCOND, MVT::Other, Custom);
238   setOperationAction(ISD::BR_CC, MVT::i1, Expand);
239   setOperationAction(ISD::BR_CC, MVT::i32, Expand);
240   setOperationAction(ISD::BR_CC, MVT::i64, Expand);
241   setOperationAction(ISD::BR_CC, MVT::f32, Expand);
242   setOperationAction(ISD::BR_CC, MVT::f64, Expand);
243 
244   setOperationAction(ISD::UADDO, MVT::i32, Legal);
245   setOperationAction(ISD::USUBO, MVT::i32, Legal);
246 
247   setOperationAction(ISD::ADDCARRY, MVT::i32, Legal);
248   setOperationAction(ISD::SUBCARRY, MVT::i32, Legal);
249 
250   setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
251   setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
252   setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
253 
254 #if 0
255   setOperationAction(ISD::ADDCARRY, MVT::i64, Legal);
256   setOperationAction(ISD::SUBCARRY, MVT::i64, Legal);
257 #endif
258 
259   // We only support LOAD/STORE and vector manipulation ops for vectors
260   // with > 4 elements.
261   for (MVT VT : { MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32,
262                   MVT::v2i64, MVT::v2f64, MVT::v4i16, MVT::v4f16,
263                   MVT::v32i32, MVT::v32f32 }) {
264     for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
265       switch (Op) {
266       case ISD::LOAD:
267       case ISD::STORE:
268       case ISD::BUILD_VECTOR:
269       case ISD::BITCAST:
270       case ISD::EXTRACT_VECTOR_ELT:
271       case ISD::INSERT_VECTOR_ELT:
272       case ISD::INSERT_SUBVECTOR:
273       case ISD::EXTRACT_SUBVECTOR:
274       case ISD::SCALAR_TO_VECTOR:
275         break;
276       case ISD::CONCAT_VECTORS:
277         setOperationAction(Op, VT, Custom);
278         break;
279       default:
280         setOperationAction(Op, VT, Expand);
281         break;
282       }
283     }
284   }
285 
286   setOperationAction(ISD::FP_EXTEND, MVT::v4f32, Expand);
287 
288   // TODO: For dynamic 64-bit vector inserts/extracts, should emit a pseudo that
289   // is expanded to avoid having two separate loops in case the index is a VGPR.
290 
291   // Most operations are naturally 32-bit vector operations. We only support
292   // load and store of i64 vectors, so promote v2i64 vector operations to v4i32.
293   for (MVT Vec64 : { MVT::v2i64, MVT::v2f64 }) {
294     setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
295     AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v4i32);
296 
297     setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
298     AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v4i32);
299 
300     setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
301     AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v4i32);
302 
303     setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
304     AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v4i32);
305   }
306 
307   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i32, Expand);
308   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f32, Expand);
309   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i32, Expand);
310   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16f32, Expand);
311 
312   setOperationAction(ISD::BUILD_VECTOR, MVT::v4f16, Custom);
313   setOperationAction(ISD::BUILD_VECTOR, MVT::v4i16, Custom);
314 
315   // Avoid stack access for these.
316   // TODO: Generalize to more vector types.
317   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i16, Custom);
318   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f16, Custom);
319   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i16, Custom);
320   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f16, Custom);
321 
322   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i16, Custom);
323   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom);
324   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i8, Custom);
325   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i8, Custom);
326   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i8, Custom);
327 
328   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i8, Custom);
329   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i8, Custom);
330   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i8, Custom);
331 
332   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i16, Custom);
333   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f16, Custom);
334   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i16, Custom);
335   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f16, Custom);
336 
337   // Deal with vec3 vector operations when widened to vec4.
338   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v3i32, Custom);
339   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v3f32, Custom);
340   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v4i32, Custom);
341   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v4f32, Custom);
342 
343   // Deal with vec5 vector operations when widened to vec8.
344   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v5i32, Custom);
345   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v5f32, Custom);
346   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v8i32, Custom);
347   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v8f32, Custom);
348 
349   // BUFFER/FLAT_ATOMIC_CMP_SWAP on GCN GPUs needs input marshalling,
350   // and output demarshalling
351   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
352   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
353 
354   // We can't return success/failure, only the old value,
355   // let LLVM add the comparison
356   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Expand);
357   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Expand);
358 
359   if (Subtarget->hasFlatAddressSpace()) {
360     setOperationAction(ISD::ADDRSPACECAST, MVT::i32, Custom);
361     setOperationAction(ISD::ADDRSPACECAST, MVT::i64, Custom);
362   }
363 
364   setOperationAction(ISD::BSWAP, MVT::i32, Legal);
365   setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
366 
367   // On SI this is s_memtime and s_memrealtime on VI.
368   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
369   setOperationAction(ISD::TRAP, MVT::Other, Custom);
370   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Custom);
371 
372   if (Subtarget->has16BitInsts()) {
373     setOperationAction(ISD::FPOW, MVT::f16, Promote);
374     setOperationAction(ISD::FLOG, MVT::f16, Custom);
375     setOperationAction(ISD::FEXP, MVT::f16, Custom);
376     setOperationAction(ISD::FLOG10, MVT::f16, Custom);
377   }
378 
379   // v_mad_f32 does not support denormals. We report it as unconditionally
380   // legal, and the context where it is formed will disallow it when fp32
381   // denormals are enabled.
382   setOperationAction(ISD::FMAD, MVT::f32, Legal);
383 
384   if (!Subtarget->hasBFI()) {
385     // fcopysign can be done in a single instruction with BFI.
386     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
387     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
388   }
389 
390   if (!Subtarget->hasBCNT(32))
391     setOperationAction(ISD::CTPOP, MVT::i32, Expand);
392 
393   if (!Subtarget->hasBCNT(64))
394     setOperationAction(ISD::CTPOP, MVT::i64, Expand);
395 
396   if (Subtarget->hasFFBH())
397     setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom);
398 
399   if (Subtarget->hasFFBL())
400     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom);
401 
402   // We only really have 32-bit BFE instructions (and 16-bit on VI).
403   //
404   // On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any
405   // effort to match them now. We want this to be false for i64 cases when the
406   // extraction isn't restricted to the upper or lower half. Ideally we would
407   // have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that
408   // span the midpoint are probably relatively rare, so don't worry about them
409   // for now.
410   if (Subtarget->hasBFE())
411     setHasExtractBitsInsn(true);
412 
413   setOperationAction(ISD::FMINNUM, MVT::f32, Custom);
414   setOperationAction(ISD::FMAXNUM, MVT::f32, Custom);
415   setOperationAction(ISD::FMINNUM, MVT::f64, Custom);
416   setOperationAction(ISD::FMAXNUM, MVT::f64, Custom);
417 
418 
419   // These are really only legal for ieee_mode functions. We should be avoiding
420   // them for functions that don't have ieee_mode enabled, so just say they are
421   // legal.
422   setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal);
423   setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal);
424   setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal);
425   setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal);
426 
427 
428   if (Subtarget->haveRoundOpsF64()) {
429     setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
430     setOperationAction(ISD::FCEIL, MVT::f64, Legal);
431     setOperationAction(ISD::FRINT, MVT::f64, Legal);
432   } else {
433     setOperationAction(ISD::FCEIL, MVT::f64, Custom);
434     setOperationAction(ISD::FTRUNC, MVT::f64, Custom);
435     setOperationAction(ISD::FRINT, MVT::f64, Custom);
436     setOperationAction(ISD::FFLOOR, MVT::f64, Custom);
437   }
438 
439   setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
440 
441   setOperationAction(ISD::FSIN, MVT::f32, Custom);
442   setOperationAction(ISD::FCOS, MVT::f32, Custom);
443   setOperationAction(ISD::FDIV, MVT::f32, Custom);
444   setOperationAction(ISD::FDIV, MVT::f64, Custom);
445 
446   if (Subtarget->has16BitInsts()) {
447     setOperationAction(ISD::Constant, MVT::i16, Legal);
448 
449     setOperationAction(ISD::SMIN, MVT::i16, Legal);
450     setOperationAction(ISD::SMAX, MVT::i16, Legal);
451 
452     setOperationAction(ISD::UMIN, MVT::i16, Legal);
453     setOperationAction(ISD::UMAX, MVT::i16, Legal);
454 
455     setOperationAction(ISD::SIGN_EXTEND, MVT::i16, Promote);
456     AddPromotedToType(ISD::SIGN_EXTEND, MVT::i16, MVT::i32);
457 
458     setOperationAction(ISD::ROTR, MVT::i16, Promote);
459     setOperationAction(ISD::ROTL, MVT::i16, Promote);
460 
461     setOperationAction(ISD::SDIV, MVT::i16, Promote);
462     setOperationAction(ISD::UDIV, MVT::i16, Promote);
463     setOperationAction(ISD::SREM, MVT::i16, Promote);
464     setOperationAction(ISD::UREM, MVT::i16, Promote);
465 
466     setOperationAction(ISD::BSWAP, MVT::i16, Promote);
467     setOperationAction(ISD::BITREVERSE, MVT::i16, Promote);
468 
469     setOperationAction(ISD::CTTZ, MVT::i16, Promote);
470     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16, Promote);
471     setOperationAction(ISD::CTLZ, MVT::i16, Promote);
472     setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16, Promote);
473     setOperationAction(ISD::CTPOP, MVT::i16, Promote);
474 
475     setOperationAction(ISD::SELECT_CC, MVT::i16, Expand);
476 
477     setOperationAction(ISD::BR_CC, MVT::i16, Expand);
478 
479     setOperationAction(ISD::LOAD, MVT::i16, Custom);
480 
481     setTruncStoreAction(MVT::i64, MVT::i16, Expand);
482 
483     setOperationAction(ISD::FP16_TO_FP, MVT::i16, Promote);
484     AddPromotedToType(ISD::FP16_TO_FP, MVT::i16, MVT::i32);
485     setOperationAction(ISD::FP_TO_FP16, MVT::i16, Promote);
486     AddPromotedToType(ISD::FP_TO_FP16, MVT::i16, MVT::i32);
487 
488     setOperationAction(ISD::FP_TO_SINT, MVT::i16, Promote);
489     setOperationAction(ISD::FP_TO_UINT, MVT::i16, Promote);
490 
491     // F16 - Constant Actions.
492     setOperationAction(ISD::ConstantFP, MVT::f16, Legal);
493 
494     // F16 - Load/Store Actions.
495     setOperationAction(ISD::LOAD, MVT::f16, Promote);
496     AddPromotedToType(ISD::LOAD, MVT::f16, MVT::i16);
497     setOperationAction(ISD::STORE, MVT::f16, Promote);
498     AddPromotedToType(ISD::STORE, MVT::f16, MVT::i16);
499 
500     // F16 - VOP1 Actions.
501     setOperationAction(ISD::FP_ROUND, MVT::f16, Custom);
502     setOperationAction(ISD::FCOS, MVT::f16, Promote);
503     setOperationAction(ISD::FSIN, MVT::f16, Promote);
504 
505     setOperationAction(ISD::SINT_TO_FP, MVT::i16, Custom);
506     setOperationAction(ISD::UINT_TO_FP, MVT::i16, Custom);
507 
508     setOperationAction(ISD::FP_TO_SINT, MVT::f16, Promote);
509     setOperationAction(ISD::FP_TO_UINT, MVT::f16, Promote);
510     setOperationAction(ISD::SINT_TO_FP, MVT::f16, Promote);
511     setOperationAction(ISD::UINT_TO_FP, MVT::f16, Promote);
512     setOperationAction(ISD::FROUND, MVT::f16, Custom);
513 
514     // F16 - VOP2 Actions.
515     setOperationAction(ISD::BR_CC, MVT::f16, Expand);
516     setOperationAction(ISD::SELECT_CC, MVT::f16, Expand);
517 
518     setOperationAction(ISD::FDIV, MVT::f16, Custom);
519 
520     // F16 - VOP3 Actions.
521     setOperationAction(ISD::FMA, MVT::f16, Legal);
522     if (STI.hasMadF16())
523       setOperationAction(ISD::FMAD, MVT::f16, Legal);
524 
525     for (MVT VT : {MVT::v2i16, MVT::v2f16, MVT::v4i16, MVT::v4f16}) {
526       for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
527         switch (Op) {
528         case ISD::LOAD:
529         case ISD::STORE:
530         case ISD::BUILD_VECTOR:
531         case ISD::BITCAST:
532         case ISD::EXTRACT_VECTOR_ELT:
533         case ISD::INSERT_VECTOR_ELT:
534         case ISD::INSERT_SUBVECTOR:
535         case ISD::EXTRACT_SUBVECTOR:
536         case ISD::SCALAR_TO_VECTOR:
537           break;
538         case ISD::CONCAT_VECTORS:
539           setOperationAction(Op, VT, Custom);
540           break;
541         default:
542           setOperationAction(Op, VT, Expand);
543           break;
544         }
545       }
546     }
547 
548     // XXX - Do these do anything? Vector constants turn into build_vector.
549     setOperationAction(ISD::Constant, MVT::v2i16, Legal);
550     setOperationAction(ISD::ConstantFP, MVT::v2f16, Legal);
551 
552     setOperationAction(ISD::UNDEF, MVT::v2i16, Legal);
553     setOperationAction(ISD::UNDEF, MVT::v2f16, Legal);
554 
555     setOperationAction(ISD::STORE, MVT::v2i16, Promote);
556     AddPromotedToType(ISD::STORE, MVT::v2i16, MVT::i32);
557     setOperationAction(ISD::STORE, MVT::v2f16, Promote);
558     AddPromotedToType(ISD::STORE, MVT::v2f16, MVT::i32);
559 
560     setOperationAction(ISD::LOAD, MVT::v2i16, Promote);
561     AddPromotedToType(ISD::LOAD, MVT::v2i16, MVT::i32);
562     setOperationAction(ISD::LOAD, MVT::v2f16, Promote);
563     AddPromotedToType(ISD::LOAD, MVT::v2f16, MVT::i32);
564 
565     setOperationAction(ISD::AND, MVT::v2i16, Promote);
566     AddPromotedToType(ISD::AND, MVT::v2i16, MVT::i32);
567     setOperationAction(ISD::OR, MVT::v2i16, Promote);
568     AddPromotedToType(ISD::OR, MVT::v2i16, MVT::i32);
569     setOperationAction(ISD::XOR, MVT::v2i16, Promote);
570     AddPromotedToType(ISD::XOR, MVT::v2i16, MVT::i32);
571 
572     setOperationAction(ISD::LOAD, MVT::v4i16, Promote);
573     AddPromotedToType(ISD::LOAD, MVT::v4i16, MVT::v2i32);
574     setOperationAction(ISD::LOAD, MVT::v4f16, Promote);
575     AddPromotedToType(ISD::LOAD, MVT::v4f16, MVT::v2i32);
576 
577     setOperationAction(ISD::STORE, MVT::v4i16, Promote);
578     AddPromotedToType(ISD::STORE, MVT::v4i16, MVT::v2i32);
579     setOperationAction(ISD::STORE, MVT::v4f16, Promote);
580     AddPromotedToType(ISD::STORE, MVT::v4f16, MVT::v2i32);
581 
582     setOperationAction(ISD::ANY_EXTEND, MVT::v2i32, Expand);
583     setOperationAction(ISD::ZERO_EXTEND, MVT::v2i32, Expand);
584     setOperationAction(ISD::SIGN_EXTEND, MVT::v2i32, Expand);
585     setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Expand);
586 
587     setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Expand);
588     setOperationAction(ISD::ZERO_EXTEND, MVT::v4i32, Expand);
589     setOperationAction(ISD::SIGN_EXTEND, MVT::v4i32, Expand);
590 
591     if (!Subtarget->hasVOP3PInsts()) {
592       setOperationAction(ISD::BUILD_VECTOR, MVT::v2i16, Custom);
593       setOperationAction(ISD::BUILD_VECTOR, MVT::v2f16, Custom);
594     }
595 
596     setOperationAction(ISD::FNEG, MVT::v2f16, Legal);
597     // This isn't really legal, but this avoids the legalizer unrolling it (and
598     // allows matching fneg (fabs x) patterns)
599     setOperationAction(ISD::FABS, MVT::v2f16, Legal);
600 
601     setOperationAction(ISD::FMAXNUM, MVT::f16, Custom);
602     setOperationAction(ISD::FMINNUM, MVT::f16, Custom);
603     setOperationAction(ISD::FMAXNUM_IEEE, MVT::f16, Legal);
604     setOperationAction(ISD::FMINNUM_IEEE, MVT::f16, Legal);
605 
606     setOperationAction(ISD::FMINNUM_IEEE, MVT::v4f16, Custom);
607     setOperationAction(ISD::FMAXNUM_IEEE, MVT::v4f16, Custom);
608 
609     setOperationAction(ISD::FMINNUM, MVT::v4f16, Expand);
610     setOperationAction(ISD::FMAXNUM, MVT::v4f16, Expand);
611   }
612 
613   if (Subtarget->hasVOP3PInsts()) {
614     setOperationAction(ISD::ADD, MVT::v2i16, Legal);
615     setOperationAction(ISD::SUB, MVT::v2i16, Legal);
616     setOperationAction(ISD::MUL, MVT::v2i16, Legal);
617     setOperationAction(ISD::SHL, MVT::v2i16, Legal);
618     setOperationAction(ISD::SRL, MVT::v2i16, Legal);
619     setOperationAction(ISD::SRA, MVT::v2i16, Legal);
620     setOperationAction(ISD::SMIN, MVT::v2i16, Legal);
621     setOperationAction(ISD::UMIN, MVT::v2i16, Legal);
622     setOperationAction(ISD::SMAX, MVT::v2i16, Legal);
623     setOperationAction(ISD::UMAX, MVT::v2i16, Legal);
624 
625     setOperationAction(ISD::FADD, MVT::v2f16, Legal);
626     setOperationAction(ISD::FMUL, MVT::v2f16, Legal);
627     setOperationAction(ISD::FMA, MVT::v2f16, Legal);
628 
629     setOperationAction(ISD::FMINNUM_IEEE, MVT::v2f16, Legal);
630     setOperationAction(ISD::FMAXNUM_IEEE, MVT::v2f16, Legal);
631 
632     setOperationAction(ISD::FCANONICALIZE, MVT::v2f16, Legal);
633 
634     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i16, Custom);
635     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom);
636 
637     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f16, Custom);
638     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom);
639 
640     setOperationAction(ISD::SHL, MVT::v4i16, Custom);
641     setOperationAction(ISD::SRA, MVT::v4i16, Custom);
642     setOperationAction(ISD::SRL, MVT::v4i16, Custom);
643     setOperationAction(ISD::ADD, MVT::v4i16, Custom);
644     setOperationAction(ISD::SUB, MVT::v4i16, Custom);
645     setOperationAction(ISD::MUL, MVT::v4i16, Custom);
646 
647     setOperationAction(ISD::SMIN, MVT::v4i16, Custom);
648     setOperationAction(ISD::SMAX, MVT::v4i16, Custom);
649     setOperationAction(ISD::UMIN, MVT::v4i16, Custom);
650     setOperationAction(ISD::UMAX, MVT::v4i16, Custom);
651 
652     setOperationAction(ISD::FADD, MVT::v4f16, Custom);
653     setOperationAction(ISD::FMUL, MVT::v4f16, Custom);
654     setOperationAction(ISD::FMA, MVT::v4f16, Custom);
655 
656     setOperationAction(ISD::FMAXNUM, MVT::v2f16, Custom);
657     setOperationAction(ISD::FMINNUM, MVT::v2f16, Custom);
658 
659     setOperationAction(ISD::FMINNUM, MVT::v4f16, Custom);
660     setOperationAction(ISD::FMAXNUM, MVT::v4f16, Custom);
661     setOperationAction(ISD::FCANONICALIZE, MVT::v4f16, Custom);
662 
663     setOperationAction(ISD::FEXP, MVT::v2f16, Custom);
664     setOperationAction(ISD::SELECT, MVT::v4i16, Custom);
665     setOperationAction(ISD::SELECT, MVT::v4f16, Custom);
666   }
667 
668   setOperationAction(ISD::FNEG, MVT::v4f16, Custom);
669   setOperationAction(ISD::FABS, MVT::v4f16, Custom);
670 
671   if (Subtarget->has16BitInsts()) {
672     setOperationAction(ISD::SELECT, MVT::v2i16, Promote);
673     AddPromotedToType(ISD::SELECT, MVT::v2i16, MVT::i32);
674     setOperationAction(ISD::SELECT, MVT::v2f16, Promote);
675     AddPromotedToType(ISD::SELECT, MVT::v2f16, MVT::i32);
676   } else {
677     // Legalization hack.
678     setOperationAction(ISD::SELECT, MVT::v2i16, Custom);
679     setOperationAction(ISD::SELECT, MVT::v2f16, Custom);
680 
681     setOperationAction(ISD::FNEG, MVT::v2f16, Custom);
682     setOperationAction(ISD::FABS, MVT::v2f16, Custom);
683   }
684 
685   for (MVT VT : { MVT::v4i16, MVT::v4f16, MVT::v2i8, MVT::v4i8, MVT::v8i8 }) {
686     setOperationAction(ISD::SELECT, VT, Custom);
687   }
688 
689   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
690   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f32, Custom);
691   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v4f32, Custom);
692   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom);
693   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f16, Custom);
694   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2i16, Custom);
695   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2f16, Custom);
696 
697   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v2f16, Custom);
698   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v2i16, Custom);
699   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v4f16, Custom);
700   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v4i16, Custom);
701   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v8f16, Custom);
702   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
703   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::f16, Custom);
704   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom);
705   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom);
706 
707   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
708   setOperationAction(ISD::INTRINSIC_VOID, MVT::v2i16, Custom);
709   setOperationAction(ISD::INTRINSIC_VOID, MVT::v2f16, Custom);
710   setOperationAction(ISD::INTRINSIC_VOID, MVT::v4f16, Custom);
711   setOperationAction(ISD::INTRINSIC_VOID, MVT::v4i16, Custom);
712   setOperationAction(ISD::INTRINSIC_VOID, MVT::f16, Custom);
713   setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom);
714   setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom);
715 
716   setTargetDAGCombine(ISD::ADD);
717   setTargetDAGCombine(ISD::ADDCARRY);
718   setTargetDAGCombine(ISD::SUB);
719   setTargetDAGCombine(ISD::SUBCARRY);
720   setTargetDAGCombine(ISD::FADD);
721   setTargetDAGCombine(ISD::FSUB);
722   setTargetDAGCombine(ISD::FMINNUM);
723   setTargetDAGCombine(ISD::FMAXNUM);
724   setTargetDAGCombine(ISD::FMINNUM_IEEE);
725   setTargetDAGCombine(ISD::FMAXNUM_IEEE);
726   setTargetDAGCombine(ISD::FMA);
727   setTargetDAGCombine(ISD::SMIN);
728   setTargetDAGCombine(ISD::SMAX);
729   setTargetDAGCombine(ISD::UMIN);
730   setTargetDAGCombine(ISD::UMAX);
731   setTargetDAGCombine(ISD::SETCC);
732   setTargetDAGCombine(ISD::AND);
733   setTargetDAGCombine(ISD::OR);
734   setTargetDAGCombine(ISD::XOR);
735   setTargetDAGCombine(ISD::SINT_TO_FP);
736   setTargetDAGCombine(ISD::UINT_TO_FP);
737   setTargetDAGCombine(ISD::FCANONICALIZE);
738   setTargetDAGCombine(ISD::SCALAR_TO_VECTOR);
739   setTargetDAGCombine(ISD::ZERO_EXTEND);
740   setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
741   setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
742   setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
743 
744   // All memory operations. Some folding on the pointer operand is done to help
745   // matching the constant offsets in the addressing modes.
746   setTargetDAGCombine(ISD::LOAD);
747   setTargetDAGCombine(ISD::STORE);
748   setTargetDAGCombine(ISD::ATOMIC_LOAD);
749   setTargetDAGCombine(ISD::ATOMIC_STORE);
750   setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP);
751   setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
752   setTargetDAGCombine(ISD::ATOMIC_SWAP);
753   setTargetDAGCombine(ISD::ATOMIC_LOAD_ADD);
754   setTargetDAGCombine(ISD::ATOMIC_LOAD_SUB);
755   setTargetDAGCombine(ISD::ATOMIC_LOAD_AND);
756   setTargetDAGCombine(ISD::ATOMIC_LOAD_OR);
757   setTargetDAGCombine(ISD::ATOMIC_LOAD_XOR);
758   setTargetDAGCombine(ISD::ATOMIC_LOAD_NAND);
759   setTargetDAGCombine(ISD::ATOMIC_LOAD_MIN);
760   setTargetDAGCombine(ISD::ATOMIC_LOAD_MAX);
761   setTargetDAGCombine(ISD::ATOMIC_LOAD_UMIN);
762   setTargetDAGCombine(ISD::ATOMIC_LOAD_UMAX);
763   setTargetDAGCombine(ISD::ATOMIC_LOAD_FADD);
764 
765   setSchedulingPreference(Sched::RegPressure);
766 }
767 
768 const GCNSubtarget *SITargetLowering::getSubtarget() const {
769   return Subtarget;
770 }
771 
772 //===----------------------------------------------------------------------===//
773 // TargetLowering queries
774 //===----------------------------------------------------------------------===//
775 
776 // v_mad_mix* support a conversion from f16 to f32.
777 //
778 // There is only one special case when denormals are enabled we don't currently,
779 // where this is OK to use.
780 bool SITargetLowering::isFPExtFoldable(const SelectionDAG &DAG, unsigned Opcode,
781                                        EVT DestVT, EVT SrcVT) const {
782   return ((Opcode == ISD::FMAD && Subtarget->hasMadMixInsts()) ||
783           (Opcode == ISD::FMA && Subtarget->hasFmaMixInsts())) &&
784     DestVT.getScalarType() == MVT::f32 &&
785     SrcVT.getScalarType() == MVT::f16 &&
786     !hasFP32Denormals(DAG.getMachineFunction());
787 }
788 
789 bool SITargetLowering::isShuffleMaskLegal(ArrayRef<int>, EVT) const {
790   // SI has some legal vector types, but no legal vector operations. Say no
791   // shuffles are legal in order to prefer scalarizing some vector operations.
792   return false;
793 }
794 
795 MVT SITargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
796                                                     CallingConv::ID CC,
797                                                     EVT VT) const {
798   if (CC == CallingConv::AMDGPU_KERNEL)
799     return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
800 
801   if (VT.isVector()) {
802     EVT ScalarVT = VT.getScalarType();
803     unsigned Size = ScalarVT.getSizeInBits();
804     if (Size == 32)
805       return ScalarVT.getSimpleVT();
806 
807     if (Size > 32)
808       return MVT::i32;
809 
810     if (Size == 16 && Subtarget->has16BitInsts())
811       return VT.isInteger() ? MVT::v2i16 : MVT::v2f16;
812   } else if (VT.getSizeInBits() > 32)
813     return MVT::i32;
814 
815   return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
816 }
817 
818 unsigned SITargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
819                                                          CallingConv::ID CC,
820                                                          EVT VT) const {
821   if (CC == CallingConv::AMDGPU_KERNEL)
822     return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
823 
824   if (VT.isVector()) {
825     unsigned NumElts = VT.getVectorNumElements();
826     EVT ScalarVT = VT.getScalarType();
827     unsigned Size = ScalarVT.getSizeInBits();
828 
829     if (Size == 32)
830       return NumElts;
831 
832     if (Size > 32)
833       return NumElts * ((Size + 31) / 32);
834 
835     if (Size == 16 && Subtarget->has16BitInsts())
836       return (NumElts + 1) / 2;
837   } else if (VT.getSizeInBits() > 32)
838     return (VT.getSizeInBits() + 31) / 32;
839 
840   return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
841 }
842 
843 unsigned SITargetLowering::getVectorTypeBreakdownForCallingConv(
844   LLVMContext &Context, CallingConv::ID CC,
845   EVT VT, EVT &IntermediateVT,
846   unsigned &NumIntermediates, MVT &RegisterVT) const {
847   if (CC != CallingConv::AMDGPU_KERNEL && VT.isVector()) {
848     unsigned NumElts = VT.getVectorNumElements();
849     EVT ScalarVT = VT.getScalarType();
850     unsigned Size = ScalarVT.getSizeInBits();
851     if (Size == 32) {
852       RegisterVT = ScalarVT.getSimpleVT();
853       IntermediateVT = RegisterVT;
854       NumIntermediates = NumElts;
855       return NumIntermediates;
856     }
857 
858     if (Size > 32) {
859       RegisterVT = MVT::i32;
860       IntermediateVT = RegisterVT;
861       NumIntermediates = NumElts * ((Size + 31) / 32);
862       return NumIntermediates;
863     }
864 
865     // FIXME: We should fix the ABI to be the same on targets without 16-bit
866     // support, but unless we can properly handle 3-vectors, it will be still be
867     // inconsistent.
868     if (Size == 16 && Subtarget->has16BitInsts()) {
869       RegisterVT = VT.isInteger() ? MVT::v2i16 : MVT::v2f16;
870       IntermediateVT = RegisterVT;
871       NumIntermediates = (NumElts + 1) / 2;
872       return NumIntermediates;
873     }
874   }
875 
876   return TargetLowering::getVectorTypeBreakdownForCallingConv(
877     Context, CC, VT, IntermediateVT, NumIntermediates, RegisterVT);
878 }
879 
880 static MVT memVTFromAggregate(Type *Ty) {
881   // Only limited forms of aggregate type currently expected.
882   assert(Ty->isStructTy() && "Expected struct type");
883 
884 
885   Type *ElementType = nullptr;
886   unsigned NumElts;
887   if (Ty->getContainedType(0)->isVectorTy()) {
888     VectorType *VecComponent = cast<VectorType>(Ty->getContainedType(0));
889     ElementType = VecComponent->getElementType();
890     NumElts = VecComponent->getNumElements();
891   } else {
892     ElementType = Ty->getContainedType(0);
893     NumElts = 1;
894   }
895 
896   assert((Ty->getContainedType(1) && Ty->getContainedType(1)->isIntegerTy(32)) && "Expected int32 type");
897 
898   // Calculate the size of the memVT type from the aggregate
899   unsigned Pow2Elts = 0;
900   unsigned ElementSize;
901   switch (ElementType->getTypeID()) {
902     default:
903       llvm_unreachable("Unknown type!");
904     case Type::IntegerTyID:
905       ElementSize = cast<IntegerType>(ElementType)->getBitWidth();
906       break;
907     case Type::HalfTyID:
908       ElementSize = 16;
909       break;
910     case Type::FloatTyID:
911       ElementSize = 32;
912       break;
913   }
914   unsigned AdditionalElts = ElementSize == 16 ? 2 : 1;
915   Pow2Elts = 1 << Log2_32_Ceil(NumElts + AdditionalElts);
916 
917   return MVT::getVectorVT(MVT::getVT(ElementType, false),
918                           Pow2Elts);
919 }
920 
921 bool SITargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
922                                           const CallInst &CI,
923                                           MachineFunction &MF,
924                                           unsigned IntrID) const {
925   if (const AMDGPU::RsrcIntrinsic *RsrcIntr =
926           AMDGPU::lookupRsrcIntrinsic(IntrID)) {
927     AttributeList Attr = Intrinsic::getAttributes(CI.getContext(),
928                                                   (Intrinsic::ID)IntrID);
929     if (Attr.hasFnAttribute(Attribute::ReadNone))
930       return false;
931 
932     SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
933 
934     if (RsrcIntr->IsImage) {
935       Info.ptrVal = MFI->getImagePSV(
936         *MF.getSubtarget<GCNSubtarget>().getInstrInfo(),
937         CI.getArgOperand(RsrcIntr->RsrcArg));
938       Info.align.reset();
939     } else {
940       Info.ptrVal = MFI->getBufferPSV(
941         *MF.getSubtarget<GCNSubtarget>().getInstrInfo(),
942         CI.getArgOperand(RsrcIntr->RsrcArg));
943     }
944 
945     Info.flags = MachineMemOperand::MODereferenceable;
946     if (Attr.hasFnAttribute(Attribute::ReadOnly)) {
947       Info.opc = ISD::INTRINSIC_W_CHAIN;
948       Info.memVT = MVT::getVT(CI.getType(), true);
949       if (Info.memVT == MVT::Other) {
950         // Some intrinsics return an aggregate type - special case to work out
951         // the correct memVT
952         Info.memVT = memVTFromAggregate(CI.getType());
953       }
954       Info.flags |= MachineMemOperand::MOLoad;
955     } else if (Attr.hasFnAttribute(Attribute::WriteOnly)) {
956       Info.opc = ISD::INTRINSIC_VOID;
957       Info.memVT = MVT::getVT(CI.getArgOperand(0)->getType());
958       Info.flags |= MachineMemOperand::MOStore;
959     } else {
960       // Atomic
961       Info.opc = ISD::INTRINSIC_W_CHAIN;
962       Info.memVT = MVT::getVT(CI.getType());
963       Info.flags = MachineMemOperand::MOLoad |
964                    MachineMemOperand::MOStore |
965                    MachineMemOperand::MODereferenceable;
966 
967       // XXX - Should this be volatile without known ordering?
968       Info.flags |= MachineMemOperand::MOVolatile;
969     }
970     return true;
971   }
972 
973   switch (IntrID) {
974   case Intrinsic::amdgcn_atomic_inc:
975   case Intrinsic::amdgcn_atomic_dec:
976   case Intrinsic::amdgcn_ds_ordered_add:
977   case Intrinsic::amdgcn_ds_ordered_swap:
978   case Intrinsic::amdgcn_ds_fadd:
979   case Intrinsic::amdgcn_ds_fmin:
980   case Intrinsic::amdgcn_ds_fmax: {
981     Info.opc = ISD::INTRINSIC_W_CHAIN;
982     Info.memVT = MVT::getVT(CI.getType());
983     Info.ptrVal = CI.getOperand(0);
984     Info.align.reset();
985     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
986 
987     const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(4));
988     if (!Vol->isZero())
989       Info.flags |= MachineMemOperand::MOVolatile;
990 
991     return true;
992   }
993   case Intrinsic::amdgcn_buffer_atomic_fadd: {
994     SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
995 
996     Info.opc = ISD::INTRINSIC_VOID;
997     Info.memVT = MVT::getVT(CI.getOperand(0)->getType());
998     Info.ptrVal = MFI->getBufferPSV(
999       *MF.getSubtarget<GCNSubtarget>().getInstrInfo(),
1000       CI.getArgOperand(1));
1001     Info.align.reset();
1002     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1003 
1004     const ConstantInt *Vol = dyn_cast<ConstantInt>(CI.getOperand(4));
1005     if (!Vol || !Vol->isZero())
1006       Info.flags |= MachineMemOperand::MOVolatile;
1007 
1008     return true;
1009   }
1010   case Intrinsic::amdgcn_global_atomic_fadd: {
1011     Info.opc = ISD::INTRINSIC_VOID;
1012     Info.memVT = MVT::getVT(CI.getOperand(0)->getType()
1013                             ->getPointerElementType());
1014     Info.ptrVal = CI.getOperand(0);
1015     Info.align.reset();
1016     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1017 
1018     return true;
1019   }
1020   case Intrinsic::amdgcn_ds_append:
1021   case Intrinsic::amdgcn_ds_consume: {
1022     Info.opc = ISD::INTRINSIC_W_CHAIN;
1023     Info.memVT = MVT::getVT(CI.getType());
1024     Info.ptrVal = CI.getOperand(0);
1025     Info.align.reset();
1026     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1027 
1028     const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(1));
1029     if (!Vol->isZero())
1030       Info.flags |= MachineMemOperand::MOVolatile;
1031 
1032     return true;
1033   }
1034   case Intrinsic::amdgcn_ds_gws_init:
1035   case Intrinsic::amdgcn_ds_gws_barrier:
1036   case Intrinsic::amdgcn_ds_gws_sema_v:
1037   case Intrinsic::amdgcn_ds_gws_sema_br:
1038   case Intrinsic::amdgcn_ds_gws_sema_p:
1039   case Intrinsic::amdgcn_ds_gws_sema_release_all: {
1040     Info.opc = ISD::INTRINSIC_VOID;
1041 
1042     SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1043     Info.ptrVal =
1044         MFI->getGWSPSV(*MF.getSubtarget<GCNSubtarget>().getInstrInfo());
1045 
1046     // This is an abstract access, but we need to specify a type and size.
1047     Info.memVT = MVT::i32;
1048     Info.size = 4;
1049     Info.align = Align(4);
1050 
1051     Info.flags = MachineMemOperand::MOStore;
1052     if (IntrID == Intrinsic::amdgcn_ds_gws_barrier)
1053       Info.flags = MachineMemOperand::MOLoad;
1054     return true;
1055   }
1056   default:
1057     return false;
1058   }
1059 }
1060 
1061 bool SITargetLowering::getAddrModeArguments(IntrinsicInst *II,
1062                                             SmallVectorImpl<Value*> &Ops,
1063                                             Type *&AccessTy) const {
1064   switch (II->getIntrinsicID()) {
1065   case Intrinsic::amdgcn_atomic_inc:
1066   case Intrinsic::amdgcn_atomic_dec:
1067   case Intrinsic::amdgcn_ds_ordered_add:
1068   case Intrinsic::amdgcn_ds_ordered_swap:
1069   case Intrinsic::amdgcn_ds_fadd:
1070   case Intrinsic::amdgcn_ds_fmin:
1071   case Intrinsic::amdgcn_ds_fmax: {
1072     Value *Ptr = II->getArgOperand(0);
1073     AccessTy = II->getType();
1074     Ops.push_back(Ptr);
1075     return true;
1076   }
1077   default:
1078     return false;
1079   }
1080 }
1081 
1082 bool SITargetLowering::isLegalFlatAddressingMode(const AddrMode &AM) const {
1083   if (!Subtarget->hasFlatInstOffsets()) {
1084     // Flat instructions do not have offsets, and only have the register
1085     // address.
1086     return AM.BaseOffs == 0 && AM.Scale == 0;
1087   }
1088 
1089   return AM.Scale == 0 &&
1090          (AM.BaseOffs == 0 || Subtarget->getInstrInfo()->isLegalFLATOffset(
1091                                   AM.BaseOffs, AMDGPUAS::FLAT_ADDRESS,
1092                                   /*Signed=*/false));
1093 }
1094 
1095 bool SITargetLowering::isLegalGlobalAddressingMode(const AddrMode &AM) const {
1096   if (Subtarget->hasFlatGlobalInsts())
1097     return AM.Scale == 0 &&
1098            (AM.BaseOffs == 0 || Subtarget->getInstrInfo()->isLegalFLATOffset(
1099                                     AM.BaseOffs, AMDGPUAS::GLOBAL_ADDRESS,
1100                                     /*Signed=*/true));
1101 
1102   if (!Subtarget->hasAddr64() || Subtarget->useFlatForGlobal()) {
1103       // Assume the we will use FLAT for all global memory accesses
1104       // on VI.
1105       // FIXME: This assumption is currently wrong.  On VI we still use
1106       // MUBUF instructions for the r + i addressing mode.  As currently
1107       // implemented, the MUBUF instructions only work on buffer < 4GB.
1108       // It may be possible to support > 4GB buffers with MUBUF instructions,
1109       // by setting the stride value in the resource descriptor which would
1110       // increase the size limit to (stride * 4GB).  However, this is risky,
1111       // because it has never been validated.
1112     return isLegalFlatAddressingMode(AM);
1113   }
1114 
1115   return isLegalMUBUFAddressingMode(AM);
1116 }
1117 
1118 bool SITargetLowering::isLegalMUBUFAddressingMode(const AddrMode &AM) const {
1119   // MUBUF / MTBUF instructions have a 12-bit unsigned byte offset, and
1120   // additionally can do r + r + i with addr64. 32-bit has more addressing
1121   // mode options. Depending on the resource constant, it can also do
1122   // (i64 r0) + (i32 r1) * (i14 i).
1123   //
1124   // Private arrays end up using a scratch buffer most of the time, so also
1125   // assume those use MUBUF instructions. Scratch loads / stores are currently
1126   // implemented as mubuf instructions with offen bit set, so slightly
1127   // different than the normal addr64.
1128   if (!isUInt<12>(AM.BaseOffs))
1129     return false;
1130 
1131   // FIXME: Since we can split immediate into soffset and immediate offset,
1132   // would it make sense to allow any immediate?
1133 
1134   switch (AM.Scale) {
1135   case 0: // r + i or just i, depending on HasBaseReg.
1136     return true;
1137   case 1:
1138     return true; // We have r + r or r + i.
1139   case 2:
1140     if (AM.HasBaseReg) {
1141       // Reject 2 * r + r.
1142       return false;
1143     }
1144 
1145     // Allow 2 * r as r + r
1146     // Or  2 * r + i is allowed as r + r + i.
1147     return true;
1148   default: // Don't allow n * r
1149     return false;
1150   }
1151 }
1152 
1153 bool SITargetLowering::isLegalAddressingMode(const DataLayout &DL,
1154                                              const AddrMode &AM, Type *Ty,
1155                                              unsigned AS, Instruction *I) const {
1156   // No global is ever allowed as a base.
1157   if (AM.BaseGV)
1158     return false;
1159 
1160   if (AS == AMDGPUAS::GLOBAL_ADDRESS)
1161     return isLegalGlobalAddressingMode(AM);
1162 
1163   if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
1164       AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
1165       AS == AMDGPUAS::BUFFER_FAT_POINTER) {
1166     // If the offset isn't a multiple of 4, it probably isn't going to be
1167     // correctly aligned.
1168     // FIXME: Can we get the real alignment here?
1169     if (AM.BaseOffs % 4 != 0)
1170       return isLegalMUBUFAddressingMode(AM);
1171 
1172     // There are no SMRD extloads, so if we have to do a small type access we
1173     // will use a MUBUF load.
1174     // FIXME?: We also need to do this if unaligned, but we don't know the
1175     // alignment here.
1176     if (Ty->isSized() && DL.getTypeStoreSize(Ty) < 4)
1177       return isLegalGlobalAddressingMode(AM);
1178 
1179     if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) {
1180       // SMRD instructions have an 8-bit, dword offset on SI.
1181       if (!isUInt<8>(AM.BaseOffs / 4))
1182         return false;
1183     } else if (Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS) {
1184       // On CI+, this can also be a 32-bit literal constant offset. If it fits
1185       // in 8-bits, it can use a smaller encoding.
1186       if (!isUInt<32>(AM.BaseOffs / 4))
1187         return false;
1188     } else if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) {
1189       // On VI, these use the SMEM format and the offset is 20-bit in bytes.
1190       if (!isUInt<20>(AM.BaseOffs))
1191         return false;
1192     } else
1193       llvm_unreachable("unhandled generation");
1194 
1195     if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
1196       return true;
1197 
1198     if (AM.Scale == 1 && AM.HasBaseReg)
1199       return true;
1200 
1201     return false;
1202 
1203   } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
1204     return isLegalMUBUFAddressingMode(AM);
1205   } else if (AS == AMDGPUAS::LOCAL_ADDRESS ||
1206              AS == AMDGPUAS::REGION_ADDRESS) {
1207     // Basic, single offset DS instructions allow a 16-bit unsigned immediate
1208     // field.
1209     // XXX - If doing a 4-byte aligned 8-byte type access, we effectively have
1210     // an 8-bit dword offset but we don't know the alignment here.
1211     if (!isUInt<16>(AM.BaseOffs))
1212       return false;
1213 
1214     if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
1215       return true;
1216 
1217     if (AM.Scale == 1 && AM.HasBaseReg)
1218       return true;
1219 
1220     return false;
1221   } else if (AS == AMDGPUAS::FLAT_ADDRESS ||
1222              AS == AMDGPUAS::UNKNOWN_ADDRESS_SPACE) {
1223     // For an unknown address space, this usually means that this is for some
1224     // reason being used for pure arithmetic, and not based on some addressing
1225     // computation. We don't have instructions that compute pointers with any
1226     // addressing modes, so treat them as having no offset like flat
1227     // instructions.
1228     return isLegalFlatAddressingMode(AM);
1229   } else {
1230     llvm_unreachable("unhandled address space");
1231   }
1232 }
1233 
1234 bool SITargetLowering::canMergeStoresTo(unsigned AS, EVT MemVT,
1235                                         const SelectionDAG &DAG) const {
1236   if (AS == AMDGPUAS::GLOBAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) {
1237     return (MemVT.getSizeInBits() <= 4 * 32);
1238   } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
1239     unsigned MaxPrivateBits = 8 * getSubtarget()->getMaxPrivateElementSize();
1240     return (MemVT.getSizeInBits() <= MaxPrivateBits);
1241   } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
1242     return (MemVT.getSizeInBits() <= 2 * 32);
1243   }
1244   return true;
1245 }
1246 
1247 bool SITargetLowering::allowsMisalignedMemoryAccessesImpl(
1248     unsigned Size, unsigned AddrSpace, unsigned Align,
1249     MachineMemOperand::Flags Flags, bool *IsFast) const {
1250   if (IsFast)
1251     *IsFast = false;
1252 
1253   if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
1254       AddrSpace == AMDGPUAS::REGION_ADDRESS) {
1255     // ds_read/write_b64 require 8-byte alignment, but we can do a 4 byte
1256     // aligned, 8 byte access in a single operation using ds_read2/write2_b32
1257     // with adjacent offsets.
1258     bool AlignedBy4 = (Align % 4 == 0);
1259     if (IsFast)
1260       *IsFast = AlignedBy4;
1261 
1262     return AlignedBy4;
1263   }
1264 
1265   // FIXME: We have to be conservative here and assume that flat operations
1266   // will access scratch.  If we had access to the IR function, then we
1267   // could determine if any private memory was used in the function.
1268   if (!Subtarget->hasUnalignedScratchAccess() &&
1269       (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS ||
1270        AddrSpace == AMDGPUAS::FLAT_ADDRESS)) {
1271     bool AlignedBy4 = Align >= 4;
1272     if (IsFast)
1273       *IsFast = AlignedBy4;
1274 
1275     return AlignedBy4;
1276   }
1277 
1278   if (Subtarget->hasUnalignedBufferAccess()) {
1279     // If we have an uniform constant load, it still requires using a slow
1280     // buffer instruction if unaligned.
1281     if (IsFast) {
1282       *IsFast = (AddrSpace == AMDGPUAS::CONSTANT_ADDRESS ||
1283                  AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT) ?
1284         (Align % 4 == 0) : true;
1285     }
1286 
1287     return true;
1288   }
1289 
1290   // Smaller than dword value must be aligned.
1291   if (Size < 32)
1292     return false;
1293 
1294   // 8.1.6 - For Dword or larger reads or writes, the two LSBs of the
1295   // byte-address are ignored, thus forcing Dword alignment.
1296   // This applies to private, global, and constant memory.
1297   if (IsFast)
1298     *IsFast = true;
1299 
1300   return Size >= 32 && Align >= 4;
1301 }
1302 
1303 bool SITargetLowering::allowsMisalignedMemoryAccesses(
1304     EVT VT, unsigned AddrSpace, unsigned Align, MachineMemOperand::Flags Flags,
1305     bool *IsFast) const {
1306   if (IsFast)
1307     *IsFast = false;
1308 
1309   // TODO: I think v3i32 should allow unaligned accesses on CI with DS_READ_B96,
1310   // which isn't a simple VT.
1311   // Until MVT is extended to handle this, simply check for the size and
1312   // rely on the condition below: allow accesses if the size is a multiple of 4.
1313   if (VT == MVT::Other || (VT != MVT::Other && VT.getSizeInBits() > 1024 &&
1314                            VT.getStoreSize() > 16)) {
1315     return false;
1316   }
1317 
1318   return allowsMisalignedMemoryAccessesImpl(VT.getSizeInBits(), AddrSpace,
1319                                             Align, Flags, IsFast);
1320 }
1321 
1322 EVT SITargetLowering::getOptimalMemOpType(
1323     uint64_t Size, unsigned DstAlign, unsigned SrcAlign, bool IsMemset,
1324     bool ZeroMemset, bool MemcpyStrSrc,
1325     const AttributeList &FuncAttributes) const {
1326   // FIXME: Should account for address space here.
1327 
1328   // The default fallback uses the private pointer size as a guess for a type to
1329   // use. Make sure we switch these to 64-bit accesses.
1330 
1331   if (Size >= 16 && DstAlign >= 4) // XXX: Should only do for global
1332     return MVT::v4i32;
1333 
1334   if (Size >= 8 && DstAlign >= 4)
1335     return MVT::v2i32;
1336 
1337   // Use the default.
1338   return MVT::Other;
1339 }
1340 
1341 bool SITargetLowering::isNoopAddrSpaceCast(unsigned SrcAS,
1342                                            unsigned DestAS) const {
1343   return isFlatGlobalAddrSpace(SrcAS) && isFlatGlobalAddrSpace(DestAS);
1344 }
1345 
1346 bool SITargetLowering::isMemOpHasNoClobberedMemOperand(const SDNode *N) const {
1347   const MemSDNode *MemNode = cast<MemSDNode>(N);
1348   const Value *Ptr = MemNode->getMemOperand()->getValue();
1349   const Instruction *I = dyn_cast_or_null<Instruction>(Ptr);
1350   return I && I->getMetadata("amdgpu.noclobber");
1351 }
1352 
1353 bool SITargetLowering::isFreeAddrSpaceCast(unsigned SrcAS,
1354                                            unsigned DestAS) const {
1355   // Flat -> private/local is a simple truncate.
1356   // Flat -> global is no-op
1357   if (SrcAS == AMDGPUAS::FLAT_ADDRESS)
1358     return true;
1359 
1360   return isNoopAddrSpaceCast(SrcAS, DestAS);
1361 }
1362 
1363 bool SITargetLowering::isMemOpUniform(const SDNode *N) const {
1364   const MemSDNode *MemNode = cast<MemSDNode>(N);
1365 
1366   return AMDGPUInstrInfo::isUniformMMO(MemNode->getMemOperand());
1367 }
1368 
1369 TargetLoweringBase::LegalizeTypeAction
1370 SITargetLowering::getPreferredVectorAction(MVT VT) const {
1371   int NumElts = VT.getVectorNumElements();
1372   if (NumElts != 1 && VT.getScalarType().bitsLE(MVT::i16))
1373     return VT.isPow2VectorType() ? TypeSplitVector : TypeWidenVector;
1374   return TargetLoweringBase::getPreferredVectorAction(VT);
1375 }
1376 
1377 bool SITargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
1378                                                          Type *Ty) const {
1379   // FIXME: Could be smarter if called for vector constants.
1380   return true;
1381 }
1382 
1383 bool SITargetLowering::isTypeDesirableForOp(unsigned Op, EVT VT) const {
1384   if (Subtarget->has16BitInsts() && VT == MVT::i16) {
1385     switch (Op) {
1386     case ISD::LOAD:
1387     case ISD::STORE:
1388 
1389     // These operations are done with 32-bit instructions anyway.
1390     case ISD::AND:
1391     case ISD::OR:
1392     case ISD::XOR:
1393     case ISD::SELECT:
1394       // TODO: Extensions?
1395       return true;
1396     default:
1397       return false;
1398     }
1399   }
1400 
1401   // SimplifySetCC uses this function to determine whether or not it should
1402   // create setcc with i1 operands.  We don't have instructions for i1 setcc.
1403   if (VT == MVT::i1 && Op == ISD::SETCC)
1404     return false;
1405 
1406   return TargetLowering::isTypeDesirableForOp(Op, VT);
1407 }
1408 
1409 SDValue SITargetLowering::lowerKernArgParameterPtr(SelectionDAG &DAG,
1410                                                    const SDLoc &SL,
1411                                                    SDValue Chain,
1412                                                    uint64_t Offset) const {
1413   const DataLayout &DL = DAG.getDataLayout();
1414   MachineFunction &MF = DAG.getMachineFunction();
1415   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1416 
1417   const ArgDescriptor *InputPtrReg;
1418   const TargetRegisterClass *RC;
1419 
1420   std::tie(InputPtrReg, RC)
1421     = Info->getPreloadedValue(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
1422 
1423   MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1424   MVT PtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS);
1425   SDValue BasePtr = DAG.getCopyFromReg(Chain, SL,
1426     MRI.getLiveInVirtReg(InputPtrReg->getRegister()), PtrVT);
1427 
1428   return DAG.getObjectPtrOffset(SL, BasePtr, Offset);
1429 }
1430 
1431 SDValue SITargetLowering::getImplicitArgPtr(SelectionDAG &DAG,
1432                                             const SDLoc &SL) const {
1433   uint64_t Offset = getImplicitParameterOffset(DAG.getMachineFunction(),
1434                                                FIRST_IMPLICIT);
1435   return lowerKernArgParameterPtr(DAG, SL, DAG.getEntryNode(), Offset);
1436 }
1437 
1438 SDValue SITargetLowering::convertArgType(SelectionDAG &DAG, EVT VT, EVT MemVT,
1439                                          const SDLoc &SL, SDValue Val,
1440                                          bool Signed,
1441                                          const ISD::InputArg *Arg) const {
1442   // First, if it is a widened vector, narrow it.
1443   if (VT.isVector() &&
1444       VT.getVectorNumElements() != MemVT.getVectorNumElements()) {
1445     EVT NarrowedVT =
1446         EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(),
1447                          VT.getVectorNumElements());
1448     Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, NarrowedVT, Val,
1449                       DAG.getConstant(0, SL, MVT::i32));
1450   }
1451 
1452   // Then convert the vector elements or scalar value.
1453   if (Arg && (Arg->Flags.isSExt() || Arg->Flags.isZExt()) &&
1454       VT.bitsLT(MemVT)) {
1455     unsigned Opc = Arg->Flags.isZExt() ? ISD::AssertZext : ISD::AssertSext;
1456     Val = DAG.getNode(Opc, SL, MemVT, Val, DAG.getValueType(VT));
1457   }
1458 
1459   if (MemVT.isFloatingPoint())
1460     Val = getFPExtOrFPTrunc(DAG, Val, SL, VT);
1461   else if (Signed)
1462     Val = DAG.getSExtOrTrunc(Val, SL, VT);
1463   else
1464     Val = DAG.getZExtOrTrunc(Val, SL, VT);
1465 
1466   return Val;
1467 }
1468 
1469 SDValue SITargetLowering::lowerKernargMemParameter(
1470   SelectionDAG &DAG, EVT VT, EVT MemVT,
1471   const SDLoc &SL, SDValue Chain,
1472   uint64_t Offset, unsigned Align, bool Signed,
1473   const ISD::InputArg *Arg) const {
1474   MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
1475 
1476   // Try to avoid using an extload by loading earlier than the argument address,
1477   // and extracting the relevant bits. The load should hopefully be merged with
1478   // the previous argument.
1479   if (MemVT.getStoreSize() < 4 && Align < 4) {
1480     // TODO: Handle align < 4 and size >= 4 (can happen with packed structs).
1481     int64_t AlignDownOffset = alignDown(Offset, 4);
1482     int64_t OffsetDiff = Offset - AlignDownOffset;
1483 
1484     EVT IntVT = MemVT.changeTypeToInteger();
1485 
1486     // TODO: If we passed in the base kernel offset we could have a better
1487     // alignment than 4, but we don't really need it.
1488     SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, AlignDownOffset);
1489     SDValue Load = DAG.getLoad(MVT::i32, SL, Chain, Ptr, PtrInfo, 4,
1490                                MachineMemOperand::MODereferenceable |
1491                                MachineMemOperand::MOInvariant);
1492 
1493     SDValue ShiftAmt = DAG.getConstant(OffsetDiff * 8, SL, MVT::i32);
1494     SDValue Extract = DAG.getNode(ISD::SRL, SL, MVT::i32, Load, ShiftAmt);
1495 
1496     SDValue ArgVal = DAG.getNode(ISD::TRUNCATE, SL, IntVT, Extract);
1497     ArgVal = DAG.getNode(ISD::BITCAST, SL, MemVT, ArgVal);
1498     ArgVal = convertArgType(DAG, VT, MemVT, SL, ArgVal, Signed, Arg);
1499 
1500 
1501     return DAG.getMergeValues({ ArgVal, Load.getValue(1) }, SL);
1502   }
1503 
1504   SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, Offset);
1505   SDValue Load = DAG.getLoad(MemVT, SL, Chain, Ptr, PtrInfo, Align,
1506                              MachineMemOperand::MODereferenceable |
1507                              MachineMemOperand::MOInvariant);
1508 
1509   SDValue Val = convertArgType(DAG, VT, MemVT, SL, Load, Signed, Arg);
1510   return DAG.getMergeValues({ Val, Load.getValue(1) }, SL);
1511 }
1512 
1513 SDValue SITargetLowering::lowerStackParameter(SelectionDAG &DAG, CCValAssign &VA,
1514                                               const SDLoc &SL, SDValue Chain,
1515                                               const ISD::InputArg &Arg) const {
1516   MachineFunction &MF = DAG.getMachineFunction();
1517   MachineFrameInfo &MFI = MF.getFrameInfo();
1518 
1519   if (Arg.Flags.isByVal()) {
1520     unsigned Size = Arg.Flags.getByValSize();
1521     int FrameIdx = MFI.CreateFixedObject(Size, VA.getLocMemOffset(), false);
1522     return DAG.getFrameIndex(FrameIdx, MVT::i32);
1523   }
1524 
1525   unsigned ArgOffset = VA.getLocMemOffset();
1526   unsigned ArgSize = VA.getValVT().getStoreSize();
1527 
1528   int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, true);
1529 
1530   // Create load nodes to retrieve arguments from the stack.
1531   SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1532   SDValue ArgValue;
1533 
1534   // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT)
1535   ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
1536   MVT MemVT = VA.getValVT();
1537 
1538   switch (VA.getLocInfo()) {
1539   default:
1540     break;
1541   case CCValAssign::BCvt:
1542     MemVT = VA.getLocVT();
1543     break;
1544   case CCValAssign::SExt:
1545     ExtType = ISD::SEXTLOAD;
1546     break;
1547   case CCValAssign::ZExt:
1548     ExtType = ISD::ZEXTLOAD;
1549     break;
1550   case CCValAssign::AExt:
1551     ExtType = ISD::EXTLOAD;
1552     break;
1553   }
1554 
1555   ArgValue = DAG.getExtLoad(
1556     ExtType, SL, VA.getLocVT(), Chain, FIN,
1557     MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
1558     MemVT);
1559   return ArgValue;
1560 }
1561 
1562 SDValue SITargetLowering::getPreloadedValue(SelectionDAG &DAG,
1563   const SIMachineFunctionInfo &MFI,
1564   EVT VT,
1565   AMDGPUFunctionArgInfo::PreloadedValue PVID) const {
1566   const ArgDescriptor *Reg;
1567   const TargetRegisterClass *RC;
1568 
1569   std::tie(Reg, RC) = MFI.getPreloadedValue(PVID);
1570   return CreateLiveInRegister(DAG, RC, Reg->getRegister(), VT);
1571 }
1572 
1573 static void processShaderInputArgs(SmallVectorImpl<ISD::InputArg> &Splits,
1574                                    CallingConv::ID CallConv,
1575                                    ArrayRef<ISD::InputArg> Ins,
1576                                    BitVector &Skipped,
1577                                    FunctionType *FType,
1578                                    SIMachineFunctionInfo *Info) {
1579   for (unsigned I = 0, E = Ins.size(), PSInputNum = 0; I != E; ++I) {
1580     const ISD::InputArg *Arg = &Ins[I];
1581 
1582     assert((!Arg->VT.isVector() || Arg->VT.getScalarSizeInBits() == 16) &&
1583            "vector type argument should have been split");
1584 
1585     // First check if it's a PS input addr.
1586     if (CallConv == CallingConv::AMDGPU_PS &&
1587         !Arg->Flags.isInReg() && PSInputNum <= 15) {
1588       bool SkipArg = !Arg->Used && !Info->isPSInputAllocated(PSInputNum);
1589 
1590       // Inconveniently only the first part of the split is marked as isSplit,
1591       // so skip to the end. We only want to increment PSInputNum once for the
1592       // entire split argument.
1593       if (Arg->Flags.isSplit()) {
1594         while (!Arg->Flags.isSplitEnd()) {
1595           assert((!Arg->VT.isVector() ||
1596                   Arg->VT.getScalarSizeInBits() == 16) &&
1597                  "unexpected vector split in ps argument type");
1598           if (!SkipArg)
1599             Splits.push_back(*Arg);
1600           Arg = &Ins[++I];
1601         }
1602       }
1603 
1604       if (SkipArg) {
1605         // We can safely skip PS inputs.
