1//===-- SIInstructions.td - SI Instruction Definitions --------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8// This file was originally auto-generated from a GPU register header file and
9// all the instruction definitions were originally commented out.  Instructions
10// that are not yet supported remain commented out.
11//===----------------------------------------------------------------------===//
12
13class GCNPat<dag pattern, dag result> : Pat<pattern, result>, GCNPredicateControl {
14
15}
16
17class UniformSextInreg<ValueType VT> : PatFrag<
18  (ops node:$src),
19  (sext_inreg $src, VT),
20  [{ return !N->isDivergent(); }]>;
21
22class DivergentSextInreg<ValueType VT> : PatFrag<
23  (ops node:$src),
24  (sext_inreg $src, VT),
25  [{ return N->isDivergent(); }]>;
26
27include "SOPInstructions.td"
28include "VOPInstructions.td"
29include "SMInstructions.td"
30include "FLATInstructions.td"
31include "BUFInstructions.td"
32include "EXPInstructions.td"
33include "LDSDIRInstructions.td"
34include "VINTERPInstructions.td"
35
36//===----------------------------------------------------------------------===//
37// VINTRP Instructions
38//===----------------------------------------------------------------------===//
39
40// Used to inject printing of "_e32" suffix for VI (there are "_e64" variants for VI)
41def VINTRPDst : VINTRPDstOperand <VGPR_32>;
42
43let Uses = [MODE, M0, EXEC] in {
44
45// FIXME: Specify SchedRW for VINTRP instructions.
46
47multiclass V_INTERP_P1_F32_m : VINTRP_m <
48  0x00000000,
49  (outs VINTRPDst:$vdst),
50  (ins VGPR_32:$vsrc, InterpAttr:$attr, InterpAttrChan:$attrchan),
51  "v_interp_p1_f32$vdst, $vsrc, $attr$attrchan",
52  [(set f32:$vdst, (int_amdgcn_interp_p1 f32:$vsrc,
53                   (i32 timm:$attrchan), (i32 timm:$attr), M0))]
54>;
55
56let OtherPredicates = [has32BankLDS, isNotGFX90APlus] in {
57
58defm V_INTERP_P1_F32 : V_INTERP_P1_F32_m;
59
60} // End OtherPredicates = [has32BankLDS, isNotGFX90APlus]
61
62let OtherPredicates = [has16BankLDS, isNotGFX90APlus],
63    Constraints = "@earlyclobber $vdst", isAsmParserOnly=1 in {
64
65defm V_INTERP_P1_F32_16bank : V_INTERP_P1_F32_m;
66
67} // End OtherPredicates = [has32BankLDS, isNotGFX90APlus],
68  //     Constraints = "@earlyclobber $vdst", isAsmParserOnly=1
69
70let OtherPredicates = [isNotGFX90APlus] in {
71let DisableEncoding = "$src0", Constraints = "$src0 = $vdst" in {
72
73defm V_INTERP_P2_F32 : VINTRP_m <
74  0x00000001,
75  (outs VINTRPDst:$vdst),
76  (ins VGPR_32:$src0, VGPR_32:$vsrc, InterpAttr:$attr,
77       InterpAttrChan:$attrchan),
78  "v_interp_p2_f32$vdst, $vsrc, $attr$attrchan",
79  [(set f32:$vdst, (int_amdgcn_interp_p2 f32:$src0, f32:$vsrc,
80                   (i32 timm:$attrchan), (i32 timm:$attr), M0))]>;
81
82} // End DisableEncoding = "$src0", Constraints = "$src0 = $vdst"
83
84defm V_INTERP_MOV_F32 : VINTRP_m <
85  0x00000002,
86  (outs VINTRPDst:$vdst),
87  (ins InterpSlot:$vsrc, InterpAttr:$attr, InterpAttrChan:$attrchan),
88  "v_interp_mov_f32$vdst, $vsrc, $attr$attrchan",
89  [(set f32:$vdst, (int_amdgcn_interp_mov (i32 timm:$vsrc),
90                   (i32 timm:$attrchan), (i32 timm:$attr), M0))]>;
91
92} // End OtherPredicates = [isNotGFX90APlus]
93
94} // End Uses = [MODE, M0, EXEC]
95
96//===----------------------------------------------------------------------===//
97// Pseudo Instructions
98//===----------------------------------------------------------------------===//
99
100// Insert a branch to an endpgm block to use as a fallback trap.
101def ENDPGM_TRAP : SPseudoInstSI<
102  (outs), (ins),
103  [(AMDGPUendpgm_trap)],
104  "ENDPGM_TRAP"> {
105  let hasSideEffects = 1;
106  let usesCustomInserter = 1;
107}
108
109def ATOMIC_FENCE : SPseudoInstSI<
110  (outs), (ins i32imm:$ordering, i32imm:$scope),
111  [(atomic_fence (i32 timm:$ordering), (i32 timm:$scope))],
112  "ATOMIC_FENCE $ordering, $scope"> {
113  let hasSideEffects = 1;
114  let maybeAtomic = 1;
115}
116
117let hasSideEffects = 0, mayLoad = 0, mayStore = 0, Uses = [EXEC] in {
118
119// For use in patterns
120def V_CNDMASK_B64_PSEUDO : VOP3Common <(outs VReg_64:$vdst),
121  (ins VSrc_b64:$src0, VSrc_b64:$src1, SSrc_b64:$src2), "", []> {
122  let isPseudo = 1;
123  let isCodeGenOnly = 1;
124  let usesCustomInserter = 1;
125}
126
127// 64-bit vector move instruction. This is mainly used by the
128// SIFoldOperands pass to enable folding of inline immediates.
129def V_MOV_B64_PSEUDO : VPseudoInstSI <(outs VReg_64:$vdst),
130                                      (ins VSrc_b64:$src0)> {
131  let isReMaterializable = 1;
132  let isAsCheapAsAMove = 1;
133  let isMoveImm = 1;
134  let SchedRW = [Write64Bit];
135  let Size = 16; // Needs maximum 2 v_mov_b32 instructions 8 byte long each.
136  let UseNamedOperandTable = 1;
137}
138
139// 64-bit vector move with dpp. Expanded post-RA.
140def V_MOV_B64_DPP_PSEUDO : VOP_DPP_Pseudo <"v_mov_b64_dpp", VOP_I64_I64> {
141  let Size = 16; // Requires two 8-byte v_mov_b32_dpp to complete.
142}
143
144// 64-bit scalar move immediate instruction. This is used to avoid subregs
145// initialization and allow rematerialization.
146def S_MOV_B64_IMM_PSEUDO : SPseudoInstSI <(outs SReg_64:$sdst),
147                                          (ins i64imm:$src0)> {
148  let isReMaterializable = 1;
149  let isAsCheapAsAMove = 1;
150  let isMoveImm = 1;
151  let SchedRW = [WriteSALU, Write64Bit];
152  let Size = 16; // Needs maximum 2 s_mov_b32 instructions 8 byte long each.
153  let Uses = [];
154}
155
156// Pseudoinstruction for @llvm.amdgcn.wqm. It is turned into a copy after the
157// WQM pass processes it.
158def WQM : PseudoInstSI <(outs unknown:$vdst), (ins unknown:$src0)>;
159
160// Pseudoinstruction for @llvm.amdgcn.softwqm. Like @llvm.amdgcn.wqm it is
161// turned into a copy by WQM pass, but does not seed WQM requirements.
162def SOFT_WQM : PseudoInstSI <(outs unknown:$vdst), (ins unknown:$src0)>;
163
164// Pseudoinstruction for @llvm.amdgcn.strict.wwm. It is turned into a copy post-RA, so
165// that the @earlyclobber is respected. The @earlyclobber is to make sure that
166// the instruction that defines $src0 (which is run in Whole Wave Mode) doesn't
167// accidentally clobber inactive channels of $vdst.
168let Constraints = "@earlyclobber $vdst" in {
169def STRICT_WWM : PseudoInstSI <(outs unknown:$vdst), (ins unknown:$src0)>;
170def STRICT_WQM : PseudoInstSI <(outs unknown:$vdst), (ins unknown:$src0)>;
171}
172
173} // End let hasSideEffects = 0, mayLoad = 0, mayStore = 0, Uses = [EXEC]
174
175def ENTER_STRICT_WWM : SPseudoInstSI <(outs SReg_1:$sdst), (ins i64imm:$src0)> {
176  let Uses = [EXEC];
177  let Defs = [EXEC, SCC];
178  let hasSideEffects = 0;
179  let mayLoad = 0;
180  let mayStore = 0;
181}
182
183def EXIT_STRICT_WWM : SPseudoInstSI <(outs SReg_1:$sdst), (ins SReg_1:$src0)> {
184  let hasSideEffects = 0;
185  let mayLoad = 0;
186  let mayStore = 0;
187}
188
189def ENTER_STRICT_WQM : SPseudoInstSI <(outs SReg_1:$sdst), (ins i64imm:$src0)> {
190  let Uses = [EXEC];
191  let Defs = [EXEC, SCC];
192  let hasSideEffects = 0;
193  let mayLoad = 0;
194  let mayStore = 0;
195}
196
197def EXIT_STRICT_WQM : SPseudoInstSI <(outs SReg_1:$sdst), (ins SReg_1:$src0)> {
198  let hasSideEffects = 0;
199  let mayLoad = 0;
200  let mayStore = 0;
201}
202
203let usesCustomInserter = 1 in {
204def S_INVERSE_BALLOT_U32 : SPseudoInstSI <(outs SReg_32:$sdst), (ins SSrc_b32:$mask)>;
205
206def S_INVERSE_BALLOT_U64 : SPseudoInstSI <(outs SReg_64:$sdst), (ins SSrc_b64:$mask)>;
207} // End usesCustomInserter = 1
208
209// PSEUDO_WM is treated like STRICT_WWM/STRICT_WQM without exec changes.
210def ENTER_PSEUDO_WM : SPseudoInstSI <(outs), (ins)> {
211  let Uses = [EXEC];
212  let Defs = [EXEC];
213  let hasSideEffects = 0;
214  let mayLoad = 0;
215  let mayStore = 0;
216}
217
218def EXIT_PSEUDO_WM : SPseudoInstSI <(outs), (ins)> {
219  let hasSideEffects = 0;
220  let mayLoad = 0;
221  let mayStore = 0;
222}
223
224// Pseudo instructions used for @llvm.fptrunc.round upward
225// and @llvm.fptrunc.round downward.
226// These intrinsics will be legalized to G_FPTRUNC_ROUND_UPWARD
227// and G_FPTRUNC_ROUND_DOWNWARD before being lowered to
228// FPTRUNC_UPWARD_PSEUDO and FPTRUNC_DOWNWARD_PSEUDO.
229// The final codegen is done in the ModeRegister pass.
230let Uses = [MODE, EXEC] in {
231def FPTRUNC_UPWARD_PSEUDO : VPseudoInstSI <(outs VGPR_32:$vdst),
232  (ins VGPR_32:$src0),
233  [(set f16:$vdst, (SIfptrunc_round_upward f32:$src0))]>;
234
235def FPTRUNC_DOWNWARD_PSEUDO : VPseudoInstSI <(outs VGPR_32:$vdst),
236  (ins VGPR_32:$src0),
237  [(set f16:$vdst, (SIfptrunc_round_downward f32:$src0))]>;
238} // End Uses = [MODE, EXEC]
239
240// Invert the exec mask and overwrite the inactive lanes of dst with inactive,
241// restoring it after we're done.
242let Defs = [SCC], isConvergent = 1 in {
243def V_SET_INACTIVE_B32 : VPseudoInstSI <(outs VGPR_32:$vdst),
244  (ins VSrc_b32: $src, VSrc_b32:$inactive),
245  [(set i32:$vdst, (int_amdgcn_set_inactive i32:$src, i32:$inactive))]> {
246}
247
248def V_SET_INACTIVE_B64 : VPseudoInstSI <(outs VReg_64:$vdst),
249  (ins VSrc_b64: $src, VSrc_b64:$inactive),
250  [(set i64:$vdst, (int_amdgcn_set_inactive i64:$src, i64:$inactive))]> {
251}
252} // End Defs = [SCC]
253
254let usesCustomInserter = 1, hasSideEffects = 0, mayLoad = 0, mayStore = 0, Uses = [EXEC] in {
255  def WAVE_REDUCE_UMIN_PSEUDO_U32 : VPseudoInstSI <(outs SGPR_32:$sdst),
256    (ins VSrc_b32: $src, VSrc_b32:$strategy),
257    [(set i32:$sdst, (int_amdgcn_wave_reduce_umin i32:$src, i32:$strategy))]> {
258  }
259
260  def WAVE_REDUCE_UMAX_PSEUDO_U32 : VPseudoInstSI <(outs SGPR_32:$sdst),
261    (ins VSrc_b32: $src, VSrc_b32:$strategy),
262    [(set i32:$sdst, (int_amdgcn_wave_reduce_umax i32:$src, i32:$strategy))]> {
263  }
264}
265
266let usesCustomInserter = 1, Defs = [VCC, EXEC] in {
267def V_ADD_U64_PSEUDO : VPseudoInstSI <
268  (outs VReg_64:$vdst), (ins VSrc_b64:$src0, VSrc_b64:$src1),
269  [(set VReg_64:$vdst, (DivergentBinFrag<add> i64:$src0, i64:$src1))]
270>;
271
272def V_SUB_U64_PSEUDO : VPseudoInstSI <
273  (outs VReg_64:$vdst), (ins VSrc_b64:$src0, VSrc_b64:$src1),
274  [(set VReg_64:$vdst, (DivergentBinFrag<sub> i64:$src0, i64:$src1))]
275>;
276} // End usesCustomInserter = 1, Defs = [VCC, EXEC]
277
278let usesCustomInserter = 1, Defs = [SCC] in {
279def S_ADD_U64_PSEUDO : SPseudoInstSI <
280  (outs SReg_64:$sdst), (ins SSrc_b64:$src0, SSrc_b64:$src1),
281  [(set SReg_64:$sdst, (UniformBinFrag<add> i64:$src0, i64:$src1))]
282>;
283
284def S_SUB_U64_PSEUDO : SPseudoInstSI <
285  (outs SReg_64:$sdst), (ins SSrc_b64:$src0, SSrc_b64:$src1),
286  [(set SReg_64:$sdst, (UniformBinFrag<sub> i64:$src0, i64:$src1))]
287>;
288
289def S_ADD_CO_PSEUDO : SPseudoInstSI <
290  (outs SReg_32:$sdst, SSrc_i1:$scc_out), (ins SSrc_b32:$src0, SSrc_b32:$src1, SSrc_i1:$scc_in)
291>;
292
293def S_SUB_CO_PSEUDO : SPseudoInstSI <
294  (outs SReg_32:$sdst, SSrc_i1:$scc_out), (ins SSrc_b32:$src0, SSrc_b32:$src1, SSrc_i1:$scc_in)
295>;
296
297def S_UADDO_PSEUDO : SPseudoInstSI <
298  (outs SReg_32:$sdst, SSrc_i1:$scc_out), (ins SSrc_b32:$src0, SSrc_b32:$src1)
299>;
300
301def S_USUBO_PSEUDO : SPseudoInstSI <
302  (outs SReg_32:$sdst, SSrc_i1:$scc_out), (ins SSrc_b32:$src0, SSrc_b32:$src1)
303>;
304
305} // End usesCustomInserter = 1, Defs = [SCC]
306
307let usesCustomInserter = 1 in {
308def GET_GROUPSTATICSIZE : SPseudoInstSI <(outs SReg_32:$sdst), (ins),
309  [(set SReg_32:$sdst, (int_amdgcn_groupstaticsize))]>;
310} // End let usesCustomInserter = 1, SALU = 1
311
312// Wrap an instruction by duplicating it, except for setting isTerminator.
313class WrapTerminatorInst<SOP_Pseudo base_inst> : SPseudoInstSI<
314      base_inst.OutOperandList,
315      base_inst.InOperandList> {
316  let Uses = base_inst.Uses;
317  let Defs = base_inst.Defs;
318  let isTerminator = 1;
319  let isAsCheapAsAMove = base_inst.isAsCheapAsAMove;
320  let hasSideEffects = base_inst.hasSideEffects;
321  let UseNamedOperandTable = base_inst.UseNamedOperandTable;
322  let CodeSize = base_inst.CodeSize;
323  let SchedRW = base_inst.SchedRW;
324}
325
326let WaveSizePredicate = isWave64 in {
327def S_MOV_B64_term : WrapTerminatorInst<S_MOV_B64>;
328def S_XOR_B64_term : WrapTerminatorInst<S_XOR_B64>;
329def S_OR_B64_term : WrapTerminatorInst<S_OR_B64>;
330def S_ANDN2_B64_term : WrapTerminatorInst<S_ANDN2_B64>;
331def S_AND_B64_term : WrapTerminatorInst<S_AND_B64>;
332def S_AND_SAVEEXEC_B64_term : WrapTerminatorInst<S_AND_SAVEEXEC_B64>;
333}
334
335let WaveSizePredicate = isWave32 in {
336def S_MOV_B32_term : WrapTerminatorInst<S_MOV_B32>;
337def S_XOR_B32_term : WrapTerminatorInst<S_XOR_B32>;
338def S_OR_B32_term : WrapTerminatorInst<S_OR_B32>;
339def S_ANDN2_B32_term : WrapTerminatorInst<S_ANDN2_B32>;
340def S_AND_B32_term : WrapTerminatorInst<S_AND_B32>;
341def S_AND_SAVEEXEC_B32_term : WrapTerminatorInst<S_AND_SAVEEXEC_B32>;
342}
343
344
345def WAVE_BARRIER : SPseudoInstSI<(outs), (ins),
346  [(int_amdgcn_wave_barrier)]> {
347  let SchedRW = [];
348  let hasNoSchedulingInfo = 1;
349  let hasSideEffects = 1;
350  let mayLoad = 0;
351  let mayStore = 0;
352  let isConvergent = 1;
353  let FixedSize = 1;
354  let Size = 0;
355  let isMeta = 1;
356}
357
358def SCHED_BARRIER : SPseudoInstSI<(outs), (ins i32imm:$mask),
359  [(int_amdgcn_sched_barrier (i32 timm:$mask))]> {
360  let SchedRW = [];
361  let hasNoSchedulingInfo = 1;
362  let hasSideEffects = 1;
363  let mayLoad = 0;
364  let mayStore = 0;
365  let isConvergent = 1;
366  let FixedSize = 1;
367  let Size = 0;
368  let isMeta = 1;
369}
370
371def SCHED_GROUP_BARRIER : SPseudoInstSI<
372  (outs),
373  (ins i32imm:$mask, i32imm:$size, i32imm:$syncid),
374  [(int_amdgcn_sched_group_barrier (i32 timm:$mask), (i32 timm:$size), (i32 timm:$syncid))]> {
375  let SchedRW = [];
376  let hasNoSchedulingInfo = 1;
377  let hasSideEffects = 1;
378  let mayLoad = 0;
379  let mayStore = 0;
380  let isConvergent = 1;
381  let FixedSize = 1;
382  let Size = 0;
383  let isMeta = 1;
384}
385
386def IGLP_OPT : SPseudoInstSI<(outs), (ins i32imm:$mask),
387  [(int_amdgcn_iglp_opt (i32 timm:$mask))]> {
388  let SchedRW = [];
389  let hasNoSchedulingInfo = 1;
390  let hasSideEffects = 1;
391  let mayLoad = 0;
392  let mayStore = 0;
393  let isConvergent = 1;
394  let FixedSize = 1;
395  let Size = 0;
396  let isMeta = 1;
397}
398
399// SI pseudo instructions. These are used by the CFG structurizer pass
400// and should be lowered to ISA instructions prior to codegen.
401
402// As we have enhanced control flow intrinsics to work under unstructured CFG,
403// duplicating such intrinsics can be actually treated as legal. On the contrary,
404// by making them non-duplicable, we are observing better code generation result.
405// So we choose to mark them non-duplicable in hope of getting better code
406// generation as well as simplied CFG during Machine IR optimization stage.
407
408let isTerminator = 1, isNotDuplicable = 1 in {
409
410let OtherPredicates = [EnableLateCFGStructurize] in {
411 def SI_NON_UNIFORM_BRCOND_PSEUDO : CFPseudoInstSI <
412  (outs),
413  (ins SReg_1:$vcc, brtarget:$target),
414  [(brcond i1:$vcc, bb:$target)]> {
415    let Size = 12;
416}
417}
418
419def SI_IF: CFPseudoInstSI <
420  (outs SReg_1:$dst), (ins SReg_1:$vcc, brtarget:$target),
421  [(set i1:$dst, (AMDGPUif i1:$vcc, bb:$target))], 1, 1> {
422  let Constraints = "";
423  let Size = 12;
424  let hasSideEffects = 1;
425  let IsNeverUniform = 1;
426}
427
428def SI_ELSE : CFPseudoInstSI <
429  (outs SReg_1:$dst),
430  (ins SReg_1:$src, brtarget:$target), [], 1, 1> {
431  let Size = 12;
432  let hasSideEffects = 1;
433  let IsNeverUniform = 1;
434}
435
436def SI_WATERFALL_LOOP : CFPseudoInstSI <
437  (outs),
438  (ins brtarget:$target), [], 1> {
439  let Size = 8;
440  let isBranch = 1;
441  let Defs = [];
442}
443
444def SI_LOOP : CFPseudoInstSI <
445  (outs), (ins SReg_1:$saved, brtarget:$target),
446  [(AMDGPUloop i1:$saved, bb:$target)], 1, 1> {
447  let Size = 8;
448  let isBranch = 1;
449  let hasSideEffects = 1;
450  let IsNeverUniform = 1;
451}
452
453} // End isTerminator = 1
454
455def SI_END_CF : CFPseudoInstSI <
456  (outs), (ins SReg_1:$saved), [], 1, 1> {
457  let Size = 4;
458  let isAsCheapAsAMove = 1;
459  let isReMaterializable = 1;
460  let hasSideEffects = 1;
461  let isNotDuplicable = 1; // Not a hard requirement, see long comments above for details.
462  let mayLoad = 1; // FIXME: Should not need memory flags
463  let mayStore = 1;
464}
465
466def SI_IF_BREAK : CFPseudoInstSI <
467  (outs SReg_1:$dst), (ins SReg_1:$vcc, SReg_1:$src), []> {
468  let Size = 4;
469  let isNotDuplicable = 1; // Not a hard requirement, see long comments above for details.
470  let isAsCheapAsAMove = 1;
471  let isReMaterializable = 1;
472}
473
474// Branch to the early termination block of the shader if SCC is 0.
475// This uses SCC from a previous SALU operation, i.e. the update of
476// a mask of live lanes after a kill/demote operation.
477// Only valid in pixel shaders.
478def SI_EARLY_TERMINATE_SCC0 : SPseudoInstSI <(outs), (ins)> {
479  let Uses = [EXEC,SCC];
480}
481
482let Uses = [EXEC] in {
483
484multiclass PseudoInstKill <dag ins> {
485  // Even though this pseudo can usually be expanded without an SCC def, we
486  // conservatively assume that it has an SCC def, both because it is sometimes
487  // required in degenerate cases (when V_CMPX cannot be used due to constant
488  // bus limitations) and because it allows us to avoid having to track SCC
489  // liveness across basic blocks.
