1 //===- SIInsertWaitcnts.cpp - Insert Wait Instructions --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// Insert wait instructions for memory reads and writes.
11 ///
12 /// Memory reads and writes are issued asynchronously, so we need to insert
13 /// S_WAITCNT instructions when we want to access any of their results or
14 /// overwrite any register that's used asynchronously.
15 ///
16 /// TODO: This pass currently keeps one timeline per hardware counter. A more
17 /// finely-grained approach that keeps one timeline per event type could
18 /// sometimes get away with generating weaker s_waitcnt instructions. For
19 /// example, when both SMEM and LDS are in flight and we need to wait for
20 /// the i-th-last LDS instruction, then an lgkmcnt(i) is actually sufficient,
21 /// but the pass will currently generate a conservative lgkmcnt(0) because
22 /// multiple event types are in flight.
23 //
24 //===----------------------------------------------------------------------===//
25 
26 #include "AMDGPU.h"
27 #include "GCNSubtarget.h"
28 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
29 #include "SIMachineFunctionInfo.h"
30 #include "llvm/ADT/MapVector.h"
31 #include "llvm/ADT/PostOrderIterator.h"
32 #include "llvm/CodeGen/MachinePostDominators.h"
33 #include "llvm/InitializePasses.h"
34 #include "llvm/Support/DebugCounter.h"
35 #include "llvm/Support/TargetParser.h"
36 using namespace llvm;
37 
38 #define DEBUG_TYPE "si-insert-waitcnts"
39 
40 DEBUG_COUNTER(ForceExpCounter, DEBUG_TYPE"-forceexp",
41               "Force emit s_waitcnt expcnt(0) instrs");
42 DEBUG_COUNTER(ForceLgkmCounter, DEBUG_TYPE"-forcelgkm",
43               "Force emit s_waitcnt lgkmcnt(0) instrs");
44 DEBUG_COUNTER(ForceVMCounter, DEBUG_TYPE"-forcevm",
45               "Force emit s_waitcnt vmcnt(0) instrs");
46 
47 static cl::opt<bool> ForceEmitZeroFlag(
48   "amdgpu-waitcnt-forcezero",
49   cl::desc("Force all waitcnt instrs to be emitted as s_waitcnt vmcnt(0) expcnt(0) lgkmcnt(0)"),
50   cl::init(false), cl::Hidden);
51 
52 namespace {
53 
54 template <typename EnumT>
55 class enum_iterator
56     : public iterator_facade_base<enum_iterator<EnumT>,
57                                   std::forward_iterator_tag, const EnumT> {
58   EnumT Value;
59 public:
60   enum_iterator() = default;
61   enum_iterator(EnumT Value) : Value(Value) {}
62 
63   enum_iterator &operator++() {
64     Value = static_cast<EnumT>(Value + 1);
65     return *this;
66   }
67 
68   bool operator==(const enum_iterator &RHS) const { return Value == RHS.Value; }
69 
70   EnumT operator*() const { return Value; }
71 };
72 
73 // Class of object that encapsulates latest instruction counter score
74 // associated with the operand.  Used for determining whether
75 // s_waitcnt instruction needs to be emited.
76 
77 #define CNT_MASK(t) (1u << (t))
78 
79 enum InstCounterType { VM_CNT = 0, LGKM_CNT, EXP_CNT, VS_CNT, NUM_INST_CNTS };
80 
81 iterator_range<enum_iterator<InstCounterType>> inst_counter_types() {
82   return make_range(enum_iterator<InstCounterType>(VM_CNT),
83                     enum_iterator<InstCounterType>(NUM_INST_CNTS));
84 }
85 
86 using RegInterval = std::pair<int, int>;
87 
88 struct {
89   unsigned VmcntMax;
90   unsigned ExpcntMax;
91   unsigned LgkmcntMax;
92   unsigned VscntMax;
93 } HardwareLimits;
94 
95 struct {
96   unsigned VGPR0;
97   unsigned VGPRL;
98   unsigned SGPR0;
99   unsigned SGPRL;
100 } RegisterEncoding;
101 
102 enum WaitEventType {
103   VMEM_ACCESS,      // vector-memory read & write
104   VMEM_READ_ACCESS, // vector-memory read
105   VMEM_WRITE_ACCESS,// vector-memory write
106   LDS_ACCESS,       // lds read & write
107   GDS_ACCESS,       // gds read & write
108   SQ_MESSAGE,       // send message
109   SMEM_ACCESS,      // scalar-memory read & write
110   EXP_GPR_LOCK,     // export holding on its data src
111   GDS_GPR_LOCK,     // GDS holding on its data and addr src
112   EXP_POS_ACCESS,   // write to export position
113   EXP_PARAM_ACCESS, // write to export parameter
114   VMW_GPR_LOCK,     // vector-memory write holding on its data src
115   NUM_WAIT_EVENTS,
116 };
117 
118 static const unsigned WaitEventMaskForInst[NUM_INST_CNTS] = {
119   (1 << VMEM_ACCESS) | (1 << VMEM_READ_ACCESS),
120   (1 << SMEM_ACCESS) | (1 << LDS_ACCESS) | (1 << GDS_ACCESS) |
121       (1 << SQ_MESSAGE),
122   (1 << EXP_GPR_LOCK) | (1 << GDS_GPR_LOCK) | (1 << VMW_GPR_LOCK) |
123       (1 << EXP_PARAM_ACCESS) | (1 << EXP_POS_ACCESS),
124   (1 << VMEM_WRITE_ACCESS)
125 };
126 
127 // The mapping is:
128 //  0                .. SQ_MAX_PGM_VGPRS-1               real VGPRs
129 //  SQ_MAX_PGM_VGPRS .. NUM_ALL_VGPRS-1                  extra VGPR-like slots
130 //  NUM_ALL_VGPRS    .. NUM_ALL_VGPRS+SQ_MAX_PGM_SGPRS-1 real SGPRs
131 // We reserve a fixed number of VGPR slots in the scoring tables for
132 // special tokens like SCMEM_LDS (needed for buffer load to LDS).
133 enum RegisterMapping {
134   SQ_MAX_PGM_VGPRS = 256, // Maximum programmable VGPRs across all targets.
135   SQ_MAX_PGM_SGPRS = 256, // Maximum programmable SGPRs across all targets.
136   NUM_EXTRA_VGPRS = 1,    // A reserved slot for DS.
137   EXTRA_VGPR_LDS = 0,     // This is a placeholder the Shader algorithm uses.
138   NUM_ALL_VGPRS = SQ_MAX_PGM_VGPRS + NUM_EXTRA_VGPRS, // Where SGPR starts.
139 };
140 
141 // Enumerate different types of result-returning VMEM operations. Although
142 // s_waitcnt orders them all with a single vmcnt counter, in the absence of
143 // s_waitcnt only instructions of the same VmemType are guaranteed to write
144 // their results in order -- so there is no need to insert an s_waitcnt between
145 // two instructions of the same type that write the same vgpr.
146 enum VmemType {
147   // BUF instructions and MIMG instructions without a sampler.
148   VMEM_NOSAMPLER,
149   // MIMG instructions with a sampler.
150   VMEM_SAMPLER,
151 };
152 
153 VmemType getVmemType(const MachineInstr &Inst) {
154   assert(SIInstrInfo::isVMEM(Inst));
155   if (!SIInstrInfo::isMIMG(Inst))
156     return VMEM_NOSAMPLER;
157   const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(Inst.getOpcode());
158   return AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode)->Sampler
159              ? VMEM_SAMPLER
160              : VMEM_NOSAMPLER;
161 }
162 
163 void addWait(AMDGPU::Waitcnt &Wait, InstCounterType T, unsigned Count) {
164   switch (T) {
165   case VM_CNT:
166     Wait.VmCnt = std::min(Wait.VmCnt, Count);
167     break;
168   case EXP_CNT:
169     Wait.ExpCnt = std::min(Wait.ExpCnt, Count);
170     break;
171   case LGKM_CNT:
172     Wait.LgkmCnt = std::min(Wait.LgkmCnt, Count);
173     break;
174   case VS_CNT:
175     Wait.VsCnt = std::min(Wait.VsCnt, Count);
176     break;
177   default:
178     llvm_unreachable("bad InstCounterType");
179   }
180 }
181 
182 // This objects maintains the current score brackets of each wait counter, and
183 // a per-register scoreboard for each wait counter.
184 //
185 // We also maintain the latest score for every event type that can change the
186 // waitcnt in order to know if there are multiple types of events within
187 // the brackets. When multiple types of event happen in the bracket,
188 // wait count may get decreased out of order, therefore we need to put in
189 // "s_waitcnt 0" before use.
190 class WaitcntBrackets {
191 public:
192   WaitcntBrackets(const GCNSubtarget *SubTarget) : ST(SubTarget) {}
193 
194   static unsigned getWaitCountMax(InstCounterType T) {
195     switch (T) {
196     case VM_CNT:
197       return HardwareLimits.VmcntMax;
198     case LGKM_CNT:
199       return HardwareLimits.LgkmcntMax;
200     case EXP_CNT:
201       return HardwareLimits.ExpcntMax;
202     case VS_CNT:
203       return HardwareLimits.VscntMax;
204     default:
205       break;
206     }
207     return 0;
208   }
209 
210   unsigned getScoreLB(InstCounterType T) const {
211     assert(T < NUM_INST_CNTS);
212     return ScoreLBs[T];
213   }
214 
215   unsigned getScoreUB(InstCounterType T) const {
216     assert(T < NUM_INST_CNTS);
217     return ScoreUBs[T];
218   }
219 
220   // Mapping from event to counter.
