1//===-- SIInstructions.td - SI Instruction Definitions --------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8// This file was originally auto-generated from a GPU register header file and
9// all the instruction definitions were originally commented out.  Instructions
10// that are not yet supported remain commented out.
11//===----------------------------------------------------------------------===//
12
13class GCNPat<dag pattern, dag result> : Pat<pattern, result>, GCNPredicateControl {
14
15}
16
17include "SOPInstructions.td"
18include "VOPInstructions.td"
19include "SMInstructions.td"
20include "FLATInstructions.td"
21include "BUFInstructions.td"
22include "EXPInstructions.td"
23
24//===----------------------------------------------------------------------===//
25// VINTRP Instructions
26//===----------------------------------------------------------------------===//
27
28// Used to inject printing of "_e32" suffix for VI (there are "_e64" variants for VI)
29def VINTRPDst : VINTRPDstOperand <VGPR_32>;
30
31let Uses = [MODE, M0, EXEC] in {
32
33// FIXME: Specify SchedRW for VINTRP instructions.
34
35multiclass V_INTERP_P1_F32_m : VINTRP_m <
36  0x00000000,
37  (outs VINTRPDst:$vdst),
38  (ins VGPR_32:$vsrc, Attr:$attr, AttrChan:$attrchan),
39  "v_interp_p1_f32$vdst, $vsrc, $attr$attrchan",
40  [(set f32:$vdst, (int_amdgcn_interp_p1 f32:$vsrc,
41                   (i32 timm:$attrchan), (i32 timm:$attr), M0))]
42>;
43
44let OtherPredicates = [has32BankLDS, isNotGFX90APlus] in {
45
46defm V_INTERP_P1_F32 : V_INTERP_P1_F32_m;
47
48} // End OtherPredicates = [has32BankLDS, isNotGFX90APlus]
49
50let OtherPredicates = [has16BankLDS, isNotGFX90APlus],
51    Constraints = "@earlyclobber $vdst", isAsmParserOnly=1 in {
52
53defm V_INTERP_P1_F32_16bank : V_INTERP_P1_F32_m;
54
55} // End OtherPredicates = [has32BankLDS, isNotGFX90APlus],
56  //     Constraints = "@earlyclobber $vdst", isAsmParserOnly=1
57
58let OtherPredicates = [isNotGFX90APlus] in {
59let DisableEncoding = "$src0", Constraints = "$src0 = $vdst" in {
60
61defm V_INTERP_P2_F32 : VINTRP_m <
62  0x00000001,
63  (outs VINTRPDst:$vdst),
64  (ins VGPR_32:$src0, VGPR_32:$vsrc, Attr:$attr, AttrChan:$attrchan),
65  "v_interp_p2_f32$vdst, $vsrc, $attr$attrchan",
66  [(set f32:$vdst, (int_amdgcn_interp_p2 f32:$src0, f32:$vsrc,
67                   (i32 timm:$attrchan), (i32 timm:$attr), M0))]>;
68
69} // End DisableEncoding = "$src0", Constraints = "$src0 = $vdst"
70
71defm V_INTERP_MOV_F32 : VINTRP_m <
72  0x00000002,
73  (outs VINTRPDst:$vdst),
74  (ins InterpSlot:$vsrc, Attr:$attr, AttrChan:$attrchan),
75  "v_interp_mov_f32$vdst, $vsrc, $attr$attrchan",
76  [(set f32:$vdst, (int_amdgcn_interp_mov (i32 timm:$vsrc),
77                   (i32 timm:$attrchan), (i32 timm:$attr), M0))]>;
78
79} // End OtherPredicates = [isNotGFX90APlus]
80
81} // End Uses = [MODE, M0, EXEC]
82
83//===----------------------------------------------------------------------===//
84// Pseudo Instructions
85//===----------------------------------------------------------------------===//
86def ATOMIC_FENCE : SPseudoInstSI<
87  (outs), (ins i32imm:$ordering, i32imm:$scope),
88  [(atomic_fence (i32 timm:$ordering), (i32 timm:$scope))],
89  "ATOMIC_FENCE $ordering, $scope"> {
90  let hasSideEffects = 1;
91  let maybeAtomic = 1;
92}
93
94let hasSideEffects = 0, mayLoad = 0, mayStore = 0, Uses = [EXEC] in {
95
96// For use in patterns
97def V_CNDMASK_B64_PSEUDO : VOP3Common <(outs VReg_64:$vdst),
98  (ins VSrc_b64:$src0, VSrc_b64:$src1, SSrc_b64:$src2), "", []> {
99  let isPseudo = 1;
100  let isCodeGenOnly = 1;
101  let usesCustomInserter = 1;
102}
103
104// 64-bit vector move instruction. This is mainly used by the
105// SIFoldOperands pass to enable folding of inline immediates.
106def V_MOV_B64_PSEUDO : VPseudoInstSI <(outs VReg_64:$vdst),
107                                      (ins VSrc_b64:$src0)> {
108  let isReMaterializable = 1;
109  let isAsCheapAsAMove = 1;
110  let isMoveImm = 1;
111  let SchedRW = [Write64Bit];
112  let Size = 16; // Needs maximum 2 v_mov_b32 instructions 8 byte long each.
113}
114
115// 64-bit vector move with dpp. Expanded post-RA.
116def V_MOV_B64_DPP_PSEUDO : VOP_DPP_Pseudo <"v_mov_b64_dpp", VOP_I64_I64> {
117  let Size = 16; // Requires two 8-byte v_mov_b32_dpp to complete.
118}
119
120// 64-bit scalar move immediate instruction. This is used to avoid subregs
121// initialization and allow rematerialization.
122def S_MOV_B64_IMM_PSEUDO : SPseudoInstSI <(outs SReg_64:$sdst),
123                                          (ins i64imm:$src0)> {
124  let isReMaterializable = 1;
125  let isAsCheapAsAMove = 1;
126  let isMoveImm = 1;
127  let SchedRW = [WriteSALU, Write64Bit];
128  let Size = 16; // Needs maximum 2 s_mov_b32 instructions 8 byte long each.
129  let Uses = [];
130}
131
132// Pseudoinstruction for @llvm.amdgcn.wqm. It is turned into a copy after the
133// WQM pass processes it.
134def WQM : PseudoInstSI <(outs unknown:$vdst), (ins unknown:$src0)>;
135
136// Pseudoinstruction for @llvm.amdgcn.softwqm. Like @llvm.amdgcn.wqm it is
137// turned into a copy by WQM pass, but does not seed WQM requirements.
138def SOFT_WQM : PseudoInstSI <(outs unknown:$vdst), (ins unknown:$src0)>;
139
140// Pseudoinstruction for @llvm.amdgcn.strict.wwm. It is turned into a copy post-RA, so
141// that the @earlyclobber is respected. The @earlyclobber is to make sure that
142// the instruction that defines $src0 (which is run in Whole Wave Mode) doesn't
143// accidentally clobber inactive channels of $vdst.
144let Constraints = "@earlyclobber $vdst" in {
145def STRICT_WWM : PseudoInstSI <(outs unknown:$vdst), (ins unknown:$src0)>;
146def STRICT_WQM : PseudoInstSI <(outs unknown:$vdst), (ins unknown:$src0)>;
147}
148
149} // End let hasSideEffects = 0, mayLoad = 0, mayStore = 0, Uses = [EXEC]
150
151def ENTER_STRICT_WWM : SPseudoInstSI <(outs SReg_1:$sdst), (ins i64imm:$src0)> {
152  let Uses = [EXEC];
153  let Defs = [EXEC, SCC];
154  let hasSideEffects = 0;
155  let mayLoad = 0;
156  let mayStore = 0;
157}
158
159def EXIT_STRICT_WWM : SPseudoInstSI <(outs SReg_1:$sdst), (ins SReg_1:$src0)> {
160  let hasSideEffects = 0;
161  let mayLoad = 0;
162  let mayStore = 0;
163}
164
165def ENTER_STRICT_WQM : SPseudoInstSI <(outs SReg_1:$sdst), (ins i64imm:$src0)> {
166  let Uses = [EXEC];
167  let Defs = [EXEC, SCC];
168  let hasSideEffects = 0;
169  let mayLoad = 0;
170  let mayStore = 0;
171}
172
173def EXIT_STRICT_WQM : SPseudoInstSI <(outs SReg_1:$sdst), (ins SReg_1:$src0)> {
174  let hasSideEffects = 0;
175  let mayLoad = 0;
176  let mayStore = 0;
177}
178
179// Invert the exec mask and overwrite the inactive lanes of dst with inactive,
180// restoring it after we're done.
181let Defs = [SCC] in {
182def V_SET_INACTIVE_B32 : VPseudoInstSI <(outs VGPR_32:$vdst),
183  (ins VGPR_32: $src, VSrc_b32:$inactive),
184  [(set i32:$vdst, (int_amdgcn_set_inactive i32:$src, i32:$inactive))]> {
185  let Constraints = "$src = $vdst";
186}
187
188def V_SET_INACTIVE_B64 : VPseudoInstSI <(outs VReg_64:$vdst),
189  (ins VReg_64: $src, VSrc_b64:$inactive),
190  [(set i64:$vdst, (int_amdgcn_set_inactive i64:$src, i64:$inactive))]> {
191  let Constraints = "$src = $vdst";
192}
193} // End Defs = [SCC]
194
195let usesCustomInserter = 1, Defs = [VCC, EXEC] in {
196def V_ADD_U64_PSEUDO : VPseudoInstSI <
197  (outs VReg_64:$vdst), (ins VSrc_b64:$src0, VSrc_b64:$src1),
198  [(set VReg_64:$vdst, (getDivergentFrag<add>.ret i64:$src0, i64:$src1))]
199>;
200
201def V_SUB_U64_PSEUDO : VPseudoInstSI <
202  (outs VReg_64:$vdst), (ins VSrc_b64:$src0, VSrc_b64:$src1),
203  [(set VReg_64:$vdst, (getDivergentFrag<sub>.ret i64:$src0, i64:$src1))]
204>;
205} // End usesCustomInserter = 1, Defs = [VCC, EXEC]
206
207let usesCustomInserter = 1, Defs = [SCC] in {
208def S_ADD_U64_PSEUDO : SPseudoInstSI <
209  (outs SReg_64:$sdst), (ins SSrc_b64:$src0, SSrc_b64:$src1),
210  [(set SReg_64:$sdst, (UniformBinFrag<add> i64:$src0, i64:$src1))]
211>;
212
213def S_SUB_U64_PSEUDO : SPseudoInstSI <
214  (outs SReg_64:$sdst), (ins SSrc_b64:$src0, SSrc_b64:$src1),
215  [(set SReg_64:$sdst, (UniformBinFrag<sub> i64:$src0, i64:$src1))]
216>;
217
218def S_ADD_U64_CO_PSEUDO : SPseudoInstSI <
219  (outs SReg_64:$vdst, VOPDstS64orS32:$sdst), (ins SSrc_b64:$src0, SSrc_b64:$src1)
220>;
221
222def S_SUB_U64_CO_PSEUDO : SPseudoInstSI <
223  (outs SReg_64:$vdst, VOPDstS64orS32:$sdst), (ins SSrc_b64:$src0, SSrc_b64:$src1)
224>;
225
226def S_ADD_CO_PSEUDO : SPseudoInstSI <
227  (outs SReg_32:$sdst, SSrc_i1:$scc_out), (ins SSrc_b32:$src0, SSrc_b32:$src1, SSrc_i1:$scc_in)
228>;
229
230def S_SUB_CO_PSEUDO : SPseudoInstSI <
231  (outs SReg_32:$sdst, SSrc_i1:$scc_out), (ins SSrc_b32:$src0, SSrc_b32:$src1, SSrc_i1:$scc_in)
232>;
233
234def S_UADDO_PSEUDO : SPseudoInstSI <
235  (outs SReg_32:$sdst, SSrc_i1:$scc_out), (ins SSrc_b32:$src0, SSrc_b32:$src1)
236>;
237
238def S_USUBO_PSEUDO : SPseudoInstSI <
239  (outs SReg_32:$sdst, SSrc_i1:$scc_out), (ins SSrc_b32:$src0, SSrc_b32:$src1)
240>;
241
242} // End usesCustomInserter = 1, Defs = [SCC]
243
244let usesCustomInserter = 1 in {
245def GET_GROUPSTATICSIZE : SPseudoInstSI <(outs SReg_32:$sdst), (ins),
246  [(set SReg_32:$sdst, (int_amdgcn_groupstaticsize))]>;
247} // End let usesCustomInserter = 1, SALU = 1
248
249// Wrap an instruction by duplicating it, except for setting isTerminator.
250class WrapTerminatorInst<SOP_Pseudo base_inst> : SPseudoInstSI<
251      base_inst.OutOperandList,
252      base_inst.InOperandList> {
253  let Uses = base_inst.Uses;
254  let Defs = base_inst.Defs;
255  let isTerminator = 1;
256  let isAsCheapAsAMove = base_inst.isAsCheapAsAMove;
257  let hasSideEffects = base_inst.hasSideEffects;
258  let UseNamedOperandTable = base_inst.UseNamedOperandTable;
259  let CodeSize = base_inst.CodeSize;
260  let SchedRW = base_inst.SchedRW;
261}
262
263let WaveSizePredicate = isWave64 in {
264def S_MOV_B64_term : WrapTerminatorInst<S_MOV_B64>;
265def S_XOR_B64_term : WrapTerminatorInst<S_XOR_B64>;
266def S_OR_B64_term : WrapTerminatorInst<S_OR_B64>;
267def S_ANDN2_B64_term : WrapTerminatorInst<S_ANDN2_B64>;
268def S_AND_B64_term : WrapTerminatorInst<S_AND_B64>;
269}
270
271let WaveSizePredicate = isWave32 in {
272def S_MOV_B32_term : WrapTerminatorInst<S_MOV_B32>;
273def S_XOR_B32_term : WrapTerminatorInst<S_XOR_B32>;
274def S_OR_B32_term : WrapTerminatorInst<S_OR_B32>;
275def S_ANDN2_B32_term : WrapTerminatorInst<S_ANDN2_B32>;
276def S_AND_B32_term : WrapTerminatorInst<S_AND_B32>;
277}
278
279
280def WAVE_BARRIER : SPseudoInstSI<(outs), (ins),
281  [(int_amdgcn_wave_barrier)]> {
282  let SchedRW = [];
283  let hasNoSchedulingInfo = 1;
284  let hasSideEffects = 1;
285  let mayLoad = 0;
286  let mayStore = 0;
287  let isConvergent = 1;
288  let FixedSize = 1;
289  let Size = 0;
290}
291
292// SI pseudo instructions. These are used by the CFG structurizer pass
293// and should be lowered to ISA instructions prior to codegen.
294
295let isTerminator = 1 in {
296
297let OtherPredicates = [EnableLateCFGStructurize] in {
298 def SI_NON_UNIFORM_BRCOND_PSEUDO : CFPseudoInstSI <
299  (outs),
300  (ins SReg_1:$vcc, brtarget:$target),
301  [(brcond i1:$vcc, bb:$target)]> {
302    let Size = 12;
303}
304}
305
306def SI_IF: CFPseudoInstSI <
307  (outs SReg_1:$dst), (ins SReg_1:$vcc, brtarget:$target),
308  [(set i1:$dst, (AMDGPUif i1:$vcc, bb:$target))], 1, 1> {
309  let Constraints = "";
310  let Size = 12;
311  let hasSideEffects = 1;
312}
313
314def SI_ELSE : CFPseudoInstSI <
315  (outs SReg_1:$dst),
316  (ins SReg_1:$src, brtarget:$target), [], 1, 1> {
317  let Size = 12;
318  let hasSideEffects = 1;
319}
320
321def SI_WATERFALL_LOOP : CFPseudoInstSI <
322  (outs),
323  (ins brtarget:$target), [], 1> {
324  let Size = 8;
325  let isBranch = 1;
326  let Defs = [];
327}
328
329def SI_LOOP : CFPseudoInstSI <
330  (outs), (ins SReg_1:$saved, brtarget:$target),
331  [(AMDGPUloop i1:$saved, bb:$target)], 1, 1> {
332  let Size = 8;
333  let isBranch = 1;
334  let hasSideEffects = 1;
335}
336
337} // End isTerminator = 1
338
339def SI_END_CF : CFPseudoInstSI <
340  (outs), (ins SReg_1:$saved), [], 1, 1> {
341  let Size = 4;
342  let isAsCheapAsAMove = 1;
343  let isReMaterializable = 1;
344  let hasSideEffects = 1;
345  let mayLoad = 1; // FIXME: Should not need memory flags
346  let mayStore = 1;
347}
348
349def SI_IF_BREAK : CFPseudoInstSI <
350  (outs SReg_1:$dst), (ins SReg_1:$vcc, SReg_1:$src), []> {
351  let Size = 4;
352  let isAsCheapAsAMove = 1;
353  let isReMaterializable = 1;
354}
355
356// Branch to the early termination block of the shader if SCC is 0.