490  let Defs = [EXEC,SCC] in
491  def _PSEUDO : PseudoInstSI <(outs), ins> {
492    let isConvergent = 1;
493    let usesCustomInserter = 1;
494  }
495
496  let Defs = [EXEC,SCC] in
497  def _TERMINATOR : SPseudoInstSI <(outs), ins> {
498    let isTerminator = 1;
499  }
500}
501
502defm SI_KILL_I1 : PseudoInstKill <(ins SCSrc_i1:$src, i1imm:$killvalue)>;
503let Defs = [VCC] in
504defm SI_KILL_F32_COND_IMM : PseudoInstKill <(ins VSrc_b32:$src0, i32imm:$src1, i32imm:$cond)>;
505
506let Defs = [EXEC,VCC] in
507def SI_ILLEGAL_COPY : SPseudoInstSI <
508  (outs unknown:$dst), (ins unknown:$src),
509  [], " ; illegal copy $src to $dst">;
510
511} // End Uses = [EXEC], Defs = [EXEC,VCC]
512
513// Branch on undef scc. Used to avoid intermediate copy from
514// IMPLICIT_DEF to SCC.
515def SI_BR_UNDEF : SPseudoInstSI <(outs), (ins SOPPBrTarget:$simm16)> {
516  let isTerminator = 1;
517  let usesCustomInserter = 1;
518  let isBranch = 1;
519}
520
521def SI_PS_LIVE : PseudoInstSI <
522  (outs SReg_1:$dst), (ins),
523  [(set i1:$dst, (int_amdgcn_ps_live))]> {
524  let SALU = 1;
525}
526
527let Uses = [EXEC] in {
528def SI_LIVE_MASK : PseudoInstSI <
529  (outs SReg_1:$dst), (ins),
530  [(set i1:$dst, (int_amdgcn_live_mask))]> {
531  let SALU = 1;
532}
533let Defs = [EXEC,SCC] in {
534// Demote: Turn a pixel shader thread into a helper lane.
535def SI_DEMOTE_I1 : SPseudoInstSI <(outs), (ins SCSrc_i1:$src, i1imm:$killvalue)>;
536} // End Defs = [EXEC,SCC]
537} // End Uses = [EXEC]
538
539def SI_MASKED_UNREACHABLE : SPseudoInstSI <(outs), (ins),
540  [(int_amdgcn_unreachable)],
541  "; divergent unreachable"> {
542  let Size = 0;
543  let hasNoSchedulingInfo = 1;
544  let FixedSize = 1;
545  let isMeta = 1;
546}
547
548// Used as an isel pseudo to directly emit initialization with an
549// s_mov_b32 rather than a copy of another initialized
550// register. MachineCSE skips copies, and we don't want to have to
551// fold operands before it runs.
552def SI_INIT_M0 : SPseudoInstSI <(outs), (ins SSrc_b32:$src)> {
553  let Defs = [M0];
554  let usesCustomInserter = 1;
555  let isAsCheapAsAMove = 1;
556  let isReMaterializable = 1;
557}
558
559def SI_INIT_EXEC : SPseudoInstSI <
560  (outs), (ins i64imm:$src),
561  [(int_amdgcn_init_exec (i64 timm:$src))]> {
562  let Defs = [EXEC];
563  let isAsCheapAsAMove = 1;
564}
565
566def SI_INIT_EXEC_FROM_INPUT : SPseudoInstSI <
567  (outs), (ins SSrc_b32:$input, i32imm:$shift),
568  [(int_amdgcn_init_exec_from_input i32:$input, (i32 timm:$shift))]> {
569  let Defs = [EXEC];
570}
571
572// Return for returning shaders to a shader variant epilog.
573def SI_RETURN_TO_EPILOG : SPseudoInstSI <
574  (outs), (ins variable_ops), [(AMDGPUreturn_to_epilog)]> {
575  let isTerminator = 1;
576  let isBarrier = 1;
577  let isReturn = 1;
578  let hasNoSchedulingInfo = 1;
579  let DisableWQM = 1;
580  let FixedSize = 1;
581
582  // TODO: Should this be true?
583  let isMeta = 0;
584}
585
586// Return for returning function calls.
587def SI_RETURN : SPseudoInstSI <
588  (outs), (ins), [(AMDGPUret_glue)],
589  "; return"> {
590  let isTerminator = 1;
591  let isBarrier = 1;
592  let isReturn = 1;
593  let SchedRW = [WriteBranch];
594}
595
596// Return for returning function calls without output register.
597//
598// This version is only needed so we can fill in the output register
599// in the custom inserter.
600def SI_CALL_ISEL : SPseudoInstSI <
601  (outs), (ins SSrc_b64:$src0, unknown:$callee),
602  [(AMDGPUcall i64:$src0, tglobaladdr:$callee)]> {
603  let Size = 4;
604  let isCall = 1;
605  let SchedRW = [WriteBranch];
606  let usesCustomInserter = 1;
607  // TODO: Should really base this on the call target
608  let isConvergent = 1;
609}
610
611def : GCNPat<
612  (AMDGPUcall i64:$src0, (i64 0)),
613  (SI_CALL_ISEL $src0, (i64 0))
614>;
615
616// Wrapper around s_swappc_b64 with extra $callee parameter to track
617// the called function after regalloc.
618def SI_CALL : SPseudoInstSI <
619  (outs SReg_64:$dst), (ins SSrc_b64:$src0, unknown:$callee)> {
620  let Size = 4;
621  let FixedSize = 1;
622  let isCall = 1;
623  let UseNamedOperandTable = 1;
624  let SchedRW = [WriteBranch];
625  // TODO: Should really base this on the call target
626  let isConvergent = 1;
627}
628
629class SI_TCRETURN_Pseudo<RegisterClass rc, SDNode sd> : SPseudoInstSI <(outs),
630  (ins rc:$src0, unknown:$callee, i32imm:$fpdiff),
631  [(sd i64:$src0, tglobaladdr:$callee, i32:$fpdiff)]> {
632  let Size = 4;
633  let FixedSize = 1;
634  let isCall = 1;
635  let isTerminator = 1;
636  let isReturn = 1;
637  let isBarrier = 1;
638  let UseNamedOperandTable = 1;
639  let SchedRW = [WriteBranch];
640  // TODO: Should really base this on the call target
641  let isConvergent = 1;
642}
643
644// Tail call handling pseudo
645def SI_TCRETURN :     SI_TCRETURN_Pseudo<CCR_SGPR_64, AMDGPUtc_return>;
646def SI_TCRETURN_GFX : SI_TCRETURN_Pseudo<Gfx_CCR_SGPR_64, AMDGPUtc_return_gfx>;
647
648// Handle selecting indirect tail calls
649def : GCNPat<
650  (AMDGPUtc_return i64:$src0, (i64 0), (i32 timm:$fpdiff)),
651  (SI_TCRETURN CCR_SGPR_64:$src0, (i64 0), i32imm:$fpdiff)
652>;
653
654// Handle selecting indirect tail calls for AMDGPU_gfx
655def : GCNPat<
656  (AMDGPUtc_return_gfx i64:$src0, (i64 0), (i32 timm:$fpdiff)),
657  (SI_TCRETURN_GFX Gfx_CCR_SGPR_64:$src0, (i64 0), i32imm:$fpdiff)
658>;
659
660def ADJCALLSTACKUP : SPseudoInstSI<
661  (outs), (ins i32imm:$amt0, i32imm:$amt1),
662  [(callseq_start timm:$amt0, timm:$amt1)],
663  "; adjcallstackup $amt0 $amt1"> {
664  let Size = 8; // Worst case. (s_add_u32 + constant)
665  let FixedSize = 1;
666  let hasSideEffects = 1;
667  let usesCustomInserter = 1;
668  let SchedRW = [WriteSALU];
669  let Defs = [SCC];
670}
671
672def ADJCALLSTACKDOWN : SPseudoInstSI<
673  (outs), (ins i32imm:$amt1, i32imm:$amt2),
674  [(callseq_end timm:$amt1, timm:$amt2)],
675  "; adjcallstackdown $amt1"> {
676  let Size = 8; // Worst case. (s_add_u32 + constant)
677  let hasSideEffects = 1;
678  let usesCustomInserter = 1;
679  let SchedRW = [WriteSALU];
680  let Defs = [SCC];
681}
682
683let Defs = [M0, EXEC, SCC],
684  UseNamedOperandTable = 1 in {
685
686// SI_INDIRECT_SRC/DST are only used by legacy SelectionDAG indirect
687// addressing implementation.
688class SI_INDIRECT_SRC<RegisterClass rc> : VPseudoInstSI <
689  (outs VGPR_32:$vdst),
690  (ins rc:$src, VS_32:$idx, i32imm:$offset)> {
691  let usesCustomInserter = 1;
692}
693
694class SI_INDIRECT_DST<RegisterClass rc> : VPseudoInstSI <
695  (outs rc:$vdst),
696  (ins rc:$src, VS_32:$idx, i32imm:$offset, VGPR_32:$val)> {
697  let Constraints = "$src = $vdst";
698  let usesCustomInserter = 1;
699}
700
701def SI_INDIRECT_SRC_V1 : SI_INDIRECT_SRC<VGPR_32>;
702def SI_INDIRECT_SRC_V2 : SI_INDIRECT_SRC<VReg_64>;
703def SI_INDIRECT_SRC_V4 : SI_INDIRECT_SRC<VReg_128>;
704def SI_INDIRECT_SRC_V8 : SI_INDIRECT_SRC<VReg_256>;
705def SI_INDIRECT_SRC_V9 : SI_INDIRECT_SRC<VReg_288>;
706def SI_INDIRECT_SRC_V10 : SI_INDIRECT_SRC<VReg_320>;
707def SI_INDIRECT_SRC_V11 : SI_INDIRECT_SRC<VReg_352>;
708def SI_INDIRECT_SRC_V12 : SI_INDIRECT_SRC<VReg_384>;
709def SI_INDIRECT_SRC_V16 : SI_INDIRECT_SRC<VReg_512>;
710def SI_INDIRECT_SRC_V32 : SI_INDIRECT_SRC<VReg_1024>;
711
712def SI_INDIRECT_DST_V1 : SI_INDIRECT_DST<VGPR_32>;
713def SI_INDIRECT_DST_V2 : SI_INDIRECT_DST<VReg_64>;
714def SI_INDIRECT_DST_V4 : SI_INDIRECT_DST<VReg_128>;
715def SI_INDIRECT_DST_V8 : SI_INDIRECT_DST<VReg_256>;
716def SI_INDIRECT_DST_V9 : SI_INDIRECT_DST<VReg_288>;
717def SI_INDIRECT_DST_V10 : SI_INDIRECT_DST<VReg_320>;
718def SI_INDIRECT_DST_V11 : SI_INDIRECT_DST<VReg_352>;
719def SI_INDIRECT_DST_V12 : SI_INDIRECT_DST<VReg_384>;
720def SI_INDIRECT_DST_V16 : SI_INDIRECT_DST<VReg_512>;
721def SI_INDIRECT_DST_V32 : SI_INDIRECT_DST<VReg_1024>;
722
723} // End Uses = [EXEC], Defs = [M0, EXEC]
724
725// This is a pseudo variant of the v_movreld_b32 instruction in which the
726// vector operand appears only twice, once as def and once as use. Using this
727// pseudo avoids problems with the Two Address instructions pass.
728class INDIRECT_REG_WRITE_MOVREL_pseudo<RegisterClass rc,
729                                RegisterOperand val_ty> : PseudoInstSI <
730  (outs rc:$vdst), (ins rc:$vsrc, val_ty:$val, i32imm:$subreg)> {
731  let Constraints = "$vsrc = $vdst";
732  let Uses = [M0];
733}
734
735class V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<RegisterClass rc> :
736  INDIRECT_REG_WRITE_MOVREL_pseudo<rc, VSrc_b32> {
737  let VALU = 1;
738  let VOP1 = 1;
739  let Uses = [M0, EXEC];
740}
741
742class S_INDIRECT_REG_WRITE_MOVREL_pseudo<RegisterClass rc,
743                                  RegisterOperand val_ty> :
744  INDIRECT_REG_WRITE_MOVREL_pseudo<rc, val_ty> {
745  let SALU = 1;
746  let SOP1 = 1;
747  let Uses = [M0];
748}
749
750class S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<RegisterClass rc> :
751  S_INDIRECT_REG_WRITE_MOVREL_pseudo<rc, SSrc_b32>;
752class S_INDIRECT_REG_WRITE_MOVREL_B64_pseudo<RegisterClass rc> :
753  S_INDIRECT_REG_WRITE_MOVREL_pseudo<rc, SSrc_b64>;
754
755def V_INDIRECT_REG_WRITE_MOVREL_B32_V1 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VGPR_32>;
756def V_INDIRECT_REG_WRITE_MOVREL_B32_V2 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_64>;
757def V_INDIRECT_REG_WRITE_MOVREL_B32_V3 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_96>;
758def V_INDIRECT_REG_WRITE_MOVREL_B32_V4 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_128>;
759def V_INDIRECT_REG_WRITE_MOVREL_B32_V5 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_160>;
760def V_INDIRECT_REG_WRITE_MOVREL_B32_V8 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_256>;
761def V_INDIRECT_REG_WRITE_MOVREL_B32_V9 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_288>;
762def V_INDIRECT_REG_WRITE_MOVREL_B32_V10 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_320>;
763def V_INDIRECT_REG_WRITE_MOVREL_B32_V11 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_352>;
764def V_INDIRECT_REG_WRITE_MOVREL_B32_V12 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_384>;
765def V_INDIRECT_REG_WRITE_MOVREL_B32_V16 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_512>;
766def V_INDIRECT_REG_WRITE_MOVREL_B32_V32 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_1024>;
767
768def S_INDIRECT_REG_WRITE_MOVREL_B32_V1 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_32>;
769def S_INDIRECT_REG_WRITE_MOVREL_B32_V2 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_64>;
770def S_INDIRECT_REG_WRITE_MOVREL_B32_V3 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_96>;
771def S_INDIRECT_REG_WRITE_MOVREL_B32_V4 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_128>;
772def S_INDIRECT_REG_WRITE_MOVREL_B32_V5 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_160>;
773def S_INDIRECT_REG_WRITE_MOVREL_B32_V8 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_256>;
774def S_INDIRECT_REG_WRITE_MOVREL_B32_V9 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_288>;
775def S_INDIRECT_REG_WRITE_MOVREL_B32_V10 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_320>;
776def S_INDIRECT_REG_WRITE_MOVREL_B32_V11 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_352>;
777def S_INDIRECT_REG_WRITE_MOVREL_B32_V12 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_384>;
778def S_INDIRECT_REG_WRITE_MOVREL_B32_V16 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_512>;
779def S_INDIRECT_REG_WRITE_MOVREL_B32_V32 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_1024>;
780
781def S_INDIRECT_REG_WRITE_MOVREL_B64_V1 : S_INDIRECT_REG_WRITE_MOVREL_B64_pseudo<SReg_64>;
782def S_INDIRECT_REG_WRITE_MOVREL_B64_V2 : S_INDIRECT_REG_WRITE_MOVREL_B64_pseudo<SReg_128>;
783def S_INDIRECT_REG_WRITE_MOVREL_B64_V4 : S_INDIRECT_REG_WRITE_MOVREL_B64_pseudo<SReg_256>;
784def S_INDIRECT_REG_WRITE_MOVREL_B64_V8 : S_INDIRECT_REG_WRITE_MOVREL_B64_pseudo<SReg_512>;
785def S_INDIRECT_REG_WRITE_MOVREL_B64_V16 : S_INDIRECT_REG_WRITE_MOVREL_B64_pseudo<SReg_1024>;
786
787// These variants of V_INDIRECT_REG_READ/WRITE use VGPR indexing. By using these
788// pseudos we avoid spills or copies being inserted within indirect sequences
789// that switch the VGPR indexing mode. Spills to accvgprs could be effected by
790// this mode switching.
791
792class V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<RegisterClass rc> : PseudoInstSI <
793  (outs rc:$vdst), (ins rc:$vsrc, VSrc_b32:$val, SSrc_b32:$idx, i32imm:$subreg)> {
794  let Constraints = "$vsrc = $vdst";
795  let VALU = 1;
796  let Uses = [M0, EXEC];
797  let Defs = [M0];
798}
799
800def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V1 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VGPR_32>;
801def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V2 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_64>;
802def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V3 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_96>;
803def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V4 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_128>;
804def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V5 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_160>;
805def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V8 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_256>;
806def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V9 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_288>;
807def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V10 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_320>;
808def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V11 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_352>;
809def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V12 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_384>;
810def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V16 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_512>;
811def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V32 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_1024>;
812
813class V_INDIRECT_REG_READ_GPR_IDX_pseudo<RegisterClass rc> : PseudoInstSI <
814  (outs VGPR_32:$vdst), (ins rc:$vsrc, SSrc_b32:$idx, i32imm:$subreg)> {
815  let VALU = 1;
816  let Uses = [M0, EXEC];
817  let Defs = [M0];
818}
819
820def V_INDIRECT_REG_READ_GPR_IDX_B32_V1 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VGPR_32>;
821def V_INDIRECT_REG_READ_GPR_IDX_B32_V2 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_64>;
822def V_INDIRECT_REG_READ_GPR_IDX_B32_V3 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_96>;
823def V_INDIRECT_REG_READ_GPR_IDX_B32_V4 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_128>;
824def V_INDIRECT_REG_READ_GPR_IDX_B32_V5 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_160>;
825def V_INDIRECT_REG_READ_GPR_IDX_B32_V8 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_256>;
826def V_INDIRECT_REG_READ_GPR_IDX_B32_V9 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_288>;
827def V_INDIRECT_REG_READ_GPR_IDX_B32_V10 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_320>;
828def V_INDIRECT_REG_READ_GPR_IDX_B32_V11 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_352>;
829def V_INDIRECT_REG_READ_GPR_IDX_B32_V12 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_384>;
830def V_INDIRECT_REG_READ_GPR_IDX_B32_V16 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_512>;
831def V_INDIRECT_REG_READ_GPR_IDX_B32_V32 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_1024>;
832
833multiclass SI_SPILL_SGPR <RegisterClass sgpr_class> {
834  let UseNamedOperandTable = 1, SGPRSpill = 1, Uses = [EXEC] in {
835    def _SAVE : PseudoInstSI <
836      (outs),
837      (ins sgpr_class:$data, i32imm:$addr)> {
838      let mayStore = 1;
839      let mayLoad = 0;
840    }
841
842    def _RESTORE : PseudoInstSI <
843      (outs sgpr_class:$data),
844      (ins i32imm:$addr)> {
845      let mayStore = 0;
846      let mayLoad = 1;
847    }
848  } // End UseNamedOperandTable = 1
849}
850
851// You cannot use M0 as the output of v_readlane_b32 instructions or
852// use it in the sdata operand of SMEM instructions. We still need to
853// be able to spill the physical register m0, so allow it for
854// SI_SPILL_32_* instructions.
855defm SI_SPILL_S32  : SI_SPILL_SGPR <SReg_32>;
856defm SI_SPILL_S64  : SI_SPILL_SGPR <SReg_64>;
857defm SI_SPILL_S96  : SI_SPILL_SGPR <SReg_96>;
858defm SI_SPILL_S128 : SI_SPILL_SGPR <SReg_128>;
859defm SI_SPILL_S160 : SI_SPILL_SGPR <SReg_160>;
860defm SI_SPILL_S192 : SI_SPILL_SGPR <SReg_192>;
861defm SI_SPILL_S224 : SI_SPILL_SGPR <SReg_224>;
862defm SI_SPILL_S256 : SI_SPILL_SGPR <SReg_256>;
863defm SI_SPILL_S288 : SI_SPILL_SGPR <SReg_288>;
864defm SI_SPILL_S320 : SI_SPILL_SGPR <SReg_320>;
865defm SI_SPILL_S352 : SI_SPILL_SGPR <SReg_352>;
866defm SI_SPILL_S384 : SI_SPILL_SGPR <SReg_384>;
867defm SI_SPILL_S512 : SI_SPILL_SGPR <SReg_512>;
868defm SI_SPILL_S1024 : SI_SPILL_SGPR <SReg_1024>;
869
870// VGPR or AGPR spill instructions. In case of AGPR spilling a temp register
871// needs to be used and an extra instruction to move between VGPR and AGPR.
872// UsesTmp adds to the total size of an expanded spill in this case.
873multiclass SI_SPILL_VGPR <RegisterClass vgpr_class, bit UsesTmp = 0> {
874  let UseNamedOperandTable = 1, VGPRSpill = 1,
875       SchedRW = [WriteVMEM] in {
876    def _SAVE : VPseudoInstSI <
877      (outs),
878      (ins vgpr_class:$vdata, i32imm:$vaddr,
879           SReg_32:$soffset, i32imm:$offset)> {
880      let mayStore = 1;
881      let mayLoad = 0;
882      // (2 * 4) + (8 * num_subregs) bytes maximum
883      int MaxSize = !add(!shl(!srl(vgpr_class.Size, 5), !add(UsesTmp, 3)), 8);
884      // Size field is unsigned char and cannot fit more.
885      let Size = !if(!le(MaxSize, 256), MaxSize, 252);
886    }
887
888    def _RESTORE : VPseudoInstSI <
889      (outs vgpr_class:$vdata),
890      (ins i32imm:$vaddr,
891           SReg_32:$soffset, i32imm:$offset)> {
892      let mayStore = 0;
893      let mayLoad = 1;
894
895      // (2 * 4) + (8 * num_subregs) bytes maximum
896      int MaxSize = !add(!shl(!srl(vgpr_class.Size, 5), !add(UsesTmp, 3)), 8);
897      // Size field is unsigned char and cannot fit more.