1606         Skipped.set(Arg->getOrigArgIndex());
1607         ++PSInputNum;
1608         continue;
1609       }
1610 
1611       Info->markPSInputAllocated(PSInputNum);
1612       if (Arg->Used)
1613         Info->markPSInputEnabled(PSInputNum);
1614 
1615       ++PSInputNum;
1616     }
1617 
1618     Splits.push_back(*Arg);
1619   }
1620 }
1621 
1622 // Allocate special inputs passed in VGPRs.
1623 void SITargetLowering::allocateSpecialEntryInputVGPRs(CCState &CCInfo,
1624                                                       MachineFunction &MF,
1625                                                       const SIRegisterInfo &TRI,
1626                                                       SIMachineFunctionInfo &Info) const {
1627   const LLT S32 = LLT::scalar(32);
1628   MachineRegisterInfo &MRI = MF.getRegInfo();
1629 
1630   if (Info.hasWorkItemIDX()) {
1631     Register Reg = AMDGPU::VGPR0;
1632     MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32);
1633 
1634     CCInfo.AllocateReg(Reg);
1635     Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg));
1636   }
1637 
1638   if (Info.hasWorkItemIDY()) {
1639     Register Reg = AMDGPU::VGPR1;
1640     MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32);
1641 
1642     CCInfo.AllocateReg(Reg);
1643     Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg));
1644   }
1645 
1646   if (Info.hasWorkItemIDZ()) {
1647     Register Reg = AMDGPU::VGPR2;
1648     MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32);
1649 
1650     CCInfo.AllocateReg(Reg);
1651     Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg));
1652   }
1653 }
1654 
1655 // Try to allocate a VGPR at the end of the argument list, or if no argument
1656 // VGPRs are left allocating a stack slot.
1657 // If \p Mask is is given it indicates bitfield position in the register.
1658 // If \p Arg is given use it with new ]p Mask instead of allocating new.
1659 static ArgDescriptor allocateVGPR32Input(CCState &CCInfo, unsigned Mask = ~0u,
1660                                          ArgDescriptor Arg = ArgDescriptor()) {
1661   if (Arg.isSet())
1662     return ArgDescriptor::createArg(Arg, Mask);
1663 
1664   ArrayRef<MCPhysReg> ArgVGPRs
1665     = makeArrayRef(AMDGPU::VGPR_32RegClass.begin(), 32);
1666   unsigned RegIdx = CCInfo.getFirstUnallocated(ArgVGPRs);
1667   if (RegIdx == ArgVGPRs.size()) {
1668     // Spill to stack required.
1669     int64_t Offset = CCInfo.AllocateStack(4, 4);
1670 
1671     return ArgDescriptor::createStack(Offset, Mask);
1672   }
1673 
1674   unsigned Reg = ArgVGPRs[RegIdx];
1675   Reg = CCInfo.AllocateReg(Reg);
1676   assert(Reg != AMDGPU::NoRegister);
1677 
1678   MachineFunction &MF = CCInfo.getMachineFunction();
1679   Register LiveInVReg = MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
1680   MF.getRegInfo().setType(LiveInVReg, LLT::scalar(32));
1681   return ArgDescriptor::createRegister(Reg, Mask);
1682 }
1683 
1684 static ArgDescriptor allocateSGPR32InputImpl(CCState &CCInfo,
1685                                              const TargetRegisterClass *RC,
1686                                              unsigned NumArgRegs) {
1687   ArrayRef<MCPhysReg> ArgSGPRs = makeArrayRef(RC->begin(), 32);
1688   unsigned RegIdx = CCInfo.getFirstUnallocated(ArgSGPRs);
1689   if (RegIdx == ArgSGPRs.size())
1690     report_fatal_error("ran out of SGPRs for arguments");
1691 
1692   unsigned Reg = ArgSGPRs[RegIdx];
1693   Reg = CCInfo.AllocateReg(Reg);
1694   assert(Reg != AMDGPU::NoRegister);
1695 
1696   MachineFunction &MF = CCInfo.getMachineFunction();
1697   MF.addLiveIn(Reg, RC);
1698   return ArgDescriptor::createRegister(Reg);
1699 }
1700 
1701 static ArgDescriptor allocateSGPR32Input(CCState &CCInfo) {
1702   return allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_32RegClass, 32);
1703 }
1704 
1705 static ArgDescriptor allocateSGPR64Input(CCState &CCInfo) {
1706   return allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_64RegClass, 16);
1707 }
1708 
1709 void SITargetLowering::allocateSpecialInputVGPRs(CCState &CCInfo,
1710                                                  MachineFunction &MF,
1711                                                  const SIRegisterInfo &TRI,
1712                                                  SIMachineFunctionInfo &Info) const {
1713   const unsigned Mask = 0x3ff;
1714   ArgDescriptor Arg;
1715 
1716   if (Info.hasWorkItemIDX()) {
1717     Arg = allocateVGPR32Input(CCInfo, Mask);
1718     Info.setWorkItemIDX(Arg);
1719   }
1720 
1721   if (Info.hasWorkItemIDY()) {
1722     Arg = allocateVGPR32Input(CCInfo, Mask << 10, Arg);
1723     Info.setWorkItemIDY(Arg);
1724   }
1725 
1726   if (Info.hasWorkItemIDZ())
1727     Info.setWorkItemIDZ(allocateVGPR32Input(CCInfo, Mask << 20, Arg));
1728 }
1729 
1730 void SITargetLowering::allocateSpecialInputSGPRs(
1731   CCState &CCInfo,
1732   MachineFunction &MF,
1733   const SIRegisterInfo &TRI,
1734   SIMachineFunctionInfo &Info) const {
1735   auto &ArgInfo = Info.getArgInfo();
1736 
1737   // TODO: Unify handling with private memory pointers.
1738 
1739   if (Info.hasDispatchPtr())
1740     ArgInfo.DispatchPtr = allocateSGPR64Input(CCInfo);
1741 
1742   if (Info.hasQueuePtr())
1743     ArgInfo.QueuePtr = allocateSGPR64Input(CCInfo);
1744 
1745   if (Info.hasKernargSegmentPtr())
1746     ArgInfo.KernargSegmentPtr = allocateSGPR64Input(CCInfo);
1747 
1748   if (Info.hasDispatchID())
1749     ArgInfo.DispatchID = allocateSGPR64Input(CCInfo);
1750 
1751   // flat_scratch_init is not applicable for non-kernel functions.
1752 
1753   if (Info.hasWorkGroupIDX())
1754     ArgInfo.WorkGroupIDX = allocateSGPR32Input(CCInfo);
1755 
1756   if (Info.hasWorkGroupIDY())
1757     ArgInfo.WorkGroupIDY = allocateSGPR32Input(CCInfo);
1758 
1759   if (Info.hasWorkGroupIDZ())
1760     ArgInfo.WorkGroupIDZ = allocateSGPR32Input(CCInfo);
1761 
1762   if (Info.hasImplicitArgPtr())
1763     ArgInfo.ImplicitArgPtr = allocateSGPR64Input(CCInfo);
1764 }
1765 
1766 // Allocate special inputs passed in user SGPRs.
1767 void SITargetLowering::allocateHSAUserSGPRs(CCState &CCInfo,
1768                                             MachineFunction &MF,
1769                                             const SIRegisterInfo &TRI,
1770                                             SIMachineFunctionInfo &Info) const {
1771   if (Info.hasImplicitBufferPtr()) {
1772     unsigned ImplicitBufferPtrReg = Info.addImplicitBufferPtr(TRI);
1773     MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass);
1774     CCInfo.AllocateReg(ImplicitBufferPtrReg);
1775   }
1776 
1777   // FIXME: How should these inputs interact with inreg / custom SGPR inputs?
1778   if (Info.hasPrivateSegmentBuffer()) {
1779     unsigned PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI);
1780     MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass);
1781     CCInfo.AllocateReg(PrivateSegmentBufferReg);
1782   }
1783 
1784   if (Info.hasDispatchPtr()) {
1785     unsigned DispatchPtrReg = Info.addDispatchPtr(TRI);
1786     MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass);
1787     CCInfo.AllocateReg(DispatchPtrReg);
1788   }
1789 
1790   if (Info.hasQueuePtr()) {
1791     unsigned QueuePtrReg = Info.addQueuePtr(TRI);
1792     MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass);
1793     CCInfo.AllocateReg(QueuePtrReg);
1794   }
1795 
1796   if (Info.hasKernargSegmentPtr()) {
1797     MachineRegisterInfo &MRI = MF.getRegInfo();
1798     Register InputPtrReg = Info.addKernargSegmentPtr(TRI);
1799     CCInfo.AllocateReg(InputPtrReg);
1800 
1801     Register VReg = MF.addLiveIn(InputPtrReg, &AMDGPU::SGPR_64RegClass);
1802     MRI.setType(VReg, LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64));
1803   }
1804 
1805   if (Info.hasDispatchID()) {
1806     unsigned DispatchIDReg = Info.addDispatchID(TRI);
1807     MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass);
1808     CCInfo.AllocateReg(DispatchIDReg);
1809   }
1810 
1811   if (Info.hasFlatScratchInit()) {
1812     unsigned FlatScratchInitReg = Info.addFlatScratchInit(TRI);
1813     MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass);
1814     CCInfo.AllocateReg(FlatScratchInitReg);
1815   }
1816 
1817   // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read
1818   // these from the dispatch pointer.
1819 }
1820 
1821 // Allocate special input registers that are initialized per-wave.
1822 void SITargetLowering::allocateSystemSGPRs(CCState &CCInfo,
1823                                            MachineFunction &MF,
1824                                            SIMachineFunctionInfo &Info,
1825                                            CallingConv::ID CallConv,
1826                                            bool IsShader) const {
1827   if (Info.hasWorkGroupIDX()) {
1828     unsigned Reg = Info.addWorkGroupIDX();
1829     MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
1830     CCInfo.AllocateReg(Reg);
1831   }
1832 
1833   if (Info.hasWorkGroupIDY()) {
1834     unsigned Reg = Info.addWorkGroupIDY();
1835     MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
1836     CCInfo.AllocateReg(Reg);
1837   }
1838 
1839   if (Info.hasWorkGroupIDZ()) {
1840     unsigned Reg = Info.addWorkGroupIDZ();
1841     MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
1842     CCInfo.AllocateReg(Reg);
1843   }
1844 
1845   if (Info.hasWorkGroupInfo()) {
1846     unsigned Reg = Info.addWorkGroupInfo();
1847     MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
1848     CCInfo.AllocateReg(Reg);
1849   }
1850 
1851   if (Info.hasPrivateSegmentWaveByteOffset()) {
1852     // Scratch wave offset passed in system SGPR.
1853     unsigned PrivateSegmentWaveByteOffsetReg;
1854 
1855     if (IsShader) {
1856       PrivateSegmentWaveByteOffsetReg =
1857         Info.getPrivateSegmentWaveByteOffsetSystemSGPR();
1858 
1859       // This is true if the scratch wave byte offset doesn't have a fixed
1860       // location.
1861       if (PrivateSegmentWaveByteOffsetReg == AMDGPU::NoRegister) {
1862         PrivateSegmentWaveByteOffsetReg = findFirstFreeSGPR(CCInfo);
1863         Info.setPrivateSegmentWaveByteOffset(PrivateSegmentWaveByteOffsetReg);
1864       }
1865     } else
1866       PrivateSegmentWaveByteOffsetReg = Info.addPrivateSegmentWaveByteOffset();
1867 
1868     MF.addLiveIn(PrivateSegmentWaveByteOffsetReg, &AMDGPU::SGPR_32RegClass);
1869     CCInfo.AllocateReg(PrivateSegmentWaveByteOffsetReg);
1870   }
1871 }
1872 
1873 static void reservePrivateMemoryRegs(const TargetMachine &TM,
1874                                      MachineFunction &MF,
1875                                      const SIRegisterInfo &TRI,
1876                                      SIMachineFunctionInfo &Info) {
1877   // Now that we've figured out where the scratch register inputs are, see if
1878   // should reserve the arguments and use them directly.
1879   MachineFrameInfo &MFI = MF.getFrameInfo();
1880   bool HasStackObjects = MFI.hasStackObjects();
1881   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
1882 
1883   // Record that we know we have non-spill stack objects so we don't need to
1884   // check all stack objects later.
1885   if (HasStackObjects)
1886     Info.setHasNonSpillStackObjects(true);
1887 
1888   // Everything live out of a block is spilled with fast regalloc, so it's
1889   // almost certain that spilling will be required.
1890   if (TM.getOptLevel() == CodeGenOpt::None)
1891     HasStackObjects = true;
1892 
1893   // For now assume stack access is needed in any callee functions, so we need
1894   // the scratch registers to pass in.
1895   bool RequiresStackAccess = HasStackObjects || MFI.hasCalls();
1896 
1897   if (RequiresStackAccess && ST.isAmdHsaOrMesa(MF.getFunction())) {
1898     // If we have stack objects, we unquestionably need the private buffer
1899     // resource. For the Code Object V2 ABI, this will be the first 4 user
1900     // SGPR inputs. We can reserve those and use them directly.
1901 
1902     Register PrivateSegmentBufferReg =
1903         Info.getPreloadedReg(AMDGPUFunctionArgInfo::PRIVATE_SEGMENT_BUFFER);
1904     Info.setScratchRSrcReg(PrivateSegmentBufferReg);
1905   } else {
1906     unsigned ReservedBufferReg = TRI.reservedPrivateSegmentBufferReg(MF);
1907     // We tentatively reserve the last registers (skipping the last registers
1908     // which may contain VCC, FLAT_SCR, and XNACK). After register allocation,
1909     // we'll replace these with the ones immediately after those which were
1910     // really allocated. In the prologue copies will be inserted from the
1911     // argument to these reserved registers.
1912 
1913     // Without HSA, relocations are used for the scratch pointer and the
1914     // buffer resource setup is always inserted in the prologue. Scratch wave
1915     // offset is still in an input SGPR.
1916     Info.setScratchRSrcReg(ReservedBufferReg);
1917   }
1918 
1919   // hasFP should be accurate for kernels even before the frame is finalized.
1920   if (ST.getFrameLowering()->hasFP(MF)) {
1921     MachineRegisterInfo &MRI = MF.getRegInfo();
1922 
1923     // Try to use s32 as the SP, but move it if it would interfere with input
1924     // arguments. This won't work with calls though.
1925     //
1926     // FIXME: Move SP to avoid any possible inputs, or find a way to spill input
1927     // registers.
1928     if (!MRI.isLiveIn(AMDGPU::SGPR32)) {
1929       Info.setStackPtrOffsetReg(AMDGPU::SGPR32);
1930     } else {
1931       assert(AMDGPU::isShader(MF.getFunction().getCallingConv()));
1932 
1933       if (MFI.hasCalls())
1934         report_fatal_error("call in graphics shader with too many input SGPRs");
1935 
1936       for (unsigned Reg : AMDGPU::SGPR_32RegClass) {
1937         if (!MRI.isLiveIn(Reg)) {
1938           Info.setStackPtrOffsetReg(Reg);
1939           break;
1940         }
1941       }
1942 
1943       if (Info.getStackPtrOffsetReg() == AMDGPU::SP_REG)
1944         report_fatal_error("failed to find register for SP");
1945     }
1946 
1947     if (MFI.hasCalls()) {
1948       Info.setScratchWaveOffsetReg(AMDGPU::SGPR33);
1949       Info.setFrameOffsetReg(AMDGPU::SGPR33);
1950     } else {
1951       unsigned ReservedOffsetReg =
1952         TRI.reservedPrivateSegmentWaveByteOffsetReg(MF);
1953       Info.setScratchWaveOffsetReg(ReservedOffsetReg);
1954       Info.setFrameOffsetReg(ReservedOffsetReg);
1955     }
1956   } else if (RequiresStackAccess) {
1957     assert(!MFI.hasCalls());
1958     // We know there are accesses and they will be done relative to SP, so just
1959     // pin it to the input.
1960     //
1961     // FIXME: Should not do this if inline asm is reading/writing these
1962     // registers.
1963     Register PreloadedSP = Info.getPreloadedReg(
1964         AMDGPUFunctionArgInfo::PRIVATE_SEGMENT_WAVE_BYTE_OFFSET);
1965 
1966     Info.setStackPtrOffsetReg(PreloadedSP);
1967     Info.setScratchWaveOffsetReg(PreloadedSP);
1968     Info.setFrameOffsetReg(PreloadedSP);
1969   } else {
1970     assert(!MFI.hasCalls());
1971 
1972     // There may not be stack access at all. There may still be spills, or
1973     // access of a constant pointer (in which cases an extra copy will be
1974     // emitted in the prolog).
1975     unsigned ReservedOffsetReg
1976       = TRI.reservedPrivateSegmentWaveByteOffsetReg(MF);
1977     Info.setStackPtrOffsetReg(ReservedOffsetReg);
1978     Info.setScratchWaveOffsetReg(ReservedOffsetReg);
1979     Info.setFrameOffsetReg(ReservedOffsetReg);
1980   }
1981 }
1982 
1983 bool SITargetLowering::supportSplitCSR(MachineFunction *MF) const {
1984   const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>();
1985   return !Info->isEntryFunction();
1986 }
1987 
1988 void SITargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
1989 
1990 }
1991 
1992 void SITargetLowering::insertCopiesSplitCSR(
1993   MachineBasicBlock *Entry,
1994   const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
1995   const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
1996 
1997   const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
1998   if (!IStart)
1999     return;
2000 
2001   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
2002   MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
2003   MachineBasicBlock::iterator MBBI = Entry->begin();
2004   for (const MCPhysReg *I = IStart; *I; ++I) {
2005     const TargetRegisterClass *RC = nullptr;
2006     if (AMDGPU::SReg_64RegClass.contains(*I))
2007       RC = &AMDGPU::SGPR_64RegClass;
2008     else if (AMDGPU::SReg_32RegClass.contains(*I))
2009       RC = &AMDGPU::SGPR_32RegClass;
2010     else
2011       llvm_unreachable("Unexpected register class in CSRsViaCopy!");
2012 
2013     Register NewVR = MRI->createVirtualRegister(RC);
2014     // Create copy from CSR to a virtual register.
2015     Entry->addLiveIn(*I);
2016     BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
2017       .addReg(*I);
2018 
2019     // Insert the copy-back instructions right before the terminator.
2020     for (auto *Exit : Exits)
2021       BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
2022               TII->get(TargetOpcode::COPY), *I)
2023         .addReg(NewVR);
2024   }
2025 }
2026 
2027 SDValue SITargetLowering::LowerFormalArguments(
2028     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
2029     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
2030     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
2031   const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2032 
2033   MachineFunction &MF = DAG.getMachineFunction();
2034   const Function &Fn = MF.getFunction();
2035   FunctionType *FType = MF.getFunction().getFunctionType();
2036   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
2037 
2038   if (Subtarget->isAmdHsaOS() && AMDGPU::isShader(CallConv)) {
2039     DiagnosticInfoUnsupported NoGraphicsHSA(
2040         Fn, "unsupported non-compute shaders with HSA", DL.getDebugLoc());
2041     DAG.getContext()->diagnose(NoGraphicsHSA);
2042     return DAG.getEntryNode();
2043   }
2044 
2045   SmallVector<ISD::InputArg, 16> Splits;
2046   SmallVector<CCValAssign, 16> ArgLocs;
2047   BitVector Skipped(Ins.size());
2048   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
2049                  *DAG.getContext());
2050 
2051   bool IsShader = AMDGPU::isShader(CallConv);
2052   bool IsKernel = AMDGPU::isKernel(CallConv);
2053   bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CallConv);
2054 
2055   if (IsShader) {
2056     processShaderInputArgs(Splits, CallConv, Ins, Skipped, FType, Info);
2057 
2058     // At least one interpolation mode must be enabled or else the GPU will
2059     // hang.
2060     //
2061     // Check PSInputAddr instead of PSInputEnable. The idea is that if the user
2062     // set PSInputAddr, the user wants to enable some bits after the compilation
2063     // based on run-time states. Since we can't know what the final PSInputEna
2064     // will look like, so we shouldn't do anything here and the user should take
2065     // responsibility for the correct programming.
2066     //
2067     // Otherwise, the following restrictions apply:
2068     // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled.
2069     // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be
2070     //   enabled too.
2071     if (CallConv == CallingConv::AMDGPU_PS) {
2072       if ((Info->getPSInputAddr() & 0x7F) == 0 ||
2073            ((Info->getPSInputAddr() & 0xF) == 0 &&
2074             Info->isPSInputAllocated(11))) {
2075         CCInfo.AllocateReg(AMDGPU::VGPR0);
2076         CCInfo.AllocateReg(AMDGPU::VGPR1);
2077         Info->markPSInputAllocated(0);
2078         Info->markPSInputEnabled(0);
2079       }
2080       if (Subtarget->isAmdPalOS()) {
2081         // For isAmdPalOS, the user does not enable some bits after compilation
2082         // based on run-time states; the register values being generated here are
2083         // the final ones set in hardware. Therefore we need to apply the
2084         // workaround to PSInputAddr and PSInputEnable together.  (The case where
2085         // a bit is set in PSInputAddr but not PSInputEnable is where the
2086         // frontend set up an input arg for a particular interpolation mode, but
2087         // nothing uses that input arg. Really we should have an earlier pass
2088         // that removes such an arg.)
2089         unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable();
2090         if ((PsInputBits & 0x7F) == 0 ||
2091             ((PsInputBits & 0xF) == 0 &&
2092              (PsInputBits >> 11 & 1)))
2093           Info->markPSInputEnabled(
2094               countTrailingZeros(Info->getPSInputAddr(), ZB_Undefined));
2095       }
2096     }
2097 
2098     assert(!Info->hasDispatchPtr() &&
2099            !Info->hasKernargSegmentPtr() && !Info->hasFlatScratchInit() &&
2100            !Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() &&
2101            !Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() &&
2102            !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() &&
2103            !Info->hasWorkItemIDZ());
2104   } else if (IsKernel) {
2105     assert(Info->hasWorkGroupIDX() && Info->hasWorkItemIDX());
2106   } else {
2107     Splits.append(Ins.begin(), Ins.end());
2108   }
2109 
2110   if (IsEntryFunc) {
2111     allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info);
2112     allocateHSAUserSGPRs(CCInfo, MF, *TRI, *Info);
2113   }
2114 
2115   if (IsKernel) {
2116     analyzeFormalArgumentsCompute(CCInfo, Ins);
2117   } else {
2118     CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, isVarArg);
2119     CCInfo.AnalyzeFormalArguments(Splits, AssignFn);
2120   }
2121 
2122   SmallVector<SDValue, 16> Chains;
2123 
2124   // FIXME: This is the minimum kernel argument alignment. We should improve
2125   // this to the maximum alignment of the arguments.
2126   //
2127   // FIXME: Alignment of explicit arguments totally broken with non-0 explicit
2128   // kern arg offset.
2129   const unsigned KernelArgBaseAlign = 16;
2130 
2131    for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) {
2132     const ISD::InputArg &Arg = Ins[i];
2133     if (Arg.isOrigArg() && Skipped[Arg.getOrigArgIndex()]) {
2134       InVals.push_back(DAG.getUNDEF(Arg.VT));
2135       continue;
2136     }
2137 
2138     CCValAssign &VA = ArgLocs[ArgIdx++];
2139     MVT VT = VA.getLocVT();
2140 
2141     if (IsEntryFunc && VA.isMemLoc()) {
2142       VT = Ins[i].VT;
2143       EVT MemVT = VA.getLocVT();
2144 
2145       const uint64_t Offset = VA.getLocMemOffset();
2146       unsigned Align = MinAlign(KernelArgBaseAlign, Offset);
2147 
2148       SDValue Arg = lowerKernargMemParameter(
2149         DAG, VT, MemVT, DL, Chain, Offset, Align, Ins[i].Flags.isSExt(), &Ins[i]);
2150       Chains.push_back(Arg.getValue(1));
2151 
2152       auto *ParamTy =
2153         dyn_cast<PointerType>(FType->getParamType(Ins[i].getOrigArgIndex()));
2154       if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS &&
2155           ParamTy && (ParamTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
2156                       ParamTy->getAddressSpace() == AMDGPUAS::REGION_ADDRESS)) {
2157         // On SI local pointers are just offsets into LDS, so they are always
2158         // less than 16-bits.  On CI and newer they could potentially be
2159         // real pointers, so we can't guarantee their size.
2160         Arg = DAG.getNode(ISD::AssertZext, DL, Arg.getValueType(), Arg,
2161                           DAG.getValueType(MVT::i16));
2162       }
2163 
2164       InVals.push_back(Arg);
2165       continue;
2166     } else if (!IsEntryFunc && VA.isMemLoc()) {
2167       SDValue Val = lowerStackParameter(DAG, VA, DL, Chain, Arg);
2168       InVals.push_back(Val);
2169       if (!Arg.Flags.isByVal())
2170         Chains.push_back(Val.getValue(1));
2171       continue;
2172     }
2173 
2174     assert(VA.isRegLoc() && "Parameter must be in a register!");
2175 
2176     Register Reg = VA.getLocReg();
2177     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
2178     EVT ValVT = VA.getValVT();
2179 
2180     Reg = MF.addLiveIn(Reg, RC);
2181     SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT);
2182 
2183     if (Arg.Flags.isSRet()) {
2184       // The return object should be reasonably addressable.
2185 
2186       // FIXME: This helps when the return is a real sret. If it is a
2187       // automatically inserted sret (i.e. CanLowerReturn returns false), an
2188       // extra copy is inserted in SelectionDAGBuilder which obscures this.
2189       unsigned NumBits
2190         = 32 - getSubtarget()->getKnownHighZeroBitsForFrameIndex();
2191       Val = DAG.getNode(ISD::AssertZext, DL, VT, Val,
2192         DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), NumBits)));
2193     }
2194 
2195     // If this is an 8 or 16-bit value, it is really passed promoted
2196     // to 32 bits. Insert an assert[sz]ext to capture this, then
2197     // truncate to the right size.
2198     switch (VA.getLocInfo()) {
2199     case CCValAssign::Full:
2200       break;
2201     case CCValAssign::BCvt:
2202       Val = DAG.getNode(ISD::BITCAST, DL, ValVT, Val);
2203       break;
2204     case CCValAssign::SExt:
2205       Val = DAG.getNode(ISD::AssertSext, DL, VT, Val,
2206                         DAG.getValueType(ValVT));
2207       Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
2208       break;
2209     case CCValAssign::ZExt:
2210       Val = DAG.getNode(ISD::AssertZext, DL, VT, Val,
2211                         DAG.getValueType(ValVT));
2212       Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
2213       break;
2214     case CCValAssign::AExt:
2215       Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
2216       break;
2217     default:
2218       llvm_unreachable("Unknown loc info!");
2219     }
2220 
2221     InVals.push_back(Val);
2222   }
2223 
2224   if (!IsEntryFunc) {
2225     // Special inputs come after user arguments.
2226     allocateSpecialInputVGPRs(CCInfo, MF, *TRI, *Info);
2227   }
2228 
2229   // Start adding system SGPRs.
2230   if (IsEntryFunc) {
2231     allocateSystemSGPRs(CCInfo, MF, *Info, CallConv, IsShader);
2232   } else {
2233     CCInfo.AllocateReg(Info->getScratchRSrcReg());
2234     CCInfo.AllocateReg(Info->getScratchWaveOffsetReg());
2235     CCInfo.AllocateReg(Info->getFrameOffsetReg());
2236     allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info);
2237   }
2238 
2239   auto &ArgUsageInfo =
2240     DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>();
2241   ArgUsageInfo.setFuncArgInfo(Fn, Info->getArgInfo());
2242 
2243   unsigned StackArgSize = CCInfo.getNextStackOffset();
2244   Info->setBytesInStackArgArea(StackArgSize);
2245 
2246   return Chains.empty() ? Chain :
2247     DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
2248 }
2249 
2250 // TODO: If return values can't fit in registers, we should return as many as
2251 // possible in registers before passing on stack.
2252 bool SITargetLowering::CanLowerReturn(
2253   CallingConv::ID CallConv,
2254   MachineFunction &MF, bool IsVarArg,
2255   const SmallVectorImpl<ISD::OutputArg> &Outs,
2256   LLVMContext &Context) const {
2257   // Replacing returns with sret/stack usage doesn't make sense for shaders.
2258   // FIXME: Also sort of a workaround for custom vector splitting in LowerReturn
2259   // for shaders. Vector types should be explicitly handled by CC.
2260   if (AMDGPU::isEntryFunctionCC(CallConv))
2261     return true;
2262 
2263   SmallVector<CCValAssign, 16> RVLocs;
2264   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
2265   return CCInfo.CheckReturn(Outs, CCAssignFnForReturn(CallConv, IsVarArg));
2266 }
2267 
2268 SDValue
2269 SITargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
2270                               bool isVarArg,
2271                               const SmallVectorImpl<ISD::OutputArg> &Outs,
2272                               const SmallVectorImpl<SDValue> &OutVals,
2273                               const SDLoc &DL, SelectionDAG &DAG) const {
2274   MachineFunction &MF = DAG.getMachineFunction();
2275   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
2276 
2277   if (AMDGPU::isKernel(CallConv)) {
2278     return AMDGPUTargetLowering::LowerReturn(Chain, CallConv, isVarArg, Outs,
2279                                              OutVals, DL, DAG);
2280   }
2281 
2282   bool IsShader = AMDGPU::isShader(CallConv);
2283 
2284   Info->setIfReturnsVoid(Outs.empty());
2285   bool IsWaveEnd = Info->returnsVoid() && IsShader;
2286 
2287   // CCValAssign - represent the assignment of the return value to a location.
2288   SmallVector<CCValAssign, 48> RVLocs;
2289   SmallVector<ISD::OutputArg, 48> Splits;
2290 
2291   // CCState - Info about the registers and stack slots.
2292   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
2293                  *DAG.getContext());
2294 
2295   // Analyze outgoing return values.
2296   CCInfo.AnalyzeReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg));
2297 
2298   SDValue Flag;
2299   SmallVector<SDValue, 48> RetOps;
2300   RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
2301 
2302   // Add return address for callable functions.
2303   if (!Info->isEntryFunction()) {
2304     const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2305     SDValue ReturnAddrReg = CreateLiveInRegister(
2306       DAG, &AMDGPU::SReg_64RegClass, TRI->getReturnAddressReg(MF), MVT::i64);
2307 
2308     SDValue ReturnAddrVirtualReg = DAG.getRegister(
2309         MF.getRegInfo().createVirtualRegister(&AMDGPU::CCR_SGPR_64RegClass),
2310         MVT::i64);
2311     Chain =
2312         DAG.getCopyToReg(Chain, DL, ReturnAddrVirtualReg, ReturnAddrReg, Flag);
2313     Flag = Chain.getValue(1);
2314     RetOps.push_back(ReturnAddrVirtualReg);
2315   }
2316 
2317   // Copy the result values into the output registers.
2318   for (unsigned I = 0, RealRVLocIdx = 0, E = RVLocs.size(); I != E;
2319        ++I, ++RealRVLocIdx) {
2320     CCValAssign &VA = RVLocs[I];
2321     assert(VA.isRegLoc() && "Can only return in registers!");
2322     // TODO: Partially return in registers if return values don't fit.
2323     SDValue Arg = OutVals[RealRVLocIdx];
2324 
2325     // Copied from other backends.
2326     switch (VA.getLocInfo()) {
2327     case CCValAssign::Full:
2328       break;
2329     case CCValAssign::BCvt:
2330       Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
2331       break;
2332     case CCValAssign::SExt:
2333       Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
2334       break;
2335     case CCValAssign::ZExt:
2336       Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
2337       break;
2338     case CCValAssign::AExt:
2339       Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
2340       break;
2341     default:
2342       llvm_unreachable("Unknown loc info!");
2343     }
2344 
2345     Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag);
2346     Flag = Chain.getValue(1);
2347     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2348   }
2349 
2350   // FIXME: Does sret work properly?
2351   if (!Info->isEntryFunction()) {
2352     const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
2353     const MCPhysReg *I =
2354       TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
2355     if (I) {
2356       for (; *I; ++I) {
2357         if (AMDGPU::SReg_64RegClass.contains(*I))
2358           RetOps.push_back(DAG.getRegister(*I, MVT::i64));
2359         else if (AMDGPU::SReg_32RegClass.contains(*I))
2360           RetOps.push_back(DAG.getRegister(*I, MVT::i32));
2361         else
2362           llvm_unreachable("Unexpected register class in CSRsViaCopy!");
2363       }
2364     }
2365   }
2366 
2367   // Update chain and glue.
2368   RetOps[0] = Chain;
2369   if (Flag.getNode())
2370     RetOps.push_back(Flag);
2371 
2372   unsigned Opc = AMDGPUISD::ENDPGM;
2373   if (!IsWaveEnd)
2374     Opc = IsShader ? AMDGPUISD::RETURN_TO_EPILOG : AMDGPUISD::RET_FLAG;
2375   return DAG.getNode(Opc, DL, MVT::Other, RetOps);
2376 }
2377 
2378 SDValue SITargetLowering::LowerCallResult(
2379     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg,
2380     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
2381     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool IsThisReturn,
2382     SDValue ThisVal) const {
2383   CCAssignFn *RetCC = CCAssignFnForReturn(CallConv, IsVarArg);
2384 
2385   // Assign locations to each value returned by this call.
2386   SmallVector<CCValAssign, 16> RVLocs;
2387   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
2388                  *DAG.getContext());
2389   CCInfo.AnalyzeCallResult(Ins, RetCC);
2390 
2391   // Copy all of the result registers out of their specified physreg.
2392   for (unsigned i = 0; i != RVLocs.size(); ++i) {
2393     CCValAssign VA = RVLocs[i];
2394     SDValue Val;
2395 
2396     if (VA.isRegLoc()) {
2397       Val = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag);
2398       Chain = Val.getValue(1);
2399       InFlag = Val.getValue(2);
2400     } else if (VA.isMemLoc()) {
2401       report_fatal_error("TODO: return values in memory");
2402     } else
2403       llvm_unreachable("unknown argument location type");
2404 
2405     switch (VA.getLocInfo()) {
2406     case CCValAssign::Full:
2407       break;
2408     case CCValAssign::BCvt:
2409       Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
2410       break;
2411     case CCValAssign::ZExt:
2412       Val = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Val,
2413                         DAG.getValueType(VA.getValVT()));
2414       Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
2415       break;
2416     case CCValAssign::SExt:
2417       Val = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Val,
2418                         DAG.getValueType(VA.getValVT()));
2419       Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
2420       break;
2421     case CCValAssign::AExt:
2422       Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
2423       break;
2424     default:
2425       llvm_unreachable("Unknown loc info!");
2426     }
2427 
2428     InVals.push_back(Val);
2429   }
2430 
2431   return Chain;
2432 }
2433 
2434 // Add code to pass special inputs required depending on used features separate
2435 // from the explicit user arguments present in the IR.
2436 void SITargetLowering::passSpecialInputs(
2437     CallLoweringInfo &CLI,
2438     CCState &CCInfo,
2439     const SIMachineFunctionInfo &Info,
2440     SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass,
2441     SmallVectorImpl<SDValue> &MemOpChains,
2442     SDValue Chain) const {
2443   // If we don't have a call site, this was a call inserted by
2444   // legalization. These can never use special inputs.
2445   if (!CLI.CS)
2446     return;
2447 
2448   const Function *CalleeFunc = CLI.CS.getCalledFunction();
2449   assert(CalleeFunc);
2450 
2451   SelectionDAG &DAG = CLI.DAG;
2452   const SDLoc &DL = CLI.DL;
2453 
2454   const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
2455 
2456   auto &ArgUsageInfo =
2457     DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>();
2458   const AMDGPUFunctionArgInfo &CalleeArgInfo
2459     = ArgUsageInfo.lookupFuncArgInfo(*CalleeFunc);
2460 
2461   const AMDGPUFunctionArgInfo &CallerArgInfo = Info.getArgInfo();
2462 
2463   // TODO: Unify with private memory register handling. This is complicated by
2464   // the fact that at least in kernels, the input argument is not necessarily
2465   // in the same location as the input.
2466   AMDGPUFunctionArgInfo::PreloadedValue InputRegs[] = {
2467     AMDGPUFunctionArgInfo::DISPATCH_PTR,
2468     AMDGPUFunctionArgInfo::QUEUE_PTR,
2469     AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR,
2470     AMDGPUFunctionArgInfo::DISPATCH_ID,
2471     AMDGPUFunctionArgInfo::WORKGROUP_ID_X,
2472     AMDGPUFunctionArgInfo::WORKGROUP_ID_Y,
2473     AMDGPUFunctionArgInfo::WORKGROUP_ID_Z,
2474     AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR
2475   };
2476 
2477   for (auto InputID : InputRegs) {
2478     const ArgDescriptor *OutgoingArg;
2479     const TargetRegisterClass *ArgRC;
2480 
2481     std::tie(OutgoingArg, ArgRC) = CalleeArgInfo.getPreloadedValue(InputID);
2482     if (!OutgoingArg)
2483       continue;
2484 
2485     const ArgDescriptor *IncomingArg;
2486     const TargetRegisterClass *IncomingArgRC;
2487     std::tie(IncomingArg, IncomingArgRC)
2488       = CallerArgInfo.getPreloadedValue(InputID);
2489     assert(IncomingArgRC == ArgRC);
2490 
2491     // All special arguments are ints for now.
2492     EVT ArgVT = TRI->getSpillSize(*ArgRC) == 8 ? MVT::i64 : MVT::i32;
2493     SDValue InputReg;
2494 
2495     if (IncomingArg) {
2496       InputReg = loadInputValue(DAG, ArgRC, ArgVT, DL, *IncomingArg);
2497     } else {
2498       // The implicit arg ptr is special because it doesn't have a corresponding
2499       // input for kernels, and is computed from the kernarg segment pointer.
2500       assert(InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR);
2501       InputReg = getImplicitArgPtr(DAG, DL);
2502     }
2503 
2504     if (OutgoingArg->isRegister()) {
2505       RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg);
2506     } else {
2507       unsigned SpecialArgOffset = CCInfo.AllocateStack(ArgVT.getStoreSize(), 4);
2508       SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg,
2509                                               SpecialArgOffset);
2510       MemOpChains.push_back(ArgStore);
2511     }
2512   }
2513 
2514   // Pack workitem IDs into a single register or pass it as is if already
2515   // packed.
2516   const ArgDescriptor *OutgoingArg;
2517   const TargetRegisterClass *ArgRC;
2518 
2519   std::tie(OutgoingArg, ArgRC) =
2520     CalleeArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X);
2521   if (!OutgoingArg)
2522     std::tie(OutgoingArg, ArgRC) =
2523       CalleeArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y);
2524   if (!OutgoingArg)
2525     std::tie(OutgoingArg, ArgRC) =
2526       CalleeArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z);
2527   if (!OutgoingArg)
2528     return;
2529 
2530   const ArgDescriptor *IncomingArgX
2531     = CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X).first;
2532   const ArgDescriptor *IncomingArgY
2533     = CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y).first;
2534   const ArgDescriptor *IncomingArgZ
2535     = CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z).first;
2536 
2537   SDValue InputReg;
2538   SDLoc SL;
2539 
2540   // If incoming ids are not packed we need to pack them.
2541   if (IncomingArgX && !IncomingArgX->isMasked() && CalleeArgInfo.WorkItemIDX)
2542     InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgX);
2543 
2544   if (IncomingArgY && !IncomingArgY->isMasked() && CalleeArgInfo.WorkItemIDY) {
2545     SDValue Y = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgY);
2546     Y = DAG.getNode(ISD::SHL, SL, MVT::i32, Y,
2547                     DAG.getShiftAmountConstant(10, MVT::i32, SL));
2548     InputReg = InputReg.getNode() ?
2549                  DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Y) : Y;
2550   }
2551 
2552   if (IncomingArgZ && !IncomingArgZ->isMasked() && CalleeArgInfo.WorkItemIDZ) {
2553     SDValue Z = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgZ);
2554     Z = DAG.getNode(ISD::SHL, SL, MVT::i32, Z,
2555                     DAG.getShiftAmountConstant(20, MVT::i32, SL));
2556     InputReg = InputReg.getNode() ?
2557                  DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Z) : Z;
2558   }
2559 
2560   if (!InputReg.getNode()) {
2561     // Workitem ids are already packed, any of present incoming arguments
2562     // will carry all required fields.
2563     ArgDescriptor IncomingArg = ArgDescriptor::createArg(
2564       IncomingArgX ? *IncomingArgX :
2565       IncomingArgY ? *IncomingArgY :
2566                      *IncomingArgZ, ~0u);
2567     InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, IncomingArg);
2568   }
2569 
2570   if (OutgoingArg->isRegister()) {
2571     RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg);
2572   } else {
2573     unsigned SpecialArgOffset = CCInfo.AllocateStack(4, 4);
2574     SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg,
2575                                             SpecialArgOffset);
2576     MemOpChains.push_back(ArgStore);
2577   }
2578 }
2579 
2580 static bool canGuaranteeTCO(CallingConv::ID CC) {
2581   return CC == CallingConv::Fast;
2582 }
2583 
2584 /// Return true if we might ever do TCO for calls with this calling convention.
2585 static bool mayTailCallThisCC(CallingConv::ID CC) {
2586   switch (CC) {
2587   case CallingConv::C:
2588     return true;
2589   default:
2590     return canGuaranteeTCO(CC);
2591   }
2592 }
2593 
2594 bool SITargetLowering::isEligibleForTailCallOptimization(
2595     SDValue Callee, CallingConv::ID CalleeCC, bool IsVarArg,
2596     const SmallVectorImpl<ISD::OutputArg> &Outs,
2597     const SmallVectorImpl<SDValue> &OutVals,
2598     const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
2599   if (!mayTailCallThisCC(CalleeCC))
2600     return false;
2601 
2602   MachineFunction &MF = DAG.getMachineFunction();
2603   const Function &CallerF = MF.getFunction();
2604   CallingConv::ID CallerCC = CallerF.getCallingConv();
2605   const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2606   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
2607 
2608   // Kernels aren't callable, and don't have a live in return address so it
2609   // doesn't make sense to do a tail call with entry functions.
2610   if (!CallerPreserved)
2611     return false;
2612 
2613   bool CCMatch = CallerCC == CalleeCC;
2614 
2615   if (DAG.getTarget().Options.GuaranteedTailCallOpt) {
2616     if (canGuaranteeTCO(CalleeCC) && CCMatch)
2617       return true;
2618     return false;
2619   }
2620 
2621   // TODO: Can we handle var args?
2622   if (IsVarArg)
2623     return false;
2624 
2625   for (const Argument &Arg : CallerF.args()) {
2626     if (Arg.hasByValAttr())
2627       return false;
2628   }
2629 
2630   LLVMContext &Ctx = *DAG.getContext();
2631 
2632   // Check that the call results are passed in the same way.
2633   if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, Ctx, Ins,
2634                                   CCAssignFnForCall(CalleeCC, IsVarArg),
2635                                   CCAssignFnForCall(CallerCC, IsVarArg)))
2636     return false;
2637 
2638   // The callee has to preserve all registers the caller needs to preserve.
2639   if (!CCMatch) {
2640     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
2641     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
2642       return false;
2643   }
2644 
2645   // Nothing more to check if the callee is taking no arguments.
2646   if (Outs.empty())
2647     return true;
2648 
2649   SmallVector<CCValAssign, 16> ArgLocs;
2650   CCState CCInfo(CalleeCC, IsVarArg, MF, ArgLocs, Ctx);
2651 
2652   CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, IsVarArg));
2653 
2654   const SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>();
2655   // If the stack arguments for this call do not fit into our own save area then
2656   // the call cannot be made tail.
2657   // TODO: Is this really necessary?
2658   if (CCInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea())
2659     return false;
2660 
2661   const MachineRegisterInfo &MRI = MF.getRegInfo();
2662   return parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals);
2663 }
2664 
2665 bool SITargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
2666   if (!CI->isTailCall())
2667     return false;
2668 
2669   const Function *ParentFn = CI->getParent()->getParent();
2670   if (AMDGPU::isEntryFunctionCC(ParentFn->getCallingConv()))
2671     return false;
2672   return true;
2673 }
2674 
2675 // The wave scratch offset register is used as the global base pointer.
2676 SDValue SITargetLowering::LowerCall(CallLoweringInfo &CLI,
2677                                     SmallVectorImpl<SDValue> &InVals) const {
2678   SelectionDAG &DAG = CLI.DAG;
2679   const SDLoc &DL = CLI.DL;
2680   SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
2681   SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
2682   SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
2683   SDValue Chain = CLI.Chain;
2684   SDValue Callee = CLI.Callee;
2685   bool &IsTailCall = CLI.IsTailCall;
2686   CallingConv::ID CallConv = CLI.CallConv;
2687   bool IsVarArg = CLI.IsVarArg;
2688   bool IsSibCall = false;
2689   bool IsThisReturn = false;
2690   MachineFunction &MF = DAG.getMachineFunction();
2691 
2692   if (Callee.isUndef() || isNullConstant(Callee)) {
2693     if (!CLI.IsTailCall) {
2694       for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I)
2695         InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT));
2696     }
2697 
2698     return Chain;
2699   }
2700 
2701   if (IsVarArg) {
2702     return lowerUnhandledCall(CLI, InVals,
2703                               "unsupported call to variadic function ");
2704   }
2705 
2706   if (!CLI.CS.getInstruction())
2707     report_fatal_error("unsupported libcall legalization");
2708 
2709   if (!CLI.CS.getCalledFunction()) {
2710     return lowerUnhandledCall(CLI, InVals,
2711                               "unsupported indirect call to function ");
2712   }
2713 
2714   if (IsTailCall && MF.getTarget().Options.GuaranteedTailCallOpt) {
2715     return lowerUnhandledCall(CLI, InVals,
2716                               "unsupported required tail call to function ");
2717   }
2718 
2719   if (AMDGPU::isShader(MF.getFunction().getCallingConv())) {
2720     // Note the issue is with the CC of the calling function, not of the call
2721     // itself.
2722     return lowerUnhandledCall(CLI, InVals,
2723                           "unsupported call from graphics shader of function ");
2724   }
2725 
2726   if (IsTailCall) {
2727     IsTailCall = isEligibleForTailCallOptimization(
2728       Callee, CallConv, IsVarArg, Outs, OutVals, Ins, DAG);
2729     if (!IsTailCall && CLI.CS && CLI.CS.isMustTailCall()) {
2730       report_fatal_error("failed to perform tail call elimination on a call "
2731                          "site marked musttail");
2732     }
2733 
2734     bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
2735 
2736     // A sibling call is one where we're under the usual C ABI and not planning
2737     // to change that but can still do a tail call:
2738     if (!TailCallOpt && IsTailCall)
2739       IsSibCall = true;
2740 
2741     if (IsTailCall)
2742       ++NumTailCalls;
2743   }
2744 
2745   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
2746 
2747   // Analyze operands of the call, assigning locations to each operand.
2748   SmallVector<CCValAssign, 16> ArgLocs;
2749   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
2750   CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, IsVarArg);
2751 
2752   CCInfo.AnalyzeCallOperands(Outs, AssignFn);
2753 
2754   // Get a count of how many bytes are to be pushed on the stack.
2755   unsigned NumBytes = CCInfo.getNextStackOffset();
2756 
2757   if (IsSibCall) {
2758     // Since we're not changing the ABI to make this a tail call, the memory
2759     // operands are already available in the caller's incoming argument space.
2760     NumBytes = 0;
2761   }
2762 
2763   // FPDiff is the byte offset of the call's argument area from the callee's.
2764   // Stores to callee stack arguments will be placed in FixedStackSlots offset
2765   // by this amount for a tail call. In a sibling call it must be 0 because the
2766   // caller will deallocate the entire stack and the callee still expects its
2767   // arguments to begin at SP+0. Completely unused for non-tail calls.
2768   int32_t FPDiff = 0;
2769   MachineFrameInfo &MFI = MF.getFrameInfo();
2770   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2771 
2772   // Adjust the stack pointer for the new arguments...
2773   // These operations are automatically eliminated by the prolog/epilog pass
2774   if (!IsSibCall) {
2775     Chain = DAG.getCALLSEQ_START(Chain, 0, 0, DL);
2776 
2777     SmallVector<SDValue, 4> CopyFromChains;
2778 
2779     // In the HSA case, this should be an identity copy.
2780     SDValue ScratchRSrcReg
2781       = DAG.getCopyFromReg(Chain, DL, Info->getScratchRSrcReg(), MVT::v4i32);
2782     RegsToPass.emplace_back(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, ScratchRSrcReg);
2783     CopyFromChains.push_back(ScratchRSrcReg.getValue(1));
2784     Chain = DAG.getTokenFactor(DL, CopyFromChains);
2785   }
2786 
2787   SmallVector<SDValue, 8> MemOpChains;
2788   MVT PtrVT = MVT::i32;
2789 
2790   // Walk the register/memloc assignments, inserting copies/loads.
2791   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2792     CCValAssign &VA = ArgLocs[i];
2793     SDValue Arg = OutVals[i];
2794 
2795     // Promote the value if needed.
2796     switch (VA.getLocInfo()) {
2797     case CCValAssign::Full:
2798       break;
2799     case CCValAssign::BCvt:
2800       Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
2801       break;
2802     case CCValAssign::ZExt:
2803       Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
2804       break;
2805     case CCValAssign::SExt:
2806       Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
2807       break;
2808     case CCValAssign::AExt:
2809       Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
2810       break;
2811     case CCValAssign::FPExt:
2812       Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg);
2813       break;
2814     default:
2815       llvm_unreachable("Unknown loc info!");
2816     }
2817 
2818     if (VA.isRegLoc()) {
2819       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2820     } else {
2821       assert(VA.isMemLoc());
2822 
2823       SDValue DstAddr;
2824       MachinePointerInfo DstInfo;
2825 
2826       unsigned LocMemOffset = VA.getLocMemOffset();
2827       int32_t Offset = LocMemOffset;
2828 
2829       SDValue PtrOff = DAG.getConstant(Offset, DL, PtrVT);
2830       MaybeAlign Alignment;
2831 
2832       if (IsTailCall) {
2833         ISD::ArgFlagsTy Flags = Outs[i].Flags;
2834         unsigned OpSize = Flags.isByVal() ?
2835           Flags.getByValSize() : VA.getValVT().getStoreSize();
2836 
2837         // FIXME: We can have better than the minimum byval required alignment.
2838         Alignment =
2839             Flags.isByVal()
2840                 ? MaybeAlign(Flags.getByValAlign())
2841                 : commonAlignment(Subtarget->getStackAlignment(), Offset);
2842 
2843         Offset = Offset + FPDiff;
2844         int FI = MFI.CreateFixedObject(OpSize, Offset, true);
2845 
2846         DstAddr = DAG.getFrameIndex(FI, PtrVT);
2847         DstInfo = MachinePointerInfo::getFixedStack(MF, FI);
2848 
2849         // Make sure any stack arguments overlapping with where we're storing
2850         // are loaded before this eventual operation. Otherwise they'll be
2851         // clobbered.
2852 
2853         // FIXME: Why is this really necessary? This seems to just result in a
2854         // lot of code to copy the stack and write them back to the same
2855         // locations, which are supposed to be immutable?
2856         Chain = addTokenForArgument(Chain, DAG, MFI, FI);
2857       } else {
2858         DstAddr = PtrOff;
2859         DstInfo = MachinePointerInfo::getStack(MF, LocMemOffset);
2860         Alignment =
2861             commonAlignment(Subtarget->getStackAlignment(), LocMemOffset);
2862       }
2863 
2864       if (Outs[i].Flags.isByVal()) {
2865         SDValue SizeNode =
2866             DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i32);
2867         SDValue Cpy = DAG.getMemcpy(
2868             Chain, DL, DstAddr, Arg, SizeNode, Outs[i].Flags.getByValAlign(),
2869             /*isVol = */ false, /*AlwaysInline = */ true,
2870             /*isTailCall = */ false, DstInfo,
2871             MachinePointerInfo(AMDGPUAS::PRIVATE_ADDRESS));
2872 
2873         MemOpChains.push_back(Cpy);
2874       } else {
2875         SDValue Store = DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo,
2876                                      Alignment ? Alignment->value() : 0);
2877         MemOpChains.push_back(Store);
2878       }
2879     }
2880   }
2881 
2882   // Copy special input registers after user input arguments.
2883   passSpecialInputs(CLI, CCInfo, *Info, RegsToPass, MemOpChains, Chain);
2884 
2885   if (!MemOpChains.empty())
2886     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
2887 
2888   // Build a sequence of copy-to-reg nodes chained together with token chain
2889   // and flag operands which copy the outgoing args into the appropriate regs.
2890   SDValue InFlag;
2891   for (auto &RegToPass : RegsToPass) {
2892     Chain = DAG.getCopyToReg(Chain, DL, RegToPass.first,
2893                              RegToPass.second, InFlag);
2894     InFlag = Chain.getValue(1);
2895   }
2896 
2897 
2898   SDValue PhysReturnAddrReg;
2899   if (IsTailCall) {
2900     // Since the return is being combined with the call, we need to pass on the
2901     // return address.
2902 
2903     const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2904     SDValue ReturnAddrReg = CreateLiveInRegister(
2905       DAG, &AMDGPU::SReg_64RegClass, TRI->getReturnAddressReg(MF), MVT::i64);
2906 
2907     PhysReturnAddrReg = DAG.getRegister(TRI->getReturnAddressReg(MF),
2908                                         MVT::i64);
2909     Chain = DAG.getCopyToReg(Chain, DL, PhysReturnAddrReg, ReturnAddrReg, InFlag);
2910     InFlag = Chain.getValue(1);
2911   }
2912 
2913   // We don't usually want to end the call-sequence here because we would tidy
2914   // the frame up *after* the call, however in the ABI-changing tail-call case
2915   // we've carefully laid out the parameters so that when sp is reset they'll be
2916   // in the correct location.
2917   if (IsTailCall && !IsSibCall) {
2918     Chain = DAG.getCALLSEQ_END(Chain,
2919                                DAG.getTargetConstant(NumBytes, DL, MVT::i32),
2920                                DAG.getTargetConstant(0, DL, MVT::i32),
2921                                InFlag, DL);
2922     InFlag = Chain.getValue(1);
2923   }
2924 
2925   std::vector<SDValue> Ops;
2926   Ops.push_back(Chain);
2927   Ops.push_back(Callee);
2928   // Add a redundant copy of the callee global which will not be legalized, as
2929   // we need direct access to the callee later.
2930   GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Callee);
2931   const GlobalValue *GV = GSD->getGlobal();
2932   Ops.push_back(DAG.getTargetGlobalAddress(GV, DL, MVT::i64));
2933 
2934   if (IsTailCall) {
2935     // Each tail call may have to adjust the stack by a different amount, so
2936     // this information must travel along with the operation for eventual
2937     // consumption by emitEpilogue.
2938     Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32));
2939 
2940     Ops.push_back(PhysReturnAddrReg);
2941   }
2942 
2943   // Add argument registers to the end of the list so that they are known live
2944   // into the call.
2945   for (auto &RegToPass : RegsToPass) {
2946     Ops.push_back(DAG.getRegister(RegToPass.first,
2947                                   RegToPass.second.getValueType()));
2948   }
2949 
2950   // Add a register mask operand representing the call-preserved registers.
2951 
2952   auto *TRI = static_cast<const SIRegisterInfo*>(Subtarget->getRegisterInfo());
2953   const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
2954   assert(Mask && "Missing call preserved mask for calling convention");
2955   Ops.push_back(DAG.getRegisterMask(Mask));
2956 
2957   if (InFlag.getNode())
2958     Ops.push_back(InFlag);
2959 
2960   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2961 
2962   // If we're doing a tall call, use a TC_RETURN here rather than an
2963   // actual call instruction.
2964   if (IsTailCall) {
2965     MFI.setHasTailCall();
2966     return DAG.getNode(AMDGPUISD::TC_RETURN, DL, NodeTys, Ops);
2967   }
2968 
2969   // Returns a chain and a flag for retval copy to use.
2970   SDValue Call = DAG.getNode(AMDGPUISD::CALL, DL, NodeTys, Ops);
2971   Chain = Call.getValue(0);
2972   InFlag = Call.getValue(1);
2973 
2974   uint64_t CalleePopBytes = NumBytes;
2975   Chain = DAG.getCALLSEQ_END(Chain, DAG.getTargetConstant(0, DL, MVT::i32),
2976                              DAG.getTargetConstant(CalleePopBytes, DL, MVT::i32),
2977                              InFlag, DL);
2978   if (!Ins.empty())
2979     InFlag = Chain.getValue(1);
2980 
2981   // Handle result values, copying them out of physregs into vregs that we
2982   // return.
2983   return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
2984                          InVals, IsThisReturn,
2985                          IsThisReturn ? OutVals[0] : SDValue());
2986 }
2987 
2988 Register SITargetLowering::getRegisterByName(const char* RegName, LLT VT,
2989                                              const MachineFunction &MF) const {
2990   Register Reg = StringSwitch<Register>(RegName)
2991     .Case("m0", AMDGPU::M0)
2992     .Case("exec", AMDGPU::EXEC)
2993     .Case("exec_lo", AMDGPU::EXEC_LO)
2994     .Case("exec_hi", AMDGPU::EXEC_HI)
2995     .Case("flat_scratch", AMDGPU::FLAT_SCR)
2996     .Case("flat_scratch_lo", AMDGPU::FLAT_SCR_LO)
2997     .Case("flat_scratch_hi", AMDGPU::FLAT_SCR_HI)
2998     .Default(Register());
2999 
3000   if (Reg == AMDGPU::NoRegister) {
3001     report_fatal_error(Twine("invalid register name \""
3002                              + StringRef(RegName)  + "\"."));
3003 
3004   }
3005 
3006   if (!Subtarget->hasFlatScrRegister() &&
3007        Subtarget->getRegisterInfo()->regsOverlap(Reg, AMDGPU::FLAT_SCR)) {
3008     report_fatal_error(Twine("invalid register \""
3009                              + StringRef(RegName)  + "\" for subtarget."));
3010   }
3011 
3012   switch (Reg) {
3013   case AMDGPU::M0:
3014   case AMDGPU::EXEC_LO:
3015   case AMDGPU::EXEC_HI:
3016   case AMDGPU::FLAT_SCR_LO:
3017   case AMDGPU::FLAT_SCR_HI:
3018     if (VT.getSizeInBits() == 32)
3019       return Reg;
3020     break;
3021   case AMDGPU::EXEC:
3022   case AMDGPU::FLAT_SCR:
3023     if (VT.getSizeInBits() == 64)
3024       return Reg;
3025     break;
3026   default:
3027     llvm_unreachable("missing register type checking");
3028   }
3029 
3030   report_fatal_error(Twine("invalid type for register \""
3031                            + StringRef(RegName) + "\"."));
3032 }
3033 
3034 // If kill is not the last instruction, split the block so kill is always a
3035 // proper terminator.
3036 MachineBasicBlock *SITargetLowering::splitKillBlock(MachineInstr &MI,
3037                                                     MachineBasicBlock *BB) const {
3038   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3039 
3040   MachineBasicBlock::iterator SplitPoint(&MI);
3041   ++SplitPoint;
3042 
3043   if (SplitPoint == BB->end()) {
3044     // Don't bother with a new block.
3045     MI.setDesc(TII->getKillTerminatorFromPseudo(MI.getOpcode()));
3046     return BB;
3047   }
3048 
3049   MachineFunction *MF = BB->getParent();
3050   MachineBasicBlock *SplitBB
3051     = MF->CreateMachineBasicBlock(BB->getBasicBlock());
3052 
3053   MF->insert(++MachineFunction::iterator(BB), SplitBB);
3054   SplitBB->splice(SplitBB->begin(), BB, SplitPoint, BB->end());
3055 
3056   SplitBB->transferSuccessorsAndUpdatePHIs(BB);
3057   BB->addSuccessor(SplitBB);
3058 
3059   MI.setDesc(TII->getKillTerminatorFromPseudo(MI.getOpcode()));
3060   return SplitBB;
3061 }
3062 
3063 // Split block \p MBB at \p MI, as to insert a loop. If \p InstInLoop is true,
3064 // \p MI will be the only instruction in the loop body block. Otherwise, it will
3065 // be the first instruction in the remainder block.