357// This uses SCC from a previous SALU operation, i.e. the update of
358// a mask of live lanes after a kill/demote operation.
359// Only valid in pixel shaders.
360def SI_EARLY_TERMINATE_SCC0 : SPseudoInstSI <(outs), (ins)> {
361  let Uses = [EXEC,SCC];
362}
363
364let Uses = [EXEC] in {
365
366multiclass PseudoInstKill <dag ins> {
367  // Even though this pseudo can usually be expanded without an SCC def, we
368  // conservatively assume that it has an SCC def, both because it is sometimes
369  // required in degenerate cases (when V_CMPX cannot be used due to constant
370  // bus limitations) and because it allows us to avoid having to track SCC
371  // liveness across basic blocks.
372  let Defs = [EXEC,SCC] in
373  def _PSEUDO : PseudoInstSI <(outs), ins> {
374    let isConvergent = 1;
375    let usesCustomInserter = 1;
376  }
377
378  let Defs = [EXEC,SCC] in
379  def _TERMINATOR : SPseudoInstSI <(outs), ins> {
380    let isTerminator = 1;
381  }
382}
383
384defm SI_KILL_I1 : PseudoInstKill <(ins SCSrc_i1:$src, i1imm:$killvalue)>;
385let Defs = [VCC] in
386defm SI_KILL_F32_COND_IMM : PseudoInstKill <(ins VSrc_b32:$src0, i32imm:$src1, i32imm:$cond)>;
387
388let Defs = [EXEC,VCC] in
389def SI_ILLEGAL_COPY : SPseudoInstSI <
390  (outs unknown:$dst), (ins unknown:$src),
391  [], " ; illegal copy $src to $dst">;
392
393} // End Uses = [EXEC], Defs = [EXEC,VCC]
394
395// Branch on undef scc. Used to avoid intermediate copy from
396// IMPLICIT_DEF to SCC.
397def SI_BR_UNDEF : SPseudoInstSI <(outs), (ins sopp_brtarget:$simm16)> {
398  let isTerminator = 1;
399  let usesCustomInserter = 1;
400  let isBranch = 1;
401}
402
403def SI_PS_LIVE : PseudoInstSI <
404  (outs SReg_1:$dst), (ins),
405  [(set i1:$dst, (int_amdgcn_ps_live))]> {
406  let SALU = 1;
407}
408
409let Uses = [EXEC] in {
410def SI_LIVE_MASK : PseudoInstSI <
411  (outs SReg_1:$dst), (ins),
412  [(set i1:$dst, (int_amdgcn_live_mask))]> {
413  let SALU = 1;
414}
415let Defs = [EXEC,SCC] in {
416// Demote: Turn a pixel shader thread into a helper lane.
417def SI_DEMOTE_I1 : SPseudoInstSI <(outs), (ins SCSrc_i1:$src, i1imm:$killvalue)>;
418} // End Defs = [EXEC,SCC]
419} // End Uses = [EXEC]
420
421def SI_MASKED_UNREACHABLE : SPseudoInstSI <(outs), (ins),
422  [(int_amdgcn_unreachable)],
423  "; divergent unreachable"> {
424  let Size = 0;
425  let hasNoSchedulingInfo = 1;
426  let FixedSize = 1;
427}
428
429// Used as an isel pseudo to directly emit initialization with an
430// s_mov_b32 rather than a copy of another initialized
431// register. MachineCSE skips copies, and we don't want to have to
432// fold operands before it runs.
433def SI_INIT_M0 : SPseudoInstSI <(outs), (ins SSrc_b32:$src)> {
434  let Defs = [M0];
435  let usesCustomInserter = 1;
436  let isAsCheapAsAMove = 1;
437  let isReMaterializable = 1;
438}
439
440def SI_INIT_EXEC : SPseudoInstSI <
441  (outs), (ins i64imm:$src),
442  [(int_amdgcn_init_exec (i64 timm:$src))]> {
443  let Defs = [EXEC];
444  let isAsCheapAsAMove = 1;
445}
446
447def SI_INIT_EXEC_FROM_INPUT : SPseudoInstSI <
448  (outs), (ins SSrc_b32:$input, i32imm:$shift),
449  [(int_amdgcn_init_exec_from_input i32:$input, (i32 timm:$shift))]> {
450  let Defs = [EXEC];
451}
452
453// Return for returning shaders to a shader variant epilog.
454def SI_RETURN_TO_EPILOG : SPseudoInstSI <
455  (outs), (ins variable_ops), [(AMDGPUreturn_to_epilog)]> {
456  let isTerminator = 1;
457  let isBarrier = 1;
458  let isReturn = 1;
459  let hasNoSchedulingInfo = 1;
460  let DisableWQM = 1;
461  let FixedSize = 1;
462}
463
464// Return for returning function calls.
465def SI_RETURN : SPseudoInstSI <
466  (outs), (ins), [],
467  "; return"> {
468  let isTerminator = 1;
469  let isBarrier = 1;
470  let isReturn = 1;
471  let SchedRW = [WriteBranch];
472}
473
474// Return for returning function calls without output register.
475//
476// This version is only needed so we can fill in the output register
477// in the custom inserter.
478def SI_CALL_ISEL : SPseudoInstSI <
479  (outs), (ins SSrc_b64:$src0, unknown:$callee),
480  [(AMDGPUcall i64:$src0, tglobaladdr:$callee)]> {
481  let Size = 4;
482  let isCall = 1;
483  let SchedRW = [WriteBranch];
484  let usesCustomInserter = 1;
485  // TODO: Should really base this on the call target
486  let isConvergent = 1;
487}
488
489def : GCNPat<
490  (AMDGPUcall i64:$src0, (i64 0)),
491  (SI_CALL_ISEL $src0, (i64 0))
492>;
493
494// Wrapper around s_swappc_b64 with extra $callee parameter to track
495// the called function after regalloc.
496def SI_CALL : SPseudoInstSI <
497  (outs SReg_64:$dst), (ins SSrc_b64:$src0, unknown:$callee)> {
498  let Size = 4;
499  let isCall = 1;
500  let UseNamedOperandTable = 1;
501  let SchedRW = [WriteBranch];
502  // TODO: Should really base this on the call target
503  let isConvergent = 1;
504}
505
506// Tail call handling pseudo
507def SI_TCRETURN : SPseudoInstSI <(outs),
508  (ins SReg_64:$src0, unknown:$callee, i32imm:$fpdiff),
509  [(AMDGPUtc_return i64:$src0, tglobaladdr:$callee, i32:$fpdiff)]> {
510  let Size = 4;
511  let isCall = 1;
512  let isTerminator = 1;
513  let isReturn = 1;
514  let isBarrier = 1;
515  let UseNamedOperandTable = 1;
516  let SchedRW = [WriteBranch];
517  // TODO: Should really base this on the call target
518  let isConvergent = 1;
519}
520
521// Handle selecting indirect tail calls
522def : GCNPat<
523  (AMDGPUtc_return i64:$src0, (i64 0), (i32 timm:$fpdiff)),
524  (SI_TCRETURN SReg_64:$src0, (i64 0), i32imm:$fpdiff)
525>;
526
527def ADJCALLSTACKUP : SPseudoInstSI<
528  (outs), (ins i32imm:$amt0, i32imm:$amt1),
529  [(callseq_start timm:$amt0, timm:$amt1)],
530  "; adjcallstackup $amt0 $amt1"> {
531  let Size = 8; // Worst case. (s_add_u32 + constant)
532  let FixedSize = 1;
533  let hasSideEffects = 1;
534  let usesCustomInserter = 1;
535  let SchedRW = [WriteSALU];
536  let Defs = [SCC];
537}
538
539def ADJCALLSTACKDOWN : SPseudoInstSI<
540  (outs), (ins i32imm:$amt1, i32imm:$amt2),
541  [(callseq_end timm:$amt1, timm:$amt2)],
542  "; adjcallstackdown $amt1"> {
543  let Size = 8; // Worst case. (s_add_u32 + constant)
544  let hasSideEffects = 1;
545  let usesCustomInserter = 1;
546  let SchedRW = [WriteSALU];
547  let Defs = [SCC];
548}
549
550let Defs = [M0, EXEC, SCC],
551  UseNamedOperandTable = 1 in {
552
553// SI_INDIRECT_SRC/DST are only used by legacy SelectionDAG indirect
554// addressing implementation.
555class SI_INDIRECT_SRC<RegisterClass rc> : VPseudoInstSI <
556  (outs VGPR_32:$vdst),
557  (ins rc:$src, VS_32:$idx, i32imm:$offset)> {
558  let usesCustomInserter = 1;
559}
560
561class SI_INDIRECT_DST<RegisterClass rc> : VPseudoInstSI <
562  (outs rc:$vdst),
563  (ins rc:$src, VS_32:$idx, i32imm:$offset, VGPR_32:$val)> {
564  let Constraints = "$src = $vdst";
565  let usesCustomInserter = 1;
566}
567
568def SI_INDIRECT_SRC_V1 : SI_INDIRECT_SRC<VGPR_32>;
569def SI_INDIRECT_SRC_V2 : SI_INDIRECT_SRC<VReg_64>;
570def SI_INDIRECT_SRC_V4 : SI_INDIRECT_SRC<VReg_128>;
571def SI_INDIRECT_SRC_V8 : SI_INDIRECT_SRC<VReg_256>;
572def SI_INDIRECT_SRC_V16 : SI_INDIRECT_SRC<VReg_512>;
573def SI_INDIRECT_SRC_V32 : SI_INDIRECT_SRC<VReg_1024>;
574
575def SI_INDIRECT_DST_V1 : SI_INDIRECT_DST<VGPR_32>;
576def SI_INDIRECT_DST_V2 : SI_INDIRECT_DST<VReg_64>;
577def SI_INDIRECT_DST_V4 : SI_INDIRECT_DST<VReg_128>;
578def SI_INDIRECT_DST_V8 : SI_INDIRECT_DST<VReg_256>;
579def SI_INDIRECT_DST_V16 : SI_INDIRECT_DST<VReg_512>;
580def SI_INDIRECT_DST_V32 : SI_INDIRECT_DST<VReg_1024>;
581
582} // End Uses = [EXEC], Defs = [M0, EXEC]
583
584// This is a pseudo variant of the v_movreld_b32 instruction in which the
585// vector operand appears only twice, once as def and once as use. Using this
586// pseudo avoids problems with the Two Address instructions pass.
587class INDIRECT_REG_WRITE_MOVREL_pseudo<RegisterClass rc,
588                                RegisterOperand val_ty> : PseudoInstSI <
589  (outs rc:$vdst), (ins rc:$vsrc, val_ty:$val, i32imm:$subreg)> {
590  let Constraints = "$vsrc = $vdst";
591  let Uses = [M0];
592}
593
594class V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<RegisterClass rc> :
595  INDIRECT_REG_WRITE_MOVREL_pseudo<rc, VSrc_b32> {
596  let VALU = 1;
597  let VOP1 = 1;
598  let Uses = [M0, EXEC];
599}
600
601class S_INDIRECT_REG_WRITE_MOVREL_pseudo<RegisterClass rc,
602                                  RegisterOperand val_ty> :
603  INDIRECT_REG_WRITE_MOVREL_pseudo<rc, val_ty> {
604  let SALU = 1;
605  let SOP1 = 1;
606  let Uses = [M0];
607}
608
609class S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<RegisterClass rc> :
610  S_INDIRECT_REG_WRITE_MOVREL_pseudo<rc, SSrc_b32>;
611class S_INDIRECT_REG_WRITE_MOVREL_B64_pseudo<RegisterClass rc> :
612  S_INDIRECT_REG_WRITE_MOVREL_pseudo<rc, SSrc_b64>;
613
614def V_INDIRECT_REG_WRITE_MOVREL_B32_V1 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VGPR_32>;
615def V_INDIRECT_REG_WRITE_MOVREL_B32_V2 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_64>;
616def V_INDIRECT_REG_WRITE_MOVREL_B32_V3 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_96>;
617def V_INDIRECT_REG_WRITE_MOVREL_B32_V4 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_128>;
618def V_INDIRECT_REG_WRITE_MOVREL_B32_V5 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_160>;
619def V_INDIRECT_REG_WRITE_MOVREL_B32_V8 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_256>;
620def V_INDIRECT_REG_WRITE_MOVREL_B32_V16 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_512>;
621def V_INDIRECT_REG_WRITE_MOVREL_B32_V32 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_1024>;
622
623def S_INDIRECT_REG_WRITE_MOVREL_B32_V1 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_32>;
624def S_INDIRECT_REG_WRITE_MOVREL_B32_V2 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_64>;
625def S_INDIRECT_REG_WRITE_MOVREL_B32_V3 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_96>;
626def S_INDIRECT_REG_WRITE_MOVREL_B32_V4 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_128>;
627def S_INDIRECT_REG_WRITE_MOVREL_B32_V5 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_160>;
628def S_INDIRECT_REG_WRITE_MOVREL_B32_V8 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_256>;
629def S_INDIRECT_REG_WRITE_MOVREL_B32_V16 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_512>;
630def S_INDIRECT_REG_WRITE_MOVREL_B32_V32 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_1024>;
631
632def S_INDIRECT_REG_WRITE_MOVREL_B64_V1 : S_INDIRECT_REG_WRITE_MOVREL_B64_pseudo<SReg_64>;
633def S_INDIRECT_REG_WRITE_MOVREL_B64_V2 : S_INDIRECT_REG_WRITE_MOVREL_B64_pseudo<SReg_128>;
634def S_INDIRECT_REG_WRITE_MOVREL_B64_V4 : S_INDIRECT_REG_WRITE_MOVREL_B64_pseudo<SReg_256>;
635def S_INDIRECT_REG_WRITE_MOVREL_B64_V8 : S_INDIRECT_REG_WRITE_MOVREL_B64_pseudo<SReg_512>;
636def S_INDIRECT_REG_WRITE_MOVREL_B64_V16 : S_INDIRECT_REG_WRITE_MOVREL_B64_pseudo<SReg_1024>;
637
638// These variants of V_INDIRECT_REG_READ/WRITE use VGPR indexing. By using these
639// pseudos we avoid spills or copies being inserted within indirect sequences
640// that switch the VGPR indexing mode. Spills to accvgprs could be effected by
641// this mode switching.
642
643class V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<RegisterClass rc> : PseudoInstSI <
644  (outs rc:$vdst), (ins rc:$vsrc, VSrc_b32:$val, SSrc_b32:$idx, i32imm:$subreg)> {
645  let Constraints = "$vsrc = $vdst";
646  let VALU = 1;
647  let Uses = [M0, EXEC];
648  let Defs = [M0];
649}
650
651def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V1 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VGPR_32>;
652def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V2 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_64>;
653def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V3 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_96>;
654def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V4 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_128>;
655def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V5 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_160>;
656def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V8 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_256>;
657def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V16 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_512>;
658def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V32 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_1024>;
659
660class V_INDIRECT_REG_READ_GPR_IDX_pseudo<RegisterClass rc> : PseudoInstSI <
661  (outs VGPR_32:$vdst), (ins rc:$vsrc, SSrc_b32:$idx, i32imm:$subreg)> {
662  let VALU = 1;
663  let Uses = [M0, EXEC];
664  let Defs = [M0];
665}
666
667def V_INDIRECT_REG_READ_GPR_IDX_B32_V1 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VGPR_32>;
668def V_INDIRECT_REG_READ_GPR_IDX_B32_V2 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_64>;
669def V_INDIRECT_REG_READ_GPR_IDX_B32_V3 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_96>;
670def V_INDIRECT_REG_READ_GPR_IDX_B32_V4 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_128>;
671def V_INDIRECT_REG_READ_GPR_IDX_B32_V5 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_160>;
672def V_INDIRECT_REG_READ_GPR_IDX_B32_V8 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_256>;
673def V_INDIRECT_REG_READ_GPR_IDX_B32_V16 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_512>;
674def V_INDIRECT_REG_READ_GPR_IDX_B32_V32 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_1024>;
675
676multiclass SI_SPILL_SGPR <RegisterClass sgpr_class> {
677  let UseNamedOperandTable = 1, SGPRSpill = 1, Uses = [EXEC] in {
678    def _SAVE : PseudoInstSI <
679      (outs),
680      (ins sgpr_class:$data, i32imm:$addr)> {
681      let mayStore = 1;
682      let mayLoad = 0;
683    }
684
685    def _RESTORE : PseudoInstSI <
686      (outs sgpr_class:$data),
687      (ins i32imm:$addr)> {
688      let mayStore = 0;
689      let mayLoad = 1;
690    }
691  } // End UseNamedOperandTable = 1
692}
693
694// You cannot use M0 as the output of v_readlane_b32 instructions or
695// use it in the sdata operand of SMEM instructions. We still need to
696// be able to spill the physical register m0, so allow it for
697// SI_SPILL_32_* instructions.