898      let Size = !if(!le(MaxSize, 256), MaxSize, 252);
899    }
900  } // End UseNamedOperandTable = 1, VGPRSpill = 1, SchedRW = [WriteVMEM]
901}
902
903defm SI_SPILL_V32  : SI_SPILL_VGPR <VGPR_32>;
904defm SI_SPILL_V64  : SI_SPILL_VGPR <VReg_64>;
905defm SI_SPILL_V96  : SI_SPILL_VGPR <VReg_96>;
906defm SI_SPILL_V128 : SI_SPILL_VGPR <VReg_128>;
907defm SI_SPILL_V160 : SI_SPILL_VGPR <VReg_160>;
908defm SI_SPILL_V192 : SI_SPILL_VGPR <VReg_192>;
909defm SI_SPILL_V224 : SI_SPILL_VGPR <VReg_224>;
910defm SI_SPILL_V256 : SI_SPILL_VGPR <VReg_256>;
911defm SI_SPILL_V288 : SI_SPILL_VGPR <VReg_288>;
912defm SI_SPILL_V320 : SI_SPILL_VGPR <VReg_320>;
913defm SI_SPILL_V352 : SI_SPILL_VGPR <VReg_352>;
914defm SI_SPILL_V384 : SI_SPILL_VGPR <VReg_384>;
915defm SI_SPILL_V512 : SI_SPILL_VGPR <VReg_512>;
916defm SI_SPILL_V1024 : SI_SPILL_VGPR <VReg_1024>;
917
918defm SI_SPILL_A32  : SI_SPILL_VGPR <AGPR_32, 1>;
919defm SI_SPILL_A64  : SI_SPILL_VGPR <AReg_64, 1>;
920defm SI_SPILL_A96  : SI_SPILL_VGPR <AReg_96, 1>;
921defm SI_SPILL_A128 : SI_SPILL_VGPR <AReg_128, 1>;
922defm SI_SPILL_A160 : SI_SPILL_VGPR <AReg_160, 1>;
923defm SI_SPILL_A192 : SI_SPILL_VGPR <AReg_192, 1>;
924defm SI_SPILL_A224 : SI_SPILL_VGPR <AReg_224, 1>;
925defm SI_SPILL_A256 : SI_SPILL_VGPR <AReg_256, 1>;
926defm SI_SPILL_A288 : SI_SPILL_VGPR <AReg_288, 1>;
927defm SI_SPILL_A320 : SI_SPILL_VGPR <AReg_320, 1>;
928defm SI_SPILL_A352 : SI_SPILL_VGPR <AReg_352, 1>;
929defm SI_SPILL_A384 : SI_SPILL_VGPR <AReg_384, 1>;
930defm SI_SPILL_A512 : SI_SPILL_VGPR <AReg_512, 1>;
931defm SI_SPILL_A1024 : SI_SPILL_VGPR <AReg_1024, 1>;
932
933defm SI_SPILL_AV32  : SI_SPILL_VGPR <AV_32, 1>;
934defm SI_SPILL_AV64  : SI_SPILL_VGPR <AV_64, 1>;
935defm SI_SPILL_AV96  : SI_SPILL_VGPR <AV_96, 1>;
936defm SI_SPILL_AV128 : SI_SPILL_VGPR <AV_128, 1>;
937defm SI_SPILL_AV160 : SI_SPILL_VGPR <AV_160, 1>;
938defm SI_SPILL_AV192 : SI_SPILL_VGPR <AV_192, 1>;
939defm SI_SPILL_AV224 : SI_SPILL_VGPR <AV_224, 1>;
940defm SI_SPILL_AV256 : SI_SPILL_VGPR <AV_256, 1>;
941defm SI_SPILL_AV288 : SI_SPILL_VGPR <AV_288, 1>;
942defm SI_SPILL_AV320 : SI_SPILL_VGPR <AV_320, 1>;
943defm SI_SPILL_AV352 : SI_SPILL_VGPR <AV_352, 1>;
944defm SI_SPILL_AV384 : SI_SPILL_VGPR <AV_384, 1>;
945defm SI_SPILL_AV512 : SI_SPILL_VGPR <AV_512, 1>;
946defm SI_SPILL_AV1024 : SI_SPILL_VGPR <AV_1024, 1>;
947
948let isConvergent = 1 in
949defm SI_SPILL_WWM_V32 : SI_SPILL_VGPR <VGPR_32>;
950
951def SI_PC_ADD_REL_OFFSET : SPseudoInstSI <
952  (outs SReg_64:$dst),
953  (ins si_ga:$ptr_lo, si_ga:$ptr_hi),
954  [(set SReg_64:$dst,
955      (i64 (SIpc_add_rel_offset tglobaladdr:$ptr_lo, tglobaladdr:$ptr_hi)))]> {
956  let Defs = [SCC];
957}
958
959def : GCNPat <
960  (SIpc_add_rel_offset tglobaladdr:$ptr_lo, 0),
961  (SI_PC_ADD_REL_OFFSET $ptr_lo, (i32 0))
962>;
963
964def : GCNPat<
965  (AMDGPUtrap timm:$trapid),
966  (S_TRAP $trapid)
967>;
968
969def : GCNPat<
970  (AMDGPUelse i1:$src, bb:$target),
971  (SI_ELSE $src, $target)
972>;
973
974def : Pat <
975  (int_amdgcn_kill i1:$src),
976  (SI_KILL_I1_PSEUDO SCSrc_i1:$src, 0)
977>;
978
979def : Pat <
980  (int_amdgcn_kill (i1 (not i1:$src))),
981  (SI_KILL_I1_PSEUDO SCSrc_i1:$src, -1)
982>;
983
984def : Pat <
985  (int_amdgcn_kill (i1 (setcc f32:$src, InlineImmFP32:$imm, cond:$cond))),
986  (SI_KILL_F32_COND_IMM_PSEUDO VSrc_b32:$src, (bitcast_fpimm_to_i32 $imm), (cond_as_i32imm $cond))
987>;
988
989def : Pat <
990  (int_amdgcn_wqm_demote i1:$src),
991  (SI_DEMOTE_I1 SCSrc_i1:$src, 0)
992>;
993
994def : Pat <
995  (int_amdgcn_wqm_demote (i1 (not i1:$src))),
996  (SI_DEMOTE_I1 SCSrc_i1:$src, -1)
997>;
998
999  // TODO: we could add more variants for other types of conditionals
1000
1001def : Pat <
1002  (i64 (int_amdgcn_icmp i1:$src, (i1 0), (i32 33))),
1003  (COPY $src) // Return the SGPRs representing i1 src
1004>;
1005
1006def : Pat <
1007  (i32 (int_amdgcn_icmp i1:$src, (i1 0), (i32 33))),
1008  (COPY $src) // Return the SGPRs representing i1 src
1009>;
1010
1011//===----------------------------------------------------------------------===//
1012// VOP1 Patterns
1013//===----------------------------------------------------------------------===//
1014
1015multiclass f16_fp_Pats<Instruction cvt_f16_f32_inst_e64, Instruction cvt_f32_f16_inst_e64> {
1016  // f16_to_fp patterns
1017  def : GCNPat <
1018    (f32 (f16_to_fp i32:$src0)),
1019    (cvt_f32_f16_inst_e64 SRCMODS.NONE, $src0)
1020  >;
1021
1022  def : GCNPat <
1023    (f32 (f16_to_fp (and_oneuse i32:$src0, 0x7fff))),
1024    (cvt_f32_f16_inst_e64 SRCMODS.ABS, $src0)
1025  >;
1026
1027  def : GCNPat <
1028    (f32 (f16_to_fp (i32 (srl_oneuse (and_oneuse i32:$src0, 0x7fff0000), (i32 16))))),
1029    (cvt_f32_f16_inst_e64 SRCMODS.ABS, (i32 (V_LSHRREV_B32_e64 (i32 16), i32:$src0)))
1030  >;
1031
1032  def : GCNPat <
1033    (f32 (f16_to_fp (or_oneuse i32:$src0, 0x8000))),
1034    (cvt_f32_f16_inst_e64 SRCMODS.NEG_ABS, $src0)
1035  >;
1036
1037  def : GCNPat <
1038    (f32 (f16_to_fp (xor_oneuse i32:$src0, 0x8000))),
1039    (cvt_f32_f16_inst_e64 SRCMODS.NEG, $src0)
1040  >;
1041
1042  def : GCNPat <
1043    (f64 (fpextend f16:$src)),
1044    (V_CVT_F64_F32_e32 (cvt_f32_f16_inst_e64 SRCMODS.NONE, $src))
1045  >;
1046
1047  // fp_to_fp16 patterns
1048  def : GCNPat <
1049    (i32 (AMDGPUfp_to_f16 (f32 (VOP3Mods f32:$src0, i32:$src0_modifiers)))),
1050    (cvt_f16_f32_inst_e64 $src0_modifiers, f32:$src0)
1051  >;
1052
1053  def : GCNPat <
1054    (i32 (fp_to_sint f16:$src)),
1055    (V_CVT_I32_F32_e32 (cvt_f32_f16_inst_e64 SRCMODS.NONE, VSrc_b32:$src))
1056  >;
1057
1058  def : GCNPat <
1059    (i32 (fp_to_uint f16:$src)),
1060    (V_CVT_U32_F32_e32 (cvt_f32_f16_inst_e64 SRCMODS.NONE, VSrc_b32:$src))
1061  >;
1062
1063  def : GCNPat <
1064    (f16 (sint_to_fp i32:$src)),
1065    (cvt_f16_f32_inst_e64 SRCMODS.NONE, (V_CVT_F32_I32_e32 VSrc_b32:$src))
1066  >;
1067
1068  def : GCNPat <
1069    (f16 (uint_to_fp i32:$src)),
1070    (cvt_f16_f32_inst_e64 SRCMODS.NONE, (V_CVT_F32_U32_e32 VSrc_b32:$src))
1071  >;
1072}
1073
1074let SubtargetPredicate = NotHasTrue16BitInsts in
1075defm : f16_fp_Pats<V_CVT_F16_F32_e64, V_CVT_F32_F16_e64>;
1076
1077let SubtargetPredicate = HasTrue16BitInsts in
1078defm : f16_fp_Pats<V_CVT_F16_F32_t16_e64, V_CVT_F32_F16_t16_e64>;
1079
1080//===----------------------------------------------------------------------===//
1081// VOP2 Patterns
1082//===----------------------------------------------------------------------===//
1083
1084// NoMods pattern used for mac. If there are any source modifiers then it's
1085// better to select mad instead of mac.
1086class FMADPat <ValueType vt, Instruction inst>
1087  : GCNPat <(vt (any_fmad (vt (VOP3NoMods vt:$src0)),
1088                          (vt (VOP3NoMods vt:$src1)),
1089                          (vt (VOP3NoMods vt:$src2)))),
1090    (inst SRCMODS.NONE, $src0, SRCMODS.NONE, $src1,
1091          SRCMODS.NONE, $src2, DSTCLAMP.NONE, DSTOMOD.NONE)
1092>;
1093
1094// Prefer mac form when there are no modifiers.
1095let AddedComplexity = 9 in {
1096let OtherPredicates = [HasMadMacF32Insts] in
1097def : FMADPat <f32, V_MAC_F32_e64>;
1098
1099// Don't allow source modifiers. If there are any source modifiers then it's
1100// better to select mad instead of mac.
1101let SubtargetPredicate = isGFX6GFX7GFX10,
1102    OtherPredicates = [HasMadMacF32Insts, NoFP32Denormals] in
1103def : GCNPat <
1104      (f32 (fadd (AMDGPUfmul_legacy (VOP3NoMods f32:$src0),
1105                                    (VOP3NoMods f32:$src1)),
1106                 (VOP3NoMods f32:$src2))),
1107      (V_MAC_LEGACY_F32_e64 SRCMODS.NONE, $src0, SRCMODS.NONE, $src1,
1108                            SRCMODS.NONE, $src2, DSTCLAMP.NONE, DSTOMOD.NONE)
1109>;
1110
1111// Don't allow source modifiers. If there are any source modifiers then it's
1112// better to select fma instead of fmac.
1113let SubtargetPredicate = HasFmaLegacy32 in
1114def : GCNPat <
1115      (f32 (int_amdgcn_fma_legacy (VOP3NoMods f32:$src0),
1116                                  (VOP3NoMods f32:$src1),
1117                                  (VOP3NoMods f32:$src2))),
1118      (V_FMAC_LEGACY_F32_e64 SRCMODS.NONE, $src0, SRCMODS.NONE, $src1,
1119                             SRCMODS.NONE, $src2, DSTCLAMP.NONE, DSTOMOD.NONE)
1120>;
1121
1122let SubtargetPredicate = Has16BitInsts in
1123def : FMADPat <f16, V_MAC_F16_e64>;
1124} // AddedComplexity = 9
1125
1126let OtherPredicates = [HasMadMacF32Insts, NoFP32Denormals] in
1127def : GCNPat <
1128      (f32 (fadd (AMDGPUfmul_legacy (VOP3Mods f32:$src0, i32:$src0_mod),
1129                                    (VOP3Mods f32:$src1, i32:$src1_mod)),
1130                 (VOP3Mods f32:$src2, i32:$src2_mod))),
1131      (V_MAD_LEGACY_F32_e64 $src0_mod, $src0, $src1_mod, $src1,
1132                        $src2_mod, $src2, DSTCLAMP.NONE, DSTOMOD.NONE)
1133>;
1134
1135class VOPSelectModsPat <ValueType vt> : GCNPat <
1136  (vt (select i1:$src0, (VOP3ModsNonCanonicalizing vt:$src1, i32:$src1_mods),
1137                        (VOP3ModsNonCanonicalizing vt:$src2, i32:$src2_mods))),
1138  (V_CNDMASK_B32_e64 FP32InputMods:$src2_mods, VSrc_b32:$src2,
1139                     FP32InputMods:$src1_mods, VSrc_b32:$src1, SSrc_i1:$src0)
1140>;
1141
1142class VOPSelectPat <ValueType vt> : GCNPat <
1143  (vt (select i1:$src0, vt:$src1, vt:$src2)),
1144  (V_CNDMASK_B32_e64 0, VSrc_b32:$src2, 0, VSrc_b32:$src1, SSrc_i1:$src0)
1145>;
1146
1147def : VOPSelectModsPat <i32>;
1148def : VOPSelectModsPat <f32>;
1149def : VOPSelectPat <f16>;
1150def : VOPSelectPat <i16>;
1151
1152let AddedComplexity = 1 in {
1153def : GCNPat <
1154  (i32 (add (i32 (DivergentUnaryFrag<ctpop> i32:$popcnt)), i32:$val)),
1155  (V_BCNT_U32_B32_e64 $popcnt, $val)
1156>;
1157}
1158
1159def : GCNPat <
1160  (i32 (DivergentUnaryFrag<ctpop> i32:$popcnt)),
1161  (V_BCNT_U32_B32_e64 VSrc_b32:$popcnt, (i32 0))
1162>;
1163
1164def : GCNPat <
1165  (i16 (add (i16 (trunc (i32 (DivergentUnaryFrag<ctpop> i32:$popcnt)))), i16:$val)),
1166  (V_BCNT_U32_B32_e64 $popcnt, $val)
1167>;
1168
1169def : GCNPat <
1170  (i64 (DivergentUnaryFrag<ctpop> i64:$src)),
1171  (REG_SEQUENCE VReg_64,
1172    (V_BCNT_U32_B32_e64 (i32 (EXTRACT_SUBREG i64:$src, sub1)),
1173      (i32 (V_BCNT_U32_B32_e64 (i32 (EXTRACT_SUBREG i64:$src, sub0)), (i32 0)))), sub0,
1174      (i32 (V_MOV_B32_e32 (i32 0))), sub1)
1175>;
1176
1177/********** ============================================ **********/
1178/********** Extraction, Insertion, Building and Casting  **********/
1179/********** ============================================ **********/
1180
1181// Special case for 2 element vectors. REQ_SEQUENCE produces better code
1182// than an INSERT_SUBREG.
1183multiclass Insert_Element_V2<RegisterClass RC, ValueType elem_type, ValueType vec_type> {
1184  def : GCNPat <
1185    (insertelt vec_type:$vec, elem_type:$elem, 0),
1186    (REG_SEQUENCE RC, $elem, sub0, (elem_type (EXTRACT_SUBREG $vec, sub1)), sub1)
1187  >;
1188
1189  def : GCNPat <
1190    (insertelt vec_type:$vec, elem_type:$elem, 1),
1191    (REG_SEQUENCE RC, (elem_type (EXTRACT_SUBREG $vec, sub0)), sub0, $elem, sub1)
1192  >;
1193}
1194
1195foreach Index = 0-1 in {
1196  def Extract_Element_v2i32_#Index : Extract_Element <
1197    i32, v2i32, Index, !cast<SubRegIndex>(sub#Index)
1198  >;
1199
1200  def Extract_Element_v2f32_#Index : Extract_Element <
1201    f32, v2f32, Index, !cast<SubRegIndex>(sub#Index)
1202  >;
1203}
1204
1205defm : Insert_Element_V2 <SReg_64, i32, v2i32>;
1206defm : Insert_Element_V2 <SReg_64, f32, v2f32>;
1207
1208foreach Index = 0-2 in {
1209  def Extract_Element_v3i32_#Index : Extract_Element <
1210    i32, v3i32, Index, !cast<SubRegIndex>(sub#Index)
1211  >;
1212  def Insert_Element_v3i32_#Index : Insert_Element <
1213    i32, v3i32, Index, !cast<SubRegIndex>(sub#Index)
1214  >;
1215
1216  def Extract_Element_v3f32_#Index : Extract_Element <
1217    f32, v3f32, Index, !cast<SubRegIndex>(sub#Index)
1218  >;
1219  def Insert_Element_v3f32_#Index : Insert_Element <
1220    f32, v3f32, Index, !cast<SubRegIndex>(sub#Index)
1221  >;
1222}
1223
1224foreach Index = 0-3 in {
1225  def Extract_Element_v4i32_#Index : Extract_Element <
1226    i32, v4i32, Index, !cast<SubRegIndex>(sub#Index)
1227  >;
1228  def Insert_Element_v4i32_#Index : Insert_Element <
1229    i32, v4i32, Index, !cast<SubRegIndex>(sub#Index)
1230  >;
1231
1232  def Extract_Element_v4f32_#Index : Extract_Element <
1233    f32, v4f32, Index, !cast<SubRegIndex>(sub#Index)
1234  >;
1235  def Insert_Element_v4f32_#Index : Insert_Element <
1236    f32, v4f32, Index, !cast<SubRegIndex>(sub#Index)
1237  >;
1238}
1239
1240foreach Index = 0-4 in {
1241  def Extract_Element_v5i32_#Index : Extract_Element <
1242    i32, v5i32, Index, !cast<SubRegIndex>(sub#Index)
1243  >;
1244  def Insert_Element_v5i32_#Index : Insert_Element <
1245    i32, v5i32, Index, !cast<SubRegIndex>(sub#Index)
1246  >;
1247
1248  def Extract_Element_v5f32_#Index : Extract_Element <
1249    f32, v5f32, Index, !cast<SubRegIndex>(sub#Index)
1250  >;
1251  def Insert_Element_v5f32_#Index : Insert_Element <
1252    f32, v5f32, Index, !cast<SubRegIndex>(sub#Index)
1253  >;
1254}
1255
1256foreach Index = 0-5 in {
1257  def Extract_Element_v6i32_#Index : Extract_Element <
1258    i32, v6i32, Index, !cast<SubRegIndex>(sub#Index)
1259  >;
1260  def Insert_Element_v6i32_#Index : Insert_Element <
1261    i32, v6i32, Index, !cast<SubRegIndex>(sub#Index)
1262  >;
1263
1264  def Extract_Element_v6f32_#Index : Extract_Element <
1265    f32, v6f32, Index, !cast<SubRegIndex>(sub#Index)
1266  >;
1267  def Insert_Element_v6f32_#Index : Insert_Element <
1268    f32, v6f32, Index, !cast<SubRegIndex>(sub#Index)
1269  >;
1270}
1271
1272foreach Index = 0-6 in {
1273  def Extract_Element_v7i32_#Index : Extract_Element <
1274    i32, v7i32, Index, !cast<SubRegIndex>(sub#Index)
1275  >;
1276  def Insert_Element_v7i32_#Index : Insert_Element <
1277    i32, v7i32, Index, !cast<SubRegIndex>(sub#Index)
1278  >;
1279
1280  def Extract_Element_v7f32_#Index : Extract_Element <
1281    f32, v7f32, Index, !cast<SubRegIndex>(sub#Index)
1282  >;
1283  def Insert_Element_v7f32_#Index : Insert_Element <
1284    f32, v7f32, Index, !cast<SubRegIndex>(sub#Index)
1285  >;
1286}
1287
1288foreach Index = 0-7 in {
1289  def Extract_Element_v8i32_#Index : Extract_Element <
1290    i32, v8i32, Index, !cast<SubRegIndex>(sub#Index)
1291  >;
1292  def Insert_Element_v8i32_#Index : Insert_Element <
1293    i32, v8i32, Index, !cast<SubRegIndex>(sub#Index)
1294  >;
1295
1296  def Extract_Element_v8f32_#Index : Extract_Element <
1297    f32, v8f32, Index, !cast<SubRegIndex>(sub#Index)
1298  >;
1299  def Insert_Element_v8f32_#Index : Insert_Element <
1300    f32, v8f32, Index, !cast<SubRegIndex>(sub#Index)
1301  >;
1302}
1303
1304foreach Index = 0-8 in {
1305  def Extract_Element_v9i32_#Index : Extract_Element <
1306    i32, v9i32, Index, !cast<SubRegIndex>(sub#Index)
1307  >;
1308  def Insert_Element_v9i32_#Index : Insert_Element <
1309    i32, v9i32, Index, !cast<SubRegIndex>(sub#Index)
1310  >;
1311
1312  def Extract_Element_v9f32_#Index : Extract_Element <
1313    f32, v9f32, Index, !cast<SubRegIndex>(sub#Index)
1314  >;
1315  def Insert_Element_v9f32_#Index : Insert_Element <
1316    f32, v9f32, Index, !cast<SubRegIndex>(sub#Index)
1317  >;
1318}
1319
1320foreach Index = 0-9 in {
1321  def Extract_Element_v10i32_#Index : Extract_Element <
1322    i32, v10i32, Index, !cast<SubRegIndex>(sub#Index)
1323  >;
1324  def Insert_Element_v10i32_#Index : Insert_Element <
1325    i32, v10i32, Index, !cast<SubRegIndex>(sub#Index)
1326  >;
1327
1328  def Extract_Element_v10f32_#Index : Extract_Element <
1329    f32, v10f32, Index, !cast<SubRegIndex>(sub#Index)
1330  >;
1331  def Insert_Element_v10f32_#Index : Insert_Element <
1332    f32, v10f32, Index, !cast<SubRegIndex>(sub#Index)
1333  >;
1334}
1335
1336foreach Index = 0-10 in {
1337  def Extract_Element_v11i32_#Index : Extract_Element <
1338    i32, v11i32, Index, !cast<SubRegIndex>(sub#Index)
1339  >;
1340  def Insert_Element_v11i32_#Index : Insert_Element <
1341    i32, v11i32, Index, !cast<SubRegIndex>(sub#Index)
1342  >;
1343
1344  def Extract_Element_v11f32_#Index : Extract_Element <
1345    f32, v11f32, Index, !cast<SubRegIndex>(sub#Index)
1346  >;
1347  def Insert_Element_v11f32_#Index : Insert_Element <
1348    f32, v11f32, Index, !cast<SubRegIndex>(sub#Index)
1349  >;
1350}
1351
1352foreach Index = 0-11 in {
1353  def Extract_Element_v12i32_#Index : Extract_Element <
1354    i32, v12i32, Index, !cast<SubRegIndex>(sub#Index)
1355  >;
1356  def Insert_Element_v12i32_#Index : Insert_Element <
1357    i32, v12i32, Index, !cast<SubRegIndex>(sub#Index)
1358  >;
1359
1360  def Extract_Element_v12f32_#Index : Extract_Element <
1361    f32, v12f32, Index, !cast<SubRegIndex>(sub#Index)
1362  >;
1363  def Insert_Element_v12f32_#Index : Insert_Element <
1364    f32, v12f32, Index, !cast<SubRegIndex>(sub#Index)
1365  >;
1366}
1367
1368foreach Index = 0-15 in {
1369  def Extract_Element_v16i32_#Index : Extract_Element <
1370    i32, v16i32, Index, !cast<SubRegIndex>(sub#Index)
1371  >;
1372  def Insert_Element_v16i32_#Index : Insert_Element <
1373    i32, v16i32, Index, !cast<SubRegIndex>(sub#Index)
1374  >;
1375
1376  def Extract_Element_v16f32_#Index : Extract_Element <
1377    f32, v16f32, Index, !cast<SubRegIndex>(sub#Index)
1378  >;
1379  def Insert_Element_v16f32_#Index : Insert_Element <
1380    f32, v16f32, Index, !cast<SubRegIndex>(sub#Index)
1381  >;
1382}
1383
1384
1385foreach Index = 0-31 in {
1386  def Extract_Element_v32i32_#Index : Extract_Element <
1387    i32, v32i32, Index, !cast<SubRegIndex>(sub#Index)
1388  >;
1389
1390  def Insert_Element_v32i32_#Index : Insert_Element <
1391    i32, v32i32, Index, !cast<SubRegIndex>(sub#Index)
1392  >;
1393
1394  def Extract_Element_v32f32_#Index : Extract_Element <
1395    f32, v32f32, Index, !cast<SubRegIndex>(sub#Index)
1396  >;
1397
1398  def Insert_Element_v32f32_#Index : Insert_Element <
1399    f32, v32f32, Index, !cast<SubRegIndex>(sub#Index)
1400  >;
1401}
1402
1403// FIXME: Why do only some of these type combinations for SReg and
1404// VReg?