3066 //
3067 /// \returns { LoopBody, Remainder }
3068 static std::pair<MachineBasicBlock *, MachineBasicBlock *>
3069 splitBlockForLoop(MachineInstr &MI, MachineBasicBlock &MBB, bool InstInLoop) {
3070   MachineFunction *MF = MBB.getParent();
3071   MachineBasicBlock::iterator I(&MI);
3072 
3073   // To insert the loop we need to split the block. Move everything after this
3074   // point to a new block, and insert a new empty block between the two.
3075   MachineBasicBlock *LoopBB = MF->CreateMachineBasicBlock();
3076   MachineBasicBlock *RemainderBB = MF->CreateMachineBasicBlock();
3077   MachineFunction::iterator MBBI(MBB);
3078   ++MBBI;
3079 
3080   MF->insert(MBBI, LoopBB);
3081   MF->insert(MBBI, RemainderBB);
3082 
3083   LoopBB->addSuccessor(LoopBB);
3084   LoopBB->addSuccessor(RemainderBB);
3085 
3086   // Move the rest of the block into a new block.
3087   RemainderBB->transferSuccessorsAndUpdatePHIs(&MBB);
3088 
3089   if (InstInLoop) {
3090     auto Next = std::next(I);
3091 
3092     // Move instruction to loop body.
3093     LoopBB->splice(LoopBB->begin(), &MBB, I, Next);
3094 
3095     // Move the rest of the block.
3096     RemainderBB->splice(RemainderBB->begin(), &MBB, Next, MBB.end());
3097   } else {
3098     RemainderBB->splice(RemainderBB->begin(), &MBB, I, MBB.end());
3099   }
3100 
3101   MBB.addSuccessor(LoopBB);
3102 
3103   return std::make_pair(LoopBB, RemainderBB);
3104 }
3105 
3106 /// Insert \p MI into a BUNDLE with an S_WAITCNT 0 immediately following it.
3107 void SITargetLowering::bundleInstWithWaitcnt(MachineInstr &MI) const {
3108   MachineBasicBlock *MBB = MI.getParent();
3109   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3110   auto I = MI.getIterator();
3111   auto E = std::next(I);
3112 
3113   BuildMI(*MBB, E, MI.getDebugLoc(), TII->get(AMDGPU::S_WAITCNT))
3114     .addImm(0);
3115 
3116   MIBundleBuilder Bundler(*MBB, I, E);
3117   finalizeBundle(*MBB, Bundler.begin());
3118 }
3119 
3120 MachineBasicBlock *
3121 SITargetLowering::emitGWSMemViolTestLoop(MachineInstr &MI,
3122                                          MachineBasicBlock *BB) const {
3123   const DebugLoc &DL = MI.getDebugLoc();
3124 
3125   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
3126 
3127   MachineBasicBlock *LoopBB;
3128   MachineBasicBlock *RemainderBB;
3129   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3130 
3131   // Apparently kill flags are only valid if the def is in the same block?
3132   if (MachineOperand *Src = TII->getNamedOperand(MI, AMDGPU::OpName::data0))
3133     Src->setIsKill(false);
3134 
3135   std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, *BB, true);
3136 
3137   MachineBasicBlock::iterator I = LoopBB->end();
3138 
3139   const unsigned EncodedReg = AMDGPU::Hwreg::encodeHwreg(
3140     AMDGPU::Hwreg::ID_TRAPSTS, AMDGPU::Hwreg::OFFSET_MEM_VIOL, 1);
3141 
3142   // Clear TRAP_STS.MEM_VIOL
3143   BuildMI(*LoopBB, LoopBB->begin(), DL, TII->get(AMDGPU::S_SETREG_IMM32_B32))
3144     .addImm(0)
3145     .addImm(EncodedReg);
3146 
3147   bundleInstWithWaitcnt(MI);
3148 
3149   Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
3150 
3151   // Load and check TRAP_STS.MEM_VIOL
3152   BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_GETREG_B32), Reg)
3153     .addImm(EncodedReg);
3154 
3155   // FIXME: Do we need to use an isel pseudo that may clobber scc?
3156   BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CMP_LG_U32))
3157     .addReg(Reg, RegState::Kill)
3158     .addImm(0);
3159   BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_SCC1))
3160     .addMBB(LoopBB);
3161 
3162   return RemainderBB;
3163 }
3164 
3165 // Do a v_movrels_b32 or v_movreld_b32 for each unique value of \p IdxReg in the
3166 // wavefront. If the value is uniform and just happens to be in a VGPR, this
3167 // will only do one iteration. In the worst case, this will loop 64 times.
3168 //
3169 // TODO: Just use v_readlane_b32 if we know the VGPR has a uniform value.
3170 static MachineBasicBlock::iterator emitLoadM0FromVGPRLoop(
3171   const SIInstrInfo *TII,
3172   MachineRegisterInfo &MRI,
3173   MachineBasicBlock &OrigBB,
3174   MachineBasicBlock &LoopBB,
3175   const DebugLoc &DL,
3176   const MachineOperand &IdxReg,
3177   unsigned InitReg,
3178   unsigned ResultReg,
3179   unsigned PhiReg,
3180   unsigned InitSaveExecReg,
3181   int Offset,
3182   bool UseGPRIdxMode,
3183   bool IsIndirectSrc) {
3184   MachineFunction *MF = OrigBB.getParent();
3185   const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3186   const SIRegisterInfo *TRI = ST.getRegisterInfo();
3187   MachineBasicBlock::iterator I = LoopBB.begin();
3188 
3189   const TargetRegisterClass *BoolRC = TRI->getBoolRC();
3190   Register PhiExec = MRI.createVirtualRegister(BoolRC);
3191   Register NewExec = MRI.createVirtualRegister(BoolRC);
3192   Register CurrentIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
3193   Register CondReg = MRI.createVirtualRegister(BoolRC);
3194 
3195   BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiReg)
3196     .addReg(InitReg)
3197     .addMBB(&OrigBB)
3198     .addReg(ResultReg)
3199     .addMBB(&LoopBB);
3200 
3201   BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiExec)
3202     .addReg(InitSaveExecReg)
3203     .addMBB(&OrigBB)
3204     .addReg(NewExec)
3205     .addMBB(&LoopBB);
3206 
3207   // Read the next variant <- also loop target.
3208   BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), CurrentIdxReg)
3209     .addReg(IdxReg.getReg(), getUndefRegState(IdxReg.isUndef()));
3210 
3211   // Compare the just read M0 value to all possible Idx values.
3212   BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_CMP_EQ_U32_e64), CondReg)
3213     .addReg(CurrentIdxReg)
3214     .addReg(IdxReg.getReg(), 0, IdxReg.getSubReg());
3215 
3216   // Update EXEC, save the original EXEC value to VCC.
3217   BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_AND_SAVEEXEC_B32
3218                                                 : AMDGPU::S_AND_SAVEEXEC_B64),
3219           NewExec)
3220     .addReg(CondReg, RegState::Kill);
3221 
3222   MRI.setSimpleHint(NewExec, CondReg);
3223 
3224   if (UseGPRIdxMode) {
3225     unsigned IdxReg;
3226     if (Offset == 0) {
3227       IdxReg = CurrentIdxReg;
3228     } else {
3229       IdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
3230       BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), IdxReg)
3231         .addReg(CurrentIdxReg, RegState::Kill)
3232         .addImm(Offset);
3233     }
3234     unsigned IdxMode = IsIndirectSrc ?
3235       AMDGPU::VGPRIndexMode::SRC0_ENABLE : AMDGPU::VGPRIndexMode::DST_ENABLE;
3236     MachineInstr *SetOn =
3237       BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON))
3238       .addReg(IdxReg, RegState::Kill)
3239       .addImm(IdxMode);
3240     SetOn->getOperand(3).setIsUndef();
3241   } else {
3242     // Move index from VCC into M0
3243     if (Offset == 0) {
3244       BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
3245         .addReg(CurrentIdxReg, RegState::Kill);
3246     } else {
3247       BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0)
3248         .addReg(CurrentIdxReg, RegState::Kill)
3249         .addImm(Offset);
3250     }
3251   }
3252 
3253   // Update EXEC, switch all done bits to 0 and all todo bits to 1.
3254   unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
3255   MachineInstr *InsertPt =
3256     BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_XOR_B32_term
3257                                                   : AMDGPU::S_XOR_B64_term), Exec)
3258       .addReg(Exec)
3259       .addReg(NewExec);
3260 
3261   // XXX - s_xor_b64 sets scc to 1 if the result is nonzero, so can we use
3262   // s_cbranch_scc0?
3263 
3264   // Loop back to V_READFIRSTLANE_B32 if there are still variants to cover.
3265   BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ))
3266     .addMBB(&LoopBB);
3267 
3268   return InsertPt->getIterator();
3269 }
3270 
3271 // This has slightly sub-optimal regalloc when the source vector is killed by
3272 // the read. The register allocator does not understand that the kill is
3273 // per-workitem, so is kept alive for the whole loop so we end up not re-using a
3274 // subregister from it, using 1 more VGPR than necessary. This was saved when
3275 // this was expanded after register allocation.
3276 static MachineBasicBlock::iterator loadM0FromVGPR(const SIInstrInfo *TII,
3277                                                   MachineBasicBlock &MBB,
3278                                                   MachineInstr &MI,
3279                                                   unsigned InitResultReg,
3280                                                   unsigned PhiReg,
3281                                                   int Offset,
3282                                                   bool UseGPRIdxMode,
3283                                                   bool IsIndirectSrc) {
3284   MachineFunction *MF = MBB.getParent();
3285   const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3286   const SIRegisterInfo *TRI = ST.getRegisterInfo();
3287   MachineRegisterInfo &MRI = MF->getRegInfo();
3288   const DebugLoc &DL = MI.getDebugLoc();
3289   MachineBasicBlock::iterator I(&MI);
3290 
3291   const auto *BoolXExecRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
3292   Register DstReg = MI.getOperand(0).getReg();
3293   Register SaveExec = MRI.createVirtualRegister(BoolXExecRC);
3294   Register TmpExec = MRI.createVirtualRegister(BoolXExecRC);
3295   unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
3296   unsigned MovExecOpc = ST.isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64;
3297 
3298   BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), TmpExec);
3299 
3300   // Save the EXEC mask
3301   BuildMI(MBB, I, DL, TII->get(MovExecOpc), SaveExec)
3302     .addReg(Exec);
3303 
3304   MachineBasicBlock *LoopBB;
3305   MachineBasicBlock *RemainderBB;
3306   std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, MBB, false);
3307 
3308   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3309 
3310   auto InsPt = emitLoadM0FromVGPRLoop(TII, MRI, MBB, *LoopBB, DL, *Idx,
3311                                       InitResultReg, DstReg, PhiReg, TmpExec,
3312                                       Offset, UseGPRIdxMode, IsIndirectSrc);
3313 
3314   MachineBasicBlock::iterator First = RemainderBB->begin();
3315   BuildMI(*RemainderBB, First, DL, TII->get(MovExecOpc), Exec)
3316     .addReg(SaveExec);
3317 
3318   return InsPt;
3319 }
3320 
3321 // Returns subreg index, offset
3322 static std::pair<unsigned, int>
3323 computeIndirectRegAndOffset(const SIRegisterInfo &TRI,
3324                             const TargetRegisterClass *SuperRC,
3325                             unsigned VecReg,
3326                             int Offset) {
3327   int NumElts = TRI.getRegSizeInBits(*SuperRC) / 32;
3328 
3329   // Skip out of bounds offsets, or else we would end up using an undefined
3330   // register.
3331   if (Offset >= NumElts || Offset < 0)
3332     return std::make_pair(AMDGPU::sub0, Offset);
3333 
3334   return std::make_pair(AMDGPU::sub0 + Offset, 0);
3335 }
3336 
3337 // Return true if the index is an SGPR and was set.
3338 static bool setM0ToIndexFromSGPR(const SIInstrInfo *TII,
3339                                  MachineRegisterInfo &MRI,
3340                                  MachineInstr &MI,
3341                                  int Offset,
3342                                  bool UseGPRIdxMode,
3343                                  bool IsIndirectSrc) {
3344   MachineBasicBlock *MBB = MI.getParent();
3345   const DebugLoc &DL = MI.getDebugLoc();
3346   MachineBasicBlock::iterator I(&MI);
3347 
3348   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3349   const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg());
3350 
3351   assert(Idx->getReg() != AMDGPU::NoRegister);
3352 
3353   if (!TII->getRegisterInfo().isSGPRClass(IdxRC))
3354     return false;
3355 
3356   if (UseGPRIdxMode) {
3357     unsigned IdxMode = IsIndirectSrc ?
3358       AMDGPU::VGPRIndexMode::SRC0_ENABLE : AMDGPU::VGPRIndexMode::DST_ENABLE;
3359     if (Offset == 0) {
3360       MachineInstr *SetOn =
3361           BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON))
3362               .add(*Idx)
3363               .addImm(IdxMode);
3364 
3365       SetOn->getOperand(3).setIsUndef();
3366     } else {
3367       Register Tmp = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
3368       BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), Tmp)
3369           .add(*Idx)
3370           .addImm(Offset);
3371       MachineInstr *SetOn =
3372         BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON))
3373         .addReg(Tmp, RegState::Kill)
3374         .addImm(IdxMode);
3375 
3376       SetOn->getOperand(3).setIsUndef();
3377     }
3378 
3379     return true;
3380   }
3381 
3382   if (Offset == 0) {
3383     BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
3384       .add(*Idx);
3385   } else {
3386     BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0)
3387       .add(*Idx)
3388       .addImm(Offset);
3389   }
3390 
3391   return true;
3392 }
3393 
3394 // Control flow needs to be inserted if indexing with a VGPR.
3395 static MachineBasicBlock *emitIndirectSrc(MachineInstr &MI,
3396                                           MachineBasicBlock &MBB,
3397                                           const GCNSubtarget &ST) {
3398   const SIInstrInfo *TII = ST.getInstrInfo();
3399   const SIRegisterInfo &TRI = TII->getRegisterInfo();
3400   MachineFunction *MF = MBB.getParent();
3401   MachineRegisterInfo &MRI = MF->getRegInfo();
3402 
3403   Register Dst = MI.getOperand(0).getReg();
3404   Register SrcReg = TII->getNamedOperand(MI, AMDGPU::OpName::src)->getReg();
3405   int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm();
3406 
3407   const TargetRegisterClass *VecRC = MRI.getRegClass(SrcReg);
3408 
3409   unsigned SubReg;
3410   std::tie(SubReg, Offset)
3411     = computeIndirectRegAndOffset(TRI, VecRC, SrcReg, Offset);
3412 
3413   const bool UseGPRIdxMode = ST.useVGPRIndexMode();
3414 
3415   if (setM0ToIndexFromSGPR(TII, MRI, MI, Offset, UseGPRIdxMode, true)) {
3416     MachineBasicBlock::iterator I(&MI);
3417     const DebugLoc &DL = MI.getDebugLoc();
3418 
3419     if (UseGPRIdxMode) {
3420       // TODO: Look at the uses to avoid the copy. This may require rescheduling
3421       // to avoid interfering with other uses, so probably requires a new
3422       // optimization pass.
3423       BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOV_B32_e32), Dst)
3424         .addReg(SrcReg, RegState::Undef, SubReg)
3425         .addReg(SrcReg, RegState::Implicit)
3426         .addReg(AMDGPU::M0, RegState::Implicit);
3427       BuildMI(MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF));
3428     } else {
3429       BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst)
3430         .addReg(SrcReg, RegState::Undef, SubReg)
3431         .addReg(SrcReg, RegState::Implicit);
3432     }
3433 
3434     MI.eraseFromParent();
3435 
3436     return &MBB;
3437   }
3438 
3439   const DebugLoc &DL = MI.getDebugLoc();
3440   MachineBasicBlock::iterator I(&MI);
3441 
3442   Register PhiReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
3443   Register InitReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
3444 
3445   BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), InitReg);
3446 
3447   auto InsPt = loadM0FromVGPR(TII, MBB, MI, InitReg, PhiReg,
3448                               Offset, UseGPRIdxMode, true);
3449   MachineBasicBlock *LoopBB = InsPt->getParent();
3450 
3451   if (UseGPRIdxMode) {
3452     BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOV_B32_e32), Dst)
3453       .addReg(SrcReg, RegState::Undef, SubReg)
3454       .addReg(SrcReg, RegState::Implicit)
3455       .addReg(AMDGPU::M0, RegState::Implicit);
3456     BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF));
3457   } else {
3458     BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst)
3459       .addReg(SrcReg, RegState::Undef, SubReg)
3460       .addReg(SrcReg, RegState::Implicit);
3461   }
3462 
3463   MI.eraseFromParent();
3464 
3465   return LoopBB;
3466 }
3467 
3468 static unsigned getMOVRELDPseudo(const SIRegisterInfo &TRI,
3469                                  const TargetRegisterClass *VecRC) {
3470   switch (TRI.getRegSizeInBits(*VecRC)) {
3471   case 32: // 4 bytes
3472     return AMDGPU::V_MOVRELD_B32_V1;
3473   case 64: // 8 bytes
3474     return AMDGPU::V_MOVRELD_B32_V2;
3475   case 128: // 16 bytes
3476     return AMDGPU::V_MOVRELD_B32_V4;
3477   case 256: // 32 bytes
3478     return AMDGPU::V_MOVRELD_B32_V8;
3479   case 512: // 64 bytes
3480     return AMDGPU::V_MOVRELD_B32_V16;
3481   default:
3482     llvm_unreachable("unsupported size for MOVRELD pseudos");
3483   }
3484 }
3485 
3486 static MachineBasicBlock *emitIndirectDst(MachineInstr &MI,
3487                                           MachineBasicBlock &MBB,
3488                                           const GCNSubtarget &ST) {
3489   const SIInstrInfo *TII = ST.getInstrInfo();
3490   const SIRegisterInfo &TRI = TII->getRegisterInfo();
3491   MachineFunction *MF = MBB.getParent();
3492   MachineRegisterInfo &MRI = MF->getRegInfo();
3493 
3494   Register Dst = MI.getOperand(0).getReg();
3495   const MachineOperand *SrcVec = TII->getNamedOperand(MI, AMDGPU::OpName::src);
3496   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3497   const MachineOperand *Val = TII->getNamedOperand(MI, AMDGPU::OpName::val);
3498   int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm();
3499   const TargetRegisterClass *VecRC = MRI.getRegClass(SrcVec->getReg());
3500 
3501   // This can be an immediate, but will be folded later.
3502   assert(Val->getReg());
3503 
3504   unsigned SubReg;
3505   std::tie(SubReg, Offset) = computeIndirectRegAndOffset(TRI, VecRC,
3506                                                          SrcVec->getReg(),
3507                                                          Offset);
3508   const bool UseGPRIdxMode = ST.useVGPRIndexMode();
3509 
3510   if (Idx->getReg() == AMDGPU::NoRegister) {
3511     MachineBasicBlock::iterator I(&MI);
3512     const DebugLoc &DL = MI.getDebugLoc();
3513 
3514     assert(Offset == 0);
3515 
3516     BuildMI(MBB, I, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dst)
3517         .add(*SrcVec)
3518         .add(*Val)
3519         .addImm(SubReg);
3520 
3521     MI.eraseFromParent();
3522     return &MBB;
3523   }
3524 
3525   if (setM0ToIndexFromSGPR(TII, MRI, MI, Offset, UseGPRIdxMode, false)) {
3526     MachineBasicBlock::iterator I(&MI);
3527     const DebugLoc &DL = MI.getDebugLoc();
3528 
3529     if (UseGPRIdxMode) {
3530       BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOV_B32_indirect))
3531           .addReg(SrcVec->getReg(), RegState::Undef, SubReg) // vdst
3532           .add(*Val)
3533           .addReg(Dst, RegState::ImplicitDefine)
3534           .addReg(SrcVec->getReg(), RegState::Implicit)
3535           .addReg(AMDGPU::M0, RegState::Implicit);
3536 
3537       BuildMI(MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF));
3538     } else {
3539       const MCInstrDesc &MovRelDesc = TII->get(getMOVRELDPseudo(TRI, VecRC));
3540 
3541       BuildMI(MBB, I, DL, MovRelDesc)
3542           .addReg(Dst, RegState::Define)
3543           .addReg(SrcVec->getReg())
3544           .add(*Val)
3545           .addImm(SubReg - AMDGPU::sub0);
3546     }
3547 
3548     MI.eraseFromParent();
3549     return &MBB;
3550   }
3551 
3552   if (Val->isReg())
3553     MRI.clearKillFlags(Val->getReg());
3554 
3555   const DebugLoc &DL = MI.getDebugLoc();
3556 
3557   Register PhiReg = MRI.createVirtualRegister(VecRC);
3558 
3559   auto InsPt = loadM0FromVGPR(TII, MBB, MI, SrcVec->getReg(), PhiReg,
3560                               Offset, UseGPRIdxMode, false);
3561   MachineBasicBlock *LoopBB = InsPt->getParent();
3562 
3563   if (UseGPRIdxMode) {
3564     BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOV_B32_indirect))
3565         .addReg(PhiReg, RegState::Undef, SubReg) // vdst
3566         .add(*Val)                               // src0
3567         .addReg(Dst, RegState::ImplicitDefine)
3568         .addReg(PhiReg, RegState::Implicit)
3569         .addReg(AMDGPU::M0, RegState::Implicit);
3570     BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF));
3571   } else {
3572     const MCInstrDesc &MovRelDesc = TII->get(getMOVRELDPseudo(TRI, VecRC));
3573 
3574     BuildMI(*LoopBB, InsPt, DL, MovRelDesc)
3575         .addReg(Dst, RegState::Define)
3576         .addReg(PhiReg)
3577         .add(*Val)
3578         .addImm(SubReg - AMDGPU::sub0);
3579   }
3580 
3581   MI.eraseFromParent();
3582 
3583   return LoopBB;
3584 }
3585 
3586 MachineBasicBlock *SITargetLowering::EmitInstrWithCustomInserter(
3587   MachineInstr &MI, MachineBasicBlock *BB) const {
3588 
3589   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3590   MachineFunction *MF = BB->getParent();
3591   SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
3592 
3593   if (TII->isMIMG(MI)) {
3594     if (MI.memoperands_empty() && MI.mayLoadOrStore()) {
3595       report_fatal_error("missing mem operand from MIMG instruction");
3596     }
3597     // Add a memoperand for mimg instructions so that they aren't assumed to
3598     // be ordered memory instuctions.
3599 
3600     return BB;
3601   }
3602 
3603   switch (MI.getOpcode()) {
3604   case AMDGPU::S_ADD_U64_PSEUDO:
3605   case AMDGPU::S_SUB_U64_PSEUDO: {
3606     MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
3607     const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3608     const SIRegisterInfo *TRI = ST.getRegisterInfo();
3609     const TargetRegisterClass *BoolRC = TRI->getBoolRC();
3610     const DebugLoc &DL = MI.getDebugLoc();
3611 
3612     MachineOperand &Dest = MI.getOperand(0);
3613     MachineOperand &Src0 = MI.getOperand(1);
3614     MachineOperand &Src1 = MI.getOperand(2);
3615 
3616     Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
3617     Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
3618 
3619     MachineOperand Src0Sub0 = TII->buildExtractSubRegOrImm(MI, MRI,
3620      Src0, BoolRC, AMDGPU::sub0,
3621      &AMDGPU::SReg_32RegClass);
3622     MachineOperand Src0Sub1 = TII->buildExtractSubRegOrImm(MI, MRI,
3623       Src0, BoolRC, AMDGPU::sub1,
3624       &AMDGPU::SReg_32RegClass);
3625 
3626     MachineOperand Src1Sub0 = TII->buildExtractSubRegOrImm(MI, MRI,
3627       Src1, BoolRC, AMDGPU::sub0,
3628       &AMDGPU::SReg_32RegClass);
3629     MachineOperand Src1Sub1 = TII->buildExtractSubRegOrImm(MI, MRI,
3630       Src1, BoolRC, AMDGPU::sub1,
3631       &AMDGPU::SReg_32RegClass);
3632 
3633     bool IsAdd = (MI.getOpcode() == AMDGPU::S_ADD_U64_PSEUDO);
3634 
3635     unsigned LoOpc = IsAdd ? AMDGPU::S_ADD_U32 : AMDGPU::S_SUB_U32;
3636     unsigned HiOpc = IsAdd ? AMDGPU::S_ADDC_U32 : AMDGPU::S_SUBB_U32;
3637     BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0)
3638       .add(Src0Sub0)
3639       .add(Src1Sub0);
3640     BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1)
3641       .add(Src0Sub1)
3642       .add(Src1Sub1);
3643     BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg())
3644       .addReg(DestSub0)
3645       .addImm(AMDGPU::sub0)
3646       .addReg(DestSub1)
3647       .addImm(AMDGPU::sub1);
3648     MI.eraseFromParent();
3649     return BB;
3650   }
3651   case AMDGPU::SI_INIT_M0: {
3652     BuildMI(*BB, MI.getIterator(), MI.getDebugLoc(),
3653             TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
3654         .add(MI.getOperand(0));
3655     MI.eraseFromParent();
3656     return BB;
3657   }
3658   case AMDGPU::SI_INIT_EXEC:
3659     // This should be before all vector instructions.
3660     BuildMI(*BB, &*BB->begin(), MI.getDebugLoc(), TII->get(AMDGPU::S_MOV_B64),
3661             AMDGPU::EXEC)
3662         .addImm(MI.getOperand(0).getImm());
3663     MI.eraseFromParent();
3664     return BB;
3665 
3666   case AMDGPU::SI_INIT_EXEC_LO:
3667     // This should be before all vector instructions.
3668     BuildMI(*BB, &*BB->begin(), MI.getDebugLoc(), TII->get(AMDGPU::S_MOV_B32),
3669             AMDGPU::EXEC_LO)
3670         .addImm(MI.getOperand(0).getImm());
3671     MI.eraseFromParent();
3672     return BB;
3673 
3674   case AMDGPU::SI_INIT_EXEC_FROM_INPUT: {
3675     // Extract the thread count from an SGPR input and set EXEC accordingly.
3676     // Since BFM can't shift by 64, handle that case with CMP + CMOV.
3677     //
3678     // S_BFE_U32 count, input, {shift, 7}
3679     // S_BFM_B64 exec, count, 0
3680     // S_CMP_EQ_U32 count, 64
3681     // S_CMOV_B64 exec, -1
3682     MachineInstr *FirstMI = &*BB->begin();
3683     MachineRegisterInfo &MRI = MF->getRegInfo();
3684     Register InputReg = MI.getOperand(0).getReg();
3685     Register CountReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
3686     bool Found = false;
3687 
3688     // Move the COPY of the input reg to the beginning, so that we can use it.
3689     for (auto I = BB->begin(); I != &MI; I++) {
3690       if (I->getOpcode() != TargetOpcode::COPY ||
3691           I->getOperand(0).getReg() != InputReg)
3692         continue;
3693 
3694       if (I == FirstMI) {
3695         FirstMI = &*++BB->begin();
3696       } else {
3697         I->removeFromParent();
3698         BB->insert(FirstMI, &*I);
3699       }
3700       Found = true;
3701       break;
3702     }
3703     assert(Found);
3704     (void)Found;
3705 
3706     // This should be before all vector instructions.
3707     unsigned Mask = (getSubtarget()->getWavefrontSize() << 1) - 1;
3708     bool isWave32 = getSubtarget()->isWave32();
3709     unsigned Exec = isWave32 ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
3710     BuildMI(*BB, FirstMI, DebugLoc(), TII->get(AMDGPU::S_BFE_U32), CountReg)
3711         .addReg(InputReg)
3712         .addImm((MI.getOperand(1).getImm() & Mask) | 0x70000);
3713     BuildMI(*BB, FirstMI, DebugLoc(),
3714             TII->get(isWave32 ? AMDGPU::S_BFM_B32 : AMDGPU::S_BFM_B64),
3715             Exec)
3716         .addReg(CountReg)
3717         .addImm(0);
3718     BuildMI(*BB, FirstMI, DebugLoc(), TII->get(AMDGPU::S_CMP_EQ_U32))
3719         .addReg(CountReg, RegState::Kill)
3720         .addImm(getSubtarget()->getWavefrontSize());
3721     BuildMI(*BB, FirstMI, DebugLoc(),
3722             TII->get(isWave32 ? AMDGPU::S_CMOV_B32 : AMDGPU::S_CMOV_B64),
3723             Exec)
3724         .addImm(-1);
3725     MI.eraseFromParent();
3726     return BB;
3727   }
3728 
3729   case AMDGPU::GET_GROUPSTATICSIZE: {
3730     assert(getTargetMachine().getTargetTriple().getOS() == Triple::AMDHSA ||
3731            getTargetMachine().getTargetTriple().getOS() == Triple::AMDPAL);
3732     DebugLoc DL = MI.getDebugLoc();
3733     BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_MOV_B32))
3734         .add(MI.getOperand(0))
3735         .addImm(MFI->getLDSSize());
3736     MI.eraseFromParent();
3737     return BB;
3738   }
3739   case AMDGPU::SI_INDIRECT_SRC_V1:
3740   case AMDGPU::SI_INDIRECT_SRC_V2:
3741   case AMDGPU::SI_INDIRECT_SRC_V4:
3742   case AMDGPU::SI_INDIRECT_SRC_V8:
3743   case AMDGPU::SI_INDIRECT_SRC_V16:
3744     return emitIndirectSrc(MI, *BB, *getSubtarget());
3745   case AMDGPU::SI_INDIRECT_DST_V1:
3746   case AMDGPU::SI_INDIRECT_DST_V2:
3747   case AMDGPU::SI_INDIRECT_DST_V4:
3748   case AMDGPU::SI_INDIRECT_DST_V8:
3749   case AMDGPU::SI_INDIRECT_DST_V16:
3750     return emitIndirectDst(MI, *BB, *getSubtarget());
3751   case AMDGPU::SI_KILL_F32_COND_IMM_PSEUDO:
3752   case AMDGPU::SI_KILL_I1_PSEUDO:
3753     return splitKillBlock(MI, BB);
3754   case AMDGPU::V_CNDMASK_B64_PSEUDO: {
3755     MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
3756     const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3757     const SIRegisterInfo *TRI = ST.getRegisterInfo();
3758 
3759     Register Dst = MI.getOperand(0).getReg();
3760     Register Src0 = MI.getOperand(1).getReg();
3761     Register Src1 = MI.getOperand(2).getReg();
3762     const DebugLoc &DL = MI.getDebugLoc();
3763     Register SrcCond = MI.getOperand(3).getReg();
3764 
3765     Register DstLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
3766     Register DstHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
3767     const auto *CondRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
3768     Register SrcCondCopy = MRI.createVirtualRegister(CondRC);
3769 
3770     BuildMI(*BB, MI, DL, TII->get(AMDGPU::COPY), SrcCondCopy)
3771       .addReg(SrcCond);
3772     BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstLo)
3773       .addImm(0)
3774       .addReg(Src0, 0, AMDGPU::sub0)
3775       .addImm(0)
3776       .addReg(Src1, 0, AMDGPU::sub0)
3777       .addReg(SrcCondCopy);
3778     BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstHi)
3779       .addImm(0)
3780       .addReg(Src0, 0, AMDGPU::sub1)
3781       .addImm(0)
3782       .addReg(Src1, 0, AMDGPU::sub1)
3783       .addReg(SrcCondCopy);
3784 
3785     BuildMI(*BB, MI, DL, TII->get(AMDGPU::REG_SEQUENCE), Dst)
3786       .addReg(DstLo)
3787       .addImm(AMDGPU::sub0)
3788       .addReg(DstHi)
3789       .addImm(AMDGPU::sub1);
3790     MI.eraseFromParent();
3791     return BB;
3792   }
3793   case AMDGPU::SI_BR_UNDEF: {
3794     const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3795     const DebugLoc &DL = MI.getDebugLoc();
3796     MachineInstr *Br = BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CBRANCH_SCC1))
3797                            .add(MI.getOperand(0));
3798     Br->getOperand(1).setIsUndef(true); // read undef SCC
3799     MI.eraseFromParent();
3800     return BB;
3801   }
3802   case AMDGPU::ADJCALLSTACKUP:
3803   case AMDGPU::ADJCALLSTACKDOWN: {
3804     const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>();
3805     MachineInstrBuilder MIB(*MF, &MI);
3806 
3807     // Add an implicit use of the frame offset reg to prevent the restore copy
3808     // inserted after the call from being reorderd after stack operations in the
3809     // the caller's frame.
3810     MIB.addReg(Info->getStackPtrOffsetReg(), RegState::ImplicitDefine)
3811         .addReg(Info->getStackPtrOffsetReg(), RegState::Implicit)
3812         .addReg(Info->getFrameOffsetReg(), RegState::Implicit);
3813     return BB;
3814   }
3815   case AMDGPU::SI_CALL_ISEL: {
3816     const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3817     const DebugLoc &DL = MI.getDebugLoc();
3818 
3819     unsigned ReturnAddrReg = TII->getRegisterInfo().getReturnAddressReg(*MF);
3820 
3821     MachineInstrBuilder MIB;
3822     MIB = BuildMI(*BB, MI, DL, TII->get(AMDGPU::SI_CALL), ReturnAddrReg);
3823 
3824     for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I)
3825       MIB.add(MI.getOperand(I));
3826 
3827     MIB.cloneMemRefs(MI);
3828     MI.eraseFromParent();
3829     return BB;
3830   }
3831   case AMDGPU::V_ADD_I32_e32:
3832   case AMDGPU::V_SUB_I32_e32:
3833   case AMDGPU::V_SUBREV_I32_e32: {
3834     // TODO: Define distinct V_*_I32_Pseudo instructions instead.
3835     const DebugLoc &DL = MI.getDebugLoc();
3836     unsigned Opc = MI.getOpcode();
3837 
3838     bool NeedClampOperand = false;
3839     if (TII->pseudoToMCOpcode(Opc) == -1) {
3840       Opc = AMDGPU::getVOPe64(Opc);
3841       NeedClampOperand = true;
3842     }
3843 
3844     auto I = BuildMI(*BB, MI, DL, TII->get(Opc), MI.getOperand(0).getReg());
3845     if (TII->isVOP3(*I)) {
3846       const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3847       const SIRegisterInfo *TRI = ST.getRegisterInfo();
3848       I.addReg(TRI->getVCC(), RegState::Define);
3849     }
3850     I.add(MI.getOperand(1))
3851      .add(MI.getOperand(2));
3852     if (NeedClampOperand)
3853       I.addImm(0); // clamp bit for e64 encoding
3854 
3855     TII->legalizeOperands(*I);
3856 
3857     MI.eraseFromParent();
3858     return BB;
3859   }
3860   case AMDGPU::DS_GWS_INIT:
3861   case AMDGPU::DS_GWS_SEMA_V:
3862   case AMDGPU::DS_GWS_SEMA_BR:
3863   case AMDGPU::DS_GWS_SEMA_P:
3864   case AMDGPU::DS_GWS_SEMA_RELEASE_ALL:
3865   case AMDGPU::DS_GWS_BARRIER:
3866     // A s_waitcnt 0 is required to be the instruction immediately following.
3867     if (getSubtarget()->hasGWSAutoReplay()) {
3868       bundleInstWithWaitcnt(MI);
3869       return BB;
3870     }
3871 
3872     return emitGWSMemViolTestLoop(MI, BB);
3873   default:
3874     return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB);
3875   }
3876 }
3877 
3878 bool SITargetLowering::hasBitPreservingFPLogic(EVT VT) const {
3879   return isTypeLegal(VT.getScalarType());
3880 }
3881 
3882 bool SITargetLowering::enableAggressiveFMAFusion(EVT VT) const {
3883   // This currently forces unfolding various combinations of fsub into fma with
3884   // free fneg'd operands. As long as we have fast FMA (controlled by
3885   // isFMAFasterThanFMulAndFAdd), we should perform these.
3886 
3887   // When fma is quarter rate, for f64 where add / sub are at best half rate,
3888   // most of these combines appear to be cycle neutral but save on instruction
3889   // count / code size.
3890   return true;
3891 }
3892 
3893 EVT SITargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &Ctx,
3894                                          EVT VT) const {
3895   if (!VT.isVector()) {
3896     return MVT::i1;
3897   }
3898   return EVT::getVectorVT(Ctx, MVT::i1, VT.getVectorNumElements());
3899 }
3900 
3901 MVT SITargetLowering::getScalarShiftAmountTy(const DataLayout &, EVT VT) const {
3902   // TODO: Should i16 be used always if legal? For now it would force VALU
3903   // shifts.
3904   return (VT == MVT::i16) ? MVT::i16 : MVT::i32;
3905 }
3906 
3907 // Answering this is somewhat tricky and depends on the specific device which
3908 // have different rates for fma or all f64 operations.
3909 //
3910 // v_fma_f64 and v_mul_f64 always take the same number of cycles as each other
3911 // regardless of which device (although the number of cycles differs between
3912 // devices), so it is always profitable for f64.
3913 //
3914 // v_fma_f32 takes 4 or 16 cycles depending on the device, so it is profitable
3915 // only on full rate devices. Normally, we should prefer selecting v_mad_f32
3916 // which we can always do even without fused FP ops since it returns the same
3917 // result as the separate operations and since it is always full
3918 // rate. Therefore, we lie and report that it is not faster for f32. v_mad_f32
3919 // however does not support denormals, so we do report fma as faster if we have
3920 // a fast fma device and require denormals.
3921 //
3922 bool SITargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
3923                                                   EVT VT) const {
3924   VT = VT.getScalarType();
3925 
3926   switch (VT.getSimpleVT().SimpleTy) {
3927   case MVT::f32: {
3928     // This is as fast on some subtargets. However, we always have full rate f32
3929     // mad available which returns the same result as the separate operations
3930     // which we should prefer over fma. We can't use this if we want to support
3931     // denormals, so only report this in these cases.
3932     if (hasFP32Denormals(MF))
3933       return Subtarget->hasFastFMAF32() || Subtarget->hasDLInsts();
3934 
3935     // If the subtarget has v_fmac_f32, that's just as good as v_mac_f32.
3936     return Subtarget->hasFastFMAF32() && Subtarget->hasDLInsts();
3937   }
3938   case MVT::f64:
3939     return true;
3940   case MVT::f16:
3941     return Subtarget->has16BitInsts() && hasFP64FP16Denormals(MF);
3942   default:
3943     break;
3944   }
3945 
3946   return false;
3947 }
3948 
3949 bool SITargetLowering::isFMADLegalForFAddFSub(const SelectionDAG &DAG,
3950                                               const SDNode *N) const {
3951   // TODO: Check future ftz flag
3952   // v_mad_f32/v_mac_f32 do not support denormals.
3953   EVT VT = N->getValueType(0);
3954   if (VT == MVT::f32)
3955     return !hasFP32Denormals(DAG.getMachineFunction());
3956   if (VT == MVT::f16) {
3957     return Subtarget->hasMadF16() &&
3958            !hasFP64FP16Denormals(DAG.getMachineFunction());
3959   }
3960 
3961   return false;
3962 }
3963 
3964 //===----------------------------------------------------------------------===//
3965 // Custom DAG Lowering Operations
3966 //===----------------------------------------------------------------------===//
3967 
3968 // Work around LegalizeDAG doing the wrong thing and fully scalarizing if the
3969 // wider vector type is legal.
3970 SDValue SITargetLowering::splitUnaryVectorOp(SDValue Op,
3971                                              SelectionDAG &DAG) const {
3972   unsigned Opc = Op.getOpcode();
3973   EVT VT = Op.getValueType();
3974   assert(VT == MVT::v4f16);
3975 
3976   SDValue Lo, Hi;
3977   std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0);
3978 
3979   SDLoc SL(Op);
3980   SDValue OpLo = DAG.getNode(Opc, SL, Lo.getValueType(), Lo,
3981                              Op->getFlags());
3982   SDValue OpHi = DAG.getNode(Opc, SL, Hi.getValueType(), Hi,
3983                              Op->getFlags());
3984 
3985   return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
3986 }
3987 
3988 // Work around LegalizeDAG doing the wrong thing and fully scalarizing if the
3989 // wider vector type is legal.
3990 SDValue SITargetLowering::splitBinaryVectorOp(SDValue Op,
3991                                               SelectionDAG &DAG) const {
3992   unsigned Opc = Op.getOpcode();
3993   EVT VT = Op.getValueType();
3994   assert(VT == MVT::v4i16 || VT == MVT::v4f16);
3995 
3996   SDValue Lo0, Hi0;
3997   std::tie(Lo0, Hi0) = DAG.SplitVectorOperand(Op.getNode(), 0);
3998   SDValue Lo1, Hi1;
3999   std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1);
4000 
4001   SDLoc SL(Op);
4002 
4003   SDValue OpLo = DAG.getNode(Opc, SL, Lo0.getValueType(), Lo0, Lo1,
4004                              Op->getFlags());
4005   SDValue OpHi = DAG.getNode(Opc, SL, Hi0.getValueType(), Hi0, Hi1,
4006                              Op->getFlags());
4007 
4008   return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
4009 }
4010 
4011 SDValue SITargetLowering::splitTernaryVectorOp(SDValue Op,
4012                                               SelectionDAG &DAG) const {
4013   unsigned Opc = Op.getOpcode();
4014   EVT VT = Op.getValueType();
4015   assert(VT == MVT::v4i16 || VT == MVT::v4f16);
4016 
4017   SDValue Lo0, Hi0;
4018   std::tie(Lo0, Hi0) = DAG.SplitVectorOperand(Op.getNode(), 0);
4019   SDValue Lo1, Hi1;
4020   std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1);
4021   SDValue Lo2, Hi2;
4022   std::tie(Lo2, Hi2) = DAG.SplitVectorOperand(Op.getNode(), 2);
4023 
4024   SDLoc SL(Op);
4025 
4026   SDValue OpLo = DAG.getNode(Opc, SL, Lo0.getValueType(), Lo0, Lo1, Lo2,
4027                              Op->getFlags());
4028   SDValue OpHi = DAG.getNode(Opc, SL, Hi0.getValueType(), Hi0, Hi1, Hi2,
4029                              Op->getFlags());
4030 
4031   return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
4032 }
4033 
4034 
4035 SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
4036   switch (Op.getOpcode()) {
4037   default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
4038   case ISD::BRCOND: return LowerBRCOND(Op, DAG);
4039   case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
4040   case ISD::LOAD: {
4041     SDValue Result = LowerLOAD(Op, DAG);
4042     assert((!Result.getNode() ||
4043             Result.getNode()->getNumValues() == 2) &&
4044            "Load should return a value and a chain");
4045     return Result;
4046   }
4047 
4048   case ISD::FSIN:
4049   case ISD::FCOS:
4050     return LowerTrig(Op, DAG);
4051   case ISD::SELECT: return LowerSELECT(Op, DAG);
4052   case ISD::FDIV: return LowerFDIV(Op, DAG);
4053   case ISD::ATOMIC_CMP_SWAP: return LowerATOMIC_CMP_SWAP(Op, DAG);
4054   case ISD::STORE: return LowerSTORE(Op, DAG);
4055   case ISD::GlobalAddress: {
4056     MachineFunction &MF = DAG.getMachineFunction();
4057     SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
4058     return LowerGlobalAddress(MFI, Op, DAG);
4059   }
4060   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
4061   case ISD::INTRINSIC_W_CHAIN: return LowerINTRINSIC_W_CHAIN(Op, DAG);
4062   case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG);
4063   case ISD::ADDRSPACECAST: return lowerADDRSPACECAST(Op, DAG);
4064   case ISD::INSERT_SUBVECTOR:
4065     return lowerINSERT_SUBVECTOR(Op, DAG);
4066   case ISD::INSERT_VECTOR_ELT:
4067     return lowerINSERT_VECTOR_ELT(Op, DAG);
4068   case ISD::EXTRACT_VECTOR_ELT:
4069     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
4070   case ISD::VECTOR_SHUFFLE:
4071     return lowerVECTOR_SHUFFLE(Op, DAG);
4072   case ISD::BUILD_VECTOR:
4073     return lowerBUILD_VECTOR(Op, DAG);
4074   case ISD::FP_ROUND:
4075     return lowerFP_ROUND(Op, DAG);
4076   case ISD::TRAP:
4077     return lowerTRAP(Op, DAG);
4078   case ISD::DEBUGTRAP:
4079     return lowerDEBUGTRAP(Op, DAG);
4080   case ISD::FABS:
4081   case ISD::FNEG:
4082   case ISD::FCANONICALIZE:
4083     return splitUnaryVectorOp(Op, DAG);
4084   case ISD::FMINNUM:
4085   case ISD::FMAXNUM:
4086     return lowerFMINNUM_FMAXNUM(Op, DAG);
4087   case ISD::FMA:
4088     return splitTernaryVectorOp(Op, DAG);
4089   case ISD::SHL:
4090   case ISD::SRA:
4091   case ISD::SRL:
4092   case ISD::ADD:
4093   case ISD::SUB:
4094   case ISD::MUL:
4095   case ISD::SMIN:
4096   case ISD::SMAX:
4097   case ISD::UMIN:
4098   case ISD::UMAX:
4099   case ISD::FADD:
4100   case ISD::FMUL:
4101   case ISD::FMINNUM_IEEE:
4102   case ISD::FMAXNUM_IEEE:
4103     return splitBinaryVectorOp(Op, DAG);
4104   }
4105   return SDValue();
4106 }
4107 
4108 static SDValue adjustLoadValueTypeImpl(SDValue Result, EVT LoadVT,
4109                                        const SDLoc &DL,
4110                                        SelectionDAG &DAG, bool Unpacked) {
4111   if (!LoadVT.isVector())
4112     return Result;
4113 
4114   if (Unpacked) { // From v2i32/v4i32 back to v2f16/v4f16.
4115     // Truncate to v2i16/v4i16.
4116     EVT IntLoadVT = LoadVT.changeTypeToInteger();
4117 
4118     // Workaround legalizer not scalarizing truncate after vector op
4119     // legalization byt not creating intermediate vector trunc.
4120     SmallVector<SDValue, 4> Elts;
4121     DAG.ExtractVectorElements(Result, Elts);
4122     for (SDValue &Elt : Elts)
4123       Elt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Elt);
4124 
4125     Result = DAG.getBuildVector(IntLoadVT, DL, Elts);
4126 
4127     // Bitcast to original type (v2f16/v4f16).
4128     return DAG.getNode(ISD::BITCAST, DL, LoadVT, Result);
4129   }
4130 
4131   // Cast back to the original packed type.
4132   return DAG.getNode(ISD::BITCAST, DL, LoadVT, Result);
4133 }
4134 
4135 SDValue SITargetLowering::adjustLoadValueType(unsigned Opcode,
4136                                               MemSDNode *M,
4137                                               SelectionDAG &DAG,
4138                                               ArrayRef<SDValue> Ops,
4139                                               bool IsIntrinsic) const {
4140   SDLoc DL(M);
4141 
4142   bool Unpacked = Subtarget->hasUnpackedD16VMem();
4143   EVT LoadVT = M->getValueType(0);
4144 
4145   EVT EquivLoadVT = LoadVT;
4146   if (Unpacked && LoadVT.isVector()) {
4147     EquivLoadVT = LoadVT.isVector() ?
4148       EVT::getVectorVT(*DAG.getContext(), MVT::i32,
4149                        LoadVT.getVectorNumElements()) : LoadVT;
4150   }
4151 
4152   // Change from v4f16/v2f16 to EquivLoadVT.
4153   SDVTList VTList = DAG.getVTList(EquivLoadVT, MVT::Other);
4154 
4155   SDValue Load
4156     = DAG.getMemIntrinsicNode(
4157       IsIntrinsic ? (unsigned)ISD::INTRINSIC_W_CHAIN : Opcode, DL,
4158       VTList, Ops, M->getMemoryVT(),
4159       M->getMemOperand());
4160   if (!Unpacked) // Just adjusted the opcode.
4161     return Load;
4162 
4163   SDValue Adjusted = adjustLoadValueTypeImpl(Load, LoadVT, DL, DAG, Unpacked);
4164 
4165   return DAG.getMergeValues({ Adjusted, Load.getValue(1) }, DL);
4166 }
4167 
4168 SDValue SITargetLowering::lowerIntrinsicLoad(MemSDNode *M, bool IsFormat,
4169                                              SelectionDAG &DAG,
4170                                              ArrayRef<SDValue> Ops) const {
4171   SDLoc DL(M);
4172   EVT LoadVT = M->getValueType(0);
4173   EVT EltType = LoadVT.getScalarType();
4174   EVT IntVT = LoadVT.changeTypeToInteger();
4175 
4176   bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16);
4177 
4178   unsigned Opc =
4179       IsFormat ? AMDGPUISD::BUFFER_LOAD_FORMAT : AMDGPUISD::BUFFER_LOAD;
4180 
4181   if (IsD16) {
4182     return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16, M, DAG, Ops);
4183   }
4184 
4185   // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics
4186   if (!IsD16 && !LoadVT.isVector() && EltType.getSizeInBits() < 32)
4187     return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M);
4188 
4189   if (isTypeLegal(LoadVT)) {
4190     return getMemIntrinsicNode(Opc, DL, M->getVTList(), Ops, IntVT,
4191                                M->getMemOperand(), DAG);
4192   }
4193 
4194   EVT CastVT = getEquivalentMemType(*DAG.getContext(), LoadVT);
4195   SDVTList VTList = DAG.getVTList(CastVT, MVT::Other);
4196   SDValue MemNode = getMemIntrinsicNode(Opc, DL, VTList, Ops, CastVT,
4197                                         M->getMemOperand(), DAG);
4198   return DAG.getMergeValues(
4199       {DAG.getNode(ISD::BITCAST, DL, LoadVT, MemNode), MemNode.getValue(1)},
4200       DL);
4201 }
4202 
4203 static SDValue lowerICMPIntrinsic(const SITargetLowering &TLI,
4204                                   SDNode *N, SelectionDAG &DAG) {
4205   EVT VT = N->getValueType(0);
4206   const auto *CD = cast<ConstantSDNode>(N->getOperand(3));
4207   int CondCode = CD->getSExtValue();
4208   if (CondCode < ICmpInst::Predicate::FIRST_ICMP_PREDICATE ||
4209       CondCode > ICmpInst::Predicate::LAST_ICMP_PREDICATE)
4210     return DAG.getUNDEF(VT);
4211 
4212   ICmpInst::Predicate IcInput = static_cast<ICmpInst::Predicate>(CondCode);
4213 
4214   SDValue LHS = N->getOperand(1);
4215   SDValue RHS = N->getOperand(2);
4216 
4217   SDLoc DL(N);
4218 
4219   EVT CmpVT = LHS.getValueType();
4220   if (CmpVT == MVT::i16 && !TLI.isTypeLegal(MVT::i16)) {
4221     unsigned PromoteOp = ICmpInst::isSigned(IcInput) ?
4222       ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
4223     LHS = DAG.getNode(PromoteOp, DL, MVT::i32, LHS);
4224     RHS = DAG.getNode(PromoteOp, DL, MVT::i32, RHS);
4225   }
4226 
4227   ISD::CondCode CCOpcode = getICmpCondCode(IcInput);
4228 
4229   unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize();
4230   EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize);
4231 
4232   SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, DL, CCVT, LHS, RHS,
4233                               DAG.getCondCode(CCOpcode));
4234   if (VT.bitsEq(CCVT))
4235     return SetCC;
4236   return DAG.getZExtOrTrunc(SetCC, DL, VT);
4237 }
4238 
4239 static SDValue lowerFCMPIntrinsic(const SITargetLowering &TLI,
4240                                   SDNode *N, SelectionDAG &DAG) {
4241   EVT VT = N->getValueType(0);
4242   const auto *CD = cast<ConstantSDNode>(N->getOperand(3));
4243 
4244   int CondCode = CD->getSExtValue();
4245   if (CondCode < FCmpInst::Predicate::FIRST_FCMP_PREDICATE ||
4246       CondCode > FCmpInst::Predicate::LAST_FCMP_PREDICATE) {
4247     return DAG.getUNDEF(VT);
4248   }
4249 
4250   SDValue Src0 = N->getOperand(1);
4251   SDValue Src1 = N->getOperand(2);
4252   EVT CmpVT = Src0.getValueType();
4253   SDLoc SL(N);
4254 
4255   if (CmpVT == MVT::f16 && !TLI.isTypeLegal(CmpVT)) {
4256     Src0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0);
4257     Src1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1);
4258   }
4259 
4260   FCmpInst::Predicate IcInput = static_cast<FCmpInst::Predicate>(CondCode);
4261   ISD::CondCode CCOpcode = getFCmpCondCode(IcInput);
4262   unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize();
4263   EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize);
4264   SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, SL, CCVT, Src0,
4265                               Src1, DAG.getCondCode(CCOpcode));
4266   if (VT.bitsEq(CCVT))
4267     return SetCC;
4268   return DAG.getZExtOrTrunc(SetCC, SL, VT);
4269 }
4270 
4271 void SITargetLowering::ReplaceNodeResults(SDNode *N,
4272                                           SmallVectorImpl<SDValue> &Results,
4273                                           SelectionDAG &DAG) const {
4274   switch (N->getOpcode()) {
4275   case ISD::INSERT_VECTOR_ELT: {
4276     if (SDValue Res = lowerINSERT_VECTOR_ELT(SDValue(N, 0), DAG))
4277       Results.push_back(Res);
4278     return;
4279   }
4280   case ISD::EXTRACT_VECTOR_ELT: {
4281     if (SDValue Res = lowerEXTRACT_VECTOR_ELT(SDValue(N, 0), DAG))
4282       Results.push_back(Res);
4283     return;
4284   }
4285   case ISD::INTRINSIC_WO_CHAIN: {
4286     unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
4287     switch (IID) {
4288     case Intrinsic::amdgcn_cvt_pkrtz: {
4289       SDValue Src0 = N->getOperand(1);
4290       SDValue Src1 = N->getOperand(2);
4291       SDLoc SL(N);
4292       SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_PKRTZ_F16_F32, SL, MVT::i32,
4293                                 Src0, Src1);
4294       Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Cvt));
4295       return;
4296     }
4297     case Intrinsic::amdgcn_cvt_pknorm_i16:
4298     case Intrinsic::amdgcn_cvt_pknorm_u16:
4299     case Intrinsic::amdgcn_cvt_pk_i16:
4300     case Intrinsic::amdgcn_cvt_pk_u16: {
4301       SDValue Src0 = N->getOperand(1);
4302       SDValue Src1 = N->getOperand(2);
4303       SDLoc SL(N);
4304       unsigned Opcode;
4305 
4306       if (IID == Intrinsic::amdgcn_cvt_pknorm_i16)
4307         Opcode = AMDGPUISD::CVT_PKNORM_I16_F32;
4308       else if (IID == Intrinsic::amdgcn_cvt_pknorm_u16)
4309         Opcode = AMDGPUISD::CVT_PKNORM_U16_F32;
4310       else if (IID == Intrinsic::amdgcn_cvt_pk_i16)
4311         Opcode = AMDGPUISD::CVT_PK_I16_I32;
4312       else
4313         Opcode = AMDGPUISD::CVT_PK_U16_U32;
4314 
4315       EVT VT = N->getValueType(0);
4316       if (isTypeLegal(VT))
4317         Results.push_back(DAG.getNode(Opcode, SL, VT, Src0, Src1));
4318       else {
4319         SDValue Cvt = DAG.getNode(Opcode, SL, MVT::i32, Src0, Src1);
4320         Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, Cvt));
4321       }
4322       return;
4323     }
4324     }
4325     break;
4326   }
4327   case ISD::INTRINSIC_W_CHAIN: {
4328     if (SDValue Res = LowerINTRINSIC_W_CHAIN(SDValue(N, 0), DAG)) {
4329       if (Res.getOpcode() == ISD::MERGE_VALUES) {
4330         // FIXME: Hacky
4331         Results.push_back(Res.getOperand(0));
4332         Results.push_back(Res.getOperand(1));
4333       } else {
4334         Results.push_back(Res);
4335         Results.push_back(Res.getValue(1));
4336       }
4337       return;
4338     }
4339 
4340     break;
4341   }
4342   case ISD::SELECT: {
4343     SDLoc SL(N);
4344     EVT VT = N->getValueType(0);
4345     EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
4346     SDValue LHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(1));
4347     SDValue RHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(2));
4348 
4349     EVT SelectVT = NewVT;
4350     if (NewVT.bitsLT(MVT::i32)) {
4351       LHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, LHS);
4352       RHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, RHS);
4353       SelectVT = MVT::i32;
4354     }
4355 
4356     SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, SelectVT,
4357                                     N->getOperand(0), LHS, RHS);
4358 
4359     if (NewVT != SelectVT)
4360       NewSelect = DAG.getNode(ISD::TRUNCATE, SL, NewVT, NewSelect);
4361     Results.push_back(DAG.getNode(ISD::BITCAST, SL, VT, NewSelect));
4362     return;
4363   }
4364   case ISD::FNEG: {
4365     if (N->getValueType(0) != MVT::v2f16)
4366       break;
4367 
4368     SDLoc SL(N);
4369     SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0));
4370 
4371     SDValue Op = DAG.getNode(ISD::XOR, SL, MVT::i32,
4372                              BC,
4373                              DAG.getConstant(0x80008000, SL, MVT::i32));
4374     Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op));
4375     return;
4376   }
4377   case ISD::FABS: {
4378     if (N->getValueType(0) != MVT::v2f16)
4379       break;
4380 
4381     SDLoc SL(N);
4382     SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0));
4383 
4384     SDValue Op = DAG.getNode(ISD::AND, SL, MVT::i32,
4385                              BC,
4386                              DAG.getConstant(0x7fff7fff, SL, MVT::i32));
4387     Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op));
4388     return;
4389   }
4390   default:
4391     break;
4392   }
4393 }
4394 
4395 /// Helper function for LowerBRCOND
4396 static SDNode *findUser(SDValue Value, unsigned Opcode) {
4397 
4398   SDNode *Parent = Value.getNode();
4399   for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end();
4400        I != E; ++I) {
4401 
4402     if (I.getUse().get() != Value)
4403       continue;
4404 
4405     if (I->getOpcode() == Opcode)
4406       return *I;
4407   }
4408   return nullptr;
4409 }
4410 
4411 unsigned SITargetLowering::isCFIntrinsic(const SDNode *Intr) const {
4412   if (Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
4413     switch (cast<ConstantSDNode>(Intr->getOperand(1))->getZExtValue()) {
4414     case Intrinsic::amdgcn_if:
4415       return AMDGPUISD::IF;
4416     case Intrinsic::amdgcn_else:
4417       return AMDGPUISD::ELSE;
4418     case Intrinsic::amdgcn_loop:
4419       return AMDGPUISD::LOOP;
4420     case Intrinsic::amdgcn_end_cf:
4421       llvm_unreachable("should not occur");
4422     default:
4423       return 0;
4424     }
4425   }
4426 
4427   // break, if_break, else_break are all only used as inputs to loop, not
4428   // directly as branch conditions.
4429   return 0;
4430 }
4431 
4432 bool SITargetLowering::shouldEmitFixup(const GlobalValue *GV) const {
4433   const Triple &TT = getTargetMachine().getTargetTriple();
4434   return (GV->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
4435           GV->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
4436          AMDGPU::shouldEmitConstantsToTextSection(TT);
4437 }
4438 
4439 bool SITargetLowering::shouldEmitGOTReloc(const GlobalValue *GV) const {
4440   // FIXME: Either avoid relying on address space here or change the default
4441   // address space for functions to avoid the explicit check.
