1//===-- SIInstructions.td - SI Instruction Defintions ---------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8// This file was originally auto-generated from a GPU register header file and
9// all the instruction definitions were originally commented out.  Instructions
10// that are not yet supported remain commented out.
11//===----------------------------------------------------------------------===//
12
13class GCNPat<dag pattern, dag result> : Pat<pattern, result>, GCNPredicateControl {
14
15}
16
17include "SOPInstructions.td"
18include "VOPInstructions.td"
19include "SMInstructions.td"
20include "FLATInstructions.td"
21include "BUFInstructions.td"
22
23//===----------------------------------------------------------------------===//
24// EXP Instructions
25//===----------------------------------------------------------------------===//
26
27defm EXP : EXP_m<0, AMDGPUexport>;
28defm EXP_DONE : EXP_m<1, AMDGPUexport_done>;
29
30//===----------------------------------------------------------------------===//
31// VINTRP Instructions
32//===----------------------------------------------------------------------===//
33
34// Used to inject printing of "_e32" suffix for VI (there are "_e64" variants for VI)
35def VINTRPDst : VINTRPDstOperand <VGPR_32>;
36
37let Uses = [M0, EXEC] in {
38
39// FIXME: Specify SchedRW for VINTRP insturctions.
40
41multiclass V_INTERP_P1_F32_m : VINTRP_m <
42  0x00000000,
43  (outs VINTRPDst:$vdst),
44  (ins VGPR_32:$vsrc, Attr:$attr, AttrChan:$attrchan),
45  "v_interp_p1_f32$vdst, $vsrc, $attr$attrchan",
46  [(set f32:$vdst, (int_amdgcn_interp_p1 f32:$vsrc,
47                   (i32 timm:$attrchan), (i32 timm:$attr), M0))]
48>;
49
50let OtherPredicates = [has32BankLDS] in {
51
52defm V_INTERP_P1_F32 : V_INTERP_P1_F32_m;
53
54} // End OtherPredicates = [has32BankLDS]
55
56let OtherPredicates = [has16BankLDS], Constraints = "@earlyclobber $vdst", isAsmParserOnly=1 in {
57
58defm V_INTERP_P1_F32_16bank : V_INTERP_P1_F32_m;
59
60} // End OtherPredicates = [has32BankLDS], Constraints = "@earlyclobber $vdst", isAsmParserOnly=1
61
62let DisableEncoding = "$src0", Constraints = "$src0 = $vdst" in {
63
64defm V_INTERP_P2_F32 : VINTRP_m <
65  0x00000001,
66  (outs VINTRPDst:$vdst),
67  (ins VGPR_32:$src0, VGPR_32:$vsrc, Attr:$attr, AttrChan:$attrchan),
68  "v_interp_p2_f32$vdst, $vsrc, $attr$attrchan",
69  [(set f32:$vdst, (int_amdgcn_interp_p2 f32:$src0, f32:$vsrc,
70                   (i32 timm:$attrchan), (i32 timm:$attr), M0))]>;
71
72} // End DisableEncoding = "$src0", Constraints = "$src0 = $vdst"
73
74defm V_INTERP_MOV_F32 : VINTRP_m <
75  0x00000002,
76  (outs VINTRPDst:$vdst),
77  (ins InterpSlot:$vsrc, Attr:$attr, AttrChan:$attrchan),
78  "v_interp_mov_f32$vdst, $vsrc, $attr$attrchan",
79  [(set f32:$vdst, (int_amdgcn_interp_mov (i32 imm:$vsrc),
80                   (i32 timm:$attrchan), (i32 timm:$attr), M0))]>;
81
82} // End Uses = [M0, EXEC]
83
84//===----------------------------------------------------------------------===//
85// Pseudo Instructions
86//===----------------------------------------------------------------------===//
87def ATOMIC_FENCE : SPseudoInstSI<
88  (outs), (ins i32imm:$ordering, i32imm:$scope),
89  [(atomic_fence (i32 timm:$ordering), (i32 timm:$scope))],
90  "ATOMIC_FENCE $ordering, $scope"> {
91  let hasSideEffects = 1;
92  let maybeAtomic = 1;
93}
94
95def VOP_I64_I64_DPP : VOPProfile <[i64, i64, untyped, untyped]> {
96  let HasExt = 1;
97  let HasExtDPP = 1;
98}
99
100let hasSideEffects = 0, mayLoad = 0, mayStore = 0, Uses = [EXEC] in {
101
102// For use in patterns
103def V_CNDMASK_B64_PSEUDO : VOP3Common <(outs VReg_64:$vdst),
104  (ins VSrc_b64:$src0, VSrc_b64:$src1, SSrc_b64:$src2), "", []> {
105  let isPseudo = 1;
106  let isCodeGenOnly = 1;
107  let usesCustomInserter = 1;
108}
109
110// 64-bit vector move instruction. This is mainly used by the
111// SIFoldOperands pass to enable folding of inline immediates.
112def V_MOV_B64_PSEUDO : VPseudoInstSI <(outs VReg_64:$vdst),
113                                      (ins VSrc_b64:$src0)>;
114
115// 64-bit vector move with dpp. Expanded post-RA.
116def V_MOV_B64_DPP_PSEUDO : VOP_DPP_Pseudo <"v_mov_b64_dpp", VOP_I64_I64_DPP> {
117  let Size = 16; // Requires two 8-byte v_mov_b32_dpp to complete.
118}
119
120// Pseudoinstruction for @llvm.amdgcn.wqm. It is turned into a copy after the
121// WQM pass processes it.
122def WQM : PseudoInstSI <(outs unknown:$vdst), (ins unknown:$src0)>;
123
124// Pseudoinstruction for @llvm.amdgcn.softwqm. Like @llvm.amdgcn.wqm it is
125// turned into a copy by WQM pass, but does not seed WQM requirements.
126def SOFT_WQM : PseudoInstSI <(outs unknown:$vdst), (ins unknown:$src0)>;
127
128// Pseudoinstruction for @llvm.amdgcn.wwm. It is turned into a copy post-RA, so
129// that the @earlyclobber is respected. The @earlyclobber is to make sure that
130// the instruction that defines $src0 (which is run in WWM) doesn't
131// accidentally clobber inactive channels of $vdst.
132let Constraints = "@earlyclobber $vdst" in {
133def WWM : PseudoInstSI <(outs unknown:$vdst), (ins unknown:$src0)>;
134}
135
136} // End let hasSideEffects = 0, mayLoad = 0, mayStore = 0, Uses = [EXEC]
137
138def ENTER_WWM : SPseudoInstSI <(outs SReg_1:$sdst), (ins i64imm:$src0)> {
139  let Defs = [EXEC];
140  let hasSideEffects = 0;
141  let mayLoad = 0;
142  let mayStore = 0;
143}
144
145def EXIT_WWM : SPseudoInstSI <(outs SReg_1:$sdst), (ins SReg_1:$src0)> {
146  let hasSideEffects = 0;
147  let mayLoad = 0;
148  let mayStore = 0;
149}
150
151// Invert the exec mask and overwrite the inactive lanes of dst with inactive,
152// restoring it after we're done.
153def V_SET_INACTIVE_B32 : VPseudoInstSI <(outs VGPR_32:$vdst),
154  (ins VGPR_32: $src, VSrc_b32:$inactive),
155  [(set i32:$vdst, (int_amdgcn_set_inactive i32:$src, i32:$inactive))]> {
156  let Constraints = "$src = $vdst";
157}
158
159def V_SET_INACTIVE_B64 : VPseudoInstSI <(outs VReg_64:$vdst),
160  (ins VReg_64: $src, VSrc_b64:$inactive),
161  [(set i64:$vdst, (int_amdgcn_set_inactive i64:$src, i64:$inactive))]> {
162  let Constraints = "$src = $vdst";
163}
164
165
166let usesCustomInserter = 1, Defs = [SCC] in {
167def S_ADD_U64_PSEUDO : SPseudoInstSI <
168  (outs SReg_64:$vdst), (ins SSrc_b64:$src0, SSrc_b64:$src1),
169  [(set SReg_64:$vdst, (add i64:$src0, i64:$src1))]
170>;
171
172def S_SUB_U64_PSEUDO : SPseudoInstSI <
173  (outs SReg_64:$vdst), (ins SSrc_b64:$src0, SSrc_b64:$src1),
174  [(set SReg_64:$vdst, (sub i64:$src0, i64:$src1))]
175>;
176
177def S_ADD_U64_CO_PSEUDO : SPseudoInstSI <
178  (outs SReg_64:$vdst, VOPDstS64orS32:$sdst), (ins SSrc_b64:$src0, SSrc_b64:$src1)
179>;
180
181def S_SUB_U64_CO_PSEUDO : SPseudoInstSI <
182  (outs SReg_64:$vdst, VOPDstS64orS32:$sdst), (ins SSrc_b64:$src0, SSrc_b64:$src1)
183>;
184} // End usesCustomInserter = 1, Defs = [SCC]
185
186let usesCustomInserter = 1 in {
187def GET_GROUPSTATICSIZE : SPseudoInstSI <(outs SReg_32:$sdst), (ins),
188  [(set SReg_32:$sdst, (int_amdgcn_groupstaticsize))]>;
189} // End let usesCustomInserter = 1, SALU = 1
190
191// Wrap an instruction by duplicating it, except for setting isTerminator.
192class WrapTerminatorInst<SOP_Pseudo base_inst> : SPseudoInstSI<
193      base_inst.OutOperandList,
194      base_inst.InOperandList> {
195  let Uses = base_inst.Uses;
196  let Defs = base_inst.Defs;
197  let isTerminator = 1;
198  let isAsCheapAsAMove = base_inst.isAsCheapAsAMove;
199  let hasSideEffects = base_inst.hasSideEffects;
200  let UseNamedOperandTable = base_inst.UseNamedOperandTable;
201  let CodeSize = base_inst.CodeSize;
202}
203
204let WaveSizePredicate = isWave64 in {
205def S_MOV_B64_term : WrapTerminatorInst<S_MOV_B64>;
206def S_XOR_B64_term : WrapTerminatorInst<S_XOR_B64>;
207def S_ANDN2_B64_term : WrapTerminatorInst<S_ANDN2_B64>;
208}
209
210let WaveSizePredicate = isWave32 in {
211def S_MOV_B32_term : WrapTerminatorInst<S_MOV_B32>;
212def S_XOR_B32_term : WrapTerminatorInst<S_XOR_B32>;
213def S_OR_B32_term : WrapTerminatorInst<S_OR_B32>;
214def S_ANDN2_B32_term : WrapTerminatorInst<S_ANDN2_B32>;
215}
216
217def WAVE_BARRIER : SPseudoInstSI<(outs), (ins),
218  [(int_amdgcn_wave_barrier)]> {
219  let SchedRW = [];
220  let hasNoSchedulingInfo = 1;
221  let hasSideEffects = 1;
222  let mayLoad = 1;
223  let mayStore = 1;
224  let isConvergent = 1;
225  let FixedSize = 1;
226  let Size = 0;
227}
228
229// SI pseudo instructions. These are used by the CFG structurizer pass
230// and should be lowered to ISA instructions prior to codegen.
231
232// Dummy terminator instruction to use after control flow instructions
233// replaced with exec mask operations.