1405// 16-bit bitcast
1406def : BitConvert <i16, f16, VGPR_32>;
1407def : BitConvert <f16, i16, VGPR_32>;
1408def : BitConvert <i16, f16, SReg_32>;
1409def : BitConvert <f16, i16, SReg_32>;
1410
1411// 32-bit bitcast
1412def : BitConvert <i32, f32, VGPR_32>;
1413def : BitConvert <f32, i32, VGPR_32>;
1414def : BitConvert <i32, f32, SReg_32>;
1415def : BitConvert <f32, i32, SReg_32>;
1416def : BitConvert <v2i16, i32, SReg_32>;
1417def : BitConvert <i32, v2i16, SReg_32>;
1418def : BitConvert <v2f16, i32, SReg_32>;
1419def : BitConvert <i32, v2f16, SReg_32>;
1420def : BitConvert <v2i16, v2f16, SReg_32>;
1421def : BitConvert <v2f16, v2i16, SReg_32>;
1422def : BitConvert <v2f16, f32, SReg_32>;
1423def : BitConvert <f32, v2f16, SReg_32>;
1424def : BitConvert <v2i16, f32, SReg_32>;
1425def : BitConvert <f32, v2i16, SReg_32>;
1426
1427// 64-bit bitcast
1428def : BitConvert <i64, f64, VReg_64>;
1429def : BitConvert <f64, i64, VReg_64>;
1430def : BitConvert <v2i32, v2f32, VReg_64>;
1431def : BitConvert <v2f32, v2i32, VReg_64>;
1432def : BitConvert <i64, v2i32, VReg_64>;
1433def : BitConvert <v2i32, i64, VReg_64>;
1434def : BitConvert <i64, v2f32, VReg_64>;
1435def : BitConvert <v2f32, i64, VReg_64>;
1436def : BitConvert <f64, v2f32, VReg_64>;
1437def : BitConvert <v2f32, f64, VReg_64>;
1438def : BitConvert <f64, v2i32, VReg_64>;
1439def : BitConvert <v2i32, f64, VReg_64>;
1440def : BitConvert <v4i16, v4f16, VReg_64>;
1441def : BitConvert <v4f16, v4i16, VReg_64>;
1442
1443// FIXME: Make SGPR
1444def : BitConvert <v2i32, v4f16, VReg_64>;
1445def : BitConvert <v4f16, v2i32, VReg_64>;
1446def : BitConvert <v2i32, v4f16, VReg_64>;
1447def : BitConvert <v2i32, v4i16, VReg_64>;
1448def : BitConvert <v4i16, v2i32, VReg_64>;
1449def : BitConvert <v2f32, v4f16, VReg_64>;
1450def : BitConvert <v4f16, v2f32, VReg_64>;
1451def : BitConvert <v2f32, v4i16, VReg_64>;
1452def : BitConvert <v4i16, v2f32, VReg_64>;
1453def : BitConvert <v4i16, f64, VReg_64>;
1454def : BitConvert <v4f16, f64, VReg_64>;
1455def : BitConvert <f64, v4i16, VReg_64>;
1456def : BitConvert <f64, v4f16, VReg_64>;
1457def : BitConvert <v4i16, i64, VReg_64>;
1458def : BitConvert <v4f16, i64, VReg_64>;
1459def : BitConvert <i64, v4i16, VReg_64>;
1460def : BitConvert <i64, v4f16, VReg_64>;
1461
1462def : BitConvert <v4i32, v4f32, VReg_128>;
1463def : BitConvert <v4f32, v4i32, VReg_128>;
1464
1465// 96-bit bitcast
1466def : BitConvert <v3i32, v3f32, SGPR_96>;
1467def : BitConvert <v3f32, v3i32, SGPR_96>;
1468
1469// 128-bit bitcast
1470def : BitConvert <v2i64, v4i32, SReg_128>;
1471def : BitConvert <v4i32, v2i64, SReg_128>;
1472def : BitConvert <v2f64, v4f32, VReg_128>;
1473def : BitConvert <v2f64, v4i32, VReg_128>;
1474def : BitConvert <v4f32, v2f64, VReg_128>;
1475def : BitConvert <v4i32, v2f64, VReg_128>;
1476def : BitConvert <v2i64, v2f64, VReg_128>;
1477def : BitConvert <v2f64, v2i64, VReg_128>;
1478def : BitConvert <v4f32, v2i64, VReg_128>;
1479def : BitConvert <v2i64, v4f32, VReg_128>;
1480def : BitConvert <v8i16, v4i32, SReg_128>;
1481def : BitConvert <v4i32, v8i16, SReg_128>;
1482def : BitConvert <v8f16, v4f32, VReg_128>;
1483def : BitConvert <v8f16, v4i32, VReg_128>;
1484def : BitConvert <v4f32, v8f16, VReg_128>;
1485def : BitConvert <v4i32, v8f16, VReg_128>;
1486def : BitConvert <v8i16, v8f16, VReg_128>;
1487def : BitConvert <v8f16, v8i16, VReg_128>;
1488def : BitConvert <v4f32, v8i16, VReg_128>;
1489def : BitConvert <v8i16, v4f32, VReg_128>;
1490def : BitConvert <v8i16, v8f16, SReg_128>;
1491def : BitConvert <v8i16, v2i64, SReg_128>;
1492def : BitConvert <v8i16, v2f64, SReg_128>;
1493def : BitConvert <v8f16, v2i64, SReg_128>;
1494def : BitConvert <v8f16, v2f64, SReg_128>;
1495def : BitConvert <v8f16, v8i16, SReg_128>;
1496def : BitConvert <v2i64, v8i16, SReg_128>;
1497def : BitConvert <v2f64, v8i16, SReg_128>;
1498def : BitConvert <v2i64, v8f16, SReg_128>;
1499def : BitConvert <v2f64, v8f16, SReg_128>;
1500
1501// 160-bit bitcast
1502def : BitConvert <v5i32, v5f32, SReg_160>;
1503def : BitConvert <v5f32, v5i32, SReg_160>;
1504def : BitConvert <v5i32, v5f32, VReg_160>;
1505def : BitConvert <v5f32, v5i32, VReg_160>;
1506
1507// 192-bit bitcast
1508def : BitConvert <v6i32, v6f32, SReg_192>;
1509def : BitConvert <v6f32, v6i32, SReg_192>;
1510def : BitConvert <v6i32, v6f32, VReg_192>;
1511def : BitConvert <v6f32, v6i32, VReg_192>;
1512def : BitConvert <v3i64, v3f64, VReg_192>;
1513def : BitConvert <v3f64, v3i64, VReg_192>;
1514def : BitConvert <v3i64, v6i32, VReg_192>;
1515def : BitConvert <v3i64, v6f32, VReg_192>;
1516def : BitConvert <v3f64, v6i32, VReg_192>;
1517def : BitConvert <v3f64, v6f32, VReg_192>;
1518def : BitConvert <v6i32, v3i64, VReg_192>;
1519def : BitConvert <v6f32, v3i64, VReg_192>;
1520def : BitConvert <v6i32, v3f64, VReg_192>;
1521def : BitConvert <v6f32, v3f64, VReg_192>;
1522
1523// 224-bit bitcast
1524def : BitConvert <v7i32, v7f32, SReg_224>;
1525def : BitConvert <v7f32, v7i32, SReg_224>;
1526def : BitConvert <v7i32, v7f32, VReg_224>;
1527def : BitConvert <v7f32, v7i32, VReg_224>;
1528
1529// 256-bit bitcast
1530def : BitConvert <v8i32, v8f32, SReg_256>;
1531def : BitConvert <v8f32, v8i32, SReg_256>;
1532def : BitConvert <v8i32, v8f32, VReg_256>;
1533def : BitConvert <v8f32, v8i32, VReg_256>;
1534def : BitConvert <v4i64, v4f64, VReg_256>;
1535def : BitConvert <v4f64, v4i64, VReg_256>;
1536def : BitConvert <v4i64, v8i32, VReg_256>;
1537def : BitConvert <v4i64, v8f32, VReg_256>;
1538def : BitConvert <v4f64, v8i32, VReg_256>;
1539def : BitConvert <v4f64, v8f32, VReg_256>;
1540def : BitConvert <v8i32, v4i64, VReg_256>;
1541def : BitConvert <v8f32, v4i64, VReg_256>;
1542def : BitConvert <v8i32, v4f64, VReg_256>;
1543def : BitConvert <v8f32, v4f64, VReg_256>;
1544def : BitConvert <v16i16, v16f16, SReg_256>;
1545def : BitConvert <v16f16, v16i16, SReg_256>;
1546def : BitConvert <v16i16, v16f16, VReg_256>;
1547def : BitConvert <v16f16, v16i16, VReg_256>;
1548def : BitConvert <v16f16, v8i32, VReg_256>;
1549def : BitConvert <v16i16, v8i32, VReg_256>;
1550def : BitConvert <v16f16, v8f32, VReg_256>;
1551def : BitConvert <v16i16, v8f32, VReg_256>;
1552def : BitConvert <v8i32, v16f16, VReg_256>;
1553def : BitConvert <v8i32, v16i16, VReg_256>;
1554def : BitConvert <v8f32, v16f16, VReg_256>;
1555def : BitConvert <v8f32, v16i16, VReg_256>;
1556def : BitConvert <v16f16, v4i64, VReg_256>;
1557def : BitConvert <v16i16, v4i64, VReg_256>;
1558def : BitConvert <v16f16, v4f64, VReg_256>;
1559def : BitConvert <v16i16, v4f64, VReg_256>;
1560def : BitConvert <v4i64, v16f16, VReg_256>;
1561def : BitConvert <v4i64, v16i16, VReg_256>;
1562def : BitConvert <v4f64, v16f16, VReg_256>;
1563def : BitConvert <v4f64, v16i16, VReg_256>;
1564
1565// 288-bit bitcast
1566def : BitConvert <v9i32, v9f32, SReg_288>;
1567def : BitConvert <v9f32, v9i32, SReg_288>;
1568def : BitConvert <v9i32, v9f32, VReg_288>;
1569def : BitConvert <v9f32, v9i32, VReg_288>;
1570
1571// 320-bit bitcast
1572def : BitConvert <v10i32, v10f32, SReg_320>;
1573def : BitConvert <v10f32, v10i32, SReg_320>;
1574def : BitConvert <v10i32, v10f32, VReg_320>;
1575def : BitConvert <v10f32, v10i32, VReg_320>;
1576
1577// 320-bit bitcast
1578def : BitConvert <v11i32, v11f32, SReg_352>;
1579def : BitConvert <v11f32, v11i32, SReg_352>;
1580def : BitConvert <v11i32, v11f32, VReg_352>;
1581def : BitConvert <v11f32, v11i32, VReg_352>;
1582
1583// 384-bit bitcast
1584def : BitConvert <v12i32, v12f32, SReg_384>;
1585def : BitConvert <v12f32, v12i32, SReg_384>;
1586def : BitConvert <v12i32, v12f32, VReg_384>;
1587def : BitConvert <v12f32, v12i32, VReg_384>;
1588
1589// 512-bit bitcast
1590def : BitConvert <v16i32, v16f32, VReg_512>;
1591def : BitConvert <v16f32, v16i32, VReg_512>;
1592def : BitConvert <v8i64,  v8f64,  VReg_512>;
1593def : BitConvert <v8f64,  v8i64,  VReg_512>;
1594def : BitConvert <v8i64,  v16i32, VReg_512>;
1595def : BitConvert <v8f64,  v16i32, VReg_512>;
1596def : BitConvert <v16i32, v8i64,  VReg_512>;
1597def : BitConvert <v16i32, v8f64,  VReg_512>;
1598def : BitConvert <v8i64,  v16f32, VReg_512>;
1599def : BitConvert <v8f64,  v16f32, VReg_512>;
1600def : BitConvert <v16f32, v8i64,  VReg_512>;
1601def : BitConvert <v16f32, v8f64,  VReg_512>;
1602
1603// 1024-bit bitcast
1604def : BitConvert <v32i32, v32f32, VReg_1024>;
1605def : BitConvert <v32f32, v32i32, VReg_1024>;
1606def : BitConvert <v16i64, v16f64, VReg_1024>;
1607def : BitConvert <v16f64, v16i64, VReg_1024>;
1608def : BitConvert <v16i64, v32i32, VReg_1024>;
1609def : BitConvert <v32i32, v16i64, VReg_1024>;
1610def : BitConvert <v16f64, v32f32, VReg_1024>;
1611def : BitConvert <v32f32, v16f64, VReg_1024>;
1612def : BitConvert <v16i64, v32f32, VReg_1024>;
1613def : BitConvert <v32i32, v16f64, VReg_1024>;
1614def : BitConvert <v16f64, v32i32, VReg_1024>;
1615def : BitConvert <v32f32, v16i64, VReg_1024>;
1616
1617
1618/********** =================== **********/
1619/********** Src & Dst modifiers **********/
1620/********** =================== **********/
1621
1622
1623// If denormals are not enabled, it only impacts the compare of the
1624// inputs. The output result is not flushed.
1625class ClampPat<Instruction inst, ValueType vt> : GCNPat <
1626  (vt (AMDGPUclamp (VOP3Mods vt:$src0, i32:$src0_modifiers))),
1627  (inst i32:$src0_modifiers, vt:$src0,
1628        i32:$src0_modifiers, vt:$src0, DSTCLAMP.ENABLE, DSTOMOD.NONE)
1629>;
1630
1631def : ClampPat<V_MAX_F32_e64, f32>;
1632def : ClampPat<V_MAX_F64_e64, f64>;
1633let SubtargetPredicate = NotHasTrue16BitInsts in
1634def : ClampPat<V_MAX_F16_e64, f16>;
1635let SubtargetPredicate = HasTrue16BitInsts in
1636def : ClampPat<V_MAX_F16_t16_e64, f16>;
1637
1638let SubtargetPredicate = HasVOP3PInsts in {
1639def : GCNPat <
1640  (v2f16 (AMDGPUclamp (VOP3PMods v2f16:$src0, i32:$src0_modifiers))),
1641  (V_PK_MAX_F16 $src0_modifiers, $src0,
1642                $src0_modifiers, $src0, DSTCLAMP.ENABLE)
1643>;
1644}
1645
1646
1647/********** ================================ **********/
1648/********** Floating point absolute/negative **********/
1649/********** ================================ **********/
1650
1651def : GCNPat <
1652  (UniformUnaryFrag<fneg> (fabs (f32 SReg_32:$src))),
1653  (S_OR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x80000000))) // Set sign bit
1654>;
1655
1656def : GCNPat <
1657  (UniformUnaryFrag<fabs> (f32 SReg_32:$src)),
1658  (S_AND_B32 SReg_32:$src, (S_MOV_B32 (i32 0x7fffffff)))
1659>;
1660
1661def : GCNPat <
1662  (UniformUnaryFrag<fneg> (f32 SReg_32:$src)),
1663  (S_XOR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x80000000)))
1664>;
1665
1666def : GCNPat <
1667  (UniformUnaryFrag<fneg> (f16 SReg_32:$src)),
1668  (S_XOR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x00008000)))
1669>;
1670
1671def : GCNPat <
1672  (UniformUnaryFrag<fabs> (f16 SReg_32:$src)),
1673  (S_AND_B32 SReg_32:$src, (S_MOV_B32 (i32 0x00007fff)))
1674>;
1675
1676def : GCNPat <
1677  (UniformUnaryFrag<fneg> (fabs (f16 SReg_32:$src))),
1678  (S_OR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x00008000))) // Set sign bit
1679>;
1680
1681def : GCNPat <
1682  (UniformUnaryFrag<fneg> (v2f16 SReg_32:$src)),
1683  (S_XOR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x80008000)))
1684>;
1685
1686def : GCNPat <
1687  (UniformUnaryFrag<fabs> (v2f16 SReg_32:$src)),
1688  (S_AND_B32 SReg_32:$src, (S_MOV_B32 (i32 0x7fff7fff)))
1689>;
1690
1691// This is really (fneg (fabs v2f16:$src))
1692//
1693// fabs is not reported as free because there is modifier for it in
1694// VOP3P instructions, so it is turned into the bit op.
1695def : GCNPat <
1696  (UniformUnaryFrag<fneg> (v2f16 (bitconvert (and_oneuse (i32 SReg_32:$src), 0x7fff7fff)))),
1697  (S_OR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x80008000))) // Set sign bit
1698>;
1699
1700def : GCNPat <
1701  (UniformUnaryFrag<fneg> (v2f16 (fabs SReg_32:$src))),
1702  (S_OR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x80008000))) // Set sign bit
1703>;
1704
1705
1706// COPY_TO_REGCLASS is needed to avoid using SCC from S_XOR_B32 instead
1707// of the real value.
1708def : GCNPat <
1709  (UniformUnaryFrag<fneg> (v2f32 SReg_64:$src)),
1710  (v2f32 (REG_SEQUENCE SReg_64,
1711         (f32 (COPY_TO_REGCLASS (S_XOR_B32 (i32 (EXTRACT_SUBREG $src, sub0)),
1712                                           (i32 (S_MOV_B32 (i32 0x80000000)))),
1713                                 SReg_32)), sub0,
1714         (f32 (COPY_TO_REGCLASS (S_XOR_B32 (i32 (EXTRACT_SUBREG $src, sub1)),
1715                                           (i32 (S_MOV_B32 (i32 0x80000000)))),
1716                                 SReg_32)), sub1))
1717>;
1718
1719def : GCNPat <
1720  (UniformUnaryFrag<fabs> (v2f32 SReg_64:$src)),
1721  (v2f32 (REG_SEQUENCE SReg_64,
1722         (f32 (COPY_TO_REGCLASS (S_AND_B32 (i32 (EXTRACT_SUBREG $src, sub0)),
1723                                           (i32 (S_MOV_B32 (i32 0x7fffffff)))),
1724                                 SReg_32)), sub0,
1725         (f32 (COPY_TO_REGCLASS (S_AND_B32 (i32 (EXTRACT_SUBREG $src, sub1)),
1726                                           (i32 (S_MOV_B32 (i32 0x7fffffff)))),
1727                                 SReg_32)), sub1))
1728>;
1729
1730def : GCNPat <
1731  (UniformUnaryFrag<fneg> (fabs (v2f32 SReg_64:$src))),
1732  (v2f32 (REG_SEQUENCE SReg_64,
1733         (f32 (COPY_TO_REGCLASS (S_OR_B32 (i32 (EXTRACT_SUBREG $src, sub0)),
1734                                           (i32 (S_MOV_B32 (i32 0x80000000)))),
1735                                 SReg_32)), sub0,
1736         (f32 (COPY_TO_REGCLASS (S_OR_B32 (i32 (EXTRACT_SUBREG $src, sub1)),
1737                                           (i32 (S_MOV_B32 (i32 0x80000000)))),
1738                                 SReg_32)), sub1))
1739>;
1740
1741// FIXME: Use S_BITSET0_B32/B64?
1742def : GCNPat <
1743  (UniformUnaryFrag<fabs> (f64 SReg_64:$src)),
1744  (REG_SEQUENCE SReg_64,
1745    (i32 (EXTRACT_SUBREG SReg_64:$src, sub0)),
1746    sub0,
1747    (i32 (COPY_TO_REGCLASS (S_AND_B32 (i32 (EXTRACT_SUBREG SReg_64:$src, sub1)),
1748                   (S_MOV_B32 (i32 0x7fffffff))), SReg_32)), // Set sign bit.
1749     sub1)
1750>;
1751
1752def : GCNPat <
1753  (UniformUnaryFrag<fneg> (f64 SReg_64:$src)),
1754  (REG_SEQUENCE SReg_64,
1755    (i32 (EXTRACT_SUBREG SReg_64:$src, sub0)),
1756    sub0,
1757    (i32 (COPY_TO_REGCLASS (S_XOR_B32 (i32 (EXTRACT_SUBREG SReg_64:$src, sub1)),
1758                   (i32 (S_MOV_B32 (i32 0x80000000)))), SReg_32)),
1759    sub1)
1760>;
1761
1762def : GCNPat <
1763  (UniformUnaryFrag<fneg> (fabs (f64 SReg_64:$src))),
1764  (REG_SEQUENCE SReg_64,
1765    (i32 (EXTRACT_SUBREG SReg_64:$src, sub0)),
1766    sub0,
1767    (i32 (COPY_TO_REGCLASS (S_OR_B32 (i32 (EXTRACT_SUBREG SReg_64:$src, sub1)),
1768                  (S_MOV_B32 (i32 0x80000000))), SReg_32)),// Set sign bit.