698defm SI_SPILL_S32  : SI_SPILL_SGPR <SReg_32>;
699defm SI_SPILL_S64  : SI_SPILL_SGPR <SReg_64>;
700defm SI_SPILL_S96  : SI_SPILL_SGPR <SReg_96>;
701defm SI_SPILL_S128 : SI_SPILL_SGPR <SReg_128>;
702defm SI_SPILL_S160 : SI_SPILL_SGPR <SReg_160>;
703defm SI_SPILL_S192 : SI_SPILL_SGPR <SReg_192>;
704defm SI_SPILL_S224 : SI_SPILL_SGPR <SReg_224>;
705defm SI_SPILL_S256 : SI_SPILL_SGPR <SReg_256>;
706defm SI_SPILL_S512 : SI_SPILL_SGPR <SReg_512>;
707defm SI_SPILL_S1024 : SI_SPILL_SGPR <SReg_1024>;
708
709// VGPR or AGPR spill instructions. In case of AGPR spilling a temp register
710// needs to be used and an extra instruction to move between VGPR and AGPR.
711// UsesTmp adds to the total size of an expanded spill in this case.
712multiclass SI_SPILL_VGPR <RegisterClass vgpr_class, bit UsesTmp = 0> {
713  let UseNamedOperandTable = 1, VGPRSpill = 1,
714       SchedRW = [WriteVMEM] in {
715    def _SAVE : VPseudoInstSI <
716      (outs),
717      (ins vgpr_class:$vdata, i32imm:$vaddr,
718           SReg_32:$soffset, i32imm:$offset)> {
719      let mayStore = 1;
720      let mayLoad = 0;
721      // (2 * 4) + (8 * num_subregs) bytes maximum
722      int MaxSize = !add(!shl(!srl(vgpr_class.Size, 5), !add(UsesTmp, 3)), 8);
723      // Size field is unsigned char and cannot fit more.
724      let Size = !if(!le(MaxSize, 256), MaxSize, 252);
725    }
726
727    def _RESTORE : VPseudoInstSI <
728      (outs vgpr_class:$vdata),
729      (ins i32imm:$vaddr,
730           SReg_32:$soffset, i32imm:$offset)> {
731      let mayStore = 0;
732      let mayLoad = 1;
733
734      // (2 * 4) + (8 * num_subregs) bytes maximum
735      int MaxSize = !add(!shl(!srl(vgpr_class.Size, 5), !add(UsesTmp, 3)), 8);
736      // Size field is unsigned char and cannot fit more.
737      let Size = !if(!le(MaxSize, 256), MaxSize, 252);
738    }
739  } // End UseNamedOperandTable = 1, VGPRSpill = 1, SchedRW = [WriteVMEM]
740}
741
742defm SI_SPILL_V32  : SI_SPILL_VGPR <VGPR_32>;
743defm SI_SPILL_V64  : SI_SPILL_VGPR <VReg_64>;
744defm SI_SPILL_V96  : SI_SPILL_VGPR <VReg_96>;
745defm SI_SPILL_V128 : SI_SPILL_VGPR <VReg_128>;
746defm SI_SPILL_V160 : SI_SPILL_VGPR <VReg_160>;
747defm SI_SPILL_V192 : SI_SPILL_VGPR <VReg_192>;
748defm SI_SPILL_V224 : SI_SPILL_VGPR <VReg_224>;
749defm SI_SPILL_V256 : SI_SPILL_VGPR <VReg_256>;
750defm SI_SPILL_V512 : SI_SPILL_VGPR <VReg_512>;
751defm SI_SPILL_V1024 : SI_SPILL_VGPR <VReg_1024>;
752
753defm SI_SPILL_A32  : SI_SPILL_VGPR <AGPR_32, 1>;
754defm SI_SPILL_A64  : SI_SPILL_VGPR <AReg_64, 1>;
755defm SI_SPILL_A96  : SI_SPILL_VGPR <AReg_96, 1>;
756defm SI_SPILL_A128 : SI_SPILL_VGPR <AReg_128, 1>;
757defm SI_SPILL_A160 : SI_SPILL_VGPR <AReg_160, 1>;
758defm SI_SPILL_A192 : SI_SPILL_VGPR <AReg_192, 1>;
759defm SI_SPILL_A224 : SI_SPILL_VGPR <AReg_224, 1>;
760defm SI_SPILL_A256 : SI_SPILL_VGPR <AReg_256, 1>;
761defm SI_SPILL_A512 : SI_SPILL_VGPR <AReg_512, 1>;
762defm SI_SPILL_A1024 : SI_SPILL_VGPR <AReg_1024, 1>;
763
764defm SI_SPILL_AV32  : SI_SPILL_VGPR <AV_32, 1>;
765defm SI_SPILL_AV64  : SI_SPILL_VGPR <AV_64, 1>;
766defm SI_SPILL_AV96  : SI_SPILL_VGPR <AV_96, 1>;
767defm SI_SPILL_AV128 : SI_SPILL_VGPR <AV_128, 1>;
768defm SI_SPILL_AV160 : SI_SPILL_VGPR <AV_160, 1>;
769defm SI_SPILL_AV192 : SI_SPILL_VGPR <AV_192, 1>;
770defm SI_SPILL_AV224 : SI_SPILL_VGPR <AV_224, 1>;
771defm SI_SPILL_AV256 : SI_SPILL_VGPR <AV_256, 1>;
772defm SI_SPILL_AV512 : SI_SPILL_VGPR <AV_512, 1>;
773defm SI_SPILL_AV1024 : SI_SPILL_VGPR <AV_1024, 1>;
774
775def SI_PC_ADD_REL_OFFSET : SPseudoInstSI <
776  (outs SReg_64:$dst),
777  (ins si_ga:$ptr_lo, si_ga:$ptr_hi),
778  [(set SReg_64:$dst,
779      (i64 (SIpc_add_rel_offset tglobaladdr:$ptr_lo, tglobaladdr:$ptr_hi)))]> {
780  let Defs = [SCC];
781}
782
783def : GCNPat <
784  (SIpc_add_rel_offset tglobaladdr:$ptr_lo, 0),
785  (SI_PC_ADD_REL_OFFSET $ptr_lo, (i32 0))
786>;
787
788def : GCNPat<
789  (AMDGPUtrap timm:$trapid),
790  (S_TRAP $trapid)
791>;
792
793def : GCNPat<
794  (AMDGPUelse i1:$src, bb:$target),
795  (SI_ELSE $src, $target)
796>;
797
798def : Pat <
799  (int_amdgcn_kill i1:$src),
800  (SI_KILL_I1_PSEUDO SCSrc_i1:$src, 0)
801>;
802
803def : Pat <
804  (int_amdgcn_kill (i1 (not i1:$src))),
805  (SI_KILL_I1_PSEUDO SCSrc_i1:$src, -1)
806>;
807
808def : Pat <
809  (int_amdgcn_kill (i1 (setcc f32:$src, InlineImmFP32:$imm, cond:$cond))),
810  (SI_KILL_F32_COND_IMM_PSEUDO VSrc_b32:$src, (bitcast_fpimm_to_i32 $imm), (cond_as_i32imm $cond))
811>;
812
813def : Pat <
814  (int_amdgcn_wqm_demote i1:$src),
815  (SI_DEMOTE_I1 SCSrc_i1:$src, 0)
816>;
817
818def : Pat <
819  (int_amdgcn_wqm_demote (i1 (not i1:$src))),
820  (SI_DEMOTE_I1 SCSrc_i1:$src, -1)
821>;
822
823  // TODO: we could add more variants for other types of conditionals
824
825def : Pat <
826  (i64 (int_amdgcn_icmp i1:$src, (i1 0), (i32 33))),
827  (COPY $src) // Return the SGPRs representing i1 src
828>;
829
830def : Pat <
831  (i32 (int_amdgcn_icmp i1:$src, (i1 0), (i32 33))),
832  (COPY $src) // Return the SGPRs representing i1 src
833>;
834
835//===----------------------------------------------------------------------===//
836// VOP1 Patterns
837//===----------------------------------------------------------------------===//
838
839let OtherPredicates = [UnsafeFPMath] in {
840
841// Convert (x - floor(x)) to fract(x)
842def : GCNPat <
843  (f32 (fsub (f32 (VOP3Mods f32:$x, i32:$mods)),
844             (f32 (ffloor (f32 (VOP3Mods f32:$x, i32:$mods)))))),
845  (V_FRACT_F32_e64 $mods, $x)
846>;
847
848// Convert (x + (-floor(x))) to fract(x)
849def : GCNPat <
850  (f64 (fadd (f64 (VOP3Mods f64:$x, i32:$mods)),
851             (f64 (fneg (f64 (ffloor (f64 (VOP3Mods f64:$x, i32:$mods)))))))),
852  (V_FRACT_F64_e64 $mods, $x)
853>;
854
855} // End OtherPredicates = [UnsafeFPMath]
856
857
858// f16_to_fp patterns
859def : GCNPat <
860  (f32 (f16_to_fp i32:$src0)),
861  (V_CVT_F32_F16_e64 SRCMODS.NONE, $src0)
862>;
863
864def : GCNPat <
865  (f32 (f16_to_fp (and_oneuse i32:$src0, 0x7fff))),
866  (V_CVT_F32_F16_e64 SRCMODS.ABS, $src0)
867>;
868
869def : GCNPat <
870  (f32 (f16_to_fp (i32 (srl_oneuse (and_oneuse i32:$src0, 0x7fff0000), (i32 16))))),
871  (V_CVT_F32_F16_e64 SRCMODS.ABS, (i32 (V_LSHRREV_B32_e64 (i32 16), i32:$src0)))
872>;
873
874def : GCNPat <
875  (f32 (f16_to_fp (or_oneuse i32:$src0, 0x8000))),
876  (V_CVT_F32_F16_e64 SRCMODS.NEG_ABS, $src0)
877>;
878
879def : GCNPat <
880  (f32 (f16_to_fp (xor_oneuse i32:$src0, 0x8000))),
881  (V_CVT_F32_F16_e64 SRCMODS.NEG, $src0)
882>;
883
884def : GCNPat <
885  (f64 (fpextend f16:$src)),
886  (V_CVT_F64_F32_e32 (V_CVT_F32_F16_e32 $src))
887>;
888
889// fp_to_fp16 patterns
890def : GCNPat <
891  (i32 (AMDGPUfp_to_f16 (f32 (VOP3Mods f32:$src0, i32:$src0_modifiers)))),
892  (V_CVT_F16_F32_e64 $src0_modifiers, f32:$src0)
893>;
894
895def : GCNPat <
896  (i32 (fp_to_sint f16:$src)),
897  (V_CVT_I32_F32_e32 (V_CVT_F32_F16_e32 VSrc_b32:$src))
898>;
899
900def : GCNPat <
901  (i32 (fp_to_uint f16:$src)),
902  (V_CVT_U32_F32_e32 (V_CVT_F32_F16_e32 VSrc_b32:$src))
903>;
904
905def : GCNPat <
906  (f16 (sint_to_fp i32:$src)),
907  (V_CVT_F16_F32_e32 (V_CVT_F32_I32_e32 VSrc_b32:$src))
908>;
909
910def : GCNPat <
911  (f16 (uint_to_fp i32:$src)),
912  (V_CVT_F16_F32_e32 (V_CVT_F32_U32_e32 VSrc_b32:$src))
913>;
914
915//===----------------------------------------------------------------------===//
916// VOP2 Patterns
917//===----------------------------------------------------------------------===//
918
919// NoMods pattern used for mac. If there are any source modifiers then it's
920// better to select mad instead of mac.
921class FMADPat <ValueType vt, Instruction inst, SDPatternOperator node>
922  : GCNPat <(vt (node (vt (VOP3NoMods vt:$src0)),
923                      (vt (VOP3NoMods vt:$src1)),
924                      (vt (VOP3NoMods vt:$src2)))),
925    (inst SRCMODS.NONE, $src0, SRCMODS.NONE, $src1,
926          SRCMODS.NONE, $src2, DSTCLAMP.NONE, DSTOMOD.NONE)
927>;
928
929// Prefer mac form when there are no modifiers.
930let AddedComplexity = 9 in {
931let OtherPredicates = [HasMadMacF32Insts] in {
932def : FMADPat <f32, V_MAC_F32_e64, fmad>;
933def : FMADPat <f32, V_MAC_F32_e64, AMDGPUfmad_ftz>;
934} // OtherPredicates = [HasMadMacF32Insts]
935
936// Don't allow source modifiers. If there are any source modifiers then it's
937// better to select mad instead of mac.
938let SubtargetPredicate = isGFX6GFX7GFX10,
939    OtherPredicates = [HasMadMacF32Insts, NoFP32Denormals] in
940def : GCNPat <
941      (f32 (fadd (AMDGPUfmul_legacy (VOP3NoMods f32:$src0),
942                                    (VOP3NoMods f32:$src1)),
943                 (VOP3NoMods f32:$src2))),
944      (V_MAC_LEGACY_F32_e64 SRCMODS.NONE, $src0, SRCMODS.NONE, $src1,
945                            SRCMODS.NONE, $src2, DSTCLAMP.NONE, DSTOMOD.NONE)
946>;
947
948// Don't allow source modifiers. If there are any source modifiers then it's
949// better to select fma instead of fmac.