4442   return (GV->getValueType()->isFunctionTy() ||
4443           GV->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS ||
4444           GV->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
4445           GV->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
4446          !shouldEmitFixup(GV) &&
4447          !getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
4448 }
4449 
4450 bool SITargetLowering::shouldEmitPCReloc(const GlobalValue *GV) const {
4451   return !shouldEmitFixup(GV) && !shouldEmitGOTReloc(GV);
4452 }
4453 
4454 /// This transforms the control flow intrinsics to get the branch destination as
4455 /// last parameter, also switches branch target with BR if the need arise
4456 SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND,
4457                                       SelectionDAG &DAG) const {
4458   SDLoc DL(BRCOND);
4459 
4460   SDNode *Intr = BRCOND.getOperand(1).getNode();
4461   SDValue Target = BRCOND.getOperand(2);
4462   SDNode *BR = nullptr;
4463   SDNode *SetCC = nullptr;
4464 
4465   if (Intr->getOpcode() == ISD::SETCC) {
4466     // As long as we negate the condition everything is fine
4467     SetCC = Intr;
4468     Intr = SetCC->getOperand(0).getNode();
4469 
4470   } else {
4471     // Get the target from BR if we don't negate the condition
4472     BR = findUser(BRCOND, ISD::BR);
4473     Target = BR->getOperand(1);
4474   }
4475 
4476   // FIXME: This changes the types of the intrinsics instead of introducing new
4477   // nodes with the correct types.
4478   // e.g. llvm.amdgcn.loop
4479 
4480   // eg: i1,ch = llvm.amdgcn.loop t0, TargetConstant:i32<6271>, t3
4481   // =>     t9: ch = llvm.amdgcn.loop t0, TargetConstant:i32<6271>, t3, BasicBlock:ch<bb1 0x7fee5286d088>
4482 
4483   unsigned CFNode = isCFIntrinsic(Intr);
4484   if (CFNode == 0) {
4485     // This is a uniform branch so we don't need to legalize.
4486     return BRCOND;
4487   }
4488 
4489   bool HaveChain = Intr->getOpcode() == ISD::INTRINSIC_VOID ||
4490                    Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN;
4491 
4492   assert(!SetCC ||
4493         (SetCC->getConstantOperandVal(1) == 1 &&
4494          cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() ==
4495                                                              ISD::SETNE));
4496 
4497   // operands of the new intrinsic call
4498   SmallVector<SDValue, 4> Ops;
4499   if (HaveChain)
4500     Ops.push_back(BRCOND.getOperand(0));
4501 
4502   Ops.append(Intr->op_begin() + (HaveChain ?  2 : 1), Intr->op_end());
4503   Ops.push_back(Target);
4504 
4505   ArrayRef<EVT> Res(Intr->value_begin() + 1, Intr->value_end());
4506 
4507   // build the new intrinsic call
4508   SDNode *Result = DAG.getNode(CFNode, DL, DAG.getVTList(Res), Ops).getNode();
4509 
4510   if (!HaveChain) {
4511     SDValue Ops[] =  {
4512       SDValue(Result, 0),
4513       BRCOND.getOperand(0)
4514     };
4515 
4516     Result = DAG.getMergeValues(Ops, DL).getNode();
4517   }
4518 
4519   if (BR) {
4520     // Give the branch instruction our target
4521     SDValue Ops[] = {
4522       BR->getOperand(0),
4523       BRCOND.getOperand(2)
4524     };
4525     SDValue NewBR = DAG.getNode(ISD::BR, DL, BR->getVTList(), Ops);
4526     DAG.ReplaceAllUsesWith(BR, NewBR.getNode());
4527     BR = NewBR.getNode();
4528   }
4529 
4530   SDValue Chain = SDValue(Result, Result->getNumValues() - 1);
4531 
4532   // Copy the intrinsic results to registers
4533   for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) {
4534     SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg);
4535     if (!CopyToReg)
4536       continue;
4537 
4538     Chain = DAG.getCopyToReg(
4539       Chain, DL,
4540       CopyToReg->getOperand(1),
4541       SDValue(Result, i - 1),
4542       SDValue());
4543 
4544     DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0));
4545   }
4546 
4547   // Remove the old intrinsic from the chain
4548   DAG.ReplaceAllUsesOfValueWith(
4549     SDValue(Intr, Intr->getNumValues() - 1),
4550     Intr->getOperand(0));
4551 
4552   return Chain;
4553 }
4554 
4555 SDValue SITargetLowering::LowerRETURNADDR(SDValue Op,
4556                                           SelectionDAG &DAG) const {
4557   MVT VT = Op.getSimpleValueType();
4558   SDLoc DL(Op);
4559   // Checking the depth
4560   if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() != 0)
4561     return DAG.getConstant(0, DL, VT);
4562 
4563   MachineFunction &MF = DAG.getMachineFunction();
4564   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
4565   // Check for kernel and shader functions
4566   if (Info->isEntryFunction())
4567     return DAG.getConstant(0, DL, VT);
4568 
4569   MachineFrameInfo &MFI = MF.getFrameInfo();
4570   // There is a call to @llvm.returnaddress in this function
4571   MFI.setReturnAddressIsTaken(true);
4572 
4573   const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
4574   // Get the return address reg and mark it as an implicit live-in
4575   unsigned Reg = MF.addLiveIn(TRI->getReturnAddressReg(MF), getRegClassFor(VT, Op.getNode()->isDivergent()));
4576 
4577   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT);
4578 }
4579 
4580 SDValue SITargetLowering::getFPExtOrFPTrunc(SelectionDAG &DAG,
4581                                             SDValue Op,
4582                                             const SDLoc &DL,
4583                                             EVT VT) const {
4584   return Op.getValueType().bitsLE(VT) ?
4585       DAG.getNode(ISD::FP_EXTEND, DL, VT, Op) :
4586       DAG.getNode(ISD::FTRUNC, DL, VT, Op);
4587 }
4588 
4589 SDValue SITargetLowering::lowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
4590   assert(Op.getValueType() == MVT::f16 &&
4591          "Do not know how to custom lower FP_ROUND for non-f16 type");
4592 
4593   SDValue Src = Op.getOperand(0);
4594   EVT SrcVT = Src.getValueType();
4595   if (SrcVT != MVT::f64)
4596     return Op;
4597 
4598   SDLoc DL(Op);
4599 
4600   SDValue FpToFp16 = DAG.getNode(ISD::FP_TO_FP16, DL, MVT::i32, Src);
4601   SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FpToFp16);
4602   return DAG.getNode(ISD::BITCAST, DL, MVT::f16, Trunc);
4603 }
4604 
4605 SDValue SITargetLowering::lowerFMINNUM_FMAXNUM(SDValue Op,
4606                                                SelectionDAG &DAG) const {
4607   EVT VT = Op.getValueType();
4608   const MachineFunction &MF = DAG.getMachineFunction();
4609   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
4610   bool IsIEEEMode = Info->getMode().IEEE;
4611 
4612   // FIXME: Assert during eslection that this is only selected for
4613   // ieee_mode. Currently a combine can produce the ieee version for non-ieee
4614   // mode functions, but this happens to be OK since it's only done in cases
4615   // where there is known no sNaN.
4616   if (IsIEEEMode)
4617     return expandFMINNUM_FMAXNUM(Op.getNode(), DAG);
4618 
4619   if (VT == MVT::v4f16)
4620     return splitBinaryVectorOp(Op, DAG);
4621   return Op;
4622 }
4623 
4624 SDValue SITargetLowering::lowerTRAP(SDValue Op, SelectionDAG &DAG) const {
4625   SDLoc SL(Op);
4626   SDValue Chain = Op.getOperand(0);
4627 
4628   if (Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbiHsa ||
4629       !Subtarget->isTrapHandlerEnabled())
4630     return DAG.getNode(AMDGPUISD::ENDPGM, SL, MVT::Other, Chain);
4631 
4632   MachineFunction &MF = DAG.getMachineFunction();
4633   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
4634   unsigned UserSGPR = Info->getQueuePtrUserSGPR();
4635   assert(UserSGPR != AMDGPU::NoRegister);
4636   SDValue QueuePtr = CreateLiveInRegister(
4637     DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64);
4638   SDValue SGPR01 = DAG.getRegister(AMDGPU::SGPR0_SGPR1, MVT::i64);
4639   SDValue ToReg = DAG.getCopyToReg(Chain, SL, SGPR01,
4640                                    QueuePtr, SDValue());
4641   SDValue Ops[] = {
4642     ToReg,
4643     DAG.getTargetConstant(GCNSubtarget::TrapIDLLVMTrap, SL, MVT::i16),
4644     SGPR01,
4645     ToReg.getValue(1)
4646   };
4647   return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops);
4648 }
4649 
4650 SDValue SITargetLowering::lowerDEBUGTRAP(SDValue Op, SelectionDAG &DAG) const {
4651   SDLoc SL(Op);
4652   SDValue Chain = Op.getOperand(0);
4653   MachineFunction &MF = DAG.getMachineFunction();
4654 
4655   if (Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbiHsa ||
4656       !Subtarget->isTrapHandlerEnabled()) {
4657     DiagnosticInfoUnsupported NoTrap(MF.getFunction(),
4658                                      "debugtrap handler not supported",
4659                                      Op.getDebugLoc(),
4660                                      DS_Warning);
4661     LLVMContext &Ctx = MF.getFunction().getContext();
4662     Ctx.diagnose(NoTrap);
4663     return Chain;
4664   }
4665 
4666   SDValue Ops[] = {
4667     Chain,
4668     DAG.getTargetConstant(GCNSubtarget::TrapIDLLVMDebugTrap, SL, MVT::i16)
4669   };
4670   return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops);
4671 }
4672 
4673 SDValue SITargetLowering::getSegmentAperture(unsigned AS, const SDLoc &DL,
4674                                              SelectionDAG &DAG) const {
4675   // FIXME: Use inline constants (src_{shared, private}_base) instead.
4676   if (Subtarget->hasApertureRegs()) {
4677     unsigned Offset = AS == AMDGPUAS::LOCAL_ADDRESS ?
4678         AMDGPU::Hwreg::OFFSET_SRC_SHARED_BASE :
4679         AMDGPU::Hwreg::OFFSET_SRC_PRIVATE_BASE;
4680     unsigned WidthM1 = AS == AMDGPUAS::LOCAL_ADDRESS ?
4681         AMDGPU::Hwreg::WIDTH_M1_SRC_SHARED_BASE :
4682         AMDGPU::Hwreg::WIDTH_M1_SRC_PRIVATE_BASE;
4683     unsigned Encoding =
4684         AMDGPU::Hwreg::ID_MEM_BASES << AMDGPU::Hwreg::ID_SHIFT_ |
4685         Offset << AMDGPU::Hwreg::OFFSET_SHIFT_ |
4686         WidthM1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_;
4687 
4688     SDValue EncodingImm = DAG.getTargetConstant(Encoding, DL, MVT::i16);
4689     SDValue ApertureReg = SDValue(
4690         DAG.getMachineNode(AMDGPU::S_GETREG_B32, DL, MVT::i32, EncodingImm), 0);
4691     SDValue ShiftAmount = DAG.getTargetConstant(WidthM1 + 1, DL, MVT::i32);
4692     return DAG.getNode(ISD::SHL, DL, MVT::i32, ApertureReg, ShiftAmount);
4693   }
4694 
4695   MachineFunction &MF = DAG.getMachineFunction();
4696   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
4697   unsigned UserSGPR = Info->getQueuePtrUserSGPR();
4698   assert(UserSGPR != AMDGPU::NoRegister);
4699 
4700   SDValue QueuePtr = CreateLiveInRegister(
4701     DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64);
4702 
4703   // Offset into amd_queue_t for group_segment_aperture_base_hi /
4704   // private_segment_aperture_base_hi.
4705   uint32_t StructOffset = (AS == AMDGPUAS::LOCAL_ADDRESS) ? 0x40 : 0x44;
4706 
4707   SDValue Ptr = DAG.getObjectPtrOffset(DL, QueuePtr, StructOffset);
4708 
4709   // TODO: Use custom target PseudoSourceValue.
4710   // TODO: We should use the value from the IR intrinsic call, but it might not
4711   // be available and how do we get it?
4712   MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
4713   return DAG.getLoad(MVT::i32, DL, QueuePtr.getValue(1), Ptr, PtrInfo,
4714                      MinAlign(64, StructOffset),
4715                      MachineMemOperand::MODereferenceable |
4716                          MachineMemOperand::MOInvariant);
4717 }
4718 
4719 SDValue SITargetLowering::lowerADDRSPACECAST(SDValue Op,
4720                                              SelectionDAG &DAG) const {
4721   SDLoc SL(Op);
4722   const AddrSpaceCastSDNode *ASC = cast<AddrSpaceCastSDNode>(Op);
4723 
4724   SDValue Src = ASC->getOperand(0);
4725   SDValue FlatNullPtr = DAG.getConstant(0, SL, MVT::i64);
4726 
4727   const AMDGPUTargetMachine &TM =
4728     static_cast<const AMDGPUTargetMachine &>(getTargetMachine());
4729 
4730   // flat -> local/private
4731   if (ASC->getSrcAddressSpace() == AMDGPUAS::FLAT_ADDRESS) {
4732     unsigned DestAS = ASC->getDestAddressSpace();
4733 
4734     if (DestAS == AMDGPUAS::LOCAL_ADDRESS ||
4735         DestAS == AMDGPUAS::PRIVATE_ADDRESS) {
4736       unsigned NullVal = TM.getNullPointerValue(DestAS);
4737       SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32);
4738       SDValue NonNull = DAG.getSetCC(SL, MVT::i1, Src, FlatNullPtr, ISD::SETNE);
4739       SDValue Ptr = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src);
4740 
4741       return DAG.getNode(ISD::SELECT, SL, MVT::i32,
4742                          NonNull, Ptr, SegmentNullPtr);
4743     }
4744   }
4745 
4746   // local/private -> flat
4747   if (ASC->getDestAddressSpace() == AMDGPUAS::FLAT_ADDRESS) {
4748     unsigned SrcAS = ASC->getSrcAddressSpace();
4749 
4750     if (SrcAS == AMDGPUAS::LOCAL_ADDRESS ||
4751         SrcAS == AMDGPUAS::PRIVATE_ADDRESS) {
4752       unsigned NullVal = TM.getNullPointerValue(SrcAS);
4753       SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32);
4754 
4755       SDValue NonNull
4756         = DAG.getSetCC(SL, MVT::i1, Src, SegmentNullPtr, ISD::SETNE);
4757 
4758       SDValue Aperture = getSegmentAperture(ASC->getSrcAddressSpace(), SL, DAG);
4759       SDValue CvtPtr
4760         = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Src, Aperture);
4761 
4762       return DAG.getNode(ISD::SELECT, SL, MVT::i64, NonNull,
4763                          DAG.getNode(ISD::BITCAST, SL, MVT::i64, CvtPtr),
4764                          FlatNullPtr);
4765     }
4766   }
4767 
4768   // global <-> flat are no-ops and never emitted.
4769 
4770   const MachineFunction &MF = DAG.getMachineFunction();
4771   DiagnosticInfoUnsupported InvalidAddrSpaceCast(
4772     MF.getFunction(), "invalid addrspacecast", SL.getDebugLoc());
4773   DAG.getContext()->diagnose(InvalidAddrSpaceCast);
4774 
4775   return DAG.getUNDEF(ASC->getValueType(0));
4776 }
4777 
4778 // This lowers an INSERT_SUBVECTOR by extracting the individual elements from
4779 // the small vector and inserting them into the big vector. That is better than
4780 // the default expansion of doing it via a stack slot. Even though the use of
4781 // the stack slot would be optimized away afterwards, the stack slot itself
4782 // remains.
4783 SDValue SITargetLowering::lowerINSERT_SUBVECTOR(SDValue Op,
4784                                                 SelectionDAG &DAG) const {
4785   SDValue Vec = Op.getOperand(0);
4786   SDValue Ins = Op.getOperand(1);
4787   SDValue Idx = Op.getOperand(2);
4788   EVT VecVT = Vec.getValueType();
4789   EVT InsVT = Ins.getValueType();
4790   EVT EltVT = VecVT.getVectorElementType();
4791   unsigned InsNumElts = InsVT.getVectorNumElements();
4792   unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
4793   SDLoc SL(Op);
4794 
4795   for (unsigned I = 0; I != InsNumElts; ++I) {
4796     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Ins,
4797                               DAG.getConstant(I, SL, MVT::i32));
4798     Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, VecVT, Vec, Elt,
4799                       DAG.getConstant(IdxVal + I, SL, MVT::i32));
4800   }
4801   return Vec;
4802 }
4803 
4804 SDValue SITargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
4805                                                  SelectionDAG &DAG) const {
4806   SDValue Vec = Op.getOperand(0);
4807   SDValue InsVal = Op.getOperand(1);
4808   SDValue Idx = Op.getOperand(2);
4809   EVT VecVT = Vec.getValueType();
4810   EVT EltVT = VecVT.getVectorElementType();
4811   unsigned VecSize = VecVT.getSizeInBits();
4812   unsigned EltSize = EltVT.getSizeInBits();
4813 
4814 
4815   assert(VecSize <= 64);
4816 
4817   unsigned NumElts = VecVT.getVectorNumElements();
4818   SDLoc SL(Op);
4819   auto KIdx = dyn_cast<ConstantSDNode>(Idx);
4820 
4821   if (NumElts == 4 && EltSize == 16 && KIdx) {
4822     SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Vec);
4823 
4824     SDValue LoHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec,
4825                                  DAG.getConstant(0, SL, MVT::i32));
4826     SDValue HiHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec,
4827                                  DAG.getConstant(1, SL, MVT::i32));
4828 
4829     SDValue LoVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, LoHalf);
4830     SDValue HiVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, HiHalf);
4831 
4832     unsigned Idx = KIdx->getZExtValue();
4833     bool InsertLo = Idx < 2;
4834     SDValue InsHalf = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, MVT::v2i16,
4835       InsertLo ? LoVec : HiVec,
4836       DAG.getNode(ISD::BITCAST, SL, MVT::i16, InsVal),
4837       DAG.getConstant(InsertLo ? Idx : (Idx - 2), SL, MVT::i32));
4838 
4839     InsHalf = DAG.getNode(ISD::BITCAST, SL, MVT::i32, InsHalf);
4840 
4841     SDValue Concat = InsertLo ?
4842       DAG.getBuildVector(MVT::v2i32, SL, { InsHalf, HiHalf }) :
4843       DAG.getBuildVector(MVT::v2i32, SL, { LoHalf, InsHalf });
4844 
4845     return DAG.getNode(ISD::BITCAST, SL, VecVT, Concat);
4846   }
4847 
4848   if (isa<ConstantSDNode>(Idx))
4849     return SDValue();
4850 
4851   MVT IntVT = MVT::getIntegerVT(VecSize);
4852 
4853   // Avoid stack access for dynamic indexing.
4854   // v_bfi_b32 (v_bfm_b32 16, (shl idx, 16)), val, vec
4855 
4856   // Create a congruent vector with the target value in each element so that
4857   // the required element can be masked and ORed into the target vector.
4858   SDValue ExtVal = DAG.getNode(ISD::BITCAST, SL, IntVT,
4859                                DAG.getSplatBuildVector(VecVT, SL, InsVal));
4860 
4861   assert(isPowerOf2_32(EltSize));
4862   SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32);
4863 
4864   // Convert vector index to bit-index.
4865   SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor);
4866 
4867   SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec);
4868   SDValue BFM = DAG.getNode(ISD::SHL, SL, IntVT,
4869                             DAG.getConstant(0xffff, SL, IntVT),
4870                             ScaledIdx);
4871 
4872   SDValue LHS = DAG.getNode(ISD::AND, SL, IntVT, BFM, ExtVal);
4873   SDValue RHS = DAG.getNode(ISD::AND, SL, IntVT,
4874                             DAG.getNOT(SL, BFM, IntVT), BCVec);
4875 
4876   SDValue BFI = DAG.getNode(ISD::OR, SL, IntVT, LHS, RHS);
4877   return DAG.getNode(ISD::BITCAST, SL, VecVT, BFI);
4878 }
4879 
4880 SDValue SITargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
4881                                                   SelectionDAG &DAG) const {
4882   SDLoc SL(Op);
4883 
4884   EVT ResultVT = Op.getValueType();
4885   SDValue Vec = Op.getOperand(0);
4886   SDValue Idx = Op.getOperand(1);
4887   EVT VecVT = Vec.getValueType();
4888   unsigned VecSize = VecVT.getSizeInBits();
4889   EVT EltVT = VecVT.getVectorElementType();
4890   assert(VecSize <= 64);
4891 
4892   DAGCombinerInfo DCI(DAG, AfterLegalizeVectorOps, true, nullptr);
4893 
4894   // Make sure we do any optimizations that will make it easier to fold
4895   // source modifiers before obscuring it with bit operations.
4896 
4897   // XXX - Why doesn't this get called when vector_shuffle is expanded?
4898   if (SDValue Combined = performExtractVectorEltCombine(Op.getNode(), DCI))
4899     return Combined;
4900 
4901   unsigned EltSize = EltVT.getSizeInBits();
4902   assert(isPowerOf2_32(EltSize));
4903 
4904   MVT IntVT = MVT::getIntegerVT(VecSize);
4905   SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32);
4906 
4907   // Convert vector index to bit-index (* EltSize)
4908   SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor);
4909 
4910   SDValue BC = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec);
4911   SDValue Elt = DAG.getNode(ISD::SRL, SL, IntVT, BC, ScaledIdx);
4912 
4913   if (ResultVT == MVT::f16) {
4914     SDValue Result = DAG.getNode(ISD::TRUNCATE, SL, MVT::i16, Elt);
4915     return DAG.getNode(ISD::BITCAST, SL, ResultVT, Result);
4916   }
4917 
4918   return DAG.getAnyExtOrTrunc(Elt, SL, ResultVT);
4919 }
4920 
4921 static bool elementPairIsContiguous(ArrayRef<int> Mask, int Elt) {
4922   assert(Elt % 2 == 0);
4923   return Mask[Elt + 1] == Mask[Elt] + 1 && (Mask[Elt] % 2 == 0);
4924 }
4925 
4926 SDValue SITargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
4927                                               SelectionDAG &DAG) const {
4928   SDLoc SL(Op);
4929   EVT ResultVT = Op.getValueType();
4930   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
4931 
4932   EVT PackVT = ResultVT.isInteger() ? MVT::v2i16 : MVT::v2f16;
4933   EVT EltVT = PackVT.getVectorElementType();
4934   int SrcNumElts = Op.getOperand(0).getValueType().getVectorNumElements();
4935 
4936   // vector_shuffle <0,1,6,7> lhs, rhs
4937   // -> concat_vectors (extract_subvector lhs, 0), (extract_subvector rhs, 2)
4938   //
4939   // vector_shuffle <6,7,2,3> lhs, rhs
4940   // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 2)
4941   //
4942   // vector_shuffle <6,7,0,1> lhs, rhs
4943   // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 0)
4944 
4945   // Avoid scalarizing when both halves are reading from consecutive elements.
4946   SmallVector<SDValue, 4> Pieces;
4947   for (int I = 0, N = ResultVT.getVectorNumElements(); I != N; I += 2) {
4948     if (elementPairIsContiguous(SVN->getMask(), I)) {
4949       const int Idx = SVN->getMaskElt(I);
4950       int VecIdx = Idx < SrcNumElts ? 0 : 1;
4951       int EltIdx = Idx < SrcNumElts ? Idx : Idx - SrcNumElts;
4952       SDValue SubVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL,
4953                                     PackVT, SVN->getOperand(VecIdx),
4954                                     DAG.getConstant(EltIdx, SL, MVT::i32));
4955       Pieces.push_back(SubVec);
4956     } else {
4957       const int Idx0 = SVN->getMaskElt(I);
4958       const int Idx1 = SVN->getMaskElt(I + 1);
4959       int VecIdx0 = Idx0 < SrcNumElts ? 0 : 1;
4960       int VecIdx1 = Idx1 < SrcNumElts ? 0 : 1;
4961       int EltIdx0 = Idx0 < SrcNumElts ? Idx0 : Idx0 - SrcNumElts;
4962       int EltIdx1 = Idx1 < SrcNumElts ? Idx1 : Idx1 - SrcNumElts;
4963 
4964       SDValue Vec0 = SVN->getOperand(VecIdx0);
4965       SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
4966                                  Vec0, DAG.getConstant(EltIdx0, SL, MVT::i32));
4967 
4968       SDValue Vec1 = SVN->getOperand(VecIdx1);
4969       SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
4970                                  Vec1, DAG.getConstant(EltIdx1, SL, MVT::i32));
4971       Pieces.push_back(DAG.getBuildVector(PackVT, SL, { Elt0, Elt1 }));
4972     }
4973   }
4974 
4975   return DAG.getNode(ISD::CONCAT_VECTORS, SL, ResultVT, Pieces);
4976 }
4977 
4978 SDValue SITargetLowering::lowerBUILD_VECTOR(SDValue Op,
4979                                             SelectionDAG &DAG) const {
4980   SDLoc SL(Op);
4981   EVT VT = Op.getValueType();
4982 
4983   if (VT == MVT::v4i16 || VT == MVT::v4f16) {
4984     EVT HalfVT = MVT::getVectorVT(VT.getVectorElementType().getSimpleVT(), 2);
4985 
4986     // Turn into pair of packed build_vectors.
4987     // TODO: Special case for constants that can be materialized with s_mov_b64.
4988     SDValue Lo = DAG.getBuildVector(HalfVT, SL,
4989                                     { Op.getOperand(0), Op.getOperand(1) });
4990     SDValue Hi = DAG.getBuildVector(HalfVT, SL,
4991                                     { Op.getOperand(2), Op.getOperand(3) });
4992 
4993     SDValue CastLo = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Lo);
4994     SDValue CastHi = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Hi);
4995 
4996     SDValue Blend = DAG.getBuildVector(MVT::v2i32, SL, { CastLo, CastHi });
4997     return DAG.getNode(ISD::BITCAST, SL, VT, Blend);
4998   }
4999 
5000   assert(VT == MVT::v2f16 || VT == MVT::v2i16);
5001   assert(!Subtarget->hasVOP3PInsts() && "this should be legal");
5002 
5003   SDValue Lo = Op.getOperand(0);
5004   SDValue Hi = Op.getOperand(1);
5005 
5006   // Avoid adding defined bits with the zero_extend.
5007   if (Hi.isUndef()) {
5008     Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo);
5009     SDValue ExtLo = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Lo);
5010     return DAG.getNode(ISD::BITCAST, SL, VT, ExtLo);
5011   }
5012 
5013   Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Hi);
5014   Hi = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Hi);
5015 
5016   SDValue ShlHi = DAG.getNode(ISD::SHL, SL, MVT::i32, Hi,
5017                               DAG.getConstant(16, SL, MVT::i32));
5018   if (Lo.isUndef())
5019     return DAG.getNode(ISD::BITCAST, SL, VT, ShlHi);
5020 
5021   Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo);
5022   Lo = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Lo);
5023 
5024   SDValue Or = DAG.getNode(ISD::OR, SL, MVT::i32, Lo, ShlHi);
5025   return DAG.getNode(ISD::BITCAST, SL, VT, Or);
5026 }
5027 
5028 bool
5029 SITargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
5030   // We can fold offsets for anything that doesn't require a GOT relocation.
5031   return (GA->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS ||
5032           GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
5033           GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
5034          !shouldEmitGOTReloc(GA->getGlobal());
5035 }
5036 
5037 static SDValue
5038 buildPCRelGlobalAddress(SelectionDAG &DAG, const GlobalValue *GV,
5039                         const SDLoc &DL, unsigned Offset, EVT PtrVT,
5040                         unsigned GAFlags = SIInstrInfo::MO_NONE) {
5041   // In order to support pc-relative addressing, the PC_ADD_REL_OFFSET SDNode is
5042   // lowered to the following code sequence:
5043   //
5044   // For constant address space:
5045   //   s_getpc_b64 s[0:1]
5046   //   s_add_u32 s0, s0, $symbol
5047   //   s_addc_u32 s1, s1, 0
5048   //
5049   //   s_getpc_b64 returns the address of the s_add_u32 instruction and then
5050   //   a fixup or relocation is emitted to replace $symbol with a literal
5051   //   constant, which is a pc-relative offset from the encoding of the $symbol
5052   //   operand to the global variable.
5053   //
5054   // For global address space:
5055   //   s_getpc_b64 s[0:1]
5056   //   s_add_u32 s0, s0, $symbol@{gotpc}rel32@lo
5057   //   s_addc_u32 s1, s1, $symbol@{gotpc}rel32@hi
5058   //
5059   //   s_getpc_b64 returns the address of the s_add_u32 instruction and then
5060   //   fixups or relocations are emitted to replace $symbol@*@lo and
5061   //   $symbol@*@hi with lower 32 bits and higher 32 bits of a literal constant,
5062   //   which is a 64-bit pc-relative offset from the encoding of the $symbol
5063   //   operand to the global variable.
5064   //
5065   // What we want here is an offset from the value returned by s_getpc
5066   // (which is the address of the s_add_u32 instruction) to the global
5067   // variable, but since the encoding of $symbol starts 4 bytes after the start
5068   // of the s_add_u32 instruction, we end up with an offset that is 4 bytes too
5069   // small. This requires us to add 4 to the global variable offset in order to
5070   // compute the correct address.
5071   SDValue PtrLo =
5072       DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 4, GAFlags);
5073   SDValue PtrHi;
5074   if (GAFlags == SIInstrInfo::MO_NONE) {
5075     PtrHi = DAG.getTargetConstant(0, DL, MVT::i32);
5076   } else {
5077     PtrHi =
5078         DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 4, GAFlags + 1);
5079   }
5080   return DAG.getNode(AMDGPUISD::PC_ADD_REL_OFFSET, DL, PtrVT, PtrLo, PtrHi);
5081 }
5082 
5083 SDValue SITargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI,
5084                                              SDValue Op,
5085                                              SelectionDAG &DAG) const {
5086   GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op);
5087   const GlobalValue *GV = GSD->getGlobal();
5088   if ((GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS &&
5089        (!GV->hasExternalLinkage() ||
5090         getTargetMachine().getTargetTriple().getOS() == Triple::AMDHSA ||
5091         getTargetMachine().getTargetTriple().getOS() == Triple::AMDPAL)) ||
5092       GSD->getAddressSpace() == AMDGPUAS::REGION_ADDRESS ||
5093       GSD->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS)
5094     return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG);
5095 
5096   SDLoc DL(GSD);
5097   EVT PtrVT = Op.getValueType();
5098 
5099   if (GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) {
5100     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, GSD->getOffset(),
5101                                             SIInstrInfo::MO_ABS32_LO);
5102     return DAG.getNode(AMDGPUISD::LDS, DL, MVT::i32, GA);
5103   }
5104 
5105   if (shouldEmitFixup(GV))
5106     return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT);
5107   else if (shouldEmitPCReloc(GV))
5108     return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT,
5109                                    SIInstrInfo::MO_REL32);
5110 
5111   SDValue GOTAddr = buildPCRelGlobalAddress(DAG, GV, DL, 0, PtrVT,
5112                                             SIInstrInfo::MO_GOTPCREL32);
5113 
5114   Type *Ty = PtrVT.getTypeForEVT(*DAG.getContext());
5115   PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS);
5116   const DataLayout &DataLayout = DAG.getDataLayout();
5117   unsigned Align = DataLayout.getABITypeAlignment(PtrTy);
5118   MachinePointerInfo PtrInfo
5119     = MachinePointerInfo::getGOT(DAG.getMachineFunction());
5120 
5121   return DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), GOTAddr, PtrInfo, Align,
5122                      MachineMemOperand::MODereferenceable |
5123                          MachineMemOperand::MOInvariant);
5124 }
5125 
5126 SDValue SITargetLowering::copyToM0(SelectionDAG &DAG, SDValue Chain,
5127                                    const SDLoc &DL, SDValue V) const {
5128   // We can't use S_MOV_B32 directly, because there is no way to specify m0 as
5129   // the destination register.
5130   //
5131   // We can't use CopyToReg, because MachineCSE won't combine COPY instructions,
5132   // so we will end up with redundant moves to m0.
5133   //
5134   // We use a pseudo to ensure we emit s_mov_b32 with m0 as the direct result.
5135 
5136   // A Null SDValue creates a glue result.
5137   SDNode *M0 = DAG.getMachineNode(AMDGPU::SI_INIT_M0, DL, MVT::Other, MVT::Glue,
5138                                   V, Chain);
5139   return SDValue(M0, 0);
5140 }
5141 
5142 SDValue SITargetLowering::lowerImplicitZextParam(SelectionDAG &DAG,
5143                                                  SDValue Op,
5144                                                  MVT VT,
5145                                                  unsigned Offset) const {
5146   SDLoc SL(Op);
5147   SDValue Param = lowerKernargMemParameter(DAG, MVT::i32, MVT::i32, SL,
5148                                            DAG.getEntryNode(), Offset, 4, false);
5149   // The local size values will have the hi 16-bits as zero.
5150   return DAG.getNode(ISD::AssertZext, SL, MVT::i32, Param,
5151                      DAG.getValueType(VT));
5152 }
5153 
5154 static SDValue emitNonHSAIntrinsicError(SelectionDAG &DAG, const SDLoc &DL,
5155                                         EVT VT) {
5156   DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(),
5157                                       "non-hsa intrinsic with hsa target",
5158                                       DL.getDebugLoc());
5159   DAG.getContext()->diagnose(BadIntrin);
5160   return DAG.getUNDEF(VT);
5161 }
5162 
5163 static SDValue emitRemovedIntrinsicError(SelectionDAG &DAG, const SDLoc &DL,
5164                                          EVT VT) {
5165   DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(),
5166                                       "intrinsic not supported on subtarget",
5167                                       DL.getDebugLoc());
5168   DAG.getContext()->diagnose(BadIntrin);
5169   return DAG.getUNDEF(VT);
5170 }
5171 
5172 static SDValue getBuildDwordsVector(SelectionDAG &DAG, SDLoc DL,
5173                                     ArrayRef<SDValue> Elts) {
5174   assert(!Elts.empty());
5175   MVT Type;
5176   unsigned NumElts;
5177 
5178   if (Elts.size() == 1) {
5179     Type = MVT::f32;
5180     NumElts = 1;
5181   } else if (Elts.size() == 2) {
5182     Type = MVT::v2f32;
5183     NumElts = 2;
5184   } else if (Elts.size() <= 4) {
5185     Type = MVT::v4f32;
5186     NumElts = 4;
5187   } else if (Elts.size() <= 8) {
5188     Type = MVT::v8f32;
5189     NumElts = 8;
5190   } else {
5191     assert(Elts.size() <= 16);
5192     Type = MVT::v16f32;
5193     NumElts = 16;
5194   }
5195 
5196   SmallVector<SDValue, 16> VecElts(NumElts);
5197   for (unsigned i = 0; i < Elts.size(); ++i) {
5198     SDValue Elt = Elts[i];
5199     if (Elt.getValueType() != MVT::f32)
5200       Elt = DAG.getBitcast(MVT::f32, Elt);
5201     VecElts[i] = Elt;
5202   }
5203   for (unsigned i = Elts.size(); i < NumElts; ++i)
5204     VecElts[i] = DAG.getUNDEF(MVT::f32);
5205 
5206   if (NumElts == 1)
5207     return VecElts[0];
5208   return DAG.getBuildVector(Type, DL, VecElts);
5209 }
5210 
5211 static bool parseCachePolicy(SDValue CachePolicy, SelectionDAG &DAG,
5212                              SDValue *GLC, SDValue *SLC, SDValue *DLC) {
5213   auto CachePolicyConst = cast<ConstantSDNode>(CachePolicy.getNode());
5214 
5215   uint64_t Value = CachePolicyConst->getZExtValue();
5216   SDLoc DL(CachePolicy);
5217   if (GLC) {
5218     *GLC = DAG.getTargetConstant((Value & 0x1) ? 1 : 0, DL, MVT::i32);
5219     Value &= ~(uint64_t)0x1;
5220   }
5221   if (SLC) {
5222     *SLC = DAG.getTargetConstant((Value & 0x2) ? 1 : 0, DL, MVT::i32);
5223     Value &= ~(uint64_t)0x2;
5224   }
5225   if (DLC) {
5226     *DLC = DAG.getTargetConstant((Value & 0x4) ? 1 : 0, DL, MVT::i32);
5227     Value &= ~(uint64_t)0x4;
5228   }
5229 
5230   return Value == 0;
5231 }
5232 
5233 // Re-construct the required return value for a image load intrinsic.
5234 // This is more complicated due to the optional use TexFailCtrl which means the required
5235 // return type is an aggregate
5236 static SDValue constructRetValue(SelectionDAG &DAG,
5237                                  MachineSDNode *Result,
5238                                  ArrayRef<EVT> ResultTypes,
5239                                  bool IsTexFail, bool Unpacked, bool IsD16,
5240                                  int DMaskPop, int NumVDataDwords,
5241                                  const SDLoc &DL, LLVMContext &Context) {
5242   // Determine the required return type. This is the same regardless of IsTexFail flag
5243   EVT ReqRetVT = ResultTypes[0];
5244   EVT ReqRetEltVT = ReqRetVT.isVector() ? ReqRetVT.getVectorElementType() : ReqRetVT;
5245   int ReqRetNumElts = ReqRetVT.isVector() ? ReqRetVT.getVectorNumElements() : 1;
5246   EVT AdjEltVT = Unpacked && IsD16 ? MVT::i32 : ReqRetEltVT;
5247   EVT AdjVT = Unpacked ? ReqRetNumElts > 1 ? EVT::getVectorVT(Context, AdjEltVT, ReqRetNumElts)
5248                                            : AdjEltVT
5249                        : ReqRetVT;
5250 
5251   // Extract data part of the result
5252   // Bitcast the result to the same type as the required return type
5253   int NumElts;
5254   if (IsD16 && !Unpacked)
5255     NumElts = NumVDataDwords << 1;
5256   else
5257     NumElts = NumVDataDwords;
5258 
5259   EVT CastVT = NumElts > 1 ? EVT::getVectorVT(Context, AdjEltVT, NumElts)
5260                            : AdjEltVT;
5261 
5262   // Special case for v6f16. Rather than add support for this, use v3i32 to
5263   // extract the data elements
5264   bool V6F16Special = false;
5265   if (NumElts == 6) {
5266     CastVT = EVT::getVectorVT(Context, MVT::i32, NumElts / 2);
5267     DMaskPop >>= 1;
5268     ReqRetNumElts >>= 1;
5269     V6F16Special = true;
5270     AdjVT = MVT::v2i32;
5271   }
5272 
5273   SDValue N = SDValue(Result, 0);
5274   SDValue CastRes = DAG.getNode(ISD::BITCAST, DL, CastVT, N);
5275 
5276   // Iterate over the result
5277   SmallVector<SDValue, 4> BVElts;
5278 
5279   if (CastVT.isVector()) {
5280     DAG.ExtractVectorElements(CastRes, BVElts, 0, DMaskPop);
5281   } else {
5282     BVElts.push_back(CastRes);
5283   }
5284   int ExtraElts = ReqRetNumElts - DMaskPop;
5285   while(ExtraElts--)
5286     BVElts.push_back(DAG.getUNDEF(AdjEltVT));
5287 
5288   SDValue PreTFCRes;
5289   if (ReqRetNumElts > 1) {
5290     SDValue NewVec = DAG.getBuildVector(AdjVT, DL, BVElts);
5291     if (IsD16 && Unpacked)
5292       PreTFCRes = adjustLoadValueTypeImpl(NewVec, ReqRetVT, DL, DAG, Unpacked);
5293     else
5294       PreTFCRes = NewVec;
5295   } else {
5296     PreTFCRes = BVElts[0];
5297   }
5298 
5299   if (V6F16Special)
5300     PreTFCRes = DAG.getNode(ISD::BITCAST, DL, MVT::v4f16, PreTFCRes);
5301 
5302   if (!IsTexFail) {
5303     if (Result->getNumValues() > 1)
5304       return DAG.getMergeValues({PreTFCRes, SDValue(Result, 1)}, DL);
5305     else
5306       return PreTFCRes;
5307   }
5308 
5309   // Extract the TexFail result and insert into aggregate return
5310   SmallVector<SDValue, 1> TFCElt;
5311   DAG.ExtractVectorElements(N, TFCElt, DMaskPop, 1);
5312   SDValue TFCRes = DAG.getNode(ISD::BITCAST, DL, ResultTypes[1], TFCElt[0]);
5313   return DAG.getMergeValues({PreTFCRes, TFCRes, SDValue(Result, 1)}, DL);
5314 }
5315 
5316 static bool parseTexFail(SDValue TexFailCtrl, SelectionDAG &DAG, SDValue *TFE,
5317                          SDValue *LWE, bool &IsTexFail) {
5318   auto TexFailCtrlConst = cast<ConstantSDNode>(TexFailCtrl.getNode());
5319 
5320   uint64_t Value = TexFailCtrlConst->getZExtValue();
5321   if (Value) {
5322     IsTexFail = true;
5323   }
5324 
5325   SDLoc DL(TexFailCtrlConst);
5326   *TFE = DAG.getTargetConstant((Value & 0x1) ? 1 : 0, DL, MVT::i32);
5327   Value &= ~(uint64_t)0x1;
5328   *LWE = DAG.getTargetConstant((Value & 0x2) ? 1 : 0, DL, MVT::i32);
5329   Value &= ~(uint64_t)0x2;
5330 
5331   return Value == 0;
5332 }
5333 
5334 SDValue SITargetLowering::lowerImage(SDValue Op,
5335                                      const AMDGPU::ImageDimIntrinsicInfo *Intr,
5336                                      SelectionDAG &DAG) const {
5337   SDLoc DL(Op);
5338   MachineFunction &MF = DAG.getMachineFunction();
5339   const GCNSubtarget* ST = &MF.getSubtarget<GCNSubtarget>();
5340   const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
5341       AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode);
5342   const AMDGPU::MIMGDimInfo *DimInfo = AMDGPU::getMIMGDimInfo(Intr->Dim);
5343   const AMDGPU::MIMGLZMappingInfo *LZMappingInfo =
5344       AMDGPU::getMIMGLZMappingInfo(Intr->BaseOpcode);
5345   const AMDGPU::MIMGMIPMappingInfo *MIPMappingInfo =
5346       AMDGPU::getMIMGMIPMappingInfo(Intr->BaseOpcode);
5347   unsigned IntrOpcode = Intr->BaseOpcode;
5348   bool IsGFX10 = Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10;
5349 
5350   SmallVector<EVT, 3> ResultTypes(Op->value_begin(), Op->value_end());
5351   SmallVector<EVT, 3> OrigResultTypes(Op->value_begin(), Op->value_end());
5352   bool IsD16 = false;
5353   bool IsA16 = false;
5354   SDValue VData;
5355   int NumVDataDwords;
5356   bool AdjustRetType = false;
5357 
5358   unsigned AddrIdx; // Index of first address argument
5359   unsigned DMask;
5360   unsigned DMaskLanes = 0;
5361 
5362   if (BaseOpcode->Atomic) {
5363     VData = Op.getOperand(2);
5364 
5365     bool Is64Bit = VData.getValueType() == MVT::i64;
5366     if (BaseOpcode->AtomicX2) {
5367       SDValue VData2 = Op.getOperand(3);
5368       VData = DAG.getBuildVector(Is64Bit ? MVT::v2i64 : MVT::v2i32, DL,
5369                                  {VData, VData2});
5370       if (Is64Bit)
5371         VData = DAG.getBitcast(MVT::v4i32, VData);
5372 
5373       ResultTypes[0] = Is64Bit ? MVT::v2i64 : MVT::v2i32;
5374       DMask = Is64Bit ? 0xf : 0x3;
5375       NumVDataDwords = Is64Bit ? 4 : 2;
5376       AddrIdx = 4;
5377     } else {
5378       DMask = Is64Bit ? 0x3 : 0x1;
5379       NumVDataDwords = Is64Bit ? 2 : 1;
5380       AddrIdx = 3;
5381     }
5382   } else {
5383     unsigned DMaskIdx = BaseOpcode->Store ? 3 : isa<MemSDNode>(Op) ? 2 : 1;
5384     auto DMaskConst = cast<ConstantSDNode>(Op.getOperand(DMaskIdx));
5385     DMask = DMaskConst->getZExtValue();
5386     DMaskLanes = BaseOpcode->Gather4 ? 4 : countPopulation(DMask);
5387 
5388     if (BaseOpcode->Store) {
5389       VData = Op.getOperand(2);
5390 
5391       MVT StoreVT = VData.getSimpleValueType();
5392       if (StoreVT.getScalarType() == MVT::f16) {
5393         if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16)
5394           return Op; // D16 is unsupported for this instruction
5395 
5396         IsD16 = true;
5397         VData = handleD16VData(VData, DAG);
5398       }
5399 
5400       NumVDataDwords = (VData.getValueType().getSizeInBits() + 31) / 32;
5401     } else {
5402       // Work out the num dwords based on the dmask popcount and underlying type
5403       // and whether packing is supported.
5404       MVT LoadVT = ResultTypes[0].getSimpleVT();
5405       if (LoadVT.getScalarType() == MVT::f16) {
5406         if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16)
5407           return Op; // D16 is unsupported for this instruction
5408 
5409         IsD16 = true;
5410       }
5411 
5412       // Confirm that the return type is large enough for the dmask specified
5413       if ((LoadVT.isVector() && LoadVT.getVectorNumElements() < DMaskLanes) ||
5414           (!LoadVT.isVector() && DMaskLanes > 1))
5415           return Op;
5416 
5417       if (IsD16 && !Subtarget->hasUnpackedD16VMem())
5418         NumVDataDwords = (DMaskLanes + 1) / 2;
5419       else
5420         NumVDataDwords = DMaskLanes;
5421 
5422       AdjustRetType = true;
5423     }
5424 
5425     AddrIdx = DMaskIdx + 1;
5426   }
5427 
5428   unsigned NumGradients = BaseOpcode->Gradients ? DimInfo->NumGradients : 0;
5429   unsigned NumCoords = BaseOpcode->Coordinates ? DimInfo->NumCoords : 0;
5430   unsigned NumLCM = BaseOpcode->LodOrClampOrMip ? 1 : 0;
5431   unsigned NumVAddrs = BaseOpcode->NumExtraArgs + NumGradients +
5432                        NumCoords + NumLCM;
5433   unsigned NumMIVAddrs = NumVAddrs;
5434 
5435   SmallVector<SDValue, 4> VAddrs;
5436 
5437   // Optimize _L to _LZ when _L is zero
5438   if (LZMappingInfo) {
5439     if (auto ConstantLod =
5440          dyn_cast<ConstantFPSDNode>(Op.getOperand(AddrIdx+NumVAddrs-1))) {
5441       if (ConstantLod->isZero() || ConstantLod->isNegative()) {
5442         IntrOpcode = LZMappingInfo->LZ;  // set new opcode to _lz variant of _l
5443         NumMIVAddrs--;               // remove 'lod'
5444       }
5445     }
5446   }
5447 
5448   // Optimize _mip away, when 'lod' is zero
5449   if (MIPMappingInfo) {
5450     if (auto ConstantLod =
5451          dyn_cast<ConstantSDNode>(Op.getOperand(AddrIdx+NumVAddrs-1))) {
5452       if (ConstantLod->isNullValue()) {
5453         IntrOpcode = MIPMappingInfo->NONMIP;  // set new opcode to variant without _mip
5454         NumMIVAddrs--;               // remove 'lod'
5455       }
5456     }
5457   }
5458 
5459   // Check for 16 bit addresses and pack if true.
5460   unsigned DimIdx = AddrIdx + BaseOpcode->NumExtraArgs;
5461   MVT VAddrVT = Op.getOperand(DimIdx).getSimpleValueType();
5462   const MVT VAddrScalarVT = VAddrVT.getScalarType();
5463   if (((VAddrScalarVT == MVT::f16) || (VAddrScalarVT == MVT::i16)) &&
5464       ST->hasFeature(AMDGPU::FeatureR128A16)) {
5465     IsA16 = true;
5466     const MVT VectorVT = VAddrScalarVT == MVT::f16 ? MVT::v2f16 : MVT::v2i16;
5467     for (unsigned i = AddrIdx; i < (AddrIdx + NumMIVAddrs); ++i) {
5468       SDValue AddrLo, AddrHi;
5469       // Push back extra arguments.
5470       if (i < DimIdx) {
5471         AddrLo = Op.getOperand(i);
5472       } else {
5473         AddrLo = Op.getOperand(i);
5474         // Dz/dh, dz/dv and the last odd coord are packed with undef. Also,
5475         // in 1D, derivatives dx/dh and dx/dv are packed with undef.
5476         if (((i + 1) >= (AddrIdx + NumMIVAddrs)) ||
5477             ((NumGradients / 2) % 2 == 1 &&
5478             (i == DimIdx + (NumGradients / 2) - 1 ||
5479              i == DimIdx + NumGradients - 1))) {
5480           AddrHi = DAG.getUNDEF(MVT::f16);
5481         } else {
5482           AddrHi = Op.getOperand(i + 1);
5483           i++;
5484         }
5485         AddrLo = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VectorVT,
5486                              {AddrLo, AddrHi});
5487         AddrLo = DAG.getBitcast(MVT::i32, AddrLo);
5488       }
5489       VAddrs.push_back(AddrLo);
5490     }
5491   } else {
5492     for (unsigned i = 0; i < NumMIVAddrs; ++i)
5493       VAddrs.push_back(Op.getOperand(AddrIdx + i));
5494   }
5495 
5496   // If the register allocator cannot place the address registers contiguously
5497   // without introducing moves, then using the non-sequential address encoding
5498   // is always preferable, since it saves VALU instructions and is usually a
5499   // wash in terms of code size or even better.
5500   //
5501   // However, we currently have no way of hinting to the register allocator that
5502   // MIMG addresses should be placed contiguously when it is possible to do so,
5503   // so force non-NSA for the common 2-address case as a heuristic.
5504   //
5505   // SIShrinkInstructions will convert NSA encodings to non-NSA after register
5506   // allocation when possible.
5507   bool UseNSA =
5508       ST->hasFeature(AMDGPU::FeatureNSAEncoding) && VAddrs.size() >= 3;
5509   SDValue VAddr;
5510   if (!UseNSA)
5511     VAddr = getBuildDwordsVector(DAG, DL, VAddrs);
5512 
5513   SDValue True = DAG.getTargetConstant(1, DL, MVT::i1);
5514   SDValue False = DAG.getTargetConstant(0, DL, MVT::i1);
5515   unsigned CtrlIdx; // Index of texfailctrl argument
5516   SDValue Unorm;
5517   if (!BaseOpcode->Sampler) {
5518     Unorm = True;
5519     CtrlIdx = AddrIdx + NumVAddrs + 1;
5520   } else {
5521     auto UnormConst =
5522         cast<ConstantSDNode>(Op.getOperand(AddrIdx + NumVAddrs + 2));
5523 
5524     Unorm = UnormConst->getZExtValue() ? True : False;
5525     CtrlIdx = AddrIdx + NumVAddrs + 3;
5526   }
5527 
5528   SDValue TFE;
5529   SDValue LWE;
5530   SDValue TexFail = Op.getOperand(CtrlIdx);
5531   bool IsTexFail = false;
5532   if (!parseTexFail(TexFail, DAG, &TFE, &LWE, IsTexFail))
5533     return Op;
5534 
5535   if (IsTexFail) {
5536     if (!DMaskLanes) {
5537       // Expecting to get an error flag since TFC is on - and dmask is 0
5538       // Force dmask to be at least 1 otherwise the instruction will fail
5539       DMask = 0x1;
5540       DMaskLanes = 1;
5541       NumVDataDwords = 1;
5542     }
5543     NumVDataDwords += 1;
5544     AdjustRetType = true;
5545   }
5546 
5547   // Has something earlier tagged that the return type needs adjusting
5548   // This happens if the instruction is a load or has set TexFailCtrl flags
5549   if (AdjustRetType) {
5550     // NumVDataDwords reflects the true number of dwords required in the return type
5551     if (DMaskLanes == 0 && !BaseOpcode->Store) {
5552       // This is a no-op load. This can be eliminated
5553       SDValue Undef = DAG.getUNDEF(Op.getValueType());
5554       if (isa<MemSDNode>(Op))
5555         return DAG.getMergeValues({Undef, Op.getOperand(0)}, DL);
5556       return Undef;
5557     }
5558 
5559     EVT NewVT = NumVDataDwords > 1 ?
5560                   EVT::getVectorVT(*DAG.getContext(), MVT::f32, NumVDataDwords)
5561                 : MVT::f32;
5562 
5563     ResultTypes[0] = NewVT;
5564     if (ResultTypes.size() == 3) {
5565       // Original result was aggregate type used for TexFailCtrl results
5566       // The actual instruction returns as a vector type which has now been
5567       // created. Remove the aggregate result.
5568       ResultTypes.erase(&ResultTypes[1]);
5569     }
5570   }
5571 
5572   SDValue GLC;
5573   SDValue SLC;
5574   SDValue DLC;
5575   if (BaseOpcode->Atomic) {
5576     GLC = True; // TODO no-return optimization
5577     if (!parseCachePolicy(Op.getOperand(CtrlIdx + 1), DAG, nullptr, &SLC,
5578                           IsGFX10 ? &DLC : nullptr))
5579       return Op;
5580   } else {
5581     if (!parseCachePolicy(Op.getOperand(CtrlIdx + 1), DAG, &GLC, &SLC,
5582                           IsGFX10 ? &DLC : nullptr))
5583       return Op;
5584   }
5585 
5586   SmallVector<SDValue, 26> Ops;
5587   if (BaseOpcode->Store || BaseOpcode->Atomic)
5588     Ops.push_back(VData); // vdata
5589   if (UseNSA) {
5590     for (const SDValue &Addr : VAddrs)
5591       Ops.push_back(Addr);
5592   } else {
5593     Ops.push_back(VAddr);
5594   }
5595   Ops.push_back(Op.getOperand(AddrIdx + NumVAddrs)); // rsrc
5596   if (BaseOpcode->Sampler)
5597     Ops.push_back(Op.getOperand(AddrIdx + NumVAddrs + 1)); // sampler
5598   Ops.push_back(DAG.getTargetConstant(DMask, DL, MVT::i32));
5599   if (IsGFX10)
5600     Ops.push_back(DAG.getTargetConstant(DimInfo->Encoding, DL, MVT::i32));
5601   Ops.push_back(Unorm);
5602   if (IsGFX10)
5603     Ops.push_back(DLC);
5604   Ops.push_back(GLC);
5605   Ops.push_back(SLC);
5606   Ops.push_back(IsA16 &&  // a16 or r128
5607                 ST->hasFeature(AMDGPU::FeatureR128A16) ? True : False);
5608   Ops.push_back(TFE); // tfe
5609   Ops.push_back(LWE); // lwe
5610   if (!IsGFX10)
5611     Ops.push_back(DimInfo->DA ? True : False);
5612   if (BaseOpcode->HasD16)
5613     Ops.push_back(IsD16 ? True : False);
5614   if (isa<MemSDNode>(Op))
5615     Ops.push_back(Op.getOperand(0)); // chain
5616 
5617   int NumVAddrDwords =
5618       UseNSA ? VAddrs.size() : VAddr.getValueType().getSizeInBits() / 32;
5619   int Opcode = -1;
5620 
5621   if (IsGFX10) {
5622     Opcode = AMDGPU::getMIMGOpcode(IntrOpcode,
5623                                    UseNSA ? AMDGPU::MIMGEncGfx10NSA
5624                                           : AMDGPU::MIMGEncGfx10Default,
5625                                    NumVDataDwords, NumVAddrDwords);
5626   } else {
5627     if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
5628       Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx8,
5629                                      NumVDataDwords, NumVAddrDwords);
5630     if (Opcode == -1)
5631       Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx6,
5632                                      NumVDataDwords, NumVAddrDwords);
5633   }
5634   assert(Opcode != -1);
5635 
5636   MachineSDNode *NewNode = DAG.getMachineNode(Opcode, DL, ResultTypes, Ops);
5637   if (auto MemOp = dyn_cast<MemSDNode>(Op)) {
5638     MachineMemOperand *MemRef = MemOp->getMemOperand();
5639     DAG.setNodeMemRefs(NewNode, {MemRef});
5640   }
5641 
5642   if (BaseOpcode->AtomicX2) {
5643     SmallVector<SDValue, 1> Elt;
5644     DAG.ExtractVectorElements(SDValue(NewNode, 0), Elt, 0, 1);
5645     return DAG.getMergeValues({Elt[0], SDValue(NewNode, 1)}, DL);
5646   } else if (!BaseOpcode->Store) {
5647     return constructRetValue(DAG, NewNode,
5648                              OrigResultTypes, IsTexFail,
5649                              Subtarget->hasUnpackedD16VMem(), IsD16,
5650                              DMaskLanes, NumVDataDwords, DL,
5651                              *DAG.getContext());
5652   }
5653 
5654   return SDValue(NewNode, 0);
5655 }
5656 
5657 SDValue SITargetLowering::lowerSBuffer(EVT VT, SDLoc DL, SDValue Rsrc,
5658                                        SDValue Offset, SDValue GLC, SDValue DLC,
5659                                        SelectionDAG &DAG) const {
5660   MachineFunction &MF = DAG.getMachineFunction();
5661 
5662   const DataLayout &DataLayout = DAG.getDataLayout();
5663   unsigned Align =
5664       DataLayout.getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
5665 
5666   MachineMemOperand *MMO = MF.getMachineMemOperand(
5667       MachinePointerInfo(),
5668       MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
5669           MachineMemOperand::MOInvariant,
5670       VT.getStoreSize(), Align);
5671 
5672   if (!Offset->isDivergent()) {
5673     SDValue Ops[] = {
5674         Rsrc,
5675         Offset, // Offset
5676         GLC,
5677         DLC,
5678     };
5679 
5680     // Widen vec3 load to vec4.
5681     if (VT.isVector() && VT.getVectorNumElements() == 3) {
5682       EVT WidenedVT =
5683           EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4);
5684       auto WidenedOp = DAG.getMemIntrinsicNode(
5685           AMDGPUISD::SBUFFER_LOAD, DL, DAG.getVTList(WidenedVT), Ops, WidenedVT,
5686           MF.getMachineMemOperand(MMO, 0, WidenedVT.getStoreSize()));
5687       auto Subvector = DAG.getNode(
5688           ISD::EXTRACT_SUBVECTOR, DL, VT, WidenedOp,
5689           DAG.getConstant(0, DL, getVectorIdxTy(DAG.getDataLayout())));
5690       return Subvector;
5691     }
5692 
5693     return DAG.getMemIntrinsicNode(AMDGPUISD::SBUFFER_LOAD, DL,
5694                                    DAG.getVTList(VT), Ops, VT, MMO);
5695   }
5696 
5697   // We have a divergent offset. Emit a MUBUF buffer load instead. We can
5698   // assume that the buffer is unswizzled.
5699   SmallVector<SDValue, 4> Loads;
5700   unsigned NumLoads = 1;
5701   MVT LoadVT = VT.getSimpleVT();
5702   unsigned NumElts = LoadVT.isVector() ? LoadVT.getVectorNumElements() : 1;
5703   assert((LoadVT.getScalarType() == MVT::i32 ||
5704           LoadVT.getScalarType() == MVT::f32));
5705 
5706   if (NumElts == 8 || NumElts == 16) {
5707     NumLoads = NumElts / 4;
5708     LoadVT = MVT::v4i32;
5709   }
5710 
5711   SDVTList VTList = DAG.getVTList({LoadVT, MVT::Glue});
5712   unsigned CachePolicy = cast<ConstantSDNode>(GLC)->getZExtValue();
5713   SDValue Ops[] = {
5714       DAG.getEntryNode(),                               // Chain
5715       Rsrc,                                             // rsrc
5716       DAG.getConstant(0, DL, MVT::i32),                 // vindex
5717       {},                                               // voffset
5718       {},                                               // soffset
5719       {},                                               // offset
5720       DAG.getTargetConstant(CachePolicy, DL, MVT::i32), // cachepolicy
5721       DAG.getTargetConstant(0, DL, MVT::i1),            // idxen
5722   };
5723 
5724   // Use the alignment to ensure that the required offsets will fit into the
5725   // immediate offsets.