1769    sub1)
1770>;
1771
1772
1773def : GCNPat <
1774  (fneg (fabs (f32 VGPR_32:$src))),
1775  (V_OR_B32_e64 (S_MOV_B32 (i32 0x80000000)), VGPR_32:$src) // Set sign bit
1776>;
1777
1778def : GCNPat <
1779  (fabs (f32 VGPR_32:$src)),
1780  (V_AND_B32_e64 (S_MOV_B32 (i32 0x7fffffff)), VGPR_32:$src)
1781>;
1782
1783def : GCNPat <
1784  (fneg (f32 VGPR_32:$src)),
1785  (V_XOR_B32_e64 (S_MOV_B32 (i32 0x80000000)), VGPR_32:$src)
1786>;
1787
1788def : GCNPat <
1789  (fabs (f16 VGPR_32:$src)),
1790  (V_AND_B32_e64 (S_MOV_B32 (i32 0x00007fff)), VGPR_32:$src)
1791>;
1792
1793def : GCNPat <
1794  (fneg (f16 VGPR_32:$src)),
1795  (V_XOR_B32_e64 (S_MOV_B32 (i32 0x00008000)), VGPR_32:$src)
1796>;
1797
1798def : GCNPat <
1799  (fneg (fabs (f16 VGPR_32:$src))),
1800  (V_OR_B32_e64 (S_MOV_B32 (i32 0x00008000)), VGPR_32:$src) // Set sign bit
1801>;
1802
1803def : GCNPat <
1804  (fneg (v2f16 VGPR_32:$src)),
1805  (V_XOR_B32_e64 (S_MOV_B32 (i32 0x80008000)), VGPR_32:$src)
1806>;
1807
1808def : GCNPat <
1809  (fabs (v2f16 VGPR_32:$src)),
1810  (V_AND_B32_e64 (S_MOV_B32 (i32 0x7fff7fff)), VGPR_32:$src)
1811>;
1812
1813def : GCNPat <
1814  (fneg (v2f16 (fabs VGPR_32:$src))),
1815  (V_OR_B32_e64 (S_MOV_B32 (i32 0x80008000)), VGPR_32:$src)
1816>;
1817
1818def : GCNPat <
1819  (fabs (f64 VReg_64:$src)),
1820  (REG_SEQUENCE VReg_64,
1821    (i32 (EXTRACT_SUBREG VReg_64:$src, sub0)),
1822    sub0,
1823    (V_AND_B32_e64 (i32 (S_MOV_B32 (i32 0x7fffffff))),
1824        (i32 (EXTRACT_SUBREG VReg_64:$src, sub1))),
1825     sub1)
1826>;
1827
1828def : GCNPat <
1829  (fneg (f64 VReg_64:$src)),
1830  (REG_SEQUENCE VReg_64,
1831    (i32 (EXTRACT_SUBREG VReg_64:$src, sub0)),
1832    sub0,
1833    (V_XOR_B32_e64 (i32 (S_MOV_B32 (i32 0x80000000))),
1834        (i32 (EXTRACT_SUBREG VReg_64:$src, sub1))),
1835    sub1)
1836>;
1837
1838def : GCNPat <
1839  (fneg (fabs (f64 VReg_64:$src))),
1840  (REG_SEQUENCE VReg_64,
1841    (i32 (EXTRACT_SUBREG VReg_64:$src, sub0)),
1842    sub0,
1843    (V_OR_B32_e64 (i32 (S_MOV_B32 (i32 0x80000000))),
1844        (i32 (EXTRACT_SUBREG VReg_64:$src, sub1))),
1845    sub1)
1846>;
1847
1848def : GCNPat <
1849  (DivergentUnaryFrag<fneg> (v2f32 VReg_64:$src)),
1850  (V_PK_ADD_F32 11 /* OP_SEL_1 | NEG_LO | HEG_HI */, VReg_64:$src,
1851                11 /* OP_SEL_1 | NEG_LO | HEG_HI */, 0,
1852                0, 0, 0, 0, 0)
1853> {
1854  let SubtargetPredicate = HasPackedFP32Ops;
1855}
1856
1857def : GCNPat <
1858  (fcopysign f16:$src0, f16:$src1),
1859  (V_BFI_B32_e64 (S_MOV_B32 (i32 0x00007fff)), $src0, $src1)
1860>;
1861
1862def : GCNPat <
1863  (fcopysign f32:$src0, f16:$src1),
1864  (V_BFI_B32_e64 (S_MOV_B32 (i32 0x7fffffff)), $src0,
1865             (V_LSHLREV_B32_e64 (i32 16), $src1))
1866>;
1867
1868def : GCNPat <
1869  (fcopysign f64:$src0, f16:$src1),
1870  (REG_SEQUENCE SReg_64,
1871    (i32 (EXTRACT_SUBREG $src0, sub0)), sub0,
1872    (V_BFI_B32_e64 (S_MOV_B32 (i32 0x7fffffff)), (i32 (EXTRACT_SUBREG $src0, sub1)),
1873               (V_LSHLREV_B32_e64 (i32 16), $src1)), sub1)
1874>;
1875
1876def : GCNPat <
1877  (fcopysign f16:$src0, f32:$src1),
1878  (V_BFI_B32_e64 (S_MOV_B32 (i32 0x00007fff)), $src0,
1879             (V_LSHRREV_B32_e64 (i32 16), $src1))
1880>;
1881
1882def : GCNPat <
1883  (fcopysign f16:$src0, f64:$src1),
1884  (V_BFI_B32_e64 (S_MOV_B32 (i32 0x00007fff)), $src0,
1885             (V_LSHRREV_B32_e64 (i32 16), (EXTRACT_SUBREG $src1, sub1)))
1886>;
1887
1888/********** ================== **********/
1889/********** Immediate Patterns **********/
1890/********** ================== **********/
1891
1892def : GCNPat <
1893  (VGPRImm<(i32 imm)>:$imm),
1894  (V_MOV_B32_e32 imm:$imm)
1895>;
1896
1897def : GCNPat <
1898  (VGPRImm<(f32 fpimm)>:$imm),
1899  (V_MOV_B32_e32 (f32 (bitcast_fpimm_to_i32 $imm)))
1900>;
1901
1902def : GCNPat <
1903  (i32 imm:$imm),
1904  (S_MOV_B32 imm:$imm)
1905>;
1906
1907def : GCNPat <
1908  (VGPRImm<(SIlds tglobaladdr:$ga)>),
1909  (V_MOV_B32_e32 $ga)
1910>;
1911
1912def : GCNPat <
1913  (SIlds tglobaladdr:$ga),
1914  (S_MOV_B32 $ga)
1915>;
1916
1917// FIXME: Workaround for ordering issue with peephole optimizer where
1918// a register class copy interferes with immediate folding.  Should
1919// use s_mov_b32, which can be shrunk to s_movk_i32
1920def : GCNPat <
1921  (VGPRImm<(f16 fpimm)>:$imm),
1922  (V_MOV_B32_e32 (f16 (bitcast_fpimm_to_i32 $imm)))
1923>;
1924
1925def : GCNPat <
1926  (f32 fpimm:$imm),
1927  (S_MOV_B32 (f32 (bitcast_fpimm_to_i32 $imm)))
1928>;
1929
1930def : GCNPat <
1931  (f16 fpimm:$imm),
1932  (S_MOV_B32 (i32 (bitcast_fpimm_to_i32 $imm)))
1933>;
1934
1935def : GCNPat <
1936  (p5 frameindex:$fi),
1937  (V_MOV_B32_e32 (p5 (frameindex_to_targetframeindex $fi)))
1938>;
1939
1940def : GCNPat <
1941  (p5 frameindex:$fi),
1942  (S_MOV_B32 (p5 (frameindex_to_targetframeindex $fi)))
1943>;
1944
1945def : GCNPat <
1946  (i64 InlineImm64:$imm),
1947  (S_MOV_B64 InlineImm64:$imm)
1948>;
1949
1950// XXX - Should this use a s_cmp to set SCC?
1951
1952// Set to sign-extended 64-bit value (true = -1, false = 0)
1953def : GCNPat <
1954  (i1 imm:$imm),
1955  (S_MOV_B64 (i64 (as_i64imm $imm)))
1956> {
1957  let WaveSizePredicate = isWave64;
1958}
1959
1960def : GCNPat <
1961  (i1 imm:$imm),
1962  (S_MOV_B32 (i32 (as_i32imm $imm)))
1963> {
1964  let WaveSizePredicate = isWave32;
1965}
1966
1967def : GCNPat <
1968  (f64 InlineImmFP64:$imm),
1969  (S_MOV_B64 (f64 (bitcast_fpimm_to_i64 InlineImmFP64:$imm)))
1970>;
1971
1972/********** ================== **********/
1973/********** Intrinsic Patterns **********/
1974/********** ================== **********/
1975
1976def : GCNPat <
1977  (f32 (fpow (VOP3Mods f32:$src0, i32:$src0_mods), (VOP3Mods f32:$src1, i32:$src1_mods))),
1978  (V_EXP_F32_e64 SRCMODS.NONE, (V_MUL_LEGACY_F32_e64 $src1_mods, $src1, SRCMODS.NONE, (V_LOG_F32_e64 $src0_mods, $src0), 0, 0))
1979>;
1980
1981def : GCNPat <
1982  (i32 (sext i1:$src0)),
1983  (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
1984                     /*src1mod*/(i32 0), /*src1*/(i32 -1), i1:$src0)
1985>;
1986
1987class Ext32Pat <SDNode ext> : GCNPat <
1988  (i32 (ext i1:$src0)),
1989  (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
1990                     /*src1mod*/(i32 0), /*src1*/(i32 1), i1:$src0)
1991>;
1992
1993def : Ext32Pat <zext>;
1994def : Ext32Pat <anyext>;
1995
1996// The multiplication scales from [0,1) to the unsigned integer range,
1997// rounding down a bit to avoid unwanted overflow.
1998def : GCNPat <
1999  (AMDGPUurecip i32:$src0),
2000  (V_CVT_U32_F32_e32
2001    (V_MUL_F32_e32 (i32 CONST.FP_4294966784),
2002                   (V_RCP_IFLAG_F32_e32 (V_CVT_F32_U32_e32 $src0))))
2003>;
2004
2005//===----------------------------------------------------------------------===//
2006// VOP3 Patterns
2007//===----------------------------------------------------------------------===//
2008
2009def : IMad24Pat<V_MAD_I32_I24_e64, 1>;
2010def : UMad24Pat<V_MAD_U32_U24_e64, 1>;
2011
2012// BFI patterns
2013
2014def BFIImm32 : PatFrag<
2015  (ops node:$x, node:$y, node:$z),
2016  (i32 (DivergentBinFrag<or> (and node:$y, node:$x), (and node:$z, imm))),
2017  [{
2018    auto *X = dyn_cast<ConstantSDNode>(N->getOperand(0)->getOperand(1));
2019    auto *NotX = dyn_cast<ConstantSDNode>(N->getOperand(1)->getOperand(1));
2020    return X && NotX &&
2021      ~(unsigned)X->getZExtValue() == (unsigned)NotX->getZExtValue();
2022  }]
2023>;
2024
2025
2026// Definition from ISA doc:
2027// (y & x) | (z & ~x)
2028def : AMDGPUPatIgnoreCopies <
2029  (DivergentBinFrag<or> (and i32:$y, i32:$x), (and i32:$z, (not i32:$x))),
2030  (V_BFI_B32_e64 (COPY_TO_REGCLASS VSrc_b32:$x, VGPR_32),
2031                (COPY_TO_REGCLASS VSrc_b32:$y, VGPR_32),
2032                (COPY_TO_REGCLASS VSrc_b32:$z, VGPR_32))
2033>;
2034
2035// (y & C) | (z & ~C)
2036def : AMDGPUPatIgnoreCopies <
2037  (BFIImm32 i32:$x, i32:$y, i32:$z),
2038  (V_BFI_B32_e64 VSrc_b32:$x, VSrc_b32:$y, VSrc_b32:$z)
2039>;
2040
2041// 64-bit version
2042def : AMDGPUPatIgnoreCopies <
2043  (DivergentBinFrag<or> (and i64:$y, i64:$x), (and i64:$z, (not i64:$x))),
2044  (REG_SEQUENCE VReg_64,
2045    (V_BFI_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$x, sub0)),
2046              (i32 (EXTRACT_SUBREG VReg_64:$y, sub0)),
2047              (i32 (EXTRACT_SUBREG VReg_64:$z, sub0))), sub0,
2048    (V_BFI_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$x, sub1)),
2049              (i32 (EXTRACT_SUBREG VReg_64:$y, sub1)),
2050              (i32 (EXTRACT_SUBREG VReg_64:$z, sub1))), sub1)
2051>;
2052
2053// SHA-256 Ch function
2054// z ^ (x & (y ^ z))
2055def : AMDGPUPatIgnoreCopies <
2056  (DivergentBinFrag<xor> i32:$z, (and i32:$x, (xor i32:$y, i32:$z))),
2057  (V_BFI_B32_e64 (COPY_TO_REGCLASS VSrc_b32:$x, VGPR_32),
2058                (COPY_TO_REGCLASS VSrc_b32:$y, VGPR_32),
2059                (COPY_TO_REGCLASS VSrc_b32:$z, VGPR_32))
2060>;
2061
2062// 64-bit version
2063def : AMDGPUPatIgnoreCopies <
2064  (DivergentBinFrag<xor> i64:$z, (and i64:$x, (xor i64:$y, i64:$z))),
2065  (REG_SEQUENCE VReg_64,
2066    (V_BFI_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$x, sub0)),
2067              (i32 (EXTRACT_SUBREG VReg_64:$y, sub0)),
2068              (i32 (EXTRACT_SUBREG VReg_64:$z, sub0))), sub0,
2069    (V_BFI_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$x, sub1)),
2070              (i32 (EXTRACT_SUBREG VReg_64:$y, sub1)),
2071              (i32 (EXTRACT_SUBREG VReg_64:$z, sub1))), sub1)
2072>;
2073
2074def : AMDGPUPat <
2075  (fcopysign f32:$src0, f32:$src1),
2076  (V_BFI_B32_e64 (S_MOV_B32 (i32 0x7fffffff)), $src0, $src1)
2077>;
2078
2079def : AMDGPUPat <
2080  (fcopysign f32:$src0, f64:$src1),
2081  (V_BFI_B32_e64 (S_MOV_B32 (i32 0x7fffffff)), $src0,
2082             (i32 (EXTRACT_SUBREG SReg_64:$src1, sub1)))
2083>;
2084
2085def : AMDGPUPat <
2086  (fcopysign f64:$src0, f64:$src1),
2087  (REG_SEQUENCE SReg_64,
2088    (i32 (EXTRACT_SUBREG $src0, sub0)), sub0,
2089    (V_BFI_B32_e64 (S_MOV_B32 (i32 0x7fffffff)),
2090               (i32 (EXTRACT_SUBREG SReg_64:$src0, sub1)),
2091               (i32 (EXTRACT_SUBREG SReg_64:$src1, sub1))), sub1)
2092>;
2093
2094def : AMDGPUPat <
2095  (fcopysign f64:$src0, f32:$src1),
2096  (REG_SEQUENCE SReg_64,
2097    (i32 (EXTRACT_SUBREG $src0, sub0)), sub0,
2098    (V_BFI_B32_e64 (S_MOV_B32 (i32 0x7fffffff)),
2099               (i32 (EXTRACT_SUBREG SReg_64:$src0, sub1)),
2100               $src1), sub1)
2101>;
2102
2103def : ROTRPattern <V_ALIGNBIT_B32_e64>;
2104
2105def : GCNPat<(i32 (trunc (srl i64:$src0, (and i32:$src1, (i32 31))))),
2106          (V_ALIGNBIT_B32_e64 (i32 (EXTRACT_SUBREG (i64 $src0), sub1)),
2107                          (i32 (EXTRACT_SUBREG (i64 $src0), sub0)), $src1)>;
2108
2109def : GCNPat<(i32 (trunc (srl i64:$src0, (i32 ShiftAmt32Imm:$src1)))),
2110          (V_ALIGNBIT_B32_e64 (i32 (EXTRACT_SUBREG (i64 $src0), sub1)),
2111                          (i32 (EXTRACT_SUBREG (i64 $src0), sub0)), $src1)>;
2112
2113/********** ====================== **********/
2114/**********   Indirect addressing  **********/
2115/********** ====================== **********/
2116
2117multiclass SI_INDIRECT_Pattern <ValueType vt, ValueType eltvt, string VecSize> {
2118  // Extract with offset
2119  def : GCNPat<
2120    (eltvt (extractelt vt:$src, (MOVRELOffset i32:$idx, (i32 imm:$offset)))),
2121    (!cast<Instruction>("SI_INDIRECT_SRC_"#VecSize) $src, $idx, imm:$offset)
2122  >;
2123
2124  // Insert with offset
2125  def : GCNPat<
2126    (insertelt vt:$src, eltvt:$val, (MOVRELOffset i32:$idx, (i32 imm:$offset))),
2127    (!cast<Instruction>("SI_INDIRECT_DST_"#VecSize) $src, $idx, imm:$offset, $val)
2128  >;
2129}
2130
2131defm : SI_INDIRECT_Pattern <v2f32, f32, "V2">;
2132defm : SI_INDIRECT_Pattern <v4f32, f32, "V4">;
2133defm : SI_INDIRECT_Pattern <v8f32, f32, "V8">;
2134defm : SI_INDIRECT_Pattern <v9f32, f32, "V9">;
2135defm : SI_INDIRECT_Pattern <v10f32, f32, "V10">;
2136defm : SI_INDIRECT_Pattern <v11f32, f32, "V11">;
2137defm : SI_INDIRECT_Pattern <v12f32, f32, "V12">;
2138defm : SI_INDIRECT_Pattern <v16f32, f32, "V16">;
2139defm : SI_INDIRECT_Pattern <v32f32, f32, "V32">;
2140
2141defm : SI_INDIRECT_Pattern <v2i32, i32, "V2">;
2142defm : SI_INDIRECT_Pattern <v4i32, i32, "V4">;
2143defm : SI_INDIRECT_Pattern <v8i32, i32, "V8">;
2144defm : SI_INDIRECT_Pattern <v9i32, i32, "V9">;
2145defm : SI_INDIRECT_Pattern <v10i32, i32, "V10">;
2146defm : SI_INDIRECT_Pattern <v11i32, i32, "V11">;
2147defm : SI_INDIRECT_Pattern <v12i32, i32, "V12">;
2148defm : SI_INDIRECT_Pattern <v16i32, i32, "V16">;
2149defm : SI_INDIRECT_Pattern <v32i32, i32, "V32">;
2150
2151//===----------------------------------------------------------------------===//
2152// SAD Patterns
2153//===----------------------------------------------------------------------===//
2154
2155def : GCNPat <
2156  (add (sub_oneuse (umax i32:$src0, i32:$src1),
2157                   (umin i32:$src0, i32:$src1)),
2158       i32:$src2),
2159  (V_SAD_U32_e64 $src0, $src1, $src2, (i1 0))
2160>;
2161
2162def : GCNPat <
2163  (add (select_oneuse (i1 (setugt i32:$src0, i32:$src1)),
2164                      (sub i32:$src0, i32:$src1),
2165                      (sub i32:$src1, i32:$src0)),
2166       i32:$src2),
2167  (V_SAD_U32_e64 $src0, $src1, $src2, (i1 0))
2168>;
2169
2170//===----------------------------------------------------------------------===//
2171// Conversion Patterns
2172//===----------------------------------------------------------------------===//
2173def : GCNPat<(i32 (UniformSextInreg<i1> i32:$src)),
2174  (S_BFE_I32 i32:$src, (i32 65536))>; // 0 | 1 << 16
2175
2176// Handle sext_inreg in i64
2177def : GCNPat <
2178  (i64 (UniformSextInreg<i1> i64:$src)),
2179  (S_BFE_I64 i64:$src, (i32 0x10000)) // 0 | 1 << 16
2180>;
2181
2182def : GCNPat <
2183  (i16 (UniformSextInreg<i1> i16:$src)),
2184  (S_BFE_I32 $src, (i32 0x00010000)) // 0 | 1 << 16
2185>;
2186
2187def : GCNPat <
2188  (i16 (UniformSextInreg<i8> i16:$src)),
2189  (S_BFE_I32 $src, (i32 0x80000)) // 0 | 8 << 16
2190>;
2191
2192def : GCNPat <
2193  (i64 (UniformSextInreg<i8> i64:$src)),
2194  (S_BFE_I64 i64:$src, (i32 0x80000)) // 0 | 8 << 16
2195>;
2196
2197def : GCNPat <
2198  (i64 (UniformSextInreg<i16> i64:$src)),
2199  (S_BFE_I64 i64:$src, (i32 0x100000)) // 0 | 16 << 16
2200>;
2201
2202def : GCNPat <
2203  (i64 (UniformSextInreg<i32> i64:$src)),
2204  (S_BFE_I64 i64:$src, (i32 0x200000)) // 0 | 32 << 16
2205>;
2206
2207def : GCNPat<
2208  (i32 (DivergentSextInreg<i1> i32:$src)),
2209  (V_BFE_I32_e64 i32:$src, (i32 0), (i32 1))>;
2210
2211def : GCNPat <
2212  (i16 (DivergentSextInreg<i1> i16:$src)),
2213  (V_BFE_I32_e64 $src, (i32 0), (i32 1))
2214>;
2215
2216def : GCNPat <
2217  (i16 (DivergentSextInreg<i8> i16:$src)),
2218  (V_BFE_I32_e64 $src, (i32 0), (i32 8))
2219>;
2220
2221def : GCNPat<
2222  (i32 (DivergentSextInreg<i8> i32:$src)),
2223  (V_BFE_I32_e64 i32:$src, (i32 0), (i32 8))
2224>;
2225
2226def : GCNPat <
2227  (i32 (DivergentSextInreg<i16> i32:$src)),
2228  (V_BFE_I32_e64 $src, (i32 0), (i32 16))
2229>;
2230
2231def : GCNPat <
2232  (i64 (DivergentSextInreg<i1> i64:$src)),
2233  (REG_SEQUENCE VReg_64,
2234    (V_BFE_I32_e64 (i32 (EXTRACT_SUBREG i64:$src, sub0)), (i32 0), (i32 1)), sub0,
2235    (V_ASHRREV_I32_e32  (i32 31), (V_BFE_I32_e64 (i32 (EXTRACT_SUBREG i64:$src, sub0)), (i32 0), (i32 1))), sub1)
2236>;
2237
2238def : GCNPat <
2239  (i64 (DivergentSextInreg<i8> i64:$src)),
2240  (REG_SEQUENCE VReg_64,
2241    (V_BFE_I32_e64 (i32 (EXTRACT_SUBREG i64:$src, sub0)), (i32 0), (i32 8)), sub0,
2242    (V_ASHRREV_I32_e32 (i32 31), (V_BFE_I32_e64 (i32 (EXTRACT_SUBREG i64:$src, sub0)), (i32 0), (i32 8))), sub1)
2243>;
2244
2245def : GCNPat <
2246  (i64 (DivergentSextInreg<i16> i64:$src)),
2247  (REG_SEQUENCE VReg_64,
2248    (V_BFE_I32_e64 (i32 (EXTRACT_SUBREG i64:$src, sub0)), (i32 0), (i32 16)), sub0,
2249    (V_ASHRREV_I32_e32 (i32 31), (V_BFE_I32_e64 (i32 (EXTRACT_SUBREG i64:$src, sub0)), (i32 0), (i32 16))), sub1)
2250>;
2251
2252def : GCNPat <
2253  (i64 (DivergentSextInreg<i32> i64:$src)),
2254  (REG_SEQUENCE VReg_64,
2255    (i32 (EXTRACT_SUBREG i64:$src, sub0)), sub0,
2256    (V_ASHRREV_I32_e32 (i32 31), (i32 (EXTRACT_SUBREG i64:$src, sub0))), sub1)
2257>;
2258
2259def : GCNPat <
2260  (i64 (zext i32:$src)),
2261  (REG_SEQUENCE SReg_64, $src, sub0, (S_MOV_B32 (i32 0)), sub1)
2262>;
2263
2264def : GCNPat <
2265  (i64 (anyext i32:$src)),
2266  (REG_SEQUENCE SReg_64, $src, sub0, (i32 (IMPLICIT_DEF)), sub1)
2267>;
2268
2269class ZExt_i64_i1_Pat <SDNode ext> : GCNPat <
2270  (i64 (ext i1:$src)),
2271    (REG_SEQUENCE VReg_64,
2272      (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
2273                         /*src1mod*/(i32 0), /*src1*/(i32 1), $src),
2274      sub0, (S_MOV_B32 (i32 0)), sub1)
2275>;
2276
2277
2278def : ZExt_i64_i1_Pat<zext>;
2279def : ZExt_i64_i1_Pat<anyext>;
2280
2281// FIXME: We need to use COPY_TO_REGCLASS to work-around the fact that
2282// REG_SEQUENCE patterns don't support instructions with multiple outputs.