234def SI_MASK_BRANCH : VPseudoInstSI <
235  (outs), (ins brtarget:$target)> {
236  let isBranch = 0;
237  let isTerminator = 1;
238  let isBarrier = 0;
239  let SchedRW = [];
240  let hasNoSchedulingInfo = 1;
241  let FixedSize = 1;
242  let Size = 0;
243}
244
245let isTerminator = 1 in {
246
247let OtherPredicates = [EnableLateCFGStructurize] in {
248 def SI_NON_UNIFORM_BRCOND_PSEUDO : CFPseudoInstSI <
249  (outs),
250  (ins SReg_1:$vcc, brtarget:$target),
251  [(brcond i1:$vcc, bb:$target)]> {
252    let Size = 12;
253}
254}
255
256def SI_IF: CFPseudoInstSI <
257  (outs SReg_1:$dst), (ins SReg_1:$vcc, brtarget:$target),
258  [(set i1:$dst, (AMDGPUif i1:$vcc, bb:$target))], 1, 1> {
259  let Constraints = "";
260  let Size = 12;
261  let hasSideEffects = 1;
262}
263
264def SI_ELSE : CFPseudoInstSI <
265  (outs SReg_1:$dst),
266  (ins SReg_1:$src, brtarget:$target, i1imm:$execfix), [], 1, 1> {
267  let Size = 12;
268  let hasSideEffects = 1;
269}
270
271def SI_LOOP : CFPseudoInstSI <
272  (outs), (ins SReg_1:$saved, brtarget:$target),
273  [(AMDGPUloop i1:$saved, bb:$target)], 1, 1> {
274  let Size = 8;
275  let isBranch = 1;
276  let hasSideEffects = 1;
277}
278
279} // End isTerminator = 1
280
281def SI_END_CF : CFPseudoInstSI <
282  (outs), (ins SReg_1:$saved), [], 1, 1> {
283  let Size = 4;
284  let isAsCheapAsAMove = 1;
285  let isReMaterializable = 1;
286  let hasSideEffects = 1;
287  let mayLoad = 1; // FIXME: Should not need memory flags
288  let mayStore = 1;
289}
290
291def SI_IF_BREAK : CFPseudoInstSI <
292  (outs SReg_1:$dst), (ins SReg_1:$vcc, SReg_1:$src), []> {
293  let Size = 4;
294  let isAsCheapAsAMove = 1;
295  let isReMaterializable = 1;
296}
297
298let Uses = [EXEC] in {
299
300multiclass PseudoInstKill <dag ins> {
301  // Even though this pseudo can usually be expanded without an SCC def, we
302  // conservatively assume that it has an SCC def, both because it is sometimes
303  // required in degenerate cases (when V_CMPX cannot be used due to constant
304  // bus limitations) and because it allows us to avoid having to track SCC
305  // liveness across basic blocks.
306  let Defs = [EXEC,VCC,SCC] in
307  def _PSEUDO : PseudoInstSI <(outs), ins> {
308    let isConvergent = 1;
309    let usesCustomInserter = 1;
310  }
311
312  let Defs = [EXEC,VCC,SCC] in
313  def _TERMINATOR : SPseudoInstSI <(outs), ins> {
314    let isTerminator = 1;
315  }
316}
317
318defm SI_KILL_I1 : PseudoInstKill <(ins SCSrc_i1:$src, i1imm:$killvalue)>;
319defm SI_KILL_F32_COND_IMM : PseudoInstKill <(ins VSrc_b32:$src0, i32imm:$src1, i32imm:$cond)>;
320
321let Defs = [EXEC,VCC] in
322def SI_ILLEGAL_COPY : SPseudoInstSI <
323  (outs unknown:$dst), (ins unknown:$src),
324  [], " ; illegal copy $src to $dst">;
325
326} // End Uses = [EXEC], Defs = [EXEC,VCC]
327
328// Branch on undef scc. Used to avoid intermediate copy from
329// IMPLICIT_DEF to SCC.
330def SI_BR_UNDEF : SPseudoInstSI <(outs), (ins sopp_brtarget:$simm16)> {
331  let isTerminator = 1;
332  let usesCustomInserter = 1;
333  let isBranch = 1;
334}
335
336def SI_PS_LIVE : PseudoInstSI <
337  (outs SReg_1:$dst), (ins),
338  [(set i1:$dst, (int_amdgcn_ps_live))]> {
339  let SALU = 1;
340}
341
342def SI_MASKED_UNREACHABLE : SPseudoInstSI <(outs), (ins),
343  [(int_amdgcn_unreachable)],
344  "; divergent unreachable"> {
345  let Size = 0;
346  let hasNoSchedulingInfo = 1;
347  let FixedSize = 1;
348}
349
350// Used as an isel pseudo to directly emit initialization with an
351// s_mov_b32 rather than a copy of another initialized
352// register. MachineCSE skips copies, and we don't want to have to
353// fold operands before it runs.
354def SI_INIT_M0 : SPseudoInstSI <(outs), (ins SSrc_b32:$src)> {
355  let Defs = [M0];
356  let usesCustomInserter = 1;
357  let isAsCheapAsAMove = 1;
358  let isReMaterializable = 1;
359}
360
361def SI_INIT_EXEC : SPseudoInstSI <
362  (outs), (ins i64imm:$src),
363  [(int_amdgcn_init_exec (i64 timm:$src))]> {
364  let Defs = [EXEC];
365  let usesCustomInserter = 1;
366  let isAsCheapAsAMove = 1;
367  let WaveSizePredicate = isWave64;
368}
369
370// FIXME: Intrinsic should be mangled for wave size.
371def SI_INIT_EXEC_LO : SPseudoInstSI <
372  (outs), (ins i32imm:$src), []> {
373  let Defs = [EXEC_LO];
374  let usesCustomInserter = 1;
375  let isAsCheapAsAMove = 1;
376  let WaveSizePredicate = isWave32;
377}
378
379// FIXME: Wave32 version
380def SI_INIT_EXEC_FROM_INPUT : SPseudoInstSI <
381  (outs), (ins SSrc_b32:$input, i32imm:$shift),
382  [(int_amdgcn_init_exec_from_input i32:$input, (i32 timm:$shift))]> {
383  let Defs = [EXEC];
384  let usesCustomInserter = 1;
385}
386
387def : GCNPat <
388  (int_amdgcn_init_exec timm:$src),
389  (SI_INIT_EXEC_LO (as_i32imm imm:$src))> {
390  let WaveSizePredicate = isWave32;
391}
392
393// Return for returning shaders to a shader variant epilog.
394def SI_RETURN_TO_EPILOG : SPseudoInstSI <
395  (outs), (ins variable_ops), [(AMDGPUreturn_to_epilog)]> {
396  let isTerminator = 1;
397  let isBarrier = 1;
398  let isReturn = 1;
399  let hasNoSchedulingInfo = 1;
400  let DisableWQM = 1;
401  let FixedSize = 1;
402}
403
404// Return for returning function calls.
405def SI_RETURN : SPseudoInstSI <
406  (outs), (ins), [],
407  "; return"> {
408  let isTerminator = 1;
409  let isBarrier = 1;
410  let isReturn = 1;
411  let SchedRW = [WriteBranch];
412}
413
414// Return for returning function calls without output register.
415//
416// This version is only needed so we can fill in the output regiter in
417// the custom inserter.
418def SI_CALL_ISEL : SPseudoInstSI <
419  (outs), (ins SSrc_b64:$src0, unknown:$callee),
420  [(AMDGPUcall i64:$src0, tglobaladdr:$callee)]> {
421  let Size = 4;
422  let isCall = 1;
423  let SchedRW = [WriteBranch];
424  let usesCustomInserter = 1;
425  // TODO: Should really base this on the call target
426  let isConvergent = 1;
427}
428
429// Wrapper around s_swappc_b64 with extra $callee parameter to track
430// the called function after regalloc.
431def SI_CALL : SPseudoInstSI <
432  (outs SReg_64:$dst), (ins SSrc_b64:$src0, unknown:$callee)> {
433  let Size = 4;
434  let isCall = 1;
435  let UseNamedOperandTable = 1;
436  let SchedRW = [WriteBranch];
437  // TODO: Should really base this on the call target
438  let isConvergent = 1;
439}
440
441// Tail call handling pseudo
442def SI_TCRETURN : SPseudoInstSI <(outs),
443  (ins SSrc_b64:$src0, unknown:$callee, i32imm:$fpdiff),
444  [(AMDGPUtc_return i64:$src0, tglobaladdr:$callee, i32:$fpdiff)]> {
445  let Size = 4;
446  let isCall = 1;
447  let isTerminator = 1;
448  let isReturn = 1;
449  let isBarrier = 1;
450  let UseNamedOperandTable = 1;
451  let SchedRW = [WriteBranch];
452  // TODO: Should really base this on the call target
453  let isConvergent = 1;
454}
455
456
457def ADJCALLSTACKUP : SPseudoInstSI<
458  (outs), (ins i32imm:$amt0, i32imm:$amt1),
459  [(callseq_start timm:$amt0, timm:$amt1)],
460  "; adjcallstackup $amt0 $amt1"> {
461  let Size = 8; // Worst case. (s_add_u32 + constant)
462  let FixedSize = 1;
463  let hasSideEffects = 1;
464  let usesCustomInserter = 1;
465  let SchedRW = [WriteSALU];
466  let Defs = [SCC];
467}
468
469def ADJCALLSTACKDOWN : SPseudoInstSI<
470  (outs), (ins i32imm:$amt1, i32imm:$amt2),
471  [(callseq_end timm:$amt1, timm:$amt2)],
472  "; adjcallstackdown $amt1"> {
473  let Size = 8; // Worst case. (s_add_u32 + constant)
474  let hasSideEffects = 1;
475  let usesCustomInserter = 1;
476  let SchedRW = [WriteSALU];
477  let Defs = [SCC];
478}
479
480let Defs = [M0, EXEC, SCC],
481  UseNamedOperandTable = 1 in {
482
483class SI_INDIRECT_SRC<RegisterClass rc> : VPseudoInstSI <
484  (outs VGPR_32:$vdst),
485  (ins rc:$src, VS_32:$idx, i32imm:$offset)> {
486  let usesCustomInserter = 1;
487}
488
489class SI_INDIRECT_DST<RegisterClass rc> : VPseudoInstSI <
490  (outs rc:$vdst),
491  (ins rc:$src, VS_32:$idx, i32imm:$offset, VGPR_32:$val)> {
492  let Constraints = "$src = $vdst";
493  let usesCustomInserter = 1;
494}
495
496// TODO: We can support indirect SGPR access.
497def SI_INDIRECT_SRC_V1 : SI_INDIRECT_SRC<VGPR_32>;
498def SI_INDIRECT_SRC_V2 : SI_INDIRECT_SRC<VReg_64>;
499def SI_INDIRECT_SRC_V4 : SI_INDIRECT_SRC<VReg_128>;
500def SI_INDIRECT_SRC_V8 : SI_INDIRECT_SRC<VReg_256>;
501def SI_INDIRECT_SRC_V16 : SI_INDIRECT_SRC<VReg_512>;
502
503def SI_INDIRECT_DST_V1 : SI_INDIRECT_DST<VGPR_32>;
504def SI_INDIRECT_DST_V2 : SI_INDIRECT_DST<VReg_64>;
505def SI_INDIRECT_DST_V4 : SI_INDIRECT_DST<VReg_128>;
506def SI_INDIRECT_DST_V8 : SI_INDIRECT_DST<VReg_256>;
507def SI_INDIRECT_DST_V16 : SI_INDIRECT_DST<VReg_512>;
508
509} // End Uses = [EXEC], Defs = [M0, EXEC]
510
511multiclass SI_SPILL_SGPR <RegisterClass sgpr_class> {
512  let UseNamedOperandTable = 1, SGPRSpill = 1, Uses = [EXEC] in {
513    def _SAVE : PseudoInstSI <
514      (outs),
515      (ins sgpr_class:$data, i32imm:$addr)> {
516      let mayStore = 1;
517      let mayLoad = 0;
518    }
519
520    def _RESTORE : PseudoInstSI <
521      (outs sgpr_class:$data),
522      (ins i32imm:$addr)> {
523      let mayStore = 0;
524      let mayLoad = 1;
525    }
526  } // End UseNamedOperandTable = 1
527}
528
529// You cannot use M0 as the output of v_readlane_b32 instructions or
530// use it in the sdata operand of SMEM instructions. We still need to
531// be able to spill the physical register m0, so allow it for
532// SI_SPILL_32_* instructions.