950let SubtargetPredicate = HasFmaLegacy32 in
951def : GCNPat <
952      (f32 (int_amdgcn_fma_legacy (VOP3NoMods f32:$src0),
953                                  (VOP3NoMods f32:$src1),
954                                  (VOP3NoMods f32:$src2))),
955      (V_FMAC_LEGACY_F32_e64 SRCMODS.NONE, $src0, SRCMODS.NONE, $src1,
956                             SRCMODS.NONE, $src2, DSTCLAMP.NONE, DSTOMOD.NONE)
957>;
958
959let SubtargetPredicate = Has16BitInsts in {
960def : FMADPat <f16, V_MAC_F16_e64, fmad>;
961def : FMADPat <f16, V_MAC_F16_e64, AMDGPUfmad_ftz>;
962} // SubtargetPredicate = Has16BitInsts
963} // AddedComplexity = 9
964
965class FMADModsPat<ValueType Ty, Instruction inst, SDPatternOperator mad_opr>
966  : GCNPat<
967  (Ty (mad_opr (Ty (VOP3Mods Ty:$src0, i32:$src0_mod)),
968               (Ty (VOP3Mods Ty:$src1, i32:$src1_mod)),
969               (Ty (VOP3Mods Ty:$src2, i32:$src2_mod)))),
970  (inst $src0_mod, $src0, $src1_mod, $src1,
971  $src2_mod, $src2, DSTCLAMP.NONE, DSTOMOD.NONE)
972>;
973
974let OtherPredicates = [HasMadMacF32Insts] in
975def : FMADModsPat<f32, V_MAD_F32_e64, AMDGPUfmad_ftz>;
976
977let OtherPredicates = [HasMadMacF32Insts, NoFP32Denormals] in
978def : GCNPat <
979      (f32 (fadd (AMDGPUfmul_legacy (VOP3Mods f32:$src0, i32:$src0_mod),
980                                    (VOP3Mods f32:$src1, i32:$src1_mod)),
981                 (VOP3Mods f32:$src2, i32:$src2_mod))),
982      (V_MAD_LEGACY_F32_e64 $src0_mod, $src0, $src1_mod, $src1,
983                        $src2_mod, $src2, DSTCLAMP.NONE, DSTOMOD.NONE)
984>;
985
986let SubtargetPredicate = Has16BitInsts in
987def : FMADModsPat<f16, V_MAD_F16_e64, AMDGPUfmad_ftz>;
988
989class VOPSelectModsPat <ValueType vt> : GCNPat <
990  (vt (select i1:$src0, (VOP3Mods vt:$src1, i32:$src1_mods),
991                        (VOP3Mods vt:$src2, i32:$src2_mods))),
992  (V_CNDMASK_B32_e64 FP32InputMods:$src2_mods, VSrc_b32:$src2,
993                     FP32InputMods:$src1_mods, VSrc_b32:$src1, SSrc_i1:$src0)
994>;
995
996class VOPSelectPat <ValueType vt> : GCNPat <
997  (vt (select i1:$src0, vt:$src1, vt:$src2)),
998  (V_CNDMASK_B32_e64 0, VSrc_b32:$src2, 0, VSrc_b32:$src1, SSrc_i1:$src0)
999>;
1000
1001def : VOPSelectModsPat <i32>;
1002def : VOPSelectModsPat <f32>;
1003def : VOPSelectPat <f16>;
1004def : VOPSelectPat <i16>;
1005
1006let AddedComplexity = 1 in {
1007def : GCNPat <
1008  (i32 (add (i32 (getDivergentFrag<ctpop>.ret i32:$popcnt)), i32:$val)),
1009  (V_BCNT_U32_B32_e64 $popcnt, $val)
1010>;
1011}
1012
1013def : GCNPat <
1014  (i32 (DivergentUnaryFrag<ctpop> i32:$popcnt)),
1015  (V_BCNT_U32_B32_e64 VSrc_b32:$popcnt, (i32 0))
1016>;
1017
1018def : GCNPat <
1019  (i16 (add (i16 (trunc (i32 (getDivergentFrag<ctpop>.ret i32:$popcnt)))), i16:$val)),
1020  (V_BCNT_U32_B32_e64 $popcnt, $val)
1021>;
1022
1023def : GCNPat <
1024  (i64 (DivergentUnaryFrag<ctpop> i64:$src)),
1025  (REG_SEQUENCE VReg_64,
1026    (V_BCNT_U32_B32_e64 (i32 (EXTRACT_SUBREG i64:$src, sub1)),
1027      (i32 (V_BCNT_U32_B32_e64 (i32 (EXTRACT_SUBREG i64:$src, sub0)), (i32 0)))), sub0,
1028      (i32 (V_MOV_B32_e32 (i32 0))), sub1)
1029>;
1030
1031/********** ============================================ **********/
1032/********** Extraction, Insertion, Building and Casting  **********/
1033/********** ============================================ **********/
1034
1035// Special case for 2 element vectors. REQ_SEQUENCE produces better code
1036// than an INSERT_SUBREG.
1037multiclass Insert_Element_V2<RegisterClass RC, ValueType elem_type, ValueType vec_type> {
1038  def : GCNPat <
1039    (insertelt vec_type:$vec, elem_type:$elem, 0),
1040    (REG_SEQUENCE RC, $elem, sub0, (elem_type (EXTRACT_SUBREG $vec, sub1)), sub1)
1041  >;
1042
1043  def : GCNPat <
1044    (insertelt vec_type:$vec, elem_type:$elem, 1),
1045    (REG_SEQUENCE RC, (elem_type (EXTRACT_SUBREG $vec, sub0)), sub0, $elem, sub1)
1046  >;
1047}
1048
1049foreach Index = 0-1 in {
1050  def Extract_Element_v2i32_#Index : Extract_Element <
1051    i32, v2i32, Index, !cast<SubRegIndex>(sub#Index)
1052  >;
1053
1054  def Extract_Element_v2f32_#Index : Extract_Element <
1055    f32, v2f32, Index, !cast<SubRegIndex>(sub#Index)
1056  >;
1057}
1058
1059defm : Insert_Element_V2 <SReg_64, i32, v2i32>;
1060defm : Insert_Element_V2 <SReg_64, f32, v2f32>;
1061
1062foreach Index = 0-2 in {
1063  def Extract_Element_v3i32_#Index : Extract_Element <
1064    i32, v3i32, Index, !cast<SubRegIndex>(sub#Index)
1065  >;
1066  def Insert_Element_v3i32_#Index : Insert_Element <
1067    i32, v3i32, Index, !cast<SubRegIndex>(sub#Index)
1068  >;
1069
1070  def Extract_Element_v3f32_#Index : Extract_Element <
1071    f32, v3f32, Index, !cast<SubRegIndex>(sub#Index)
1072  >;
1073  def Insert_Element_v3f32_#Index : Insert_Element <
1074    f32, v3f32, Index, !cast<SubRegIndex>(sub#Index)
1075  >;
1076}
1077
1078foreach Index = 0-3 in {
1079  def Extract_Element_v4i32_#Index : Extract_Element <
1080    i32, v4i32, Index, !cast<SubRegIndex>(sub#Index)
1081  >;
1082  def Insert_Element_v4i32_#Index : Insert_Element <
1083    i32, v4i32, Index, !cast<SubRegIndex>(sub#Index)
1084  >;
1085
1086  def Extract_Element_v4f32_#Index : Extract_Element <
1087    f32, v4f32, Index, !cast<SubRegIndex>(sub#Index)
1088  >;
1089  def Insert_Element_v4f32_#Index : Insert_Element <
1090    f32, v4f32, Index, !cast<SubRegIndex>(sub#Index)
1091  >;
1092}
1093
1094foreach Index = 0-4 in {
1095  def Extract_Element_v5i32_#Index : Extract_Element <
1096    i32, v5i32, Index, !cast<SubRegIndex>(sub#Index)
1097  >;
1098  def Insert_Element_v5i32_#Index : Insert_Element <
1099    i32, v5i32, Index, !cast<SubRegIndex>(sub#Index)
1100  >;
1101
1102  def Extract_Element_v5f32_#Index : Extract_Element <
1103    f32, v5f32, Index, !cast<SubRegIndex>(sub#Index)
1104  >;
1105  def Insert_Element_v5f32_#Index : Insert_Element <
1106    f32, v5f32, Index, !cast<SubRegIndex>(sub#Index)
1107  >;
1108}
1109
1110foreach Index = 0-5 in {
1111  def Extract_Element_v6i32_#Index : Extract_Element <
1112    i32, v6i32, Index, !cast<SubRegIndex>(sub#Index)
1113  >;
1114  def Insert_Element_v6i32_#Index : Insert_Element <
1115    i32, v6i32, Index, !cast<SubRegIndex>(sub#Index)
1116  >;
1117
1118  def Extract_Element_v6f32_#Index : Extract_Element <
1119    f32, v6f32, Index, !cast<SubRegIndex>(sub#Index)
1120  >;
1121  def Insert_Element_v6f32_#Index : Insert_Element <
1122    f32, v6f32, Index, !cast<SubRegIndex>(sub#Index)
1123  >;
1124}
1125
1126foreach Index = 0-6 in {
1127  def Extract_Element_v7i32_#Index : Extract_Element <
1128    i32, v7i32, Index, !cast<SubRegIndex>(sub#Index)
1129  >;
1130  def Insert_Element_v7i32_#Index : Insert_Element <
1131    i32, v7i32, Index, !cast<SubRegIndex>(sub#Index)
1132  >;
1133
1134  def Extract_Element_v7f32_#Index : Extract_Element <
1135    f32, v7f32, Index, !cast<SubRegIndex>(sub#Index)
1136  >;
1137  def Insert_Element_v7f32_#Index : Insert_Element <
1138    f32, v7f32, Index, !cast<SubRegIndex>(sub#Index)
1139  >;
1140}
1141
1142foreach Index = 0-7 in {
1143  def Extract_Element_v8i32_#Index : Extract_Element <
1144    i32, v8i32, Index, !cast<SubRegIndex>(sub#Index)
1145  >;
1146  def Insert_Element_v8i32_#Index : Insert_Element <
1147    i32, v8i32, Index, !cast<SubRegIndex>(sub#Index)
1148  >;
1149
1150  def Extract_Element_v8f32_#Index : Extract_Element <
1151    f32, v8f32, Index, !cast<SubRegIndex>(sub#Index)
1152  >;
1153  def Insert_Element_v8f32_#Index : Insert_Element <
1154    f32, v8f32, Index, !cast<SubRegIndex>(sub#Index)
1155  >;
1156}
1157
1158foreach Index = 0-15 in {
1159  def Extract_Element_v16i32_#Index : Extract_Element <
1160    i32, v16i32, Index, !cast<SubRegIndex>(sub#Index)
1161  >;
1162  def Insert_Element_v16i32_#Index : Insert_Element <
1163    i32, v16i32, Index, !cast<SubRegIndex>(sub#Index)
1164  >;
1165
1166  def Extract_Element_v16f32_#Index : Extract_Element <
1167    f32, v16f32, Index, !cast<SubRegIndex>(sub#Index)
1168  >;
1169  def Insert_Element_v16f32_#Index : Insert_Element <
1170    f32, v16f32, Index, !cast<SubRegIndex>(sub#Index)
1171  >;
1172}
1173
1174
1175def : Pat <
1176  (extract_subvector v4i16:$vec, (i32 0)),
1177  (v2i16 (EXTRACT_SUBREG v4i16:$vec, sub0))
1178>;
1179
1180def : Pat <
1181  (extract_subvector v4i16:$vec, (i32 2)),
1182  (v2i16 (EXTRACT_SUBREG v4i16:$vec, sub1))
1183>;
1184
1185def : Pat <
1186  (extract_subvector v4f16:$vec, (i32 0)),
1187  (v2f16 (EXTRACT_SUBREG v4f16:$vec, sub0))
1188>;
1189
1190def : Pat <
1191  (extract_subvector v4f16:$vec, (i32 2)),
1192  (v2f16 (EXTRACT_SUBREG v4f16:$vec, sub1))
1193>;
1194
1195def : Pat <
1196  (extract_subvector v8i16:$vec, (i32 0)),
1197  (v4i16 (EXTRACT_SUBREG v8i16:$vec, sub0_sub1))
1198>;
1199
1200def : Pat <
1201  (extract_subvector v8i16:$vec, (i32 4)),
1202  (v4i16 (EXTRACT_SUBREG v8i16:$vec, sub2_sub3))
1203>;
1204
1205def : Pat <
1206  (extract_subvector v8f16:$vec, (i32 0)),
1207  (v4f16 (EXTRACT_SUBREG v8f16:$vec, sub0_sub1))
1208>;
1209
1210def : Pat <
1211  (extract_subvector v8f16:$vec, (i32 4)),
1212  (v4f16 (EXTRACT_SUBREG v8f16:$vec, sub2_sub3))
1213>;
1214
1215foreach Index = 0-31 in {
1216  def Extract_Element_v32i32_#Index : Extract_Element <
1217    i32, v32i32, Index, !cast<SubRegIndex>(sub#Index)
1218  >;
1219
1220  def Insert_Element_v32i32_#Index : Insert_Element <
1221    i32, v32i32, Index, !cast<SubRegIndex>(sub#Index)
1222  >;
1223
1224  def Extract_Element_v32f32_#Index : Extract_Element <
1225    f32, v32f32, Index, !cast<SubRegIndex>(sub#Index)
1226  >;
1227
1228  def Insert_Element_v32f32_#Index : Insert_Element <
1229    f32, v32f32, Index, !cast<SubRegIndex>(sub#Index)
1230  >;
1231}
1232
1233// FIXME: Why do only some of these type combinations for SReg and
1234// VReg?
1235// 16-bit bitcast
1236def : BitConvert <i16, f16, VGPR_32>;
1237def : BitConvert <f16, i16, VGPR_32>;
1238def : BitConvert <i16, f16, SReg_32>;
1239def : BitConvert <f16, i16, SReg_32>;
1240
1241// 32-bit bitcast
1242def : BitConvert <i32, f32, VGPR_32>;
1243def : BitConvert <f32, i32, VGPR_32>;
1244def : BitConvert <i32, f32, SReg_32>;
1245def : BitConvert <f32, i32, SReg_32>;
1246def : BitConvert <v2i16, i32, SReg_32>;
1247def : BitConvert <i32, v2i16, SReg_32>;
1248def : BitConvert <v2f16, i32, SReg_32>;
1249def : BitConvert <i32, v2f16, SReg_32>;
1250def : BitConvert <v2i16, v2f16, SReg_32>;
1251def : BitConvert <v2f16, v2i16, SReg_32>;
1252def : BitConvert <v2f16, f32, SReg_32>;
1253def : BitConvert <f32, v2f16, SReg_32>;
1254def : BitConvert <v2i16, f32, SReg_32>;
1255def : BitConvert <f32, v2i16, SReg_32>;
1256
1257// 64-bit bitcast
1258def : BitConvert <i64, f64, VReg_64>;
1259def : BitConvert <f64, i64, VReg_64>;
1260def : BitConvert <v2i32, v2f32, VReg_64>;
1261def : BitConvert <v2f32, v2i32, VReg_64>;
1262def : BitConvert <i64, v2i32, VReg_64>;
1263def : BitConvert <v2i32, i64, VReg_64>;
1264def : BitConvert <i64, v2f32, VReg_64>;
1265def : BitConvert <v2f32, i64, VReg_64>;
1266def : BitConvert <f64, v2f32, VReg_64>;
1267def : BitConvert <v2f32, f64, VReg_64>;
1268def : BitConvert <f64, v2i32, VReg_64>;
1269def : BitConvert <v2i32, f64, VReg_64>;
1270def : BitConvert <v4i16, v4f16, VReg_64>;
1271def : BitConvert <v4f16, v4i16, VReg_64>;
1272
1273// FIXME: Make SGPR
1274def : BitConvert <v2i32, v4f16, VReg_64>;