2283def : GCNPat <
2284  (i64 (UniformUnaryFrag<sext> i32:$src)),
2285    (REG_SEQUENCE SReg_64, $src, sub0,
2286    (i32 (COPY_TO_REGCLASS (S_ASHR_I32 $src, (i32 31)), SReg_32_XM0)), sub1)
2287>;
2288
2289def : GCNPat <
2290  (i64 (DivergentUnaryFrag<sext> i32:$src)),
2291    (REG_SEQUENCE VReg_64, $src, sub0,
2292    (i32 (COPY_TO_REGCLASS (V_ASHRREV_I32_e64 (i32 31), $src), VGPR_32)), sub1)
2293>;
2294
2295def : GCNPat <
2296  (i64 (sext i1:$src)),
2297  (REG_SEQUENCE VReg_64,
2298    (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
2299                       /*src1mod*/(i32 0), /*src1*/(i32 -1), $src), sub0,
2300    (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
2301                       /*src1mod*/(i32 0), /*src1*/(i32 -1), $src), sub1)
2302>;
2303
2304class FPToI1Pat<Instruction Inst, int KOne, ValueType kone_type, ValueType vt, SDPatternOperator fp_to_int> : GCNPat <
2305  (i1 (fp_to_int (vt (VOP3Mods vt:$src0, i32:$src0_modifiers)))),
2306  (i1 (Inst 0, (kone_type KOne), $src0_modifiers, $src0, DSTCLAMP.NONE))
2307>;
2308
2309def : FPToI1Pat<V_CMP_EQ_F16_e64, CONST.FP16_ONE, i16, f16, fp_to_uint>;
2310def : FPToI1Pat<V_CMP_EQ_F16_e64, CONST.FP16_NEG_ONE, i16, f16, fp_to_sint>;
2311def : FPToI1Pat<V_CMP_EQ_F32_e64, CONST.FP32_ONE, i32, f32, fp_to_uint>;
2312def : FPToI1Pat<V_CMP_EQ_F32_e64, CONST.FP32_NEG_ONE, i32, f32, fp_to_sint>;
2313def : FPToI1Pat<V_CMP_EQ_F64_e64, CONST.FP64_ONE, i64, f64, fp_to_uint>;
2314def : FPToI1Pat<V_CMP_EQ_F64_e64, CONST.FP64_NEG_ONE, i64, f64, fp_to_sint>;
2315
2316// If we need to perform a logical operation on i1 values, we need to
2317// use vector comparisons since there is only one SCC register. Vector
2318// comparisons may write to a pair of SGPRs or a single SGPR, so treat
2319// these as 32 or 64-bit comparisons. When legalizing SGPR copies,
2320// instructions resulting in the copies from SCC to these instructions
2321// will be moved to the VALU.
2322
2323let WaveSizePredicate = isWave64 in {
2324def : GCNPat <
2325  (i1 (and i1:$src0, i1:$src1)),
2326  (S_AND_B64 $src0, $src1)
2327>;
2328
2329def : GCNPat <
2330  (i1 (or i1:$src0, i1:$src1)),
2331  (S_OR_B64 $src0, $src1)
2332>;
2333
2334def : GCNPat <
2335  (i1 (xor i1:$src0, i1:$src1)),
2336  (S_XOR_B64 $src0, $src1)
2337>;
2338
2339def : GCNPat <
2340  (i1 (add i1:$src0, i1:$src1)),
2341  (S_XOR_B64 $src0, $src1)
2342>;
2343
2344def : GCNPat <
2345  (i1 (sub i1:$src0, i1:$src1)),
2346  (S_XOR_B64 $src0, $src1)
2347>;
2348
2349let AddedComplexity = 1 in {
2350def : GCNPat <
2351  (i1 (add i1:$src0, (i1 -1))),
2352  (S_NOT_B64 $src0)
2353>;
2354
2355def : GCNPat <
2356  (i1 (sub i1:$src0, (i1 -1))),
2357  (S_NOT_B64 $src0)
2358>;
2359}
2360} // end isWave64
2361
2362let WaveSizePredicate = isWave32 in {
2363def : GCNPat <
2364  (i1 (and i1:$src0, i1:$src1)),
2365  (S_AND_B32 $src0, $src1)
2366>;
2367
2368def : GCNPat <
2369  (i1 (or i1:$src0, i1:$src1)),
2370  (S_OR_B32 $src0, $src1)
2371>;
2372
2373def : GCNPat <
2374  (i1 (xor i1:$src0, i1:$src1)),
2375  (S_XOR_B32 $src0, $src1)
2376>;
2377
2378def : GCNPat <
2379  (i1 (add i1:$src0, i1:$src1)),
2380  (S_XOR_B32 $src0, $src1)
2381>;
2382
2383def : GCNPat <
2384  (i1 (sub i1:$src0, i1:$src1)),
2385  (S_XOR_B32 $src0, $src1)
2386>;
2387
2388let AddedComplexity = 1 in {
2389def : GCNPat <
2390  (i1 (add i1:$src0, (i1 -1))),
2391  (S_NOT_B32 $src0)
2392>;
2393
2394def : GCNPat <
2395  (i1 (sub i1:$src0, (i1 -1))),
2396  (S_NOT_B32 $src0)
2397>;
2398}
2399} // end isWave32
2400
2401def : GCNPat <
2402  (i32 (DivergentBinFrag<xor> i32:$src0, (i32 -1))),
2403  (V_NOT_B32_e32 $src0)
2404>;
2405
2406def : GCNPat <
2407  (i64 (DivergentBinFrag<xor> i64:$src0, (i64 -1))),
2408    (REG_SEQUENCE VReg_64,
2409      (V_NOT_B32_e32 (i32 (EXTRACT_SUBREG i64:$src0, sub0))), sub0,
2410      (V_NOT_B32_e32 (i32 (EXTRACT_SUBREG i64:$src0, sub1))), sub1
2411    )
2412>;
2413
2414let SubtargetPredicate = NotHasTrue16BitInsts in
2415def : GCNPat <
2416  (f16 (sint_to_fp i1:$src)),
2417  (V_CVT_F16_F32_e32 (
2418      V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
2419                        /*src1mod*/(i32 0), /*src1*/(i32 CONST.FP32_NEG_ONE),
2420                        SSrc_i1:$src))
2421>;
2422
2423let SubtargetPredicate = HasTrue16BitInsts in
2424def : GCNPat <
2425  (f16 (sint_to_fp i1:$src)),
2426  (V_CVT_F16_F32_t16_e32 (
2427      V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
2428                        /*src1mod*/(i32 0), /*src1*/(i32 CONST.FP32_NEG_ONE),
2429                        SSrc_i1:$src))
2430>;
2431
2432let SubtargetPredicate = NotHasTrue16BitInsts in
2433def : GCNPat <
2434  (f16 (uint_to_fp i1:$src)),
2435  (V_CVT_F16_F32_e32 (
2436      V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
2437                        /*src1mod*/(i32 0), /*src1*/(i32 CONST.FP32_ONE),
2438                        SSrc_i1:$src))
2439>;
2440let SubtargetPredicate = HasTrue16BitInsts in
2441def : GCNPat <
2442  (f16 (uint_to_fp i1:$src)),
2443  (V_CVT_F16_F32_t16_e32 (
2444      V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
2445                        /*src1mod*/(i32 0), /*src1*/(i32 CONST.FP32_ONE),
2446                        SSrc_i1:$src))
2447>;
2448
2449def : GCNPat <
2450  (f32 (sint_to_fp i1:$src)),
2451  (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
2452                        /*src1mod*/(i32 0), /*src1*/(i32 CONST.FP32_NEG_ONE),
2453                        SSrc_i1:$src)
2454>;
2455
2456def : GCNPat <
2457  (f32 (uint_to_fp i1:$src)),
2458  (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
2459                        /*src1mod*/(i32 0), /*src1*/(i32 CONST.FP32_ONE),
2460                        SSrc_i1:$src)
2461>;
2462
2463def : GCNPat <
2464  (f64 (sint_to_fp i1:$src)),
2465  (V_CVT_F64_I32_e32 (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
2466                                        /*src1mod*/(i32 0), /*src1*/(i32 -1),
2467                                        SSrc_i1:$src))
2468>;
2469
2470def : GCNPat <
2471  (f64 (uint_to_fp i1:$src)),
2472  (V_CVT_F64_U32_e32 (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
2473                                        /*src1mod*/(i32 0), /*src1*/(i32 1),
2474                                        SSrc_i1:$src))
2475>;
2476
2477//===----------------------------------------------------------------------===//
2478// Miscellaneous Patterns
2479//===----------------------------------------------------------------------===//
2480
2481// Eliminate a zero extension from an fp16 operation if it already
2482// zeros the high bits of the 32-bit register.
2483//
2484// This is complicated on gfx9+. Some instructions maintain the legacy
2485// zeroing behavior, but others preserve the high bits. Some have a
2486// control bit to change the behavior. We can't simply say with
2487// certainty what the source behavior is without more context on how
2488// the src is lowered. e.g. fptrunc + fma may be lowered to a
2489// v_fma_mix* instruction which does not zero, or may not.
2490def : GCNPat<
2491  (i32 (DivergentUnaryFrag<abs> i32:$src)),
2492  (V_MAX_I32_e64 (V_SUB_CO_U32_e32 (i32 0), $src), $src)>;
2493
2494let AddedComplexity = 1 in {
2495def : GCNPat<
2496  (i32 (DivergentUnaryFrag<abs> i32:$src)),
2497  (V_MAX_I32_e64 (V_SUB_U32_e32 (i32 0), $src), $src)>{
2498  let SubtargetPredicate = HasAddNoCarryInsts;
2499}
2500}  // AddedComplexity = 1
2501
2502def : GCNPat<
2503  (i32 (DivergentUnaryFrag<zext> i16:$src)),
2504  (V_AND_B32_e64 (S_MOV_B32 (i32 0xffff)), $src)
2505>;
2506
2507def : GCNPat<
2508  (i64 (DivergentUnaryFrag<zext> i16:$src)),
2509  (REG_SEQUENCE VReg_64,
2510    (V_AND_B32_e64 (S_MOV_B32 (i32 0xffff)), $src), sub0,
2511    (S_MOV_B32 (i32 0)), sub1)
2512>;
2513
2514def : GCNPat<
2515  (i32 (zext (i16 (bitconvert fp16_zeros_high_16bits:$src)))),
2516  (COPY VSrc_b16:$src)>;
2517
2518def : GCNPat <
2519  (i32 (trunc i64:$a)),
2520  (EXTRACT_SUBREG $a, sub0)
2521>;
2522
2523def : GCNPat <
2524  (i1 (UniformUnaryFrag<trunc> i32:$a)),
2525  (S_CMP_EQ_U32 (S_AND_B32 (i32 1), $a), (i32 1))
2526>;
2527
2528def : GCNPat <
2529  (i1 (UniformUnaryFrag<trunc> i16:$a)),
2530  (S_CMP_EQ_U32 (S_AND_B32 (i32 1), $a), (i32 1))
2531>;
2532
2533def : GCNPat <
2534  (i1 (UniformUnaryFrag<trunc> i64:$a)),
2535  (S_CMP_EQ_U32 (S_AND_B32 (i32 1),
2536                    (i32 (EXTRACT_SUBREG $a, sub0))), (i32 1))
2537>;
2538
2539def : GCNPat <
2540  (i1 (DivergentUnaryFrag<trunc> i32:$a)),
2541  (V_CMP_EQ_U32_e64 (V_AND_B32_e64 (i32 1), $a), (i32 1))
2542>;
2543
2544def : GCNPat <
2545  (i1 (DivergentUnaryFrag<trunc> i16:$a)),
2546  (V_CMP_EQ_U32_e64 (V_AND_B32_e64 (i32 1), $a), (i32 1))
2547>;
2548
2549def IMMBitSelConst : SDNodeXForm<imm, [{
2550  return CurDAG->getTargetConstant(1ULL << N->getZExtValue(), SDLoc(N),
2551                                   MVT::i32);
2552}]>;
2553
2554// Matching separate SRL and TRUNC instructions
2555// with dependent operands (SRL dest is source of TRUNC)
2556// generates three instructions. However, by using bit shifts,
2557// the V_LSHRREV_B32_e64 result can be directly used in the
2558// operand of the V_AND_B32_e64 instruction:
2559// (trunc i32 (srl i32 $a, i32 $b)) ->
2560// v_and_b32_e64 $a, (1 << $b), $a
2561// v_cmp_ne_u32_e64 $a, 0, $a
2562
2563// Handle the VALU case.
2564def : GCNPat <
2565  (i1 (DivergentUnaryFrag<trunc> (i32 (srl i32:$a, (i32 imm:$b))))),
2566  (V_CMP_NE_U32_e64 (V_AND_B32_e64 (i32 (IMMBitSelConst $b)), $a),
2567    (i32 0))
2568>;
2569
2570// Handle the scalar case.
2571def : GCNPat <
2572  (i1 (UniformUnaryFrag<trunc> (i32 (srl i32:$a, (i32 imm:$b))))),
2573  (S_CMP_LG_U32 (S_AND_B32 (i32 (IMMBitSelConst $b)), $a),
2574    (i32 0))
2575>;
2576
2577def : GCNPat <
2578  (i1 (DivergentUnaryFrag<trunc> i64:$a)),
2579  (V_CMP_EQ_U32_e64 (V_AND_B32_e64 (i32 1),
2580                    (i32 (EXTRACT_SUBREG $a, sub0))), (i32 1))
2581>;
2582
2583def : GCNPat <
2584  (i32 (bswap i32:$a)),
2585  (V_BFI_B32_e64 (S_MOV_B32 (i32 0x00ff00ff)),
2586             (V_ALIGNBIT_B32_e64 VSrc_b32:$a, VSrc_b32:$a, (i32 24)),
2587             (V_ALIGNBIT_B32_e64 VSrc_b32:$a, VSrc_b32:$a, (i32 8)))
2588>;
2589
2590// FIXME: This should have been narrowed to i32 during legalization.
2591// This pattern should also be skipped for GlobalISel
2592def : GCNPat <
2593  (i64 (bswap i64:$a)),
2594  (REG_SEQUENCE VReg_64,
2595  (V_BFI_B32_e64 (S_MOV_B32 (i32 0x00ff00ff)),
2596             (V_ALIGNBIT_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$a, sub1)),
2597                             (i32 (EXTRACT_SUBREG VReg_64:$a, sub1)),
2598                             (i32 24)),
2599             (V_ALIGNBIT_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$a, sub1)),
2600                             (i32 (EXTRACT_SUBREG VReg_64:$a, sub1)),
2601                             (i32 8))),
2602  sub0,
2603  (V_BFI_B32_e64 (S_MOV_B32 (i32 0x00ff00ff)),
2604             (V_ALIGNBIT_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$a, sub0)),
2605                             (i32 (EXTRACT_SUBREG VReg_64:$a, sub0)),
2606                             (i32 24)),
2607             (V_ALIGNBIT_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$a, sub0)),
2608                             (i32 (EXTRACT_SUBREG VReg_64:$a, sub0)),
2609                             (i32 8))),
2610  sub1)
2611>;
2612
2613// FIXME: The AddedComplexity should not be needed, but in GlobalISel
2614// the BFI pattern ends up taking precedence without it.
2615let SubtargetPredicate = isGFX8Plus, AddedComplexity = 1 in {
2616// Magic number: 3 | (2 << 8) | (1 << 16) | (0 << 24)
2617//
2618// My reading of the manual suggests we should be using src0 for the
2619// register value, but this is what seems to work.
2620def : GCNPat <
2621  (i32 (bswap i32:$a)),
2622  (V_PERM_B32_e64 (i32 0), VSrc_b32:$a, (S_MOV_B32 (i32 0x00010203)))
2623>;
2624
2625// FIXME: This should have been narrowed to i32 during legalization.
2626// This pattern should also be skipped for GlobalISel
2627def : GCNPat <
2628  (i64 (bswap i64:$a)),
2629  (REG_SEQUENCE VReg_64,
2630  (V_PERM_B32_e64  (i32 0), (EXTRACT_SUBREG VReg_64:$a, sub1),
2631              (S_MOV_B32 (i32 0x00010203))),
2632  sub0,
2633  (V_PERM_B32_e64  (i32 0), (EXTRACT_SUBREG VReg_64:$a, sub0),
2634              (S_MOV_B32 (i32 0x00010203))),
2635  sub1)
2636>;
2637
2638// Magic number: 1 | (0 << 8) | (12 << 16) | (12 << 24)
2639// The 12s emit 0s.
2640def : GCNPat <
2641  (i16 (bswap i16:$a)),
2642  (V_PERM_B32_e64  (i32 0), VSrc_b32:$a, (S_MOV_B32 (i32 0x0c0c0001)))
2643>;
2644
2645def : GCNPat <
2646  (i32 (zext (bswap i16:$a))),
2647  (V_PERM_B32_e64  (i32 0), VSrc_b32:$a, (S_MOV_B32 (i32 0x0c0c0001)))
2648>;
2649
2650// Magic number: 1 | (0 << 8) | (3 << 16) | (2 << 24)
2651def : GCNPat <
2652  (v2i16 (bswap v2i16:$a)),
2653  (V_PERM_B32_e64  (i32 0), VSrc_b32:$a, (S_MOV_B32 (i32 0x02030001)))
2654>;
2655
2656}
2657
2658def : GCNPat<
2659  (i64 (DivergentUnaryFrag<bitreverse> i64:$a)),
2660  (REG_SEQUENCE VReg_64,
2661   (V_BFREV_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$a, sub1))), sub0,
2662   (V_BFREV_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$a, sub0))), sub1)>;
2663
2664// Prefer selecting to max when legal, but using mul is always valid.
2665let AddedComplexity = -5 in {
2666
2667let OtherPredicates = [NotHasTrue16BitInsts] in {
2668def : GCNPat<
2669  (fcanonicalize (f16 (VOP3Mods f16:$src, i32:$src_mods))),
2670  (V_MUL_F16_e64 0, (i32 CONST.FP16_ONE), $src_mods, $src)
2671>;
2672
2673def : GCNPat<
2674  (fcanonicalize (f16 (fneg (VOP3Mods f16:$src, i32:$src_mods)))),
2675  (V_MUL_F16_e64 0, (i32 CONST.FP16_NEG_ONE), $src_mods, $src)
2676>;
2677} // End OtherPredicates
2678
2679let OtherPredicates = [HasTrue16BitInsts] in {
2680def : GCNPat<
2681  (fcanonicalize (f16 (VOP3Mods f16:$src, i32:$src_mods))),
2682  (V_MUL_F16_t16_e64 0, (i32 CONST.FP16_ONE), $src_mods, $src)
2683>;
2684
2685def : GCNPat<
2686  (fcanonicalize (f16 (fneg (VOP3Mods f16:$src, i32:$src_mods)))),
2687  (V_MUL_F16_t16_e64 0, (i32 CONST.FP16_NEG_ONE), $src_mods, $src)
2688>;
2689} // End OtherPredicates
2690
2691def : GCNPat<
2692  (fcanonicalize (v2f16 (VOP3PMods v2f16:$src, i32:$src_mods))),
2693  (V_PK_MUL_F16 0, (i32 CONST.FP16_ONE), $src_mods, $src, DSTCLAMP.NONE)
2694>;
2695
2696def : GCNPat<
2697  (fcanonicalize (f32 (VOP3Mods f32:$src, i32:$src_mods))),
2698  (V_MUL_F32_e64 0, (i32 CONST.FP32_ONE), $src_mods, $src)
2699>;
2700
2701def : GCNPat<
2702  (fcanonicalize (f32 (fneg (VOP3Mods f32:$src, i32:$src_mods)))),
2703  (V_MUL_F32_e64 0, (i32 CONST.FP32_NEG_ONE), $src_mods, $src)
2704>;
2705
2706// TODO: Handle fneg like other types.
2707def : GCNPat<
2708  (fcanonicalize (f64 (VOP3Mods f64:$src, i32:$src_mods))),
2709  (V_MUL_F64_e64  0, CONST.FP64_ONE, $src_mods, $src)
2710>;
2711} // End AddedComplexity = -5
2712
2713multiclass SelectCanonicalizeAsMax<
2714  list<Predicate> f32_preds = [],
2715  list<Predicate> f64_preds = [],
2716  list<Predicate> f16_preds = []> {
2717  def : GCNPat<
2718    (fcanonicalize (f32 (VOP3Mods f32:$src, i32:$src_mods))),
2719    (V_MAX_F32_e64 $src_mods, $src, $src_mods, $src)> {
2720    let OtherPredicates = f32_preds;
2721  }
2722
2723  def : GCNPat<
2724    (fcanonicalize (f64 (VOP3Mods f64:$src, i32:$src_mods))),
2725    (V_MAX_F64_e64  $src_mods, $src, $src_mods, $src)> {
2726    let OtherPredicates = f64_preds;
2727  }
2728
2729  def : GCNPat<
2730    (fcanonicalize (f16 (VOP3Mods f16:$src, i32:$src_mods))),
2731    (V_MAX_F16_e64 $src_mods, $src, $src_mods, $src, 0, 0)> {
2732    let OtherPredicates = !listconcat(f16_preds, [Has16BitInsts, NotHasTrue16BitInsts]);
2733  }
2734
2735  def : GCNPat<
2736    (fcanonicalize (f16 (VOP3Mods f16:$src, i32:$src_mods))),
2737    (V_MAX_F16_t16_e64 $src_mods, $src, $src_mods, $src, 0, 0)> {
2738    let OtherPredicates = !listconcat(f16_preds, [Has16BitInsts, HasTrue16BitInsts]);
2739  }
2740
2741  def : GCNPat<
2742    (fcanonicalize (v2f16 (VOP3PMods v2f16:$src, i32:$src_mods))),
2743    (V_PK_MAX_F16 $src_mods, $src, $src_mods, $src, DSTCLAMP.NONE)> {
2744    // FIXME: Should have VOP3P subtarget predicate
2745    let OtherPredicates = f16_preds;
2746  }
2747}
2748
2749// On pre-gfx9 targets, v_max_*/v_min_* did not respect the denormal
2750// mode, and would never flush. For f64, it's faster to do implement
2751// this with a max. For f16/f32 it's a wash, but prefer max when
2752// valid.