533defm SI_SPILL_S32  : SI_SPILL_SGPR <SReg_32>;
534defm SI_SPILL_S64  : SI_SPILL_SGPR <SReg_64>;
535defm SI_SPILL_S96  : SI_SPILL_SGPR <SReg_96>;
536defm SI_SPILL_S128 : SI_SPILL_SGPR <SReg_128>;
537defm SI_SPILL_S160 : SI_SPILL_SGPR <SReg_160>;
538defm SI_SPILL_S256 : SI_SPILL_SGPR <SReg_256>;
539defm SI_SPILL_S512 : SI_SPILL_SGPR <SReg_512>;
540defm SI_SPILL_S1024 : SI_SPILL_SGPR <SReg_1024>;
541
542multiclass SI_SPILL_VGPR <RegisterClass vgpr_class> {
543  let UseNamedOperandTable = 1, VGPRSpill = 1,
544       SchedRW = [WriteVMEM] in {
545    def _SAVE : VPseudoInstSI <
546      (outs),
547      (ins vgpr_class:$vdata, i32imm:$vaddr, SReg_128:$srsrc,
548           SReg_32:$soffset, i32imm:$offset)> {
549      let mayStore = 1;
550      let mayLoad = 0;
551      // (2 * 4) + (8 * num_subregs) bytes maximum
552      int MaxSize = !add(!shl(!srl(vgpr_class.Size, 5), 3), 8);
553      // Size field is unsigned char and cannot fit more.
554      let Size = !if(!le(MaxSize, 256), MaxSize, 252);
555    }
556
557    def _RESTORE : VPseudoInstSI <
558      (outs vgpr_class:$vdata),
559      (ins i32imm:$vaddr, SReg_128:$srsrc, SReg_32:$soffset,
560           i32imm:$offset)> {
561      let mayStore = 0;
562      let mayLoad = 1;
563
564      // (2 * 4) + (8 * num_subregs) bytes maximum
565      int MaxSize = !add(!shl(!srl(vgpr_class.Size, 5), 3), 8);
566      // Size field is unsigned char and cannot fit more.
567      let Size = !if(!le(MaxSize, 256), MaxSize, 252);
568    }
569  } // End UseNamedOperandTable = 1, VGPRSpill = 1, SchedRW = [WriteVMEM]
570}
571
572defm SI_SPILL_V32  : SI_SPILL_VGPR <VGPR_32>;
573defm SI_SPILL_V64  : SI_SPILL_VGPR <VReg_64>;
574defm SI_SPILL_V96  : SI_SPILL_VGPR <VReg_96>;
575defm SI_SPILL_V128 : SI_SPILL_VGPR <VReg_128>;
576defm SI_SPILL_V160 : SI_SPILL_VGPR <VReg_160>;
577defm SI_SPILL_V256 : SI_SPILL_VGPR <VReg_256>;
578defm SI_SPILL_V512 : SI_SPILL_VGPR <VReg_512>;
579defm SI_SPILL_V1024 : SI_SPILL_VGPR <VReg_1024>;
580
581multiclass SI_SPILL_AGPR <RegisterClass vgpr_class> {
582  let UseNamedOperandTable = 1, VGPRSpill = 1,
583      Constraints = "@earlyclobber $tmp",
584      SchedRW = [WriteVMEM] in {
585    def _SAVE : VPseudoInstSI <
586      (outs VGPR_32:$tmp),
587      (ins vgpr_class:$vdata, i32imm:$vaddr, SReg_128:$srsrc,
588           SReg_32:$soffset, i32imm:$offset)> {
589      let mayStore = 1;
590      let mayLoad = 0;
591      // (2 * 4) + (16 * num_subregs) bytes maximum
592      int MaxSize = !add(!shl(!srl(vgpr_class.Size, 5), 4), 8);
593      // Size field is unsigned char and cannot fit more.
594      let Size = !if(!le(MaxSize, 256), MaxSize, 252);
595    }
596
597    def _RESTORE : VPseudoInstSI <
598      (outs vgpr_class:$vdata, VGPR_32:$tmp),
599      (ins i32imm:$vaddr, SReg_128:$srsrc, SReg_32:$soffset,
600           i32imm:$offset)> {
601      let mayStore = 0;
602      let mayLoad = 1;
603
604      // (2 * 4) + (16 * num_subregs) bytes maximum
605      int MaxSize = !add(!shl(!srl(vgpr_class.Size, 5), 4), 8);
606      // Size field is unsigned char and cannot fit more.
607      let Size = !if(!le(MaxSize, 256), MaxSize, 252);
608    }
609  } // End UseNamedOperandTable = 1, VGPRSpill = 1, SchedRW = [WriteVMEM]
610}
611
612defm SI_SPILL_A32  : SI_SPILL_AGPR <AGPR_32>;
613defm SI_SPILL_A64  : SI_SPILL_AGPR <AReg_64>;
614defm SI_SPILL_A128 : SI_SPILL_AGPR <AReg_128>;
615defm SI_SPILL_A512 : SI_SPILL_AGPR <AReg_512>;
616defm SI_SPILL_A1024 : SI_SPILL_AGPR <AReg_1024>;
617
618def SI_PC_ADD_REL_OFFSET : SPseudoInstSI <
619  (outs SReg_64:$dst),
620  (ins si_ga:$ptr_lo, si_ga:$ptr_hi),
621  [(set SReg_64:$dst,
622      (i64 (SIpc_add_rel_offset tglobaladdr:$ptr_lo, tglobaladdr:$ptr_hi)))]> {
623  let Defs = [SCC];
624}
625
626def : GCNPat <
627  (SIpc_add_rel_offset tglobaladdr:$ptr_lo, 0),
628  (SI_PC_ADD_REL_OFFSET $ptr_lo, (i32 0))
629>;
630
631def : GCNPat<
632  (AMDGPUtrap timm:$trapid),
633  (S_TRAP $trapid)
634>;
635
636def : GCNPat<
637  (AMDGPUelse i1:$src, bb:$target),
638  (SI_ELSE $src, $target, 0)
639>;
640
641def : Pat <
642  // -1.0 as i32 (LowerINTRINSIC_VOID converts all other constants to -1.0)
643  (AMDGPUkill (i32 -1082130432)),
644  (SI_KILL_I1_PSEUDO (i1 0), 0)
645>;
646
647def : Pat <
648  (int_amdgcn_kill i1:$src),
649  (SI_KILL_I1_PSEUDO SCSrc_i1:$src, 0)
650>;
651
652def : Pat <
653  (int_amdgcn_kill (i1 (not i1:$src))),
654  (SI_KILL_I1_PSEUDO SCSrc_i1:$src, -1)
655>;
656
657def : Pat <
658  (AMDGPUkill i32:$src),
659  (SI_KILL_F32_COND_IMM_PSEUDO VSrc_b32:$src, 0, 3) // 3 means SETOGE
660>;
661
662def : Pat <
663  (int_amdgcn_kill (i1 (setcc f32:$src, InlineImmFP32:$imm, cond:$cond))),
664  (SI_KILL_F32_COND_IMM_PSEUDO VSrc_b32:$src, (bitcast_fpimm_to_i32 $imm), (cond_as_i32imm $cond))
665>;
666
667  // TODO: we could add more variants for other types of conditionals
668
669def : Pat <
670  (i64 (int_amdgcn_icmp i1:$src, (i1 0), (i32 33))),
671  (COPY $src) // Return the SGPRs representing i1 src
672>;
673
674def : Pat <
675  (i32 (int_amdgcn_icmp i1:$src, (i1 0), (i32 33))),
676  (COPY $src) // Return the SGPRs representing i1 src
677>;
678
679//===----------------------------------------------------------------------===//
680// VOP1 Patterns
681//===----------------------------------------------------------------------===//
682
683let OtherPredicates = [UnsafeFPMath] in {
684
685//def : RcpPat<V_RCP_F64_e32, f64>;
686//defm : RsqPat<V_RSQ_F64_e32, f64>;
687//defm : RsqPat<V_RSQ_F32_e32, f32>;
688
689def : RsqPat<V_RSQ_F32_e32, f32>;
690def : RsqPat<V_RSQ_F64_e32, f64>;
691
692// Convert (x - floor(x)) to fract(x)
693def : GCNPat <
694  (f32 (fsub (f32 (VOP3Mods f32:$x, i32:$mods)),
695             (f32 (ffloor (f32 (VOP3Mods f32:$x, i32:$mods)))))),
696  (V_FRACT_F32_e64 $mods, $x, DSTCLAMP.NONE, DSTOMOD.NONE)
697>;
698
699// Convert (x + (-floor(x))) to fract(x)
700def : GCNPat <
701  (f64 (fadd (f64 (VOP3Mods f64:$x, i32:$mods)),
702             (f64 (fneg (f64 (ffloor (f64 (VOP3Mods f64:$x, i32:$mods)))))))),
703  (V_FRACT_F64_e64 $mods, $x, DSTCLAMP.NONE, DSTOMOD.NONE)
704>;
705
706} // End OtherPredicates = [UnsafeFPMath]
707
708
709// f16_to_fp patterns
710def : GCNPat <
711  (f32 (f16_to_fp i32:$src0)),
712  (V_CVT_F32_F16_e64 SRCMODS.NONE, $src0, DSTCLAMP.NONE, DSTOMOD.NONE)
713>;
714
715def : GCNPat <
716  (f32 (f16_to_fp (and_oneuse i32:$src0, 0x7fff))),
717  (V_CVT_F32_F16_e64 SRCMODS.ABS, $src0, DSTCLAMP.NONE, DSTOMOD.NONE)
718>;
719
720def : GCNPat <
721  (f32 (f16_to_fp (i32 (srl_oneuse (and_oneuse i32:$src0, 0x7fff0000), (i32 16))))),
722  (V_CVT_F32_F16_e64 SRCMODS.ABS, (i32 (V_LSHRREV_B32_e64 (i32 16), i32:$src0)), DSTCLAMP.NONE, DSTOMOD.NONE)
723>;
724
725def : GCNPat <
726  (f32 (f16_to_fp (or_oneuse i32:$src0, 0x8000))),
727  (V_CVT_F32_F16_e64 SRCMODS.NEG_ABS, $src0, DSTCLAMP.NONE, DSTOMOD.NONE)
728>;
729
730def : GCNPat <
731  (f32 (f16_to_fp (xor_oneuse i32:$src0, 0x8000))),
732  (V_CVT_F32_F16_e64 SRCMODS.NEG, $src0, DSTCLAMP.NONE, DSTOMOD.NONE)
733>;
734
735def : GCNPat <
736  (f64 (fpextend f16:$src)),
737  (V_CVT_F64_F32_e32 (V_CVT_F32_F16_e32 $src))
738>;
739
740// fp_to_fp16 patterns
741def : GCNPat <
742  (i32 (AMDGPUfp_to_f16 (f32 (VOP3Mods f32:$src0, i32:$src0_modifiers)))),
743  (V_CVT_F16_F32_e64 $src0_modifiers, f32:$src0, DSTCLAMP.NONE, DSTOMOD.NONE)
744>;
745
746def : GCNPat <
747  (i32 (fp_to_sint f16:$src)),
748  (V_CVT_I32_F32_e32 (V_CVT_F32_F16_e32 VSrc_b32:$src))
749>;
750
751def : GCNPat <
752  (i32 (fp_to_uint f16:$src)),
753  (V_CVT_U32_F32_e32 (V_CVT_F32_F16_e32 VSrc_b32:$src))
754>;
755
756def : GCNPat <
757  (f16 (sint_to_fp i32:$src)),
758  (V_CVT_F16_F32_e32 (V_CVT_F32_I32_e32 VSrc_b32:$src))
759>;
760
761def : GCNPat <
762  (f16 (uint_to_fp i32:$src)),
763  (V_CVT_F16_F32_e32 (V_CVT_F32_U32_e32 VSrc_b32:$src))
764>;
765
766//===----------------------------------------------------------------------===//
767// VOP2 Patterns
768//===----------------------------------------------------------------------===//
769
770multiclass FMADPat <ValueType vt, Instruction inst> {
771  def : GCNPat <
772    (vt (fmad (VOP3NoMods vt:$src0),
773              (VOP3NoMods vt:$src1),
774              (VOP3NoMods vt:$src2))),
775    (inst SRCMODS.NONE, $src0, SRCMODS.NONE, $src1,
776          SRCMODS.NONE, $src2, DSTCLAMP.NONE, DSTOMOD.NONE)
777  >;
778}
779
780defm : FMADPat <f16, V_MAC_F16_e64>;
781defm : FMADPat <f32, V_MAC_F32_e64>;
782
783class FMADModsPat<Instruction inst, SDPatternOperator mad_opr, ValueType Ty>
784  : GCNPat<
785  (Ty (mad_opr (Ty (VOP3Mods Ty:$src0, i32:$src0_mod)),
786               (Ty (VOP3Mods Ty:$src1, i32:$src1_mod)),
787               (Ty (VOP3Mods Ty:$src2, i32:$src2_mod)))),
788  (inst $src0_mod, $src0, $src1_mod, $src1,
789  $src2_mod, $src2, DSTCLAMP.NONE, DSTOMOD.NONE)
790>;
791
792// FIXME: This should select to V_MAC_F32
793def : FMADModsPat<V_MAD_F32, AMDGPUfmad_ftz, f32>;
794def : FMADModsPat<V_MAD_F16, AMDGPUfmad_ftz, f16> {
795  let SubtargetPredicate = Has16BitInsts;
796}
797
798multiclass SelectPat <ValueType vt> {