221   InstCounterType eventCounter(WaitEventType E) {
222     if (WaitEventMaskForInst[VM_CNT] & (1 << E))
223       return VM_CNT;
224     if (WaitEventMaskForInst[LGKM_CNT] & (1 << E))
225       return LGKM_CNT;
226     if (WaitEventMaskForInst[VS_CNT] & (1 << E))
227       return VS_CNT;
228     assert(WaitEventMaskForInst[EXP_CNT] & (1 << E));
229     return EXP_CNT;
230   }
231 
232   unsigned getRegScore(int GprNo, InstCounterType T) {
233     if (GprNo < NUM_ALL_VGPRS) {
234       return VgprScores[T][GprNo];
235     }
236     assert(T == LGKM_CNT);
237     return SgprScores[GprNo - NUM_ALL_VGPRS];
238   }
239 
240   bool merge(const WaitcntBrackets &Other);
241 
242   RegInterval getRegInterval(const MachineInstr *MI, const SIInstrInfo *TII,
243                              const MachineRegisterInfo *MRI,
244                              const SIRegisterInfo *TRI, unsigned OpNo) const;
245 
246   bool counterOutOfOrder(InstCounterType T) const;
247   bool simplifyWaitcnt(AMDGPU::Waitcnt &Wait) const;
248   bool simplifyWaitcnt(InstCounterType T, unsigned &Count) const;
249   void determineWait(InstCounterType T, unsigned ScoreToWait,
250                      AMDGPU::Waitcnt &Wait) const;
251   void applyWaitcnt(const AMDGPU::Waitcnt &Wait);
252   void applyWaitcnt(InstCounterType T, unsigned Count);
253   void updateByEvent(const SIInstrInfo *TII, const SIRegisterInfo *TRI,
254                      const MachineRegisterInfo *MRI, WaitEventType E,
255                      MachineInstr &MI);
256 
257   bool hasPending() const { return PendingEvents != 0; }
258   bool hasPendingEvent(WaitEventType E) const {
259     return PendingEvents & (1 << E);
260   }
261 
262   bool hasMixedPendingEvents(InstCounterType T) const {
263     unsigned Events = PendingEvents & WaitEventMaskForInst[T];
264     // Return true if more than one bit is set in Events.
265     return Events & (Events - 1);
266   }
267 
268   bool hasPendingFlat() const {
269     return ((LastFlat[LGKM_CNT] > ScoreLBs[LGKM_CNT] &&
270              LastFlat[LGKM_CNT] <= ScoreUBs[LGKM_CNT]) ||
271             (LastFlat[VM_CNT] > ScoreLBs[VM_CNT] &&
272              LastFlat[VM_CNT] <= ScoreUBs[VM_CNT]));
273   }
274 
275   void setPendingFlat() {
276     LastFlat[VM_CNT] = ScoreUBs[VM_CNT];
277     LastFlat[LGKM_CNT] = ScoreUBs[LGKM_CNT];
278   }
279 
280   // Return true if there might be pending writes to the specified vgpr by VMEM
281   // instructions with types different from V.
282   bool hasOtherPendingVmemTypes(int GprNo, VmemType V) const {
283     assert(GprNo < NUM_ALL_VGPRS);
284     return VgprVmemTypes[GprNo] & ~(1 << V);
285   }
286 
287   void clearVgprVmemTypes(int GprNo) {
288     assert(GprNo < NUM_ALL_VGPRS);
289     VgprVmemTypes[GprNo] = 0;
290   }
291 
292   void print(raw_ostream &);
293   void dump() { print(dbgs()); }
294 
295 private:
296   struct MergeInfo {
297     unsigned OldLB;
298     unsigned OtherLB;
299     unsigned MyShift;
300     unsigned OtherShift;
301   };
302   static bool mergeScore(const MergeInfo &M, unsigned &Score,
303                          unsigned OtherScore);
304 
305   void setScoreLB(InstCounterType T, unsigned Val) {
306     assert(T < NUM_INST_CNTS);
307     ScoreLBs[T] = Val;
308   }
309 
310   void setScoreUB(InstCounterType T, unsigned Val) {
311     assert(T < NUM_INST_CNTS);
312     ScoreUBs[T] = Val;
313     if (T == EXP_CNT) {
314       unsigned UB = ScoreUBs[T] - getWaitCountMax(EXP_CNT);
315       if (ScoreLBs[T] < UB && UB < ScoreUBs[T])
316         ScoreLBs[T] = UB;
317     }
318   }
319 
320   void setRegScore(int GprNo, InstCounterType T, unsigned Val) {
321     if (GprNo < NUM_ALL_VGPRS) {
322       VgprUB = std::max(VgprUB, GprNo);
323       VgprScores[T][GprNo] = Val;
324     } else {
325       assert(T == LGKM_CNT);
326       SgprUB = std::max(SgprUB, GprNo - NUM_ALL_VGPRS);
327       SgprScores[GprNo - NUM_ALL_VGPRS] = Val;
328     }
329   }
330 
331   void setExpScore(const MachineInstr *MI, const SIInstrInfo *TII,
332                    const SIRegisterInfo *TRI, const MachineRegisterInfo *MRI,
333                    unsigned OpNo, unsigned Val);
334 
335   const GCNSubtarget *ST = nullptr;
336   unsigned ScoreLBs[NUM_INST_CNTS] = {0};
337   unsigned ScoreUBs[NUM_INST_CNTS] = {0};
338   unsigned PendingEvents = 0;
339   // Remember the last flat memory operation.
340   unsigned LastFlat[NUM_INST_CNTS] = {0};
341   // wait_cnt scores for every vgpr.
342   // Keep track of the VgprUB and SgprUB to make merge at join efficient.
343   int VgprUB = -1;
344   int SgprUB = -1;
345   unsigned VgprScores[NUM_INST_CNTS][NUM_ALL_VGPRS] = {{0}};
346   // Wait cnt scores for every sgpr, only lgkmcnt is relevant.
347   unsigned SgprScores[SQ_MAX_PGM_SGPRS] = {0};
348   // Bitmask of the VmemTypes of VMEM instructions that might have a pending
349   // write to each vgpr.
350   unsigned char VgprVmemTypes[NUM_ALL_VGPRS] = {0};
351 };
352 
353 class SIInsertWaitcnts : public MachineFunctionPass {
354 private:
355   const GCNSubtarget *ST = nullptr;
356   const SIInstrInfo *TII = nullptr;
357   const SIRegisterInfo *TRI = nullptr;
358   const MachineRegisterInfo *MRI = nullptr;
359   AMDGPU::IsaVersion IV;
360 
361   DenseSet<MachineInstr *> TrackedWaitcntSet;
362   DenseMap<const Value *, MachineBasicBlock *> SLoadAddresses;
363   MachinePostDominatorTree *PDT;
364 
365   struct BlockInfo {
366     MachineBasicBlock *MBB;
367     std::unique_ptr<WaitcntBrackets> Incoming;
368     bool Dirty = true;
369 
370     explicit BlockInfo(MachineBasicBlock *MBB) : MBB(MBB) {}
371   };
372 
373   MapVector<MachineBasicBlock *, BlockInfo> BlockInfos;
374 
375   // ForceEmitZeroWaitcnts: force all waitcnts insts to be s_waitcnt 0
376   // because of amdgpu-waitcnt-forcezero flag
377   bool ForceEmitZeroWaitcnts;
378   bool ForceEmitWaitcnt[NUM_INST_CNTS];
379 
380 public:
381   static char ID;
382 
383   SIInsertWaitcnts() : MachineFunctionPass(ID) {
384     (void)ForceExpCounter;
385     (void)ForceLgkmCounter;
386     (void)ForceVMCounter;
387   }
388 
389   bool runOnMachineFunction(MachineFunction &MF) override;
390 
391   StringRef getPassName() const override {
392     return "SI insert wait instructions";
393   }
394 
395   void getAnalysisUsage(AnalysisUsage &AU) const override {
396     AU.setPreservesCFG();
397     AU.addRequired<MachinePostDominatorTree>();
398     MachineFunctionPass::getAnalysisUsage(AU);
399   }
400 
401   bool isForceEmitWaitcnt() const {
402     for (auto T : inst_counter_types())
403       if (ForceEmitWaitcnt[T])
404         return true;
405     return false;
406   }
407 
408   void setForceEmitWaitcnt() {
409 // For non-debug builds, ForceEmitWaitcnt has been initialized to false;
410 // For debug builds, get the debug counter info and adjust if need be
411 #ifndef NDEBUG
412     if (DebugCounter::isCounterSet(ForceExpCounter) &&
413         DebugCounter::shouldExecute(ForceExpCounter)) {
414       ForceEmitWaitcnt[EXP_CNT] = true;
415     } else {
416       ForceEmitWaitcnt[EXP_CNT] = false;
417     }
418 
419     if (DebugCounter::isCounterSet(ForceLgkmCounter) &&
420          DebugCounter::shouldExecute(ForceLgkmCounter)) {
421       ForceEmitWaitcnt[LGKM_CNT] = true;
422     } else {
423       ForceEmitWaitcnt[LGKM_CNT] = false;
424     }
425 
426     if (DebugCounter::isCounterSet(ForceVMCounter) &&
427         DebugCounter::shouldExecute(ForceVMCounter)) {
428       ForceEmitWaitcnt[VM_CNT] = true;
429     } else {
430       ForceEmitWaitcnt[VM_CNT] = false;
431     }
432 #endif // NDEBUG
433   }
434 
435   bool mayAccessVMEMThroughFlat(const MachineInstr &MI) const;
436   bool mayAccessLDSThroughFlat(const MachineInstr &MI) const;
437   bool generateWaitcntInstBefore(MachineInstr &MI,
438                                  WaitcntBrackets &ScoreBrackets,
439                                  MachineInstr *OldWaitcntInstr);
440   void updateEventWaitcntAfter(MachineInstr &Inst,
441                                WaitcntBrackets *ScoreBrackets);
442   bool insertWaitcntInBlock(MachineFunction &MF, MachineBasicBlock &Block,
443                             WaitcntBrackets &ScoreBrackets);
444 };
445 
446 } // end anonymous namespace
447 
448 RegInterval WaitcntBrackets::getRegInterval(const MachineInstr *MI,
449                                             const SIInstrInfo *TII,
450                                             const MachineRegisterInfo *MRI,
451                                             const SIRegisterInfo *TRI,
452                                             unsigned OpNo) const {
453   const MachineOperand &Op = MI->getOperand(OpNo);
454   assert(Op.isReg());
455   if (!TRI->isInAllocatableClass(Op.getReg()) || TRI->isAGPR(*MRI, Op.getReg()))
456     return {-1, -1};
457 
458   // A use via a PW operand does not need a waitcnt.