5726   setBufferOffsets(Offset, DAG, &Ops[3], NumLoads > 1 ? 16 * NumLoads : 4);
5727 
5728   uint64_t InstOffset = cast<ConstantSDNode>(Ops[5])->getZExtValue();
5729   for (unsigned i = 0; i < NumLoads; ++i) {
5730     Ops[5] = DAG.getTargetConstant(InstOffset + 16 * i, DL, MVT::i32);
5731     Loads.push_back(getMemIntrinsicNode(AMDGPUISD::BUFFER_LOAD, DL, VTList, Ops,
5732                                         LoadVT, MMO, DAG));
5733   }
5734 
5735   if (VT == MVT::v8i32 || VT == MVT::v16i32)
5736     return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Loads);
5737 
5738   return Loads[0];
5739 }
5740 
5741 SDValue SITargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
5742                                                   SelectionDAG &DAG) const {
5743   MachineFunction &MF = DAG.getMachineFunction();
5744   auto MFI = MF.getInfo<SIMachineFunctionInfo>();
5745 
5746   EVT VT = Op.getValueType();
5747   SDLoc DL(Op);
5748   unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5749 
5750   // TODO: Should this propagate fast-math-flags?
5751 
5752   switch (IntrinsicID) {
5753   case Intrinsic::amdgcn_implicit_buffer_ptr: {
5754     if (getSubtarget()->isAmdHsaOrMesa(MF.getFunction()))
5755       return emitNonHSAIntrinsicError(DAG, DL, VT);
5756     return getPreloadedValue(DAG, *MFI, VT,
5757                              AMDGPUFunctionArgInfo::IMPLICIT_BUFFER_PTR);
5758   }
5759   case Intrinsic::amdgcn_dispatch_ptr:
5760   case Intrinsic::amdgcn_queue_ptr: {
5761     if (!Subtarget->isAmdHsaOrMesa(MF.getFunction())) {
5762       DiagnosticInfoUnsupported BadIntrin(
5763           MF.getFunction(), "unsupported hsa intrinsic without hsa target",
5764           DL.getDebugLoc());
5765       DAG.getContext()->diagnose(BadIntrin);
5766       return DAG.getUNDEF(VT);
5767     }
5768 
5769     auto RegID = IntrinsicID == Intrinsic::amdgcn_dispatch_ptr ?
5770       AMDGPUFunctionArgInfo::DISPATCH_PTR : AMDGPUFunctionArgInfo::QUEUE_PTR;
5771     return getPreloadedValue(DAG, *MFI, VT, RegID);
5772   }
5773   case Intrinsic::amdgcn_implicitarg_ptr: {
5774     if (MFI->isEntryFunction())
5775       return getImplicitArgPtr(DAG, DL);
5776     return getPreloadedValue(DAG, *MFI, VT,
5777                              AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR);
5778   }
5779   case Intrinsic::amdgcn_kernarg_segment_ptr: {
5780     return getPreloadedValue(DAG, *MFI, VT,
5781                              AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
5782   }
5783   case Intrinsic::amdgcn_dispatch_id: {
5784     return getPreloadedValue(DAG, *MFI, VT, AMDGPUFunctionArgInfo::DISPATCH_ID);
5785   }
5786   case Intrinsic::amdgcn_rcp:
5787     return DAG.getNode(AMDGPUISD::RCP, DL, VT, Op.getOperand(1));
5788   case Intrinsic::amdgcn_rsq:
5789     return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
5790   case Intrinsic::amdgcn_rsq_legacy:
5791     if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
5792       return emitRemovedIntrinsicError(DAG, DL, VT);
5793 
5794     return DAG.getNode(AMDGPUISD::RSQ_LEGACY, DL, VT, Op.getOperand(1));
5795   case Intrinsic::amdgcn_rcp_legacy:
5796     if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
5797       return emitRemovedIntrinsicError(DAG, DL, VT);
5798     return DAG.getNode(AMDGPUISD::RCP_LEGACY, DL, VT, Op.getOperand(1));
5799   case Intrinsic::amdgcn_rsq_clamp: {
5800     if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS)
5801       return DAG.getNode(AMDGPUISD::RSQ_CLAMP, DL, VT, Op.getOperand(1));
5802 
5803     Type *Type = VT.getTypeForEVT(*DAG.getContext());
5804     APFloat Max = APFloat::getLargest(Type->getFltSemantics());
5805     APFloat Min = APFloat::getLargest(Type->getFltSemantics(), true);
5806 
5807     SDValue Rsq = DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
5808     SDValue Tmp = DAG.getNode(ISD::FMINNUM, DL, VT, Rsq,
5809                               DAG.getConstantFP(Max, DL, VT));
5810     return DAG.getNode(ISD::FMAXNUM, DL, VT, Tmp,
5811                        DAG.getConstantFP(Min, DL, VT));
5812   }
5813   case Intrinsic::r600_read_ngroups_x:
5814     if (Subtarget->isAmdHsaOS())
5815       return emitNonHSAIntrinsicError(DAG, DL, VT);
5816 
5817     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
5818                                     SI::KernelInputOffsets::NGROUPS_X, 4, false);
5819   case Intrinsic::r600_read_ngroups_y:
5820     if (Subtarget->isAmdHsaOS())
5821       return emitNonHSAIntrinsicError(DAG, DL, VT);
5822 
5823     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
5824                                     SI::KernelInputOffsets::NGROUPS_Y, 4, false);
5825   case Intrinsic::r600_read_ngroups_z:
5826     if (Subtarget->isAmdHsaOS())
5827       return emitNonHSAIntrinsicError(DAG, DL, VT);
5828 
5829     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
5830                                     SI::KernelInputOffsets::NGROUPS_Z, 4, false);
5831   case Intrinsic::r600_read_global_size_x:
5832     if (Subtarget->isAmdHsaOS())
5833       return emitNonHSAIntrinsicError(DAG, DL, VT);
5834 
5835     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
5836                                     SI::KernelInputOffsets::GLOBAL_SIZE_X, 4, false);
5837   case Intrinsic::r600_read_global_size_y:
5838     if (Subtarget->isAmdHsaOS())
5839       return emitNonHSAIntrinsicError(DAG, DL, VT);
5840 
5841     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
5842                                     SI::KernelInputOffsets::GLOBAL_SIZE_Y, 4, false);
5843   case Intrinsic::r600_read_global_size_z:
5844     if (Subtarget->isAmdHsaOS())
5845       return emitNonHSAIntrinsicError(DAG, DL, VT);
5846 
5847     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
5848                                     SI::KernelInputOffsets::GLOBAL_SIZE_Z, 4, false);
5849   case Intrinsic::r600_read_local_size_x:
5850     if (Subtarget->isAmdHsaOS())
5851       return emitNonHSAIntrinsicError(DAG, DL, VT);
5852 
5853     return lowerImplicitZextParam(DAG, Op, MVT::i16,
5854                                   SI::KernelInputOffsets::LOCAL_SIZE_X);
5855   case Intrinsic::r600_read_local_size_y:
5856     if (Subtarget->isAmdHsaOS())
5857       return emitNonHSAIntrinsicError(DAG, DL, VT);
5858 
5859     return lowerImplicitZextParam(DAG, Op, MVT::i16,
5860                                   SI::KernelInputOffsets::LOCAL_SIZE_Y);
5861   case Intrinsic::r600_read_local_size_z:
5862     if (Subtarget->isAmdHsaOS())
5863       return emitNonHSAIntrinsicError(DAG, DL, VT);
5864 
5865     return lowerImplicitZextParam(DAG, Op, MVT::i16,
5866                                   SI::KernelInputOffsets::LOCAL_SIZE_Z);
5867   case Intrinsic::amdgcn_workgroup_id_x:
5868   case Intrinsic::r600_read_tgid_x:
5869     return getPreloadedValue(DAG, *MFI, VT,
5870                              AMDGPUFunctionArgInfo::WORKGROUP_ID_X);
5871   case Intrinsic::amdgcn_workgroup_id_y:
5872   case Intrinsic::r600_read_tgid_y:
5873     return getPreloadedValue(DAG, *MFI, VT,
5874                              AMDGPUFunctionArgInfo::WORKGROUP_ID_Y);
5875   case Intrinsic::amdgcn_workgroup_id_z:
5876   case Intrinsic::r600_read_tgid_z:
5877     return getPreloadedValue(DAG, *MFI, VT,
5878                              AMDGPUFunctionArgInfo::WORKGROUP_ID_Z);
5879   case Intrinsic::amdgcn_workitem_id_x:
5880   case Intrinsic::r600_read_tidig_x:
5881     return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
5882                           SDLoc(DAG.getEntryNode()),
5883                           MFI->getArgInfo().WorkItemIDX);
5884   case Intrinsic::amdgcn_workitem_id_y:
5885   case Intrinsic::r600_read_tidig_y:
5886     return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
5887                           SDLoc(DAG.getEntryNode()),
5888                           MFI->getArgInfo().WorkItemIDY);
5889   case Intrinsic::amdgcn_workitem_id_z:
5890   case Intrinsic::r600_read_tidig_z:
5891     return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
5892                           SDLoc(DAG.getEntryNode()),
5893                           MFI->getArgInfo().WorkItemIDZ);
5894   case Intrinsic::amdgcn_wavefrontsize:
5895     return DAG.getConstant(MF.getSubtarget<GCNSubtarget>().getWavefrontSize(),
5896                            SDLoc(Op), MVT::i32);
5897   case Intrinsic::amdgcn_s_buffer_load: {
5898     bool IsGFX10 = Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10;
5899     SDValue GLC;
5900     SDValue DLC = DAG.getTargetConstant(0, DL, MVT::i1);
5901     if (!parseCachePolicy(Op.getOperand(3), DAG, &GLC, nullptr,
5902                           IsGFX10 ? &DLC : nullptr))
5903       return Op;
5904     return lowerSBuffer(VT, DL, Op.getOperand(1), Op.getOperand(2), GLC, DLC,
5905                         DAG);
5906   }
5907   case Intrinsic::amdgcn_fdiv_fast:
5908     return lowerFDIV_FAST(Op, DAG);
5909   case Intrinsic::amdgcn_interp_p1_f16: {
5910     SDValue ToM0 = DAG.getCopyToReg(DAG.getEntryNode(), DL, AMDGPU::M0,
5911                                     Op.getOperand(5), SDValue());
5912     if (getSubtarget()->getLDSBankCount() == 16) {
5913       // 16 bank LDS
5914 
5915       // FIXME: This implicitly will insert a second CopyToReg to M0.
5916       SDValue S = DAG.getNode(
5917         ISD::INTRINSIC_WO_CHAIN, DL, MVT::f32,
5918         DAG.getTargetConstant(Intrinsic::amdgcn_interp_mov, DL, MVT::i32),
5919         DAG.getConstant(2, DL, MVT::i32), // P0
5920         Op.getOperand(2),  // Attrchan
5921         Op.getOperand(3),  // Attr
5922         Op.getOperand(5)); // m0
5923 
5924       SDValue Ops[] = {
5925         Op.getOperand(1), // Src0
5926         Op.getOperand(2), // Attrchan
5927         Op.getOperand(3), // Attr
5928         DAG.getTargetConstant(0, DL, MVT::i32), // $src0_modifiers
5929         S, // Src2 - holds two f16 values selected by high
5930         DAG.getTargetConstant(0, DL, MVT::i32), // $src2_modifiers
5931         Op.getOperand(4), // high
5932         DAG.getTargetConstant(0, DL, MVT::i1), // $clamp
5933         DAG.getTargetConstant(0, DL, MVT::i32) // $omod
5934       };
5935       return DAG.getNode(AMDGPUISD::INTERP_P1LV_F16, DL, MVT::f32, Ops);
5936     } else {
5937       // 32 bank LDS
5938       SDValue Ops[] = {
5939         Op.getOperand(1), // Src0
5940         Op.getOperand(2), // Attrchan
5941         Op.getOperand(3), // Attr
5942         DAG.getTargetConstant(0, DL, MVT::i32), // $src0_modifiers
5943         Op.getOperand(4), // high
5944         DAG.getTargetConstant(0, DL, MVT::i1), // $clamp
5945         DAG.getTargetConstant(0, DL, MVT::i32), // $omod
5946         ToM0.getValue(1)
5947       };
5948       return DAG.getNode(AMDGPUISD::INTERP_P1LL_F16, DL, MVT::f32, Ops);
5949     }
5950   }
5951   case Intrinsic::amdgcn_sin:
5952     return DAG.getNode(AMDGPUISD::SIN_HW, DL, VT, Op.getOperand(1));
5953 
5954   case Intrinsic::amdgcn_cos:
5955     return DAG.getNode(AMDGPUISD::COS_HW, DL, VT, Op.getOperand(1));
5956 
5957   case Intrinsic::amdgcn_mul_u24:
5958     return DAG.getNode(AMDGPUISD::MUL_U24, DL, VT, Op.getOperand(1), Op.getOperand(2));
5959   case Intrinsic::amdgcn_mul_i24:
5960     return DAG.getNode(AMDGPUISD::MUL_I24, DL, VT, Op.getOperand(1), Op.getOperand(2));
5961 
5962   case Intrinsic::amdgcn_log_clamp: {
5963     if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS)
5964       return SDValue();
5965 
5966     DiagnosticInfoUnsupported BadIntrin(
5967       MF.getFunction(), "intrinsic not supported on subtarget",
5968       DL.getDebugLoc());
5969       DAG.getContext()->diagnose(BadIntrin);
5970       return DAG.getUNDEF(VT);
5971   }
5972   case Intrinsic::amdgcn_ldexp:
5973     return DAG.getNode(AMDGPUISD::LDEXP, DL, VT,
5974                        Op.getOperand(1), Op.getOperand(2));
5975 
5976   case Intrinsic::amdgcn_fract:
5977     return DAG.getNode(AMDGPUISD::FRACT, DL, VT, Op.getOperand(1));
5978 
5979   case Intrinsic::amdgcn_class:
5980     return DAG.getNode(AMDGPUISD::FP_CLASS, DL, VT,
5981                        Op.getOperand(1), Op.getOperand(2));
5982   case Intrinsic::amdgcn_div_fmas:
5983     return DAG.getNode(AMDGPUISD::DIV_FMAS, DL, VT,
5984                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
5985                        Op.getOperand(4));
5986 
5987   case Intrinsic::amdgcn_div_fixup:
5988     return DAG.getNode(AMDGPUISD::DIV_FIXUP, DL, VT,
5989                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
5990 
5991   case Intrinsic::amdgcn_trig_preop:
5992     return DAG.getNode(AMDGPUISD::TRIG_PREOP, DL, VT,
5993                        Op.getOperand(1), Op.getOperand(2));
5994   case Intrinsic::amdgcn_div_scale: {
5995     const ConstantSDNode *Param = cast<ConstantSDNode>(Op.getOperand(3));
5996 
5997     // Translate to the operands expected by the machine instruction. The
5998     // first parameter must be the same as the first instruction.
5999     SDValue Numerator = Op.getOperand(1);
6000     SDValue Denominator = Op.getOperand(2);
6001 
6002     // Note this order is opposite of the machine instruction's operations,
6003     // which is s0.f = Quotient, s1.f = Denominator, s2.f = Numerator. The
6004     // intrinsic has the numerator as the first operand to match a normal
6005     // division operation.
6006 
6007     SDValue Src0 = Param->isAllOnesValue() ? Numerator : Denominator;
6008 
6009     return DAG.getNode(AMDGPUISD::DIV_SCALE, DL, Op->getVTList(), Src0,
6010                        Denominator, Numerator);
6011   }
6012   case Intrinsic::amdgcn_icmp: {
6013     // There is a Pat that handles this variant, so return it as-is.
6014     if (Op.getOperand(1).getValueType() == MVT::i1 &&
6015         Op.getConstantOperandVal(2) == 0 &&
6016         Op.getConstantOperandVal(3) == ICmpInst::Predicate::ICMP_NE)
6017       return Op;
6018     return lowerICMPIntrinsic(*this, Op.getNode(), DAG);
6019   }
6020   case Intrinsic::amdgcn_fcmp: {
6021     return lowerFCMPIntrinsic(*this, Op.getNode(), DAG);
6022   }
6023   case Intrinsic::amdgcn_fmed3:
6024     return DAG.getNode(AMDGPUISD::FMED3, DL, VT,
6025                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
6026   case Intrinsic::amdgcn_fdot2:
6027     return DAG.getNode(AMDGPUISD::FDOT2, DL, VT,
6028                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
6029                        Op.getOperand(4));
6030   case Intrinsic::amdgcn_fmul_legacy:
6031     return DAG.getNode(AMDGPUISD::FMUL_LEGACY, DL, VT,
6032                        Op.getOperand(1), Op.getOperand(2));
6033   case Intrinsic::amdgcn_sffbh:
6034     return DAG.getNode(AMDGPUISD::FFBH_I32, DL, VT, Op.getOperand(1));
6035   case Intrinsic::amdgcn_sbfe:
6036     return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT,
6037                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
6038   case Intrinsic::amdgcn_ubfe:
6039     return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT,
6040                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
6041   case Intrinsic::amdgcn_cvt_pkrtz:
6042   case Intrinsic::amdgcn_cvt_pknorm_i16:
6043   case Intrinsic::amdgcn_cvt_pknorm_u16:
6044   case Intrinsic::amdgcn_cvt_pk_i16:
6045   case Intrinsic::amdgcn_cvt_pk_u16: {
6046     // FIXME: Stop adding cast if v2f16/v2i16 are legal.
6047     EVT VT = Op.getValueType();
6048     unsigned Opcode;
6049 
6050     if (IntrinsicID == Intrinsic::amdgcn_cvt_pkrtz)
6051       Opcode = AMDGPUISD::CVT_PKRTZ_F16_F32;
6052     else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_i16)
6053       Opcode = AMDGPUISD::CVT_PKNORM_I16_F32;
6054     else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_u16)
6055       Opcode = AMDGPUISD::CVT_PKNORM_U16_F32;
6056     else if (IntrinsicID == Intrinsic::amdgcn_cvt_pk_i16)
6057       Opcode = AMDGPUISD::CVT_PK_I16_I32;
6058     else
6059       Opcode = AMDGPUISD::CVT_PK_U16_U32;
6060 
6061     if (isTypeLegal(VT))
6062       return DAG.getNode(Opcode, DL, VT, Op.getOperand(1), Op.getOperand(2));
6063 
6064     SDValue Node = DAG.getNode(Opcode, DL, MVT::i32,
6065                                Op.getOperand(1), Op.getOperand(2));
6066     return DAG.getNode(ISD::BITCAST, DL, VT, Node);
6067   }
6068   case Intrinsic::amdgcn_fmad_ftz:
6069     return DAG.getNode(AMDGPUISD::FMAD_FTZ, DL, VT, Op.getOperand(1),
6070                        Op.getOperand(2), Op.getOperand(3));
6071 
6072   case Intrinsic::amdgcn_if_break:
6073     return SDValue(DAG.getMachineNode(AMDGPU::SI_IF_BREAK, DL, VT,
6074                                       Op->getOperand(1), Op->getOperand(2)), 0);
6075 
6076   case Intrinsic::amdgcn_groupstaticsize: {
6077     Triple::OSType OS = getTargetMachine().getTargetTriple().getOS();
6078     if (OS == Triple::AMDHSA || OS == Triple::AMDPAL)
6079       return Op;
6080 
6081     const Module *M = MF.getFunction().getParent();
6082     const GlobalValue *GV =
6083         M->getNamedValue(Intrinsic::getName(Intrinsic::amdgcn_groupstaticsize));
6084     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, 0,
6085                                             SIInstrInfo::MO_ABS32_LO);
6086     return {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, GA), 0};
6087   }
6088   case Intrinsic::amdgcn_is_shared:
6089   case Intrinsic::amdgcn_is_private: {
6090     SDLoc SL(Op);
6091     unsigned AS = (IntrinsicID == Intrinsic::amdgcn_is_shared) ?
6092       AMDGPUAS::LOCAL_ADDRESS : AMDGPUAS::PRIVATE_ADDRESS;
6093     SDValue Aperture = getSegmentAperture(AS, SL, DAG);
6094     SDValue SrcVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32,
6095                                  Op.getOperand(1));
6096 
6097     SDValue SrcHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, SrcVec,
6098                                 DAG.getConstant(1, SL, MVT::i32));
6099     return DAG.getSetCC(SL, MVT::i1, SrcHi, Aperture, ISD::SETEQ);
6100   }
6101   default:
6102     if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
6103             AMDGPU::getImageDimIntrinsicInfo(IntrinsicID))
6104       return lowerImage(Op, ImageDimIntr, DAG);
6105 
6106     return Op;
6107   }
6108 }
6109 
6110 // This function computes an appropriate offset to pass to
6111 // MachineMemOperand::setOffset() based on the offset inputs to
6112 // an intrinsic.  If any of the offsets are non-contstant or
6113 // if VIndex is non-zero then this function returns 0.  Otherwise,
6114 // it returns the sum of VOffset, SOffset, and Offset.
6115 static unsigned getBufferOffsetForMMO(SDValue VOffset,
6116                                       SDValue SOffset,
6117                                       SDValue Offset,
6118                                       SDValue VIndex = SDValue()) {
6119 
6120   if (!isa<ConstantSDNode>(VOffset) || !isa<ConstantSDNode>(SOffset) ||
6121       !isa<ConstantSDNode>(Offset))
6122     return 0;
6123 
6124   if (VIndex) {
6125     if (!isa<ConstantSDNode>(VIndex) || !cast<ConstantSDNode>(VIndex)->isNullValue())
6126       return 0;
6127   }
6128 
6129   return cast<ConstantSDNode>(VOffset)->getSExtValue() +
6130          cast<ConstantSDNode>(SOffset)->getSExtValue() +
6131          cast<ConstantSDNode>(Offset)->getSExtValue();
6132 }
6133 
6134 SDValue SITargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
6135                                                  SelectionDAG &DAG) const {
6136   unsigned IntrID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6137   SDLoc DL(Op);
6138 
6139   switch (IntrID) {
6140   case Intrinsic::amdgcn_ds_ordered_add:
6141   case Intrinsic::amdgcn_ds_ordered_swap: {
6142     MemSDNode *M = cast<MemSDNode>(Op);
6143     SDValue Chain = M->getOperand(0);
6144     SDValue M0 = M->getOperand(2);
6145     SDValue Value = M->getOperand(3);
6146     unsigned IndexOperand = M->getConstantOperandVal(7);
6147     unsigned WaveRelease = M->getConstantOperandVal(8);
6148     unsigned WaveDone = M->getConstantOperandVal(9);
6149     unsigned ShaderType;
6150     unsigned Instruction;
6151 
6152     unsigned OrderedCountIndex = IndexOperand & 0x3f;
6153     IndexOperand &= ~0x3f;
6154     unsigned CountDw = 0;
6155 
6156     if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10) {
6157       CountDw = (IndexOperand >> 24) & 0xf;
6158       IndexOperand &= ~(0xf << 24);
6159 
6160       if (CountDw < 1 || CountDw > 4) {
6161         report_fatal_error(
6162             "ds_ordered_count: dword count must be between 1 and 4");
6163       }
6164     }
6165 
6166     if (IndexOperand)
6167       report_fatal_error("ds_ordered_count: bad index operand");
6168 
6169     switch (IntrID) {
6170     case Intrinsic::amdgcn_ds_ordered_add:
6171       Instruction = 0;
6172       break;
6173     case Intrinsic::amdgcn_ds_ordered_swap:
6174       Instruction = 1;
6175       break;
6176     }
6177 
6178     if (WaveDone && !WaveRelease)
6179       report_fatal_error("ds_ordered_count: wave_done requires wave_release");
6180 
6181     switch (DAG.getMachineFunction().getFunction().getCallingConv()) {
6182     case CallingConv::AMDGPU_CS:
6183     case CallingConv::AMDGPU_KERNEL:
6184       ShaderType = 0;
6185       break;
6186     case CallingConv::AMDGPU_PS:
6187       ShaderType = 1;
6188       break;
6189     case CallingConv::AMDGPU_VS:
6190       ShaderType = 2;
6191       break;
6192     case CallingConv::AMDGPU_GS:
6193       ShaderType = 3;
6194       break;
6195     default:
6196       report_fatal_error("ds_ordered_count unsupported for this calling conv");
6197     }
6198 
6199     unsigned Offset0 = OrderedCountIndex << 2;
6200     unsigned Offset1 = WaveRelease | (WaveDone << 1) | (ShaderType << 2) |
6201                        (Instruction << 4);
6202 
6203     if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10)
6204       Offset1 |= (CountDw - 1) << 6;
6205 
6206     unsigned Offset = Offset0 | (Offset1 << 8);
6207 
6208     SDValue Ops[] = {
6209       Chain,
6210       Value,
6211       DAG.getTargetConstant(Offset, DL, MVT::i16),
6212       copyToM0(DAG, Chain, DL, M0).getValue(1), // Glue
6213     };
6214     return DAG.getMemIntrinsicNode(AMDGPUISD::DS_ORDERED_COUNT, DL,
6215                                    M->getVTList(), Ops, M->getMemoryVT(),
6216                                    M->getMemOperand());
6217   }
6218   case Intrinsic::amdgcn_ds_fadd: {
6219     MemSDNode *M = cast<MemSDNode>(Op);
6220     unsigned Opc;
6221     switch (IntrID) {
6222     case Intrinsic::amdgcn_ds_fadd:
6223       Opc = ISD::ATOMIC_LOAD_FADD;
6224       break;
6225     }
6226 
6227     return DAG.getAtomic(Opc, SDLoc(Op), M->getMemoryVT(),
6228                          M->getOperand(0), M->getOperand(2), M->getOperand(3),
6229                          M->getMemOperand());
6230   }
6231   case Intrinsic::amdgcn_atomic_inc:
6232   case Intrinsic::amdgcn_atomic_dec:
6233   case Intrinsic::amdgcn_ds_fmin:
6234   case Intrinsic::amdgcn_ds_fmax: {
6235     MemSDNode *M = cast<MemSDNode>(Op);
6236     unsigned Opc;
6237     switch (IntrID) {
6238     case Intrinsic::amdgcn_atomic_inc:
6239       Opc = AMDGPUISD::ATOMIC_INC;
6240       break;
6241     case Intrinsic::amdgcn_atomic_dec:
6242       Opc = AMDGPUISD::ATOMIC_DEC;
6243       break;
6244     case Intrinsic::amdgcn_ds_fmin:
6245       Opc = AMDGPUISD::ATOMIC_LOAD_FMIN;
6246       break;
6247     case Intrinsic::amdgcn_ds_fmax:
6248       Opc = AMDGPUISD::ATOMIC_LOAD_FMAX;
6249       break;
6250     default:
6251       llvm_unreachable("Unknown intrinsic!");
6252     }
6253     SDValue Ops[] = {
6254       M->getOperand(0), // Chain
6255       M->getOperand(2), // Ptr
6256       M->getOperand(3)  // Value
6257     };
6258 
6259     return DAG.getMemIntrinsicNode(Opc, SDLoc(Op), M->getVTList(), Ops,
6260                                    M->getMemoryVT(), M->getMemOperand());
6261   }
6262   case Intrinsic::amdgcn_buffer_load:
6263   case Intrinsic::amdgcn_buffer_load_format: {
6264     unsigned Glc = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
6265     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue();
6266     unsigned IdxEn = 1;
6267     if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(3)))
6268       IdxEn = Idx->getZExtValue() != 0;
6269     SDValue Ops[] = {
6270       Op.getOperand(0), // Chain
6271       Op.getOperand(2), // rsrc
6272       Op.getOperand(3), // vindex
6273       SDValue(),        // voffset -- will be set by setBufferOffsets
6274       SDValue(),        // soffset -- will be set by setBufferOffsets
6275       SDValue(),        // offset -- will be set by setBufferOffsets
6276       DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
6277       DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
6278     };
6279 
6280     unsigned Offset = setBufferOffsets(Op.getOperand(4), DAG, &Ops[3]);
6281     // We don't know the offset if vindex is non-zero, so clear it.
6282     if (IdxEn)
6283       Offset = 0;
6284 
6285     unsigned Opc = (IntrID == Intrinsic::amdgcn_buffer_load) ?
6286         AMDGPUISD::BUFFER_LOAD : AMDGPUISD::BUFFER_LOAD_FORMAT;
6287 
6288     EVT VT = Op.getValueType();
6289     EVT IntVT = VT.changeTypeToInteger();
6290     auto *M = cast<MemSDNode>(Op);
6291     M->getMemOperand()->setOffset(Offset);
6292     EVT LoadVT = Op.getValueType();
6293 
6294     if (LoadVT.getScalarType() == MVT::f16)
6295       return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16,
6296                                  M, DAG, Ops);
6297 
6298     // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics
6299     if (LoadVT.getScalarType() == MVT::i8 ||
6300         LoadVT.getScalarType() == MVT::i16)
6301       return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M);
6302 
6303     return getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, IntVT,
6304                                M->getMemOperand(), DAG);
6305   }
6306   case Intrinsic::amdgcn_raw_buffer_load:
6307   case Intrinsic::amdgcn_raw_buffer_load_format: {
6308     const bool IsFormat = IntrID == Intrinsic::amdgcn_raw_buffer_load_format;
6309 
6310     auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG);
6311     SDValue Ops[] = {
6312       Op.getOperand(0), // Chain
6313       Op.getOperand(2), // rsrc
6314       DAG.getConstant(0, DL, MVT::i32), // vindex
6315       Offsets.first,    // voffset
6316       Op.getOperand(4), // soffset
6317       Offsets.second,   // offset
6318       Op.getOperand(5), // cachepolicy, swizzled buffer
6319       DAG.getTargetConstant(0, DL, MVT::i1), // idxen
6320     };
6321 
6322     auto *M = cast<MemSDNode>(Op);
6323     M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[3], Ops[4], Ops[5]));
6324     return lowerIntrinsicLoad(M, IsFormat, DAG, Ops);
6325   }
6326   case Intrinsic::amdgcn_struct_buffer_load:
6327   case Intrinsic::amdgcn_struct_buffer_load_format: {
6328     const bool IsFormat = IntrID == Intrinsic::amdgcn_struct_buffer_load_format;
6329 
6330     auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
6331     SDValue Ops[] = {
6332       Op.getOperand(0), // Chain
6333       Op.getOperand(2), // rsrc
6334       Op.getOperand(3), // vindex
6335       Offsets.first,    // voffset
6336       Op.getOperand(5), // soffset
6337       Offsets.second,   // offset
6338       Op.getOperand(6), // cachepolicy, swizzled buffer
6339       DAG.getTargetConstant(1, DL, MVT::i1), // idxen
6340     };
6341 
6342     auto *M = cast<MemSDNode>(Op);
6343     M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[3], Ops[4], Ops[5],
6344                                                         Ops[2]));
6345     return lowerIntrinsicLoad(cast<MemSDNode>(Op), IsFormat, DAG, Ops);
6346   }
6347   case Intrinsic::amdgcn_tbuffer_load: {
6348     MemSDNode *M = cast<MemSDNode>(Op);
6349     EVT LoadVT = Op.getValueType();
6350 
6351     unsigned Dfmt = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue();
6352     unsigned Nfmt = cast<ConstantSDNode>(Op.getOperand(8))->getZExtValue();
6353     unsigned Glc = cast<ConstantSDNode>(Op.getOperand(9))->getZExtValue();
6354     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(10))->getZExtValue();
6355     unsigned IdxEn = 1;
6356     if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(3)))
6357       IdxEn = Idx->getZExtValue() != 0;
6358     SDValue Ops[] = {
6359       Op.getOperand(0),  // Chain
6360       Op.getOperand(2),  // rsrc
6361       Op.getOperand(3),  // vindex
6362       Op.getOperand(4),  // voffset
6363       Op.getOperand(5),  // soffset
6364       Op.getOperand(6),  // offset
6365       DAG.getTargetConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format
6366       DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
6367       DAG.getTargetConstant(IdxEn, DL, MVT::i1) // idxen
6368     };
6369 
6370     if (LoadVT.getScalarType() == MVT::f16)
6371       return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16,
6372                                  M, DAG, Ops);
6373     return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
6374                                Op->getVTList(), Ops, LoadVT, M->getMemOperand(),
6375                                DAG);
6376   }
6377   case Intrinsic::amdgcn_raw_tbuffer_load: {
6378     MemSDNode *M = cast<MemSDNode>(Op);
6379     EVT LoadVT = Op.getValueType();
6380     auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG);
6381 
6382     SDValue Ops[] = {
6383       Op.getOperand(0),  // Chain
6384       Op.getOperand(2),  // rsrc
6385       DAG.getConstant(0, DL, MVT::i32), // vindex
6386       Offsets.first,     // voffset
6387       Op.getOperand(4),  // soffset
6388       Offsets.second,    // offset
6389       Op.getOperand(5),  // format
6390       Op.getOperand(6),  // cachepolicy, swizzled buffer
6391       DAG.getTargetConstant(0, DL, MVT::i1), // idxen
6392     };
6393 
6394     if (LoadVT.getScalarType() == MVT::f16)
6395       return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16,
6396                                  M, DAG, Ops);
6397     return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
6398                                Op->getVTList(), Ops, LoadVT, M->getMemOperand(),
6399                                DAG);
6400   }
6401   case Intrinsic::amdgcn_struct_tbuffer_load: {
6402     MemSDNode *M = cast<MemSDNode>(Op);
6403     EVT LoadVT = Op.getValueType();
6404     auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
6405 
6406     SDValue Ops[] = {
6407       Op.getOperand(0),  // Chain
6408       Op.getOperand(2),  // rsrc
6409       Op.getOperand(3),  // vindex
6410       Offsets.first,     // voffset
6411       Op.getOperand(5),  // soffset
6412       Offsets.second,    // offset
6413       Op.getOperand(6),  // format
6414       Op.getOperand(7),  // cachepolicy, swizzled buffer
6415       DAG.getTargetConstant(1, DL, MVT::i1), // idxen
6416     };
6417 
6418     if (LoadVT.getScalarType() == MVT::f16)
6419       return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16,
6420                                  M, DAG, Ops);
6421     return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
6422                                Op->getVTList(), Ops, LoadVT, M->getMemOperand(),
6423                                DAG);
6424   }
6425   case Intrinsic::amdgcn_buffer_atomic_swap:
6426   case Intrinsic::amdgcn_buffer_atomic_add:
6427   case Intrinsic::amdgcn_buffer_atomic_sub:
6428   case Intrinsic::amdgcn_buffer_atomic_smin:
6429   case Intrinsic::amdgcn_buffer_atomic_umin:
6430   case Intrinsic::amdgcn_buffer_atomic_smax:
6431   case Intrinsic::amdgcn_buffer_atomic_umax:
6432   case Intrinsic::amdgcn_buffer_atomic_and:
6433   case Intrinsic::amdgcn_buffer_atomic_or:
6434   case Intrinsic::amdgcn_buffer_atomic_xor: {
6435     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue();
6436     unsigned IdxEn = 1;
6437     if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(4)))
6438       IdxEn = Idx->getZExtValue() != 0;
6439     SDValue Ops[] = {
6440       Op.getOperand(0), // Chain
6441       Op.getOperand(2), // vdata
6442       Op.getOperand(3), // rsrc
6443       Op.getOperand(4), // vindex
6444       SDValue(),        // voffset -- will be set by setBufferOffsets
6445       SDValue(),        // soffset -- will be set by setBufferOffsets
6446       SDValue(),        // offset -- will be set by setBufferOffsets
6447       DAG.getTargetConstant(Slc << 1, DL, MVT::i32), // cachepolicy
6448       DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
6449     };
6450     unsigned Offset = setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]);
6451     // We don't know the offset if vindex is non-zero, so clear it.
6452     if (IdxEn)
6453       Offset = 0;
6454     EVT VT = Op.getValueType();
6455 
6456     auto *M = cast<MemSDNode>(Op);
6457     M->getMemOperand()->setOffset(Offset);
6458     unsigned Opcode = 0;
6459 
6460     switch (IntrID) {
6461     case Intrinsic::amdgcn_buffer_atomic_swap:
6462       Opcode = AMDGPUISD::BUFFER_ATOMIC_SWAP;
6463       break;
6464     case Intrinsic::amdgcn_buffer_atomic_add:
6465       Opcode = AMDGPUISD::BUFFER_ATOMIC_ADD;
6466       break;
6467     case Intrinsic::amdgcn_buffer_atomic_sub:
6468       Opcode = AMDGPUISD::BUFFER_ATOMIC_SUB;
6469       break;
6470     case Intrinsic::amdgcn_buffer_atomic_smin:
6471       Opcode = AMDGPUISD::BUFFER_ATOMIC_SMIN;
6472       break;
6473     case Intrinsic::amdgcn_buffer_atomic_umin:
6474       Opcode = AMDGPUISD::BUFFER_ATOMIC_UMIN;
6475       break;
6476     case Intrinsic::amdgcn_buffer_atomic_smax:
6477       Opcode = AMDGPUISD::BUFFER_ATOMIC_SMAX;
6478       break;
6479     case Intrinsic::amdgcn_buffer_atomic_umax:
6480       Opcode = AMDGPUISD::BUFFER_ATOMIC_UMAX;
6481       break;
6482     case Intrinsic::amdgcn_buffer_atomic_and:
6483       Opcode = AMDGPUISD::BUFFER_ATOMIC_AND;
6484       break;
6485     case Intrinsic::amdgcn_buffer_atomic_or:
6486       Opcode = AMDGPUISD::BUFFER_ATOMIC_OR;
6487       break;
6488     case Intrinsic::amdgcn_buffer_atomic_xor:
6489       Opcode = AMDGPUISD::BUFFER_ATOMIC_XOR;
6490       break;
6491     default:
6492       llvm_unreachable("unhandled atomic opcode");
6493     }
6494 
6495     return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT,
6496                                    M->getMemOperand());
6497   }
6498   case Intrinsic::amdgcn_raw_buffer_atomic_swap:
6499   case Intrinsic::amdgcn_raw_buffer_atomic_add:
6500   case Intrinsic::amdgcn_raw_buffer_atomic_sub:
6501   case Intrinsic::amdgcn_raw_buffer_atomic_smin:
6502   case Intrinsic::amdgcn_raw_buffer_atomic_umin:
6503   case Intrinsic::amdgcn_raw_buffer_atomic_smax:
6504   case Intrinsic::amdgcn_raw_buffer_atomic_umax:
6505   case Intrinsic::amdgcn_raw_buffer_atomic_and:
6506   case Intrinsic::amdgcn_raw_buffer_atomic_or:
6507   case Intrinsic::amdgcn_raw_buffer_atomic_xor:
6508   case Intrinsic::amdgcn_raw_buffer_atomic_inc:
6509   case Intrinsic::amdgcn_raw_buffer_atomic_dec: {
6510     auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
6511     SDValue Ops[] = {
6512       Op.getOperand(0), // Chain
6513       Op.getOperand(2), // vdata
6514       Op.getOperand(3), // rsrc
6515       DAG.getConstant(0, DL, MVT::i32), // vindex
6516       Offsets.first,    // voffset
6517       Op.getOperand(5), // soffset
6518       Offsets.second,   // offset
6519       Op.getOperand(6), // cachepolicy
6520       DAG.getTargetConstant(0, DL, MVT::i1), // idxen
6521     };
6522     EVT VT = Op.getValueType();
6523 
6524     auto *M = cast<MemSDNode>(Op);
6525     M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[4], Ops[5], Ops[6]));
6526     unsigned Opcode = 0;
6527 
6528     switch (IntrID) {
6529     case Intrinsic::amdgcn_raw_buffer_atomic_swap:
6530       Opcode = AMDGPUISD::BUFFER_ATOMIC_SWAP;
6531       break;
6532     case Intrinsic::amdgcn_raw_buffer_atomic_add:
6533       Opcode = AMDGPUISD::BUFFER_ATOMIC_ADD;
6534       break;
6535     case Intrinsic::amdgcn_raw_buffer_atomic_sub:
6536       Opcode = AMDGPUISD::BUFFER_ATOMIC_SUB;
6537       break;
6538     case Intrinsic::amdgcn_raw_buffer_atomic_smin:
6539       Opcode = AMDGPUISD::BUFFER_ATOMIC_SMIN;
6540       break;
6541     case Intrinsic::amdgcn_raw_buffer_atomic_umin:
6542       Opcode = AMDGPUISD::BUFFER_ATOMIC_UMIN;
6543       break;
6544     case Intrinsic::amdgcn_raw_buffer_atomic_smax:
6545       Opcode = AMDGPUISD::BUFFER_ATOMIC_SMAX;
6546       break;
6547     case Intrinsic::amdgcn_raw_buffer_atomic_umax:
6548       Opcode = AMDGPUISD::BUFFER_ATOMIC_UMAX;
6549       break;
6550     case Intrinsic::amdgcn_raw_buffer_atomic_and:
6551       Opcode = AMDGPUISD::BUFFER_ATOMIC_AND;
6552       break;
6553     case Intrinsic::amdgcn_raw_buffer_atomic_or:
6554       Opcode = AMDGPUISD::BUFFER_ATOMIC_OR;
6555       break;
6556     case Intrinsic::amdgcn_raw_buffer_atomic_xor:
6557       Opcode = AMDGPUISD::BUFFER_ATOMIC_XOR;
6558       break;
6559     case Intrinsic::amdgcn_raw_buffer_atomic_inc:
6560       Opcode = AMDGPUISD::BUFFER_ATOMIC_INC;
6561       break;
6562     case Intrinsic::amdgcn_raw_buffer_atomic_dec:
6563       Opcode = AMDGPUISD::BUFFER_ATOMIC_DEC;
6564       break;
6565     default:
6566       llvm_unreachable("unhandled atomic opcode");
6567     }
6568 
6569     return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT,
6570                                    M->getMemOperand());
6571   }
6572   case Intrinsic::amdgcn_struct_buffer_atomic_swap:
6573   case Intrinsic::amdgcn_struct_buffer_atomic_add:
6574   case Intrinsic::amdgcn_struct_buffer_atomic_sub:
6575   case Intrinsic::amdgcn_struct_buffer_atomic_smin:
6576   case Intrinsic::amdgcn_struct_buffer_atomic_umin:
6577   case Intrinsic::amdgcn_struct_buffer_atomic_smax:
6578   case Intrinsic::amdgcn_struct_buffer_atomic_umax:
6579   case Intrinsic::amdgcn_struct_buffer_atomic_and:
6580   case Intrinsic::amdgcn_struct_buffer_atomic_or:
6581   case Intrinsic::amdgcn_struct_buffer_atomic_xor:
6582   case Intrinsic::amdgcn_struct_buffer_atomic_inc:
6583   case Intrinsic::amdgcn_struct_buffer_atomic_dec: {
6584     auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
6585     SDValue Ops[] = {
6586       Op.getOperand(0), // Chain
6587       Op.getOperand(2), // vdata
6588       Op.getOperand(3), // rsrc
6589       Op.getOperand(4), // vindex
6590       Offsets.first,    // voffset
6591       Op.getOperand(6), // soffset
6592       Offsets.second,   // offset
6593       Op.getOperand(7), // cachepolicy
6594       DAG.getTargetConstant(1, DL, MVT::i1), // idxen
6595     };
6596     EVT VT = Op.getValueType();
6597 
6598     auto *M = cast<MemSDNode>(Op);
6599     M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[4], Ops[5], Ops[6],
6600                                                         Ops[3]));
6601     unsigned Opcode = 0;
6602 
6603     switch (IntrID) {
6604     case Intrinsic::amdgcn_struct_buffer_atomic_swap:
6605       Opcode = AMDGPUISD::BUFFER_ATOMIC_SWAP;
6606       break;
6607     case Intrinsic::amdgcn_struct_buffer_atomic_add:
6608       Opcode = AMDGPUISD::BUFFER_ATOMIC_ADD;
6609       break;
6610     case Intrinsic::amdgcn_struct_buffer_atomic_sub:
6611       Opcode = AMDGPUISD::BUFFER_ATOMIC_SUB;
6612       break;
6613     case Intrinsic::amdgcn_struct_buffer_atomic_smin:
6614       Opcode = AMDGPUISD::BUFFER_ATOMIC_SMIN;
6615       break;
6616     case Intrinsic::amdgcn_struct_buffer_atomic_umin:
6617       Opcode = AMDGPUISD::BUFFER_ATOMIC_UMIN;
6618       break;
6619     case Intrinsic::amdgcn_struct_buffer_atomic_smax:
6620       Opcode = AMDGPUISD::BUFFER_ATOMIC_SMAX;
6621       break;
6622     case Intrinsic::amdgcn_struct_buffer_atomic_umax:
6623       Opcode = AMDGPUISD::BUFFER_ATOMIC_UMAX;
6624       break;
6625     case Intrinsic::amdgcn_struct_buffer_atomic_and:
6626       Opcode = AMDGPUISD::BUFFER_ATOMIC_AND;
6627       break;
6628     case Intrinsic::amdgcn_struct_buffer_atomic_or:
6629       Opcode = AMDGPUISD::BUFFER_ATOMIC_OR;
6630       break;
6631     case Intrinsic::amdgcn_struct_buffer_atomic_xor:
6632       Opcode = AMDGPUISD::BUFFER_ATOMIC_XOR;
6633       break;
6634     case Intrinsic::amdgcn_struct_buffer_atomic_inc:
6635       Opcode = AMDGPUISD::BUFFER_ATOMIC_INC;
6636       break;
6637     case Intrinsic::amdgcn_struct_buffer_atomic_dec:
6638       Opcode = AMDGPUISD::BUFFER_ATOMIC_DEC;
6639       break;
6640     default:
6641       llvm_unreachable("unhandled atomic opcode");
6642     }
6643 
6644     return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT,
6645                                    M->getMemOperand());
6646   }
6647   case Intrinsic::amdgcn_buffer_atomic_cmpswap: {
6648     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue();
6649     unsigned IdxEn = 1;
6650     if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(5)))
6651       IdxEn = Idx->getZExtValue() != 0;
6652     SDValue Ops[] = {
6653       Op.getOperand(0), // Chain
6654       Op.getOperand(2), // src
6655       Op.getOperand(3), // cmp
6656       Op.getOperand(4), // rsrc
6657       Op.getOperand(5), // vindex
6658       SDValue(),        // voffset -- will be set by setBufferOffsets
6659       SDValue(),        // soffset -- will be set by setBufferOffsets
6660       SDValue(),        // offset -- will be set by setBufferOffsets
6661       DAG.getTargetConstant(Slc << 1, DL, MVT::i32), // cachepolicy
6662       DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
6663     };
6664     unsigned Offset = setBufferOffsets(Op.getOperand(6), DAG, &Ops[5]);
6665     // We don't know the offset if vindex is non-zero, so clear it.
6666     if (IdxEn)
6667       Offset = 0;
6668     EVT VT = Op.getValueType();
6669     auto *M = cast<MemSDNode>(Op);
6670     M->getMemOperand()->setOffset(Offset);
6671 
6672     return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
6673                                    Op->getVTList(), Ops, VT, M->getMemOperand());
6674   }
6675   case Intrinsic::amdgcn_raw_buffer_atomic_cmpswap: {
6676     auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
6677     SDValue Ops[] = {
6678       Op.getOperand(0), // Chain
6679       Op.getOperand(2), // src
6680       Op.getOperand(3), // cmp
6681       Op.getOperand(4), // rsrc
6682       DAG.getConstant(0, DL, MVT::i32), // vindex
6683       Offsets.first,    // voffset
6684       Op.getOperand(6), // soffset
6685       Offsets.second,   // offset
6686       Op.getOperand(7), // cachepolicy
6687       DAG.getTargetConstant(0, DL, MVT::i1), // idxen
6688     };
6689     EVT VT = Op.getValueType();
6690     auto *M = cast<MemSDNode>(Op);
6691     M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[5], Ops[6], Ops[7]));
6692 
6693     return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
6694                                    Op->getVTList(), Ops, VT, M->getMemOperand());
6695   }
6696   case Intrinsic::amdgcn_struct_buffer_atomic_cmpswap: {
6697     auto Offsets = splitBufferOffsets(Op.getOperand(6), DAG);
6698     SDValue Ops[] = {
6699       Op.getOperand(0), // Chain
6700       Op.getOperand(2), // src
6701       Op.getOperand(3), // cmp
6702       Op.getOperand(4), // rsrc
6703       Op.getOperand(5), // vindex
6704       Offsets.first,    // voffset
6705       Op.getOperand(7), // soffset
6706       Offsets.second,   // offset
6707       Op.getOperand(8), // cachepolicy
6708       DAG.getTargetConstant(1, DL, MVT::i1), // idxen
6709     };
6710     EVT VT = Op.getValueType();
6711     auto *M = cast<MemSDNode>(Op);
6712     M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[5], Ops[6], Ops[7],
6713                                                         Ops[4]));
6714 
6715     return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
6716                                    Op->getVTList(), Ops, VT, M->getMemOperand());
6717   }
6718 
6719   default:
6720     if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
6721             AMDGPU::getImageDimIntrinsicInfo(IntrID))
6722       return lowerImage(Op, ImageDimIntr, DAG);
6723 
6724     return SDValue();
6725   }
6726 }
6727 
6728 // Call DAG.getMemIntrinsicNode for a load, but first widen a dwordx3 type to
6729 // dwordx4 if on SI.
6730 SDValue SITargetLowering::getMemIntrinsicNode(unsigned Opcode, const SDLoc &DL,
6731                                               SDVTList VTList,
6732                                               ArrayRef<SDValue> Ops, EVT MemVT,
6733                                               MachineMemOperand *MMO,
6734                                               SelectionDAG &DAG) const {
6735   EVT VT = VTList.VTs[0];
6736   EVT WidenedVT = VT;
6737   EVT WidenedMemVT = MemVT;
6738   if (!Subtarget->hasDwordx3LoadStores() &&
6739       (WidenedVT == MVT::v3i32 || WidenedVT == MVT::v3f32)) {
6740     WidenedVT = EVT::getVectorVT(*DAG.getContext(),
6741                                  WidenedVT.getVectorElementType(), 4);
6742     WidenedMemVT = EVT::getVectorVT(*DAG.getContext(),
6743                                     WidenedMemVT.getVectorElementType(), 4);
6744     MMO = DAG.getMachineFunction().getMachineMemOperand(MMO, 0, 16);
6745   }
6746 
6747   assert(VTList.NumVTs == 2);
6748   SDVTList WidenedVTList = DAG.getVTList(WidenedVT, VTList.VTs[1]);
6749 
6750   auto NewOp = DAG.getMemIntrinsicNode(Opcode, DL, WidenedVTList, Ops,
6751                                        WidenedMemVT, MMO);
6752   if (WidenedVT != VT) {
6753     auto Extract = DAG.getNode(
6754         ISD::EXTRACT_SUBVECTOR, DL, VT, NewOp,
6755         DAG.getConstant(0, DL, getVectorIdxTy(DAG.getDataLayout())));
6756     NewOp = DAG.getMergeValues({ Extract, SDValue(NewOp.getNode(), 1) }, DL);
6757   }
6758   return NewOp;
6759 }
6760 
6761 SDValue SITargetLowering::handleD16VData(SDValue VData,
6762                                          SelectionDAG &DAG) const {
6763   EVT StoreVT = VData.getValueType();
6764 
6765   // No change for f16 and legal vector D16 types.
6766   if (!StoreVT.isVector())
6767     return VData;
6768 
6769   SDLoc DL(VData);
6770   assert((StoreVT.getVectorNumElements() != 3) && "Handle v3f16");
6771 
6772   if (Subtarget->hasUnpackedD16VMem()) {
6773     // We need to unpack the packed data to store.
6774     EVT IntStoreVT = StoreVT.changeTypeToInteger();
6775     SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData);
6776 
6777     EVT EquivStoreVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32,
6778                                         StoreVT.getVectorNumElements());
6779     SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, EquivStoreVT, IntVData);
6780     return DAG.UnrollVectorOp(ZExt.getNode());
6781   }
6782 
6783   assert(isTypeLegal(StoreVT));
6784   return VData;
6785 }
6786 
6787 SDValue SITargetLowering::LowerINTRINSIC_VOID(SDValue Op,
6788                                               SelectionDAG &DAG) const {
6789   SDLoc DL(Op);
6790   SDValue Chain = Op.getOperand(0);
6791   unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6792   MachineFunction &MF = DAG.getMachineFunction();
6793 
6794   switch (IntrinsicID) {
6795   case Intrinsic::amdgcn_exp: {
6796     const ConstantSDNode *Tgt = cast<ConstantSDNode>(Op.getOperand(2));
6797     const ConstantSDNode *En = cast<ConstantSDNode>(Op.getOperand(3));
6798     const ConstantSDNode *Done = cast<ConstantSDNode>(Op.getOperand(8));
6799     const ConstantSDNode *VM = cast<ConstantSDNode>(Op.getOperand(9));
6800 
6801     const SDValue Ops[] = {
6802       Chain,
6803       DAG.getTargetConstant(Tgt->getZExtValue(), DL, MVT::i8), // tgt
6804       DAG.getTargetConstant(En->getZExtValue(), DL, MVT::i8),  // en
6805       Op.getOperand(4), // src0
6806       Op.getOperand(5), // src1
6807       Op.getOperand(6), // src2
6808       Op.getOperand(7), // src3
6809       DAG.getTargetConstant(0, DL, MVT::i1), // compr
6810       DAG.getTargetConstant(VM->getZExtValue(), DL, MVT::i1)
6811     };
6812 
6813     unsigned Opc = Done->isNullValue() ?
6814       AMDGPUISD::EXPORT : AMDGPUISD::EXPORT_DONE;
6815     return DAG.getNode(Opc, DL, Op->getVTList(), Ops);
6816   }
6817   case Intrinsic::amdgcn_exp_compr: {
6818     const ConstantSDNode *Tgt = cast<ConstantSDNode>(Op.getOperand(2));
6819     const ConstantSDNode *En = cast<ConstantSDNode>(Op.getOperand(3));
6820     SDValue Src0 = Op.getOperand(4);
6821     SDValue Src1 = Op.getOperand(5);
6822     const ConstantSDNode *Done = cast<ConstantSDNode>(Op.getOperand(6));
6823     const ConstantSDNode *VM = cast<ConstantSDNode>(Op.getOperand(7));
6824 
6825     SDValue Undef = DAG.getUNDEF(MVT::f32);
6826     const SDValue Ops[] = {
6827       Chain,
6828       DAG.getTargetConstant(Tgt->getZExtValue(), DL, MVT::i8), // tgt
6829       DAG.getTargetConstant(En->getZExtValue(), DL, MVT::i8),  // en
6830       DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src0),
6831       DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src1),
6832       Undef, // src2
6833       Undef, // src3
6834       DAG.getTargetConstant(1, DL, MVT::i1), // compr
6835       DAG.getTargetConstant(VM->getZExtValue(), DL, MVT::i1)
6836     };
6837 
6838     unsigned Opc = Done->isNullValue() ?
6839       AMDGPUISD::EXPORT : AMDGPUISD::EXPORT_DONE;
6840     return DAG.getNode(Opc, DL, Op->getVTList(), Ops);
6841   }
6842   case Intrinsic::amdgcn_s_barrier: {
6843     if (getTargetMachine().getOptLevel() > CodeGenOpt::None) {
6844       const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
6845       unsigned WGSize = ST.getFlatWorkGroupSizes(MF.getFunction()).second;
6846       if (WGSize <= ST.getWavefrontSize())
6847         return SDValue(DAG.getMachineNode(AMDGPU::WAVE_BARRIER, DL, MVT::Other,
6848                                           Op.getOperand(0)), 0);
6849     }
6850     return SDValue();
6851   };
6852   case Intrinsic::amdgcn_tbuffer_store: {
6853     SDValue VData = Op.getOperand(2);
6854     bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
6855     if (IsD16)
6856       VData = handleD16VData(VData, DAG);
6857     unsigned Dfmt = cast<ConstantSDNode>(Op.getOperand(8))->getZExtValue();
6858     unsigned Nfmt = cast<ConstantSDNode>(Op.getOperand(9))->getZExtValue();
6859     unsigned Glc = cast<ConstantSDNode>(Op.getOperand(10))->getZExtValue();
6860     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(11))->getZExtValue();
6861     unsigned IdxEn = 1;
6862     if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(4)))
6863       IdxEn = Idx->getZExtValue() != 0;
6864     SDValue Ops[] = {
6865       Chain,
6866       VData,             // vdata
6867       Op.getOperand(3),  // rsrc
6868       Op.getOperand(4),  // vindex
6869       Op.getOperand(5),  // voffset
6870       Op.getOperand(6),  // soffset
6871       Op.getOperand(7),  // offset
6872       DAG.getTargetConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format
6873       DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
6874       DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idexen
6875     };
6876     unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 :
6877                            AMDGPUISD::TBUFFER_STORE_FORMAT;
6878     MemSDNode *M = cast<MemSDNode>(Op);
6879     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
6880                                    M->getMemoryVT(), M->getMemOperand());
6881   }
6882 
6883   case Intrinsic::amdgcn_struct_tbuffer_store: {
6884     SDValue VData = Op.getOperand(2);
6885     bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
6886     if (IsD16)
6887       VData = handleD16VData(VData, DAG);
6888     auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
6889     SDValue Ops[] = {
6890       Chain,
6891       VData,             // vdata
6892       Op.getOperand(3),  // rsrc
6893       Op.getOperand(4),  // vindex
6894       Offsets.first,     // voffset
6895       Op.getOperand(6),  // soffset
6896       Offsets.second,    // offset
6897       Op.getOperand(7),  // format
6898       Op.getOperand(8),  // cachepolicy, swizzled buffer
6899       DAG.getTargetConstant(1, DL, MVT::i1), // idexen
6900     };
6901     unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 :
6902                            AMDGPUISD::TBUFFER_STORE_FORMAT;
6903     MemSDNode *M = cast<MemSDNode>(Op);
6904     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
6905                                    M->getMemoryVT(), M->getMemOperand());
6906   }
6907 
6908   case Intrinsic::amdgcn_raw_tbuffer_store: {
6909     SDValue VData = Op.getOperand(2);
6910     bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
6911     if (IsD16)
6912       VData = handleD16VData(VData, DAG);
6913     auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
6914     SDValue Ops[] = {
6915       Chain,
6916       VData,             // vdata
6917       Op.getOperand(3),  // rsrc
6918       DAG.getConstant(0, DL, MVT::i32), // vindex
6919       Offsets.first,     // voffset
6920       Op.getOperand(5),  // soffset
6921       Offsets.second,    // offset
6922       Op.getOperand(6),  // format
6923       Op.getOperand(7),  // cachepolicy, swizzled buffer
6924       DAG.getTargetConstant(0, DL, MVT::i1), // idexen
6925     };
6926     unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 :
6927                            AMDGPUISD::TBUFFER_STORE_FORMAT;
6928     MemSDNode *M = cast<MemSDNode>(Op);
6929     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
6930                                    M->getMemoryVT(), M->getMemOperand());
6931   }
6932 
6933   case Intrinsic::amdgcn_buffer_store:
6934   case Intrinsic::amdgcn_buffer_store_format: {
6935     SDValue VData = Op.getOperand(2);
6936     bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
6937     if (IsD16)
6938       VData = handleD16VData(VData, DAG);
6939     unsigned Glc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue();
6940     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue();
6941     unsigned IdxEn = 1;
6942     if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(4)))
6943       IdxEn = Idx->getZExtValue() != 0;
6944     SDValue Ops[] = {
6945       Chain,
6946       VData,
6947       Op.getOperand(3), // rsrc
6948       Op.getOperand(4), // vindex
6949       SDValue(), // voffset -- will be set by setBufferOffsets
6950       SDValue(), // soffset -- will be set by setBufferOffsets
6951       SDValue(), // offset -- will be set by setBufferOffsets
6952       DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
6953       DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
6954     };
6955     unsigned Offset = setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]);
6956     // We don't know the offset if vindex is non-zero, so clear it.
6957     if (IdxEn)
6958       Offset = 0;
6959     unsigned Opc = IntrinsicID == Intrinsic::amdgcn_buffer_store ?