799  def : GCNPat <
800    (vt (select i1:$src0, (VOP3Mods_f32 vt:$src1, i32:$src1_mods),
801                          (VOP3Mods_f32 vt:$src2, i32:$src2_mods))),
802    (V_CNDMASK_B32_e64 $src2_mods, $src2, $src1_mods, $src1, $src0)
803  >;
804}
805
806defm : SelectPat <i16>;
807defm : SelectPat <i32>;
808defm : SelectPat <f16>;
809defm : SelectPat <f32>;
810
811let AddedComplexity = 1 in {
812def : GCNPat <
813  (i32 (add (i32 (getDivergentFrag<ctpop>.ret i32:$popcnt)), i32:$val)),
814  (V_BCNT_U32_B32_e64 $popcnt, $val)
815>;
816}
817
818def : GCNPat <
819  (i32 (ctpop i32:$popcnt)),
820  (V_BCNT_U32_B32_e64 VSrc_b32:$popcnt, (i32 0))
821>;
822
823def : GCNPat <
824  (i16 (add (i16 (trunc (i32 (getDivergentFrag<ctpop>.ret i32:$popcnt)))), i16:$val)),
825  (V_BCNT_U32_B32_e64 $popcnt, $val)
826>;
827
828/********** ============================================ **********/
829/********** Extraction, Insertion, Building and Casting  **********/
830/********** ============================================ **********/
831
832foreach Index = 0-2 in {
833  def Extract_Element_v2i32_#Index : Extract_Element <
834    i32, v2i32, Index, !cast<SubRegIndex>(sub#Index)
835  >;
836  def Insert_Element_v2i32_#Index : Insert_Element <
837    i32, v2i32, Index, !cast<SubRegIndex>(sub#Index)
838  >;
839
840  def Extract_Element_v2f32_#Index : Extract_Element <
841    f32, v2f32, Index, !cast<SubRegIndex>(sub#Index)
842  >;
843  def Insert_Element_v2f32_#Index : Insert_Element <
844    f32, v2f32, Index, !cast<SubRegIndex>(sub#Index)
845  >;
846}
847
848foreach Index = 0-2 in {
849  def Extract_Element_v3i32_#Index : Extract_Element <
850    i32, v3i32, Index, !cast<SubRegIndex>(sub#Index)
851  >;
852  def Insert_Element_v3i32_#Index : Insert_Element <
853    i32, v3i32, Index, !cast<SubRegIndex>(sub#Index)
854  >;
855
856  def Extract_Element_v3f32_#Index : Extract_Element <
857    f32, v3f32, Index, !cast<SubRegIndex>(sub#Index)
858  >;
859  def Insert_Element_v3f32_#Index : Insert_Element <
860    f32, v3f32, Index, !cast<SubRegIndex>(sub#Index)
861  >;
862}
863
864foreach Index = 0-3 in {
865  def Extract_Element_v4i32_#Index : Extract_Element <
866    i32, v4i32, Index, !cast<SubRegIndex>(sub#Index)
867  >;
868  def Insert_Element_v4i32_#Index : Insert_Element <
869    i32, v4i32, Index, !cast<SubRegIndex>(sub#Index)
870  >;
871
872  def Extract_Element_v4f32_#Index : Extract_Element <
873    f32, v4f32, Index, !cast<SubRegIndex>(sub#Index)
874  >;
875  def Insert_Element_v4f32_#Index : Insert_Element <
876    f32, v4f32, Index, !cast<SubRegIndex>(sub#Index)
877  >;
878}
879
880foreach Index = 0-4 in {
881  def Extract_Element_v5i32_#Index : Extract_Element <
882    i32, v5i32, Index, !cast<SubRegIndex>(sub#Index)
883  >;
884  def Insert_Element_v5i32_#Index : Insert_Element <
885    i32, v5i32, Index, !cast<SubRegIndex>(sub#Index)
886  >;
887
888  def Extract_Element_v5f32_#Index : Extract_Element <
889    f32, v5f32, Index, !cast<SubRegIndex>(sub#Index)
890  >;
891  def Insert_Element_v5f32_#Index : Insert_Element <
892    f32, v5f32, Index, !cast<SubRegIndex>(sub#Index)
893  >;
894}
895
896foreach Index = 0-7 in {
897  def Extract_Element_v8i32_#Index : Extract_Element <
898    i32, v8i32, Index, !cast<SubRegIndex>(sub#Index)
899  >;
900  def Insert_Element_v8i32_#Index : Insert_Element <
901    i32, v8i32, Index, !cast<SubRegIndex>(sub#Index)
902  >;
903
904  def Extract_Element_v8f32_#Index : Extract_Element <
905    f32, v8f32, Index, !cast<SubRegIndex>(sub#Index)
906  >;
907  def Insert_Element_v8f32_#Index : Insert_Element <
908    f32, v8f32, Index, !cast<SubRegIndex>(sub#Index)
909  >;
910}
911
912foreach Index = 0-15 in {
913  def Extract_Element_v16i32_#Index : Extract_Element <
914    i32, v16i32, Index, !cast<SubRegIndex>(sub#Index)
915  >;
916  def Insert_Element_v16i32_#Index : Insert_Element <
917    i32, v16i32, Index, !cast<SubRegIndex>(sub#Index)
918  >;
919
920  def Extract_Element_v16f32_#Index : Extract_Element <
921    f32, v16f32, Index, !cast<SubRegIndex>(sub#Index)
922  >;
923  def Insert_Element_v16f32_#Index : Insert_Element <
924    f32, v16f32, Index, !cast<SubRegIndex>(sub#Index)
925  >;
926}
927
928
929def : Pat <
930  (extract_subvector v4i16:$vec, (i32 0)),
931  (v2i16 (EXTRACT_SUBREG v4i16:$vec, sub0))
932>;
933
934def : Pat <
935  (extract_subvector v4i16:$vec, (i32 2)),
936  (v2i16 (EXTRACT_SUBREG v4i16:$vec, sub1))
937>;
938
939def : Pat <
940  (extract_subvector v4f16:$vec, (i32 0)),
941  (v2f16 (EXTRACT_SUBREG v4f16:$vec, sub0))
942>;
943
944def : Pat <
945  (extract_subvector v4f16:$vec, (i32 2)),
946  (v2f16 (EXTRACT_SUBREG v4f16:$vec, sub1))
947>;
948
949foreach Index = 0-31 in {
950  def Extract_Element_v32i32_#Index : Extract_Element <
951    i32, v32i32, Index, !cast<SubRegIndex>(sub#Index)
952  >;
953
954  def Insert_Element_v32i32_#Index : Insert_Element <
955    i32, v32i32, Index, !cast<SubRegIndex>(sub#Index)
956  >;
957
958  def Extract_Element_v32f32_#Index : Extract_Element <
959    f32, v32f32, Index, !cast<SubRegIndex>(sub#Index)
960  >;
961
962  def Insert_Element_v32f32_#Index : Insert_Element <
963    f32, v32f32, Index, !cast<SubRegIndex>(sub#Index)
964  >;
965}
966
967// FIXME: Why do only some of these type combinations for SReg and
968// VReg?
969// 16-bit bitcast
970def : BitConvert <i16, f16, VGPR_32>;
971def : BitConvert <f16, i16, VGPR_32>;
972def : BitConvert <i16, f16, SReg_32>;
973def : BitConvert <f16, i16, SReg_32>;
974
975// 32-bit bitcast
976def : BitConvert <i32, f32, VGPR_32>;
977def : BitConvert <f32, i32, VGPR_32>;
978def : BitConvert <i32, f32, SReg_32>;
979def : BitConvert <f32, i32, SReg_32>;
980def : BitConvert <v2i16, i32, SReg_32>;
981def : BitConvert <i32, v2i16, SReg_32>;
982def : BitConvert <v2f16, i32, SReg_32>;
983def : BitConvert <i32, v2f16, SReg_32>;
984def : BitConvert <v2i16, v2f16, SReg_32>;
985def : BitConvert <v2f16, v2i16, SReg_32>;
986def : BitConvert <v2f16, f32, SReg_32>;
987def : BitConvert <f32, v2f16, SReg_32>;
988def : BitConvert <v2i16, f32, SReg_32>;
989def : BitConvert <f32, v2i16, SReg_32>;
990
991// 64-bit bitcast
992def : BitConvert <i64, f64, VReg_64>;
993def : BitConvert <f64, i64, VReg_64>;
994def : BitConvert <v2i32, v2f32, VReg_64>;
995def : BitConvert <v2f32, v2i32, VReg_64>;
996def : BitConvert <i64, v2i32, VReg_64>;
997def : BitConvert <v2i32, i64, VReg_64>;
998def : BitConvert <i64, v2f32, VReg_64>;
999def : BitConvert <v2f32, i64, VReg_64>;
1000def : BitConvert <f64, v2f32, VReg_64>;
1001def : BitConvert <v2f32, f64, VReg_64>;
1002def : BitConvert <f64, v2i32, VReg_64>;
1003def : BitConvert <v2i32, f64, VReg_64>;
1004def : BitConvert <v4i16, v4f16, VReg_64>;
1005def : BitConvert <v4f16, v4i16, VReg_64>;
1006
1007// FIXME: Make SGPR
1008def : BitConvert <v2i32, v4f16, VReg_64>;
1009def : BitConvert <v4f16, v2i32, VReg_64>;
1010def : BitConvert <v2i32, v4f16, VReg_64>;
1011def : BitConvert <v2i32, v4i16, VReg_64>;
1012def : BitConvert <v4i16, v2i32, VReg_64>;
1013def : BitConvert <v2f32, v4f16, VReg_64>;
1014def : BitConvert <v4f16, v2f32, VReg_64>;
1015def : BitConvert <v2f32, v4i16, VReg_64>;
1016def : BitConvert <v4i16, v2f32, VReg_64>;
1017def : BitConvert <v4i16, f64, VReg_64>;
1018def : BitConvert <v4f16, f64, VReg_64>;
1019def : BitConvert <f64, v4i16, VReg_64>;
1020def : BitConvert <f64, v4f16, VReg_64>;
1021def : BitConvert <v4i16, i64, VReg_64>;
1022def : BitConvert <v4f16, i64, VReg_64>;
1023def : BitConvert <i64, v4i16, VReg_64>;
1024def : BitConvert <i64, v4f16, VReg_64>;
1025
1026def : BitConvert <v4i32, v4f32, VReg_128>;
1027def : BitConvert <v4f32, v4i32, VReg_128>;
1028
1029// 96-bit bitcast
1030def : BitConvert <v3i32, v3f32, SGPR_96>;
1031def : BitConvert <v3f32, v3i32, SGPR_96>;
1032
1033// 128-bit bitcast
1034def : BitConvert <v2i64, v4i32, SReg_128>;
1035def : BitConvert <v4i32, v2i64, SReg_128>;
1036def : BitConvert <v2f64, v4f32, VReg_128>;
1037def : BitConvert <v2f64, v4i32, VReg_128>;
1038def : BitConvert <v4f32, v2f64, VReg_128>;
1039def : BitConvert <v4i32, v2f64, VReg_128>;
1040def : BitConvert <v2i64, v2f64, VReg_128>;
1041def : BitConvert <v2f64, v2i64, VReg_128>;
1042
1043// 160-bit bitcast
1044def : BitConvert <v5i32, v5f32, SGPR_160>;
1045def : BitConvert <v5f32, v5i32, SGPR_160>;
1046
1047// 256-bit bitcast
1048def : BitConvert <v8i32, v8f32, SReg_256>;
1049def : BitConvert <v8f32, v8i32, SReg_256>;
1050def : BitConvert <v8i32, v8f32, VReg_256>;
1051def : BitConvert <v8f32, v8i32, VReg_256>;
1052
1053// 512-bit bitcast
1054def : BitConvert <v16i32, v16f32, VReg_512>;
1055def : BitConvert <v16f32, v16i32, VReg_512>;
1056
1057// 1024-bit bitcast
1058def : BitConvert <v32i32, v32f32, VReg_1024>;
1059def : BitConvert <v32f32, v32i32, VReg_1024>;
1060
1061/********** =================== **********/
1062/********** Src & Dst modifiers **********/
1063/********** =================== **********/
1064
1065
1066// If denormals are not enabled, it only impacts the compare of the
1067// inputs. The output result is not flushed.