459   // A partial write is not a WAW.
460   assert(!Op.getSubReg() || !Op.isUndef());
461 
462   RegInterval Result;
463 
464   unsigned Reg = TRI->getEncodingValue(AMDGPU::getMCReg(Op.getReg(), *ST));
465 
466   if (TRI->isVGPR(*MRI, Op.getReg())) {
467     assert(Reg >= RegisterEncoding.VGPR0 && Reg <= RegisterEncoding.VGPRL);
468     Result.first = Reg - RegisterEncoding.VGPR0;
469     assert(Result.first >= 0 && Result.first < SQ_MAX_PGM_VGPRS);
470   } else if (TRI->isSGPRReg(*MRI, Op.getReg())) {
471     assert(Reg >= RegisterEncoding.SGPR0 && Reg < SQ_MAX_PGM_SGPRS);
472     Result.first = Reg - RegisterEncoding.SGPR0 + NUM_ALL_VGPRS;
473     assert(Result.first >= NUM_ALL_VGPRS &&
474            Result.first < SQ_MAX_PGM_SGPRS + NUM_ALL_VGPRS);
475   }
476   // TODO: Handle TTMP
477   // else if (TRI->isTTMP(*MRI, Reg.getReg())) ...
478   else
479     return {-1, -1};
480 
481   const TargetRegisterClass *RC = TII->getOpRegClass(*MI, OpNo);
482   unsigned Size = TRI->getRegSizeInBits(*RC);
483   Result.second = Result.first + ((Size + 16) / 32);
484 
485   return Result;
486 }
487 
488 void WaitcntBrackets::setExpScore(const MachineInstr *MI,
489                                   const SIInstrInfo *TII,
490                                   const SIRegisterInfo *TRI,
491                                   const MachineRegisterInfo *MRI, unsigned OpNo,
492                                   unsigned Val) {
493   RegInterval Interval = getRegInterval(MI, TII, MRI, TRI, OpNo);
494   assert(TRI->isVGPR(*MRI, MI->getOperand(OpNo).getReg()));
495   for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo) {
496     setRegScore(RegNo, EXP_CNT, Val);
497   }
498 }
499 
500 void WaitcntBrackets::updateByEvent(const SIInstrInfo *TII,
501                                     const SIRegisterInfo *TRI,
502                                     const MachineRegisterInfo *MRI,
503                                     WaitEventType E, MachineInstr &Inst) {
504   InstCounterType T = eventCounter(E);
505   unsigned CurrScore = getScoreUB(T) + 1;
506   if (CurrScore == 0)
507     report_fatal_error("InsertWaitcnt score wraparound");
508   // PendingEvents and ScoreUB need to be update regardless if this event
509   // changes the score of a register or not.
510   // Examples including vm_cnt when buffer-store or lgkm_cnt when send-message.
511   PendingEvents |= 1 << E;
512   setScoreUB(T, CurrScore);
513 
514   if (T == EXP_CNT) {
515     // Put score on the source vgprs. If this is a store, just use those
516     // specific register(s).
517     if (TII->isDS(Inst) && (Inst.mayStore() || Inst.mayLoad())) {
518       int AddrOpIdx =
519           AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::addr);
520       // All GDS operations must protect their address register (same as
521       // export.)
522       if (AddrOpIdx != -1) {
523         setExpScore(&Inst, TII, TRI, MRI, AddrOpIdx, CurrScore);
524       }
525 
526       if (Inst.mayStore()) {
527         if (AMDGPU::getNamedOperandIdx(Inst.getOpcode(),
528                                        AMDGPU::OpName::data0) != -1) {
529           setExpScore(
530               &Inst, TII, TRI, MRI,
531               AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data0),
532               CurrScore);
533         }
534         if (AMDGPU::getNamedOperandIdx(Inst.getOpcode(),
535                                        AMDGPU::OpName::data1) != -1) {
536           setExpScore(&Inst, TII, TRI, MRI,
537                       AMDGPU::getNamedOperandIdx(Inst.getOpcode(),
538                                                  AMDGPU::OpName::data1),
539                       CurrScore);
540         }
541       } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1 &&
542                  Inst.getOpcode() != AMDGPU::DS_GWS_INIT &&
543                  Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_V &&
544                  Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_BR &&
545                  Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_P &&
546                  Inst.getOpcode() != AMDGPU::DS_GWS_BARRIER &&
547                  Inst.getOpcode() != AMDGPU::DS_APPEND &&
548                  Inst.getOpcode() != AMDGPU::DS_CONSUME &&
549                  Inst.getOpcode() != AMDGPU::DS_ORDERED_COUNT) {
550         for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) {
551           const MachineOperand &Op = Inst.getOperand(I);
552           if (Op.isReg() && !Op.isDef() && TRI->isVGPR(*MRI, Op.getReg())) {
553             setExpScore(&Inst, TII, TRI, MRI, I, CurrScore);
554           }
555         }
556       }
557     } else if (TII->isFLAT(Inst)) {
558       if (Inst.mayStore()) {
559         setExpScore(
560             &Inst, TII, TRI, MRI,
561             AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data),
562             CurrScore);
563       } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) {
564         setExpScore(
565             &Inst, TII, TRI, MRI,
566             AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data),
567             CurrScore);
568       }
569     } else if (TII->isMIMG(Inst)) {
570       if (Inst.mayStore()) {
571         setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore);
572       } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) {
573         setExpScore(
574             &Inst, TII, TRI, MRI,
575             AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data),
576             CurrScore);
577       }
578     } else if (TII->isMTBUF(Inst)) {
579       if (Inst.mayStore()) {
580         setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore);
581       }
582     } else if (TII->isMUBUF(Inst)) {
583       if (Inst.mayStore()) {
584         setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore);
585       } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) {
586         setExpScore(
587             &Inst, TII, TRI, MRI,
588             AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data),
589             CurrScore);
590       }
591     } else {
592       if (TII->isEXP(Inst)) {
593         // For export the destination registers are really temps that
594         // can be used as the actual source after export patching, so
595         // we need to treat them like sources and set the EXP_CNT
596         // score.
597         for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) {
598           MachineOperand &DefMO = Inst.getOperand(I);
599           if (DefMO.isReg() && DefMO.isDef() &&
600               TRI->isVGPR(*MRI, DefMO.getReg())) {
601             setRegScore(
602                 TRI->getEncodingValue(AMDGPU::getMCReg(DefMO.getReg(), *ST)),
603                 EXP_CNT, CurrScore);
604           }
605         }
606       }
607       for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) {
608         MachineOperand &MO = Inst.getOperand(I);
609         if (MO.isReg() && !MO.isDef() && TRI->isVGPR(*MRI, MO.getReg())) {
610           setExpScore(&Inst, TII, TRI, MRI, I, CurrScore);
611         }
612       }
613     }
614 #if 0 // TODO: check if this is handled by MUBUF code above.
615   } else if (Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORD ||
616        Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORDX2 ||
617        Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORDX4) {
618     MachineOperand *MO = TII->getNamedOperand(Inst, AMDGPU::OpName::data);
619     unsigned OpNo;//TODO: find the OpNo for this operand;
620     RegInterval Interval = getRegInterval(&Inst, TII, MRI, TRI, OpNo);
621     for (int RegNo = Interval.first; RegNo < Interval.second;
622     ++RegNo) {
623       setRegScore(RegNo + NUM_ALL_VGPRS, t, CurrScore);
624     }
625 #endif
626   } else {
627     // Match the score to the destination registers.
628     for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) {
629       auto &Op = Inst.getOperand(I);
630       if (!Op.isReg() || !Op.isDef())
631         continue;
632       RegInterval Interval = getRegInterval(&Inst, TII, MRI, TRI, I);
633       if (T == VM_CNT) {
634         if (Interval.first >= NUM_ALL_VGPRS)
635           continue;
636         if (SIInstrInfo::isVMEM(Inst)) {
637           VmemType V = getVmemType(Inst);
638           for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo)
639             VgprVmemTypes[RegNo] |= 1 << V;
640         }
641       }
642       for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo) {
643         setRegScore(RegNo, T, CurrScore);
644       }
645     }
646     if (TII->isDS(Inst) && Inst.mayStore()) {
647       setRegScore(SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS, T, CurrScore);
648     }
649   }
650 }
651 
652 void WaitcntBrackets::print(raw_ostream &OS) {
653   OS << '\n';
654   for (auto T : inst_counter_types()) {
655     unsigned LB = getScoreLB(T);
656     unsigned UB = getScoreUB(T);
657 
658     switch (T) {
659     case VM_CNT:
660       OS << "    VM_CNT(" << UB - LB << "): ";
661       break;
662     case LGKM_CNT:
663       OS << "    LGKM_CNT(" << UB - LB << "): ";
664       break;
665     case EXP_CNT:
666       OS << "    EXP_CNT(" << UB - LB << "): ";
667       break;
668     case VS_CNT:
669       OS << "    VS_CNT(" << UB - LB << "): ";
670       break;
671     default:
672       OS << "    UNKNOWN(" << UB - LB << "): ";
673       break;
674     }
675 
676     if (LB < UB) {
677       // Print vgpr scores.