1275def : BitConvert <v4f16, v2i32, VReg_64>;
1276def : BitConvert <v2i32, v4f16, VReg_64>;
1277def : BitConvert <v2i32, v4i16, VReg_64>;
1278def : BitConvert <v4i16, v2i32, VReg_64>;
1279def : BitConvert <v2f32, v4f16, VReg_64>;
1280def : BitConvert <v4f16, v2f32, VReg_64>;
1281def : BitConvert <v2f32, v4i16, VReg_64>;
1282def : BitConvert <v4i16, v2f32, VReg_64>;
1283def : BitConvert <v4i16, f64, VReg_64>;
1284def : BitConvert <v4f16, f64, VReg_64>;
1285def : BitConvert <f64, v4i16, VReg_64>;
1286def : BitConvert <f64, v4f16, VReg_64>;
1287def : BitConvert <v4i16, i64, VReg_64>;
1288def : BitConvert <v4f16, i64, VReg_64>;
1289def : BitConvert <i64, v4i16, VReg_64>;
1290def : BitConvert <i64, v4f16, VReg_64>;
1291
1292def : BitConvert <v4i32, v4f32, VReg_128>;
1293def : BitConvert <v4f32, v4i32, VReg_128>;
1294
1295// 96-bit bitcast
1296def : BitConvert <v3i32, v3f32, SGPR_96>;
1297def : BitConvert <v3f32, v3i32, SGPR_96>;
1298
1299// 128-bit bitcast
1300def : BitConvert <v2i64, v4i32, SReg_128>;
1301def : BitConvert <v4i32, v2i64, SReg_128>;
1302def : BitConvert <v2f64, v4f32, VReg_128>;
1303def : BitConvert <v2f64, v4i32, VReg_128>;
1304def : BitConvert <v4f32, v2f64, VReg_128>;
1305def : BitConvert <v4i32, v2f64, VReg_128>;
1306def : BitConvert <v2i64, v2f64, VReg_128>;
1307def : BitConvert <v2f64, v2i64, VReg_128>;
1308def : BitConvert <v4f32, v2i64, VReg_128>;
1309def : BitConvert <v2i64, v4f32, VReg_128>;
1310def : BitConvert <v8i16, v4i32, SReg_128>;
1311def : BitConvert <v4i32, v8i16, SReg_128>;
1312def : BitConvert <v8f16, v4f32, VReg_128>;
1313def : BitConvert <v8f16, v4i32, VReg_128>;
1314def : BitConvert <v4f32, v8f16, VReg_128>;
1315def : BitConvert <v4i32, v8f16, VReg_128>;
1316def : BitConvert <v8i16, v8f16, VReg_128>;
1317def : BitConvert <v8f16, v8i16, VReg_128>;
1318def : BitConvert <v4f32, v8i16, VReg_128>;
1319def : BitConvert <v8i16, v4f32, VReg_128>;
1320def : BitConvert <v8i16, v8f16, SReg_128>;
1321def : BitConvert <v8i16, v2i64, SReg_128>;
1322def : BitConvert <v8i16, v2f64, SReg_128>;
1323def : BitConvert <v8f16, v2i64, SReg_128>;
1324def : BitConvert <v8f16, v2f64, SReg_128>;
1325def : BitConvert <v8f16, v8i16, SReg_128>;
1326def : BitConvert <v2i64, v8i16, SReg_128>;
1327def : BitConvert <v2f64, v8i16, SReg_128>;
1328def : BitConvert <v2i64, v8f16, SReg_128>;
1329def : BitConvert <v2f64, v8f16, SReg_128>;
1330
1331// 160-bit bitcast
1332def : BitConvert <v5i32, v5f32, SReg_160>;
1333def : BitConvert <v5f32, v5i32, SReg_160>;
1334def : BitConvert <v5i32, v5f32, VReg_160>;
1335def : BitConvert <v5f32, v5i32, VReg_160>;
1336
1337// 192-bit bitcast
1338def : BitConvert <v6i32, v6f32, SReg_192>;
1339def : BitConvert <v6f32, v6i32, SReg_192>;
1340def : BitConvert <v6i32, v6f32, VReg_192>;
1341def : BitConvert <v6f32, v6i32, VReg_192>;
1342def : BitConvert <v3i64, v3f64, VReg_192>;
1343def : BitConvert <v3f64, v3i64, VReg_192>;
1344def : BitConvert <v3i64, v6i32, VReg_192>;
1345def : BitConvert <v3i64, v6f32, VReg_192>;
1346def : BitConvert <v3f64, v6i32, VReg_192>;
1347def : BitConvert <v3f64, v6f32, VReg_192>;
1348def : BitConvert <v6i32, v3i64, VReg_192>;
1349def : BitConvert <v6f32, v3i64, VReg_192>;
1350def : BitConvert <v6i32, v3f64, VReg_192>;
1351def : BitConvert <v6f32, v3f64, VReg_192>;
1352
1353// 224-bit bitcast
1354def : BitConvert <v7i32, v7f32, SReg_224>;
1355def : BitConvert <v7f32, v7i32, SReg_224>;
1356def : BitConvert <v7i32, v7f32, VReg_224>;
1357def : BitConvert <v7f32, v7i32, VReg_224>;
1358
1359// 256-bit bitcast
1360def : BitConvert <v8i32, v8f32, SReg_256>;
1361def : BitConvert <v8f32, v8i32, SReg_256>;
1362def : BitConvert <v8i32, v8f32, VReg_256>;
1363def : BitConvert <v8f32, v8i32, VReg_256>;
1364def : BitConvert <v4i64, v4f64, VReg_256>;
1365def : BitConvert <v4f64, v4i64, VReg_256>;
1366def : BitConvert <v4i64, v8i32, VReg_256>;
1367def : BitConvert <v4i64, v8f32, VReg_256>;
1368def : BitConvert <v4f64, v8i32, VReg_256>;
1369def : BitConvert <v4f64, v8f32, VReg_256>;
1370def : BitConvert <v8i32, v4i64, VReg_256>;
1371def : BitConvert <v8f32, v4i64, VReg_256>;
1372def : BitConvert <v8i32, v4f64, VReg_256>;
1373def : BitConvert <v8f32, v4f64, VReg_256>;
1374
1375
1376// 512-bit bitcast
1377def : BitConvert <v16i32, v16f32, VReg_512>;
1378def : BitConvert <v16f32, v16i32, VReg_512>;
1379def : BitConvert <v8i64,  v8f64,  VReg_512>;
1380def : BitConvert <v8f64,  v8i64,  VReg_512>;
1381def : BitConvert <v8i64,  v16i32, VReg_512>;
1382def : BitConvert <v8f64,  v16i32, VReg_512>;
1383def : BitConvert <v16i32, v8i64,  VReg_512>;
1384def : BitConvert <v16i32, v8f64,  VReg_512>;
1385def : BitConvert <v8i64,  v16f32, VReg_512>;
1386def : BitConvert <v8f64,  v16f32, VReg_512>;
1387def : BitConvert <v16f32, v8i64,  VReg_512>;
1388def : BitConvert <v16f32, v8f64,  VReg_512>;
1389
1390// 1024-bit bitcast
1391def : BitConvert <v32i32, v32f32, VReg_1024>;
1392def : BitConvert <v32f32, v32i32, VReg_1024>;
1393def : BitConvert <v16i64, v16f64, VReg_1024>;
1394def : BitConvert <v16f64, v16i64, VReg_1024>;
1395def : BitConvert <v16i64, v32i32, VReg_1024>;
1396def : BitConvert <v32i32, v16i64, VReg_1024>;
1397def : BitConvert <v16f64, v32f32, VReg_1024>;
1398def : BitConvert <v32f32, v16f64, VReg_1024>;
1399def : BitConvert <v16i64, v32f32, VReg_1024>;
1400def : BitConvert <v32i32, v16f64, VReg_1024>;
1401def : BitConvert <v16f64, v32i32, VReg_1024>;
1402def : BitConvert <v32f32, v16i64, VReg_1024>;
1403
1404
1405/********** =================== **********/
1406/********** Src & Dst modifiers **********/
1407/********** =================== **********/
1408
1409
1410// If denormals are not enabled, it only impacts the compare of the
1411// inputs. The output result is not flushed.
1412class ClampPat<Instruction inst, ValueType vt> : GCNPat <
1413  (vt (AMDGPUclamp (VOP3Mods vt:$src0, i32:$src0_modifiers))),
1414  (inst i32:$src0_modifiers, vt:$src0,
1415        i32:$src0_modifiers, vt:$src0, DSTCLAMP.ENABLE, DSTOMOD.NONE)
1416>;
1417
1418def : ClampPat<V_MAX_F32_e64, f32>;
1419def : ClampPat<V_MAX_F64_e64, f64>;
1420def : ClampPat<V_MAX_F16_e64, f16>;
1421
1422let SubtargetPredicate = HasVOP3PInsts in {
1423def : GCNPat <
1424  (v2f16 (AMDGPUclamp (VOP3PMods v2f16:$src0, i32:$src0_modifiers))),
1425  (V_PK_MAX_F16 $src0_modifiers, $src0,
1426                $src0_modifiers, $src0, DSTCLAMP.ENABLE)
1427>;
1428}
1429
1430
1431/********** ================================ **********/
1432/********** Floating point absolute/negative **********/
1433/********** ================================ **********/
1434
1435def : GCNPat <
1436  (UniformUnaryFrag<fneg> (fabs (f32 SReg_32:$src))),
1437  (S_OR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x80000000))) // Set sign bit
1438>;
1439
1440def : GCNPat <
1441  (UniformUnaryFrag<fabs> (f32 SReg_32:$src)),
1442  (S_AND_B32 SReg_32:$src, (S_MOV_B32 (i32 0x7fffffff)))
1443>;
1444
1445def : GCNPat <
1446  (UniformUnaryFrag<fneg> (f32 SReg_32:$src)),
1447  (S_XOR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x80000000)))
1448>;
1449
1450def : GCNPat <
1451  (UniformUnaryFrag<fneg> (f16 SReg_32:$src)),
1452  (S_XOR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x00008000)))
1453>;
1454
1455def : GCNPat <
1456  (UniformUnaryFrag<fabs> (f16 SReg_32:$src)),
1457  (S_AND_B32 SReg_32:$src, (S_MOV_B32 (i32 0x00007fff)))
1458>;
1459
1460def : GCNPat <
1461  (UniformUnaryFrag<fneg> (fabs (f16 SReg_32:$src))),
1462  (S_OR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x00008000))) // Set sign bit
1463>;
1464
1465def : GCNPat <
1466  (UniformUnaryFrag<fneg> (v2f16 SReg_32:$src)),
1467  (S_XOR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x80008000)))
1468>;
1469
1470def : GCNPat <
1471  (UniformUnaryFrag<fabs> (v2f16 SReg_32:$src)),
1472  (S_AND_B32 SReg_32:$src, (S_MOV_B32 (i32 0x7fff7fff)))
1473>;
1474
1475// This is really (fneg (fabs v2f16:$src))
1476//
1477// fabs is not reported as free because there is modifier for it in
1478// VOP3P instructions, so it is turned into the bit op.
1479def : GCNPat <
1480  (UniformUnaryFrag<fneg> (v2f16 (bitconvert (and_oneuse (i32 SReg_32:$src), 0x7fff7fff)))),
1481  (S_OR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x80008000))) // Set sign bit
1482>;
1483
1484def : GCNPat <
1485  (UniformUnaryFrag<fneg> (v2f16 (fabs SReg_32:$src))),
1486  (S_OR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x80008000))) // Set sign bit
1487>;
1488
1489
1490// COPY_TO_REGCLASS is needed to avoid using SCC from S_XOR_B32 instead
1491// of the real value.
1492def : GCNPat <
1493  (UniformUnaryFrag<fneg> (v2f32 SReg_64:$src)),
1494  (v2f32 (REG_SEQUENCE SReg_64,
1495         (f32 (COPY_TO_REGCLASS (S_XOR_B32 (i32 (EXTRACT_SUBREG $src, sub0)),
1496                                           (i32 (S_MOV_B32 (i32 0x80000000)))),
1497                                 SReg_32)), sub0,
1498         (f32 (COPY_TO_REGCLASS (S_XOR_B32 (i32 (EXTRACT_SUBREG $src, sub1)),
1499                                           (i32 (S_MOV_B32 (i32 0x80000000)))),
1500                                 SReg_32)), sub1))
1501>;
1502
1503def : GCNPat <
1504  (UniformUnaryFrag<fabs> (v2f32 SReg_64:$src)),
1505  (v2f32 (REG_SEQUENCE SReg_64,
1506         (f32 (COPY_TO_REGCLASS (S_AND_B32 (i32 (EXTRACT_SUBREG $src, sub0)),
1507                                           (i32 (S_MOV_B32 (i32 0x7fffffff)))),
1508                                 SReg_32)), sub0,
1509         (f32 (COPY_TO_REGCLASS (S_AND_B32 (i32 (EXTRACT_SUBREG $src, sub1)),
1510                                           (i32 (S_MOV_B32 (i32 0x7fffffff)))),
1511                                 SReg_32)), sub1))
1512>;
1513
1514def : GCNPat <
1515  (UniformUnaryFrag<fneg> (fabs (v2f32 SReg_64:$src))),
1516  (v2f32 (REG_SEQUENCE SReg_64,
1517         (f32 (COPY_TO_REGCLASS (S_OR_B32 (i32 (EXTRACT_SUBREG $src, sub0)),
1518                                           (i32 (S_MOV_B32 (i32 0x80000000)))),
1519                                 SReg_32)), sub0,
1520         (f32 (COPY_TO_REGCLASS (S_OR_B32 (i32 (EXTRACT_SUBREG $src, sub1)),
1521                                           (i32 (S_MOV_B32 (i32 0x80000000)))),
1522                                 SReg_32)), sub1))
1523>;
1524
1525// FIXME: Use S_BITSET0_B32/B64?
1526def : GCNPat <
1527  (UniformUnaryFrag<fabs> (f64 SReg_64:$src)),
1528  (REG_SEQUENCE SReg_64,
1529    (i32 (EXTRACT_SUBREG SReg_64:$src, sub0)),
1530    sub0,
1531    (i32 (COPY_TO_REGCLASS (S_AND_B32 (i32 (EXTRACT_SUBREG SReg_64:$src, sub1)),
1532                   (S_MOV_B32 (i32 0x7fffffff))), SReg_32)), // Set sign bit.
1533     sub1)
1534>;
1535
1536def : GCNPat <
1537  (UniformUnaryFrag<fneg> (f64 SReg_64:$src)),
1538  (REG_SEQUENCE SReg_64,
1539    (i32 (EXTRACT_SUBREG SReg_64:$src, sub0)),
1540    sub0,
1541    (i32 (COPY_TO_REGCLASS (S_XOR_B32 (i32 (EXTRACT_SUBREG SReg_64:$src, sub1)),
1542                   (i32 (S_MOV_B32 (i32 0x80000000)))), SReg_32)),
1543    sub1)
1544>;
1545
1546def : GCNPat <
1547  (UniformUnaryFrag<fneg> (fabs (f64 SReg_64:$src))),
1548  (REG_SEQUENCE SReg_64,
1549    (i32 (EXTRACT_SUBREG SReg_64:$src, sub0)),
1550    sub0,
1551    (i32 (COPY_TO_REGCLASS (S_OR_B32 (i32 (EXTRACT_SUBREG SReg_64:$src, sub1)),
1552                  (S_MOV_B32 (i32 0x80000000))), SReg_32)),// Set sign bit.