1068class ClampPat<Instruction inst, ValueType vt> : GCNPat <
1069  (vt (AMDGPUclamp (VOP3Mods vt:$src0, i32:$src0_modifiers))),
1070  (inst i32:$src0_modifiers, vt:$src0,
1071        i32:$src0_modifiers, vt:$src0, DSTCLAMP.ENABLE, DSTOMOD.NONE)
1072>;
1073
1074def : ClampPat<V_MAX_F32_e64, f32>;
1075def : ClampPat<V_MAX_F64, f64>;
1076def : ClampPat<V_MAX_F16_e64, f16>;
1077
1078let SubtargetPredicate = HasVOP3PInsts in {
1079def : GCNPat <
1080  (v2f16 (AMDGPUclamp (VOP3PMods v2f16:$src0, i32:$src0_modifiers))),
1081  (V_PK_MAX_F16 $src0_modifiers, $src0,
1082                $src0_modifiers, $src0, DSTCLAMP.ENABLE)
1083>;
1084}
1085
1086/********** ================================ **********/
1087/********** Floating point absolute/negative **********/
1088/********** ================================ **********/
1089
1090// Prevent expanding both fneg and fabs.
1091// TODO: Add IgnoredBySelectionDAG bit?
1092let AddedComplexity = 1 in { // Prefer SALU to VALU patterns for DAG
1093
1094def : GCNPat <
1095  (fneg (fabs (f32 SReg_32:$src))),
1096  (S_OR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x80000000))) // Set sign bit
1097>;
1098
1099def : GCNPat <
1100  (fabs (f32 SReg_32:$src)),
1101  (S_AND_B32 SReg_32:$src, (S_MOV_B32 (i32 0x7fffffff)))
1102>;
1103
1104def : GCNPat <
1105  (fneg (f32 SReg_32:$src)),
1106  (S_XOR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x80000000)))
1107>;
1108
1109def : GCNPat <
1110  (fneg (f16 SReg_32:$src)),
1111  (S_XOR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x00008000)))
1112>;
1113
1114def : GCNPat <
1115  (fneg (f16 VGPR_32:$src)),
1116  (V_XOR_B32_e32 (S_MOV_B32 (i32 0x00008000)), VGPR_32:$src)
1117>;
1118
1119def : GCNPat <
1120  (fabs (f16 SReg_32:$src)),
1121  (S_AND_B32 SReg_32:$src, (S_MOV_B32 (i32 0x00007fff)))
1122>;
1123
1124def : GCNPat <
1125  (fneg (fabs (f16 SReg_32:$src))),
1126  (S_OR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x00008000))) // Set sign bit
1127>;
1128
1129def : GCNPat <
1130  (fneg (fabs (f16 VGPR_32:$src))),
1131  (V_OR_B32_e32 (S_MOV_B32 (i32 0x00008000)), VGPR_32:$src) // Set sign bit
1132>;
1133
1134def : GCNPat <
1135  (fneg (v2f16 SReg_32:$src)),
1136  (S_XOR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x80008000)))
1137>;
1138
1139def : GCNPat <
1140  (fabs (v2f16 SReg_32:$src)),
1141  (S_AND_B32 SReg_32:$src, (S_MOV_B32 (i32 0x7fff7fff)))
1142>;
1143
1144// This is really (fneg (fabs v2f16:$src))
1145//
1146// fabs is not reported as free because there is modifier for it in
1147// VOP3P instructions, so it is turned into the bit op.
1148def : GCNPat <
1149  (fneg (v2f16 (bitconvert (and_oneuse (i32 SReg_32:$src), 0x7fff7fff)))),
1150  (S_OR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x80008000))) // Set sign bit
1151>;
1152
1153def : GCNPat <
1154  (fneg (v2f16 (fabs SReg_32:$src))),
1155  (S_OR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x80008000))) // Set sign bit
1156>;
1157
1158// FIXME: The implicit-def of scc from S_[X]OR_B32 is mishandled
1159 // def : GCNPat <
1160//   (fneg (f64 SReg_64:$src)),
1161//   (REG_SEQUENCE SReg_64,
1162//     (i32 (EXTRACT_SUBREG SReg_64:$src, sub0)),
1163//     sub0,
1164//     (S_XOR_B32 (i32 (EXTRACT_SUBREG SReg_64:$src, sub1)),
1165//                (i32 (S_MOV_B32 (i32 0x80000000)))),
1166//     sub1)
1167// >;
1168
1169// def : GCNPat <
1170//   (fneg (fabs (f64 SReg_64:$src))),
1171//   (REG_SEQUENCE SReg_64,
1172//     (i32 (EXTRACT_SUBREG SReg_64:$src, sub0)),
1173//     sub0,
1174//     (S_OR_B32 (i32 (EXTRACT_SUBREG SReg_64:$src, sub1)),
1175//               (S_MOV_B32 (i32 0x80000000))), // Set sign bit.
1176//     sub1)
1177// >;
1178
1179} // End let AddedComplexity = 1
1180
1181def : GCNPat <
1182  (fabs (f32 VGPR_32:$src)),
1183  (V_AND_B32_e32 (S_MOV_B32 (i32 0x7fffffff)), VGPR_32:$src)
1184>;
1185
1186def : GCNPat <
1187  (fneg (f32 VGPR_32:$src)),
1188  (V_XOR_B32_e32 (S_MOV_B32 (i32 0x80000000)), VGPR_32:$src)
1189>;
1190
1191def : GCNPat <
1192  (fabs (f16 VGPR_32:$src)),
1193  (V_AND_B32_e32 (S_MOV_B32 (i32 0x00007fff)), VGPR_32:$src)
1194>;
1195
1196def : GCNPat <
1197  (fneg (v2f16 VGPR_32:$src)),
1198  (V_XOR_B32_e32 (S_MOV_B32 (i32 0x80008000)), VGPR_32:$src)
1199>;
1200
1201def : GCNPat <
1202  (fabs (v2f16 VGPR_32:$src)),
1203  (V_AND_B32_e32 (S_MOV_B32 (i32 0x7fff7fff)), VGPR_32:$src)
1204>;
1205
1206def : GCNPat <
1207  (fneg (v2f16 (fabs VGPR_32:$src))),
1208  (V_OR_B32_e32 (S_MOV_B32 (i32 0x80008000)), VGPR_32:$src) // Set sign bit
1209>;
1210
1211def : GCNPat <
1212  (fabs (f64 VReg_64:$src)),
1213  (REG_SEQUENCE VReg_64,
1214    (i32 (EXTRACT_SUBREG VReg_64:$src, sub0)),
1215    sub0,
1216    (V_AND_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$src, sub1)),
1217                   (V_MOV_B32_e32 (i32 0x7fffffff))), // Set sign bit.
1218     sub1)
1219>;
1220
1221// TODO: Use SGPR for constant
1222def : GCNPat <
1223  (fneg (f64 VReg_64:$src)),
1224  (REG_SEQUENCE VReg_64,
1225    (i32 (EXTRACT_SUBREG VReg_64:$src, sub0)),
1226    sub0,
1227    (V_XOR_B32_e32 (i32 (EXTRACT_SUBREG VReg_64:$src, sub1)),
1228                   (i32 (V_MOV_B32_e32 (i32 0x80000000)))),
1229    sub1)
1230>;
1231
1232// TODO: Use SGPR for constant
1233def : GCNPat <
1234  (fneg (fabs (f64 VReg_64:$src))),
1235  (REG_SEQUENCE VReg_64,
1236    (i32 (EXTRACT_SUBREG VReg_64:$src, sub0)),
1237    sub0,
1238    (V_OR_B32_e32 (i32 (EXTRACT_SUBREG VReg_64:$src, sub1)),
1239                  (V_MOV_B32_e32 (i32 0x80000000))), // Set sign bit.
1240    sub1)
1241>;
1242
1243def : GCNPat <
1244  (fcopysign f16:$src0, f16:$src1),
1245  (V_BFI_B32 (S_MOV_B32 (i32 0x00007fff)), $src0, $src1)
1246>;
1247
1248def : GCNPat <
1249  (fcopysign f32:$src0, f16:$src1),
1250  (V_BFI_B32 (S_MOV_B32 (i32 0x7fffffff)), $src0,
1251             (V_LSHLREV_B32_e64 (i32 16), $src1))
1252>;
1253
1254def : GCNPat <
1255  (fcopysign f64:$src0, f16:$src1),
1256  (REG_SEQUENCE SReg_64,
1257    (i32 (EXTRACT_SUBREG $src0, sub0)), sub0,
1258    (V_BFI_B32 (S_MOV_B32 (i32 0x7fffffff)), (i32 (EXTRACT_SUBREG $src0, sub1)),
1259               (V_LSHLREV_B32_e64 (i32 16), $src1)), sub1)
1260>;
1261
1262def : GCNPat <
1263  (fcopysign f16:$src0, f32:$src1),
1264  (V_BFI_B32 (S_MOV_B32 (i32 0x00007fff)), $src0,
1265             (V_LSHRREV_B32_e64 (i32 16), $src1))
1266>;
1267
1268def : GCNPat <
1269  (fcopysign f16:$src0, f64:$src1),
1270  (V_BFI_B32 (S_MOV_B32 (i32 0x00007fff)), $src0,
1271             (V_LSHRREV_B32_e64 (i32 16), (EXTRACT_SUBREG $src1, sub1)))
1272>;
1273
1274/********** ================== **********/
1275/********** Immediate Patterns **********/
1276/********** ================== **********/
1277
1278def : GCNPat <
1279  (VGPRImm<(i32 imm)>:$imm),
1280  (V_MOV_B32_e32 imm:$imm)
1281>;
1282
1283def : GCNPat <
1284  (VGPRImm<(f32 fpimm)>:$imm),
1285  (V_MOV_B32_e32 (f32 (bitcast_fpimm_to_i32 $imm)))
1286>;
1287
1288def : GCNPat <
1289  (i32 imm:$imm),
1290  (S_MOV_B32 imm:$imm)
1291>;
1292
1293def : GCNPat <
1294  (VGPRImm<(SIlds tglobaladdr:$ga)>),
1295  (V_MOV_B32_e32 $ga)
1296>;
1297
1298def : GCNPat <
1299  (SIlds tglobaladdr:$ga),
1300  (S_MOV_B32 $ga)
1301>;
1302
1303// FIXME: Workaround for ordering issue with peephole optimizer where
1304// a register class copy interferes with immediate folding.  Should
1305// use s_mov_b32, which can be shrunk to s_movk_i32
1306def : GCNPat <
1307  (VGPRImm<(f16 fpimm)>:$imm),
1308  (V_MOV_B32_e32 (f16 (bitcast_fpimm_to_i32 $imm)))
1309>;
1310
1311def : GCNPat <
1312  (f32 fpimm:$imm),
1313  (S_MOV_B32 (f32 (bitcast_fpimm_to_i32 $imm)))
1314>;
1315
1316def : GCNPat <
1317  (f16 fpimm:$imm),
1318  (S_MOV_B32 (i32 (bitcast_fpimm_to_i32 $imm)))
1319>;
1320
1321def : GCNPat <
1322 (i32 frameindex:$fi),
1323 (V_MOV_B32_e32 (i32 (frameindex_to_targetframeindex $fi)))
1324>;
1325
1326def : GCNPat <
1327  (i64 InlineImm64:$imm),
1328  (S_MOV_B64 InlineImm64:$imm)
1329>;
1330
1331// XXX - Should this use a s_cmp to set SCC?