678       for (int J = 0; J <= VgprUB; J++) {
679         unsigned RegScore = getRegScore(J, T);
680         if (RegScore <= LB)
681           continue;
682         unsigned RelScore = RegScore - LB - 1;
683         if (J < SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS) {
684           OS << RelScore << ":v" << J << " ";
685         } else {
686           OS << RelScore << ":ds ";
687         }
688       }
689       // Also need to print sgpr scores for lgkm_cnt.
690       if (T == LGKM_CNT) {
691         for (int J = 0; J <= SgprUB; J++) {
692           unsigned RegScore = getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT);
693           if (RegScore <= LB)
694             continue;
695           unsigned RelScore = RegScore - LB - 1;
696           OS << RelScore << ":s" << J << " ";
697         }
698       }
699     }
700     OS << '\n';
701   }
702   OS << '\n';
703 }
704 
705 /// Simplify the waitcnt, in the sense of removing redundant counts, and return
706 /// whether a waitcnt instruction is needed at all.
707 bool WaitcntBrackets::simplifyWaitcnt(AMDGPU::Waitcnt &Wait) const {
708   return simplifyWaitcnt(VM_CNT, Wait.VmCnt) |
709          simplifyWaitcnt(EXP_CNT, Wait.ExpCnt) |
710          simplifyWaitcnt(LGKM_CNT, Wait.LgkmCnt) |
711          simplifyWaitcnt(VS_CNT, Wait.VsCnt);
712 }
713 
714 bool WaitcntBrackets::simplifyWaitcnt(InstCounterType T,
715                                       unsigned &Count) const {
716   const unsigned LB = getScoreLB(T);
717   const unsigned UB = getScoreUB(T);
718   if (Count < UB && UB - Count > LB)
719     return true;
720 
721   Count = ~0u;
722   return false;
723 }
724 
725 void WaitcntBrackets::determineWait(InstCounterType T, unsigned ScoreToWait,
726                                     AMDGPU::Waitcnt &Wait) const {
727   // If the score of src_operand falls within the bracket, we need an
728   // s_waitcnt instruction.
729   const unsigned LB = getScoreLB(T);
730   const unsigned UB = getScoreUB(T);
731   if ((UB >= ScoreToWait) && (ScoreToWait > LB)) {
732     if ((T == VM_CNT || T == LGKM_CNT) &&
733         hasPendingFlat() &&
734         !ST->hasFlatLgkmVMemCountInOrder()) {
735       // If there is a pending FLAT operation, and this is a VMem or LGKM
736       // waitcnt and the target can report early completion, then we need
737       // to force a waitcnt 0.
738       addWait(Wait, T, 0);
739     } else if (counterOutOfOrder(T)) {
740       // Counter can get decremented out-of-order when there
741       // are multiple types event in the bracket. Also emit an s_wait counter
742       // with a conservative value of 0 for the counter.
743       addWait(Wait, T, 0);
744     } else {
745       // If a counter has been maxed out avoid overflow by waiting for
746       // MAX(CounterType) - 1 instead.
747       unsigned NeededWait = std::min(UB - ScoreToWait, getWaitCountMax(T) - 1);
748       addWait(Wait, T, NeededWait);
749     }
750   }
751 }
752 
753 void WaitcntBrackets::applyWaitcnt(const AMDGPU::Waitcnt &Wait) {
754   applyWaitcnt(VM_CNT, Wait.VmCnt);
755   applyWaitcnt(EXP_CNT, Wait.ExpCnt);
756   applyWaitcnt(LGKM_CNT, Wait.LgkmCnt);
757   applyWaitcnt(VS_CNT, Wait.VsCnt);
758 }
759 
760 void WaitcntBrackets::applyWaitcnt(InstCounterType T, unsigned Count) {
761   const unsigned UB = getScoreUB(T);
762   if (Count >= UB)
763     return;
764   if (Count != 0) {
765     if (counterOutOfOrder(T))
766       return;
767     setScoreLB(T, std::max(getScoreLB(T), UB - Count));
768   } else {
769     setScoreLB(T, UB);
770     PendingEvents &= ~WaitEventMaskForInst[T];
771   }
772 }
773 
774 // Where there are multiple types of event in the bracket of a counter,
775 // the decrement may go out of order.
776 bool WaitcntBrackets::counterOutOfOrder(InstCounterType T) const {
777   // Scalar memory read always can go out of order.
778   if (T == LGKM_CNT && hasPendingEvent(SMEM_ACCESS))
779     return true;
780   return hasMixedPendingEvents(T);
781 }
782 
783 INITIALIZE_PASS_BEGIN(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false,
784                       false)
785 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree)
786 INITIALIZE_PASS_END(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false,
787                     false)
788 
789 char SIInsertWaitcnts::ID = 0;
790 
791 char &llvm::SIInsertWaitcntsID = SIInsertWaitcnts::ID;
792 
793 FunctionPass *llvm::createSIInsertWaitcntsPass() {
794   return new SIInsertWaitcnts();
795 }
796 
797 static bool readsVCCZ(const MachineInstr &MI) {
798   unsigned Opc = MI.getOpcode();
799   return (Opc == AMDGPU::S_CBRANCH_VCCNZ || Opc == AMDGPU::S_CBRANCH_VCCZ) &&
800          !MI.getOperand(1).isUndef();
801 }
802 
803 /// \returns true if the callee inserts an s_waitcnt 0 on function entry.
804 static bool callWaitsOnFunctionEntry(const MachineInstr &MI) {
805   // Currently all conventions wait, but this may not always be the case.
806   //
807   // TODO: If IPRA is enabled, and the callee is isSafeForNoCSROpt, it may make
808   // senses to omit the wait and do it in the caller.
809   return true;
810 }
811 
812 /// \returns true if the callee is expected to wait for any outstanding waits
813 /// before returning.
814 static bool callWaitsOnFunctionReturn(const MachineInstr &MI) {
815   return true;
816 }
817 
818 ///  Generate s_waitcnt instruction to be placed before cur_Inst.
819 ///  Instructions of a given type are returned in order,
820 ///  but instructions of different types can complete out of order.
821 ///  We rely on this in-order completion
822 ///  and simply assign a score to the memory access instructions.
823 ///  We keep track of the active "score bracket" to determine
824 ///  if an access of a memory read requires an s_waitcnt
825 ///  and if so what the value of each counter is.
826 ///  The "score bracket" is bound by the lower bound and upper bound
827 ///  scores (*_score_LB and *_score_ub respectively).
828 bool SIInsertWaitcnts::generateWaitcntInstBefore(
829     MachineInstr &MI, WaitcntBrackets &ScoreBrackets,
830     MachineInstr *OldWaitcntInstr) {
831   setForceEmitWaitcnt();
832   bool IsForceEmitWaitcnt = isForceEmitWaitcnt();
833 
834   if (MI.isMetaInstruction())
835     return false;
836 
837   AMDGPU::Waitcnt Wait;
838 
839   // See if this instruction has a forced S_WAITCNT VM.
840   // TODO: Handle other cases of NeedsWaitcntVmBefore()
841   if (MI.getOpcode() == AMDGPU::BUFFER_WBINVL1 ||
842       MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_SC ||
843       MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_VOL ||
844       MI.getOpcode() == AMDGPU::BUFFER_GL0_INV ||
845       MI.getOpcode() == AMDGPU::BUFFER_GL1_INV) {
846     Wait.VmCnt = 0;
847   }
848 
849   // All waits must be resolved at call return.
850   // NOTE: this could be improved with knowledge of all call sites or
851   //   with knowledge of the called routines.
852   if (MI.getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG ||
853       MI.getOpcode() == AMDGPU::S_SETPC_B64_return ||
854       (MI.isReturn() && MI.isCall() && !callWaitsOnFunctionEntry(MI))) {
855     Wait = Wait.combined(AMDGPU::Waitcnt::allZero(ST->hasVscnt()));
856   }
857   // Resolve vm waits before gs-done.
858   else if ((MI.getOpcode() == AMDGPU::S_SENDMSG ||
859             MI.getOpcode() == AMDGPU::S_SENDMSGHALT) &&
860            ((MI.getOperand(0).getImm() & AMDGPU::SendMsg::ID_MASK_) ==
861             AMDGPU::SendMsg::ID_GS_DONE)) {
862     Wait.VmCnt = 0;
863   }
864 #if 0 // TODO: the following blocks of logic when we have fence.