2753//
2754// FIXME: Lowering f32/f16 with max is worse since we can use a
2755// smaller encoding if the input is fneg'd. It also adds an extra
2756// register use.
2757let SubtargetPredicate = HasMinMaxDenormModes in {
2758  defm : SelectCanonicalizeAsMax<[], [], []>;
2759} // End SubtargetPredicate = HasMinMaxDenormModes
2760
2761let SubtargetPredicate = NotHasMinMaxDenormModes in {
2762  // Use the max lowering if we don't need to flush.
2763
2764  // FIXME: We don't do use this for f32 as a workaround for the
2765  // library being compiled with the default ieee mode, but
2766  // potentially being called from flushing kernels. Really we should
2767  // not be mixing code expecting different default FP modes, but mul
2768  // works in any FP environment.
2769  defm : SelectCanonicalizeAsMax<[FalsePredicate], [FP64Denormals], [FP16Denormals]>;
2770} // End SubtargetPredicate = NotHasMinMaxDenormModes
2771
2772
2773let OtherPredicates = [HasDLInsts] in {
2774// Don't allow source modifiers. If there are any source modifiers then it's
2775// better to select fma instead of fmac.
2776def : GCNPat <
2777  (fma (f32 (VOP3NoMods f32:$src0)),
2778       (f32 (VOP3NoMods f32:$src1)),
2779       (f32 (VOP3NoMods f32:$src2))),
2780  (V_FMAC_F32_e64 SRCMODS.NONE, $src0, SRCMODS.NONE, $src1,
2781                  SRCMODS.NONE, $src2)
2782>;
2783} // End OtherPredicates = [HasDLInsts]
2784
2785let SubtargetPredicate = isGFX10Plus in {
2786// Don't allow source modifiers. If there are any source modifiers then it's
2787// better to select fma instead of fmac.
2788let OtherPredicates = [NotHasTrue16BitInsts] in
2789def : GCNPat <
2790  (fma (f16 (VOP3NoMods f32:$src0)),
2791       (f16 (VOP3NoMods f32:$src1)),
2792       (f16 (VOP3NoMods f32:$src2))),
2793  (V_FMAC_F16_e64 SRCMODS.NONE, $src0, SRCMODS.NONE, $src1,
2794                  SRCMODS.NONE, $src2)
2795>;
2796let OtherPredicates = [HasTrue16BitInsts] in
2797def : GCNPat <
2798  (fma (f16 (VOP3NoMods f32:$src0)),
2799       (f16 (VOP3NoMods f32:$src1)),
2800       (f16 (VOP3NoMods f32:$src2))),
2801  (V_FMAC_F16_t16_e64 SRCMODS.NONE, $src0, SRCMODS.NONE, $src1,
2802                  SRCMODS.NONE, $src2)
2803>;
2804}
2805
2806let OtherPredicates = [HasFmacF64Inst] in
2807// Don't allow source modifiers. If there are any source modifiers then it's
2808// better to select fma instead of fmac.
2809def : GCNPat <
2810  (fma (f64 (VOP3NoMods f64:$src0)),
2811       (f64 (VOP3NoMods f64:$src1)),
2812       (f64 (VOP3NoMods f64:$src2))),
2813  (V_FMAC_F64_e64 SRCMODS.NONE, $src0, SRCMODS.NONE, $src1,
2814                  SRCMODS.NONE, $src2)
2815>;
2816
2817// COPY is workaround tablegen bug from multiple outputs
2818// from S_LSHL_B32's multiple outputs from implicit scc def.
2819let AddedComplexity = 1 in {
2820def : GCNPat <
2821  (v2i16 (UniformBinFrag<build_vector> (i16 0), (i16 SReg_32:$src1))),
2822  (S_LSHL_B32 SReg_32:$src1, (i16 16))
2823>;
2824
2825def : GCNPat <
2826  (v2i16 (DivergentBinFrag<build_vector> (i16 0), (i16 VGPR_32:$src1))),
2827  (v2i16 (V_LSHLREV_B32_e64 (i16 16), VGPR_32:$src1))
2828>;
2829
2830
2831def : GCNPat <
2832  (v2i16 (UniformBinFrag<build_vector> (i16 SReg_32:$src1), (i16 0))),
2833  (S_AND_B32 (S_MOV_B32 (i32 0xffff)), SReg_32:$src1)
2834>;
2835
2836def : GCNPat <
2837  (v2i16 (DivergentBinFrag<build_vector> (i16 VGPR_32:$src1), (i16 0))),
2838  (v2i16 (V_AND_B32_e64 (i32 (V_MOV_B32_e32 (i32 0xffff))), VGPR_32:$src1))
2839>;
2840
2841def : GCNPat <
2842  (v2f16 (UniformBinFrag<build_vector> (f16 SReg_32:$src1), (f16 FP_ZERO))),
2843  (S_AND_B32 (S_MOV_B32 (i32 0xffff)), SReg_32:$src1)
2844>;
2845
2846def : GCNPat <
2847  (v2f16 (DivergentBinFrag<build_vector> (f16 VGPR_32:$src1), (f16 FP_ZERO))),
2848  (v2f16 (V_AND_B32_e64 (i32 (V_MOV_B32_e32 (i32 0xffff))), VGPR_32:$src1))
2849>;
2850
2851def : GCNPat <
2852  (v2i16 (UniformBinFrag<build_vector> (i16 SReg_32:$src0), (i16 undef))),
2853  (COPY_TO_REGCLASS SReg_32:$src0, SReg_32)
2854>;
2855
2856def : GCNPat <
2857  (v2i16 (DivergentBinFrag<build_vector> (i16 VGPR_32:$src0), (i16 undef))),
2858  (COPY_TO_REGCLASS VGPR_32:$src0, VGPR_32)
2859>;
2860
2861def : GCNPat <
2862  (v2f16 (build_vector f16:$src0, (f16 undef))),
2863  (COPY $src0)
2864>;
2865
2866def : GCNPat <
2867  (v2i16 (UniformBinFrag<build_vector> (i16 undef), (i16 SReg_32:$src1))),
2868  (S_LSHL_B32 SReg_32:$src1, (i32 16))
2869>;
2870
2871def : GCNPat <
2872  (v2i16 (DivergentBinFrag<build_vector> (i16 undef), (i16 VGPR_32:$src1))),
2873  (v2i16 (V_LSHLREV_B32_e64 (i32 16), VGPR_32:$src1))
2874>;
2875
2876
2877def : GCNPat <
2878  (v2f16 (UniformBinFrag<build_vector> (f16 undef), (f16 SReg_32:$src1))),
2879  (S_LSHL_B32 SReg_32:$src1, (i32 16))
2880>;
2881
2882def : GCNPat <
2883  (v2f16 (DivergentBinFrag<build_vector> (f16 undef), (f16 VGPR_32:$src1))),
2884  (v2f16 (V_LSHLREV_B32_e64 (i32 16), VGPR_32:$src1))
2885>;
2886}
2887
2888let SubtargetPredicate = HasVOP3PInsts in {
2889def : GCNPat <
2890  (v2i16 (UniformBinFrag<build_vector> (i16 SReg_32:$src0), (i16 SReg_32:$src1))),
2891  (S_PACK_LL_B32_B16 SReg_32:$src0, SReg_32:$src1)
2892>;
2893
2894def : GCNPat <
2895  (v2i16 (DivergentBinFrag<build_vector> (i16 VGPR_32:$src0), (i16 VGPR_32:$src1))),
2896  (v2i16 (V_LSHL_OR_B32_e64 $src1, (i32 16), (i32 (V_AND_B32_e64 (i32 (V_MOV_B32_e32 (i32 0xffff))), $src0))))
2897>;
2898
2899// With multiple uses of the shift, this will duplicate the shift and
2900// increase register pressure.
2901def : GCNPat <
2902  (v2i16 (UniformBinFrag<build_vector> (i16 SReg_32:$src0), (i16 (trunc (srl_oneuse SReg_32:$src1, (i32 16)))))),
2903  (v2i16 (S_PACK_LH_B32_B16 SReg_32:$src0, SReg_32:$src1))
2904>;
2905
2906def : GCNPat <
2907  (v2i16 (UniformBinFrag<build_vector> (i16 (trunc (srl_oneuse SReg_32:$src0, (i32 16)))),
2908                       (i16 (trunc (srl_oneuse SReg_32:$src1, (i32 16)))))),
2909  (S_PACK_HH_B32_B16 SReg_32:$src0, SReg_32:$src1)
2910>;
2911
2912def : GCNPat <
2913  (v2f16 (UniformBinFrag<build_vector> (f16 SReg_32:$src0), (f16 SReg_32:$src1))),
2914  (S_PACK_LL_B32_B16 SReg_32:$src0, SReg_32:$src1)
2915>;
2916
2917
2918
2919foreach Ty = [i16, f16] in {
2920
2921defvar vecTy = !if(!eq(Ty, i16), v2i16, v2f16);
2922defvar immzeroTy = !if(!eq(Ty, i16), immzero, fpimmzero);
2923
2924// Take the lower 16 bits from each VGPR_32 and concat them
2925def : GCNPat <
2926  (vecTy (DivergentBinFrag<build_vector> (Ty VGPR_32:$a), (Ty VGPR_32:$b))),
2927  (V_PERM_B32_e64 VGPR_32:$b, VGPR_32:$a, (S_MOV_B32 (i32 0x05040100)))
2928>;
2929
2930
2931// Take the lower 16 bits from V[0] and the upper 16 bits from V[1]
2932// Special case, can use V_BFI (0xffff literal likely more reusable than 0x70601000)
2933def : GCNPat <
2934  (vecTy (DivergentBinFrag<build_vector> (Ty (immzeroTy)),
2935    (Ty !if(!eq(Ty, i16),
2936      (Ty (trunc (srl VGPR_32:$b, (i32 16)))),
2937      (Ty (bitconvert (i16 (trunc (srl VGPR_32:$b, (i32 16)))))))))),
2938  (V_AND_B32_e64 (S_MOV_B32 (i32 0xffff0000)), VGPR_32:$b)
2939>;
2940
2941
2942// Take the lower 16 bits from V[0] and the upper 16 bits from V[1]
2943// Special case, can use V_BFI (0xffff literal likely more reusable than 0x70601000)
2944def : GCNPat <
2945  (vecTy (DivergentBinFrag<build_vector> (Ty VGPR_32:$a),
2946    (Ty !if(!eq(Ty, i16),
2947      (Ty (trunc (srl VGPR_32:$b, (i32 16)))),
2948      (Ty (bitconvert (i16 (trunc (srl VGPR_32:$b, (i32 16)))))))))),
2949  (V_BFI_B32_e64 (S_MOV_B32 (i32 0x0000ffff)),  VGPR_32:$a, VGPR_32:$b)
2950>;
2951
2952
2953// Take the upper 16 bits from V[0] and the lower 16 bits from V[1]
2954// Special case, can use V_ALIGNBIT (always uses encoded literal)
2955def : GCNPat <
2956  (vecTy (DivergentBinFrag<build_vector>
2957    (Ty !if(!eq(Ty, i16),
2958      (Ty (trunc (srl VGPR_32:$a, (i32 16)))),
2959      (Ty (bitconvert (i16 (trunc (srl VGPR_32:$a, (i32 16)))))))),
2960    (Ty VGPR_32:$b))),
2961    (V_ALIGNBIT_B32_e64 VGPR_32:$b, VGPR_32:$a, (i32 16))
2962>;
2963
2964// Take the upper 16 bits from each VGPR_32 and concat them
2965def : GCNPat <
2966  (vecTy (DivergentBinFrag<build_vector>
2967    (Ty !if(!eq(Ty, i16),
2968      (Ty (trunc (srl VGPR_32:$a, (i32 16)))),
2969      (Ty (bitconvert (i16 (trunc (srl VGPR_32:$a, (i32 16)))))))),
2970    (Ty !if(!eq(Ty, i16),
2971      (Ty (trunc (srl VGPR_32:$b, (i32 16)))),
2972      (Ty (bitconvert (i16 (trunc (srl VGPR_32:$b, (i32 16)))))))))),
2973  (V_PERM_B32_e64 VGPR_32:$b, VGPR_32:$a, (S_MOV_B32 (i32 0x07060302)))
2974>;
2975
2976
2977} // end foreach Ty
2978
2979
2980let AddedComplexity = 5 in {
2981def : GCNPat <
2982  (v2f16 (is_canonicalized<build_vector> (f16 (VOP3Mods (f16 VGPR_32:$src0), i32:$src0_mods)),
2983                                         (f16 (VOP3Mods (f16 VGPR_32:$src1), i32:$src1_mods)))),
2984  (V_PACK_B32_F16_e64 $src0_mods, VGPR_32:$src0, $src1_mods, VGPR_32:$src1)
2985>;
2986}
2987} // End SubtargetPredicate = HasVOP3PInsts
2988
2989// With multiple uses of the shift, this will duplicate the shift and
2990// increase register pressure.
2991let SubtargetPredicate = isGFX11Plus in
2992def : GCNPat <
2993  (v2i16 (build_vector (i16 (trunc (srl_oneuse SReg_32:$src0, (i32 16)))), (i16 SReg_32:$src1))),
2994  (v2i16 (S_PACK_HL_B32_B16 SReg_32:$src0, SReg_32:$src1))
2995>;
2996
2997
2998def : GCNPat <
2999  (v2f16 (scalar_to_vector f16:$src0)),
3000  (COPY $src0)
3001>;
3002
3003def : GCNPat <
3004  (v2i16 (scalar_to_vector i16:$src0)),
3005  (COPY $src0)
3006>;
3007
3008def : GCNPat <
3009  (v4i16 (scalar_to_vector i16:$src0)),
3010  (INSERT_SUBREG (IMPLICIT_DEF), $src0, sub0)
3011>;
3012
3013def : GCNPat <
3014  (v4f16 (scalar_to_vector f16:$src0)),
3015  (INSERT_SUBREG (IMPLICIT_DEF), $src0, sub0)
3016>;
3017
3018def : GCNPat <
3019  (i64 (int_amdgcn_mov_dpp i64:$src, timm:$dpp_ctrl, timm:$row_mask,
3020                           timm:$bank_mask, timm:$bound_ctrl)),
3021  (V_MOV_B64_DPP_PSEUDO VReg_64_Align2:$src, VReg_64_Align2:$src,
3022                        (as_i32timm $dpp_ctrl), (as_i32timm $row_mask),
3023                        (as_i32timm $bank_mask),
3024                        (as_i1timm $bound_ctrl))
3025>;
3026
3027def : GCNPat <
3028  (i64 (int_amdgcn_update_dpp i64:$old, i64:$src, timm:$dpp_ctrl, timm:$row_mask,
3029                              timm:$bank_mask, timm:$bound_ctrl)),
3030  (V_MOV_B64_DPP_PSEUDO VReg_64_Align2:$old, VReg_64_Align2:$src, (as_i32timm $dpp_ctrl),
3031                        (as_i32timm $row_mask), (as_i32timm $bank_mask),
3032                        (as_i1timm $bound_ctrl))
3033>;
3034
3035//===----------------------------------------------------------------------===//
3036// Fract Patterns
3037//===----------------------------------------------------------------------===//
3038
3039let SubtargetPredicate = isGFX6 in {
3040
3041// V_FRACT is buggy on SI, so the F32 version is never used and (x-floor(x)) is
3042// used instead. However, SI doesn't have V_FLOOR_F64, so the most efficient
3043// way to implement it is using V_FRACT_F64.
3044// The workaround for the V_FRACT bug is:
3045//    fract(x) = isnan(x) ? x : min(V_FRACT(x), 0.99999999999999999)
3046
3047// Convert floor(x) to (x - fract(x))
3048
3049// Don't bother handling this for GlobalISel, it's handled during
3050// lowering.
3051//
3052// FIXME: DAG should also custom lower this.
3053def : GCNPat <
3054  (f64 (ffloor (f64 (VOP3Mods f64:$x, i32:$mods)))),
3055  (V_ADD_F64_e64
3056      $mods,
3057      $x,
3058      SRCMODS.NEG,
3059      (V_CNDMASK_B64_PSEUDO
3060         (V_MIN_F64_e64
3061             SRCMODS.NONE,
3062             (V_FRACT_F64_e64 $mods, $x),
3063             SRCMODS.NONE,
3064             (V_MOV_B64_PSEUDO 0x3fefffffffffffff)),
3065         $x,
3066         (V_CMP_CLASS_F64_e64 SRCMODS.NONE, $x, (i32 3 /*NaN*/))))
3067>;
3068
3069} // End SubtargetPredicates = isGFX6
3070
3071//============================================================================//
3072// Miscellaneous Optimization Patterns
3073//============================================================================//
3074
3075// Undo sub x, c -> add x, -c canonicalization since c is more likely
3076// an inline immediate than -c.
3077// TODO: Also do for 64-bit.
3078def : GCNPat<
3079  (UniformBinFrag<add> i32:$src0, (i32 NegSubInlineConst32:$src1)),
3080  (S_SUB_I32 SReg_32:$src0, NegSubInlineConst32:$src1)
3081>;
3082
3083def : GCNPat<
3084  (DivergentBinFrag<add> i32:$src0, (i32 NegSubInlineConst32:$src1)),
3085  (V_SUB_U32_e64 VS_32:$src0, NegSubInlineConst32:$src1)> {
3086  let SubtargetPredicate = HasAddNoCarryInsts;
3087}
3088
3089def : GCNPat<
3090  (DivergentBinFrag<add> i32:$src0, (i32 NegSubInlineConst32:$src1)),
3091  (V_SUB_CO_U32_e64 VS_32:$src0, NegSubInlineConst32:$src1)> {
3092  let SubtargetPredicate = NotHasAddNoCarryInsts;
3093}
3094
3095
3096// Avoid pointlessly materializing a constant in VGPR.
3097// FIXME: Should also do this for readlane, but tablegen crashes on
3098// the ignored src1.