1332
1333// Set to sign-extended 64-bit value (true = -1, false = 0)
1334def : GCNPat <
1335  (i1 imm:$imm),
1336  (S_MOV_B64 (i64 (as_i64imm $imm)))
1337> {
1338  let WaveSizePredicate = isWave64;
1339}
1340
1341def : GCNPat <
1342  (i1 imm:$imm),
1343  (S_MOV_B32 (i32 (as_i32imm $imm)))
1344> {
1345  let WaveSizePredicate = isWave32;
1346}
1347
1348def : GCNPat <
1349  (f64 InlineImmFP64:$imm),
1350  (S_MOV_B64 (f64 (bitcast_fpimm_to_i64 InlineImmFP64:$imm)))
1351>;
1352
1353/********** ================== **********/
1354/********** Intrinsic Patterns **********/
1355/********** ================== **********/
1356
1357// FIXME: Should use _e64 and select source modifiers.
1358def : POW_Common <V_LOG_F32_e32, V_EXP_F32_e32, V_MUL_LEGACY_F32_e32>;
1359
1360def : GCNPat <
1361  (i32 (sext i1:$src0)),
1362  (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
1363                     /*src1mod*/(i32 0), /*src1*/(i32 -1), $src0)
1364>;
1365
1366class Ext32Pat <SDNode ext> : GCNPat <
1367  (i32 (ext i1:$src0)),
1368  (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
1369                     /*src1mod*/(i32 0), /*src1*/(i32 1), $src0)
1370>;
1371
1372def : Ext32Pat <zext>;
1373def : Ext32Pat <anyext>;
1374
1375// The multiplication scales from [0,1] to the unsigned integer range
1376def : GCNPat <
1377  (AMDGPUurecip i32:$src0),
1378  (V_CVT_U32_F32_e32
1379    (V_MUL_F32_e32 (i32 CONST.FP_UINT_MAX_PLUS_1),
1380                   (V_RCP_IFLAG_F32_e32 (V_CVT_F32_U32_e32 $src0))))
1381>;
1382
1383//===----------------------------------------------------------------------===//
1384// VOP3 Patterns
1385//===----------------------------------------------------------------------===//
1386
1387def : IMad24Pat<V_MAD_I32_I24, 1>;
1388def : UMad24Pat<V_MAD_U32_U24, 1>;
1389
1390// FIXME: This should only be done for VALU inputs
1391defm : BFIPatterns <V_BFI_B32, S_MOV_B32, SReg_64>;
1392def : ROTRPattern <V_ALIGNBIT_B32>;
1393
1394def : GCNPat<(i32 (trunc (srl i64:$src0, (and i32:$src1, (i32 31))))),
1395          (V_ALIGNBIT_B32 (i32 (EXTRACT_SUBREG (i64 $src0), sub1)),
1396                          (i32 (EXTRACT_SUBREG (i64 $src0), sub0)), $src1)>;
1397
1398def : GCNPat<(i32 (trunc (srl i64:$src0, (i32 ShiftAmt32Imm:$src1)))),
1399          (V_ALIGNBIT_B32 (i32 (EXTRACT_SUBREG (i64 $src0), sub1)),
1400                          (i32 (EXTRACT_SUBREG (i64 $src0), sub0)), $src1)>;
1401
1402/********** ====================== **********/
1403/**********   Indirect addressing  **********/
1404/********** ====================== **********/
1405
1406multiclass SI_INDIRECT_Pattern <ValueType vt, ValueType eltvt, string VecSize> {
1407  // Extract with offset
1408  def : GCNPat<
1409    (eltvt (extractelt vt:$src, (MOVRELOffset i32:$idx, (i32 imm:$offset)))),
1410    (!cast<Instruction>("SI_INDIRECT_SRC_"#VecSize) $src, $idx, imm:$offset)
1411  >;
1412
1413  // Insert with offset
1414  def : GCNPat<
1415    (insertelt vt:$src, eltvt:$val, (MOVRELOffset i32:$idx, (i32 imm:$offset))),
1416    (!cast<Instruction>("SI_INDIRECT_DST_"#VecSize) $src, $idx, imm:$offset, $val)
1417  >;
1418}
1419
1420defm : SI_INDIRECT_Pattern <v2f32, f32, "V2">;
1421defm : SI_INDIRECT_Pattern <v4f32, f32, "V4">;
1422defm : SI_INDIRECT_Pattern <v8f32, f32, "V8">;
1423defm : SI_INDIRECT_Pattern <v16f32, f32, "V16">;
1424
1425defm : SI_INDIRECT_Pattern <v2i32, i32, "V2">;
1426defm : SI_INDIRECT_Pattern <v4i32, i32, "V4">;
1427defm : SI_INDIRECT_Pattern <v8i32, i32, "V8">;
1428defm : SI_INDIRECT_Pattern <v16i32, i32, "V16">;
1429
1430//===----------------------------------------------------------------------===//
1431// SAD Patterns
1432//===----------------------------------------------------------------------===//
1433
1434def : GCNPat <
1435  (add (sub_oneuse (umax i32:$src0, i32:$src1),
1436                   (umin i32:$src0, i32:$src1)),
1437       i32:$src2),
1438  (V_SAD_U32 $src0, $src1, $src2, (i1 0))
1439>;
1440
1441def : GCNPat <
1442  (add (select_oneuse (i1 (setugt i32:$src0, i32:$src1)),
1443                      (sub i32:$src0, i32:$src1),
1444                      (sub i32:$src1, i32:$src0)),
1445       i32:$src2),
1446  (V_SAD_U32 $src0, $src1, $src2, (i1 0))
1447>;
1448
1449//===----------------------------------------------------------------------===//
1450// Conversion Patterns
1451//===----------------------------------------------------------------------===//
1452
1453def : GCNPat<(i32 (sext_inreg i32:$src, i1)),
1454  (S_BFE_I32 i32:$src, (i32 65536))>; // 0 | 1 << 16
1455
1456// Handle sext_inreg in i64
1457def : GCNPat <
1458  (i64 (sext_inreg i64:$src, i1)),
1459  (S_BFE_I64 i64:$src, (i32 0x10000)) // 0 | 1 << 16
1460>;
1461
1462def : GCNPat <
1463  (i16 (sext_inreg i16:$src, i1)),
1464  (S_BFE_I32 $src, (i32 0x00010000)) // 0 | 1 << 16
1465>;
1466
1467def : GCNPat <
1468  (i16 (sext_inreg i16:$src, i8)),
1469  (S_BFE_I32 $src, (i32 0x80000)) // 0 | 8 << 16
1470>;
1471
1472def : GCNPat <
1473  (i64 (sext_inreg i64:$src, i8)),
1474  (S_BFE_I64 i64:$src, (i32 0x80000)) // 0 | 8 << 16
1475>;
1476
1477def : GCNPat <
1478  (i64 (sext_inreg i64:$src, i16)),
1479  (S_BFE_I64 i64:$src, (i32 0x100000)) // 0 | 16 << 16
1480>;
1481
1482def : GCNPat <
1483  (i64 (sext_inreg i64:$src, i32)),
1484  (S_BFE_I64 i64:$src, (i32 0x200000)) // 0 | 32 << 16
1485>;
1486
1487def : GCNPat <
1488  (i64 (zext i32:$src)),
1489  (REG_SEQUENCE SReg_64, $src, sub0, (S_MOV_B32 (i32 0)), sub1)
1490>;
1491
1492def : GCNPat <
1493  (i64 (anyext i32:$src)),
1494  (REG_SEQUENCE SReg_64, $src, sub0, (i32 (IMPLICIT_DEF)), sub1)
1495>;
1496
1497class ZExt_i64_i1_Pat <SDNode ext> : GCNPat <
1498  (i64 (ext i1:$src)),
1499    (REG_SEQUENCE VReg_64,
1500      (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
1501                         /*src1mod*/(i32 0), /*src1*/(i32 1), $src),
1502      sub0, (S_MOV_B32 (i32 0)), sub1)
1503>;
1504
1505
1506def : ZExt_i64_i1_Pat<zext>;
1507def : ZExt_i64_i1_Pat<anyext>;
1508
1509// FIXME: We need to use COPY_TO_REGCLASS to work-around the fact that
1510// REG_SEQUENCE patterns don't support instructions with multiple outputs.
1511def : GCNPat <
1512  (i64 (sext i32:$src)),
1513    (REG_SEQUENCE SReg_64, $src, sub0,
1514    (i32 (COPY_TO_REGCLASS (S_ASHR_I32 $src, (i32 31)), SReg_32_XM0)), sub1)
1515>;
1516
1517def : GCNPat <
1518  (i64 (sext i1:$src)),
1519  (REG_SEQUENCE VReg_64,
1520    (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
1521                       /*src1mod*/(i32 0), /*src1*/(i32 -1), $src), sub0,
1522    (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
1523                       /*src1mod*/(i32 0), /*src1*/(i32 -1), $src), sub1)
1524>;
1525
1526class FPToI1Pat<Instruction Inst, int KOne, ValueType kone_type, ValueType vt, SDPatternOperator fp_to_int> : GCNPat <
1527  (i1 (fp_to_int (vt (VOP3Mods vt:$src0, i32:$src0_modifiers)))),
1528  (i1 (Inst 0, (kone_type KOne), $src0_modifiers, $src0, DSTCLAMP.NONE))
1529>;
1530
1531def : FPToI1Pat<V_CMP_EQ_F32_e64, CONST.FP32_ONE, i32, f32, fp_to_uint>;
1532def : FPToI1Pat<V_CMP_EQ_F32_e64, CONST.FP32_NEG_ONE, i32, f32, fp_to_sint>;
1533def : FPToI1Pat<V_CMP_EQ_F64_e64, CONST.FP64_ONE, i64, f64, fp_to_uint>;
1534def : FPToI1Pat<V_CMP_EQ_F64_e64, CONST.FP64_NEG_ONE, i64, f64, fp_to_sint>;
1535
1536// If we need to perform a logical operation on i1 values, we need to
1537// use vector comparisons since there is only one SCC register. Vector
1538// comparisons may write to a pair of SGPRs or a single SGPR, so treat
1539// these as 32 or 64-bit comparisons. When legalizing SGPR copies,
1540// instructions resulting in the copies from SCC to these instructions
1541// will be moved to the VALU.