865   else if (MI.getOpcode() == SC_FENCE) {
866     const unsigned int group_size =
867       context->shader_info->GetMaxThreadGroupSize();
868     // group_size == 0 means thread group size is unknown at compile time
869     const bool group_is_multi_wave =
870       (group_size == 0 || group_size > target_info->GetWaveFrontSize());
871     const bool fence_is_global = !((SCInstInternalMisc*)Inst)->IsGroupFence();
872 
873     for (unsigned int i = 0; i < Inst->NumSrcOperands(); i++) {
874       SCRegType src_type = Inst->GetSrcType(i);
875       switch (src_type) {
876         case SCMEM_LDS:
877           if (group_is_multi_wave ||
878             context->OptFlagIsOn(OPT_R1100_LDSMEM_FENCE_CHICKEN_BIT)) {
879             EmitWaitcnt |= ScoreBrackets->updateByWait(LGKM_CNT,
880                                ScoreBrackets->getScoreUB(LGKM_CNT));
881             // LDS may have to wait for VM_CNT after buffer load to LDS
882             if (target_info->HasBufferLoadToLDS()) {
883               EmitWaitcnt |= ScoreBrackets->updateByWait(VM_CNT,
884                                  ScoreBrackets->getScoreUB(VM_CNT));
885             }
886           }
887           break;
888 
889         case SCMEM_GDS:
890           if (group_is_multi_wave || fence_is_global) {
891             EmitWaitcnt |= ScoreBrackets->updateByWait(EXP_CNT,
892               ScoreBrackets->getScoreUB(EXP_CNT));
893             EmitWaitcnt |= ScoreBrackets->updateByWait(LGKM_CNT,
894               ScoreBrackets->getScoreUB(LGKM_CNT));
895           }
896           break;
897 
898         case SCMEM_UAV:
899         case SCMEM_TFBUF:
900         case SCMEM_RING:
901         case SCMEM_SCATTER:
902           if (group_is_multi_wave || fence_is_global) {
903             EmitWaitcnt |= ScoreBrackets->updateByWait(EXP_CNT,
904               ScoreBrackets->getScoreUB(EXP_CNT));
905             EmitWaitcnt |= ScoreBrackets->updateByWait(VM_CNT,
906               ScoreBrackets->getScoreUB(VM_CNT));
907           }
908           break;
909 
910         case SCMEM_SCRATCH:
911         default:
912           break;
913       }
914     }
915   }
916 #endif
917 
918   // Export & GDS instructions do not read the EXEC mask until after the export
919   // is granted (which can occur well after the instruction is issued).
920   // The shader program must flush all EXP operations on the export-count
921   // before overwriting the EXEC mask.
922   else {
923     if (MI.modifiesRegister(AMDGPU::EXEC, TRI)) {
924       // Export and GDS are tracked individually, either may trigger a waitcnt
925       // for EXEC.
926       if (ScoreBrackets.hasPendingEvent(EXP_GPR_LOCK) ||
927           ScoreBrackets.hasPendingEvent(EXP_PARAM_ACCESS) ||
928           ScoreBrackets.hasPendingEvent(EXP_POS_ACCESS) ||
929           ScoreBrackets.hasPendingEvent(GDS_GPR_LOCK)) {
930         Wait.ExpCnt = 0;
931       }
932     }
933 
934     if (MI.isCall() && callWaitsOnFunctionEntry(MI)) {
935       // The function is going to insert a wait on everything in its prolog.
936       // This still needs to be careful if the call target is a load (e.g. a GOT
937       // load). We also need to check WAW depenancy with saved PC.
938       Wait = AMDGPU::Waitcnt();
939 
940       int CallAddrOpIdx =
941           AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::src0);
942 
943       if (MI.getOperand(CallAddrOpIdx).isReg()) {
944         RegInterval CallAddrOpInterval =
945           ScoreBrackets.getRegInterval(&MI, TII, MRI, TRI, CallAddrOpIdx);
946 
947         for (int RegNo = CallAddrOpInterval.first;
948              RegNo < CallAddrOpInterval.second; ++RegNo)
949           ScoreBrackets.determineWait(
950             LGKM_CNT, ScoreBrackets.getRegScore(RegNo, LGKM_CNT), Wait);
951 
952         int RtnAddrOpIdx =
953           AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dst);
954         if (RtnAddrOpIdx != -1) {
955           RegInterval RtnAddrOpInterval =
956             ScoreBrackets.getRegInterval(&MI, TII, MRI, TRI, RtnAddrOpIdx);
957 
958           for (int RegNo = RtnAddrOpInterval.first;
959                RegNo < RtnAddrOpInterval.second; ++RegNo)
960             ScoreBrackets.determineWait(
961               LGKM_CNT, ScoreBrackets.getRegScore(RegNo, LGKM_CNT), Wait);
962         }
963       }
964     } else {
965       // FIXME: Should not be relying on memoperands.
966       // Look at the source operands of every instruction to see if
967       // any of them results from a previous memory operation that affects
968       // its current usage. If so, an s_waitcnt instruction needs to be
969       // emitted.
970       // If the source operand was defined by a load, add the s_waitcnt
971       // instruction.
972       //
973       // Two cases are handled for destination operands:
974       // 1) If the destination operand was defined by a load, add the s_waitcnt
975       // instruction to guarantee the right WAW order.
976       // 2) If a destination operand that was used by a recent export/store ins,
977       // add s_waitcnt on exp_cnt to guarantee the WAR order.
978       for (const MachineMemOperand *Memop : MI.memoperands()) {
979         const Value *Ptr = Memop->getValue();
980         if (Memop->isStore() && SLoadAddresses.count(Ptr)) {
981           addWait(Wait, LGKM_CNT, 0);
982           if (PDT->dominates(MI.getParent(), SLoadAddresses.find(Ptr)->second))
983             SLoadAddresses.erase(Ptr);
984         }
985         unsigned AS = Memop->getAddrSpace();
986         if (AS != AMDGPUAS::LOCAL_ADDRESS)
987           continue;
988         unsigned RegNo = SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS;
989         // VM_CNT is only relevant to vgpr or LDS.
990         ScoreBrackets.determineWait(
991             VM_CNT, ScoreBrackets.getRegScore(RegNo, VM_CNT), Wait);
992         if (Memop->isStore()) {
993           ScoreBrackets.determineWait(
994               EXP_CNT, ScoreBrackets.getRegScore(RegNo, EXP_CNT), Wait);
995         }
996       }
997 
998       // Loop over use and def operands.
999       for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
1000         MachineOperand &Op = MI.getOperand(I);
1001         if (!Op.isReg())
1002           continue;
1003         RegInterval Interval =
1004             ScoreBrackets.getRegInterval(&MI, TII, MRI, TRI, I);
1005 
1006         const bool IsVGPR = TRI->isVGPR(*MRI, Op.getReg());
1007         for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo) {
1008           if (IsVGPR) {
1009             // RAW always needs an s_waitcnt. WAW needs an s_waitcnt unless the
1010             // previous write and this write are the same type of VMEM
1011             // instruction, in which case they're guaranteed to write their
1012             // results in order anyway.
1013             if (Op.isUse() || !SIInstrInfo::isVMEM(MI) ||
1014                 ScoreBrackets.hasOtherPendingVmemTypes(RegNo,
1015                                                        getVmemType(MI))) {
1016               ScoreBrackets.determineWait(
1017                   VM_CNT, ScoreBrackets.getRegScore(RegNo, VM_CNT), Wait);
1018               ScoreBrackets.clearVgprVmemTypes(RegNo);
1019             }
1020             if (Op.isDef()) {
1021               ScoreBrackets.determineWait(
1022                   EXP_CNT, ScoreBrackets.getRegScore(RegNo, EXP_CNT), Wait);
1023             }
1024           }
1025           ScoreBrackets.determineWait(
1026               LGKM_CNT, ScoreBrackets.getRegScore(RegNo, LGKM_CNT), Wait);
1027         }
1028       }
1029     }
1030   }
1031 
1032   // Check to see if this is an S_BARRIER, and if an implicit S_WAITCNT 0
1033   // occurs before the instruction. Doing it here prevents any additional
1034   // S_WAITCNTs from being emitted if the instruction was marked as
1035   // requiring a WAITCNT beforehand.
1036   if (MI.getOpcode() == AMDGPU::S_BARRIER &&
1037       !ST->hasAutoWaitcntBeforeBarrier()) {
1038     Wait = Wait.combined(AMDGPU::Waitcnt::allZero(ST->hasVscnt()));
1039   }
1040 
1041   // TODO: Remove this work-around, enable the assert for Bug 457939
1042   //       after fixing the scheduler. Also, the Shader Compiler code is
1043   //       independent of target.
1044   if (readsVCCZ(MI) && ST->hasReadVCCZBug()) {
1045     if (ScoreBrackets.getScoreLB(LGKM_CNT) <
1046             ScoreBrackets.getScoreUB(LGKM_CNT) &&
1047         ScoreBrackets.hasPendingEvent(SMEM_ACCESS)) {
1048       Wait.LgkmCnt = 0;
1049     }
1050   }
1051 
1052   // Early-out if no wait is indicated.