3099def : GCNPat<
3100  (int_amdgcn_readfirstlane (i32 imm:$src)),
3101  (S_MOV_B32 SReg_32:$src)
3102>;
3103
3104multiclass BFMPatterns <ValueType vt, PatFrag SHL, PatFrag ADD, InstSI BFM> {
3105  def : GCNPat <
3106    (vt (SHL (vt (add (vt (shl 1, vt:$a)), -1)), vt:$b)),
3107    (BFM $a, $b)
3108  >;
3109
3110  def : GCNPat <
3111    (vt (ADD (vt (shl 1, vt:$a)), -1)),
3112    (BFM $a, (i32 0))
3113  >;
3114}
3115
3116defm : BFMPatterns <i32, UniformBinFrag<shl>, UniformBinFrag<add>, S_BFM_B32>;
3117// FIXME: defm : BFMPatterns <i64, UniformBinFrag<shl>, UniformBinFrag<add>, S_BFM_B64>;
3118defm : BFMPatterns <i32, DivergentBinFrag<shl>, DivergentBinFrag<add>, V_BFM_B32_e64>;
3119
3120// Bitfield extract patterns
3121
3122def IMMZeroBasedBitfieldMask : ImmLeaf <i32, [{
3123  return isMask_32(Imm);
3124}]>;
3125
3126def IMMPopCount : SDNodeXForm<imm, [{
3127  return CurDAG->getTargetConstant(llvm::popcount(N->getZExtValue()), SDLoc(N),
3128                                   MVT::i32);
3129}]>;
3130
3131def : AMDGPUPat <
3132  (DivergentBinFrag<and> (i32 (srl i32:$src, i32:$rshift)),
3133                         IMMZeroBasedBitfieldMask:$mask),
3134  (V_BFE_U32_e64 $src, $rshift, (i32 (IMMPopCount $mask)))
3135>;
3136
3137// x & ((1 << y) - 1)
3138def : AMDGPUPat <
3139  (DivergentBinFrag<and> i32:$src, (add_oneuse (shl_oneuse 1, i32:$width), -1)),
3140  (V_BFE_U32_e64 $src, (i32 0), $width)
3141>;
3142
3143// x & ~(-1 << y)
3144def : AMDGPUPat <
3145  (DivergentBinFrag<and> i32:$src,
3146                         (xor_oneuse (shl_oneuse -1, i32:$width), -1)),
3147  (V_BFE_U32_e64 $src, (i32 0), $width)
3148>;
3149
3150// x & (-1 >> (bitwidth - y))
3151def : AMDGPUPat <
3152  (DivergentBinFrag<and> i32:$src, (srl_oneuse -1, (sub 32, i32:$width))),
3153  (V_BFE_U32_e64 $src, (i32 0), $width)
3154>;
3155
3156// x << (bitwidth - y) >> (bitwidth - y)
3157def : AMDGPUPat <
3158  (DivergentBinFrag<srl> (shl_oneuse i32:$src, (sub 32, i32:$width)),
3159                         (sub 32, i32:$width)),
3160  (V_BFE_U32_e64 $src, (i32 0), $width)
3161>;
3162
3163def : AMDGPUPat <
3164  (DivergentBinFrag<sra> (shl_oneuse i32:$src, (sub 32, i32:$width)),
3165                         (sub 32, i32:$width)),
3166  (V_BFE_I32_e64 $src, (i32 0), $width)
3167>;
3168
3169// SHA-256 Ma patterns
3170
3171// ((x & z) | (y & (x | z))) -> BFI (XOR x, y), z, y
3172def : AMDGPUPatIgnoreCopies <
3173  (DivergentBinFrag<or> (and i32:$x, i32:$z),
3174                        (and i32:$y, (or i32:$x, i32:$z))),
3175  (V_BFI_B32_e64 (V_XOR_B32_e64 (COPY_TO_REGCLASS VSrc_b32:$x, VGPR_32),
3176                                (COPY_TO_REGCLASS VSrc_b32:$y, VGPR_32)),
3177                (COPY_TO_REGCLASS VSrc_b32:$z, VGPR_32),
3178                (COPY_TO_REGCLASS VSrc_b32:$y, VGPR_32))
3179>;
3180
3181def : AMDGPUPatIgnoreCopies <
3182  (DivergentBinFrag<or> (and i64:$x, i64:$z),
3183                        (and i64:$y, (or i64:$x, i64:$z))),
3184  (REG_SEQUENCE VReg_64,
3185    (V_BFI_B32_e64 (V_XOR_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$x, sub0)),
3186                    (i32 (EXTRACT_SUBREG VReg_64:$y, sub0))),
3187              (i32 (EXTRACT_SUBREG VReg_64:$z, sub0)),
3188              (i32 (EXTRACT_SUBREG VReg_64:$y, sub0))), sub0,
3189    (V_BFI_B32_e64 (V_XOR_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$x, sub1)),
3190                    (i32 (EXTRACT_SUBREG VReg_64:$y, sub1))),
3191              (i32 (EXTRACT_SUBREG VReg_64:$z, sub1)),
3192              (i32 (EXTRACT_SUBREG VReg_64:$y, sub1))), sub1)
3193>;
3194
3195multiclass IntMed3Pat<Instruction med3Inst,
3196                 SDPatternOperator min,
3197                 SDPatternOperator max> {
3198
3199  // This matches 16 permutations of
3200  // min(max(a, b), max(min(a, b), c))
3201  def : AMDGPUPat <
3202  (min (max i32:$src0, i32:$src1),
3203       (max (min i32:$src0, i32:$src1), i32:$src2)),
3204  (med3Inst VSrc_b32:$src0, VSrc_b32:$src1, VSrc_b32:$src2)
3205>;
3206
3207  // This matches 16 permutations of
3208  // max(min(x, y), min(max(x, y), z))
3209  def : AMDGPUPat <
3210  (max (min i32:$src0, i32:$src1),
3211       (min (max i32:$src0, i32:$src1), i32:$src2)),
3212  (med3Inst VSrc_b32:$src0, VSrc_b32:$src1, VSrc_b32:$src2)
3213>;
3214}
3215
3216defm : IntMed3Pat<V_MED3_I32_e64, smin, smax>;
3217defm : IntMed3Pat<V_MED3_U32_e64, umin, umax>;
3218
3219multiclass FPMed3Pat<ValueType vt,
3220                Instruction med3Inst> {
3221  // This matches 16 permutations of max(min(x, y), min(max(x, y), z))
3222  def : GCNPat<
3223    (fmaxnum_like_nnan
3224      (fminnum_like (VOP3Mods vt:$src0, i32:$src0_mods),
3225                    (VOP3Mods vt:$src1, i32:$src1_mods)),
3226      (fminnum_like (fmaxnum_like (VOP3Mods vt:$src0, i32:$src0_mods),
3227                                  (VOP3Mods vt:$src1, i32:$src1_mods)),
3228                    (vt (VOP3Mods vt:$src2, i32:$src2_mods)))),
3229    (med3Inst $src0_mods, $src0, $src1_mods, $src1, $src2_mods, $src2,
3230              DSTCLAMP.NONE, DSTOMOD.NONE)>;
3231
3232
3233  // This matches 16 permutations of min(max(x, y), max(min(x, y), z))
3234  def : GCNPat<
3235    (fminnum_like_nnan
3236      (fmaxnum_like (VOP3Mods vt:$src0, i32:$src0_mods),
3237                    (VOP3Mods vt:$src1, i32:$src1_mods)),
3238      (fmaxnum_like (fminnum_like (VOP3Mods vt:$src0, i32:$src0_mods),
3239                                  (VOP3Mods vt:$src1, i32:$src1_mods)),
3240                    (vt (VOP3Mods vt:$src2, i32:$src2_mods)))),
3241    (med3Inst $src0_mods, $src0, $src1_mods, $src1, $src2_mods, $src2,
3242              DSTCLAMP.NONE, DSTOMOD.NONE)>;
3243}
3244
3245class FP16Med3Pat<ValueType vt,
3246                Instruction med3Inst> : GCNPat<
3247  (fmaxnum_like_nnan (fminnum_like (VOP3Mods vt:$src0, i32:$src0_mods),
3248                                   (VOP3Mods vt:$src1, i32:$src1_mods)),
3249           (fminnum_like (fmaxnum_like (VOP3Mods vt:$src0, i32:$src0_mods),
3250                                       (VOP3Mods vt:$src1, i32:$src1_mods)),
3251                         (vt (VOP3Mods vt:$src2, i32:$src2_mods)))),
3252  (med3Inst $src0_mods, $src0, $src1_mods, $src1, $src2_mods, $src2, DSTCLAMP.NONE)
3253>;
3254
3255multiclass Int16Med3Pat<Instruction med3Inst,
3256                        SDPatternOperator min,
3257                        SDPatternOperator max> {
3258  // This matches 16 permutations of
3259  // max(min(x, y), min(max(x, y), z))
3260  def : GCNPat <
3261  (max (min i16:$src0, i16:$src1),
3262       (min (max i16:$src0, i16:$src1), i16:$src2)),
3263  (med3Inst SRCMODS.NONE, VSrc_b16:$src0, SRCMODS.NONE, VSrc_b16:$src1, SRCMODS.NONE, VSrc_b16:$src2, DSTCLAMP.NONE)
3264>;
3265
3266  // This matches 16 permutations of
3267  // min(max(a, b), max(min(a, b), c))
3268  def : GCNPat <
3269  (min (max i16:$src0, i16:$src1),
3270       (max (min i16:$src0, i16:$src1), i16:$src2)),
3271  (med3Inst SRCMODS.NONE, VSrc_b16:$src0, SRCMODS.NONE, VSrc_b16:$src1, SRCMODS.NONE, VSrc_b16:$src2, DSTCLAMP.NONE)
3272>;
3273}
3274
3275defm : FPMed3Pat<f32, V_MED3_F32_e64>;
3276
3277class
3278IntMinMaxPat<Instruction minmaxInst, SDPatternOperator min_or_max,
3279             SDPatternOperator max_or_min_oneuse> : AMDGPUPat <
3280  (DivergentBinFrag<min_or_max> (max_or_min_oneuse i32:$src0, i32:$src1),
3281                                i32:$src2),
3282  (minmaxInst VSrc_b32:$src0, VSrc_b32:$src1, VSrc_b32:$src2)
3283>;
3284
3285class
3286FPMinMaxPat<Instruction minmaxInst, ValueType vt, SDPatternOperator min_or_max,
3287            SDPatternOperator max_or_min_oneuse> : GCNPat <
3288  (min_or_max (max_or_min_oneuse (VOP3Mods vt:$src0, i32:$src0_mods),
3289                                 (VOP3Mods vt:$src1, i32:$src1_mods)),
3290               (vt (VOP3Mods vt:$src2, i32:$src2_mods))),
3291  (minmaxInst $src0_mods, $src0, $src1_mods, $src1, $src2_mods, $src2,
3292              DSTCLAMP.NONE, DSTOMOD.NONE)
3293>;
3294
3295let OtherPredicates = [isGFX11Plus] in {
3296def : IntMinMaxPat<V_MAXMIN_I32_e64, smin, smax_oneuse>;
3297def : IntMinMaxPat<V_MINMAX_I32_e64, smax, smin_oneuse>;
3298def : IntMinMaxPat<V_MAXMIN_U32_e64, umin, umax_oneuse>;
3299def : IntMinMaxPat<V_MINMAX_U32_e64, umax, umin_oneuse>;
3300def : FPMinMaxPat<V_MINMAX_F32_e64, f32, fmaxnum_like, fminnum_like_oneuse>;
3301def : FPMinMaxPat<V_MAXMIN_F32_e64, f32, fminnum_like, fmaxnum_like_oneuse>;
3302def : FPMinMaxPat<V_MINMAX_F16_e64, f16, fmaxnum_like, fminnum_like_oneuse>;
3303def : FPMinMaxPat<V_MAXMIN_F16_e64, f16, fminnum_like, fmaxnum_like_oneuse>;
3304}
3305
3306let OtherPredicates = [isGFX9Plus] in {
3307def : FP16Med3Pat<f16, V_MED3_F16_e64>;
3308defm : Int16Med3Pat<V_MED3_I16_e64, smin, smax>;
3309defm : Int16Med3Pat<V_MED3_U16_e64, umin, umax>;
3310} // End Predicates = [isGFX9Plus]
3311
3312class AMDGPUGenericInstruction : GenericInstruction {
3313  let Namespace = "AMDGPU";
3314}
3315
3316// Convert a wave address to a swizzled vector address (i.e. this is
3317// for copying the stack pointer to a vector address appropriate to
3318// use in the offset field of mubuf instructions).
3319def G_AMDGPU_WAVE_ADDRESS : AMDGPUGenericInstruction {
3320  let OutOperandList = (outs type0:$dst);
3321  let InOperandList = (ins type0:$src);
3322  let hasSideEffects = 0;
3323}
3324
3325// Returns -1 if the input is zero.
3326def G_AMDGPU_FFBH_U32 : AMDGPUGenericInstruction {
3327  let OutOperandList = (outs type0:$dst);
3328  let InOperandList = (ins type1:$src);
3329  let hasSideEffects = 0;
3330}
3331
3332// Returns -1 if the input is zero.
3333def G_AMDGPU_FFBL_B32 : AMDGPUGenericInstruction {
3334  let OutOperandList = (outs type0:$dst);
3335  let InOperandList = (ins type1:$src);
3336  let hasSideEffects = 0;
3337}
3338
3339def G_AMDGPU_RCP_IFLAG : AMDGPUGenericInstruction {
3340  let OutOperandList = (outs type0:$dst);
3341  let InOperandList = (ins type1:$src);
3342  let hasSideEffects = 0;
3343}
3344
3345class BufferLoadGenericInstruction : AMDGPUGenericInstruction {
3346  let OutOperandList = (outs type0:$dst);
3347  let InOperandList = (ins type1:$rsrc, type2:$vindex, type2:$voffset,
3348                           type2:$soffset, untyped_imm_0:$offset,
3349                           untyped_imm_0:$cachepolicy, untyped_imm_0:$idxen);
3350  let hasSideEffects = 0;
3351  let mayLoad = 1;
3352}
3353
3354class TBufferLoadGenericInstruction : AMDGPUGenericInstruction {
3355  let OutOperandList = (outs type0:$dst);
3356  let InOperandList = (ins type1:$rsrc, type2:$vindex, type2:$voffset,
3357                           type2:$soffset, untyped_imm_0:$offset, untyped_imm_0:$format,
3358                           untyped_imm_0:$cachepolicy, untyped_imm_0:$idxen);
3359  let hasSideEffects = 0;
3360  let mayLoad = 1;
3361}
3362
3363def G_AMDGPU_BUFFER_LOAD_UBYTE : BufferLoadGenericInstruction;
3364def G_AMDGPU_BUFFER_LOAD_SBYTE : BufferLoadGenericInstruction;
3365def G_AMDGPU_BUFFER_LOAD_USHORT : BufferLoadGenericInstruction;
3366def G_AMDGPU_BUFFER_LOAD_SSHORT : BufferLoadGenericInstruction;
3367def G_AMDGPU_BUFFER_LOAD : BufferLoadGenericInstruction;
3368def G_AMDGPU_BUFFER_LOAD_FORMAT : BufferLoadGenericInstruction;
3369def G_AMDGPU_BUFFER_LOAD_FORMAT_TFE : BufferLoadGenericInstruction;
3370def G_AMDGPU_BUFFER_LOAD_FORMAT_D16 : BufferLoadGenericInstruction;
3371def G_AMDGPU_TBUFFER_LOAD_FORMAT : TBufferLoadGenericInstruction;
3372def G_AMDGPU_TBUFFER_LOAD_FORMAT_D16 : TBufferLoadGenericInstruction;
3373
3374class BufferStoreGenericInstruction : AMDGPUGenericInstruction {
3375  let OutOperandList = (outs);
3376  let InOperandList = (ins type0:$vdata, type1:$rsrc, type2:$vindex, type2:$voffset,
3377                           type2:$soffset, untyped_imm_0:$offset,
3378                           untyped_imm_0:$cachepolicy, untyped_imm_0:$idxen);
3379  let hasSideEffects = 0;
3380  let mayStore = 1;
3381}
3382
3383class TBufferStoreGenericInstruction : AMDGPUGenericInstruction {
3384  let OutOperandList = (outs);
3385  let InOperandList = (ins type0:$vdata, type1:$rsrc, type2:$vindex, type2:$voffset,
3386                           type2:$soffset, untyped_imm_0:$offset,
3387                           untyped_imm_0:$format,
3388                           untyped_imm_0:$cachepolicy, untyped_imm_0:$idxen);
3389  let hasSideEffects = 0;
3390  let mayStore = 1;
3391}
3392
3393def G_AMDGPU_BUFFER_STORE : BufferStoreGenericInstruction;
3394def G_AMDGPU_BUFFER_STORE_BYTE : BufferStoreGenericInstruction;
3395def G_AMDGPU_BUFFER_STORE_SHORT : BufferStoreGenericInstruction;
3396def G_AMDGPU_BUFFER_STORE_FORMAT : BufferStoreGenericInstruction;
3397def G_AMDGPU_BUFFER_STORE_FORMAT_D16 : BufferStoreGenericInstruction;
3398def G_AMDGPU_TBUFFER_STORE_FORMAT : TBufferStoreGenericInstruction;
3399def G_AMDGPU_TBUFFER_STORE_FORMAT_D16 : TBufferStoreGenericInstruction;
3400
3401def G_AMDGPU_FMIN_LEGACY : AMDGPUGenericInstruction {
3402  let OutOperandList = (outs type0:$dst);
3403  let InOperandList = (ins type0:$src0, type0:$src1);
3404  let hasSideEffects = 0;
3405}
3406
3407def G_AMDGPU_FMAX_LEGACY : AMDGPUGenericInstruction {
3408  let OutOperandList = (outs type0:$dst);
3409  let InOperandList = (ins type0:$src0, type0:$src1);
3410  let hasSideEffects = 0;
3411}
3412
3413foreach N = 0-3 in {
3414def G_AMDGPU_CVT_F32_UBYTE#N : AMDGPUGenericInstruction {
3415  let OutOperandList = (outs type0:$dst);
3416  let InOperandList = (ins type0:$src0);
3417  let hasSideEffects = 0;
3418}
3419}
3420
3421def G_AMDGPU_CVT_PK_I16_I32 : AMDGPUGenericInstruction {
3422  let OutOperandList = (outs type0:$dst);
3423  let InOperandList = (ins type0:$src0, type0:$src1);
3424  let hasSideEffects = 0;
3425}
3426
3427def G_AMDGPU_SMED3 : AMDGPUGenericInstruction {
3428  let OutOperandList = (outs type0:$dst);
3429  let InOperandList = (ins type0:$src0, type0:$src1, type0:$src2);
3430  let hasSideEffects = 0;
3431}
3432
3433def G_AMDGPU_UMED3 : AMDGPUGenericInstruction {
3434  let OutOperandList = (outs type0:$dst);
3435  let InOperandList = (ins type0:$src0, type0:$src1, type0:$src2);
3436  let hasSideEffects = 0;
3437}
3438
3439def G_AMDGPU_FMED3 : AMDGPUGenericInstruction {
3440  let OutOperandList = (outs type0:$dst);
3441  let InOperandList = (ins type0:$src0, type0:$src1, type0:$src2);
3442  let hasSideEffects = 0;
3443}
3444
3445def G_AMDGPU_CLAMP : AMDGPUGenericInstruction {
3446  let OutOperandList = (outs type0:$dst);
3447  let InOperandList = (ins type0:$src);
3448  let hasSideEffects = 0;
3449}
3450
3451// Integer multiply-add: arg0 * arg1 + arg2.
3452//
3453// arg0 and arg1 are 32-bit integers (interpreted as signed or unsigned),
3454// arg2 is a 64-bit integer. Result is a 64-bit integer and a 1-bit carry-out.
3455class G_AMDGPU_MAD_64_32 : AMDGPUGenericInstruction {
3456  let OutOperandList = (outs type0:$dst, type1:$carry_out);
3457  let InOperandList = (ins type2:$arg0, type2:$arg1, type0:$arg2);
3458  let hasSideEffects = 0;
3459}
3460
3461def G_AMDGPU_MAD_U64_U32 : G_AMDGPU_MAD_64_32;
3462def G_AMDGPU_MAD_I64_I32 : G_AMDGPU_MAD_64_32;
3463
3464// Atomic cmpxchg. $cmpval ad $newval are packed in a single vector
3465// operand Expects a MachineMemOperand in addition to explicit
3466// operands.
3467def G_AMDGPU_ATOMIC_CMPXCHG : AMDGPUGenericInstruction {
3468  let OutOperandList = (outs type0:$oldval);
3469  let InOperandList = (ins ptype1:$addr, type0:$cmpval_newval);
3470  let hasSideEffects = 0;
3471  let mayLoad = 1;
3472  let mayStore = 1;
3473}
3474
3475let Namespace = "AMDGPU" in {
3476def G_AMDGPU_ATOMIC_FMIN : G_ATOMICRMW_OP;
3477def G_AMDGPU_ATOMIC_FMAX : G_ATOMICRMW_OP;
3478}
3479
3480class BufferAtomicGenericInstruction<bit NoRtn = 0> : AMDGPUGenericInstruction {
3481  let OutOperandList = !if(NoRtn, (outs), (outs type0:$dst));
3482  let InOperandList = (ins type0:$vdata, type1:$rsrc, type2:$vindex, type2:$voffset,
3483                           type2:$soffset, untyped_imm_0:$offset,
3484                           untyped_imm_0:$cachepolicy, untyped_imm_0:$idxen);
3485  let hasSideEffects = 0;
3486  let mayLoad = 1;
3487  let mayStore = 1;
3488}
3489
3490def G_AMDGPU_BUFFER_ATOMIC_SWAP : BufferAtomicGenericInstruction;
3491def G_AMDGPU_BUFFER_ATOMIC_ADD : BufferAtomicGenericInstruction;
3492def G_AMDGPU_BUFFER_ATOMIC_SUB : BufferAtomicGenericInstruction;
3493def G_AMDGPU_BUFFER_ATOMIC_SMIN : BufferAtomicGenericInstruction;
3494def G_AMDGPU_BUFFER_ATOMIC_UMIN : BufferAtomicGenericInstruction;
3495def G_AMDGPU_BUFFER_ATOMIC_SMAX : BufferAtomicGenericInstruction;
3496def G_AMDGPU_BUFFER_ATOMIC_UMAX : BufferAtomicGenericInstruction;
3497def G_AMDGPU_BUFFER_ATOMIC_AND : BufferAtomicGenericInstruction;
3498def G_AMDGPU_BUFFER_ATOMIC_OR : BufferAtomicGenericInstruction;
3499def G_AMDGPU_BUFFER_ATOMIC_XOR : BufferAtomicGenericInstruction;
3500def G_AMDGPU_BUFFER_ATOMIC_INC : BufferAtomicGenericInstruction;
3501def G_AMDGPU_BUFFER_ATOMIC_DEC : BufferAtomicGenericInstruction;
3502def G_AMDGPU_BUFFER_ATOMIC_FADD : BufferAtomicGenericInstruction;
3503def G_AMDGPU_BUFFER_ATOMIC_FMIN : BufferAtomicGenericInstruction;
3504def G_AMDGPU_BUFFER_ATOMIC_FMAX : BufferAtomicGenericInstruction;
3505
3506def G_AMDGPU_BUFFER_ATOMIC_CMPSWAP : AMDGPUGenericInstruction {
3507  let OutOperandList = (outs type0:$dst);
3508  let InOperandList = (ins type0:$vdata, type0:$cmp, type1:$rsrc, type2:$vindex,
3509                           type2:$voffset, type2:$soffset, untyped_imm_0:$offset,
3510                           untyped_imm_0:$cachepolicy, untyped_imm_0:$idxen);
3511  let hasSideEffects = 0;
3512  let mayLoad = 1;
3513  let mayStore = 1;
3514}
3515
3516// Wrapper around llvm.amdgcn.s.buffer.load. This is mostly needed as
3517// a workaround for the intrinsic being defined as readnone, but
3518// really needs a memory operand.
3519def G_AMDGPU_S_BUFFER_LOAD : AMDGPUGenericInstruction {
3520  let OutOperandList = (outs type0:$dst);
3521  let InOperandList = (ins type1:$rsrc, type2:$offset, untyped_imm_0:$cachepolicy);
3522  let hasSideEffects = 0;
3523  let mayLoad = 1;
3524  let mayStore = 0;
3525}
3526
3527// This is equivalent to the G_INTRINSIC*, but the operands may have
3528// been legalized depending on the subtarget requirements.
3529def G_AMDGPU_INTRIN_IMAGE_LOAD : AMDGPUGenericInstruction {
3530  let OutOperandList = (outs type0:$dst);
3531  let InOperandList = (ins unknown:$intrin, variable_ops);
3532  let hasSideEffects = 0;
3533  let mayLoad = 1;
3534
3535  // FIXME: Use separate opcode for atomics.
3536  let mayStore = 1;
3537}
3538
3539def G_AMDGPU_INTRIN_IMAGE_LOAD_D16 : AMDGPUGenericInstruction {
3540  let OutOperandList = (outs type0:$dst);
3541  let InOperandList = (ins unknown:$intrin, variable_ops);
3542  let hasSideEffects = 0;
3543  let mayLoad = 1;
3544
3545  // FIXME: Use separate opcode for atomics.
3546  let mayStore = 1;
3547}
3548
3549// This is equivalent to the G_INTRINSIC*, but the operands may have
3550// been legalized depending on the subtarget requirements.
3551def G_AMDGPU_INTRIN_IMAGE_STORE : AMDGPUGenericInstruction {
3552  let OutOperandList = (outs);
3553  let InOperandList = (ins unknown:$intrin, variable_ops);
3554  let hasSideEffects = 0;
3555  let mayStore = 1;
3556}
3557
3558def G_AMDGPU_INTRIN_IMAGE_STORE_D16 : AMDGPUGenericInstruction {
3559  let OutOperandList = (outs);
3560  let InOperandList = (ins unknown:$intrin, variable_ops);
3561  let hasSideEffects = 0;
3562  let mayStore = 1;
3563}
3564
3565def G_AMDGPU_INTRIN_BVH_INTERSECT_RAY : AMDGPUGenericInstruction {
3566  let OutOperandList = (outs type0:$dst);
3567  let InOperandList = (ins unknown:$intrin, variable_ops);
3568  let hasSideEffects = 0;
3569  let mayLoad = 1;
3570  let mayStore = 0;
3571}
3572
3573// Generic instruction for SI_CALL, so we can select the register bank and insert a waterfall loop
3574// if necessary.
3575def G_SI_CALL : AMDGPUGenericInstruction {
3576  let OutOperandList = (outs SReg_64:$dst);
3577  let InOperandList = (ins type0:$src0, unknown:$callee);
3578  let Size = 4;
3579  let isCall = 1;
3580  let UseNamedOperandTable = 1;
3581  let SchedRW = [WriteBranch];
3582  // TODO: Should really base this on the call target
3583  let isConvergent = 1;
3584}
3585
3586def G_FPTRUNC_ROUND_UPWARD : AMDGPUGenericInstruction {
3587  let OutOperandList = (outs type0:$vdst);
3588  let InOperandList = (ins type1:$src0);
3589  let hasSideEffects = 0;
3590}
3591
3592def G_FPTRUNC_ROUND_DOWNWARD : AMDGPUGenericInstruction {
3593  let OutOperandList = (outs type0:$vdst);
3594  let InOperandList = (ins type1:$src0);
3595  let hasSideEffects = 0;
3596}
3597
3598//============================================================================//
3599// Dummy Instructions
3600//============================================================================//
3601
3602def V_ILLEGAL : Enc32, InstSI<(outs), (ins), "v_illegal"> {
3603  let Inst{31-0} = 0x00000000;
3604  let FixedSize = 1;
3605  let Size = 4;
3606  let Uses = [EXEC];
3607  let hasSideEffects = 1;
3608  let SubtargetPredicate = isGFX10Plus;
3609}
3610