1542
1543let WaveSizePredicate = isWave64 in {
1544def : GCNPat <
1545  (i1 (and i1:$src0, i1:$src1)),
1546  (S_AND_B64 $src0, $src1)
1547>;
1548
1549def : GCNPat <
1550  (i1 (or i1:$src0, i1:$src1)),
1551  (S_OR_B64 $src0, $src1)
1552>;
1553
1554def : GCNPat <
1555  (i1 (xor i1:$src0, i1:$src1)),
1556  (S_XOR_B64 $src0, $src1)
1557>;
1558
1559def : GCNPat <
1560  (i1 (add i1:$src0, i1:$src1)),
1561  (S_XOR_B64 $src0, $src1)
1562>;
1563
1564def : GCNPat <
1565  (i1 (sub i1:$src0, i1:$src1)),
1566  (S_XOR_B64 $src0, $src1)
1567>;
1568
1569let AddedComplexity = 1 in {
1570def : GCNPat <
1571  (i1 (add i1:$src0, (i1 -1))),
1572  (S_NOT_B64 $src0)
1573>;
1574
1575def : GCNPat <
1576  (i1 (sub i1:$src0, (i1 -1))),
1577  (S_NOT_B64 $src0)
1578>;
1579}
1580} // end isWave64
1581
1582let WaveSizePredicate = isWave32 in {
1583def : GCNPat <
1584  (i1 (and i1:$src0, i1:$src1)),
1585  (S_AND_B32 $src0, $src1)
1586>;
1587
1588def : GCNPat <
1589  (i1 (or i1:$src0, i1:$src1)),
1590  (S_OR_B32 $src0, $src1)
1591>;
1592
1593def : GCNPat <
1594  (i1 (xor i1:$src0, i1:$src1)),
1595  (S_XOR_B32 $src0, $src1)
1596>;
1597
1598def : GCNPat <
1599  (i1 (add i1:$src0, i1:$src1)),
1600  (S_XOR_B32 $src0, $src1)
1601>;
1602
1603def : GCNPat <
1604  (i1 (sub i1:$src0, i1:$src1)),
1605  (S_XOR_B32 $src0, $src1)
1606>;
1607
1608let AddedComplexity = 1 in {
1609def : GCNPat <
1610  (i1 (add i1:$src0, (i1 -1))),
1611  (S_NOT_B32 $src0)
1612>;
1613
1614def : GCNPat <
1615  (i1 (sub i1:$src0, (i1 -1))),
1616  (S_NOT_B32 $src0)
1617>;
1618}
1619} // end isWave32
1620
1621def : GCNPat <
1622  (f16 (sint_to_fp i1:$src)),
1623  (V_CVT_F16_F32_e32 (
1624      V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
1625                        /*src1mod*/(i32 0), /*src1*/(i32 CONST.FP32_NEG_ONE),
1626                        SSrc_i1:$src))
1627>;
1628
1629def : GCNPat <
1630  (f16 (uint_to_fp i1:$src)),
1631  (V_CVT_F16_F32_e32 (
1632      V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
1633                        /*src1mod*/(i32 0), /*src1*/(i32 CONST.FP32_ONE),
1634                        SSrc_i1:$src))
1635>;
1636
1637def : GCNPat <
1638  (f32 (sint_to_fp i1:$src)),
1639  (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
1640                        /*src1mod*/(i32 0), /*src1*/(i32 CONST.FP32_NEG_ONE),
1641                        SSrc_i1:$src)
1642>;
1643
1644def : GCNPat <
1645  (f32 (uint_to_fp i1:$src)),
1646  (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
1647                        /*src1mod*/(i32 0), /*src1*/(i32 CONST.FP32_ONE),
1648                        SSrc_i1:$src)
1649>;
1650
1651def : GCNPat <
1652  (f64 (sint_to_fp i1:$src)),
1653  (V_CVT_F64_I32_e32 (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
1654                                        /*src1mod*/(i32 0), /*src1*/(i32 -1),
1655                                        SSrc_i1:$src))
1656>;
1657
1658def : GCNPat <
1659  (f64 (uint_to_fp i1:$src)),
1660  (V_CVT_F64_U32_e32 (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
1661                                        /*src1mod*/(i32 0), /*src1*/(i32 1),
1662                                        SSrc_i1:$src))
1663>;
1664
1665//===----------------------------------------------------------------------===//
1666// Miscellaneous Patterns
1667//===----------------------------------------------------------------------===//
1668def : GCNPat <
1669  (i32 (AMDGPUfp16_zext f16:$src)),
1670  (COPY $src)
1671>;
1672
1673
1674def : GCNPat <
1675  (i32 (trunc i64:$a)),
1676  (EXTRACT_SUBREG $a, sub0)
1677>;
1678
1679def : GCNPat <
1680  (i1 (trunc i32:$a)),
1681  (V_CMP_EQ_U32_e64 (S_AND_B32 (i32 1), $a), (i32 1))
1682>;
1683
1684def : GCNPat <
1685  (i1 (trunc i16:$a)),
1686  (V_CMP_EQ_U32_e64 (S_AND_B32 (i32 1), $a), (i32 1))
1687>;
1688
1689def : GCNPat <
1690  (i1 (trunc i64:$a)),
1691  (V_CMP_EQ_U32_e64 (S_AND_B32 (i32 1),
1692                    (i32 (EXTRACT_SUBREG $a, sub0))), (i32 1))
1693>;
1694
1695def : GCNPat <
1696  (i32 (bswap i32:$a)),
1697  (V_BFI_B32 (S_MOV_B32 (i32 0x00ff00ff)),
1698             (V_ALIGNBIT_B32 $a, $a, (i32 24)),
1699             (V_ALIGNBIT_B32 $a, $a, (i32 8)))
1700>;
1701
1702let OtherPredicates = [NoFP16Denormals] in {
1703def : GCNPat<
1704  (fcanonicalize (f16 (VOP3Mods f16:$src, i32:$src_mods))),
1705  (V_MUL_F16_e64 0, (i32 CONST.FP16_ONE), $src_mods, $src, 0, 0)
1706>;
1707
1708def : GCNPat<
1709  (fcanonicalize (f16 (fneg (VOP3Mods f16:$src, i32:$src_mods)))),
1710  (V_MUL_F16_e64 0, (i32 CONST.FP16_NEG_ONE), $src_mods, $src, 0, 0)
1711>;
1712
1713def : GCNPat<
1714  (fcanonicalize (v2f16 (VOP3PMods v2f16:$src, i32:$src_mods))),
1715  (V_PK_MUL_F16 0, (i32 CONST.FP16_ONE), $src_mods, $src, DSTCLAMP.NONE)
1716>;
1717}
1718
1719let OtherPredicates = [FP16Denormals] in {
1720def : GCNPat<
1721  (fcanonicalize (f16 (VOP3Mods f16:$src, i32:$src_mods))),
1722  (V_MAX_F16_e64 $src_mods, $src, $src_mods, $src, 0, 0)
1723>;
1724
1725let SubtargetPredicate = HasVOP3PInsts in {
1726def : GCNPat<
1727  (fcanonicalize (v2f16 (VOP3PMods v2f16:$src, i32:$src_mods))),
1728  (V_PK_MAX_F16 $src_mods, $src, $src_mods, $src, DSTCLAMP.NONE)
1729>;
1730}
1731}
1732
1733let OtherPredicates = [NoFP32Denormals] in {
1734def : GCNPat<
1735  (fcanonicalize (f32 (VOP3Mods f32:$src, i32:$src_mods))),
1736  (V_MUL_F32_e64 0, (i32 CONST.FP32_ONE), $src_mods, $src, 0, 0)
1737>;
1738
1739def : GCNPat<
1740  (fcanonicalize (f32 (fneg (VOP3Mods f32:$src, i32:$src_mods)))),
1741  (V_MUL_F32_e64 0, (i32 CONST.FP32_NEG_ONE), $src_mods, $src, 0, 0)
1742>;
1743}
1744
1745let OtherPredicates = [FP32Denormals] in {
1746def : GCNPat<
1747  (fcanonicalize (f32 (VOP3Mods f32:$src, i32:$src_mods))),
1748  (V_MAX_F32_e64 $src_mods, $src, $src_mods, $src, 0, 0)
1749>;
1750}
1751
1752let OtherPredicates = [NoFP64Denormals] in {
1753def : GCNPat<
1754  (fcanonicalize (f64 (VOP3Mods f64:$src, i32:$src_mods))),
1755  (V_MUL_F64 0, CONST.FP64_ONE, $src_mods, $src, 0, 0)
1756>;
1757}
1758
1759let OtherPredicates = [FP64Denormals] in {
1760def : GCNPat<
1761  (fcanonicalize (f64 (VOP3Mods f64:$src, i32:$src_mods))),
1762  (V_MAX_F64 $src_mods, $src, $src_mods, $src, 0, 0)
1763>;
1764}
1765
1766let OtherPredicates = [HasDLInsts] in {
1767def : GCNPat <
1768  (fma (f32 (VOP3Mods0 f32:$src0, i32:$src0_modifiers, i1:$clamp, i32:$omod)),
1769       (f32 (VOP3Mods f32:$src1, i32:$src1_modifiers)),
1770       (f32 (VOP3NoMods f32:$src2))),
1771  (V_FMAC_F32_e64 $src0_modifiers, $src0, $src1_modifiers, $src1,
1772                  SRCMODS.NONE, $src2, $clamp, $omod)
1773>;
1774} // End OtherPredicates = [HasDLInsts]
1775
1776let SubtargetPredicate = isGFX10Plus in
1777def : GCNPat <
1778  (fma (f16 (VOP3Mods0 f32:$src0, i32:$src0_modifiers, i1:$clamp, i32:$omod)),
1779       (f16 (VOP3Mods f32:$src1, i32:$src1_modifiers)),
1780       (f16 (VOP3NoMods f32:$src2))),
1781  (V_FMAC_F16_e64 $src0_modifiers, $src0, $src1_modifiers, $src1,
1782                  SRCMODS.NONE, $src2, $clamp, $omod)
1783>;
1784
1785// Allow integer inputs
1786class ExpPattern<SDPatternOperator node, ValueType vt, Instruction Inst> : GCNPat<
1787  (node (i8 timm:$tgt), (i8 timm:$en), vt:$src0, vt:$src1, vt:$src2, vt:$src3, (i1 timm:$compr), (i1 timm:$vm)),
1788  (Inst i8:$tgt, vt:$src0, vt:$src1, vt:$src2, vt:$src3, i1:$vm, i1:$compr, i8:$en)
1789>;
1790
1791def : ExpPattern<AMDGPUexport, i32, EXP>;
1792def : ExpPattern<AMDGPUexport_done, i32, EXP_DONE>;
1793
1794// COPY is workaround tablegen bug from multiple outputs
1795// from S_LSHL_B32's multiple outputs from implicit scc def.
1796def : GCNPat <
1797  (v2i16 (build_vector (i16 0), (i16 SReg_32:$src1))),
1798  (S_LSHL_B32 SReg_32:$src1, (i16 16))
1799>;
1800
1801def : GCNPat <
1802  (v2i16 (build_vector (i16 SReg_32:$src0), (i16 undef))),
1803  (COPY_TO_REGCLASS SReg_32:$src0, SReg_32)
1804>;
1805
1806def : GCNPat <
1807  (v2i16 (build_vector (i16 VGPR_32:$src0), (i16 undef))),
1808  (COPY_TO_REGCLASS VGPR_32:$src0, VGPR_32)
1809>;
1810
1811def : GCNPat <
1812  (v2f16 (build_vector f16:$src0, (f16 undef))),
1813  (COPY $src0)
1814>;
1815
1816def : GCNPat <
1817  (v2i16 (build_vector (i16 undef), (i16 SReg_32:$src1))),
1818  (S_LSHL_B32 SReg_32:$src1, (i32 16))
1819>;
1820
1821def : GCNPat <
1822  (v2f16 (build_vector (f16 undef), (f16 SReg_32:$src1))),
1823  (S_LSHL_B32 SReg_32:$src1, (i32 16))
1824>;
1825
1826let SubtargetPredicate = HasVOP3PInsts in {
1827def : GCNPat <
1828  (v2i16 (build_vector (i16 SReg_32:$src0), (i16 SReg_32:$src1))),
1829  (S_PACK_LL_B32_B16 SReg_32:$src0, SReg_32:$src1)
1830>;
1831
1832// With multiple uses of the shift, this will duplicate the shift and
1833// increase register pressure.
1834def : GCNPat <
1835  (v2i16 (build_vector (i16 SReg_32:$src0), (i16 (trunc (srl_oneuse SReg_32:$src1, (i32 16)))))),
1836  (v2i16 (S_PACK_LH_B32_B16 SReg_32:$src0, SReg_32:$src1))
1837>;
1838
1839
1840def : GCNPat <
1841  (v2i16 (build_vector (i16 (trunc (srl_oneuse SReg_32:$src0, (i32 16)))),
1842                       (i16 (trunc (srl_oneuse SReg_32:$src1, (i32 16)))))),
1843  (S_PACK_HH_B32_B16 SReg_32:$src0, SReg_32:$src1)
1844>;
1845
1846// TODO: Should source modifiers be matched to v_pack_b32_f16?