1053   if (!ScoreBrackets.simplifyWaitcnt(Wait) && !IsForceEmitWaitcnt) {
1054     bool Modified = false;
1055     if (OldWaitcntInstr) {
1056       for (auto II = OldWaitcntInstr->getIterator(), NextI = std::next(II);
1057            &*II != &MI; II = NextI, ++NextI) {
1058         if (II->isDebugInstr())
1059           continue;
1060 
1061         if (TrackedWaitcntSet.count(&*II)) {
1062           TrackedWaitcntSet.erase(&*II);
1063           II->eraseFromParent();
1064           Modified = true;
1065         } else if (II->getOpcode() == AMDGPU::S_WAITCNT) {
1066           int64_t Imm = II->getOperand(0).getImm();
1067           ScoreBrackets.applyWaitcnt(AMDGPU::decodeWaitcnt(IV, Imm));
1068         } else {
1069           assert(II->getOpcode() == AMDGPU::S_WAITCNT_VSCNT);
1070           assert(II->getOperand(0).getReg() == AMDGPU::SGPR_NULL);
1071           auto W = TII->getNamedOperand(*II, AMDGPU::OpName::simm16)->getImm();
1072           ScoreBrackets.applyWaitcnt(AMDGPU::Waitcnt(~0u, ~0u, ~0u, W));
1073         }
1074       }
1075     }
1076     return Modified;
1077   }
1078 
1079   if (ForceEmitZeroWaitcnts)
1080     Wait = AMDGPU::Waitcnt::allZero(ST->hasVscnt());
1081 
1082   if (ForceEmitWaitcnt[VM_CNT])
1083     Wait.VmCnt = 0;
1084   if (ForceEmitWaitcnt[EXP_CNT])
1085     Wait.ExpCnt = 0;
1086   if (ForceEmitWaitcnt[LGKM_CNT])
1087     Wait.LgkmCnt = 0;
1088   if (ForceEmitWaitcnt[VS_CNT])
1089     Wait.VsCnt = 0;
1090 
1091   ScoreBrackets.applyWaitcnt(Wait);
1092 
1093   AMDGPU::Waitcnt OldWait;
1094   bool Modified = false;
1095 
1096   if (OldWaitcntInstr) {
1097     for (auto II = OldWaitcntInstr->getIterator(), NextI = std::next(II);
1098          &*II != &MI; II = NextI, NextI++) {
1099       if (II->isDebugInstr())
1100         continue;
1101 
1102       if (II->getOpcode() == AMDGPU::S_WAITCNT) {
1103         unsigned IEnc = II->getOperand(0).getImm();
1104         AMDGPU::Waitcnt IWait = AMDGPU::decodeWaitcnt(IV, IEnc);
1105         OldWait = OldWait.combined(IWait);
1106         if (!TrackedWaitcntSet.count(&*II))
1107           Wait = Wait.combined(IWait);
1108         unsigned NewEnc = AMDGPU::encodeWaitcnt(IV, Wait);
1109         if (IEnc != NewEnc) {
1110           II->getOperand(0).setImm(NewEnc);
1111           Modified = true;
1112         }
1113         Wait.VmCnt = ~0u;
1114         Wait.LgkmCnt = ~0u;
1115         Wait.ExpCnt = ~0u;
1116       } else {
1117         assert(II->getOpcode() == AMDGPU::S_WAITCNT_VSCNT);
1118         assert(II->getOperand(0).getReg() == AMDGPU::SGPR_NULL);
1119 
1120         unsigned ICnt = TII->getNamedOperand(*II, AMDGPU::OpName::simm16)
1121                         ->getImm();
1122         OldWait.VsCnt = std::min(OldWait.VsCnt, ICnt);
1123         if (!TrackedWaitcntSet.count(&*II))
1124           Wait.VsCnt = std::min(Wait.VsCnt, ICnt);
1125         if (Wait.VsCnt != ICnt) {
1126           TII->getNamedOperand(*II, AMDGPU::OpName::simm16)->setImm(Wait.VsCnt);
1127           Modified = true;
1128         }
1129         Wait.VsCnt = ~0u;
1130       }
1131 
1132       LLVM_DEBUG(dbgs() << "generateWaitcntInstBefore\n"
1133                         << "Old Instr: " << MI
1134                         << "New Instr: " << *II << '\n');
1135 
1136       if (!Wait.hasWait())
1137         return Modified;
1138     }
1139   }
1140 
1141   if (Wait.VmCnt != ~0u || Wait.LgkmCnt != ~0u || Wait.ExpCnt != ~0u) {
1142     unsigned Enc = AMDGPU::encodeWaitcnt(IV, Wait);
1143     auto SWaitInst = BuildMI(*MI.getParent(), MI.getIterator(),
1144                              MI.getDebugLoc(), TII->get(AMDGPU::S_WAITCNT))
1145                          .addImm(Enc);
1146     TrackedWaitcntSet.insert(SWaitInst);
1147     Modified = true;
1148 
1149     LLVM_DEBUG(dbgs() << "generateWaitcntInstBefore\n"
1150                       << "Old Instr: " << MI
1151                       << "New Instr: " << *SWaitInst << '\n');
1152   }
1153 
1154   if (Wait.VsCnt != ~0u) {
1155     assert(ST->hasVscnt());
1156 
1157     auto SWaitInst =
1158         BuildMI(*MI.getParent(), MI.getIterator(), MI.getDebugLoc(),
1159                 TII->get(AMDGPU::S_WAITCNT_VSCNT))
1160             .addReg(AMDGPU::SGPR_NULL, RegState::Undef)
1161             .addImm(Wait.VsCnt);
1162     TrackedWaitcntSet.insert(SWaitInst);
1163     Modified = true;
1164 
1165     LLVM_DEBUG(dbgs() << "generateWaitcntInstBefore\n"
1166                       << "Old Instr: " << MI
1167                       << "New Instr: " << *SWaitInst << '\n');
1168   }
1169 
1170   return Modified;
1171 }
1172 
1173 // This is a flat memory operation. Check to see if it has memory tokens other
1174 // than LDS. Other address spaces supported by flat memory operations involve
1175 // global memory.
1176 bool SIInsertWaitcnts::mayAccessVMEMThroughFlat(const MachineInstr &MI) const {
1177   assert(TII->isFLAT(MI));
1178 
1179   // All flat instructions use the VMEM counter.
1180   assert(TII->usesVM_CNT(MI));
1181 
1182   // If there are no memory operands then conservatively assume the flat
1183   // operation may access VMEM.
1184   if (MI.memoperands_empty())
1185     return true;
1186 
1187   // See if any memory operand specifies an address space that involves VMEM.
1188   // Flat operations only supported FLAT, LOCAL (LDS), or address spaces
1189   // involving VMEM such as GLOBAL, CONSTANT, PRIVATE (SCRATCH), etc. The REGION
1190   // (GDS) address space is not supported by flat operations. Therefore, simply
1191   // return true unless only the LDS address space is found.
1192   for (const MachineMemOperand *Memop : MI.memoperands()) {
1193     unsigned AS = Memop->getAddrSpace();
1194     assert(AS != AMDGPUAS::REGION_ADDRESS);
1195     if (AS != AMDGPUAS::LOCAL_ADDRESS)
1196       return true;
1197   }
1198 
1199   return false;
1200 }
1201 
1202 // This is a flat memory operation. Check to see if it has memory tokens for
1203 // either LDS or FLAT.
1204 bool SIInsertWaitcnts::mayAccessLDSThroughFlat(const MachineInstr &MI) const {
1205   assert(TII->isFLAT(MI));
1206 
1207   // Flat instruction such as SCRATCH and GLOBAL do not use the lgkm counter.
1208   if (!TII->usesLGKM_CNT(MI))
1209     return false;
1210 
1211   // If there are no memory operands then conservatively assume the flat
1212   // operation may access LDS.
1213   if (MI.memoperands_empty())
1214     return true;
1215 
1216   // See if any memory operand specifies an address space that involves LDS.
1217   for (const MachineMemOperand *Memop : MI.memoperands()) {
1218     unsigned AS = Memop->getAddrSpace();
1219     if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS)
1220       return true;
1221   }
1222 
1223   return false;
1224 }
1225 
1226 void SIInsertWaitcnts::updateEventWaitcntAfter(MachineInstr &Inst,
1227                                                WaitcntBrackets *ScoreBrackets) {
1228   // Now look at the instruction opcode. If it is a memory access
1229   // instruction, update the upper-bound of the appropriate counter's
1230   // bracket and the destination operand scores.
1231   // TODO: Use the (TSFlags & SIInstrFlags::LGKM_CNT) property everywhere.
1232   if (TII->isDS(Inst) && TII->usesLGKM_CNT(Inst)) {
1233     if (TII->isAlwaysGDS(Inst.getOpcode()) ||
1234         TII->hasModifiersSet(Inst, AMDGPU::OpName::gds)) {
1235       ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_ACCESS, Inst);
1236       ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_GPR_LOCK, Inst);
1237     } else {
1238       ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst);
1239     }
1240   } else if (TII->isFLAT(Inst)) {
1241     assert(Inst.mayLoadOrStore());
1242 
1243     int FlatASCount = 0;
1244 
1245     if (mayAccessVMEMThroughFlat(Inst)) {
1246       ++FlatASCount;
1247       if (!ST->hasVscnt())
1248         ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_ACCESS, Inst);
1249       else if (Inst.mayLoad() &&
1250                AMDGPU::getAtomicRetOp(Inst.getOpcode()) == -1)
1251         ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_READ_ACCESS, Inst);
1252       else
1253         ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_WRITE_ACCESS, Inst);
1254     }
1255 
1256     if (mayAccessLDSThroughFlat(Inst)) {
1257       ++FlatASCount;
1258       ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst);
1259     }
1260 
1261     // A Flat memory operation must access at least one address space.
1262     assert(FlatASCount);
1263 
1264     // This is a flat memory operation that access both VMEM and LDS, so note it
1265     // - it will require that both the VM and LGKM be flushed to zero if it is
1266     // pending when a VM or LGKM dependency occurs.
1267     if (FlatASCount > 1)
1268       ScoreBrackets->setPendingFlat();
1269   } else if (SIInstrInfo::isVMEM(Inst) &&
1270              // TODO: get a better carve out.