1553    sub1)
1554>;
1555
1556
1557def : GCNPat <
1558  (fneg (fabs (f32 VGPR_32:$src))),
1559  (V_OR_B32_e64 (S_MOV_B32 (i32 0x80000000)), VGPR_32:$src) // Set sign bit
1560>;
1561
1562def : GCNPat <
1563  (fabs (f32 VGPR_32:$src)),
1564  (V_AND_B32_e64 (S_MOV_B32 (i32 0x7fffffff)), VGPR_32:$src)
1565>;
1566
1567def : GCNPat <
1568  (fneg (f32 VGPR_32:$src)),
1569  (V_XOR_B32_e64 (S_MOV_B32 (i32 0x80000000)), VGPR_32:$src)
1570>;
1571
1572def : GCNPat <
1573  (fabs (f16 VGPR_32:$src)),
1574  (V_AND_B32_e64 (S_MOV_B32 (i32 0x00007fff)), VGPR_32:$src)
1575>;
1576
1577def : GCNPat <
1578  (fneg (f16 VGPR_32:$src)),
1579  (V_XOR_B32_e64 (S_MOV_B32 (i32 0x00008000)), VGPR_32:$src)
1580>;
1581
1582def : GCNPat <
1583  (fneg (fabs (f16 VGPR_32:$src))),
1584  (V_OR_B32_e64 (S_MOV_B32 (i32 0x00008000)), VGPR_32:$src) // Set sign bit
1585>;
1586
1587def : GCNPat <
1588  (fneg (v2f16 VGPR_32:$src)),
1589  (V_XOR_B32_e64 (S_MOV_B32 (i32 0x80008000)), VGPR_32:$src)
1590>;
1591
1592def : GCNPat <
1593  (fabs (v2f16 VGPR_32:$src)),
1594  (V_AND_B32_e64 (S_MOV_B32 (i32 0x7fff7fff)), VGPR_32:$src)
1595>;
1596
1597def : GCNPat <
1598  (fneg (v2f16 (fabs VGPR_32:$src))),
1599  (V_OR_B32_e64 (S_MOV_B32 (i32 0x80008000)), VGPR_32:$src)
1600>;
1601
1602def : GCNPat <
1603  (fabs (f64 VReg_64:$src)),
1604  (REG_SEQUENCE VReg_64,
1605    (i32 (EXTRACT_SUBREG VReg_64:$src, sub0)),
1606    sub0,
1607    (V_AND_B32_e64 (i32 (S_MOV_B32 (i32 0x7fffffff))),
1608        (i32 (EXTRACT_SUBREG VReg_64:$src, sub1))),
1609     sub1)
1610>;
1611
1612def : GCNPat <
1613  (fneg (f64 VReg_64:$src)),
1614  (REG_SEQUENCE VReg_64,
1615    (i32 (EXTRACT_SUBREG VReg_64:$src, sub0)),
1616    sub0,
1617    (V_XOR_B32_e64 (i32 (S_MOV_B32 (i32 0x80000000))),
1618        (i32 (EXTRACT_SUBREG VReg_64:$src, sub1))),
1619    sub1)
1620>;
1621
1622def : GCNPat <
1623  (fneg (fabs (f64 VReg_64:$src))),
1624  (REG_SEQUENCE VReg_64,
1625    (i32 (EXTRACT_SUBREG VReg_64:$src, sub0)),
1626    sub0,
1627    (V_OR_B32_e64 (i32 (S_MOV_B32 (i32 0x80000000))),
1628        (i32 (EXTRACT_SUBREG VReg_64:$src, sub1))),
1629    sub1)
1630>;
1631
1632def : GCNPat <
1633  (getDivergentFrag<fneg>.ret (v2f32 VReg_64:$src)),
1634  (V_PK_ADD_F32 11 /* OP_SEL_1 | NEG_LO | HEG_HI */, VReg_64:$src,
1635                11 /* OP_SEL_1 | NEG_LO | HEG_HI */, 0,
1636                0, 0, 0, 0, 0)
1637> {
1638  let SubtargetPredicate = HasPackedFP32Ops;
1639}
1640
1641def : GCNPat <
1642  (fcopysign f16:$src0, f16:$src1),
1643  (V_BFI_B32_e64 (S_MOV_B32 (i32 0x00007fff)), $src0, $src1)
1644>;
1645
1646def : GCNPat <
1647  (fcopysign f32:$src0, f16:$src1),
1648  (V_BFI_B32_e64 (S_MOV_B32 (i32 0x7fffffff)), $src0,
1649             (V_LSHLREV_B32_e64 (i32 16), $src1))
1650>;
1651
1652def : GCNPat <
1653  (fcopysign f64:$src0, f16:$src1),
1654  (REG_SEQUENCE SReg_64,
1655    (i32 (EXTRACT_SUBREG $src0, sub0)), sub0,
1656    (V_BFI_B32_e64 (S_MOV_B32 (i32 0x7fffffff)), (i32 (EXTRACT_SUBREG $src0, sub1)),
1657               (V_LSHLREV_B32_e64 (i32 16), $src1)), sub1)
1658>;
1659
1660def : GCNPat <
1661  (fcopysign f16:$src0, f32:$src1),
1662  (V_BFI_B32_e64 (S_MOV_B32 (i32 0x00007fff)), $src0,
1663             (V_LSHRREV_B32_e64 (i32 16), $src1))
1664>;
1665
1666def : GCNPat <
1667  (fcopysign f16:$src0, f64:$src1),
1668  (V_BFI_B32_e64 (S_MOV_B32 (i32 0x00007fff)), $src0,
1669             (V_LSHRREV_B32_e64 (i32 16), (EXTRACT_SUBREG $src1, sub1)))
1670>;
1671
1672/********** ================== **********/
1673/********** Immediate Patterns **********/
1674/********** ================== **********/
1675
1676def : GCNPat <
1677  (VGPRImm<(i32 imm)>:$imm),
1678  (V_MOV_B32_e32 imm:$imm)
1679>;
1680
1681def : GCNPat <
1682  (VGPRImm<(f32 fpimm)>:$imm),
1683  (V_MOV_B32_e32 (f32 (bitcast_fpimm_to_i32 $imm)))
1684>;
1685
1686def : GCNPat <
1687  (i32 imm:$imm),
1688  (S_MOV_B32 imm:$imm)
1689>;
1690
1691def : GCNPat <
1692  (VGPRImm<(SIlds tglobaladdr:$ga)>),
1693  (V_MOV_B32_e32 $ga)
1694>;
1695
1696def : GCNPat <
1697  (SIlds tglobaladdr:$ga),
1698  (S_MOV_B32 $ga)
1699>;
1700
1701// FIXME: Workaround for ordering issue with peephole optimizer where
1702// a register class copy interferes with immediate folding.  Should
1703// use s_mov_b32, which can be shrunk to s_movk_i32
1704def : GCNPat <
1705  (VGPRImm<(f16 fpimm)>:$imm),
1706  (V_MOV_B32_e32 (f16 (bitcast_fpimm_to_i32 $imm)))
1707>;
1708
1709def : GCNPat <
1710  (f32 fpimm:$imm),
1711  (S_MOV_B32 (f32 (bitcast_fpimm_to_i32 $imm)))
1712>;
1713
1714def : GCNPat <
1715  (f16 fpimm:$imm),
1716  (S_MOV_B32 (i32 (bitcast_fpimm_to_i32 $imm)))
1717>;
1718
1719def : GCNPat <
1720  (p5 frameindex:$fi),
1721  (V_MOV_B32_e32 (p5 (frameindex_to_targetframeindex $fi)))
1722>;
1723
1724def : GCNPat <
1725  (p5 frameindex:$fi),
1726  (S_MOV_B32 (p5 (frameindex_to_targetframeindex $fi)))
1727>;
1728
1729def : GCNPat <
1730  (i64 InlineImm64:$imm),
1731  (S_MOV_B64 InlineImm64:$imm)
1732>;
1733
1734// XXX - Should this use a s_cmp to set SCC?
1735
1736// Set to sign-extended 64-bit value (true = -1, false = 0)
1737def : GCNPat <
1738  (i1 imm:$imm),
1739  (S_MOV_B64 (i64 (as_i64imm $imm)))
1740> {
1741  let WaveSizePredicate = isWave64;
1742}
1743
1744def : GCNPat <
1745  (i1 imm:$imm),
1746  (S_MOV_B32 (i32 (as_i32imm $imm)))
1747> {
1748  let WaveSizePredicate = isWave32;
1749}
1750
1751def : GCNPat <
1752  (f64 InlineImmFP64:$imm),
1753  (S_MOV_B64 (f64 (bitcast_fpimm_to_i64 InlineImmFP64:$imm)))
1754>;
1755
1756/********** ================== **********/
1757/********** Intrinsic Patterns **********/
1758/********** ================== **********/
1759
1760def : GCNPat <
1761  (f32 (fpow (VOP3Mods f32:$src0, i32:$src0_mods), (VOP3Mods f32:$src1, i32:$src1_mods))),
1762  (V_EXP_F32_e64 SRCMODS.NONE, (V_MUL_LEGACY_F32_e64 $src1_mods, $src1, SRCMODS.NONE, (V_LOG_F32_e64 $src0_mods, $src0), 0, 0))
1763>;
1764
1765def : GCNPat <
1766  (i32 (sext i1:$src0)),
1767  (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
1768                     /*src1mod*/(i32 0), /*src1*/(i32 -1), $src0)
1769>;
1770
1771class Ext32Pat <SDNode ext> : GCNPat <
1772  (i32 (ext i1:$src0)),
1773  (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
1774                     /*src1mod*/(i32 0), /*src1*/(i32 1), $src0)
1775>;
1776
1777def : Ext32Pat <zext>;
1778def : Ext32Pat <anyext>;
1779
1780// The multiplication scales from [0,1) to the unsigned integer range,
1781// rounding down a bit to avoid unwanted overflow.
1782def : GCNPat <
1783  (AMDGPUurecip i32:$src0),
1784  (V_CVT_U32_F32_e32
1785    (V_MUL_F32_e32 (i32 CONST.FP_4294966784),
1786                   (V_RCP_IFLAG_F32_e32 (V_CVT_F32_U32_e32 $src0))))
1787>;
1788
1789//===----------------------------------------------------------------------===//
1790// VOP3 Patterns
1791//===----------------------------------------------------------------------===//
1792
1793def : IMad24Pat<V_MAD_I32_I24_e64, 1>;
1794def : UMad24Pat<V_MAD_U32_U24_e64, 1>;
1795
1796// BFI patterns
1797
1798def BFIImm32 : PatFrag<
1799  (ops node:$x, node:$y, node:$z),
1800  (i32 (DivergentBinFrag<or> (and node:$y, node:$x), (and node:$z, imm))),
1801  [{
1802    auto *X = dyn_cast<ConstantSDNode>(N->getOperand(0)->getOperand(1));
1803    auto *NotX = dyn_cast<ConstantSDNode>(N->getOperand(1)->getOperand(1));
1804    return X && NotX &&
1805      ~(unsigned)X->getZExtValue() == (unsigned)NotX->getZExtValue();
1806  }]
1807>;
1808
1809// Definition from ISA doc:
1810// (y & x) | (z & ~x)
1811def : AMDGPUPat <
1812  (DivergentBinFrag<or> (and i32:$y, i32:$x), (and i32:$z, (not i32:$x))),
1813  (V_BFI_B32_e64 VSrc_b32:$x, VSrc_b32:$y, VSrc_b32:$z)
1814>;
1815
1816// (y & C) | (z & ~C)
1817def : AMDGPUPat <
1818  (BFIImm32 i32:$x, i32:$y, i32:$z),
1819  (V_BFI_B32_e64 VSrc_b32:$x, VSrc_b32:$y, VSrc_b32:$z)
1820>;
1821
1822// 64-bit version
1823def : AMDGPUPat <
1824  (DivergentBinFrag<or> (and i64:$y, i64:$x), (and i64:$z, (not i64:$x))),
1825  (REG_SEQUENCE VReg_64,
1826    (V_BFI_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$x, sub0)),
1827               (i32 (EXTRACT_SUBREG VReg_64:$y, sub0)),
1828               (i32 (EXTRACT_SUBREG VReg_64:$z, sub0))), sub0,
1829    (V_BFI_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$x, sub1)),
1830               (i32 (EXTRACT_SUBREG VReg_64:$y, sub1)),
1831               (i32 (EXTRACT_SUBREG VReg_64:$z, sub1))), sub1)
1832>;
1833
1834// SHA-256 Ch function
1835// z ^ (x & (y ^ z))
1836def : AMDGPUPat <
1837  (DivergentBinFrag<xor> i32:$z, (and i32:$x, (xor i32:$y, i32:$z))),
1838  (V_BFI_B32_e64 VSrc_b32:$x, VSrc_b32:$y, VSrc_b32:$z)
1839>;
1840
1841// 64-bit version
1842def : AMDGPUPat <
1843  (DivergentBinFrag<xor> i64:$z, (and i64:$x, (xor i64:$y, i64:$z))),
1844  (REG_SEQUENCE VReg_64,
1845    (V_BFI_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$x, sub0)),
1846               (i32 (EXTRACT_SUBREG VReg_64:$y, sub0)),
1847               (i32 (EXTRACT_SUBREG VReg_64:$z, sub0))), sub0,
1848    (V_BFI_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$x, sub1)),
1849               (i32 (EXTRACT_SUBREG VReg_64:$y, sub1)),
1850               (i32 (EXTRACT_SUBREG VReg_64:$z, sub1))), sub1)
1851>;
1852
1853def : AMDGPUPat <
1854  (fcopysign f32:$src0, f32:$src1),
1855  (V_BFI_B32_e64 (S_MOV_B32 (i32 0x7fffffff)), $src0, $src1)
1856>;
1857
1858def : AMDGPUPat <
1859  (fcopysign f32:$src0, f64:$src1),
1860  (V_BFI_B32_e64 (S_MOV_B32 (i32 0x7fffffff)), $src0,
1861             (i32 (EXTRACT_SUBREG SReg_64:$src1, sub1)))
1862>;
1863
1864def : AMDGPUPat <
1865  (fcopysign f64:$src0, f64:$src1),
1866  (REG_SEQUENCE SReg_64,
1867    (i32 (EXTRACT_SUBREG $src0, sub0)), sub0,
1868    (V_BFI_B32_e64 (S_MOV_B32 (i32 0x7fffffff)),
1869               (i32 (EXTRACT_SUBREG SReg_64:$src0, sub1)),
1870               (i32 (EXTRACT_SUBREG SReg_64:$src1, sub1))), sub1)
1871>;
1872
1873def : AMDGPUPat <
1874  (fcopysign f64:$src0, f32:$src1),
1875  (REG_SEQUENCE SReg_64,
1876    (i32 (EXTRACT_SUBREG $src0, sub0)), sub0,
1877    (V_BFI_B32_e64 (S_MOV_B32 (i32 0x7fffffff)),
1878               (i32 (EXTRACT_SUBREG SReg_64:$src0, sub1)),
1879               $src1), sub1)
1880>;
1881
1882def : ROTRPattern <V_ALIGNBIT_B32_e64>;
1883
1884def : GCNPat<(i32 (trunc (srl i64:$src0, (and i32:$src1, (i32 31))))),
1885          (V_ALIGNBIT_B32_e64 (i32 (EXTRACT_SUBREG (i64 $src0), sub1)),
1886                          (i32 (EXTRACT_SUBREG (i64 $src0), sub0)), $src1)>;
1887
1888def : GCNPat<(i32 (trunc (srl i64:$src0, (i32 ShiftAmt32Imm:$src1)))),
1889          (V_ALIGNBIT_B32_e64 (i32 (EXTRACT_SUBREG (i64 $src0), sub1)),
1890                          (i32 (EXTRACT_SUBREG (i64 $src0), sub0)), $src1)>;
1891
1892/********** ====================== **********/
1893/**********   Indirect addressing  **********/
1894/********** ====================== **********/
1895
1896multiclass SI_INDIRECT_Pattern <ValueType vt, ValueType eltvt, string VecSize> {
1897  // Extract with offset
1898  def : GCNPat<
1899    (eltvt (extractelt vt:$src, (MOVRELOffset i32:$idx, (i32 imm:$offset)))),
1900    (!cast<Instruction>("SI_INDIRECT_SRC_"#VecSize) $src, $idx, imm:$offset)
1901  >;
1902
1903  // Insert with offset
1904  def : GCNPat<
1905    (insertelt vt:$src, eltvt:$val, (MOVRELOffset i32:$idx, (i32 imm:$offset))),
1906    (!cast<Instruction>("SI_INDIRECT_DST_"#VecSize) $src, $idx, imm:$offset, $val)
1907  >;
1908}
1909
1910defm : SI_INDIRECT_Pattern <v2f32, f32, "V2">;
1911defm : SI_INDIRECT_Pattern <v4f32, f32, "V4">;
1912defm : SI_INDIRECT_Pattern <v8f32, f32, "V8">;
1913defm : SI_INDIRECT_Pattern <v16f32, f32, "V16">;
1914defm : SI_INDIRECT_Pattern <v32f32, f32, "V32">;
1915
1916defm : SI_INDIRECT_Pattern <v2i32, i32, "V2">;
1917defm : SI_INDIRECT_Pattern <v4i32, i32, "V4">;
1918defm : SI_INDIRECT_Pattern <v8i32, i32, "V8">;
1919defm : SI_INDIRECT_Pattern <v16i32, i32, "V16">;
1920defm : SI_INDIRECT_Pattern <v32i32, i32, "V32">;
1921
1922//===----------------------------------------------------------------------===//
1923// SAD Patterns
1924//===----------------------------------------------------------------------===//
1925
1926def : GCNPat <
1927  (add (sub_oneuse (umax i32:$src0, i32:$src1),
1928                   (umin i32:$src0, i32:$src1)),
1929       i32:$src2),
1930  (V_SAD_U32_e64 $src0, $src1, $src2, (i1 0))
1931>;
1932
1933def : GCNPat <
1934  (add (select_oneuse (i1 (setugt i32:$src0, i32:$src1)),
1935                      (sub i32:$src0, i32:$src1),
1936                      (sub i32:$src1, i32:$src0)),
1937       i32:$src2),
1938  (V_SAD_U32_e64 $src0, $src1, $src2, (i1 0))
1939>;
1940
1941//===----------------------------------------------------------------------===//
1942// Conversion Patterns
1943//===----------------------------------------------------------------------===//
1944
1945class UniformSextInreg<ValueType VT> : PatFrag<
1946  (ops node:$src),
1947  (sext_inreg $src, VT),
1948  [{ return !N->isDivergent(); }]>;
1949
1950def : GCNPat<(i32 (UniformSextInreg<i1> i32:$src)),
1951  (S_BFE_I32 i32:$src, (i32 65536))>; // 0 | 1 << 16
1952
1953// Handle sext_inreg in i64
1954def : GCNPat <
1955  (i64 (UniformSextInreg<i1> i64:$src)),
1956  (S_BFE_I64 i64:$src, (i32 0x10000)) // 0 | 1 << 16
1957>;
1958
1959def : GCNPat <
1960  (i16 (UniformSextInreg<i1> i16:$src)),
1961  (S_BFE_I32 $src, (i32 0x00010000)) // 0 | 1 << 16
1962>;
1963
1964def : GCNPat <
1965  (i16 (UniformSextInreg<i8> i16:$src)),
1966  (S_BFE_I32 $src, (i32 0x80000)) // 0 | 8 << 16
1967>;
1968
1969def : GCNPat <
1970  (i64 (UniformSextInreg<i8> i64:$src)),
1971  (S_BFE_I64 i64:$src, (i32 0x80000)) // 0 | 8 << 16
1972>;
1973
1974def : GCNPat <
1975  (i64 (UniformSextInreg<i16> i64:$src)),
1976  (S_BFE_I64 i64:$src, (i32 0x100000)) // 0 | 16 << 16
1977>;
1978
1979def : GCNPat <
1980  (i64 (UniformSextInreg<i32> i64:$src)),
1981  (S_BFE_I64 i64:$src, (i32 0x200000)) // 0 | 32 << 16
1982>;
1983
1984
1985class DivergentSextInreg<ValueType VT> : PatFrag<
1986  (ops node:$src),
1987  (sext_inreg $src, VT),
1988  [{ return N->isDivergent(); }]>;
1989
1990def : GCNPat<(i32 (DivergentSextInreg<i1> i32:$src)),
1991  (V_BFE_I32_e64 i32:$src, (i32 0), (i32 1))>;
1992
1993def : GCNPat <
1994  (i16 (DivergentSextInreg<i1> i16:$src)),
1995  (V_BFE_I32_e64 $src, (i32 0), (i32 1)) // 0 | 1 << 16
1996>;
1997
1998def : GCNPat <
1999  (i16 (DivergentSextInreg<i8> i16:$src)),
2000  (V_BFE_I32_e64 $src, (i32 0), (i32 8)) // 0 | 8 << 16
2001>;
2002
2003def : GCNPat <
2004  (i64 (DivergentSextInreg<i1> i64:$src)),
2005  (REG_SEQUENCE VReg_64,
2006    (V_BFE_I32_e64 (i32 (EXTRACT_SUBREG i64:$src, sub0)), (i32 0), (i32 1)), sub0,
2007    (V_ASHRREV_I32_e32  (i32 31), (V_BFE_I32_e64 (i32 (EXTRACT_SUBREG i64:$src, sub0)), (i32 0), (i32 1))), sub1)
2008>;
2009
2010def : GCNPat <
2011  (i64 (DivergentSextInreg<i8> i64:$src)),
2012  (REG_SEQUENCE VReg_64,
2013    (V_BFE_I32_e64 (i32 (EXTRACT_SUBREG i64:$src, sub0)), (i32 0), (i32 8)/* 0 | 8 << 16 */), sub0,
2014    (V_ASHRREV_I32_e32 (i32 31), (V_BFE_I32_e64 (i32 (EXTRACT_SUBREG i64:$src, sub0)), (i32 0), (i32 8))), sub1)
2015>;
2016
2017def : GCNPat <
2018  (i64 (DivergentSextInreg<i16> i64:$src)),
2019  (REG_SEQUENCE VReg_64,
2020    (V_BFE_I32_e64 (i32 (EXTRACT_SUBREG i64:$src, sub0)), (i32 0), (i32 16)/* 0 | 16 << 16 */), sub0,
2021    (V_ASHRREV_I32_e32 (i32 31), (V_BFE_I32_e64 (i32 (EXTRACT_SUBREG i64:$src, sub0)), (i32 0), (i32 16))), sub1)
2022>;
2023
2024def : GCNPat <
2025  (i64 (DivergentSextInreg<i32> i64:$src)),
2026  (REG_SEQUENCE VReg_64,
2027    (i32 (EXTRACT_SUBREG i64:$src, sub0)), sub0,
2028    (V_ASHRREV_I32_e32 (i32 31), (i32 (EXTRACT_SUBREG i64:$src, sub0))), sub1)
2029>;
2030
2031def : GCNPat <
2032  (i64 (zext i32:$src)),
2033  (REG_SEQUENCE SReg_64, $src, sub0, (S_MOV_B32 (i32 0)), sub1)
2034>;
2035
2036def : GCNPat <
2037  (i64 (anyext i32:$src)),
2038  (REG_SEQUENCE SReg_64, $src, sub0, (i32 (IMPLICIT_DEF)), sub1)
2039>;
2040
2041class ZExt_i64_i1_Pat <SDNode ext> : GCNPat <
2042  (i64 (ext i1:$src)),
2043    (REG_SEQUENCE VReg_64,
2044      (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
2045                         /*src1mod*/(i32 0), /*src1*/(i32 1), $src),
2046      sub0, (S_MOV_B32 (i32 0)), sub1)
2047>;
2048
2049
2050def : ZExt_i64_i1_Pat<zext>;
2051def : ZExt_i64_i1_Pat<anyext>;
2052
2053// FIXME: We need to use COPY_TO_REGCLASS to work-around the fact that
2054// REG_SEQUENCE patterns don't support instructions with multiple outputs.