6960                    AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT;
6961     Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
6962     MemSDNode *M = cast<MemSDNode>(Op);
6963     M->getMemOperand()->setOffset(Offset);
6964 
6965     // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics
6966     EVT VDataType = VData.getValueType().getScalarType();
6967     if (VDataType == MVT::i8 || VDataType == MVT::i16)
6968       return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M);
6969 
6970     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
6971                                    M->getMemoryVT(), M->getMemOperand());
6972   }
6973 
6974   case Intrinsic::amdgcn_raw_buffer_store:
6975   case Intrinsic::amdgcn_raw_buffer_store_format: {
6976     const bool IsFormat =
6977         IntrinsicID == Intrinsic::amdgcn_raw_buffer_store_format;
6978 
6979     SDValue VData = Op.getOperand(2);
6980     EVT VDataVT = VData.getValueType();
6981     EVT EltType = VDataVT.getScalarType();
6982     bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16);
6983     if (IsD16)
6984       VData = handleD16VData(VData, DAG);
6985 
6986     if (!isTypeLegal(VDataVT)) {
6987       VData =
6988           DAG.getNode(ISD::BITCAST, DL,
6989                       getEquivalentMemType(*DAG.getContext(), VDataVT), VData);
6990     }
6991 
6992     auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
6993     SDValue Ops[] = {
6994       Chain,
6995       VData,
6996       Op.getOperand(3), // rsrc
6997       DAG.getConstant(0, DL, MVT::i32), // vindex
6998       Offsets.first,    // voffset
6999       Op.getOperand(5), // soffset
7000       Offsets.second,   // offset
7001       Op.getOperand(6), // cachepolicy, swizzled buffer
7002       DAG.getTargetConstant(0, DL, MVT::i1), // idxen
7003     };
7004     unsigned Opc =
7005         IsFormat ? AMDGPUISD::BUFFER_STORE_FORMAT : AMDGPUISD::BUFFER_STORE;
7006     Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
7007     MemSDNode *M = cast<MemSDNode>(Op);
7008     M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[4], Ops[5], Ops[6]));
7009 
7010     // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics
7011     if (!IsD16 && !VDataVT.isVector() && EltType.getSizeInBits() < 32)
7012       return handleByteShortBufferStores(DAG, VDataVT, DL, Ops, M);
7013 
7014     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
7015                                    M->getMemoryVT(), M->getMemOperand());
7016   }
7017 
7018   case Intrinsic::amdgcn_struct_buffer_store:
7019   case Intrinsic::amdgcn_struct_buffer_store_format: {
7020     const bool IsFormat =
7021         IntrinsicID == Intrinsic::amdgcn_struct_buffer_store_format;
7022 
7023     SDValue VData = Op.getOperand(2);
7024     EVT VDataVT = VData.getValueType();
7025     EVT EltType = VDataVT.getScalarType();
7026     bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16);
7027 
7028     if (IsD16)
7029       VData = handleD16VData(VData, DAG);
7030 
7031     if (!isTypeLegal(VDataVT)) {
7032       VData =
7033           DAG.getNode(ISD::BITCAST, DL,
7034                       getEquivalentMemType(*DAG.getContext(), VDataVT), VData);
7035     }
7036 
7037     auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
7038     SDValue Ops[] = {
7039       Chain,
7040       VData,
7041       Op.getOperand(3), // rsrc
7042       Op.getOperand(4), // vindex
7043       Offsets.first,    // voffset
7044       Op.getOperand(6), // soffset
7045       Offsets.second,   // offset
7046       Op.getOperand(7), // cachepolicy, swizzled buffer
7047       DAG.getTargetConstant(1, DL, MVT::i1), // idxen
7048     };
7049     unsigned Opc = IntrinsicID == Intrinsic::amdgcn_struct_buffer_store ?
7050                    AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT;
7051     Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
7052     MemSDNode *M = cast<MemSDNode>(Op);
7053     M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[4], Ops[5], Ops[6],
7054                                                         Ops[3]));
7055 
7056     // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics
7057     EVT VDataType = VData.getValueType().getScalarType();
7058     if (!IsD16 && !VDataVT.isVector() && EltType.getSizeInBits() < 32)
7059       return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M);
7060 
7061     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
7062                                    M->getMemoryVT(), M->getMemOperand());
7063   }
7064 
7065   case Intrinsic::amdgcn_buffer_atomic_fadd: {
7066     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue();
7067     unsigned IdxEn = 1;
7068     if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(4)))
7069       IdxEn = Idx->getZExtValue() != 0;
7070     SDValue Ops[] = {
7071       Chain,
7072       Op.getOperand(2), // vdata
7073       Op.getOperand(3), // rsrc
7074       Op.getOperand(4), // vindex
7075       SDValue(),        // voffset -- will be set by setBufferOffsets
7076       SDValue(),        // soffset -- will be set by setBufferOffsets
7077       SDValue(),        // offset -- will be set by setBufferOffsets
7078       DAG.getTargetConstant(Slc << 1, DL, MVT::i32), // cachepolicy
7079       DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
7080     };
7081     unsigned Offset = setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]);
7082     // We don't know the offset if vindex is non-zero, so clear it.
7083     if (IdxEn)
7084       Offset = 0;
7085     EVT VT = Op.getOperand(2).getValueType();
7086 
7087     auto *M = cast<MemSDNode>(Op);
7088     M->getMemOperand()->setOffset(Offset);
7089     unsigned Opcode = VT.isVector() ? AMDGPUISD::BUFFER_ATOMIC_PK_FADD
7090                                     : AMDGPUISD::BUFFER_ATOMIC_FADD;
7091 
7092     return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT,
7093                                    M->getMemOperand());
7094   }
7095 
7096   case Intrinsic::amdgcn_global_atomic_fadd: {
7097     SDValue Ops[] = {
7098       Chain,
7099       Op.getOperand(2), // ptr
7100       Op.getOperand(3)  // vdata
7101     };
7102     EVT VT = Op.getOperand(3).getValueType();
7103 
7104     auto *M = cast<MemSDNode>(Op);
7105     if (VT.isVector()) {
7106       return DAG.getMemIntrinsicNode(
7107         AMDGPUISD::ATOMIC_PK_FADD, DL, Op->getVTList(), Ops, VT,
7108         M->getMemOperand());
7109     }
7110 
7111     return DAG.getAtomic(ISD::ATOMIC_LOAD_FADD, DL, VT,
7112                          DAG.getVTList(VT, MVT::Other), Ops,
7113                          M->getMemOperand()).getValue(1);
7114   }
7115   case Intrinsic::amdgcn_end_cf:
7116     return SDValue(DAG.getMachineNode(AMDGPU::SI_END_CF, DL, MVT::Other,
7117                                       Op->getOperand(2), Chain), 0);
7118 
7119   default: {
7120     if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
7121             AMDGPU::getImageDimIntrinsicInfo(IntrinsicID))
7122       return lowerImage(Op, ImageDimIntr, DAG);
7123 
7124     return Op;
7125   }
7126   }
7127 }
7128 
7129 // The raw.(t)buffer and struct.(t)buffer intrinsics have two offset args:
7130 // offset (the offset that is included in bounds checking and swizzling, to be
7131 // split between the instruction's voffset and immoffset fields) and soffset
7132 // (the offset that is excluded from bounds checking and swizzling, to go in
7133 // the instruction's soffset field).  This function takes the first kind of
7134 // offset and figures out how to split it between voffset and immoffset.
7135 std::pair<SDValue, SDValue> SITargetLowering::splitBufferOffsets(
7136     SDValue Offset, SelectionDAG &DAG) const {
7137   SDLoc DL(Offset);
7138   const unsigned MaxImm = 4095;
7139   SDValue N0 = Offset;
7140   ConstantSDNode *C1 = nullptr;
7141 
7142   if ((C1 = dyn_cast<ConstantSDNode>(N0)))
7143     N0 = SDValue();
7144   else if (DAG.isBaseWithConstantOffset(N0)) {
7145     C1 = cast<ConstantSDNode>(N0.getOperand(1));
7146     N0 = N0.getOperand(0);
7147   }
7148 
7149   if (C1) {
7150     unsigned ImmOffset = C1->getZExtValue();
7151     // If the immediate value is too big for the immoffset field, put the value
7152     // and -4096 into the immoffset field so that the value that is copied/added
7153     // for the voffset field is a multiple of 4096, and it stands more chance
7154     // of being CSEd with the copy/add for another similar load/store.
7155     // However, do not do that rounding down to a multiple of 4096 if that is a
7156     // negative number, as it appears to be illegal to have a negative offset
7157     // in the vgpr, even if adding the immediate offset makes it positive.
7158     unsigned Overflow = ImmOffset & ~MaxImm;
7159     ImmOffset -= Overflow;
7160     if ((int32_t)Overflow < 0) {
7161       Overflow += ImmOffset;
7162       ImmOffset = 0;
7163     }
7164     C1 = cast<ConstantSDNode>(DAG.getTargetConstant(ImmOffset, DL, MVT::i32));
7165     if (Overflow) {
7166       auto OverflowVal = DAG.getConstant(Overflow, DL, MVT::i32);
7167       if (!N0)
7168         N0 = OverflowVal;
7169       else {
7170         SDValue Ops[] = { N0, OverflowVal };
7171         N0 = DAG.getNode(ISD::ADD, DL, MVT::i32, Ops);
7172       }
7173     }
7174   }
7175   if (!N0)
7176     N0 = DAG.getConstant(0, DL, MVT::i32);
7177   if (!C1)
7178     C1 = cast<ConstantSDNode>(DAG.getTargetConstant(0, DL, MVT::i32));
7179   return {N0, SDValue(C1, 0)};
7180 }
7181 
7182 // Analyze a combined offset from an amdgcn_buffer_ intrinsic and store the
7183 // three offsets (voffset, soffset and instoffset) into the SDValue[3] array
7184 // pointed to by Offsets.
7185 unsigned SITargetLowering::setBufferOffsets(SDValue CombinedOffset,
7186                                         SelectionDAG &DAG, SDValue *Offsets,
7187                                         unsigned Align) const {
7188   SDLoc DL(CombinedOffset);
7189   if (auto C = dyn_cast<ConstantSDNode>(CombinedOffset)) {
7190     uint32_t Imm = C->getZExtValue();
7191     uint32_t SOffset, ImmOffset;
7192     if (AMDGPU::splitMUBUFOffset(Imm, SOffset, ImmOffset, Subtarget, Align)) {
7193       Offsets[0] = DAG.getConstant(0, DL, MVT::i32);
7194       Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32);
7195       Offsets[2] = DAG.getTargetConstant(ImmOffset, DL, MVT::i32);
7196       return SOffset + ImmOffset;
7197     }
7198   }
7199   if (DAG.isBaseWithConstantOffset(CombinedOffset)) {
7200     SDValue N0 = CombinedOffset.getOperand(0);
7201     SDValue N1 = CombinedOffset.getOperand(1);
7202     uint32_t SOffset, ImmOffset;
7203     int Offset = cast<ConstantSDNode>(N1)->getSExtValue();
7204     if (Offset >= 0 && AMDGPU::splitMUBUFOffset(Offset, SOffset, ImmOffset,
7205                                                 Subtarget, Align)) {
7206       Offsets[0] = N0;
7207       Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32);
7208       Offsets[2] = DAG.getTargetConstant(ImmOffset, DL, MVT::i32);
7209       return 0;
7210     }
7211   }
7212   Offsets[0] = CombinedOffset;
7213   Offsets[1] = DAG.getConstant(0, DL, MVT::i32);
7214   Offsets[2] = DAG.getTargetConstant(0, DL, MVT::i32);
7215   return 0;
7216 }
7217 
7218 // Handle 8 bit and 16 bit buffer loads
7219 SDValue SITargetLowering::handleByteShortBufferLoads(SelectionDAG &DAG,
7220                                                      EVT LoadVT, SDLoc DL,
7221                                                      ArrayRef<SDValue> Ops,
7222                                                      MemSDNode *M) const {
7223   EVT IntVT = LoadVT.changeTypeToInteger();
7224   unsigned Opc = (LoadVT.getScalarType() == MVT::i8) ?
7225          AMDGPUISD::BUFFER_LOAD_UBYTE : AMDGPUISD::BUFFER_LOAD_USHORT;
7226 
7227   SDVTList ResList = DAG.getVTList(MVT::i32, MVT::Other);
7228   SDValue BufferLoad = DAG.getMemIntrinsicNode(Opc, DL, ResList,
7229                                                Ops, IntVT,
7230                                                M->getMemOperand());
7231   SDValue LoadVal = DAG.getNode(ISD::TRUNCATE, DL, IntVT, BufferLoad);
7232   LoadVal = DAG.getNode(ISD::BITCAST, DL, LoadVT, LoadVal);
7233 
7234   return DAG.getMergeValues({LoadVal, BufferLoad.getValue(1)}, DL);
7235 }
7236 
7237 // Handle 8 bit and 16 bit buffer stores
7238 SDValue SITargetLowering::handleByteShortBufferStores(SelectionDAG &DAG,
7239                                                       EVT VDataType, SDLoc DL,
7240                                                       SDValue Ops[],
7241                                                       MemSDNode *M) const {
7242   if (VDataType == MVT::f16)
7243     Ops[1] = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Ops[1]);
7244 
7245   SDValue BufferStoreExt = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Ops[1]);
7246   Ops[1] = BufferStoreExt;
7247   unsigned Opc = (VDataType == MVT::i8) ? AMDGPUISD::BUFFER_STORE_BYTE :
7248                                  AMDGPUISD::BUFFER_STORE_SHORT;
7249   ArrayRef<SDValue> OpsRef = makeArrayRef(&Ops[0], 9);
7250   return DAG.getMemIntrinsicNode(Opc, DL, M->getVTList(), OpsRef, VDataType,
7251                                      M->getMemOperand());
7252 }
7253 
7254 static SDValue getLoadExtOrTrunc(SelectionDAG &DAG,
7255                                  ISD::LoadExtType ExtType, SDValue Op,
7256                                  const SDLoc &SL, EVT VT) {
7257   if (VT.bitsLT(Op.getValueType()))
7258     return DAG.getNode(ISD::TRUNCATE, SL, VT, Op);
7259 
7260   switch (ExtType) {
7261   case ISD::SEXTLOAD:
7262     return DAG.getNode(ISD::SIGN_EXTEND, SL, VT, Op);
7263   case ISD::ZEXTLOAD:
7264     return DAG.getNode(ISD::ZERO_EXTEND, SL, VT, Op);
7265   case ISD::EXTLOAD:
7266     return DAG.getNode(ISD::ANY_EXTEND, SL, VT, Op);
7267   case ISD::NON_EXTLOAD:
7268     return Op;
7269   }
7270 
7271   llvm_unreachable("invalid ext type");
7272 }
7273 
7274 SDValue SITargetLowering::widenLoad(LoadSDNode *Ld, DAGCombinerInfo &DCI) const {
7275   SelectionDAG &DAG = DCI.DAG;
7276   if (Ld->getAlignment() < 4 || Ld->isDivergent())
7277     return SDValue();
7278 
7279   // FIXME: Constant loads should all be marked invariant.
7280   unsigned AS = Ld->getAddressSpace();
7281   if (AS != AMDGPUAS::CONSTANT_ADDRESS &&
7282       AS != AMDGPUAS::CONSTANT_ADDRESS_32BIT &&
7283       (AS != AMDGPUAS::GLOBAL_ADDRESS || !Ld->isInvariant()))
7284     return SDValue();
7285 
7286   // Don't do this early, since it may interfere with adjacent load merging for
7287   // illegal types. We can avoid losing alignment information for exotic types
7288   // pre-legalize.
7289   EVT MemVT = Ld->getMemoryVT();
7290   if ((MemVT.isSimple() && !DCI.isAfterLegalizeDAG()) ||
7291       MemVT.getSizeInBits() >= 32)
7292     return SDValue();
7293 
7294   SDLoc SL(Ld);
7295 
7296   assert((!MemVT.isVector() || Ld->getExtensionType() == ISD::NON_EXTLOAD) &&
7297          "unexpected vector extload");
7298 
7299   // TODO: Drop only high part of range.
7300   SDValue Ptr = Ld->getBasePtr();
7301   SDValue NewLoad = DAG.getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD,
7302                                 MVT::i32, SL, Ld->getChain(), Ptr,
7303                                 Ld->getOffset(),
7304                                 Ld->getPointerInfo(), MVT::i32,
7305                                 Ld->getAlignment(),
7306                                 Ld->getMemOperand()->getFlags(),
7307                                 Ld->getAAInfo(),
7308                                 nullptr); // Drop ranges
7309 
7310   EVT TruncVT = EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits());
7311   if (MemVT.isFloatingPoint()) {
7312     assert(Ld->getExtensionType() == ISD::NON_EXTLOAD &&
7313            "unexpected fp extload");
7314     TruncVT = MemVT.changeTypeToInteger();
7315   }
7316 
7317   SDValue Cvt = NewLoad;
7318   if (Ld->getExtensionType() == ISD::SEXTLOAD) {
7319     Cvt = DAG.getNode(ISD::SIGN_EXTEND_INREG, SL, MVT::i32, NewLoad,
7320                       DAG.getValueType(TruncVT));
7321   } else if (Ld->getExtensionType() == ISD::ZEXTLOAD ||
7322              Ld->getExtensionType() == ISD::NON_EXTLOAD) {
7323     Cvt = DAG.getZeroExtendInReg(NewLoad, SL, TruncVT);
7324   } else {
7325     assert(Ld->getExtensionType() == ISD::EXTLOAD);
7326   }
7327 
7328   EVT VT = Ld->getValueType(0);
7329   EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
7330 
7331   DCI.AddToWorklist(Cvt.getNode());
7332 
7333   // We may need to handle exotic cases, such as i16->i64 extloads, so insert
7334   // the appropriate extension from the 32-bit load.
7335   Cvt = getLoadExtOrTrunc(DAG, Ld->getExtensionType(), Cvt, SL, IntVT);
7336   DCI.AddToWorklist(Cvt.getNode());
7337 
7338   // Handle conversion back to floating point if necessary.
7339   Cvt = DAG.getNode(ISD::BITCAST, SL, VT, Cvt);
7340 
7341   return DAG.getMergeValues({ Cvt, NewLoad.getValue(1) }, SL);
7342 }
7343 
7344 SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
7345   SDLoc DL(Op);
7346   LoadSDNode *Load = cast<LoadSDNode>(Op);
7347   ISD::LoadExtType ExtType = Load->getExtensionType();
7348   EVT MemVT = Load->getMemoryVT();
7349 
7350   if (ExtType == ISD::NON_EXTLOAD && MemVT.getSizeInBits() < 32) {
7351     if (MemVT == MVT::i16 && isTypeLegal(MVT::i16))
7352       return SDValue();
7353 
7354     // FIXME: Copied from PPC
7355     // First, load into 32 bits, then truncate to 1 bit.
7356 
7357     SDValue Chain = Load->getChain();
7358     SDValue BasePtr = Load->getBasePtr();
7359     MachineMemOperand *MMO = Load->getMemOperand();
7360 
7361     EVT RealMemVT = (MemVT == MVT::i1) ? MVT::i8 : MVT::i16;
7362 
7363     SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain,
7364                                    BasePtr, RealMemVT, MMO);
7365 
7366     if (!MemVT.isVector()) {
7367       SDValue Ops[] = {
7368         DAG.getNode(ISD::TRUNCATE, DL, MemVT, NewLD),
7369         NewLD.getValue(1)
7370       };
7371 
7372       return DAG.getMergeValues(Ops, DL);
7373     }
7374 
7375     SmallVector<SDValue, 3> Elts;
7376     for (unsigned I = 0, N = MemVT.getVectorNumElements(); I != N; ++I) {
7377       SDValue Elt = DAG.getNode(ISD::SRL, DL, MVT::i32, NewLD,
7378                                 DAG.getConstant(I, DL, MVT::i32));
7379 
7380       Elts.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Elt));
7381     }
7382 
7383     SDValue Ops[] = {
7384       DAG.getBuildVector(MemVT, DL, Elts),
7385       NewLD.getValue(1)
7386     };
7387 
7388     return DAG.getMergeValues(Ops, DL);
7389   }
7390 
7391   if (!MemVT.isVector())
7392     return SDValue();
7393 
7394   assert(Op.getValueType().getVectorElementType() == MVT::i32 &&
7395          "Custom lowering for non-i32 vectors hasn't been implemented.");
7396 
7397   if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
7398                                       MemVT, *Load->getMemOperand())) {
7399     SDValue Ops[2];
7400     std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(Load, DAG);
7401     return DAG.getMergeValues(Ops, DL);
7402   }
7403 
7404   unsigned Alignment = Load->getAlignment();
7405   unsigned AS = Load->getAddressSpace();
7406   if (Subtarget->hasLDSMisalignedBug() &&
7407       AS == AMDGPUAS::FLAT_ADDRESS &&
7408       Alignment < MemVT.getStoreSize() && MemVT.getSizeInBits() > 32) {
7409     return SplitVectorLoad(Op, DAG);
7410   }
7411 
7412   MachineFunction &MF = DAG.getMachineFunction();
7413   SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
7414   // If there is a possibilty that flat instruction access scratch memory
7415   // then we need to use the same legalization rules we use for private.
7416   if (AS == AMDGPUAS::FLAT_ADDRESS)
7417     AS = MFI->hasFlatScratchInit() ?
7418          AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS;
7419 
7420   unsigned NumElements = MemVT.getVectorNumElements();
7421 
7422   if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
7423       AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT) {
7424     if (!Op->isDivergent() && Alignment >= 4 && NumElements < 32) {
7425       if (MemVT.isPow2VectorType())
7426         return SDValue();
7427       if (NumElements == 3)
7428         return WidenVectorLoad(Op, DAG);
7429       return SplitVectorLoad(Op, DAG);
7430     }
7431     // Non-uniform loads will be selected to MUBUF instructions, so they
7432     // have the same legalization requirements as global and private
7433     // loads.
7434     //
7435   }
7436 
7437   if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
7438       AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
7439       AS == AMDGPUAS::GLOBAL_ADDRESS) {
7440     if (Subtarget->getScalarizeGlobalBehavior() && !Op->isDivergent() &&
7441         !Load->isVolatile() && isMemOpHasNoClobberedMemOperand(Load) &&
7442         Alignment >= 4 && NumElements < 32) {
7443       if (MemVT.isPow2VectorType())
7444         return SDValue();
7445       if (NumElements == 3)
7446         return WidenVectorLoad(Op, DAG);
7447       return SplitVectorLoad(Op, DAG);
7448     }
7449     // Non-uniform loads will be selected to MUBUF instructions, so they
7450     // have the same legalization requirements as global and private
7451     // loads.
7452     //
7453   }
7454   if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
7455       AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
7456       AS == AMDGPUAS::GLOBAL_ADDRESS ||
7457       AS == AMDGPUAS::FLAT_ADDRESS) {
7458     if (NumElements > 4)
7459       return SplitVectorLoad(Op, DAG);
7460     // v3 loads not supported on SI.
7461     if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
7462       return WidenVectorLoad(Op, DAG);
7463     // v3 and v4 loads are supported for private and global memory.
7464     return SDValue();
7465   }
7466   if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
7467     // Depending on the setting of the private_element_size field in the
7468     // resource descriptor, we can only make private accesses up to a certain
7469     // size.
7470     switch (Subtarget->getMaxPrivateElementSize()) {
7471     case 4: {
7472       SDValue Ops[2];
7473       std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(Load, DAG);
7474       return DAG.getMergeValues(Ops, DL);
7475     }
7476     case 8:
7477       if (NumElements > 2)
7478         return SplitVectorLoad(Op, DAG);
7479       return SDValue();
7480     case 16:
7481       // Same as global/flat
7482       if (NumElements > 4)
7483         return SplitVectorLoad(Op, DAG);
7484       // v3 loads not supported on SI.
7485       if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
7486         return WidenVectorLoad(Op, DAG);
7487       return SDValue();
7488     default:
7489       llvm_unreachable("unsupported private_element_size");
7490     }
7491   } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
7492     // Use ds_read_b128 if possible.
7493     if (Subtarget->useDS128() && Load->getAlignment() >= 16 &&
7494         MemVT.getStoreSize() == 16)
7495       return SDValue();
7496 
7497     if (NumElements > 2)
7498       return SplitVectorLoad(Op, DAG);
7499 
7500     // SI has a hardware bug in the LDS / GDS boounds checking: if the base
7501     // address is negative, then the instruction is incorrectly treated as
7502     // out-of-bounds even if base + offsets is in bounds. Split vectorized
7503     // loads here to avoid emitting ds_read2_b32. We may re-combine the
7504     // load later in the SILoadStoreOptimizer.
7505     if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS &&
7506         NumElements == 2 && MemVT.getStoreSize() == 8 &&
7507         Load->getAlignment() < 8) {
7508       return SplitVectorLoad(Op, DAG);
7509     }
7510   }
7511   return SDValue();
7512 }
7513 
7514 SDValue SITargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
7515   EVT VT = Op.getValueType();
7516   assert(VT.getSizeInBits() == 64);
7517 
7518   SDLoc DL(Op);
7519   SDValue Cond = Op.getOperand(0);
7520 
7521   SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
7522   SDValue One = DAG.getConstant(1, DL, MVT::i32);
7523 
7524   SDValue LHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1));
7525   SDValue RHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(2));
7526 
7527   SDValue Lo0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, Zero);
7528   SDValue Lo1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, Zero);
7529 
7530   SDValue Lo = DAG.getSelect(DL, MVT::i32, Cond, Lo0, Lo1);
7531 
7532   SDValue Hi0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, One);
7533   SDValue Hi1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, One);
7534 
7535   SDValue Hi = DAG.getSelect(DL, MVT::i32, Cond, Hi0, Hi1);
7536 
7537   SDValue Res = DAG.getBuildVector(MVT::v2i32, DL, {Lo, Hi});
7538   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
7539 }
7540 
7541 // Catch division cases where we can use shortcuts with rcp and rsq
7542 // instructions.
7543 SDValue SITargetLowering::lowerFastUnsafeFDIV(SDValue Op,
7544                                               SelectionDAG &DAG) const {
7545   SDLoc SL(Op);
7546   SDValue LHS = Op.getOperand(0);
7547   SDValue RHS = Op.getOperand(1);
7548   EVT VT = Op.getValueType();
7549   const SDNodeFlags Flags = Op->getFlags();
7550   bool Unsafe = DAG.getTarget().Options.UnsafeFPMath || Flags.hasAllowReciprocal();
7551 
7552   if (!Unsafe && VT == MVT::f32 && hasFP32Denormals(DAG.getMachineFunction()))
7553     return SDValue();
7554 
7555   if (const ConstantFPSDNode *CLHS = dyn_cast<ConstantFPSDNode>(LHS)) {
7556     if (Unsafe || VT == MVT::f32 || VT == MVT::f16) {
7557       if (CLHS->isExactlyValue(1.0)) {
7558         // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to
7559         // the CI documentation has a worst case error of 1 ulp.
7560         // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to
7561         // use it as long as we aren't trying to use denormals.
7562         //
7563         // v_rcp_f16 and v_rsq_f16 DO support denormals.
7564 
7565         // 1.0 / sqrt(x) -> rsq(x)
7566 
7567         // XXX - Is UnsafeFPMath sufficient to do this for f64? The maximum ULP
7568         // error seems really high at 2^29 ULP.
7569         if (RHS.getOpcode() == ISD::FSQRT)
7570           return DAG.getNode(AMDGPUISD::RSQ, SL, VT, RHS.getOperand(0));
7571 
7572         // 1.0 / x -> rcp(x)
7573         return DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
7574       }
7575 
7576       // Same as for 1.0, but expand the sign out of the constant.
7577       if (CLHS->isExactlyValue(-1.0)) {
7578         // -1.0 / x -> rcp (fneg x)
7579         SDValue FNegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
7580         return DAG.getNode(AMDGPUISD::RCP, SL, VT, FNegRHS);
7581       }
7582     }
7583   }
7584 
7585   if (Unsafe) {
7586     // Turn into multiply by the reciprocal.
7587     // x / y -> x * (1.0 / y)
7588     SDValue Recip = DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
7589     return DAG.getNode(ISD::FMUL, SL, VT, LHS, Recip, Flags);
7590   }
7591 
7592   return SDValue();
7593 }
7594 
7595 static SDValue getFPBinOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL,
7596                           EVT VT, SDValue A, SDValue B, SDValue GlueChain) {
7597   if (GlueChain->getNumValues() <= 1) {
7598     return DAG.getNode(Opcode, SL, VT, A, B);
7599   }
7600 
7601   assert(GlueChain->getNumValues() == 3);
7602 
7603   SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue);
7604   switch (Opcode) {
7605   default: llvm_unreachable("no chain equivalent for opcode");
7606   case ISD::FMUL:
7607     Opcode = AMDGPUISD::FMUL_W_CHAIN;
7608     break;
7609   }
7610 
7611   return DAG.getNode(Opcode, SL, VTList, GlueChain.getValue(1), A, B,
7612                      GlueChain.getValue(2));
7613 }
7614 
7615 static SDValue getFPTernOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL,
7616                            EVT VT, SDValue A, SDValue B, SDValue C,
7617                            SDValue GlueChain) {
7618   if (GlueChain->getNumValues() <= 1) {
7619     return DAG.getNode(Opcode, SL, VT, A, B, C);
7620   }
7621 
7622   assert(GlueChain->getNumValues() == 3);
7623 
7624   SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue);
7625   switch (Opcode) {
7626   default: llvm_unreachable("no chain equivalent for opcode");
7627   case ISD::FMA:
7628     Opcode = AMDGPUISD::FMA_W_CHAIN;
7629     break;
7630   }
7631 
7632   return DAG.getNode(Opcode, SL, VTList, GlueChain.getValue(1), A, B, C,
7633                      GlueChain.getValue(2));
7634 }
7635 
7636 SDValue SITargetLowering::LowerFDIV16(SDValue Op, SelectionDAG &DAG) const {
7637   if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG))
7638     return FastLowered;
7639 
7640   SDLoc SL(Op);
7641   SDValue Src0 = Op.getOperand(0);
7642   SDValue Src1 = Op.getOperand(1);
7643 
7644   SDValue CvtSrc0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0);
7645   SDValue CvtSrc1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1);
7646 
7647   SDValue RcpSrc1 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, CvtSrc1);
7648   SDValue Quot = DAG.getNode(ISD::FMUL, SL, MVT::f32, CvtSrc0, RcpSrc1);
7649 
7650   SDValue FPRoundFlag = DAG.getTargetConstant(0, SL, MVT::i32);
7651   SDValue BestQuot = DAG.getNode(ISD::FP_ROUND, SL, MVT::f16, Quot, FPRoundFlag);
7652 
7653   return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f16, BestQuot, Src1, Src0);
7654 }
7655 
7656 // Faster 2.5 ULP division that does not support denormals.
7657 SDValue SITargetLowering::lowerFDIV_FAST(SDValue Op, SelectionDAG &DAG) const {
7658   SDLoc SL(Op);
7659   SDValue LHS = Op.getOperand(1);
7660   SDValue RHS = Op.getOperand(2);
7661 
7662   SDValue r1 = DAG.getNode(ISD::FABS, SL, MVT::f32, RHS);
7663 
7664   const APFloat K0Val(BitsToFloat(0x6f800000));
7665   const SDValue K0 = DAG.getConstantFP(K0Val, SL, MVT::f32);
7666 
7667   const APFloat K1Val(BitsToFloat(0x2f800000));
7668   const SDValue K1 = DAG.getConstantFP(K1Val, SL, MVT::f32);
7669 
7670   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
7671 
7672   EVT SetCCVT =
7673     getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32);
7674 
7675   SDValue r2 = DAG.getSetCC(SL, SetCCVT, r1, K0, ISD::SETOGT);
7676 
7677   SDValue r3 = DAG.getNode(ISD::SELECT, SL, MVT::f32, r2, K1, One);
7678 
7679   // TODO: Should this propagate fast-math-flags?
7680   r1 = DAG.getNode(ISD::FMUL, SL, MVT::f32, RHS, r3);
7681 
7682   // rcp does not support denormals.
7683   SDValue r0 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, r1);
7684 
7685   SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f32, LHS, r0);
7686 
7687   return DAG.getNode(ISD::FMUL, SL, MVT::f32, r3, Mul);
7688 }
7689 
7690 // Returns immediate value for setting the F32 denorm mode when using the
7691 // S_DENORM_MODE instruction.
7692 static const SDValue getSPDenormModeValue(int SPDenormMode, SelectionDAG &DAG,
7693                                           const SDLoc &SL, const GCNSubtarget *ST) {
7694   assert(ST->hasDenormModeInst() && "Requires S_DENORM_MODE");
7695   int DPDenormModeDefault = hasFP64FP16Denormals(DAG.getMachineFunction())
7696                                 ? FP_DENORM_FLUSH_NONE
7697                                 : FP_DENORM_FLUSH_IN_FLUSH_OUT;
7698 
7699   int Mode = SPDenormMode | (DPDenormModeDefault << 2);
7700   return DAG.getTargetConstant(Mode, SL, MVT::i32);
7701 }
7702 
7703 SDValue SITargetLowering::LowerFDIV32(SDValue Op, SelectionDAG &DAG) const {
7704   if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG))
7705     return FastLowered;
7706 
7707   SDLoc SL(Op);
7708   SDValue LHS = Op.getOperand(0);
7709   SDValue RHS = Op.getOperand(1);
7710 
7711   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
7712 
7713   SDVTList ScaleVT = DAG.getVTList(MVT::f32, MVT::i1);
7714 
7715   SDValue DenominatorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT,
7716                                           RHS, RHS, LHS);
7717   SDValue NumeratorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT,
7718                                         LHS, RHS, LHS);
7719 
7720   // Denominator is scaled to not be denormal, so using rcp is ok.
7721   SDValue ApproxRcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32,
7722                                   DenominatorScaled);
7723   SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f32,
7724                                      DenominatorScaled);
7725 
7726   const unsigned Denorm32Reg = AMDGPU::Hwreg::ID_MODE |
7727                                (4 << AMDGPU::Hwreg::OFFSET_SHIFT_) |
7728                                (1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_);
7729   const SDValue BitField = DAG.getTargetConstant(Denorm32Reg, SL, MVT::i16);
7730 
7731   const bool HasFP32Denormals = hasFP32Denormals(DAG.getMachineFunction());
7732 
7733   if (!HasFP32Denormals) {
7734     SDVTList BindParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
7735 
7736     SDValue EnableDenorm;
7737     if (Subtarget->hasDenormModeInst()) {
7738       const SDValue EnableDenormValue =
7739           getSPDenormModeValue(FP_DENORM_FLUSH_NONE, DAG, SL, Subtarget);
7740 
7741       EnableDenorm = DAG.getNode(AMDGPUISD::DENORM_MODE, SL, BindParamVTs,
7742                                  DAG.getEntryNode(), EnableDenormValue);
7743     } else {
7744       const SDValue EnableDenormValue = DAG.getConstant(FP_DENORM_FLUSH_NONE,
7745                                                         SL, MVT::i32);
7746       EnableDenorm = DAG.getNode(AMDGPUISD::SETREG, SL, BindParamVTs,
7747                                  DAG.getEntryNode(), EnableDenormValue,
7748                                  BitField);
7749     }
7750 
7751     SDValue Ops[3] = {
7752       NegDivScale0,
7753       EnableDenorm.getValue(0),
7754       EnableDenorm.getValue(1)
7755     };
7756 
7757     NegDivScale0 = DAG.getMergeValues(Ops, SL);
7758   }
7759 
7760   SDValue Fma0 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0,
7761                              ApproxRcp, One, NegDivScale0);
7762 
7763   SDValue Fma1 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, Fma0, ApproxRcp,
7764                              ApproxRcp, Fma0);
7765 
7766   SDValue Mul = getFPBinOp(DAG, ISD::FMUL, SL, MVT::f32, NumeratorScaled,
7767                            Fma1, Fma1);
7768 
7769   SDValue Fma2 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Mul,
7770                              NumeratorScaled, Mul);
7771 
7772   SDValue Fma3 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, Fma2, Fma1, Mul, Fma2);
7773 
7774   SDValue Fma4 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Fma3,
7775                              NumeratorScaled, Fma3);
7776 
7777   if (!HasFP32Denormals) {
7778     SDValue DisableDenorm;
7779     if (Subtarget->hasDenormModeInst()) {
7780       const SDValue DisableDenormValue =
7781           getSPDenormModeValue(FP_DENORM_FLUSH_IN_FLUSH_OUT, DAG, SL, Subtarget);
7782 
7783       DisableDenorm = DAG.getNode(AMDGPUISD::DENORM_MODE, SL, MVT::Other,
7784                                   Fma4.getValue(1), DisableDenormValue,
7785                                   Fma4.getValue(2));
7786     } else {
7787       const SDValue DisableDenormValue =
7788           DAG.getConstant(FP_DENORM_FLUSH_IN_FLUSH_OUT, SL, MVT::i32);
7789 
7790       DisableDenorm = DAG.getNode(AMDGPUISD::SETREG, SL, MVT::Other,
7791                                   Fma4.getValue(1), DisableDenormValue,
7792                                   BitField, Fma4.getValue(2));
7793     }
7794 
7795     SDValue OutputChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other,
7796                                       DisableDenorm, DAG.getRoot());
7797     DAG.setRoot(OutputChain);
7798   }
7799 
7800   SDValue Scale = NumeratorScaled.getValue(1);
7801   SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f32,
7802                              Fma4, Fma1, Fma3, Scale);
7803 
7804   return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f32, Fmas, RHS, LHS);
7805 }
7806 
7807 SDValue SITargetLowering::LowerFDIV64(SDValue Op, SelectionDAG &DAG) const {
7808   if (DAG.getTarget().Options.UnsafeFPMath)
7809     return lowerFastUnsafeFDIV(Op, DAG);
7810 
7811   SDLoc SL(Op);
7812   SDValue X = Op.getOperand(0);
7813   SDValue Y = Op.getOperand(1);
7814 
7815   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
7816 
7817   SDVTList ScaleVT = DAG.getVTList(MVT::f64, MVT::i1);
7818 
7819   SDValue DivScale0 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, Y, Y, X);
7820 
7821   SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f64, DivScale0);
7822 
7823   SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f64, DivScale0);
7824 
7825   SDValue Fma0 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Rcp, One);
7826 
7827   SDValue Fma1 = DAG.getNode(ISD::FMA, SL, MVT::f64, Rcp, Fma0, Rcp);
7828 
7829   SDValue Fma2 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Fma1, One);
7830 
7831   SDValue DivScale1 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, X, Y, X);
7832 
7833   SDValue Fma3 = DAG.getNode(ISD::FMA, SL, MVT::f64, Fma1, Fma2, Fma1);
7834   SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, DivScale1, Fma3);
7835 
7836   SDValue Fma4 = DAG.getNode(ISD::FMA, SL, MVT::f64,
7837                              NegDivScale0, Mul, DivScale1);
7838 
7839   SDValue Scale;
7840 
7841   if (!Subtarget->hasUsableDivScaleConditionOutput()) {
7842     // Workaround a hardware bug on SI where the condition output from div_scale
7843     // is not usable.
7844 
7845     const SDValue Hi = DAG.getConstant(1, SL, MVT::i32);
7846 
7847     // Figure out if the scale to use for div_fmas.
7848     SDValue NumBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X);
7849     SDValue DenBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Y);
7850     SDValue Scale0BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale0);
7851     SDValue Scale1BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale1);
7852 
7853     SDValue NumHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, NumBC, Hi);
7854     SDValue DenHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, DenBC, Hi);
7855 
7856     SDValue Scale0Hi
7857       = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale0BC, Hi);
7858     SDValue Scale1Hi
7859       = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale1BC, Hi);
7860 
7861     SDValue CmpDen = DAG.getSetCC(SL, MVT::i1, DenHi, Scale0Hi, ISD::SETEQ);
7862     SDValue CmpNum = DAG.getSetCC(SL, MVT::i1, NumHi, Scale1Hi, ISD::SETEQ);
7863     Scale = DAG.getNode(ISD::XOR, SL, MVT::i1, CmpNum, CmpDen);
7864   } else {
7865     Scale = DivScale1.getValue(1);
7866   }
7867 
7868   SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f64,
7869                              Fma4, Fma3, Mul, Scale);
7870 
7871   return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f64, Fmas, Y, X);
7872 }
7873 
7874 SDValue SITargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const {
7875   EVT VT = Op.getValueType();
7876 
7877   if (VT == MVT::f32)
7878     return LowerFDIV32(Op, DAG);
7879 
7880   if (VT == MVT::f64)
7881     return LowerFDIV64(Op, DAG);
7882 
7883   if (VT == MVT::f16)
7884     return LowerFDIV16(Op, DAG);
7885 
7886   llvm_unreachable("Unexpected type for fdiv");
7887 }
7888 
7889 SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
7890   SDLoc DL(Op);
7891   StoreSDNode *Store = cast<StoreSDNode>(Op);
7892   EVT VT = Store->getMemoryVT();
7893 
7894   if (VT == MVT::i1) {
7895     return DAG.getTruncStore(Store->getChain(), DL,
7896        DAG.getSExtOrTrunc(Store->getValue(), DL, MVT::i32),
7897        Store->getBasePtr(), MVT::i1, Store->getMemOperand());
7898   }
7899 
7900   assert(VT.isVector() &&
7901          Store->getValue().getValueType().getScalarType() == MVT::i32);
7902 
7903   if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
7904                                       VT, *Store->getMemOperand())) {
7905     return expandUnalignedStore(Store, DAG);
7906   }
7907 
7908   unsigned AS = Store->getAddressSpace();
7909   if (Subtarget->hasLDSMisalignedBug() &&
7910       AS == AMDGPUAS::FLAT_ADDRESS &&
7911       Store->getAlignment() < VT.getStoreSize() && VT.getSizeInBits() > 32) {
7912     return SplitVectorStore(Op, DAG);
7913   }
7914 
7915   MachineFunction &MF = DAG.getMachineFunction();
7916   SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
7917   // If there is a possibilty that flat instruction access scratch memory
7918   // then we need to use the same legalization rules we use for private.
7919   if (AS == AMDGPUAS::FLAT_ADDRESS)
7920     AS = MFI->hasFlatScratchInit() ?
7921          AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS;
7922 
7923   unsigned NumElements = VT.getVectorNumElements();
7924   if (AS == AMDGPUAS::GLOBAL_ADDRESS ||
7925       AS == AMDGPUAS::FLAT_ADDRESS) {
7926     if (NumElements > 4)
7927       return SplitVectorStore(Op, DAG);
7928     // v3 stores not supported on SI.
7929     if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
7930       return SplitVectorStore(Op, DAG);
7931     return SDValue();
7932   } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
7933     switch (Subtarget->getMaxPrivateElementSize()) {
7934     case 4:
7935       return scalarizeVectorStore(Store, DAG);
7936     case 8:
7937       if (NumElements > 2)
7938         return SplitVectorStore(Op, DAG);
7939       return SDValue();
7940     case 16:
7941       if (NumElements > 4 || NumElements == 3)
7942         return SplitVectorStore(Op, DAG);
7943       return SDValue();
7944     default:
7945       llvm_unreachable("unsupported private_element_size");
7946     }
7947   } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
7948     // Use ds_write_b128 if possible.
7949     if (Subtarget->useDS128() && Store->getAlignment() >= 16 &&
7950         VT.getStoreSize() == 16 && NumElements != 3)
7951       return SDValue();
7952 
7953     if (NumElements > 2)
7954       return SplitVectorStore(Op, DAG);
7955 
7956     // SI has a hardware bug in the LDS / GDS boounds checking: if the base
7957     // address is negative, then the instruction is incorrectly treated as
7958     // out-of-bounds even if base + offsets is in bounds. Split vectorized
7959     // stores here to avoid emitting ds_write2_b32. We may re-combine the
7960     // store later in the SILoadStoreOptimizer.
7961     if (!Subtarget->hasUsableDSOffset() &&
7962         NumElements == 2 && VT.getStoreSize() == 8 &&
7963         Store->getAlignment() < 8) {
7964       return SplitVectorStore(Op, DAG);
7965     }
7966 
7967     return SDValue();
7968   } else {
7969     llvm_unreachable("unhandled address space");
7970   }
7971 }
7972 
7973 SDValue SITargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const {
7974   SDLoc DL(Op);
7975   EVT VT = Op.getValueType();
7976   SDValue Arg = Op.getOperand(0);
7977   SDValue TrigVal;
7978 
7979   // TODO: Should this propagate fast-math-flags?
7980 
7981   SDValue OneOver2Pi = DAG.getConstantFP(0.5 / M_PI, DL, VT);
7982 
7983   if (Subtarget->hasTrigReducedRange()) {
7984     SDValue MulVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi);
7985     TrigVal = DAG.getNode(AMDGPUISD::FRACT, DL, VT, MulVal);
7986   } else {
7987     TrigVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi);
7988   }
7989 
7990   switch (Op.getOpcode()) {
7991   case ISD::FCOS:
7992     return DAG.getNode(AMDGPUISD::COS_HW, SDLoc(Op), VT, TrigVal);
7993   case ISD::FSIN:
7994     return DAG.getNode(AMDGPUISD::SIN_HW, SDLoc(Op), VT, TrigVal);
7995   default:
7996     llvm_unreachable("Wrong trig opcode");
7997   }
7998 }
7999 
8000 SDValue SITargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
8001   AtomicSDNode *AtomicNode = cast<AtomicSDNode>(Op);
8002   assert(AtomicNode->isCompareAndSwap());
8003   unsigned AS = AtomicNode->getAddressSpace();
8004 
8005   // No custom lowering required for local address space
8006   if (!isFlatGlobalAddrSpace(AS))
8007     return Op;
8008 
8009   // Non-local address space requires custom lowering for atomic compare
8010   // and swap; cmp and swap should be in a v2i32 or v2i64 in case of _X2
8011   SDLoc DL(Op);
8012   SDValue ChainIn = Op.getOperand(0);
8013   SDValue Addr = Op.getOperand(1);
8014   SDValue Old = Op.getOperand(2);
8015   SDValue New = Op.getOperand(3);
8016   EVT VT = Op.getValueType();
8017   MVT SimpleVT = VT.getSimpleVT();
8018   MVT VecType = MVT::getVectorVT(SimpleVT, 2);
8019 
8020   SDValue NewOld = DAG.getBuildVector(VecType, DL, {New, Old});
8021   SDValue Ops[] = { ChainIn, Addr, NewOld };
8022 
8023   return DAG.getMemIntrinsicNode(AMDGPUISD::ATOMIC_CMP_SWAP, DL, Op->getVTList(),
8024                                  Ops, VT, AtomicNode->getMemOperand());
8025 }
8026 
8027 //===----------------------------------------------------------------------===//
8028 // Custom DAG optimizations
8029 //===----------------------------------------------------------------------===//
8030 
8031 SDValue SITargetLowering::performUCharToFloatCombine(SDNode *N,
8032                                                      DAGCombinerInfo &DCI) const {
8033   EVT VT = N->getValueType(0);
8034   EVT ScalarVT = VT.getScalarType();
8035   if (ScalarVT != MVT::f32)
8036     return SDValue();
8037 
8038   SelectionDAG &DAG = DCI.DAG;
8039   SDLoc DL(N);
8040 
8041   SDValue Src = N->getOperand(0);
8042   EVT SrcVT = Src.getValueType();
8043 
8044   // TODO: We could try to match extracting the higher bytes, which would be
8045   // easier if i8 vectors weren't promoted to i32 vectors, particularly after
8046   // types are legalized. v4i8 -> v4f32 is probably the only case to worry
8047   // about in practice.
8048   if (DCI.isAfterLegalizeDAG() && SrcVT == MVT::i32) {
8049     if (DAG.MaskedValueIsZero(Src, APInt::getHighBitsSet(32, 24))) {
8050       SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, VT, Src);
8051       DCI.AddToWorklist(Cvt.getNode());
8052       return Cvt;
8053     }
8054   }
8055 
8056   return SDValue();
8057 }
8058 
8059 // (shl (add x, c1), c2) -> add (shl x, c2), (shl c1, c2)
8060 
8061 // This is a variant of
8062 // (mul (add x, c1), c2) -> add (mul x, c2), (mul c1, c2),
8063 //
8064 // The normal DAG combiner will do this, but only if the add has one use since
8065 // that would increase the number of instructions.
8066 //
8067 // This prevents us from seeing a constant offset that can be folded into a
8068 // memory instruction's addressing mode. If we know the resulting add offset of
8069 // a pointer can be folded into an addressing offset, we can replace the pointer
8070 // operand with the add of new constant offset. This eliminates one of the uses,
8071 // and may allow the remaining use to also be simplified.
8072 //
8073 SDValue SITargetLowering::performSHLPtrCombine(SDNode *N,
8074                                                unsigned AddrSpace,
8075                                                EVT MemVT,
8076                                                DAGCombinerInfo &DCI) const {
8077   SDValue N0 = N->getOperand(0);
8078   SDValue N1 = N->getOperand(1);
8079 
8080   // We only do this to handle cases where it's profitable when there are
8081   // multiple uses of the add, so defer to the standard combine.
8082   if ((N0.getOpcode() != ISD::ADD && N0.getOpcode() != ISD::OR) ||
8083       N0->hasOneUse())
8084     return SDValue();
8085 
8086   const ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N1);
8087   if (!CN1)
8088     return SDValue();
8089 
8090   const ConstantSDNode *CAdd = dyn_cast<ConstantSDNode>(N0.getOperand(1));
8091   if (!CAdd)
8092     return SDValue();
8093 
8094   // If the resulting offset is too large, we can't fold it into the addressing
8095   // mode offset.
8096   APInt Offset = CAdd->getAPIntValue() << CN1->getAPIntValue();
8097   Type *Ty = MemVT.getTypeForEVT(*DCI.DAG.getContext());
8098 
8099   AddrMode AM;
8100   AM.HasBaseReg = true;
8101   AM.BaseOffs = Offset.getSExtValue();
8102   if (!isLegalAddressingMode(DCI.DAG.getDataLayout(), AM, Ty, AddrSpace))
8103     return SDValue();
8104 
8105   SelectionDAG &DAG = DCI.DAG;
8106   SDLoc SL(N);
8107   EVT VT = N->getValueType(0);
8108 
8109   SDValue ShlX = DAG.getNode(ISD::SHL, SL, VT, N0.getOperand(0), N1);
8110   SDValue COffset = DAG.getConstant(Offset, SL, MVT::i32);
8111 
8112   SDNodeFlags Flags;
8113   Flags.setNoUnsignedWrap(N->getFlags().hasNoUnsignedWrap() &&
8114                           (N0.getOpcode() == ISD::OR ||
8115                            N0->getFlags().hasNoUnsignedWrap()));
8116 
8117   return DAG.getNode(ISD::ADD, SL, VT, ShlX, COffset, Flags);
8118 }
8119 
8120 SDValue SITargetLowering::performMemSDNodeCombine(MemSDNode *N,
8121                                                   DAGCombinerInfo &DCI) const {
8122   SDValue Ptr = N->getBasePtr();
8123   SelectionDAG &DAG = DCI.DAG;
8124   SDLoc SL(N);
8125 
8126   // TODO: We could also do this for multiplies.
8127   if (Ptr.getOpcode() == ISD::SHL) {
8128     SDValue NewPtr = performSHLPtrCombine(Ptr.getNode(),  N->getAddressSpace(),
8129                                           N->getMemoryVT(), DCI);
8130     if (NewPtr) {
8131       SmallVector<SDValue, 8> NewOps(N->op_begin(), N->op_end());
8132 
8133       NewOps[N->getOpcode() == ISD::STORE ? 2 : 1] = NewPtr;
8134       return SDValue(DAG.UpdateNodeOperands(N, NewOps), 0);
8135     }
8136   }
8137 
8138   return SDValue();
8139 }
8140 
8141 static bool bitOpWithConstantIsReducible(unsigned Opc, uint32_t Val) {
8142   return (Opc == ISD::AND && (Val == 0 || Val == 0xffffffff)) ||
8143          (Opc == ISD::OR && (Val == 0xffffffff || Val == 0)) ||
8144          (Opc == ISD::XOR && Val == 0);
8145 }
8146 
8147 // Break up 64-bit bit operation of a constant into two 32-bit and/or/xor. This
8148 // will typically happen anyway for a VALU 64-bit and. This exposes other 32-bit
8149 // integer combine opportunities since most 64-bit operations are decomposed
8150 // this way.  TODO: We won't want this for SALU especially if it is an inline
8151 // immediate.
8152 SDValue SITargetLowering::splitBinaryBitConstantOp(
8153   DAGCombinerInfo &DCI,
8154   const SDLoc &SL,
8155   unsigned Opc, SDValue LHS,
8156   const ConstantSDNode *CRHS) const {
8157   uint64_t Val = CRHS->getZExtValue();
8158   uint32_t ValLo = Lo_32(Val);
8159   uint32_t ValHi = Hi_32(Val);
8160   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
8161 
8162     if ((bitOpWithConstantIsReducible(Opc, ValLo) ||
8163          bitOpWithConstantIsReducible(Opc, ValHi)) ||
8164         (CRHS->hasOneUse() && !TII->isInlineConstant(CRHS->getAPIntValue()))) {
8165     // If we need to materialize a 64-bit immediate, it will be split up later
8166     // anyway. Avoid creating the harder to understand 64-bit immediate
8167     // materialization.
8168     return splitBinaryBitConstantOpImpl(DCI, SL, Opc, LHS, ValLo, ValHi);
8169   }
8170 
8171   return SDValue();
8172 }
8173 
8174 // Returns true if argument is a boolean value which is not serialized into
8175 // memory or argument and does not require v_cmdmask_b32 to be deserialized.
8176 static bool isBoolSGPR(SDValue V) {
8177   if (V.getValueType() != MVT::i1)
8178     return false;
8179   switch (V.getOpcode()) {
8180   default: break;
8181   case ISD::SETCC:
8182   case ISD::AND:
8183   case ISD::OR:
8184   case ISD::XOR:
8185   case AMDGPUISD::FP_CLASS:
8186     return true;
8187   }
8188   return false;
8189 }
8190 
8191 // If a constant has all zeroes or all ones within each byte return it.
8192 // Otherwise return 0.
8193 static uint32_t getConstantPermuteMask(uint32_t C) {
8194   // 0xff for any zero byte in the mask
8195   uint32_t ZeroByteMask = 0;
8196   if (!(C & 0x000000ff)) ZeroByteMask |= 0x000000ff;
8197   if (!(C & 0x0000ff00)) ZeroByteMask |= 0x0000ff00;
8198   if (!(C & 0x00ff0000)) ZeroByteMask |= 0x00ff0000;
8199   if (!(C & 0xff000000)) ZeroByteMask |= 0xff000000;
8200   uint32_t NonZeroByteMask = ~ZeroByteMask; // 0xff for any non-zero byte
8201   if ((NonZeroByteMask & C) != NonZeroByteMask)
8202     return 0; // Partial bytes selected.
8203   return C;
8204 }
8205 
8206 // Check if a node selects whole bytes from its operand 0 starting at a byte
8207 // boundary while masking the rest. Returns select mask as in the v_perm_b32
8208 // or -1 if not succeeded.
8209 // Note byte select encoding:
8210 // value 0-3 selects corresponding source byte;
8211 // value 0xc selects zero;
8212 // value 0xff selects 0xff.
8213 static uint32_t getPermuteMask(SelectionDAG &DAG, SDValue V) {
8214   assert(V.getValueSizeInBits() == 32);
8215 
8216   if (V.getNumOperands() != 2)
8217     return ~0;
8218 
8219   ConstantSDNode *N1 = dyn_cast<ConstantSDNode>(V.getOperand(1));
8220   if (!N1)
8221     return ~0;
8222 
8223   uint32_t C = N1->getZExtValue();
8224 
8225   switch (V.getOpcode()) {
8226   default:
8227     break;
8228   case ISD::AND:
8229     if (uint32_t ConstMask = getConstantPermuteMask(C)) {
8230       return (0x03020100 & ConstMask) | (0x0c0c0c0c & ~ConstMask);
8231     }
8232     break;
8233 
8234   case ISD::OR:
8235     if (uint32_t ConstMask = getConstantPermuteMask(C)) {
8236       return (0x03020100 & ~ConstMask) | ConstMask;
8237     }
8238     break;
8239 
8240   case ISD::SHL:
8241     if (C % 8)
8242       return ~0;
8243 
8244     return uint32_t((0x030201000c0c0c0cull << C) >> 32);
8245 
8246   case ISD::SRL:
8247     if (C % 8)
8248       return ~0;
8249 
8250     return uint32_t(0x0c0c0c0c03020100ull >> C);
8251   }
8252 
8253   return ~0;
8254 }
8255 
8256 SDValue SITargetLowering::performAndCombine(SDNode *N,
8257                                             DAGCombinerInfo &DCI) const {
8258   if (DCI.isBeforeLegalize())
8259     return SDValue();
8260 
8261   SelectionDAG &DAG = DCI.DAG;
8262   EVT VT = N->getValueType(0);
8263   SDValue LHS = N->getOperand(0);
8264   SDValue RHS = N->getOperand(1);
8265 
8266 
8267   const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS);
8268   if (VT == MVT::i64 && CRHS) {
8269     if (SDValue Split
8270         = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::AND, LHS, CRHS))
8271       return Split;
8272   }
8273 
8274   if (CRHS && VT == MVT::i32) {
8275     // and (srl x, c), mask => shl (bfe x, nb + c, mask >> nb), nb
8276     // nb = number of trailing zeroes in mask
8277     // It can be optimized out using SDWA for GFX8+ in the SDWA peephole pass,
8278     // given that we are selecting 8 or 16 bit fields starting at byte boundary.
8279     uint64_t Mask = CRHS->getZExtValue();
8280     unsigned Bits = countPopulation(Mask);
8281     if (getSubtarget()->hasSDWA() && LHS->getOpcode() == ISD::SRL &&
8282         (Bits == 8 || Bits == 16) && isShiftedMask_64(Mask) && !(Mask & 1)) {
8283       if (auto *CShift = dyn_cast<ConstantSDNode>(LHS->getOperand(1))) {
8284         unsigned Shift = CShift->getZExtValue();
8285         unsigned NB = CRHS->getAPIntValue().countTrailingZeros();
8286         unsigned Offset = NB + Shift;
8287         if ((Offset & (Bits - 1)) == 0) { // Starts at a byte or word boundary.
8288           SDLoc SL(N);
8289           SDValue BFE = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32,
8290                                     LHS->getOperand(0),
8291                                     DAG.getConstant(Offset, SL, MVT::i32),
8292                                     DAG.getConstant(Bits, SL, MVT::i32));
8293           EVT NarrowVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
8294           SDValue Ext = DAG.getNode(ISD::AssertZext, SL, VT, BFE,
8295                                     DAG.getValueType(NarrowVT));
8296           SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(LHS), VT, Ext,
8297                                     DAG.getConstant(NB, SDLoc(CRHS), MVT::i32));
8298           return Shl;
8299         }
8300       }
8301     }
8302 
8303     // and (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2)
8304     if (LHS.hasOneUse() && LHS.getOpcode() == AMDGPUISD::PERM &&
8305         isa<ConstantSDNode>(LHS.getOperand(2))) {
8306       uint32_t Sel = getConstantPermuteMask(Mask);
8307       if (!Sel)
8308         return SDValue();
8309 
8310       // Select 0xc for all zero bytes
8311       Sel = (LHS.getConstantOperandVal(2) & Sel) | (~Sel & 0x0c0c0c0c);
8312       SDLoc DL(N);
8313       return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0),
8314                          LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32));
8315     }
8316   }
8317 
8318   // (and (fcmp ord x, x), (fcmp une (fabs x), inf)) ->
8319   // fp_class x, ~(s_nan | q_nan | n_infinity | p_infinity)
8320   if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == ISD::SETCC) {
8321     ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
8322     ISD::CondCode RCC = cast<CondCodeSDNode>(RHS.getOperand(2))->get();
8323 
8324     SDValue X = LHS.getOperand(0);
8325     SDValue Y = RHS.getOperand(0);
8326     if (Y.getOpcode() != ISD::FABS || Y.getOperand(0) != X)
8327       return SDValue();
8328 
8329     if (LCC == ISD::SETO) {
8330       if (X != LHS.getOperand(1))
8331         return SDValue();
8332 
8333       if (RCC == ISD::SETUNE) {
8334         const ConstantFPSDNode *C1 = dyn_cast<ConstantFPSDNode>(RHS.getOperand(1));
8335         if (!C1 || !C1->isInfinity() || C1->isNegative())
8336           return SDValue();
8337 
8338         const uint32_t Mask = SIInstrFlags::N_NORMAL |
8339                               SIInstrFlags::N_SUBNORMAL |
8340                               SIInstrFlags::N_ZERO |
8341                               SIInstrFlags::P_ZERO |
8342                               SIInstrFlags::P_SUBNORMAL |
8343                               SIInstrFlags::P_NORMAL;
8344 
8345         static_assert(((~(SIInstrFlags::S_NAN |
8346                           SIInstrFlags::Q_NAN |
8347                           SIInstrFlags::N_INFINITY |
8348                           SIInstrFlags::P_INFINITY)) & 0x3ff) == Mask,
8349                       "mask not equal");
8350 
8351         SDLoc DL(N);
8352         return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
8353                            X, DAG.getConstant(Mask, DL, MVT::i32));
8354       }
8355     }
8356   }
8357 
8358   if (RHS.getOpcode() == ISD::SETCC && LHS.getOpcode() == AMDGPUISD::FP_CLASS)
8359     std::swap(LHS, RHS);
8360 
8361   if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == AMDGPUISD::FP_CLASS &&
8362       RHS.hasOneUse()) {
8363     ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
8364     // and (fcmp seto), (fp_class x, mask) -> fp_class x, mask & ~(p_nan | n_nan)
8365     // and (fcmp setuo), (fp_class x, mask) -> fp_class x, mask & (p_nan | n_nan)
8366     const ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
8367     if ((LCC == ISD::SETO || LCC == ISD::SETUO) && Mask &&
8368         (RHS.getOperand(0) == LHS.getOperand(0) &&
8369          LHS.getOperand(0) == LHS.getOperand(1))) {
8370       const unsigned OrdMask = SIInstrFlags::S_NAN | SIInstrFlags::Q_NAN;
8371       unsigned NewMask = LCC == ISD::SETO ?