1271              Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1 &&
1272              Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1_SC &&
1273              Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1_VOL &&
1274              Inst.getOpcode() != AMDGPU::BUFFER_GL0_INV &&
1275              Inst.getOpcode() != AMDGPU::BUFFER_GL1_INV) {
1276     if (!ST->hasVscnt())
1277       ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_ACCESS, Inst);
1278     else if ((Inst.mayLoad() &&
1279               AMDGPU::getAtomicRetOp(Inst.getOpcode()) == -1) ||
1280              /* IMAGE_GET_RESINFO / IMAGE_GET_LOD */
1281              (TII->isMIMG(Inst) && !Inst.mayLoad() && !Inst.mayStore()))
1282       ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_READ_ACCESS, Inst);
1283     else if (Inst.mayStore())
1284       ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_WRITE_ACCESS, Inst);
1285 
1286     if (ST->vmemWriteNeedsExpWaitcnt() &&
1287         (Inst.mayStore() || AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1)) {
1288       ScoreBrackets->updateByEvent(TII, TRI, MRI, VMW_GPR_LOCK, Inst);
1289     }
1290   } else if (TII->isSMRD(Inst)) {
1291     ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst);
1292   } else if (Inst.isCall()) {
1293     if (callWaitsOnFunctionReturn(Inst)) {
1294       // Act as a wait on everything
1295       ScoreBrackets->applyWaitcnt(AMDGPU::Waitcnt::allZero(ST->hasVscnt()));
1296     } else {
1297       // May need to way wait for anything.
1298       ScoreBrackets->applyWaitcnt(AMDGPU::Waitcnt());
1299     }
1300   } else if (SIInstrInfo::isEXP(Inst)) {
1301     unsigned Imm = TII->getNamedOperand(Inst, AMDGPU::OpName::tgt)->getImm();
1302     if (Imm >= AMDGPU::Exp::ET_PARAM0 && Imm <= AMDGPU::Exp::ET_PARAM31)
1303       ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_PARAM_ACCESS, Inst);
1304     else if (Imm >= AMDGPU::Exp::ET_POS0 && Imm <= AMDGPU::Exp::ET_POS_LAST)
1305       ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_POS_ACCESS, Inst);
1306     else
1307       ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_GPR_LOCK, Inst);
1308   } else {
1309     switch (Inst.getOpcode()) {
1310     case AMDGPU::S_SENDMSG:
1311     case AMDGPU::S_SENDMSGHALT:
1312       ScoreBrackets->updateByEvent(TII, TRI, MRI, SQ_MESSAGE, Inst);
1313       break;
1314     case AMDGPU::S_MEMTIME:
1315     case AMDGPU::S_MEMREALTIME:
1316       ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst);
1317       break;
1318     }
1319   }
1320 }
1321 
1322 bool WaitcntBrackets::mergeScore(const MergeInfo &M, unsigned &Score,
1323                                  unsigned OtherScore) {
1324   unsigned MyShifted = Score <= M.OldLB ? 0 : Score + M.MyShift;
1325   unsigned OtherShifted =
1326       OtherScore <= M.OtherLB ? 0 : OtherScore + M.OtherShift;
1327   Score = std::max(MyShifted, OtherShifted);
1328   return OtherShifted > MyShifted;
1329 }
1330 
1331 /// Merge the pending events and associater score brackets of \p Other into
1332 /// this brackets status.
1333 ///
1334 /// Returns whether the merge resulted in a change that requires tighter waits
1335 /// (i.e. the merged brackets strictly dominate the original brackets).
1336 bool WaitcntBrackets::merge(const WaitcntBrackets &Other) {
1337   bool StrictDom = false;
1338 
1339   VgprUB = std::max(VgprUB, Other.VgprUB);
1340   SgprUB = std::max(SgprUB, Other.SgprUB);
1341 
1342   for (auto T : inst_counter_types()) {
1343     // Merge event flags for this counter
1344     const bool OldOutOfOrder = counterOutOfOrder(T);
1345     const unsigned OldEvents = PendingEvents & WaitEventMaskForInst[T];
1346     const unsigned OtherEvents = Other.PendingEvents & WaitEventMaskForInst[T];
1347     if (OtherEvents & ~OldEvents)
1348       StrictDom = true;
1349     PendingEvents |= OtherEvents;
1350 
1351     // Merge scores for this counter
1352     const unsigned MyPending = ScoreUBs[T] - ScoreLBs[T];
1353     const unsigned OtherPending = Other.ScoreUBs[T] - Other.ScoreLBs[T];
1354     const unsigned NewUB = ScoreLBs[T] + std::max(MyPending, OtherPending);
1355     if (NewUB < ScoreLBs[T])
1356       report_fatal_error("waitcnt score overflow");
1357 
1358     MergeInfo M;
1359     M.OldLB = ScoreLBs[T];
1360     M.OtherLB = Other.ScoreLBs[T];
1361     M.MyShift = NewUB - ScoreUBs[T];
1362     M.OtherShift = NewUB - Other.ScoreUBs[T];
1363 
1364     ScoreUBs[T] = NewUB;
1365 
1366     StrictDom |= mergeScore(M, LastFlat[T], Other.LastFlat[T]);
1367 
1368     bool RegStrictDom = false;
1369     for (int J = 0; J <= VgprUB; J++) {
1370       RegStrictDom |= mergeScore(M, VgprScores[T][J], Other.VgprScores[T][J]);
1371     }
1372 
1373     if (T == VM_CNT) {
1374       for (int J = 0; J <= VgprUB; J++) {
1375         unsigned char NewVmemTypes = VgprVmemTypes[J] | Other.VgprVmemTypes[J];
1376         RegStrictDom |= NewVmemTypes != VgprVmemTypes[J];
1377         VgprVmemTypes[J] = NewVmemTypes;
1378       }
1379     }
1380 
1381     if (T == LGKM_CNT) {
1382       for (int J = 0; J <= SgprUB; J++) {
1383         RegStrictDom |= mergeScore(M, SgprScores[J], Other.SgprScores[J]);
1384       }
1385     }
1386 
1387     if (RegStrictDom && !OldOutOfOrder)
1388       StrictDom = true;
1389   }
1390 
1391   return StrictDom;
1392 }
1393 
1394 // Generate s_waitcnt instructions where needed.
1395 bool SIInsertWaitcnts::insertWaitcntInBlock(MachineFunction &MF,
1396                                             MachineBasicBlock &Block,
1397                                             WaitcntBrackets &ScoreBrackets) {
1398   bool Modified = false;
1399 
1400   LLVM_DEBUG({
1401     dbgs() << "*** Block" << Block.getNumber() << " ***";
1402     ScoreBrackets.dump();
1403   });
1404 
1405   // Track the correctness of vccz through this basic block. There are two
1406   // reasons why it might be incorrect; see ST->hasReadVCCZBug() and
1407   // ST->partialVCCWritesUpdateVCCZ().
1408   bool VCCZCorrect = true;
1409   if (ST->hasReadVCCZBug()) {
1410     // vccz could be incorrect at a basic block boundary if a predecessor wrote
1411     // to vcc and then issued an smem load.
1412     VCCZCorrect = false;
1413   } else if (!ST->partialVCCWritesUpdateVCCZ()) {
1414     // vccz could be incorrect at a basic block boundary if a predecessor wrote
1415     // to vcc_lo or vcc_hi.
1416     VCCZCorrect = false;
1417   }
1418 
1419   // Walk over the instructions.
1420   MachineInstr *OldWaitcntInstr = nullptr;
1421 
1422   for (MachineBasicBlock::instr_iterator Iter = Block.instr_begin(),
1423                                          E = Block.instr_end();
1424        Iter != E;) {
1425     MachineInstr &Inst = *Iter;
1426 
1427     // Track pre-existing waitcnts from earlier iterations.
1428     if (Inst.getOpcode() == AMDGPU::S_WAITCNT ||
1429         (Inst.getOpcode() == AMDGPU::S_WAITCNT_VSCNT &&
1430          Inst.getOperand(0).isReg() &&
1431          Inst.getOperand(0).getReg() == AMDGPU::SGPR_NULL)) {
1432       if (!OldWaitcntInstr)
1433         OldWaitcntInstr = &Inst;
1434       ++Iter;
1435       continue;
1436     }
1437 
1438     // Generate an s_waitcnt instruction to be placed before Inst, if needed.
1439     Modified |= generateWaitcntInstBefore(Inst, ScoreBrackets, OldWaitcntInstr);
1440     OldWaitcntInstr = nullptr;
1441 
1442     // Restore vccz if it's not known to be correct already.
1443     bool RestoreVCCZ = !VCCZCorrect && readsVCCZ(Inst);
1444 
1445     // Don't examine operands unless we need to track vccz correctness.
1446     if (ST->hasReadVCCZBug() || !ST->partialVCCWritesUpdateVCCZ()) {
1447       if (Inst.definesRegister(AMDGPU::VCC_LO) ||
1448           Inst.definesRegister(AMDGPU::VCC_HI)) {
1449         // Up to gfx9, writes to vcc_lo and vcc_hi don't update vccz.
1450         if (!ST->partialVCCWritesUpdateVCCZ())
1451           VCCZCorrect = false;
1452       } else if (Inst.definesRegister(AMDGPU::VCC)) {
1453         // There is a hardware bug on CI/SI where SMRD instruction may corrupt
1454         // vccz bit, so when we detect that an instruction may read from a
1455         // corrupt vccz bit, we need to:
1456         // 1. Insert s_waitcnt lgkm(0) to wait for all outstanding SMRD
1457         //    operations to complete.
1458         // 2. Restore the correct value of vccz by writing the current value
1459         //    of vcc back to vcc.
1460         if (ST->hasReadVCCZBug() &&
1461             ScoreBrackets.getScoreLB(LGKM_CNT) <
1462                 ScoreBrackets.getScoreUB(LGKM_CNT) &&
1463             ScoreBrackets.hasPendingEvent(SMEM_ACCESS)) {
1464           // Writes to vcc while there's an outstanding smem read may get
1465           // clobbered as soon as any read completes.