1847def : GCNPat <
1848  (v2f16 (build_vector (f16 SReg_32:$src0), (f16 SReg_32:$src1))),
1849  (S_PACK_LL_B32_B16 SReg_32:$src0, SReg_32:$src1)
1850>;
1851
1852} // End SubtargetPredicate = HasVOP3PInsts
1853
1854
1855def : GCNPat <
1856  (v2f16 (scalar_to_vector f16:$src0)),
1857  (COPY $src0)
1858>;
1859
1860def : GCNPat <
1861  (v2i16 (scalar_to_vector i16:$src0)),
1862  (COPY $src0)
1863>;
1864
1865def : GCNPat <
1866  (v4i16 (scalar_to_vector i16:$src0)),
1867  (INSERT_SUBREG (IMPLICIT_DEF), $src0, sub0)
1868>;
1869
1870def : GCNPat <
1871  (v4f16 (scalar_to_vector f16:$src0)),
1872  (INSERT_SUBREG (IMPLICIT_DEF), $src0, sub0)
1873>;
1874
1875def : GCNPat <
1876  (i64 (int_amdgcn_mov_dpp i64:$src, timm:$dpp_ctrl, timm:$row_mask, timm:$bank_mask,
1877                           timm:$bound_ctrl)),
1878  (V_MOV_B64_DPP_PSEUDO $src, $src, (as_i32imm $dpp_ctrl),
1879                        (as_i32imm $row_mask), (as_i32imm $bank_mask),
1880                        (as_i1imm $bound_ctrl))
1881>;
1882
1883def : GCNPat <
1884  (i64 (int_amdgcn_update_dpp i64:$old, i64:$src, timm:$dpp_ctrl, timm:$row_mask,
1885                              timm:$bank_mask, timm:$bound_ctrl)),
1886  (V_MOV_B64_DPP_PSEUDO $old, $src, (as_i32imm $dpp_ctrl),
1887                        (as_i32imm $row_mask), (as_i32imm $bank_mask),
1888                        (as_i1imm $bound_ctrl))
1889>;
1890
1891//===----------------------------------------------------------------------===//
1892// Fract Patterns
1893//===----------------------------------------------------------------------===//
1894
1895let SubtargetPredicate = isGFX6 in {
1896
1897// V_FRACT is buggy on SI, so the F32 version is never used and (x-floor(x)) is
1898// used instead. However, SI doesn't have V_FLOOR_F64, so the most efficient
1899// way to implement it is using V_FRACT_F64.
1900// The workaround for the V_FRACT bug is:
1901//    fract(x) = isnan(x) ? x : min(V_FRACT(x), 0.99999999999999999)
1902
1903// Convert floor(x) to (x - fract(x))
1904def : GCNPat <
1905  (f64 (ffloor (f64 (VOP3Mods f64:$x, i32:$mods)))),
1906  (V_ADD_F64
1907      $mods,
1908      $x,
1909      SRCMODS.NEG,
1910      (V_CNDMASK_B64_PSEUDO
1911         (V_MIN_F64
1912             SRCMODS.NONE,
1913             (V_FRACT_F64_e64 $mods, $x, DSTCLAMP.NONE, DSTOMOD.NONE),
1914             SRCMODS.NONE,
1915             (V_MOV_B64_PSEUDO 0x3fefffffffffffff),
1916             DSTCLAMP.NONE, DSTOMOD.NONE),
1917         $x,
1918         (V_CMP_CLASS_F64_e64 SRCMODS.NONE, $x, (i32 3 /*NaN*/))),
1919      DSTCLAMP.NONE, DSTOMOD.NONE)
1920>;
1921
1922} // End SubtargetPredicates = isGFX6
1923
1924//============================================================================//
1925// Miscellaneous Optimization Patterns
1926//============================================================================//
1927
1928// Undo sub x, c -> add x, -c canonicalization since c is more likely
1929// an inline immediate than -c.
1930// TODO: Also do for 64-bit.
1931def : GCNPat<
1932  (add i32:$src0, (i32 NegSubInlineConst32:$src1)),
1933  (S_SUB_I32 SReg_32:$src0, NegSubInlineConst32:$src1)
1934>;
1935
1936def : GCNPat<
1937  (add i32:$src0, (i32 NegSubInlineConst32:$src1)),
1938  (V_SUB_U32_e64 VS_32:$src0, NegSubInlineConst32:$src1)> {
1939  let SubtargetPredicate = HasAddNoCarryInsts;
1940}
1941
1942def : GCNPat<
1943  (add i32:$src0, (i32 NegSubInlineConst32:$src1)),
1944  (V_SUB_I32_e64 VS_32:$src0, NegSubInlineConst32:$src1)> {
1945  let SubtargetPredicate = NotHasAddNoCarryInsts;
1946}
1947
1948
1949// Avoid pointlessly materializing a constant in VGPR.
1950// FIXME: Should also do this for readlane, but tablegen crashes on
1951// the ignored src1.
1952def : GCNPat<
1953  (int_amdgcn_readfirstlane (i32 imm:$src)),
1954  (S_MOV_B32 SReg_32:$src)
1955>;
1956
1957multiclass BFMPatterns <ValueType vt, InstSI BFM, InstSI MOV> {
1958  def : GCNPat <
1959    (vt (shl (vt (add (vt (shl 1, vt:$a)), -1)), vt:$b)),
1960    (BFM $a, $b)
1961  >;
1962
1963  def : GCNPat <
1964    (vt (add (vt (shl 1, vt:$a)), -1)),
1965    (BFM $a, (MOV (i32 0)))
1966  >;
1967}
1968
1969defm : BFMPatterns <i32, S_BFM_B32, S_MOV_B32>;
1970// FIXME: defm : BFMPatterns <i64, S_BFM_B64, S_MOV_B64>;
1971
1972defm : BFEPattern <V_BFE_U32, V_BFE_I32, S_MOV_B32>;
1973defm : SHA256MaPattern <V_BFI_B32, V_XOR_B32_e64, SReg_64>;
1974
1975multiclass IntMed3Pat<Instruction med3Inst,
1976                 SDPatternOperator min,
1977                 SDPatternOperator max,
1978                 SDPatternOperator min_oneuse,
1979                 SDPatternOperator max_oneuse> {
1980
1981  // This matches 16 permutations of
1982  // min(max(a, b), max(min(a, b), c))
1983  def : AMDGPUPat <
1984  (min (max_oneuse i32:$src0, i32:$src1),
1985       (max_oneuse (min_oneuse i32:$src0, i32:$src1), i32:$src2)),
1986  (med3Inst VSrc_b32:$src0, VSrc_b32:$src1, VSrc_b32:$src2)
1987>;
1988
1989  // This matches 16 permutations of
1990  // max(min(x, y), min(max(x, y), z))
1991  def : AMDGPUPat <
1992  (max (min_oneuse i32:$src0, i32:$src1),
1993       (min_oneuse (max_oneuse i32:$src0, i32:$src1), i32:$src2)),
1994  (med3Inst VSrc_b32:$src0, VSrc_b32:$src1, VSrc_b32:$src2)
1995>;
1996}
1997
1998defm : IntMed3Pat<V_MED3_I32, smin, smax, smin_oneuse, smax_oneuse>;
1999defm : IntMed3Pat<V_MED3_U32, umin, umax, umin_oneuse, umax_oneuse>;
2000
2001// This matches 16 permutations of
2002// max(min(x, y), min(max(x, y), z))
2003class FPMed3Pat<ValueType vt,
2004                //SDPatternOperator max, SDPatternOperator min,
2005                Instruction med3Inst> : GCNPat<
2006  (fmaxnum_like (fminnum_like_oneuse (VOP3Mods_nnan vt:$src0, i32:$src0_mods),
2007                           (VOP3Mods_nnan vt:$src1, i32:$src1_mods)),
2008           (fminnum_like_oneuse (fmaxnum_like_oneuse (VOP3Mods_nnan vt:$src0, i32:$src0_mods),
2009                                           (VOP3Mods_nnan vt:$src1, i32:$src1_mods)),
2010                           (vt (VOP3Mods_nnan vt:$src2, i32:$src2_mods)))),
2011  (med3Inst $src0_mods, $src0, $src1_mods, $src1, $src2_mods, $src2, DSTCLAMP.NONE, DSTOMOD.NONE)
2012>;
2013
2014class FP16Med3Pat<ValueType vt,
2015                Instruction med3Inst> : GCNPat<
2016  (fmaxnum_like (fminnum_like_oneuse (VOP3Mods_nnan vt:$src0, i32:$src0_mods),
2017                                     (VOP3Mods_nnan vt:$src1, i32:$src1_mods)),
2018           (fminnum_like_oneuse (fmaxnum_like_oneuse (VOP3Mods_nnan vt:$src0, i32:$src0_mods),
2019                                                     (VOP3Mods_nnan vt:$src1, i32:$src1_mods)),
2020                           (vt (VOP3Mods_nnan vt:$src2, i32:$src2_mods)))),
2021  (med3Inst $src0_mods, $src0, $src1_mods, $src1, $src2_mods, $src2, DSTCLAMP.NONE)
2022>;
2023
2024multiclass Int16Med3Pat<Instruction med3Inst,
2025                   SDPatternOperator min,
2026                   SDPatternOperator max,
2027                   SDPatternOperator max_oneuse,
2028                   SDPatternOperator min_oneuse> {
2029  // This matches 16 permutations of
2030  // max(min(x, y), min(max(x, y), z))
2031  def : GCNPat <
2032  (max (min_oneuse i16:$src0, i16:$src1),
2033       (min_oneuse (max_oneuse i16:$src0, i16:$src1), i16:$src2)),
2034  (med3Inst SRCMODS.NONE, VSrc_b16:$src0, SRCMODS.NONE, VSrc_b16:$src1, SRCMODS.NONE, VSrc_b16:$src2, DSTCLAMP.NONE)
2035>;
2036
2037  // This matches 16 permutations of
2038  // min(max(a, b), max(min(a, b), c))
2039  def : GCNPat <
2040  (min (max_oneuse i16:$src0, i16:$src1),
2041      (max_oneuse (min_oneuse i16:$src0, i16:$src1), i16:$src2)),
2042  (med3Inst SRCMODS.NONE, VSrc_b16:$src0, SRCMODS.NONE, VSrc_b16:$src1, SRCMODS.NONE, VSrc_b16:$src2, DSTCLAMP.NONE)
2043>;
2044}
2045
2046def : FPMed3Pat<f32, V_MED3_F32>;
2047
2048let OtherPredicates = [isGFX9Plus] in {
2049def : FP16Med3Pat<f16, V_MED3_F16>;
2050defm : Int16Med3Pat<V_MED3_I16, smin, smax, smax_oneuse, smin_oneuse>;
2051defm : Int16Med3Pat<V_MED3_U16, umin, umax, umax_oneuse, umin_oneuse>;
2052} // End Predicates = [isGFX9Plus]
2053
2054class AMDGPUGenericInstruction : GenericInstruction {
2055  let Namespace = "AMDGPU";
2056}
2057
2058def G_AMDGPU_FFBH_U32 : AMDGPUGenericInstruction {
2059  let OutOperandList = (outs type0:$dst);
2060  let InOperandList = (ins type1:$src);
2061  let hasSideEffects = 0;
2062}
2063
2064// Atomic cmpxchg. $cmpval ad $newval are packed in a single vector
2065// operand Expects a MachineMemOperand in addition to explicit
2066// operands.
2067def G_AMDGPU_ATOMIC_CMPXCHG : AMDGPUGenericInstruction {
2068  let OutOperandList = (outs type0:$oldval);
2069  let InOperandList = (ins ptype1:$addr, type0:$cmpval_nnenwval);
2070  let hasSideEffects = 0;
2071  let mayLoad = 1;
2072  let mayStore = 1;
2073}
2074