8372         Mask->getZExtValue() & ~OrdMask :
8373         Mask->getZExtValue() & OrdMask;
8374 
8375       SDLoc DL(N);
8376       return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, RHS.getOperand(0),
8377                          DAG.getConstant(NewMask, DL, MVT::i32));
8378     }
8379   }
8380 
8381   if (VT == MVT::i32 &&
8382       (RHS.getOpcode() == ISD::SIGN_EXTEND || LHS.getOpcode() == ISD::SIGN_EXTEND)) {
8383     // and x, (sext cc from i1) => select cc, x, 0
8384     if (RHS.getOpcode() != ISD::SIGN_EXTEND)
8385       std::swap(LHS, RHS);
8386     if (isBoolSGPR(RHS.getOperand(0)))
8387       return DAG.getSelect(SDLoc(N), MVT::i32, RHS.getOperand(0),
8388                            LHS, DAG.getConstant(0, SDLoc(N), MVT::i32));
8389   }
8390 
8391   // and (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2)
8392   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
8393   if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() &&
8394       N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32) != -1) {
8395     uint32_t LHSMask = getPermuteMask(DAG, LHS);
8396     uint32_t RHSMask = getPermuteMask(DAG, RHS);
8397     if (LHSMask != ~0u && RHSMask != ~0u) {
8398       // Canonicalize the expression in an attempt to have fewer unique masks
8399       // and therefore fewer registers used to hold the masks.
8400       if (LHSMask > RHSMask) {
8401         std::swap(LHSMask, RHSMask);
8402         std::swap(LHS, RHS);
8403       }
8404 
8405       // Select 0xc for each lane used from source operand. Zero has 0xc mask
8406       // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range.
8407       uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
8408       uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
8409 
8410       // Check of we need to combine values from two sources within a byte.
8411       if (!(LHSUsedLanes & RHSUsedLanes) &&
8412           // If we select high and lower word keep it for SDWA.
8413           // TODO: teach SDWA to work with v_perm_b32 and remove the check.
8414           !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) {
8415         // Each byte in each mask is either selector mask 0-3, or has higher
8416         // bits set in either of masks, which can be 0xff for 0xff or 0x0c for
8417         // zero. If 0x0c is in either mask it shall always be 0x0c. Otherwise
8418         // mask which is not 0xff wins. By anding both masks we have a correct
8419         // result except that 0x0c shall be corrected to give 0x0c only.
8420         uint32_t Mask = LHSMask & RHSMask;
8421         for (unsigned I = 0; I < 32; I += 8) {
8422           uint32_t ByteSel = 0xff << I;
8423           if ((LHSMask & ByteSel) == 0x0c || (RHSMask & ByteSel) == 0x0c)
8424             Mask &= (0x0c << I) & 0xffffffff;
8425         }
8426 
8427         // Add 4 to each active LHS lane. It will not affect any existing 0xff
8428         // or 0x0c.
8429         uint32_t Sel = Mask | (LHSUsedLanes & 0x04040404);
8430         SDLoc DL(N);
8431 
8432         return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32,
8433                            LHS.getOperand(0), RHS.getOperand(0),
8434                            DAG.getConstant(Sel, DL, MVT::i32));
8435       }
8436     }
8437   }
8438 
8439   return SDValue();
8440 }
8441 
8442 SDValue SITargetLowering::performOrCombine(SDNode *N,
8443                                            DAGCombinerInfo &DCI) const {
8444   SelectionDAG &DAG = DCI.DAG;
8445   SDValue LHS = N->getOperand(0);
8446   SDValue RHS = N->getOperand(1);
8447 
8448   EVT VT = N->getValueType(0);
8449   if (VT == MVT::i1) {
8450     // or (fp_class x, c1), (fp_class x, c2) -> fp_class x, (c1 | c2)
8451     if (LHS.getOpcode() == AMDGPUISD::FP_CLASS &&
8452         RHS.getOpcode() == AMDGPUISD::FP_CLASS) {
8453       SDValue Src = LHS.getOperand(0);
8454       if (Src != RHS.getOperand(0))
8455         return SDValue();
8456 
8457       const ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
8458       const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
8459       if (!CLHS || !CRHS)
8460         return SDValue();
8461 
8462       // Only 10 bits are used.
8463       static const uint32_t MaxMask = 0x3ff;
8464 
8465       uint32_t NewMask = (CLHS->getZExtValue() | CRHS->getZExtValue()) & MaxMask;
8466       SDLoc DL(N);
8467       return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
8468                          Src, DAG.getConstant(NewMask, DL, MVT::i32));
8469     }
8470 
8471     return SDValue();
8472   }
8473 
8474   // or (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2)
8475   if (isa<ConstantSDNode>(RHS) && LHS.hasOneUse() &&
8476       LHS.getOpcode() == AMDGPUISD::PERM &&
8477       isa<ConstantSDNode>(LHS.getOperand(2))) {
8478     uint32_t Sel = getConstantPermuteMask(N->getConstantOperandVal(1));
8479     if (!Sel)
8480       return SDValue();
8481 
8482     Sel |= LHS.getConstantOperandVal(2);
8483     SDLoc DL(N);
8484     return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0),
8485                        LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32));
8486   }
8487 
8488   // or (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2)
8489   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
8490   if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() &&
8491       N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32) != -1) {
8492     uint32_t LHSMask = getPermuteMask(DAG, LHS);
8493     uint32_t RHSMask = getPermuteMask(DAG, RHS);
8494     if (LHSMask != ~0u && RHSMask != ~0u) {
8495       // Canonicalize the expression in an attempt to have fewer unique masks
8496       // and therefore fewer registers used to hold the masks.
8497       if (LHSMask > RHSMask) {
8498         std::swap(LHSMask, RHSMask);
8499         std::swap(LHS, RHS);
8500       }
8501 
8502       // Select 0xc for each lane used from source operand. Zero has 0xc mask
8503       // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range.
8504       uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
8505       uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
8506 
8507       // Check of we need to combine values from two sources within a byte.
8508       if (!(LHSUsedLanes & RHSUsedLanes) &&
8509           // If we select high and lower word keep it for SDWA.
8510           // TODO: teach SDWA to work with v_perm_b32 and remove the check.
8511           !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) {
8512         // Kill zero bytes selected by other mask. Zero value is 0xc.
8513         LHSMask &= ~RHSUsedLanes;
8514         RHSMask &= ~LHSUsedLanes;
8515         // Add 4 to each active LHS lane
8516         LHSMask |= LHSUsedLanes & 0x04040404;
8517         // Combine masks
8518         uint32_t Sel = LHSMask | RHSMask;
8519         SDLoc DL(N);
8520 
8521         return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32,
8522                            LHS.getOperand(0), RHS.getOperand(0),
8523                            DAG.getConstant(Sel, DL, MVT::i32));
8524       }
8525     }
8526   }
8527 
8528   if (VT != MVT::i64)
8529     return SDValue();
8530 
8531   // TODO: This could be a generic combine with a predicate for extracting the
8532   // high half of an integer being free.
8533 
8534   // (or i64:x, (zero_extend i32:y)) ->
8535   //   i64 (bitcast (v2i32 build_vector (or i32:y, lo_32(x)), hi_32(x)))
8536   if (LHS.getOpcode() == ISD::ZERO_EXTEND &&
8537       RHS.getOpcode() != ISD::ZERO_EXTEND)
8538     std::swap(LHS, RHS);
8539 
8540   if (RHS.getOpcode() == ISD::ZERO_EXTEND) {
8541     SDValue ExtSrc = RHS.getOperand(0);
8542     EVT SrcVT = ExtSrc.getValueType();
8543     if (SrcVT == MVT::i32) {
8544       SDLoc SL(N);
8545       SDValue LowLHS, HiBits;
8546       std::tie(LowLHS, HiBits) = split64BitValue(LHS, DAG);
8547       SDValue LowOr = DAG.getNode(ISD::OR, SL, MVT::i32, LowLHS, ExtSrc);
8548 
8549       DCI.AddToWorklist(LowOr.getNode());
8550       DCI.AddToWorklist(HiBits.getNode());
8551 
8552       SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
8553                                 LowOr, HiBits);
8554       return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
8555     }
8556   }
8557 
8558   const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
8559   if (CRHS) {
8560     if (SDValue Split
8561           = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::OR, LHS, CRHS))
8562       return Split;
8563   }
8564 
8565   return SDValue();
8566 }
8567 
8568 SDValue SITargetLowering::performXorCombine(SDNode *N,
8569                                             DAGCombinerInfo &DCI) const {
8570   EVT VT = N->getValueType(0);
8571   if (VT != MVT::i64)
8572     return SDValue();
8573 
8574   SDValue LHS = N->getOperand(0);
8575   SDValue RHS = N->getOperand(1);
8576 
8577   const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS);
8578   if (CRHS) {
8579     if (SDValue Split
8580           = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::XOR, LHS, CRHS))
8581       return Split;
8582   }
8583 
8584   return SDValue();
8585 }
8586 
8587 // Instructions that will be lowered with a final instruction that zeros the
8588 // high result bits.
8589 // XXX - probably only need to list legal operations.
8590 static bool fp16SrcZerosHighBits(unsigned Opc) {
8591   switch (Opc) {
8592   case ISD::FADD:
8593   case ISD::FSUB:
8594   case ISD::FMUL:
8595   case ISD::FDIV:
8596   case ISD::FREM:
8597   case ISD::FMA:
8598   case ISD::FMAD:
8599   case ISD::FCANONICALIZE:
8600   case ISD::FP_ROUND:
8601   case ISD::UINT_TO_FP:
8602   case ISD::SINT_TO_FP:
8603   case ISD::FABS:
8604     // Fabs is lowered to a bit operation, but it's an and which will clear the
8605     // high bits anyway.
8606   case ISD::FSQRT:
8607   case ISD::FSIN:
8608   case ISD::FCOS:
8609   case ISD::FPOWI:
8610   case ISD::FPOW:
8611   case ISD::FLOG:
8612   case ISD::FLOG2:
8613   case ISD::FLOG10:
8614   case ISD::FEXP:
8615   case ISD::FEXP2:
8616   case ISD::FCEIL:
8617   case ISD::FTRUNC:
8618   case ISD::FRINT:
8619   case ISD::FNEARBYINT:
8620   case ISD::FROUND:
8621   case ISD::FFLOOR:
8622   case ISD::FMINNUM:
8623   case ISD::FMAXNUM:
8624   case AMDGPUISD::FRACT:
8625   case AMDGPUISD::CLAMP:
8626   case AMDGPUISD::COS_HW:
8627   case AMDGPUISD::SIN_HW:
8628   case AMDGPUISD::FMIN3:
8629   case AMDGPUISD::FMAX3:
8630   case AMDGPUISD::FMED3:
8631   case AMDGPUISD::FMAD_FTZ:
8632   case AMDGPUISD::RCP:
8633   case AMDGPUISD::RSQ:
8634   case AMDGPUISD::RCP_IFLAG:
8635   case AMDGPUISD::LDEXP:
8636     return true;
8637   default:
8638     // fcopysign, select and others may be lowered to 32-bit bit operations
8639     // which don't zero the high bits.
8640     return false;
8641   }
8642 }
8643 
8644 SDValue SITargetLowering::performZeroExtendCombine(SDNode *N,
8645                                                    DAGCombinerInfo &DCI) const {
8646   if (!Subtarget->has16BitInsts() ||
8647       DCI.getDAGCombineLevel() < AfterLegalizeDAG)
8648     return SDValue();
8649 
8650   EVT VT = N->getValueType(0);
8651   if (VT != MVT::i32)
8652     return SDValue();
8653 
8654   SDValue Src = N->getOperand(0);
8655   if (Src.getValueType() != MVT::i16)
8656     return SDValue();
8657 
8658   // (i32 zext (i16 (bitcast f16:$src))) -> fp16_zext $src
8659   // FIXME: It is not universally true that the high bits are zeroed on gfx9.
8660   if (Src.getOpcode() == ISD::BITCAST) {
8661     SDValue BCSrc = Src.getOperand(0);
8662     if (BCSrc.getValueType() == MVT::f16 &&
8663         fp16SrcZerosHighBits(BCSrc.getOpcode()))
8664       return DCI.DAG.getNode(AMDGPUISD::FP16_ZEXT, SDLoc(N), VT, BCSrc);
8665   }
8666 
8667   return SDValue();
8668 }
8669 
8670 SDValue SITargetLowering::performSignExtendInRegCombine(SDNode *N,
8671                                                         DAGCombinerInfo &DCI)
8672                                                         const {
8673   SDValue Src = N->getOperand(0);
8674   auto *VTSign = cast<VTSDNode>(N->getOperand(1));
8675 
8676   if (((Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE &&
8677       VTSign->getVT() == MVT::i8) ||
8678       (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_USHORT &&
8679       VTSign->getVT() == MVT::i16)) &&
8680       Src.hasOneUse()) {
8681     auto *M = cast<MemSDNode>(Src);
8682     SDValue Ops[] = {
8683       Src.getOperand(0), // Chain
8684       Src.getOperand(1), // rsrc
8685       Src.getOperand(2), // vindex
8686       Src.getOperand(3), // voffset
8687       Src.getOperand(4), // soffset
8688       Src.getOperand(5), // offset
8689       Src.getOperand(6),
8690       Src.getOperand(7)
8691     };
8692     // replace with BUFFER_LOAD_BYTE/SHORT
8693     SDVTList ResList = DCI.DAG.getVTList(MVT::i32,
8694                                          Src.getOperand(0).getValueType());
8695     unsigned Opc = (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE) ?
8696                    AMDGPUISD::BUFFER_LOAD_BYTE : AMDGPUISD::BUFFER_LOAD_SHORT;
8697     SDValue BufferLoadSignExt = DCI.DAG.getMemIntrinsicNode(Opc, SDLoc(N),
8698                                                           ResList,
8699                                                           Ops, M->getMemoryVT(),
8700                                                           M->getMemOperand());
8701     return DCI.DAG.getMergeValues({BufferLoadSignExt,
8702                                   BufferLoadSignExt.getValue(1)}, SDLoc(N));
8703   }
8704   return SDValue();
8705 }
8706 
8707 SDValue SITargetLowering::performClassCombine(SDNode *N,
8708                                               DAGCombinerInfo &DCI) const {
8709   SelectionDAG &DAG = DCI.DAG;
8710   SDValue Mask = N->getOperand(1);
8711 
8712   // fp_class x, 0 -> false
8713   if (const ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Mask)) {
8714     if (CMask->isNullValue())
8715       return DAG.getConstant(0, SDLoc(N), MVT::i1);
8716   }
8717 
8718   if (N->getOperand(0).isUndef())
8719     return DAG.getUNDEF(MVT::i1);
8720 
8721   return SDValue();
8722 }
8723 
8724 SDValue SITargetLowering::performRcpCombine(SDNode *N,
8725                                             DAGCombinerInfo &DCI) const {
8726   EVT VT = N->getValueType(0);
8727   SDValue N0 = N->getOperand(0);
8728 
8729   if (N0.isUndef())
8730     return N0;
8731 
8732   if (VT == MVT::f32 && (N0.getOpcode() == ISD::UINT_TO_FP ||
8733                          N0.getOpcode() == ISD::SINT_TO_FP)) {
8734     return DCI.DAG.getNode(AMDGPUISD::RCP_IFLAG, SDLoc(N), VT, N0,
8735                            N->getFlags());
8736   }
8737 
8738   return AMDGPUTargetLowering::performRcpCombine(N, DCI);
8739 }
8740 
8741 bool SITargetLowering::isCanonicalized(SelectionDAG &DAG, SDValue Op,
8742                                        unsigned MaxDepth) const {
8743   unsigned Opcode = Op.getOpcode();
8744   if (Opcode == ISD::FCANONICALIZE)
8745     return true;
8746 
8747   if (auto *CFP = dyn_cast<ConstantFPSDNode>(Op)) {
8748     auto F = CFP->getValueAPF();
8749     if (F.isNaN() && F.isSignaling())
8750       return false;
8751     return !F.isDenormal() || denormalsEnabledForType(DAG, Op.getValueType());
8752   }
8753 
8754   // If source is a result of another standard FP operation it is already in
8755   // canonical form.
8756   if (MaxDepth == 0)
8757     return false;
8758 
8759   switch (Opcode) {
8760   // These will flush denorms if required.
8761   case ISD::FADD:
8762   case ISD::FSUB:
8763   case ISD::FMUL:
8764   case ISD::FCEIL:
8765   case ISD::FFLOOR:
8766   case ISD::FMA:
8767   case ISD::FMAD:
8768   case ISD::FSQRT:
8769   case ISD::FDIV:
8770   case ISD::FREM:
8771   case ISD::FP_ROUND:
8772   case ISD::FP_EXTEND:
8773   case AMDGPUISD::FMUL_LEGACY:
8774   case AMDGPUISD::FMAD_FTZ:
8775   case AMDGPUISD::RCP:
8776   case AMDGPUISD::RSQ:
8777   case AMDGPUISD::RSQ_CLAMP:
8778   case AMDGPUISD::RCP_LEGACY:
8779   case AMDGPUISD::RSQ_LEGACY:
8780   case AMDGPUISD::RCP_IFLAG:
8781   case AMDGPUISD::TRIG_PREOP:
8782   case AMDGPUISD::DIV_SCALE:
8783   case AMDGPUISD::DIV_FMAS:
8784   case AMDGPUISD::DIV_FIXUP:
8785   case AMDGPUISD::FRACT:
8786   case AMDGPUISD::LDEXP:
8787   case AMDGPUISD::CVT_PKRTZ_F16_F32:
8788   case AMDGPUISD::CVT_F32_UBYTE0:
8789   case AMDGPUISD::CVT_F32_UBYTE1:
8790   case AMDGPUISD::CVT_F32_UBYTE2:
8791   case AMDGPUISD::CVT_F32_UBYTE3:
8792     return true;
8793 
8794   // It can/will be lowered or combined as a bit operation.
8795   // Need to check their input recursively to handle.
8796   case ISD::FNEG:
8797   case ISD::FABS:
8798   case ISD::FCOPYSIGN:
8799     return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1);
8800 
8801   case ISD::FSIN:
8802   case ISD::FCOS:
8803   case ISD::FSINCOS:
8804     return Op.getValueType().getScalarType() != MVT::f16;
8805 
8806   case ISD::FMINNUM:
8807   case ISD::FMAXNUM:
8808   case ISD::FMINNUM_IEEE:
8809   case ISD::FMAXNUM_IEEE:
8810   case AMDGPUISD::CLAMP:
8811   case AMDGPUISD::FMED3:
8812   case AMDGPUISD::FMAX3:
8813   case AMDGPUISD::FMIN3: {
8814     // FIXME: Shouldn't treat the generic operations different based these.
8815     // However, we aren't really required to flush the result from
8816     // minnum/maxnum..
8817 
8818     // snans will be quieted, so we only need to worry about denormals.
8819     if (Subtarget->supportsMinMaxDenormModes() ||
8820         denormalsEnabledForType(DAG, Op.getValueType()))
8821       return true;
8822 
8823     // Flushing may be required.
8824     // In pre-GFX9 targets V_MIN_F32 and others do not flush denorms. For such
8825     // targets need to check their input recursively.
8826 
8827     // FIXME: Does this apply with clamp? It's implemented with max.
8828     for (unsigned I = 0, E = Op.getNumOperands(); I != E; ++I) {
8829       if (!isCanonicalized(DAG, Op.getOperand(I), MaxDepth - 1))
8830         return false;
8831     }
8832 
8833     return true;
8834   }
8835   case ISD::SELECT: {
8836     return isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1) &&
8837            isCanonicalized(DAG, Op.getOperand(2), MaxDepth - 1);
8838   }
8839   case ISD::BUILD_VECTOR: {
8840     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
8841       SDValue SrcOp = Op.getOperand(i);
8842       if (!isCanonicalized(DAG, SrcOp, MaxDepth - 1))
8843         return false;
8844     }
8845 
8846     return true;
8847   }
8848   case ISD::EXTRACT_VECTOR_ELT:
8849   case ISD::EXTRACT_SUBVECTOR: {
8850     return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1);
8851   }
8852   case ISD::INSERT_VECTOR_ELT: {
8853     return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1) &&
8854            isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1);
8855   }
8856   case ISD::UNDEF:
8857     // Could be anything.
8858     return false;
8859 
8860   case ISD::BITCAST: {
8861     // Hack round the mess we make when legalizing extract_vector_elt
8862     SDValue Src = Op.getOperand(0);
8863     if (Src.getValueType() == MVT::i16 &&
8864         Src.getOpcode() == ISD::TRUNCATE) {
8865       SDValue TruncSrc = Src.getOperand(0);
8866       if (TruncSrc.getValueType() == MVT::i32 &&
8867           TruncSrc.getOpcode() == ISD::BITCAST &&
8868           TruncSrc.getOperand(0).getValueType() == MVT::v2f16) {
8869         return isCanonicalized(DAG, TruncSrc.getOperand(0), MaxDepth - 1);
8870       }
8871     }
8872 
8873     return false;
8874   }
8875   case ISD::INTRINSIC_WO_CHAIN: {
8876     unsigned IntrinsicID
8877       = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
8878     // TODO: Handle more intrinsics
8879     switch (IntrinsicID) {
8880     case Intrinsic::amdgcn_cvt_pkrtz:
8881     case Intrinsic::amdgcn_cubeid:
8882     case Intrinsic::amdgcn_frexp_mant:
8883     case Intrinsic::amdgcn_fdot2:
8884       return true;
8885     default:
8886       break;
8887     }
8888 
8889     LLVM_FALLTHROUGH;
8890   }
8891   default:
8892     return denormalsEnabledForType(DAG, Op.getValueType()) &&
8893            DAG.isKnownNeverSNaN(Op);
8894   }
8895 
8896   llvm_unreachable("invalid operation");
8897 }
8898 
8899 // Constant fold canonicalize.
8900 SDValue SITargetLowering::getCanonicalConstantFP(
8901   SelectionDAG &DAG, const SDLoc &SL, EVT VT, const APFloat &C) const {
8902   // Flush denormals to 0 if not enabled.
8903   if (C.isDenormal() && !denormalsEnabledForType(DAG, VT))
8904     return DAG.getConstantFP(0.0, SL, VT);
8905 
8906   if (C.isNaN()) {
8907     APFloat CanonicalQNaN = APFloat::getQNaN(C.getSemantics());
8908     if (C.isSignaling()) {
8909       // Quiet a signaling NaN.
8910       // FIXME: Is this supposed to preserve payload bits?
8911       return DAG.getConstantFP(CanonicalQNaN, SL, VT);
8912     }
8913 
8914     // Make sure it is the canonical NaN bitpattern.
8915     //
8916     // TODO: Can we use -1 as the canonical NaN value since it's an inline
8917     // immediate?
8918     if (C.bitcastToAPInt() != CanonicalQNaN.bitcastToAPInt())
8919       return DAG.getConstantFP(CanonicalQNaN, SL, VT);
8920   }
8921 
8922   // Already canonical.
8923   return DAG.getConstantFP(C, SL, VT);
8924 }
8925 
8926 static bool vectorEltWillFoldAway(SDValue Op) {
8927   return Op.isUndef() || isa<ConstantFPSDNode>(Op);
8928 }
8929 
8930 SDValue SITargetLowering::performFCanonicalizeCombine(
8931   SDNode *N,
8932   DAGCombinerInfo &DCI) const {
8933   SelectionDAG &DAG = DCI.DAG;
8934   SDValue N0 = N->getOperand(0);
8935   EVT VT = N->getValueType(0);
8936 
8937   // fcanonicalize undef -> qnan
8938   if (N0.isUndef()) {
8939     APFloat QNaN = APFloat::getQNaN(SelectionDAG::EVTToAPFloatSemantics(VT));
8940     return DAG.getConstantFP(QNaN, SDLoc(N), VT);
8941   }
8942 
8943   if (ConstantFPSDNode *CFP = isConstOrConstSplatFP(N0)) {
8944     EVT VT = N->getValueType(0);
8945     return getCanonicalConstantFP(DAG, SDLoc(N), VT, CFP->getValueAPF());
8946   }
8947 
8948   // fcanonicalize (build_vector x, k) -> build_vector (fcanonicalize x),
8949   //                                                   (fcanonicalize k)
8950   //
8951   // fcanonicalize (build_vector x, undef) -> build_vector (fcanonicalize x), 0
8952 
8953   // TODO: This could be better with wider vectors that will be split to v2f16,
8954   // and to consider uses since there aren't that many packed operations.
8955   if (N0.getOpcode() == ISD::BUILD_VECTOR && VT == MVT::v2f16 &&
8956       isTypeLegal(MVT::v2f16)) {
8957     SDLoc SL(N);
8958     SDValue NewElts[2];
8959     SDValue Lo = N0.getOperand(0);
8960     SDValue Hi = N0.getOperand(1);
8961     EVT EltVT = Lo.getValueType();
8962 
8963     if (vectorEltWillFoldAway(Lo) || vectorEltWillFoldAway(Hi)) {
8964       for (unsigned I = 0; I != 2; ++I) {
8965         SDValue Op = N0.getOperand(I);
8966         if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) {
8967           NewElts[I] = getCanonicalConstantFP(DAG, SL, EltVT,
8968                                               CFP->getValueAPF());
8969         } else if (Op.isUndef()) {
8970           // Handled below based on what the other operand is.
8971           NewElts[I] = Op;
8972         } else {
8973           NewElts[I] = DAG.getNode(ISD::FCANONICALIZE, SL, EltVT, Op);
8974         }
8975       }
8976 
8977       // If one half is undef, and one is constant, perfer a splat vector rather
8978       // than the normal qNaN. If it's a register, prefer 0.0 since that's
8979       // cheaper to use and may be free with a packed operation.
8980       if (NewElts[0].isUndef()) {
8981         if (isa<ConstantFPSDNode>(NewElts[1]))
8982           NewElts[0] = isa<ConstantFPSDNode>(NewElts[1]) ?
8983             NewElts[1]: DAG.getConstantFP(0.0f, SL, EltVT);
8984       }
8985 
8986       if (NewElts[1].isUndef()) {
8987         NewElts[1] = isa<ConstantFPSDNode>(NewElts[0]) ?
8988           NewElts[0] : DAG.getConstantFP(0.0f, SL, EltVT);
8989       }
8990 
8991       return DAG.getBuildVector(VT, SL, NewElts);
8992     }
8993   }
8994 
8995   unsigned SrcOpc = N0.getOpcode();
8996 
8997   // If it's free to do so, push canonicalizes further up the source, which may
8998   // find a canonical source.
8999   //
9000   // TODO: More opcodes. Note this is unsafe for the the _ieee minnum/maxnum for
9001   // sNaNs.
9002   if (SrcOpc == ISD::FMINNUM || SrcOpc == ISD::FMAXNUM) {
9003     auto *CRHS = dyn_cast<ConstantFPSDNode>(N0.getOperand(1));
9004     if (CRHS && N0.hasOneUse()) {
9005       SDLoc SL(N);
9006       SDValue Canon0 = DAG.getNode(ISD::FCANONICALIZE, SL, VT,
9007                                    N0.getOperand(0));
9008       SDValue Canon1 = getCanonicalConstantFP(DAG, SL, VT, CRHS->getValueAPF());
9009       DCI.AddToWorklist(Canon0.getNode());
9010 
9011       return DAG.getNode(N0.getOpcode(), SL, VT, Canon0, Canon1);
9012     }
9013   }
9014 
9015   return isCanonicalized(DAG, N0) ? N0 : SDValue();
9016 }
9017 
9018 static unsigned minMaxOpcToMin3Max3Opc(unsigned Opc) {
9019   switch (Opc) {
9020   case ISD::FMAXNUM:
9021   case ISD::FMAXNUM_IEEE:
9022     return AMDGPUISD::FMAX3;
9023   case ISD::SMAX:
9024     return AMDGPUISD::SMAX3;
9025   case ISD::UMAX:
9026     return AMDGPUISD::UMAX3;
9027   case ISD::FMINNUM:
9028   case ISD::FMINNUM_IEEE:
9029     return AMDGPUISD::FMIN3;
9030   case ISD::SMIN:
9031     return AMDGPUISD::SMIN3;
9032   case ISD::UMIN:
9033     return AMDGPUISD::UMIN3;
9034   default:
9035     llvm_unreachable("Not a min/max opcode");
9036   }
9037 }
9038 
9039 SDValue SITargetLowering::performIntMed3ImmCombine(
9040   SelectionDAG &DAG, const SDLoc &SL,
9041   SDValue Op0, SDValue Op1, bool Signed) const {
9042   ConstantSDNode *K1 = dyn_cast<ConstantSDNode>(Op1);
9043   if (!K1)
9044     return SDValue();
9045 
9046   ConstantSDNode *K0 = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
9047   if (!K0)
9048     return SDValue();
9049 
9050   if (Signed) {
9051     if (K0->getAPIntValue().sge(K1->getAPIntValue()))
9052       return SDValue();
9053   } else {
9054     if (K0->getAPIntValue().uge(K1->getAPIntValue()))
9055       return SDValue();
9056   }
9057 
9058   EVT VT = K0->getValueType(0);
9059   unsigned Med3Opc = Signed ? AMDGPUISD::SMED3 : AMDGPUISD::UMED3;
9060   if (VT == MVT::i32 || (VT == MVT::i16 && Subtarget->hasMed3_16())) {
9061     return DAG.getNode(Med3Opc, SL, VT,
9062                        Op0.getOperand(0), SDValue(K0, 0), SDValue(K1, 0));
9063   }
9064 
9065   // If there isn't a 16-bit med3 operation, convert to 32-bit.
9066   MVT NVT = MVT::i32;
9067   unsigned ExtOp = Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
9068 
9069   SDValue Tmp1 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(0));
9070   SDValue Tmp2 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(1));
9071   SDValue Tmp3 = DAG.getNode(ExtOp, SL, NVT, Op1);
9072 
9073   SDValue Med3 = DAG.getNode(Med3Opc, SL, NVT, Tmp1, Tmp2, Tmp3);
9074   return DAG.getNode(ISD::TRUNCATE, SL, VT, Med3);
9075 }
9076 
9077 static ConstantFPSDNode *getSplatConstantFP(SDValue Op) {
9078   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
9079     return C;
9080 
9081   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op)) {
9082     if (ConstantFPSDNode *C = BV->getConstantFPSplatNode())
9083       return C;
9084   }
9085 
9086   return nullptr;
9087 }
9088 
9089 SDValue SITargetLowering::performFPMed3ImmCombine(SelectionDAG &DAG,
9090                                                   const SDLoc &SL,
9091                                                   SDValue Op0,
9092                                                   SDValue Op1) const {
9093   ConstantFPSDNode *K1 = getSplatConstantFP(Op1);
9094   if (!K1)
9095     return SDValue();
9096 
9097   ConstantFPSDNode *K0 = getSplatConstantFP(Op0.getOperand(1));
9098   if (!K0)
9099     return SDValue();
9100 
9101   // Ordered >= (although NaN inputs should have folded away by now).
9102   APFloat::cmpResult Cmp = K0->getValueAPF().compare(K1->getValueAPF());
9103   if (Cmp == APFloat::cmpGreaterThan)
9104     return SDValue();
9105 
9106   const MachineFunction &MF = DAG.getMachineFunction();
9107   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
9108 
9109   // TODO: Check IEEE bit enabled?
9110   EVT VT = Op0.getValueType();
9111   if (Info->getMode().DX10Clamp) {
9112     // If dx10_clamp is enabled, NaNs clamp to 0.0. This is the same as the
9113     // hardware fmed3 behavior converting to a min.
9114     // FIXME: Should this be allowing -0.0?
9115     if (K1->isExactlyValue(1.0) && K0->isExactlyValue(0.0))
9116       return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Op0.getOperand(0));
9117   }
9118 
9119   // med3 for f16 is only available on gfx9+, and not available for v2f16.
9120   if (VT == MVT::f32 || (VT == MVT::f16 && Subtarget->hasMed3_16())) {
9121     // This isn't safe with signaling NaNs because in IEEE mode, min/max on a
9122     // signaling NaN gives a quiet NaN. The quiet NaN input to the min would
9123     // then give the other result, which is different from med3 with a NaN
9124     // input.
9125     SDValue Var = Op0.getOperand(0);
9126     if (!DAG.isKnownNeverSNaN(Var))
9127       return SDValue();
9128 
9129     const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
9130 
9131     if ((!K0->hasOneUse() ||
9132          TII->isInlineConstant(K0->getValueAPF().bitcastToAPInt())) &&
9133         (!K1->hasOneUse() ||
9134          TII->isInlineConstant(K1->getValueAPF().bitcastToAPInt()))) {
9135       return DAG.getNode(AMDGPUISD::FMED3, SL, K0->getValueType(0),
9136                          Var, SDValue(K0, 0), SDValue(K1, 0));
9137     }
9138   }
9139 
9140   return SDValue();
9141 }
9142 
9143 SDValue SITargetLowering::performMinMaxCombine(SDNode *N,
9144                                                DAGCombinerInfo &DCI) const {
9145   SelectionDAG &DAG = DCI.DAG;
9146 
9147   EVT VT = N->getValueType(0);
9148   unsigned Opc = N->getOpcode();
9149   SDValue Op0 = N->getOperand(0);
9150   SDValue Op1 = N->getOperand(1);
9151 
9152   // Only do this if the inner op has one use since this will just increases
9153   // register pressure for no benefit.
9154 
9155   if (Opc != AMDGPUISD::FMIN_LEGACY && Opc != AMDGPUISD::FMAX_LEGACY &&
9156       !VT.isVector() &&
9157       (VT == MVT::i32 || VT == MVT::f32 ||
9158        ((VT == MVT::f16 || VT == MVT::i16) && Subtarget->hasMin3Max3_16()))) {
9159     // max(max(a, b), c) -> max3(a, b, c)
9160     // min(min(a, b), c) -> min3(a, b, c)
9161     if (Op0.getOpcode() == Opc && Op0.hasOneUse()) {
9162       SDLoc DL(N);
9163       return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
9164                          DL,
9165                          N->getValueType(0),
9166                          Op0.getOperand(0),
9167                          Op0.getOperand(1),
9168                          Op1);
9169     }
9170 
9171     // Try commuted.
9172     // max(a, max(b, c)) -> max3(a, b, c)
9173     // min(a, min(b, c)) -> min3(a, b, c)
9174     if (Op1.getOpcode() == Opc && Op1.hasOneUse()) {
9175       SDLoc DL(N);
9176       return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
9177                          DL,
9178                          N->getValueType(0),
9179                          Op0,
9180                          Op1.getOperand(0),
9181                          Op1.getOperand(1));
9182     }
9183   }
9184 
9185   // min(max(x, K0), K1), K0 < K1 -> med3(x, K0, K1)
9186   if (Opc == ISD::SMIN && Op0.getOpcode() == ISD::SMAX && Op0.hasOneUse()) {
9187     if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, true))
9188       return Med3;
9189   }
9190 
9191   if (Opc == ISD::UMIN && Op0.getOpcode() == ISD::UMAX && Op0.hasOneUse()) {
9192     if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, false))
9193       return Med3;
9194   }
9195 
9196   // fminnum(fmaxnum(x, K0), K1), K0 < K1 && !is_snan(x) -> fmed3(x, K0, K1)
9197   if (((Opc == ISD::FMINNUM && Op0.getOpcode() == ISD::FMAXNUM) ||
9198        (Opc == ISD::FMINNUM_IEEE && Op0.getOpcode() == ISD::FMAXNUM_IEEE) ||
9199        (Opc == AMDGPUISD::FMIN_LEGACY &&
9200         Op0.getOpcode() == AMDGPUISD::FMAX_LEGACY)) &&
9201       (VT == MVT::f32 || VT == MVT::f64 ||
9202        (VT == MVT::f16 && Subtarget->has16BitInsts()) ||
9203        (VT == MVT::v2f16 && Subtarget->hasVOP3PInsts())) &&
9204       Op0.hasOneUse()) {
9205     if (SDValue Res = performFPMed3ImmCombine(DAG, SDLoc(N), Op0, Op1))
9206       return Res;
9207   }
9208 
9209   return SDValue();
9210 }
9211 
9212 static bool isClampZeroToOne(SDValue A, SDValue B) {
9213   if (ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) {
9214     if (ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) {
9215       // FIXME: Should this be allowing -0.0?
9216       return (CA->isExactlyValue(0.0) && CB->isExactlyValue(1.0)) ||
9217              (CA->isExactlyValue(1.0) && CB->isExactlyValue(0.0));
9218     }
9219   }
9220 
9221   return false;
9222 }
9223 
9224 // FIXME: Should only worry about snans for version with chain.
9225 SDValue SITargetLowering::performFMed3Combine(SDNode *N,
9226                                               DAGCombinerInfo &DCI) const {
9227   EVT VT = N->getValueType(0);
9228   // v_med3_f32 and v_max_f32 behave identically wrt denorms, exceptions and
9229   // NaNs. With a NaN input, the order of the operands may change the result.
9230 
9231   SelectionDAG &DAG = DCI.DAG;
9232   SDLoc SL(N);
9233 
9234   SDValue Src0 = N->getOperand(0);
9235   SDValue Src1 = N->getOperand(1);
9236   SDValue Src2 = N->getOperand(2);
9237 
9238   if (isClampZeroToOne(Src0, Src1)) {
9239     // const_a, const_b, x -> clamp is safe in all cases including signaling
9240     // nans.
9241     // FIXME: Should this be allowing -0.0?
9242     return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src2);
9243   }
9244 
9245   const MachineFunction &MF = DAG.getMachineFunction();
9246   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
9247 
9248   // FIXME: dx10_clamp behavior assumed in instcombine. Should we really bother
9249   // handling no dx10-clamp?
9250   if (Info->getMode().DX10Clamp) {
9251     // If NaNs is clamped to 0, we are free to reorder the inputs.
9252 
9253     if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1))
9254       std::swap(Src0, Src1);
9255 
9256     if (isa<ConstantFPSDNode>(Src1) && !isa<ConstantFPSDNode>(Src2))
9257       std::swap(Src1, Src2);
9258 
9259     if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1))
9260       std::swap(Src0, Src1);
9261 
9262     if (isClampZeroToOne(Src1, Src2))
9263       return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src0);
9264   }
9265 
9266   return SDValue();
9267 }
9268 
9269 SDValue SITargetLowering::performCvtPkRTZCombine(SDNode *N,
9270                                                  DAGCombinerInfo &DCI) const {
9271   SDValue Src0 = N->getOperand(0);
9272   SDValue Src1 = N->getOperand(1);
9273   if (Src0.isUndef() && Src1.isUndef())
9274     return DCI.DAG.getUNDEF(N->getValueType(0));
9275   return SDValue();
9276 }
9277 
9278 SDValue SITargetLowering::performExtractVectorEltCombine(
9279   SDNode *N, DAGCombinerInfo &DCI) const {
9280   SDValue Vec = N->getOperand(0);
9281   SelectionDAG &DAG = DCI.DAG;
9282 
9283   EVT VecVT = Vec.getValueType();
9284   EVT EltVT = VecVT.getVectorElementType();
9285 
9286   if ((Vec.getOpcode() == ISD::FNEG ||
9287        Vec.getOpcode() == ISD::FABS) && allUsesHaveSourceMods(N)) {
9288     SDLoc SL(N);
9289     EVT EltVT = N->getValueType(0);
9290     SDValue Idx = N->getOperand(1);
9291     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
9292                               Vec.getOperand(0), Idx);
9293     return DAG.getNode(Vec.getOpcode(), SL, EltVT, Elt);
9294   }
9295 
9296   // ScalarRes = EXTRACT_VECTOR_ELT ((vector-BINOP Vec1, Vec2), Idx)
9297   //    =>
9298   // Vec1Elt = EXTRACT_VECTOR_ELT(Vec1, Idx)
9299   // Vec2Elt = EXTRACT_VECTOR_ELT(Vec2, Idx)
9300   // ScalarRes = scalar-BINOP Vec1Elt, Vec2Elt
9301   if (Vec.hasOneUse() && DCI.isBeforeLegalize()) {
9302     SDLoc SL(N);
9303     EVT EltVT = N->getValueType(0);
9304     SDValue Idx = N->getOperand(1);
9305     unsigned Opc = Vec.getOpcode();
9306 
9307     switch(Opc) {
9308     default:
9309       break;
9310       // TODO: Support other binary operations.
9311     case ISD::FADD:
9312     case ISD::FSUB:
9313     case ISD::FMUL:
9314     case ISD::ADD:
9315     case ISD::UMIN:
9316     case ISD::UMAX:
9317     case ISD::SMIN:
9318     case ISD::SMAX:
9319     case ISD::FMAXNUM:
9320     case ISD::FMINNUM:
9321     case ISD::FMAXNUM_IEEE:
9322     case ISD::FMINNUM_IEEE: {
9323       SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
9324                                  Vec.getOperand(0), Idx);
9325       SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
9326                                  Vec.getOperand(1), Idx);
9327 
9328       DCI.AddToWorklist(Elt0.getNode());
9329       DCI.AddToWorklist(Elt1.getNode());
9330       return DAG.getNode(Opc, SL, EltVT, Elt0, Elt1, Vec->getFlags());
9331     }
9332     }
9333   }
9334 
9335   unsigned VecSize = VecVT.getSizeInBits();
9336   unsigned EltSize = EltVT.getSizeInBits();
9337 
9338   // EXTRACT_VECTOR_ELT (<n x e>, var-idx) => n x select (e, const-idx)
9339   // This elminates non-constant index and subsequent movrel or scratch access.
9340   // Sub-dword vectors of size 2 dword or less have better implementation.
9341   // Vectors of size bigger than 8 dwords would yield too many v_cndmask_b32
9342   // instructions.
9343   if (VecSize <= 256 && (VecSize > 64 || EltSize >= 32) &&
9344       !isa<ConstantSDNode>(N->getOperand(1))) {
9345     SDLoc SL(N);
9346     SDValue Idx = N->getOperand(1);
9347     EVT IdxVT = Idx.getValueType();
9348     SDValue V;
9349     for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) {
9350       SDValue IC = DAG.getConstant(I, SL, IdxVT);
9351       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec, IC);
9352       if (I == 0)
9353         V = Elt;
9354       else
9355         V = DAG.getSelectCC(SL, Idx, IC, Elt, V, ISD::SETEQ);
9356     }
9357     return V;
9358   }
9359 
9360   if (!DCI.isBeforeLegalize())
9361     return SDValue();
9362 
9363   // Try to turn sub-dword accesses of vectors into accesses of the same 32-bit
9364   // elements. This exposes more load reduction opportunities by replacing
9365   // multiple small extract_vector_elements with a single 32-bit extract.
9366   auto *Idx = dyn_cast<ConstantSDNode>(N->getOperand(1));
9367   if (isa<MemSDNode>(Vec) &&
9368       EltSize <= 16 &&
9369       EltVT.isByteSized() &&
9370       VecSize > 32 &&
9371       VecSize % 32 == 0 &&
9372       Idx) {
9373     EVT NewVT = getEquivalentMemType(*DAG.getContext(), VecVT);
9374 
9375     unsigned BitIndex = Idx->getZExtValue() * EltSize;
9376     unsigned EltIdx = BitIndex / 32;
9377     unsigned LeftoverBitIdx = BitIndex % 32;
9378     SDLoc SL(N);
9379 
9380     SDValue Cast = DAG.getNode(ISD::BITCAST, SL, NewVT, Vec);
9381     DCI.AddToWorklist(Cast.getNode());
9382 
9383     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Cast,
9384                               DAG.getConstant(EltIdx, SL, MVT::i32));
9385     DCI.AddToWorklist(Elt.getNode());
9386     SDValue Srl = DAG.getNode(ISD::SRL, SL, MVT::i32, Elt,
9387                               DAG.getConstant(LeftoverBitIdx, SL, MVT::i32));
9388     DCI.AddToWorklist(Srl.getNode());
9389 
9390     SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, EltVT.changeTypeToInteger(), Srl);
9391     DCI.AddToWorklist(Trunc.getNode());
9392     return DAG.getNode(ISD::BITCAST, SL, EltVT, Trunc);
9393   }
9394 
9395   return SDValue();
9396 }
9397 
9398 SDValue
9399 SITargetLowering::performInsertVectorEltCombine(SDNode *N,
9400                                                 DAGCombinerInfo &DCI) const {
9401   SDValue Vec = N->getOperand(0);
9402   SDValue Idx = N->getOperand(2);
9403   EVT VecVT = Vec.getValueType();
9404   EVT EltVT = VecVT.getVectorElementType();
9405   unsigned VecSize = VecVT.getSizeInBits();
9406   unsigned EltSize = EltVT.getSizeInBits();
9407 
9408   // INSERT_VECTOR_ELT (<n x e>, var-idx)
9409   // => BUILD_VECTOR n x select (e, const-idx)
9410   // This elminates non-constant index and subsequent movrel or scratch access.
9411   // Sub-dword vectors of size 2 dword or less have better implementation.
9412   // Vectors of size bigger than 8 dwords would yield too many v_cndmask_b32
9413   // instructions.
9414   if (isa<ConstantSDNode>(Idx) ||
9415       VecSize > 256 || (VecSize <= 64 && EltSize < 32))
9416     return SDValue();
9417 
9418   SelectionDAG &DAG = DCI.DAG;
9419   SDLoc SL(N);
9420   SDValue Ins = N->getOperand(1);
9421   EVT IdxVT = Idx.getValueType();
9422 
9423   SmallVector<SDValue, 16> Ops;
9424   for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) {
9425     SDValue IC = DAG.getConstant(I, SL, IdxVT);
9426     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec, IC);
9427     SDValue V = DAG.getSelectCC(SL, Idx, IC, Ins, Elt, ISD::SETEQ);
9428     Ops.push_back(V);
9429   }
9430 
9431   return DAG.getBuildVector(VecVT, SL, Ops);
9432 }
9433 
9434 unsigned SITargetLowering::getFusedOpcode(const SelectionDAG &DAG,
9435                                           const SDNode *N0,
9436                                           const SDNode *N1) const {
9437   EVT VT = N0->getValueType(0);
9438 
9439   // Only do this if we are not trying to support denormals. v_mad_f32 does not
9440   // support denormals ever.
9441   if (((VT == MVT::f32 && !hasFP32Denormals(DAG.getMachineFunction())) ||
9442        (VT == MVT::f16 && !hasFP64FP16Denormals(DAG.getMachineFunction()) &&
9443         getSubtarget()->hasMadF16())) &&
9444        isOperationLegal(ISD::FMAD, VT))
9445     return ISD::FMAD;
9446 
9447   const TargetOptions &Options = DAG.getTarget().Options;
9448   if ((Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath ||
9449        (N0->getFlags().hasAllowContract() &&
9450         N1->getFlags().hasAllowContract())) &&
9451       isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
9452     return ISD::FMA;
9453   }
9454 
9455   return 0;
9456 }
9457 
9458 // For a reassociatable opcode perform:
9459 // op x, (op y, z) -> op (op x, z), y, if x and z are uniform
9460 SDValue SITargetLowering::reassociateScalarOps(SDNode *N,
9461                                                SelectionDAG &DAG) const {
9462   EVT VT = N->getValueType(0);
9463   if (VT != MVT::i32 && VT != MVT::i64)
9464     return SDValue();
9465 
9466   unsigned Opc = N->getOpcode();
9467   SDValue Op0 = N->getOperand(0);
9468   SDValue Op1 = N->getOperand(1);
9469 
9470   if (!(Op0->isDivergent() ^ Op1->isDivergent()))
9471     return SDValue();
9472 
9473   if (Op0->isDivergent())
9474     std::swap(Op0, Op1);
9475 
9476   if (Op1.getOpcode() != Opc || !Op1.hasOneUse())
9477     return SDValue();
9478 
9479   SDValue Op2 = Op1.getOperand(1);
9480   Op1 = Op1.getOperand(0);
9481   if (!(Op1->isDivergent() ^ Op2->isDivergent()))
9482     return SDValue();
9483 
9484   if (Op1->isDivergent())
9485     std::swap(Op1, Op2);
9486 
9487   // If either operand is constant this will conflict with
9488   // DAGCombiner::ReassociateOps().
9489   if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) ||
9490       DAG.isConstantIntBuildVectorOrConstantInt(Op1))
9491     return SDValue();
9492 
9493   SDLoc SL(N);
9494   SDValue Add1 = DAG.getNode(Opc, SL, VT, Op0, Op1);
9495   return DAG.getNode(Opc, SL, VT, Add1, Op2);
9496 }
9497 
9498 static SDValue getMad64_32(SelectionDAG &DAG, const SDLoc &SL,
9499                            EVT VT,
9500                            SDValue N0, SDValue N1, SDValue N2,
9501                            bool Signed) {
9502   unsigned MadOpc = Signed ? AMDGPUISD::MAD_I64_I32 : AMDGPUISD::MAD_U64_U32;
9503   SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i1);
9504   SDValue Mad = DAG.getNode(MadOpc, SL, VTs, N0, N1, N2);
9505   return DAG.getNode(ISD::TRUNCATE, SL, VT, Mad);
9506 }
9507 
9508 SDValue SITargetLowering::performAddCombine(SDNode *N,
9509                                             DAGCombinerInfo &DCI) const {
9510   SelectionDAG &DAG = DCI.DAG;
9511   EVT VT = N->getValueType(0);
9512   SDLoc SL(N);
9513   SDValue LHS = N->getOperand(0);
9514   SDValue RHS = N->getOperand(1);
9515 
9516   if ((LHS.getOpcode() == ISD::MUL || RHS.getOpcode() == ISD::MUL)
9517       && Subtarget->hasMad64_32() &&
9518       !VT.isVector() && VT.getScalarSizeInBits() > 32 &&
9519       VT.getScalarSizeInBits() <= 64) {
9520     if (LHS.getOpcode() != ISD::MUL)
9521       std::swap(LHS, RHS);
9522 
9523     SDValue MulLHS = LHS.getOperand(0);
9524     SDValue MulRHS = LHS.getOperand(1);
9525     SDValue AddRHS = RHS;
9526 
9527     // TODO: Maybe restrict if SGPR inputs.
9528     if (numBitsUnsigned(MulLHS, DAG) <= 32 &&
9529         numBitsUnsigned(MulRHS, DAG) <= 32) {
9530       MulLHS = DAG.getZExtOrTrunc(MulLHS, SL, MVT::i32);
9531       MulRHS = DAG.getZExtOrTrunc(MulRHS, SL, MVT::i32);
9532       AddRHS = DAG.getZExtOrTrunc(AddRHS, SL, MVT::i64);
9533       return getMad64_32(DAG, SL, VT, MulLHS, MulRHS, AddRHS, false);
9534     }
9535 
9536     if (numBitsSigned(MulLHS, DAG) < 32 && numBitsSigned(MulRHS, DAG) < 32) {
9537       MulLHS = DAG.getSExtOrTrunc(MulLHS, SL, MVT::i32);
9538       MulRHS = DAG.getSExtOrTrunc(MulRHS, SL, MVT::i32);
9539       AddRHS = DAG.getSExtOrTrunc(AddRHS, SL, MVT::i64);
9540       return getMad64_32(DAG, SL, VT, MulLHS, MulRHS, AddRHS, true);
9541     }
9542 
9543     return SDValue();
9544   }
9545 
9546   if (SDValue V = reassociateScalarOps(N, DAG)) {
9547     return V;
9548   }
9549 
9550   if (VT != MVT::i32 || !DCI.isAfterLegalizeDAG())
9551     return SDValue();
9552 
9553   // add x, zext (setcc) => addcarry x, 0, setcc
9554   // add x, sext (setcc) => subcarry x, 0, setcc
9555   unsigned Opc = LHS.getOpcode();
9556   if (Opc == ISD::ZERO_EXTEND || Opc == ISD::SIGN_EXTEND ||
9557       Opc == ISD::ANY_EXTEND || Opc == ISD::ADDCARRY)
9558     std::swap(RHS, LHS);
9559 
9560   Opc = RHS.getOpcode();
9561   switch (Opc) {
9562   default: break;
9563   case ISD::ZERO_EXTEND:
9564   case ISD::SIGN_EXTEND:
9565   case ISD::ANY_EXTEND: {
9566     auto Cond = RHS.getOperand(0);
9567     // If this won't be a real VOPC output, we would still need to insert an
9568     // extra instruction anyway.
9569     if (!isBoolSGPR(Cond))
9570       break;
9571     SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1);
9572     SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond };
9573     Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::SUBCARRY : ISD::ADDCARRY;
9574     return DAG.getNode(Opc, SL, VTList, Args);
9575   }
9576   case ISD::ADDCARRY: {
9577     // add x, (addcarry y, 0, cc) => addcarry x, y, cc
9578     auto C = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
9579     if (!C || C->getZExtValue() != 0) break;
9580     SDValue Args[] = { LHS, RHS.getOperand(0), RHS.getOperand(2) };
9581     return DAG.getNode(ISD::ADDCARRY, SDLoc(N), RHS->getVTList(), Args);
9582   }
9583   }
9584   return SDValue();
9585 }
9586 
9587 SDValue SITargetLowering::performSubCombine(SDNode *N,
9588                                             DAGCombinerInfo &DCI) const {
9589   SelectionDAG &DAG = DCI.DAG;
9590   EVT VT = N->getValueType(0);
9591 
9592   if (VT != MVT::i32)
9593     return SDValue();
9594 
9595   SDLoc SL(N);
9596   SDValue LHS = N->getOperand(0);
9597   SDValue RHS = N->getOperand(1);
9598 
9599   // sub x, zext (setcc) => subcarry x, 0, setcc
9600   // sub x, sext (setcc) => addcarry x, 0, setcc
9601   unsigned Opc = RHS.getOpcode();
9602   switch (Opc) {
9603   default: break;
9604   case ISD::ZERO_EXTEND:
9605   case ISD::SIGN_EXTEND:
9606   case ISD::ANY_EXTEND: {
9607     auto Cond = RHS.getOperand(0);
9608     // If this won't be a real VOPC output, we would still need to insert an
9609     // extra instruction anyway.
9610     if (!isBoolSGPR(Cond))
9611       break;
9612     SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1);
9613     SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond };
9614     Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::ADDCARRY : ISD::SUBCARRY;
9615     return DAG.getNode(Opc, SL, VTList, Args);
9616   }
9617   }
9618 
9619   if (LHS.getOpcode() == ISD::SUBCARRY) {
9620     // sub (subcarry x, 0, cc), y => subcarry x, y, cc
9621     auto C = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
9622     if (!C || !C->isNullValue())
9623       return SDValue();
9624     SDValue Args[] = { LHS.getOperand(0), RHS, LHS.getOperand(2) };
9625     return DAG.getNode(ISD::SUBCARRY, SDLoc(N), LHS->getVTList(), Args);
9626   }
9627   return SDValue();
9628 }
9629 
9630 SDValue SITargetLowering::performAddCarrySubCarryCombine(SDNode *N,
9631   DAGCombinerInfo &DCI) const {
9632 
9633   if (N->getValueType(0) != MVT::i32)
9634     return SDValue();
9635 
9636   auto C = dyn_cast<ConstantSDNode>(N->getOperand(1));
9637   if (!C || C->getZExtValue() != 0)
9638     return SDValue();
9639 
9640   SelectionDAG &DAG = DCI.DAG;
9641   SDValue LHS = N->getOperand(0);
9642 
9643   // addcarry (add x, y), 0, cc => addcarry x, y, cc
9644   // subcarry (sub x, y), 0, cc => subcarry x, y, cc
9645   unsigned LHSOpc = LHS.getOpcode();
9646   unsigned Opc = N->getOpcode();
9647   if ((LHSOpc == ISD::ADD && Opc == ISD::ADDCARRY) ||
9648       (LHSOpc == ISD::SUB && Opc == ISD::SUBCARRY)) {
9649     SDValue Args[] = { LHS.getOperand(0), LHS.getOperand(1), N->getOperand(2) };
9650     return DAG.getNode(Opc, SDLoc(N), N->getVTList(), Args);
9651   }
9652   return SDValue();
9653 }
9654 
9655 SDValue SITargetLowering::performFAddCombine(SDNode *N,
9656                                              DAGCombinerInfo &DCI) const {
9657   if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
9658     return SDValue();
9659 
9660   SelectionDAG &DAG = DCI.DAG;
9661   EVT VT = N->getValueType(0);
9662 
9663   SDLoc SL(N);
9664   SDValue LHS = N->getOperand(0);
9665   SDValue RHS = N->getOperand(1);
9666 
9667   // These should really be instruction patterns, but writing patterns with
9668   // source modiifiers is a pain.
9669 
9670   // fadd (fadd (a, a), b) -> mad 2.0, a, b
9671   if (LHS.getOpcode() == ISD::FADD) {
9672     SDValue A = LHS.getOperand(0);
9673     if (A == LHS.getOperand(1)) {
9674       unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode());
9675       if (FusedOp != 0) {
9676         const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
9677         return DAG.getNode(FusedOp, SL, VT, A, Two, RHS);
9678       }
9679     }
9680   }
9681 
9682   // fadd (b, fadd (a, a)) -> mad 2.0, a, b
9683   if (RHS.getOpcode() == ISD::FADD) {
9684     SDValue A = RHS.getOperand(0);
9685     if (A == RHS.getOperand(1)) {
9686       unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode());
9687       if (FusedOp != 0) {
9688         const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
9689         return DAG.getNode(FusedOp, SL, VT, A, Two, LHS);
9690       }
9691     }
9692   }
9693 
9694   return SDValue();
9695 }
9696 
9697 SDValue SITargetLowering::performFSubCombine(SDNode *N,
9698                                              DAGCombinerInfo &DCI) const {
9699   if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
9700     return SDValue();
9701 
9702   SelectionDAG &DAG = DCI.DAG;
9703   SDLoc SL(N);
9704   EVT VT = N->getValueType(0);
9705   assert(!VT.isVector());
9706 
9707   // Try to get the fneg to fold into the source modifier. This undoes generic
9708   // DAG combines and folds them into the mad.
9709   //
9710   // Only do this if we are not trying to support denormals. v_mad_f32 does
9711   // not support denormals ever.