2055def : GCNPat <
2056  (i64 (sext i32:$src)),
2057    (REG_SEQUENCE SReg_64, $src, sub0,
2058    (i32 (COPY_TO_REGCLASS (S_ASHR_I32 $src, (i32 31)), SReg_32_XM0)), sub1)
2059>;
2060
2061def : GCNPat <
2062  (i64 (sext i1:$src)),
2063  (REG_SEQUENCE VReg_64,
2064    (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
2065                       /*src1mod*/(i32 0), /*src1*/(i32 -1), $src), sub0,
2066    (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
2067                       /*src1mod*/(i32 0), /*src1*/(i32 -1), $src), sub1)
2068>;
2069
2070class FPToI1Pat<Instruction Inst, int KOne, ValueType kone_type, ValueType vt, SDPatternOperator fp_to_int> : GCNPat <
2071  (i1 (fp_to_int (vt (VOP3Mods vt:$src0, i32:$src0_modifiers)))),
2072  (i1 (Inst 0, (kone_type KOne), $src0_modifiers, $src0, DSTCLAMP.NONE))
2073>;
2074
2075def : FPToI1Pat<V_CMP_EQ_F16_e64, CONST.FP16_ONE, i16, f16, fp_to_uint>;
2076def : FPToI1Pat<V_CMP_EQ_F16_e64, CONST.FP16_NEG_ONE, i16, f16, fp_to_sint>;
2077def : FPToI1Pat<V_CMP_EQ_F32_e64, CONST.FP32_ONE, i32, f32, fp_to_uint>;
2078def : FPToI1Pat<V_CMP_EQ_F32_e64, CONST.FP32_NEG_ONE, i32, f32, fp_to_sint>;
2079def : FPToI1Pat<V_CMP_EQ_F64_e64, CONST.FP64_ONE, i64, f64, fp_to_uint>;
2080def : FPToI1Pat<V_CMP_EQ_F64_e64, CONST.FP64_NEG_ONE, i64, f64, fp_to_sint>;
2081
2082// If we need to perform a logical operation on i1 values, we need to
2083// use vector comparisons since there is only one SCC register. Vector
2084// comparisons may write to a pair of SGPRs or a single SGPR, so treat
2085// these as 32 or 64-bit comparisons. When legalizing SGPR copies,
2086// instructions resulting in the copies from SCC to these instructions
2087// will be moved to the VALU.
2088
2089let WaveSizePredicate = isWave64 in {
2090def : GCNPat <
2091  (i1 (and i1:$src0, i1:$src1)),
2092  (S_AND_B64 $src0, $src1)
2093>;
2094
2095def : GCNPat <
2096  (i1 (or i1:$src0, i1:$src1)),
2097  (S_OR_B64 $src0, $src1)
2098>;
2099
2100def : GCNPat <
2101  (i1 (xor i1:$src0, i1:$src1)),
2102  (S_XOR_B64 $src0, $src1)
2103>;
2104
2105def : GCNPat <
2106  (i1 (add i1:$src0, i1:$src1)),
2107  (S_XOR_B64 $src0, $src1)
2108>;
2109
2110def : GCNPat <
2111  (i1 (sub i1:$src0, i1:$src1)),
2112  (S_XOR_B64 $src0, $src1)
2113>;
2114
2115let AddedComplexity = 1 in {
2116def : GCNPat <
2117  (i1 (add i1:$src0, (i1 -1))),
2118  (S_NOT_B64 $src0)
2119>;
2120
2121def : GCNPat <
2122  (i1 (sub i1:$src0, (i1 -1))),
2123  (S_NOT_B64 $src0)
2124>;
2125}
2126} // end isWave64
2127
2128let WaveSizePredicate = isWave32 in {
2129def : GCNPat <
2130  (i1 (and i1:$src0, i1:$src1)),
2131  (S_AND_B32 $src0, $src1)
2132>;
2133
2134def : GCNPat <
2135  (i1 (or i1:$src0, i1:$src1)),
2136  (S_OR_B32 $src0, $src1)
2137>;
2138
2139def : GCNPat <
2140  (i1 (xor i1:$src0, i1:$src1)),
2141  (S_XOR_B32 $src0, $src1)
2142>;
2143
2144def : GCNPat <
2145  (i1 (add i1:$src0, i1:$src1)),
2146  (S_XOR_B32 $src0, $src1)
2147>;
2148
2149def : GCNPat <
2150  (i1 (sub i1:$src0, i1:$src1)),
2151  (S_XOR_B32 $src0, $src1)
2152>;
2153
2154let AddedComplexity = 1 in {
2155def : GCNPat <
2156  (i1 (add i1:$src0, (i1 -1))),
2157  (S_NOT_B32 $src0)
2158>;
2159
2160def : GCNPat <
2161  (i1 (sub i1:$src0, (i1 -1))),
2162  (S_NOT_B32 $src0)
2163>;
2164}
2165} // end isWave32
2166
2167def : GCNPat <
2168  (i32 (DivergentBinFrag<xor> i32:$src0, (i32 -1))),
2169  (V_NOT_B32_e32 $src0)
2170>;
2171
2172def : GCNPat <
2173  (i64 (DivergentBinFrag<xor> i64:$src0, (i64 -1))),
2174    (REG_SEQUENCE VReg_64,
2175      (V_NOT_B32_e32 (i32 (EXTRACT_SUBREG i64:$src0, sub0))), sub0,
2176      (V_NOT_B32_e32 (i32 (EXTRACT_SUBREG i64:$src0, sub1))), sub1
2177    )
2178>;
2179
2180def : GCNPat <
2181  (f16 (sint_to_fp i1:$src)),
2182  (V_CVT_F16_F32_e32 (
2183      V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
2184                        /*src1mod*/(i32 0), /*src1*/(i32 CONST.FP32_NEG_ONE),
2185                        SSrc_i1:$src))
2186>;
2187
2188def : GCNPat <
2189  (f16 (uint_to_fp i1:$src)),
2190  (V_CVT_F16_F32_e32 (
2191      V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
2192                        /*src1mod*/(i32 0), /*src1*/(i32 CONST.FP32_ONE),
2193                        SSrc_i1:$src))
2194>;
2195
2196def : GCNPat <
2197  (f32 (sint_to_fp i1:$src)),
2198  (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
2199                        /*src1mod*/(i32 0), /*src1*/(i32 CONST.FP32_NEG_ONE),
2200                        SSrc_i1:$src)
2201>;
2202
2203def : GCNPat <
2204  (f32 (uint_to_fp i1:$src)),
2205  (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
2206                        /*src1mod*/(i32 0), /*src1*/(i32 CONST.FP32_ONE),
2207                        SSrc_i1:$src)
2208>;
2209
2210def : GCNPat <
2211  (f64 (sint_to_fp i1:$src)),
2212  (V_CVT_F64_I32_e32 (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
2213                                        /*src1mod*/(i32 0), /*src1*/(i32 -1),
2214                                        SSrc_i1:$src))
2215>;
2216
2217def : GCNPat <
2218  (f64 (uint_to_fp i1:$src)),
2219  (V_CVT_F64_U32_e32 (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
2220                                        /*src1mod*/(i32 0), /*src1*/(i32 1),
2221                                        SSrc_i1:$src))
2222>;
2223
2224//===----------------------------------------------------------------------===//
2225// Miscellaneous Patterns
2226//===----------------------------------------------------------------------===//
2227
2228// Eliminate a zero extension from an fp16 operation if it already
2229// zeros the high bits of the 32-bit register.
2230//
2231// This is complicated on gfx9+. Some instructions maintain the legacy
2232// zeroing behavior, but others preserve the high bits. Some have a
2233// control bit to change the behavior. We can't simply say with
2234// certainty what the source behavior is without more context on how
2235// the src is lowered. e.g. fptrunc + fma may be lowered to a
2236// v_fma_mix* instruction which does not zero, or may not.
2237def : GCNPat<
2238  (i32 (zext (i16 (bitconvert fp16_zeros_high_16bits:$src)))),
2239  (COPY VSrc_b16:$src)>;
2240
2241def : GCNPat <
2242  (i32 (trunc i64:$a)),
2243  (EXTRACT_SUBREG $a, sub0)
2244>;
2245
2246def : GCNPat <
2247  (i1 (UniformUnaryFrag<trunc> i32:$a)),
2248  (S_CMP_EQ_U32 (S_AND_B32 (i32 1), $a), (i32 1))
2249>;
2250
2251def : GCNPat <
2252  (i1 (UniformUnaryFrag<trunc> i16:$a)),
2253  (S_CMP_EQ_U32 (S_AND_B32 (i32 1), $a), (i32 1))
2254>;
2255
2256def : GCNPat <
2257  (i1 (UniformUnaryFrag<trunc> i64:$a)),
2258  (S_CMP_EQ_U32 (S_AND_B32 (i32 1),
2259                    (i32 (EXTRACT_SUBREG $a, sub0))), (i32 1))
2260>;
2261
2262def : GCNPat <
2263  (i1 (DivergentUnaryFrag<trunc> i32:$a)),
2264  (V_CMP_EQ_U32_e64 (V_AND_B32_e64 (i32 1), $a), (i32 1))
2265>;
2266
2267def : GCNPat <
2268  (i1 (DivergentUnaryFrag<trunc> i16:$a)),
2269  (V_CMP_EQ_U32_e64 (V_AND_B32_e64 (i32 1), $a), (i32 1))
2270>;
2271
2272def : GCNPat <
2273  (i1 (DivergentUnaryFrag<trunc> i64:$a)),
2274  (V_CMP_EQ_U32_e64 (V_AND_B32_e64 (i32 1),
2275                    (i32 (EXTRACT_SUBREG $a, sub0))), (i32 1))
2276>;
2277
2278def : GCNPat <
2279  (i32 (bswap i32:$a)),
2280  (V_BFI_B32_e64 (S_MOV_B32 (i32 0x00ff00ff)),
2281             (V_ALIGNBIT_B32_e64 VSrc_b32:$a, VSrc_b32:$a, (i32 24)),
2282             (V_ALIGNBIT_B32_e64 VSrc_b32:$a, VSrc_b32:$a, (i32 8)))
2283>;
2284
2285// FIXME: This should have been narrowed to i32 during legalization.
2286// This pattern should also be skipped for GlobalISel
2287def : GCNPat <
2288  (i64 (bswap i64:$a)),
2289  (REG_SEQUENCE VReg_64,
2290  (V_BFI_B32_e64 (S_MOV_B32 (i32 0x00ff00ff)),
2291             (V_ALIGNBIT_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$a, sub1)),
2292                             (i32 (EXTRACT_SUBREG VReg_64:$a, sub1)),
2293                             (i32 24)),
2294             (V_ALIGNBIT_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$a, sub1)),
2295                             (i32 (EXTRACT_SUBREG VReg_64:$a, sub1)),
2296                             (i32 8))),
2297  sub0,
2298  (V_BFI_B32_e64 (S_MOV_B32 (i32 0x00ff00ff)),
2299             (V_ALIGNBIT_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$a, sub0)),
2300                             (i32 (EXTRACT_SUBREG VReg_64:$a, sub0)),
2301                             (i32 24)),
2302             (V_ALIGNBIT_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$a, sub0)),
2303                             (i32 (EXTRACT_SUBREG VReg_64:$a, sub0)),
2304                             (i32 8))),
2305  sub1)
2306>;
2307
2308// FIXME: The AddedComplexity should not be needed, but in GlobalISel
2309// the BFI pattern ends up taking precedence without it.
2310let SubtargetPredicate = isGFX8Plus, AddedComplexity = 1 in {
2311// Magic number: 3 | (2 << 8) | (1 << 16) | (0 << 24)
2312//
2313// My reading of the manual suggests we should be using src0 for the
2314// register value, but this is what seems to work.
2315def : GCNPat <
2316  (i32 (bswap i32:$a)),
2317  (V_PERM_B32_e64 (i32 0), VSrc_b32:$a, (S_MOV_B32 (i32 0x00010203)))
2318>;
2319
2320// FIXME: This should have been narrowed to i32 during legalization.
2321// This pattern should also be skipped for GlobalISel
2322def : GCNPat <
2323  (i64 (bswap i64:$a)),
2324  (REG_SEQUENCE VReg_64,
2325  (V_PERM_B32_e64  (i32 0), (EXTRACT_SUBREG VReg_64:$a, sub1),
2326              (S_MOV_B32 (i32 0x00010203))),
2327  sub0,
2328  (V_PERM_B32_e64  (i32 0), (EXTRACT_SUBREG VReg_64:$a, sub0),
2329              (S_MOV_B32 (i32 0x00010203))),
2330  sub1)
2331>;
2332
2333// Magic number: 1 | (0 << 8) | (12 << 16) | (12 << 24)
2334// The 12s emit 0s.