1466           VCCZCorrect = false;
1467         } else {
1468           // Writes to vcc will fix any incorrect value in vccz.
1469           VCCZCorrect = true;
1470         }
1471       }
1472     }
1473 
1474     if (TII->isSMRD(Inst)) {
1475       for (const MachineMemOperand *Memop : Inst.memoperands()) {
1476         const Value *Ptr = Memop->getValue();
1477         SLoadAddresses.insert(std::make_pair(Ptr, Inst.getParent()));
1478       }
1479       if (ST->hasReadVCCZBug()) {
1480         // This smem read could complete and clobber vccz at any time.
1481         VCCZCorrect = false;
1482       }
1483     }
1484 
1485     updateEventWaitcntAfter(Inst, &ScoreBrackets);
1486 
1487 #if 0 // TODO: implement resource type check controlled by options with ub = LB.
1488     // If this instruction generates a S_SETVSKIP because it is an
1489     // indexed resource, and we are on Tahiti, then it will also force
1490     // an S_WAITCNT vmcnt(0)
1491     if (RequireCheckResourceType(Inst, context)) {
1492       // Force the score to as if an S_WAITCNT vmcnt(0) is emitted.
1493       ScoreBrackets->setScoreLB(VM_CNT,
1494       ScoreBrackets->getScoreUB(VM_CNT));
1495     }
1496 #endif
1497 
1498     LLVM_DEBUG({
1499       Inst.print(dbgs());
1500       ScoreBrackets.dump();
1501     });
1502 
1503     // TODO: Remove this work-around after fixing the scheduler and enable the
1504     // assert above.
1505     if (RestoreVCCZ) {
1506       // Restore the vccz bit.  Any time a value is written to vcc, the vcc
1507       // bit is updated, so we can restore the bit by reading the value of
1508       // vcc and then writing it back to the register.
1509       BuildMI(Block, Inst, Inst.getDebugLoc(),
1510               TII->get(ST->isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64),
1511               TRI->getVCC())
1512           .addReg(TRI->getVCC());
1513       VCCZCorrect = true;
1514       Modified = true;
1515     }
1516 
1517     ++Iter;
1518   }
1519 
1520   return Modified;
1521 }
1522 
1523 bool SIInsertWaitcnts::runOnMachineFunction(MachineFunction &MF) {
1524   ST = &MF.getSubtarget<GCNSubtarget>();
1525   TII = ST->getInstrInfo();
1526   TRI = &TII->getRegisterInfo();
1527   MRI = &MF.getRegInfo();
1528   IV = AMDGPU::getIsaVersion(ST->getCPU());
1529   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1530   PDT = &getAnalysis<MachinePostDominatorTree>();
1531 
1532   ForceEmitZeroWaitcnts = ForceEmitZeroFlag;
1533   for (auto T : inst_counter_types())
1534     ForceEmitWaitcnt[T] = false;
1535 
1536   HardwareLimits.VmcntMax = AMDGPU::getVmcntBitMask(IV);
1537   HardwareLimits.ExpcntMax = AMDGPU::getExpcntBitMask(IV);
1538   HardwareLimits.LgkmcntMax = AMDGPU::getLgkmcntBitMask(IV);
1539   HardwareLimits.VscntMax = ST->hasVscnt() ? 63 : 0;
1540 
1541   unsigned NumVGPRsMax = ST->getAddressableNumVGPRs();
1542   unsigned NumSGPRsMax = ST->getAddressableNumSGPRs();
1543   assert(NumVGPRsMax <= SQ_MAX_PGM_VGPRS);
1544   assert(NumSGPRsMax <= SQ_MAX_PGM_SGPRS);
1545 
1546   RegisterEncoding.VGPR0 = TRI->getEncodingValue(AMDGPU::VGPR0);
1547   RegisterEncoding.VGPRL = RegisterEncoding.VGPR0 + NumVGPRsMax - 1;
1548   RegisterEncoding.SGPR0 = TRI->getEncodingValue(AMDGPU::SGPR0);
1549   RegisterEncoding.SGPRL = RegisterEncoding.SGPR0 + NumSGPRsMax - 1;
1550 
1551   TrackedWaitcntSet.clear();
1552   BlockInfos.clear();
1553 
1554   // Keep iterating over the blocks in reverse post order, inserting and
1555   // updating s_waitcnt where needed, until a fix point is reached.
1556   for (auto *MBB : ReversePostOrderTraversal<MachineFunction *>(&MF))
1557     BlockInfos.insert({MBB, BlockInfo(MBB)});
1558 
1559   std::unique_ptr<WaitcntBrackets> Brackets;
1560   bool Modified = false;
1561   bool Repeat;
1562   do {
1563     Repeat = false;
1564 
1565     for (auto BII = BlockInfos.begin(), BIE = BlockInfos.end(); BII != BIE;
1566          ++BII) {
1567       BlockInfo &BI = BII->second;
1568       if (!BI.Dirty)
1569         continue;
1570 
1571       if (BI.Incoming) {
1572         if (!Brackets)
1573           Brackets = std::make_unique<WaitcntBrackets>(*BI.Incoming);
1574         else
1575           *Brackets = *BI.Incoming;
1576       } else {
1577         if (!Brackets)
1578           Brackets = std::make_unique<WaitcntBrackets>(ST);
1579         else
1580           *Brackets = WaitcntBrackets(ST);
1581       }
1582 
1583       Modified |= insertWaitcntInBlock(MF, *BI.MBB, *Brackets);
1584       BI.Dirty = false;
1585 
1586       if (Brackets->hasPending()) {
1587         BlockInfo *MoveBracketsToSucc = nullptr;
1588         for (MachineBasicBlock *Succ : BI.MBB->successors()) {
1589           auto SuccBII = BlockInfos.find(Succ);
1590           BlockInfo &SuccBI = SuccBII->second;
1591           if (!SuccBI.Incoming) {
1592             SuccBI.Dirty = true;
1593             if (SuccBII <= BII)
1594               Repeat = true;
1595             if (!MoveBracketsToSucc) {
1596               MoveBracketsToSucc = &SuccBI;
1597             } else {
1598               SuccBI.Incoming = std::make_unique<WaitcntBrackets>(*Brackets);
1599             }
1600           } else if (SuccBI.Incoming->merge(*Brackets)) {
1601             SuccBI.Dirty = true;
1602             if (SuccBII <= BII)
1603               Repeat = true;
1604           }
1605         }
1606         if (MoveBracketsToSucc)
1607           MoveBracketsToSucc->Incoming = std::move(Brackets);
1608       }
1609     }
1610   } while (Repeat);
1611 
1612   SmallVector<MachineBasicBlock *, 4> EndPgmBlocks;
1613 
1614   bool HaveScalarStores = false;
1615 
1616   for (MachineFunction::iterator BI = MF.begin(), BE = MF.end(); BI != BE;
1617        ++BI) {
1618     MachineBasicBlock &MBB = *BI;
1619 
1620     for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E;
1621          ++I) {
1622       if (!HaveScalarStores && TII->isScalarStore(*I))
1623         HaveScalarStores = true;
1624 
1625       if (I->getOpcode() == AMDGPU::S_ENDPGM ||
1626           I->getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG)
1627         EndPgmBlocks.push_back(&MBB);
1628     }
1629   }
1630 
1631   if (HaveScalarStores) {
1632     // If scalar writes are used, the cache must be flushed or else the next
1633     // wave to reuse the same scratch memory can be clobbered.
1634     //
1635     // Insert s_dcache_wb at wave termination points if there were any scalar
1636     // stores, and only if the cache hasn't already been flushed. This could be
1637     // improved by looking across blocks for flushes in postdominating blocks
1638     // from the stores but an explicitly requested flush is probably very rare.
1639     for (MachineBasicBlock *MBB : EndPgmBlocks) {
1640       bool SeenDCacheWB = false;
1641 
1642       for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;
1643            ++I) {
1644         if (I->getOpcode() == AMDGPU::S_DCACHE_WB)
1645           SeenDCacheWB = true;
1646         else if (TII->isScalarStore(*I))
1647           SeenDCacheWB = false;
1648 
1649         // FIXME: It would be better to insert this before a waitcnt if any.
1650         if ((I->getOpcode() == AMDGPU::S_ENDPGM ||
1651              I->getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG) &&
1652             !SeenDCacheWB) {
1653           Modified = true;
1654           BuildMI(*MBB, I, I->getDebugLoc(), TII->get(AMDGPU::S_DCACHE_WB));
1655         }
1656       }
1657     }
1658   }
1659 
1660   if (!MFI->isEntryFunction()) {
1661     // Wait for any outstanding memory operations that the input registers may
1662     // depend on. We can't track them and it's better to the wait after the
1663     // costly call sequence.
1664 
1665     // TODO: Could insert earlier and schedule more liberally with operations
1666     // that only use caller preserved registers.
1667     MachineBasicBlock &EntryBB = MF.front();
1668     MachineBasicBlock::iterator I = EntryBB.begin();
1669     for (MachineBasicBlock::iterator E = EntryBB.end();
1670          I != E && (I->isPHI() || I->isMetaInstruction()); ++I)
1671       ;
1672     BuildMI(EntryBB, I, DebugLoc(), TII->get(AMDGPU::S_WAITCNT)).addImm(0);
1673     if (ST->hasVscnt())
1674       BuildMI(EntryBB, I, DebugLoc(), TII->get(AMDGPU::S_WAITCNT_VSCNT))
1675           .addReg(AMDGPU::SGPR_NULL, RegState::Undef)
1676           .addImm(0);
1677 
1678     Modified = true;
1679   }
1680 
1681   return Modified;
1682 }
1683