9712   SDValue LHS = N->getOperand(0);
9713   SDValue RHS = N->getOperand(1);
9714   if (LHS.getOpcode() == ISD::FADD) {
9715     // (fsub (fadd a, a), c) -> mad 2.0, a, (fneg c)
9716     SDValue A = LHS.getOperand(0);
9717     if (A == LHS.getOperand(1)) {
9718       unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode());
9719       if (FusedOp != 0){
9720         const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
9721         SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
9722 
9723         return DAG.getNode(FusedOp, SL, VT, A, Two, NegRHS);
9724       }
9725     }
9726   }
9727 
9728   if (RHS.getOpcode() == ISD::FADD) {
9729     // (fsub c, (fadd a, a)) -> mad -2.0, a, c
9730 
9731     SDValue A = RHS.getOperand(0);
9732     if (A == RHS.getOperand(1)) {
9733       unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode());
9734       if (FusedOp != 0){
9735         const SDValue NegTwo = DAG.getConstantFP(-2.0, SL, VT);
9736         return DAG.getNode(FusedOp, SL, VT, A, NegTwo, LHS);
9737       }
9738     }
9739   }
9740 
9741   return SDValue();
9742 }
9743 
9744 SDValue SITargetLowering::performFMACombine(SDNode *N,
9745                                             DAGCombinerInfo &DCI) const {
9746   SelectionDAG &DAG = DCI.DAG;
9747   EVT VT = N->getValueType(0);
9748   SDLoc SL(N);
9749 
9750   if (!Subtarget->hasDot2Insts() || VT != MVT::f32)
9751     return SDValue();
9752 
9753   // FMA((F32)S0.x, (F32)S1. x, FMA((F32)S0.y, (F32)S1.y, (F32)z)) ->
9754   //   FDOT2((V2F16)S0, (V2F16)S1, (F32)z))
9755   SDValue Op1 = N->getOperand(0);
9756   SDValue Op2 = N->getOperand(1);
9757   SDValue FMA = N->getOperand(2);
9758 
9759   if (FMA.getOpcode() != ISD::FMA ||
9760       Op1.getOpcode() != ISD::FP_EXTEND ||
9761       Op2.getOpcode() != ISD::FP_EXTEND)
9762     return SDValue();
9763 
9764   // fdot2_f32_f16 always flushes fp32 denormal operand and output to zero,
9765   // regardless of the denorm mode setting. Therefore, unsafe-fp-math/fp-contract
9766   // is sufficient to allow generaing fdot2.
9767   const TargetOptions &Options = DAG.getTarget().Options;
9768   if (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath ||
9769       (N->getFlags().hasAllowContract() &&
9770        FMA->getFlags().hasAllowContract())) {
9771     Op1 = Op1.getOperand(0);
9772     Op2 = Op2.getOperand(0);
9773     if (Op1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
9774         Op2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
9775       return SDValue();
9776 
9777     SDValue Vec1 = Op1.getOperand(0);
9778     SDValue Idx1 = Op1.getOperand(1);
9779     SDValue Vec2 = Op2.getOperand(0);
9780 
9781     SDValue FMAOp1 = FMA.getOperand(0);
9782     SDValue FMAOp2 = FMA.getOperand(1);
9783     SDValue FMAAcc = FMA.getOperand(2);
9784 
9785     if (FMAOp1.getOpcode() != ISD::FP_EXTEND ||
9786         FMAOp2.getOpcode() != ISD::FP_EXTEND)
9787       return SDValue();
9788 
9789     FMAOp1 = FMAOp1.getOperand(0);
9790     FMAOp2 = FMAOp2.getOperand(0);
9791     if (FMAOp1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
9792         FMAOp2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
9793       return SDValue();
9794 
9795     SDValue Vec3 = FMAOp1.getOperand(0);
9796     SDValue Vec4 = FMAOp2.getOperand(0);
9797     SDValue Idx2 = FMAOp1.getOperand(1);
9798 
9799     if (Idx1 != Op2.getOperand(1) || Idx2 != FMAOp2.getOperand(1) ||
9800         // Idx1 and Idx2 cannot be the same.
9801         Idx1 == Idx2)
9802       return SDValue();
9803 
9804     if (Vec1 == Vec2 || Vec3 == Vec4)
9805       return SDValue();
9806 
9807     if (Vec1.getValueType() != MVT::v2f16 || Vec2.getValueType() != MVT::v2f16)
9808       return SDValue();
9809 
9810     if ((Vec1 == Vec3 && Vec2 == Vec4) ||
9811         (Vec1 == Vec4 && Vec2 == Vec3)) {
9812       return DAG.getNode(AMDGPUISD::FDOT2, SL, MVT::f32, Vec1, Vec2, FMAAcc,
9813                          DAG.getTargetConstant(0, SL, MVT::i1));
9814     }
9815   }
9816   return SDValue();
9817 }
9818 
9819 SDValue SITargetLowering::performSetCCCombine(SDNode *N,
9820                                               DAGCombinerInfo &DCI) const {
9821   SelectionDAG &DAG = DCI.DAG;
9822   SDLoc SL(N);
9823 
9824   SDValue LHS = N->getOperand(0);
9825   SDValue RHS = N->getOperand(1);
9826   EVT VT = LHS.getValueType();
9827   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
9828 
9829   auto CRHS = dyn_cast<ConstantSDNode>(RHS);
9830   if (!CRHS) {
9831     CRHS = dyn_cast<ConstantSDNode>(LHS);
9832     if (CRHS) {
9833       std::swap(LHS, RHS);
9834       CC = getSetCCSwappedOperands(CC);
9835     }
9836   }
9837 
9838   if (CRHS) {
9839     if (VT == MVT::i32 && LHS.getOpcode() == ISD::SIGN_EXTEND &&
9840         isBoolSGPR(LHS.getOperand(0))) {
9841       // setcc (sext from i1 cc), -1, ne|sgt|ult) => not cc => xor cc, -1
9842       // setcc (sext from i1 cc), -1, eq|sle|uge) => cc
9843       // setcc (sext from i1 cc),  0, eq|sge|ule) => not cc => xor cc, -1
9844       // setcc (sext from i1 cc),  0, ne|ugt|slt) => cc
9845       if ((CRHS->isAllOnesValue() &&
9846            (CC == ISD::SETNE || CC == ISD::SETGT || CC == ISD::SETULT)) ||
9847           (CRHS->isNullValue() &&
9848            (CC == ISD::SETEQ || CC == ISD::SETGE || CC == ISD::SETULE)))
9849         return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0),
9850                            DAG.getConstant(-1, SL, MVT::i1));
9851       if ((CRHS->isAllOnesValue() &&
9852            (CC == ISD::SETEQ || CC == ISD::SETLE || CC == ISD::SETUGE)) ||
9853           (CRHS->isNullValue() &&
9854            (CC == ISD::SETNE || CC == ISD::SETUGT || CC == ISD::SETLT)))
9855         return LHS.getOperand(0);
9856     }
9857 
9858     uint64_t CRHSVal = CRHS->getZExtValue();
9859     if ((CC == ISD::SETEQ || CC == ISD::SETNE) &&
9860         LHS.getOpcode() == ISD::SELECT &&
9861         isa<ConstantSDNode>(LHS.getOperand(1)) &&
9862         isa<ConstantSDNode>(LHS.getOperand(2)) &&
9863         LHS.getConstantOperandVal(1) != LHS.getConstantOperandVal(2) &&
9864         isBoolSGPR(LHS.getOperand(0))) {
9865       // Given CT != FT:
9866       // setcc (select cc, CT, CF), CF, eq => xor cc, -1
9867       // setcc (select cc, CT, CF), CF, ne => cc
9868       // setcc (select cc, CT, CF), CT, ne => xor cc, -1
9869       // setcc (select cc, CT, CF), CT, eq => cc
9870       uint64_t CT = LHS.getConstantOperandVal(1);
9871       uint64_t CF = LHS.getConstantOperandVal(2);
9872 
9873       if ((CF == CRHSVal && CC == ISD::SETEQ) ||
9874           (CT == CRHSVal && CC == ISD::SETNE))
9875         return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0),
9876                            DAG.getConstant(-1, SL, MVT::i1));
9877       if ((CF == CRHSVal && CC == ISD::SETNE) ||
9878           (CT == CRHSVal && CC == ISD::SETEQ))
9879         return LHS.getOperand(0);
9880     }
9881   }
9882 
9883   if (VT != MVT::f32 && VT != MVT::f64 && (Subtarget->has16BitInsts() &&
9884                                            VT != MVT::f16))
9885     return SDValue();
9886 
9887   // Match isinf/isfinite pattern
9888   // (fcmp oeq (fabs x), inf) -> (fp_class x, (p_infinity | n_infinity))
9889   // (fcmp one (fabs x), inf) -> (fp_class x,
9890   // (p_normal | n_normal | p_subnormal | n_subnormal | p_zero | n_zero)
9891   if ((CC == ISD::SETOEQ || CC == ISD::SETONE) && LHS.getOpcode() == ISD::FABS) {
9892     const ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS);
9893     if (!CRHS)
9894       return SDValue();
9895 
9896     const APFloat &APF = CRHS->getValueAPF();
9897     if (APF.isInfinity() && !APF.isNegative()) {
9898       const unsigned IsInfMask = SIInstrFlags::P_INFINITY |
9899                                  SIInstrFlags::N_INFINITY;
9900       const unsigned IsFiniteMask = SIInstrFlags::N_ZERO |
9901                                     SIInstrFlags::P_ZERO |
9902                                     SIInstrFlags::N_NORMAL |
9903                                     SIInstrFlags::P_NORMAL |
9904                                     SIInstrFlags::N_SUBNORMAL |
9905                                     SIInstrFlags::P_SUBNORMAL;
9906       unsigned Mask = CC == ISD::SETOEQ ? IsInfMask : IsFiniteMask;
9907       return DAG.getNode(AMDGPUISD::FP_CLASS, SL, MVT::i1, LHS.getOperand(0),
9908                          DAG.getConstant(Mask, SL, MVT::i32));
9909     }
9910   }
9911 
9912   return SDValue();
9913 }
9914 
9915 SDValue SITargetLowering::performCvtF32UByteNCombine(SDNode *N,
9916                                                      DAGCombinerInfo &DCI) const {
9917   SelectionDAG &DAG = DCI.DAG;
9918   SDLoc SL(N);
9919   unsigned Offset = N->getOpcode() - AMDGPUISD::CVT_F32_UBYTE0;
9920 
9921   SDValue Src = N->getOperand(0);
9922   SDValue Srl = N->getOperand(0);
9923   if (Srl.getOpcode() == ISD::ZERO_EXTEND)
9924     Srl = Srl.getOperand(0);
9925 
9926   // TODO: Handle (or x, (srl y, 8)) pattern when known bits are zero.
9927   if (Srl.getOpcode() == ISD::SRL) {
9928     // cvt_f32_ubyte0 (srl x, 16) -> cvt_f32_ubyte2 x
9929     // cvt_f32_ubyte1 (srl x, 16) -> cvt_f32_ubyte3 x
9930     // cvt_f32_ubyte0 (srl x, 8) -> cvt_f32_ubyte1 x
9931 
9932     if (const ConstantSDNode *C =
9933         dyn_cast<ConstantSDNode>(Srl.getOperand(1))) {
9934       Srl = DAG.getZExtOrTrunc(Srl.getOperand(0), SDLoc(Srl.getOperand(0)),
9935                                EVT(MVT::i32));
9936 
9937       unsigned SrcOffset = C->getZExtValue() + 8 * Offset;
9938       if (SrcOffset < 32 && SrcOffset % 8 == 0) {
9939         return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0 + SrcOffset / 8, SL,
9940                            MVT::f32, Srl);
9941       }
9942     }
9943   }
9944 
9945   APInt Demanded = APInt::getBitsSet(32, 8 * Offset, 8 * Offset + 8);
9946 
9947   KnownBits Known;
9948   TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
9949                                         !DCI.isBeforeLegalizeOps());
9950   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9951   if (TLI.SimplifyDemandedBits(Src, Demanded, Known, TLO)) {
9952     DCI.CommitTargetLoweringOpt(TLO);
9953   }
9954 
9955   return SDValue();
9956 }
9957 
9958 SDValue SITargetLowering::performClampCombine(SDNode *N,
9959                                               DAGCombinerInfo &DCI) const {
9960   ConstantFPSDNode *CSrc = dyn_cast<ConstantFPSDNode>(N->getOperand(0));
9961   if (!CSrc)
9962     return SDValue();
9963 
9964   const MachineFunction &MF = DCI.DAG.getMachineFunction();
9965   const APFloat &F = CSrc->getValueAPF();
9966   APFloat Zero = APFloat::getZero(F.getSemantics());
9967   APFloat::cmpResult Cmp0 = F.compare(Zero);
9968   if (Cmp0 == APFloat::cmpLessThan ||
9969       (Cmp0 == APFloat::cmpUnordered &&
9970        MF.getInfo<SIMachineFunctionInfo>()->getMode().DX10Clamp)) {
9971     return DCI.DAG.getConstantFP(Zero, SDLoc(N), N->getValueType(0));
9972   }
9973 
9974   APFloat One(F.getSemantics(), "1.0");
9975   APFloat::cmpResult Cmp1 = F.compare(One);
9976   if (Cmp1 == APFloat::cmpGreaterThan)
9977     return DCI.DAG.getConstantFP(One, SDLoc(N), N->getValueType(0));
9978 
9979   return SDValue(CSrc, 0);
9980 }
9981 
9982 
9983 SDValue SITargetLowering::PerformDAGCombine(SDNode *N,
9984                                             DAGCombinerInfo &DCI) const {
9985   if (getTargetMachine().getOptLevel() == CodeGenOpt::None)
9986     return SDValue();
9987   switch (N->getOpcode()) {
9988   default:
9989     return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
9990   case ISD::ADD:
9991     return performAddCombine(N, DCI);
9992   case ISD::SUB:
9993     return performSubCombine(N, DCI);
9994   case ISD::ADDCARRY:
9995   case ISD::SUBCARRY:
9996     return performAddCarrySubCarryCombine(N, DCI);
9997   case ISD::FADD:
9998     return performFAddCombine(N, DCI);
9999   case ISD::FSUB:
10000     return performFSubCombine(N, DCI);
10001   case ISD::SETCC:
10002     return performSetCCCombine(N, DCI);
10003   case ISD::FMAXNUM:
10004   case ISD::FMINNUM:
10005   case ISD::FMAXNUM_IEEE:
10006   case ISD::FMINNUM_IEEE:
10007   case ISD::SMAX:
10008   case ISD::SMIN:
10009   case ISD::UMAX:
10010   case ISD::UMIN:
10011   case AMDGPUISD::FMIN_LEGACY:
10012   case AMDGPUISD::FMAX_LEGACY:
10013     return performMinMaxCombine(N, DCI);
10014   case ISD::FMA:
10015     return performFMACombine(N, DCI);
10016   case ISD::LOAD: {
10017     if (SDValue Widended = widenLoad(cast<LoadSDNode>(N), DCI))
10018       return Widended;
10019     LLVM_FALLTHROUGH;
10020   }
10021   case ISD::STORE:
10022   case ISD::ATOMIC_LOAD:
10023   case ISD::ATOMIC_STORE:
10024   case ISD::ATOMIC_CMP_SWAP:
10025   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
10026   case ISD::ATOMIC_SWAP:
10027   case ISD::ATOMIC_LOAD_ADD:
10028   case ISD::ATOMIC_LOAD_SUB:
10029   case ISD::ATOMIC_LOAD_AND:
10030   case ISD::ATOMIC_LOAD_OR:
10031   case ISD::ATOMIC_LOAD_XOR:
10032   case ISD::ATOMIC_LOAD_NAND:
10033   case ISD::ATOMIC_LOAD_MIN:
10034   case ISD::ATOMIC_LOAD_MAX:
10035   case ISD::ATOMIC_LOAD_UMIN:
10036   case ISD::ATOMIC_LOAD_UMAX:
10037   case ISD::ATOMIC_LOAD_FADD:
10038   case AMDGPUISD::ATOMIC_INC:
10039   case AMDGPUISD::ATOMIC_DEC:
10040   case AMDGPUISD::ATOMIC_LOAD_FMIN:
10041   case AMDGPUISD::ATOMIC_LOAD_FMAX: // TODO: Target mem intrinsics.
10042     if (DCI.isBeforeLegalize())
10043       break;
10044     return performMemSDNodeCombine(cast<MemSDNode>(N), DCI);
10045   case ISD::AND:
10046     return performAndCombine(N, DCI);
10047   case ISD::OR:
10048     return performOrCombine(N, DCI);
10049   case ISD::XOR:
10050     return performXorCombine(N, DCI);
10051   case ISD::ZERO_EXTEND:
10052     return performZeroExtendCombine(N, DCI);
10053   case ISD::SIGN_EXTEND_INREG:
10054     return performSignExtendInRegCombine(N , DCI);
10055   case AMDGPUISD::FP_CLASS:
10056     return performClassCombine(N, DCI);
10057   case ISD::FCANONICALIZE:
10058     return performFCanonicalizeCombine(N, DCI);
10059   case AMDGPUISD::RCP:
10060     return performRcpCombine(N, DCI);
10061   case AMDGPUISD::FRACT:
10062   case AMDGPUISD::RSQ:
10063   case AMDGPUISD::RCP_LEGACY:
10064   case AMDGPUISD::RSQ_LEGACY:
10065   case AMDGPUISD::RCP_IFLAG:
10066   case AMDGPUISD::RSQ_CLAMP:
10067   case AMDGPUISD::LDEXP: {
10068     SDValue Src = N->getOperand(0);
10069     if (Src.isUndef())
10070       return Src;
10071     break;
10072   }
10073   case ISD::SINT_TO_FP:
10074   case ISD::UINT_TO_FP:
10075     return performUCharToFloatCombine(N, DCI);
10076   case AMDGPUISD::CVT_F32_UBYTE0:
10077   case AMDGPUISD::CVT_F32_UBYTE1:
10078   case AMDGPUISD::CVT_F32_UBYTE2:
10079   case AMDGPUISD::CVT_F32_UBYTE3:
10080     return performCvtF32UByteNCombine(N, DCI);
10081   case AMDGPUISD::FMED3:
10082     return performFMed3Combine(N, DCI);
10083   case AMDGPUISD::CVT_PKRTZ_F16_F32:
10084     return performCvtPkRTZCombine(N, DCI);
10085   case AMDGPUISD::CLAMP:
10086     return performClampCombine(N, DCI);
10087   case ISD::SCALAR_TO_VECTOR: {
10088     SelectionDAG &DAG = DCI.DAG;
10089     EVT VT = N->getValueType(0);
10090 
10091     // v2i16 (scalar_to_vector i16:x) -> v2i16 (bitcast (any_extend i16:x))
10092     if (VT == MVT::v2i16 || VT == MVT::v2f16) {
10093       SDLoc SL(N);
10094       SDValue Src = N->getOperand(0);
10095       EVT EltVT = Src.getValueType();
10096       if (EltVT == MVT::f16)
10097         Src = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Src);
10098 
10099       SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Src);
10100       return DAG.getNode(ISD::BITCAST, SL, VT, Ext);
10101     }
10102 
10103     break;
10104   }
10105   case ISD::EXTRACT_VECTOR_ELT:
10106     return performExtractVectorEltCombine(N, DCI);
10107   case ISD::INSERT_VECTOR_ELT:
10108     return performInsertVectorEltCombine(N, DCI);
10109   }
10110   return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
10111 }
10112 
10113 /// Helper function for adjustWritemask
10114 static unsigned SubIdx2Lane(unsigned Idx) {
10115   switch (Idx) {
10116   default: return 0;
10117   case AMDGPU::sub0: return 0;
10118   case AMDGPU::sub1: return 1;
10119   case AMDGPU::sub2: return 2;
10120   case AMDGPU::sub3: return 3;
10121   case AMDGPU::sub4: return 4; // Possible with TFE/LWE
10122   }
10123 }
10124 
10125 /// Adjust the writemask of MIMG instructions
10126 SDNode *SITargetLowering::adjustWritemask(MachineSDNode *&Node,
10127                                           SelectionDAG &DAG) const {
10128   unsigned Opcode = Node->getMachineOpcode();
10129 
10130   // Subtract 1 because the vdata output is not a MachineSDNode operand.
10131   int D16Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::d16) - 1;
10132   if (D16Idx >= 0 && Node->getConstantOperandVal(D16Idx))
10133     return Node; // not implemented for D16
10134 
10135   SDNode *Users[5] = { nullptr };
10136   unsigned Lane = 0;
10137   unsigned DmaskIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::dmask) - 1;
10138   unsigned OldDmask = Node->getConstantOperandVal(DmaskIdx);
10139   unsigned NewDmask = 0;
10140   unsigned TFEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::tfe) - 1;
10141   unsigned LWEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::lwe) - 1;
10142   bool UsesTFC = (Node->getConstantOperandVal(TFEIdx) ||
10143                   Node->getConstantOperandVal(LWEIdx)) ? 1 : 0;
10144   unsigned TFCLane = 0;
10145   bool HasChain = Node->getNumValues() > 1;
10146 
10147   if (OldDmask == 0) {
10148     // These are folded out, but on the chance it happens don't assert.
10149     return Node;
10150   }
10151 
10152   unsigned OldBitsSet = countPopulation(OldDmask);
10153   // Work out which is the TFE/LWE lane if that is enabled.
10154   if (UsesTFC) {
10155     TFCLane = OldBitsSet;
10156   }
10157 
10158   // Try to figure out the used register components
10159   for (SDNode::use_iterator I = Node->use_begin(), E = Node->use_end();
10160        I != E; ++I) {
10161 
10162     // Don't look at users of the chain.
10163     if (I.getUse().getResNo() != 0)
10164       continue;
10165 
10166     // Abort if we can't understand the usage
10167     if (!I->isMachineOpcode() ||
10168         I->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG)
10169       return Node;
10170 
10171     // Lane means which subreg of %vgpra_vgprb_vgprc_vgprd is used.
10172     // Note that subregs are packed, i.e. Lane==0 is the first bit set
10173     // in OldDmask, so it can be any of X,Y,Z,W; Lane==1 is the second bit
10174     // set, etc.
10175     Lane = SubIdx2Lane(I->getConstantOperandVal(1));
10176 
10177     // Check if the use is for the TFE/LWE generated result at VGPRn+1.
10178     if (UsesTFC && Lane == TFCLane) {
10179       Users[Lane] = *I;
10180     } else {
10181       // Set which texture component corresponds to the lane.
10182       unsigned Comp;
10183       for (unsigned i = 0, Dmask = OldDmask; (i <= Lane) && (Dmask != 0); i++) {
10184         Comp = countTrailingZeros(Dmask);
10185         Dmask &= ~(1 << Comp);
10186       }
10187 
10188       // Abort if we have more than one user per component.
10189       if (Users[Lane])
10190         return Node;
10191 
10192       Users[Lane] = *I;
10193       NewDmask |= 1 << Comp;
10194     }
10195   }
10196 
10197   // Don't allow 0 dmask, as hardware assumes one channel enabled.
10198   bool NoChannels = !NewDmask;
10199   if (NoChannels) {
10200     if (!UsesTFC) {
10201       // No uses of the result and not using TFC. Then do nothing.
10202       return Node;
10203     }
10204     // If the original dmask has one channel - then nothing to do
10205     if (OldBitsSet == 1)
10206       return Node;
10207     // Use an arbitrary dmask - required for the instruction to work
10208     NewDmask = 1;
10209   }
10210   // Abort if there's no change
10211   if (NewDmask == OldDmask)
10212     return Node;
10213 
10214   unsigned BitsSet = countPopulation(NewDmask);
10215 
10216   // Check for TFE or LWE - increase the number of channels by one to account
10217   // for the extra return value
10218   // This will need adjustment for D16 if this is also included in
10219   // adjustWriteMask (this function) but at present D16 are excluded.
10220   unsigned NewChannels = BitsSet + UsesTFC;
10221 
10222   int NewOpcode =
10223       AMDGPU::getMaskedMIMGOp(Node->getMachineOpcode(), NewChannels);
10224   assert(NewOpcode != -1 &&
10225          NewOpcode != static_cast<int>(Node->getMachineOpcode()) &&
10226          "failed to find equivalent MIMG op");
10227 
10228   // Adjust the writemask in the node
10229   SmallVector<SDValue, 12> Ops;
10230   Ops.insert(Ops.end(), Node->op_begin(), Node->op_begin() + DmaskIdx);
10231   Ops.push_back(DAG.getTargetConstant(NewDmask, SDLoc(Node), MVT::i32));
10232   Ops.insert(Ops.end(), Node->op_begin() + DmaskIdx + 1, Node->op_end());
10233 
10234   MVT SVT = Node->getValueType(0).getVectorElementType().getSimpleVT();
10235 
10236   MVT ResultVT = NewChannels == 1 ?
10237     SVT : MVT::getVectorVT(SVT, NewChannels == 3 ? 4 :
10238                            NewChannels == 5 ? 8 : NewChannels);
10239   SDVTList NewVTList = HasChain ?
10240     DAG.getVTList(ResultVT, MVT::Other) : DAG.getVTList(ResultVT);
10241 
10242 
10243   MachineSDNode *NewNode = DAG.getMachineNode(NewOpcode, SDLoc(Node),
10244                                               NewVTList, Ops);
10245 
10246   if (HasChain) {
10247     // Update chain.
10248     DAG.setNodeMemRefs(NewNode, Node->memoperands());
10249     DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), SDValue(NewNode, 1));
10250   }
10251 
10252   if (NewChannels == 1) {
10253     assert(Node->hasNUsesOfValue(1, 0));
10254     SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY,
10255                                       SDLoc(Node), Users[Lane]->getValueType(0),
10256                                       SDValue(NewNode, 0));
10257     DAG.ReplaceAllUsesWith(Users[Lane], Copy);
10258     return nullptr;
10259   }
10260 
10261   // Update the users of the node with the new indices
10262   for (unsigned i = 0, Idx = AMDGPU::sub0; i < 5; ++i) {
10263     SDNode *User = Users[i];
10264     if (!User) {
10265       // Handle the special case of NoChannels. We set NewDmask to 1 above, but
10266       // Users[0] is still nullptr because channel 0 doesn't really have a use.
10267       if (i || !NoChannels)
10268         continue;
10269     } else {
10270       SDValue Op = DAG.getTargetConstant(Idx, SDLoc(User), MVT::i32);
10271       DAG.UpdateNodeOperands(User, SDValue(NewNode, 0), Op);
10272     }
10273 
10274     switch (Idx) {
10275     default: break;
10276     case AMDGPU::sub0: Idx = AMDGPU::sub1; break;
10277     case AMDGPU::sub1: Idx = AMDGPU::sub2; break;
10278     case AMDGPU::sub2: Idx = AMDGPU::sub3; break;
10279     case AMDGPU::sub3: Idx = AMDGPU::sub4; break;
10280     }
10281   }
10282 
10283   DAG.RemoveDeadNode(Node);
10284   return nullptr;
10285 }
10286 
10287 static bool isFrameIndexOp(SDValue Op) {
10288   if (Op.getOpcode() == ISD::AssertZext)
10289     Op = Op.getOperand(0);
10290 
10291   return isa<FrameIndexSDNode>(Op);
10292 }
10293 
10294 /// Legalize target independent instructions (e.g. INSERT_SUBREG)
10295 /// with frame index operands.
10296 /// LLVM assumes that inputs are to these instructions are registers.
10297 SDNode *SITargetLowering::legalizeTargetIndependentNode(SDNode *Node,
10298                                                         SelectionDAG &DAG) const {
10299   if (Node->getOpcode() == ISD::CopyToReg) {
10300     RegisterSDNode *DestReg = cast<RegisterSDNode>(Node->getOperand(1));
10301     SDValue SrcVal = Node->getOperand(2);
10302 
10303     // Insert a copy to a VReg_1 virtual register so LowerI1Copies doesn't have
10304     // to try understanding copies to physical registers.
10305     if (SrcVal.getValueType() == MVT::i1 &&
10306         Register::isPhysicalRegister(DestReg->getReg())) {
10307       SDLoc SL(Node);
10308       MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
10309       SDValue VReg = DAG.getRegister(
10310         MRI.createVirtualRegister(&AMDGPU::VReg_1RegClass), MVT::i1);
10311 
10312       SDNode *Glued = Node->getGluedNode();
10313       SDValue ToVReg
10314         = DAG.getCopyToReg(Node->getOperand(0), SL, VReg, SrcVal,
10315                          SDValue(Glued, Glued ? Glued->getNumValues() - 1 : 0));
10316       SDValue ToResultReg
10317         = DAG.getCopyToReg(ToVReg, SL, SDValue(DestReg, 0),
10318                            VReg, ToVReg.getValue(1));
10319       DAG.ReplaceAllUsesWith(Node, ToResultReg.getNode());
10320       DAG.RemoveDeadNode(Node);
10321       return ToResultReg.getNode();
10322     }
10323   }
10324 
10325   SmallVector<SDValue, 8> Ops;
10326   for (unsigned i = 0; i < Node->getNumOperands(); ++i) {
10327     if (!isFrameIndexOp(Node->getOperand(i))) {
10328       Ops.push_back(Node->getOperand(i));
10329       continue;
10330     }
10331 
10332     SDLoc DL(Node);
10333     Ops.push_back(SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL,
10334                                      Node->getOperand(i).getValueType(),
10335                                      Node->getOperand(i)), 0));
10336   }
10337 
10338   return DAG.UpdateNodeOperands(Node, Ops);
10339 }
10340 
10341 /// Fold the instructions after selecting them.
10342 /// Returns null if users were already updated.
10343 SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node,
10344                                           SelectionDAG &DAG) const {
10345   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
10346   unsigned Opcode = Node->getMachineOpcode();
10347 
10348   if (TII->isMIMG(Opcode) && !TII->get(Opcode).mayStore() &&
10349       !TII->isGather4(Opcode)) {
10350     return adjustWritemask(Node, DAG);
10351   }
10352 
10353   if (Opcode == AMDGPU::INSERT_SUBREG ||
10354       Opcode == AMDGPU::REG_SEQUENCE) {
10355     legalizeTargetIndependentNode(Node, DAG);
10356     return Node;
10357   }
10358 
10359   switch (Opcode) {
10360   case AMDGPU::V_DIV_SCALE_F32:
10361   case AMDGPU::V_DIV_SCALE_F64: {
10362     // Satisfy the operand register constraint when one of the inputs is
10363     // undefined. Ordinarily each undef value will have its own implicit_def of
10364     // a vreg, so force these to use a single register.
10365     SDValue Src0 = Node->getOperand(0);
10366     SDValue Src1 = Node->getOperand(1);
10367     SDValue Src2 = Node->getOperand(2);
10368 
10369     if ((Src0.isMachineOpcode() &&
10370          Src0.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) &&
10371         (Src0 == Src1 || Src0 == Src2))
10372       break;
10373 
10374     MVT VT = Src0.getValueType().getSimpleVT();
10375     const TargetRegisterClass *RC =
10376         getRegClassFor(VT, Src0.getNode()->isDivergent());
10377 
10378     MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
10379     SDValue UndefReg = DAG.getRegister(MRI.createVirtualRegister(RC), VT);
10380 
10381     SDValue ImpDef = DAG.getCopyToReg(DAG.getEntryNode(), SDLoc(Node),
10382                                       UndefReg, Src0, SDValue());
10383 
10384     // src0 must be the same register as src1 or src2, even if the value is
10385     // undefined, so make sure we don't violate this constraint.
10386     if (Src0.isMachineOpcode() &&
10387         Src0.getMachineOpcode() == AMDGPU::IMPLICIT_DEF) {
10388       if (Src1.isMachineOpcode() &&
10389           Src1.getMachineOpcode() != AMDGPU::IMPLICIT_DEF)
10390         Src0 = Src1;
10391       else if (Src2.isMachineOpcode() &&
10392                Src2.getMachineOpcode() != AMDGPU::IMPLICIT_DEF)
10393         Src0 = Src2;
10394       else {
10395         assert(Src1.getMachineOpcode() == AMDGPU::IMPLICIT_DEF);
10396         Src0 = UndefReg;
10397         Src1 = UndefReg;
10398       }
10399     } else
10400       break;
10401 
10402     SmallVector<SDValue, 4> Ops = { Src0, Src1, Src2 };
10403     for (unsigned I = 3, N = Node->getNumOperands(); I != N; ++I)
10404       Ops.push_back(Node->getOperand(I));
10405 
10406     Ops.push_back(ImpDef.getValue(1));
10407     return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
10408   }
10409   case AMDGPU::V_PERMLANE16_B32:
10410   case AMDGPU::V_PERMLANEX16_B32: {
10411     ConstantSDNode *FI = cast<ConstantSDNode>(Node->getOperand(0));
10412     ConstantSDNode *BC = cast<ConstantSDNode>(Node->getOperand(2));
10413     if (!FI->getZExtValue() && !BC->getZExtValue())
10414       break;
10415     SDValue VDstIn = Node->getOperand(6);
10416     if (VDstIn.isMachineOpcode()
10417         && VDstIn.getMachineOpcode() == AMDGPU::IMPLICIT_DEF)
10418       break;
10419     MachineSDNode *ImpDef = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF,
10420                                                SDLoc(Node), MVT::i32);
10421     SmallVector<SDValue, 8> Ops = { SDValue(FI, 0), Node->getOperand(1),
10422                                     SDValue(BC, 0), Node->getOperand(3),
10423                                     Node->getOperand(4), Node->getOperand(5),
10424                                     SDValue(ImpDef, 0), Node->getOperand(7) };
10425     return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
10426   }
10427   default:
10428     break;
10429   }
10430 
10431   return Node;
10432 }
10433 
10434 /// Assign the register class depending on the number of
10435 /// bits set in the writemask
10436 void SITargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
10437                                                      SDNode *Node) const {
10438   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
10439 
10440   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
10441 
10442   if (TII->isVOP3(MI.getOpcode())) {
10443     // Make sure constant bus requirements are respected.
10444     TII->legalizeOperandsVOP3(MRI, MI);
10445 
10446     // Prefer VGPRs over AGPRs in mAI instructions where possible.
10447     // This saves a chain-copy of registers and better ballance register
10448     // use between vgpr and agpr as agpr tuples tend to be big.
10449     if (const MCOperandInfo *OpInfo = MI.getDesc().OpInfo) {
10450       unsigned Opc = MI.getOpcode();
10451       const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
10452       for (auto I : { AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0),
10453                       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1) }) {
10454         if (I == -1)
10455           break;
10456         MachineOperand &Op = MI.getOperand(I);
10457         if ((OpInfo[I].RegClass != llvm::AMDGPU::AV_64RegClassID &&
10458              OpInfo[I].RegClass != llvm::AMDGPU::AV_32RegClassID) ||
10459             !Register::isVirtualRegister(Op.getReg()) ||
10460             !TRI->isAGPR(MRI, Op.getReg()))
10461           continue;
10462         auto *Src = MRI.getUniqueVRegDef(Op.getReg());
10463         if (!Src || !Src->isCopy() ||
10464             !TRI->isSGPRReg(MRI, Src->getOperand(1).getReg()))
10465           continue;
10466         auto *RC = TRI->getRegClassForReg(MRI, Op.getReg());
10467         auto *NewRC = TRI->getEquivalentVGPRClass(RC);
10468         // All uses of agpr64 and agpr32 can also accept vgpr except for
10469         // v_accvgpr_read, but we do not produce agpr reads during selection,
10470         // so no use checks are needed.
10471         MRI.setRegClass(Op.getReg(), NewRC);
10472       }
10473     }
10474 
10475     return;
10476   }
10477 
10478   // Replace unused atomics with the no return version.
10479   int NoRetAtomicOp = AMDGPU::getAtomicNoRetOp(MI.getOpcode());
10480   if (NoRetAtomicOp != -1) {
10481     if (!Node->hasAnyUseOfValue(0)) {
10482       MI.setDesc(TII->get(NoRetAtomicOp));
10483       MI.RemoveOperand(0);
10484       return;
10485     }
10486 
10487     // For mubuf_atomic_cmpswap, we need to have tablegen use an extract_subreg
10488     // instruction, because the return type of these instructions is a vec2 of
10489     // the memory type, so it can be tied to the input operand.
10490     // This means these instructions always have a use, so we need to add a
10491     // special case to check if the atomic has only one extract_subreg use,
10492     // which itself has no uses.
10493     if ((Node->hasNUsesOfValue(1, 0) &&
10494          Node->use_begin()->isMachineOpcode() &&
10495          Node->use_begin()->getMachineOpcode() == AMDGPU::EXTRACT_SUBREG &&
10496          !Node->use_begin()->hasAnyUseOfValue(0))) {
10497       Register Def = MI.getOperand(0).getReg();
10498 
10499       // Change this into a noret atomic.
10500       MI.setDesc(TII->get(NoRetAtomicOp));
10501       MI.RemoveOperand(0);
10502 
10503       // If we only remove the def operand from the atomic instruction, the
10504       // extract_subreg will be left with a use of a vreg without a def.
10505       // So we need to insert an implicit_def to avoid machine verifier
10506       // errors.
10507       BuildMI(*MI.getParent(), MI, MI.getDebugLoc(),
10508               TII->get(AMDGPU::IMPLICIT_DEF), Def);
10509     }
10510     return;
10511   }
10512 }
10513 
10514 static SDValue buildSMovImm32(SelectionDAG &DAG, const SDLoc &DL,
10515                               uint64_t Val) {
10516   SDValue K = DAG.getTargetConstant(Val, DL, MVT::i32);
10517   return SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, K), 0);
10518 }
10519 
10520 MachineSDNode *SITargetLowering::wrapAddr64Rsrc(SelectionDAG &DAG,
10521                                                 const SDLoc &DL,
10522                                                 SDValue Ptr) const {
10523   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
10524 
10525   // Build the half of the subregister with the constants before building the
10526   // full 128-bit register. If we are building multiple resource descriptors,
10527   // this will allow CSEing of the 2-component register.
10528   const SDValue Ops0[] = {
10529     DAG.getTargetConstant(AMDGPU::SGPR_64RegClassID, DL, MVT::i32),
10530     buildSMovImm32(DAG, DL, 0),
10531     DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
10532     buildSMovImm32(DAG, DL, TII->getDefaultRsrcDataFormat() >> 32),
10533     DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32)
10534   };
10535 
10536   SDValue SubRegHi = SDValue(DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL,
10537                                                 MVT::v2i32, Ops0), 0);
10538 
10539   // Combine the constants and the pointer.
10540   const SDValue Ops1[] = {
10541     DAG.getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32),
10542     Ptr,
10543     DAG.getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32),
10544     SubRegHi,
10545     DAG.getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32)
10546   };
10547 
10548   return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops1);
10549 }
10550 
10551 /// Return a resource descriptor with the 'Add TID' bit enabled
10552 ///        The TID (Thread ID) is multiplied by the stride value (bits [61:48]
10553 ///        of the resource descriptor) to create an offset, which is added to
10554 ///        the resource pointer.
10555 MachineSDNode *SITargetLowering::buildRSRC(SelectionDAG &DAG, const SDLoc &DL,
10556                                            SDValue Ptr, uint32_t RsrcDword1,
10557                                            uint64_t RsrcDword2And3) const {
10558   SDValue PtrLo = DAG.getTargetExtractSubreg(AMDGPU::sub0, DL, MVT::i32, Ptr);
10559   SDValue PtrHi = DAG.getTargetExtractSubreg(AMDGPU::sub1, DL, MVT::i32, Ptr);
10560   if (RsrcDword1) {
10561     PtrHi = SDValue(DAG.getMachineNode(AMDGPU::S_OR_B32, DL, MVT::i32, PtrHi,
10562                                      DAG.getConstant(RsrcDword1, DL, MVT::i32)),
10563                     0);
10564   }
10565 
10566   SDValue DataLo = buildSMovImm32(DAG, DL,
10567                                   RsrcDword2And3 & UINT64_C(0xFFFFFFFF));
10568   SDValue DataHi = buildSMovImm32(DAG, DL, RsrcDword2And3 >> 32);
10569 
10570   const SDValue Ops[] = {
10571     DAG.getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32),
10572     PtrLo,
10573     DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
10574     PtrHi,
10575     DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32),
10576     DataLo,
10577     DAG.getTargetConstant(AMDGPU::sub2, DL, MVT::i32),
10578     DataHi,
10579     DAG.getTargetConstant(AMDGPU::sub3, DL, MVT::i32)
10580   };
10581 
10582   return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops);
10583 }
10584 
10585 //===----------------------------------------------------------------------===//
10586 //                         SI Inline Assembly Support
10587 //===----------------------------------------------------------------------===//
10588 
10589 std::pair<unsigned, const TargetRegisterClass *>
10590 SITargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
10591                                                StringRef Constraint,
10592                                                MVT VT) const {
10593   const TargetRegisterClass *RC = nullptr;
10594   if (Constraint.size() == 1) {
10595     switch (Constraint[0]) {
10596     default:
10597       return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
10598     case 's':
10599     case 'r':
10600       switch (VT.getSizeInBits()) {
10601       default:
10602         return std::make_pair(0U, nullptr);
10603       case 32:
10604       case 16:
10605         RC = &AMDGPU::SReg_32RegClass;
10606         break;
10607       case 64:
10608         RC = &AMDGPU::SGPR_64RegClass;
10609         break;
10610       case 96:
10611         RC = &AMDGPU::SReg_96RegClass;
10612         break;
10613       case 128:
10614         RC = &AMDGPU::SGPR_128RegClass;
10615         break;
10616       case 160:
10617         RC = &AMDGPU::SReg_160RegClass;
10618         break;
10619       case 256:
10620         RC = &AMDGPU::SReg_256RegClass;
10621         break;
10622       case 512:
10623         RC = &AMDGPU::SReg_512RegClass;
10624         break;
10625       }
10626       break;
10627     case 'v':
10628       switch (VT.getSizeInBits()) {
10629       default:
10630         return std::make_pair(0U, nullptr);
10631       case 32:
10632       case 16:
10633         RC = &AMDGPU::VGPR_32RegClass;
10634         break;
10635       case 64:
10636         RC = &AMDGPU::VReg_64RegClass;
10637         break;
10638       case 96:
10639         RC = &AMDGPU::VReg_96RegClass;
10640         break;
10641       case 128:
10642         RC = &AMDGPU::VReg_128RegClass;
10643         break;
10644       case 160:
10645         RC = &AMDGPU::VReg_160RegClass;
10646         break;
10647       case 256:
10648         RC = &AMDGPU::VReg_256RegClass;
10649         break;
10650       case 512:
10651         RC = &AMDGPU::VReg_512RegClass;
10652         break;
10653       }
10654       break;
10655     case 'a':
10656       if (!Subtarget->hasMAIInsts())
10657         break;
10658       switch (VT.getSizeInBits()) {
10659       default:
10660         return std::make_pair(0U, nullptr);
10661       case 32:
10662       case 16:
10663         RC = &AMDGPU::AGPR_32RegClass;
10664         break;
10665       case 64:
10666         RC = &AMDGPU::AReg_64RegClass;
10667         break;
10668       case 128:
10669         RC = &AMDGPU::AReg_128RegClass;
10670         break;
10671       case 512:
10672         RC = &AMDGPU::AReg_512RegClass;
10673         break;
10674       case 1024:
10675         RC = &AMDGPU::AReg_1024RegClass;
10676         // v32 types are not legal but we support them here.
10677         return std::make_pair(0U, RC);
10678       }
10679       break;
10680     }
10681     // We actually support i128, i16 and f16 as inline parameters
10682     // even if they are not reported as legal
10683     if (RC && (isTypeLegal(VT) || VT.SimpleTy == MVT::i128 ||
10684                VT.SimpleTy == MVT::i16 || VT.SimpleTy == MVT::f16))
10685       return std::make_pair(0U, RC);
10686   }
10687 
10688   if (Constraint.size() > 1) {
10689     if (Constraint[1] == 'v') {
10690       RC = &AMDGPU::VGPR_32RegClass;
10691     } else if (Constraint[1] == 's') {
10692       RC = &AMDGPU::SGPR_32RegClass;
10693     } else if (Constraint[1] == 'a') {
10694       RC = &AMDGPU::AGPR_32RegClass;
10695     }
10696 
10697     if (RC) {
10698       uint32_t Idx;
10699       bool Failed = Constraint.substr(2).getAsInteger(10, Idx);
10700       if (!Failed && Idx < RC->getNumRegs())
10701         return std::make_pair(RC->getRegister(Idx), RC);
10702     }
10703   }
10704   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
10705 }
10706 
10707 SITargetLowering::ConstraintType
10708 SITargetLowering::getConstraintType(StringRef Constraint) const {
10709   if (Constraint.size() == 1) {
10710     switch (Constraint[0]) {
10711     default: break;
10712     case 's':
10713     case 'v':
10714     case 'a':
10715       return C_RegisterClass;
10716     }
10717   }
10718   return TargetLowering::getConstraintType(Constraint);
10719 }
10720 
10721 // Figure out which registers should be reserved for stack access. Only after
10722 // the function is legalized do we know all of the non-spill stack objects or if
10723 // calls are present.
10724 void SITargetLowering::finalizeLowering(MachineFunction &MF) const {
10725   MachineRegisterInfo &MRI = MF.getRegInfo();
10726   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
10727   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
10728   const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
10729 
10730   if (Info->isEntryFunction()) {
10731     // Callable functions have fixed registers used for stack access.
10732     reservePrivateMemoryRegs(getTargetMachine(), MF, *TRI, *Info);
10733   }
10734 
10735   assert(!TRI->isSubRegister(Info->getScratchRSrcReg(),
10736                              Info->getStackPtrOffsetReg()));
10737   if (Info->getStackPtrOffsetReg() != AMDGPU::SP_REG)
10738     MRI.replaceRegWith(AMDGPU::SP_REG, Info->getStackPtrOffsetReg());
10739 
10740   // We need to worry about replacing the default register with itself in case
10741   // of MIR testcases missing the MFI.
10742   if (Info->getScratchRSrcReg() != AMDGPU::PRIVATE_RSRC_REG)
10743     MRI.replaceRegWith(AMDGPU::PRIVATE_RSRC_REG, Info->getScratchRSrcReg());
10744 
10745   if (Info->getFrameOffsetReg() != AMDGPU::FP_REG)
10746     MRI.replaceRegWith(AMDGPU::FP_REG, Info->getFrameOffsetReg());
10747 
10748   if (Info->getScratchWaveOffsetReg() != AMDGPU::SCRATCH_WAVE_OFFSET_REG) {
10749     MRI.replaceRegWith(AMDGPU::SCRATCH_WAVE_OFFSET_REG,
10750                        Info->getScratchWaveOffsetReg());
10751   }
10752 
10753   Info->limitOccupancy(MF);
10754 
10755   if (ST.isWave32() && !MF.empty()) {
10756     // Add VCC_HI def because many instructions marked as imp-use VCC where
10757     // we may only define VCC_LO. If nothing defines VCC_HI we may end up
10758     // having a use of undef.
10759 
10760     const SIInstrInfo *TII = ST.getInstrInfo();
10761     DebugLoc DL;
10762 
10763     MachineBasicBlock &MBB = MF.front();
10764     MachineBasicBlock::iterator I = MBB.getFirstNonDebugInstr();
10765     BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), AMDGPU::VCC_HI);
10766 
10767     for (auto &MBB : MF) {
10768       for (auto &MI : MBB) {
10769         TII->fixImplicitOperands(MI);
10770       }
10771     }
10772   }
10773 
10774   TargetLoweringBase::finalizeLowering(MF);
10775 }
10776 
10777 void SITargetLowering::computeKnownBitsForFrameIndex(const SDValue Op,
10778                                                      KnownBits &Known,
10779                                                      const APInt &DemandedElts,
10780                                                      const SelectionDAG &DAG,
10781                                                      unsigned Depth) const {
10782   TargetLowering::computeKnownBitsForFrameIndex(Op, Known, DemandedElts,
10783                                                 DAG, Depth);
10784 
10785   // Set the high bits to zero based on the maximum allowed scratch size per
10786   // wave. We can't use vaddr in MUBUF instructions if we don't know the address
10787   // calculation won't overflow, so assume the sign bit is never set.
10788   Known.Zero.setHighBits(getSubtarget()->getKnownHighZeroBitsForFrameIndex());
10789 }
10790 
10791 Align SITargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
10792   const Align PrefAlign = TargetLowering::getPrefLoopAlignment(ML);
10793   const Align CacheLineAlign = Align(64);
10794 
10795   // Pre-GFX10 target did not benefit from loop alignment
10796   if (!ML || DisableLoopAlignment ||
10797       (getSubtarget()->getGeneration() < AMDGPUSubtarget::GFX10) ||
10798       getSubtarget()->hasInstFwdPrefetchBug())
10799     return PrefAlign;
10800 
10801   // On GFX10 I$ is 4 x 64 bytes cache lines.
10802   // By default prefetcher keeps one cache line behind and reads two ahead.
10803   // We can modify it with S_INST_PREFETCH for larger loops to have two lines
10804   // behind and one ahead.
10805   // Therefor we can benefit from aligning loop headers if loop fits 192 bytes.
10806   // If loop fits 64 bytes it always spans no more than two cache lines and
10807   // does not need an alignment.
10808   // Else if loop is less or equal 128 bytes we do not need to modify prefetch,
10809   // Else if loop is less or equal 192 bytes we need two lines behind.
10810 
10811   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
10812   const MachineBasicBlock *Header = ML->getHeader();
10813   if (Header->getAlignment() != PrefAlign)
10814     return Header->getAlignment(); // Already processed.
10815 
10816   unsigned LoopSize = 0;
10817   for (const MachineBasicBlock *MBB : ML->blocks()) {
10818     // If inner loop block is aligned assume in average half of the alignment
10819     // size to be added as nops.
10820     if (MBB != Header)
10821       LoopSize += MBB->getAlignment().value() / 2;
10822 
10823     for (const MachineInstr &MI : *MBB) {
10824       LoopSize += TII->getInstSizeInBytes(MI);
10825       if (LoopSize > 192)
10826         return PrefAlign;
10827     }
10828   }
10829 
10830   if (LoopSize <= 64)
10831     return PrefAlign;
10832 
10833   if (LoopSize <= 128)
10834     return CacheLineAlign;
10835 
10836   // If any of parent loops is surrounded by prefetch instructions do not
10837   // insert new for inner loop, which would reset parent's settings.
10838   for (MachineLoop *P = ML->getParentLoop(); P; P = P->getParentLoop()) {
10839     if (MachineBasicBlock *Exit = P->getExitBlock()) {
10840       auto I = Exit->getFirstNonDebugInstr();
10841       if (I != Exit->end() && I->getOpcode() == AMDGPU::S_INST_PREFETCH)
10842         return CacheLineAlign;
10843     }
10844   }
10845 
10846   MachineBasicBlock *Pre = ML->getLoopPreheader();
10847   MachineBasicBlock *Exit = ML->getExitBlock();
10848 
10849   if (Pre && Exit) {
10850     BuildMI(*Pre, Pre->getFirstTerminator(), DebugLoc(),
10851             TII->get(AMDGPU::S_INST_PREFETCH))
10852       .addImm(1); // prefetch 2 lines behind PC
10853 
10854     BuildMI(*Exit, Exit->getFirstNonDebugInstr(), DebugLoc(),
10855             TII->get(AMDGPU::S_INST_PREFETCH))
10856       .addImm(2); // prefetch 1 line behind PC
10857   }
10858 
10859   return CacheLineAlign;
10860 }
10861 
10862 LLVM_ATTRIBUTE_UNUSED
10863 static bool isCopyFromRegOfInlineAsm(const SDNode *N) {
10864   assert(N->getOpcode() == ISD::CopyFromReg);
10865   do {
10866     // Follow the chain until we find an INLINEASM node.
10867     N = N->getOperand(0).getNode();
10868     if (N->getOpcode() == ISD::INLINEASM ||
10869         N->getOpcode() == ISD::INLINEASM_BR)
10870       return true;
10871   } while (N->getOpcode() == ISD::CopyFromReg);
10872   return false;
10873 }
10874 
10875 bool SITargetLowering::isSDNodeSourceOfDivergence(const SDNode * N,
10876   FunctionLoweringInfo * FLI, LegacyDivergenceAnalysis * KDA) const
10877 {
10878   switch (N->getOpcode()) {
10879     case ISD::CopyFromReg:
10880     {
10881       const RegisterSDNode *R = cast<RegisterSDNode>(N->getOperand(1));
10882       const MachineFunction * MF = FLI->MF;
10883       const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
10884       const MachineRegisterInfo &MRI = MF->getRegInfo();
10885       const SIRegisterInfo &TRI = ST.getInstrInfo()->getRegisterInfo();
10886       unsigned Reg = R->getReg();
10887       if (Register::isPhysicalRegister(Reg))
10888         return !TRI.isSGPRReg(MRI, Reg);
10889 
10890       if (MRI.isLiveIn(Reg)) {
10891         // workitem.id.x workitem.id.y workitem.id.z
10892         // Any VGPR formal argument is also considered divergent
10893         if (!TRI.isSGPRReg(MRI, Reg))
10894           return true;
10895         // Formal arguments of non-entry functions
10896         // are conservatively considered divergent
10897         else if (!AMDGPU::isEntryFunctionCC(FLI->Fn->getCallingConv()))
10898           return true;
10899         return false;
10900       }
10901       const Value *V = FLI->getValueFromVirtualReg(Reg);
10902       if (V)
10903         return KDA->isDivergent(V);
10904       assert(Reg == FLI->DemoteRegister || isCopyFromRegOfInlineAsm(N));
10905       return !TRI.isSGPRReg(MRI, Reg);
10906     }
10907     break;
10908     case ISD::LOAD: {
10909       const LoadSDNode *L = cast<LoadSDNode>(N);
10910       unsigned AS = L->getAddressSpace();
10911       // A flat load may access private memory.
10912       return AS == AMDGPUAS::PRIVATE_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS;
10913     } break;
10914     case ISD::CALLSEQ_END:
10915     return true;
10916     break;
10917     case ISD::INTRINSIC_WO_CHAIN:
10918     {
10919 
10920     }
10921       return AMDGPU::isIntrinsicSourceOfDivergence(
10922       cast<ConstantSDNode>(N->getOperand(0))->getZExtValue());
10923     case ISD::INTRINSIC_W_CHAIN:
10924       return AMDGPU::isIntrinsicSourceOfDivergence(
10925       cast<ConstantSDNode>(N->getOperand(1))->getZExtValue());
10926   }
10927   return false;
10928 }
10929 
10930 bool SITargetLowering::denormalsEnabledForType(const SelectionDAG &DAG,
10931                                                EVT VT) const {
10932   switch (VT.getScalarType().getSimpleVT().SimpleTy) {
10933   case MVT::f32:
10934     return hasFP32Denormals(DAG.getMachineFunction());
10935   case MVT::f64:
10936   case MVT::f16:
10937     return hasFP64FP16Denormals(DAG.getMachineFunction());
10938   default:
10939     return false;
10940   }
10941 }
10942 
10943 bool SITargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
10944                                                     const SelectionDAG &DAG,
10945                                                     bool SNaN,
10946                                                     unsigned Depth) const {
10947   if (Op.getOpcode() == AMDGPUISD::CLAMP) {
10948     const MachineFunction &MF = DAG.getMachineFunction();
10949     const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
10950 
10951     if (Info->getMode().DX10Clamp)
10952       return true; // Clamped to 0.
10953     return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
10954   }
10955 
10956   return AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(Op, DAG,
10957                                                             SNaN, Depth);
10958 }
10959 
10960 TargetLowering::AtomicExpansionKind
10961 SITargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const {
10962   switch (RMW->getOperation()) {
10963   case AtomicRMWInst::FAdd: {
10964     Type *Ty = RMW->getType();
10965 
10966     // We don't have a way to support 16-bit atomics now, so just leave them
10967     // as-is.
10968     if (Ty->isHalfTy())
10969       return AtomicExpansionKind::None;
10970 
10971     if (!Ty->isFloatTy())
10972       return AtomicExpansionKind::CmpXChg;
10973 
10974     // TODO: Do have these for flat. Older targets also had them for buffers.
10975     unsigned AS = RMW->getPointerAddressSpace();
10976 
10977     if (AS == AMDGPUAS::GLOBAL_ADDRESS && Subtarget->hasAtomicFaddInsts()) {
10978       return RMW->use_empty() ? AtomicExpansionKind::None :
10979                                 AtomicExpansionKind::CmpXChg;
10980     }
10981 
10982     return (AS == AMDGPUAS::LOCAL_ADDRESS && Subtarget->hasLDSFPAtomics()) ?
10983       AtomicExpansionKind::None : AtomicExpansionKind::CmpXChg;
10984   }
10985   default:
10986     break;
10987   }
10988 
10989   return AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(RMW);
10990 }
10991 
10992 const TargetRegisterClass *
10993 SITargetLowering::getRegClassFor(MVT VT, bool isDivergent) const {
10994   const TargetRegisterClass *RC = TargetLoweringBase::getRegClassFor(VT, false);
10995   const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
10996   if (RC == &AMDGPU::VReg_1RegClass && !isDivergent)
10997     return Subtarget->getWavefrontSize() == 64 ? &AMDGPU::SReg_64RegClass
10998                                                : &AMDGPU::SReg_32RegClass;
10999   if (!TRI->isSGPRClass(RC) && !isDivergent)
11000     return TRI->getEquivalentSGPRClass(RC);
11001   else if (TRI->isSGPRClass(RC) && isDivergent)
11002     return TRI->getEquivalentVGPRClass(RC);
11003 
11004   return RC;
11005 }
11006 
11007 static bool hasCFUser(const Value *V, SmallPtrSet<const Value *, 16> &Visited) {
11008   if (!isa<Instruction>(V))
11009     return false;
11010   if (!Visited.insert(V).second)
11011     return false;
11012   bool Result = false;
11013   for (auto U : V->users()) {
11014     if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(U)) {
11015       if (V == U->getOperand(1)) {
11016         switch (Intrinsic->getIntrinsicID()) {
11017         default:
11018           Result = false;
11019           break;
11020         case Intrinsic::amdgcn_if_break:
11021         case Intrinsic::amdgcn_if:
11022         case Intrinsic::amdgcn_else:
11023           Result = true;
11024           break;
11025         }
11026       }
11027       if (V == U->getOperand(0)) {
11028         switch (Intrinsic->getIntrinsicID()) {
11029         default:
11030           Result = false;
11031           break;
11032         case Intrinsic::amdgcn_end_cf:
11033         case Intrinsic::amdgcn_loop:
11034           Result = true;
11035           break;
11036         }
11037       }
11038     } else {
11039       Result = hasCFUser(U, Visited);
11040     }
11041     if (Result)
11042       break;
11043   }
11044   return Result;
11045 }
11046 
11047 bool SITargetLowering::requiresUniformRegister(MachineFunction &MF,
11048                                                const Value *V) const {
11049   if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) {
11050     switch (Intrinsic->getIntrinsicID()) {
11051     default:
11052       return false;
11053     case Intrinsic::amdgcn_if_break:
11054       return true;
11055     }
11056   }
11057   if (const ExtractValueInst *ExtValue = dyn_cast<ExtractValueInst>(V)) {
11058     if (const IntrinsicInst *Intrinsic =
11059             dyn_cast<IntrinsicInst>(ExtValue->getOperand(0))) {
11060       switch (Intrinsic->getIntrinsicID()) {
11061       default:
11062         return false;
11063       case Intrinsic::amdgcn_if:
11064       case Intrinsic::amdgcn_else: {
11065         ArrayRef<unsigned> Indices = ExtValue->getIndices();
11066         if (Indices.size() == 1 && Indices[0] == 1) {
11067           return true;
11068         }
11069       }
11070       }
11071     }
11072   }
11073   if (const CallInst *CI = dyn_cast<CallInst>(V)) {
11074     if (isa<InlineAsm>(CI->getCalledValue())) {
11075       const SIRegisterInfo *SIRI = Subtarget->getRegisterInfo();
11076       ImmutableCallSite CS(CI);
11077       TargetLowering::AsmOperandInfoVector TargetConstraints = ParseConstraints(
11078           MF.getDataLayout(), Subtarget->getRegisterInfo(), CS);
11079       for (auto &TC : TargetConstraints) {
11080         if (TC.Type == InlineAsm::isOutput) {
11081           ComputeConstraintToUse(TC, SDValue());
11082           unsigned AssignedReg;
11083           const TargetRegisterClass *RC;
11084           std::tie(AssignedReg, RC) = getRegForInlineAsmConstraint(
11085               SIRI, TC.ConstraintCode, TC.ConstraintVT);
11086           if (RC) {
11087             MachineRegisterInfo &MRI = MF.getRegInfo();
11088             if (AssignedReg != 0 && SIRI->isSGPRReg(MRI, AssignedReg))
11089               return true;
11090             else if (SIRI->isSGPRClass(RC))
11091               return true;
11092           }
11093         }
11094       }
11095     }
11096   }
11097   SmallPtrSet<const Value *, 16> Visited;
11098   return hasCFUser(V, Visited);
11099 }
11100