2335def : GCNPat <
2336  (i16 (bswap i16:$a)),
2337  (V_PERM_B32_e64  (i32 0), VSrc_b32:$a, (S_MOV_B32 (i32 0x0c0c0001)))
2338>;
2339
2340def : GCNPat <
2341  (i32 (zext (bswap i16:$a))),
2342  (V_PERM_B32_e64  (i32 0), VSrc_b32:$a, (S_MOV_B32 (i32 0x0c0c0001)))
2343>;
2344
2345// Magic number: 1 | (0 << 8) | (3 << 16) | (2 << 24)
2346def : GCNPat <
2347  (v2i16 (bswap v2i16:$a)),
2348  (V_PERM_B32_e64  (i32 0), VSrc_b32:$a, (S_MOV_B32 (i32 0x02030001)))
2349>;
2350
2351}
2352
2353
2354// Prefer selecting to max when legal, but using mul is always valid.
2355let AddedComplexity = -5 in {
2356def : GCNPat<
2357  (fcanonicalize (f16 (VOP3Mods f16:$src, i32:$src_mods))),
2358  (V_MUL_F16_e64 0, (i32 CONST.FP16_ONE), $src_mods, $src)
2359>;
2360
2361def : GCNPat<
2362  (fcanonicalize (f16 (fneg (VOP3Mods f16:$src, i32:$src_mods)))),
2363  (V_MUL_F16_e64 0, (i32 CONST.FP16_NEG_ONE), $src_mods, $src)
2364>;
2365
2366def : GCNPat<
2367  (fcanonicalize (v2f16 (VOP3PMods v2f16:$src, i32:$src_mods))),
2368  (V_PK_MUL_F16 0, (i32 CONST.FP16_ONE), $src_mods, $src, DSTCLAMP.NONE)
2369>;
2370
2371def : GCNPat<
2372  (fcanonicalize (f32 (VOP3Mods f32:$src, i32:$src_mods))),
2373  (V_MUL_F32_e64 0, (i32 CONST.FP32_ONE), $src_mods, $src)
2374>;
2375
2376def : GCNPat<
2377  (fcanonicalize (f32 (fneg (VOP3Mods f32:$src, i32:$src_mods)))),
2378  (V_MUL_F32_e64 0, (i32 CONST.FP32_NEG_ONE), $src_mods, $src)
2379>;
2380
2381// TODO: Handle fneg like other types.
2382def : GCNPat<
2383  (fcanonicalize (f64 (VOP3Mods f64:$src, i32:$src_mods))),
2384  (V_MUL_F64_e64  0, CONST.FP64_ONE, $src_mods, $src)
2385>;
2386} // End AddedComplexity = -5
2387
2388multiclass SelectCanonicalizeAsMax<
2389  list<Predicate> f32_preds = [],
2390  list<Predicate> f64_preds = [],
2391  list<Predicate> f16_preds = []> {
2392  def : GCNPat<
2393    (fcanonicalize (f32 (VOP3Mods f32:$src, i32:$src_mods))),
2394    (V_MAX_F32_e64 $src_mods, $src, $src_mods, $src)> {
2395    let OtherPredicates = f32_preds;
2396  }
2397
2398  def : GCNPat<
2399    (fcanonicalize (f64 (VOP3Mods f64:$src, i32:$src_mods))),
2400    (V_MAX_F64_e64  $src_mods, $src, $src_mods, $src)> {
2401    let OtherPredicates = f64_preds;
2402  }
2403
2404  def : GCNPat<
2405    (fcanonicalize (f16 (VOP3Mods f16:$src, i32:$src_mods))),
2406    (V_MAX_F16_e64 $src_mods, $src, $src_mods, $src, 0, 0)> {
2407    // FIXME: Should have 16-bit inst subtarget predicate
2408    let OtherPredicates = f16_preds;
2409  }
2410
2411  def : GCNPat<
2412    (fcanonicalize (v2f16 (VOP3PMods v2f16:$src, i32:$src_mods))),
2413    (V_PK_MAX_F16 $src_mods, $src, $src_mods, $src, DSTCLAMP.NONE)> {
2414    // FIXME: Should have VOP3P subtarget predicate
2415    let OtherPredicates = f16_preds;
2416  }
2417}
2418
2419// On pre-gfx9 targets, v_max_*/v_min_* did not respect the denormal
2420// mode, and would never flush. For f64, it's faster to do implement
2421// this with a max. For f16/f32 it's a wash, but prefer max when
2422// valid.
2423//
2424// FIXME: Lowering f32/f16 with max is worse since we can use a
2425// smaller encoding if the input is fneg'd. It also adds an extra
2426// register use.
2427let SubtargetPredicate = HasMinMaxDenormModes in {
2428  defm : SelectCanonicalizeAsMax<[], [], []>;
2429} // End SubtargetPredicate = HasMinMaxDenormModes
2430
2431let SubtargetPredicate = NotHasMinMaxDenormModes in {
2432  // Use the max lowering if we don't need to flush.
2433
2434  // FIXME: We don't do use this for f32 as a workaround for the
2435  // library being compiled with the default ieee mode, but
2436  // potentially being called from flushing kernels. Really we should
2437  // not be mixing code expecting different default FP modes, but mul
2438  // works in any FP environment.
2439  defm : SelectCanonicalizeAsMax<[FalsePredicate], [FP64Denormals], [FP16Denormals]>;
2440} // End SubtargetPredicate = NotHasMinMaxDenormModes
2441
2442
2443let OtherPredicates = [HasDLInsts] in {
2444// Don't allow source modifiers. If there are any source modifiers then it's
2445// better to select fma instead of fmac.
2446def : GCNPat <
2447  (fma (f32 (VOP3NoMods f32:$src0)),
2448       (f32 (VOP3NoMods f32:$src1)),
2449       (f32 (VOP3NoMods f32:$src2))),
2450  (V_FMAC_F32_e64 SRCMODS.NONE, $src0, SRCMODS.NONE, $src1,
2451                  SRCMODS.NONE, $src2)
2452>;
2453} // End OtherPredicates = [HasDLInsts]
2454
2455let SubtargetPredicate = isGFX10Plus in
2456// Don't allow source modifiers. If there are any source modifiers then it's
2457// better to select fma instead of fmac.
2458def : GCNPat <
2459  (fma (f16 (VOP3NoMods f32:$src0)),
2460       (f16 (VOP3NoMods f32:$src1)),
2461       (f16 (VOP3NoMods f32:$src2))),
2462  (V_FMAC_F16_e64 SRCMODS.NONE, $src0, SRCMODS.NONE, $src1,
2463                  SRCMODS.NONE, $src2)
2464>;
2465
2466let SubtargetPredicate = isGFX90APlus in
2467// Don't allow source modifiers. If there are any source modifiers then it's
2468// better to select fma instead of fmac.
2469def : GCNPat <
2470  (fma (f64 (VOP3NoMods f64:$src0)),
2471       (f64 (VOP3NoMods f64:$src1)),
2472       (f64 (VOP3NoMods f64:$src2))),
2473  (V_FMAC_F64_e64 SRCMODS.NONE, $src0, SRCMODS.NONE, $src1,
2474                  SRCMODS.NONE, $src2)
2475>;
2476
2477// COPY is workaround tablegen bug from multiple outputs
2478// from S_LSHL_B32's multiple outputs from implicit scc def.
2479def : GCNPat <
2480  (v2i16 (UniformBinFrag<build_vector> (i16 0), (i16 SReg_32:$src1))),
2481  (S_LSHL_B32 SReg_32:$src1, (i16 16))
2482>;
2483
2484def : GCNPat <
2485  (v2i16 (DivergentBinFrag<build_vector> (i16 0), (i16 SReg_32:$src1))),
2486  (v2i16 (V_LSHLREV_B32_e64 (i16 16), SReg_32:$src1))
2487>;
2488
2489
2490def : GCNPat <
2491  (v2i16 (UniformBinFrag<build_vector> (i16 SReg_32:$src1), (i16 0))),
2492  (S_AND_B32 (S_MOV_B32 (i32 0xffff)), SReg_32:$src1)
2493>;
2494
2495def : GCNPat <
2496  (v2i16 (DivergentBinFrag<build_vector> (i16 SReg_32:$src1), (i16 0))),
2497  (v2i16 (V_AND_B32_e64 (i32 (V_MOV_B32_e32 (i32 0xffff))), SReg_32:$src1))
2498>;
2499
2500def : GCNPat <
2501  (v2f16 (UniformBinFrag<build_vector> (f16 SReg_32:$src1), (f16 FP_ZERO))),
2502  (S_AND_B32 (S_MOV_B32 (i32 0xffff)), SReg_32:$src1)
2503>;
2504
2505def : GCNPat <
2506  (v2f16 (DivergentBinFrag<build_vector> (f16 SReg_32:$src1), (f16 FP_ZERO))),
2507  (v2f16 (V_AND_B32_e64 (i32 (V_MOV_B32_e32 (i32 0xffff))), SReg_32:$src1))
2508>;
2509
2510def : GCNPat <
2511  (v2i16 (build_vector (i16 SReg_32:$src0), (i16 undef))),
2512  (COPY_TO_REGCLASS SReg_32:$src0, SReg_32)
2513>;
2514
2515def : GCNPat <
2516  (v2i16 (build_vector (i16 VGPR_32:$src0), (i16 undef))),
2517  (COPY_TO_REGCLASS VGPR_32:$src0, VGPR_32)
2518>;
2519
2520def : GCNPat <
2521  (v2f16 (build_vector f16:$src0, (f16 undef))),
2522  (COPY $src0)
2523>;
2524
2525def : GCNPat <
2526  (v2i16 (UniformBinFrag<build_vector> (i16 undef), (i16 SReg_32:$src1))),
2527  (S_LSHL_B32 SReg_32:$src1, (i32 16))
2528>;
2529
2530def : GCNPat <
2531  (v2i16 (DivergentBinFrag<build_vector> (i16 undef), (i16 SReg_32:$src1))),
2532  (v2i16 (V_LSHLREV_B32_e64 (i32 16), SReg_32:$src1))
2533>;
2534
2535
2536def : GCNPat <
2537  (v2f16 (UniformBinFrag<build_vector> (f16 undef), (f16 SReg_32:$src1))),
2538  (S_LSHL_B32 SReg_32:$src1, (i32 16))
2539>;
2540
2541def : GCNPat <
2542  (v2f16 (DivergentBinFrag<build_vector> (f16 undef), (f16 SReg_32:$src1))),
2543  (v2f16 (V_LSHLREV_B32_e64 (i32 16), SReg_32:$src1))
2544>;
2545
2546let SubtargetPredicate = HasVOP3PInsts in {
2547def : GCNPat <
2548  (v2i16 (UniformBinFrag<build_vector> (i16 SReg_32:$src0), (i16 SReg_32:$src1))),
2549  (S_PACK_LL_B32_B16 SReg_32:$src0, SReg_32:$src1)
2550>;
2551
2552def : GCNPat <
2553  (v2i16 (DivergentBinFrag<build_vector> (i16 SReg_32:$src0), (i16 SReg_32:$src1))),
2554  (v2i16 (V_LSHL_OR_B32_e64 $src1, (i32 16), (i32 (V_AND_B32_e64 (i32 (V_MOV_B32_e32 (i32 0xffff))), $src0))))
2555>;
2556
2557// With multiple uses of the shift, this will duplicate the shift and
2558// increase register pressure.
2559def : GCNPat <
2560  (v2i16 (UniformBinFrag<build_vector> (i16 SReg_32:$src0), (i16 (trunc (srl_oneuse SReg_32:$src1, (i32 16)))))),
2561  (v2i16 (S_PACK_LH_B32_B16 SReg_32:$src0, SReg_32:$src1))
2562>;
2563
2564def : GCNPat <
2565  (v2i16 (DivergentBinFrag<build_vector> (i16 SReg_32:$src0), (i16 (trunc (srl_oneuse SReg_32:$src1, (i32 16)))))),
2566  (v2i16 (V_BFI_B32_e64 (i32 (V_MOV_B32_e32 (i32 0xffff))), SReg_32:$src0, SReg_32:$src1))
2567>;
2568
2569
2570def : GCNPat <
2571  (v2i16 (UniformBinFrag<build_vector> (i16 (trunc (srl_oneuse SReg_32:$src0, (i32 16)))),
2572                       (i16 (trunc (srl_oneuse SReg_32:$src1, (i32 16)))))),
2573  (S_PACK_HH_B32_B16 SReg_32:$src0, SReg_32:$src1)
2574>;
2575
2576def : GCNPat <
2577  (v2i16 (DivergentBinFrag<build_vector> (i16 (trunc (srl_oneuse SReg_32:$src0, (i32 16)))),
2578                       (i16 (trunc (srl_oneuse SReg_32:$src1, (i32 16)))))),
2579  (v2i16 (V_AND_OR_B32_e64 SReg_32:$src1, (i32 (V_MOV_B32_e32 (i32 0xffff0000))), (i32 (V_LSHRREV_B32_e64 (i32 16), SReg_32:$src0))))
2580>;
2581
2582def : GCNPat <
2583  (v2f16 (UniformBinFrag<build_vector> (f16 SReg_32:$src0), (f16 SReg_32:$src1))),
2584  (S_PACK_LL_B32_B16 SReg_32:$src0, SReg_32:$src1)
2585>;
2586
2587def : GCNPat <
2588  (v2f16 (DivergentBinFrag<build_vector> (f16 SReg_32:$src0), (f16 SReg_32:$src1))),
2589  (v2f16 (V_LSHL_OR_B32_e64 SReg_32:$src1, (i32 16), (i32 (V_AND_B32_e64 (i32 (V_MOV_B32_e32 (i32 0xffff))), SReg_32:$src0))))
2590>;
2591
2592
2593def : GCNPat <
2594  (v2f16 (is_canonicalized<build_vector> (f16 (VOP3Mods (f16 VGPR_32:$src0), i32:$src0_mods)),
2595                                         (f16 (VOP3Mods (f16 VGPR_32:$src1), i32:$src1_mods)))),
2596  (V_PACK_B32_F16_e64 $src0_mods, VGPR_32:$src0, $src1_mods, VGPR_32:$src1)
2597>;
2598} // End SubtargetPredicate = HasVOP3PInsts
2599
2600def : GCNPat <
2601  (v2f16 (scalar_to_vector f16:$src0)),
2602  (COPY $src0)
2603>;
2604
2605def : GCNPat <
2606  (v2i16 (scalar_to_vector i16:$src0)),
2607  (COPY $src0)
2608>;
2609
2610def : GCNPat <
2611  (v4i16 (scalar_to_vector i16:$src0)),
2612  (INSERT_SUBREG (IMPLICIT_DEF), $src0, sub0)
2613>;
2614
2615def : GCNPat <
2616  (v4f16 (scalar_to_vector f16:$src0)),
2617  (INSERT_SUBREG (IMPLICIT_DEF), $src0, sub0)
2618>;
2619
2620def : GCNPat <
2621  (i64 (int_amdgcn_mov_dpp i64:$src, timm:$dpp_ctrl, timm:$row_mask,
2622                           timm:$bank_mask, timm:$bound_ctrl)),
2623  (V_MOV_B64_DPP_PSEUDO VReg_64_Align2:$src, VReg_64_Align2:$src,
2624                        (as_i32timm $dpp_ctrl), (as_i32timm $row_mask),
2625                        (as_i32timm $bank_mask),
2626                        (as_i1timm $bound_ctrl))
2627>;
2628
2629def : GCNPat <
2630  (i64 (int_amdgcn_update_dpp i64:$old, i64:$src, timm:$dpp_ctrl, timm:$row_mask,
2631                              timm:$bank_mask, timm:$bound_ctrl)),
2632  (V_MOV_B64_DPP_PSEUDO VReg_64_Align2:$old, VReg_64_Align2:$src, (as_i32timm $dpp_ctrl),
2633                        (as_i32timm $row_mask), (as_i32timm $bank_mask),
2634                        (as_i1timm $bound_ctrl))
2635>;
2636
2637//===----------------------------------------------------------------------===//
2638// Fract Patterns
2639//===----------------------------------------------------------------------===//
2640
2641let SubtargetPredicate = isGFX6 in {
2642
2643// V_FRACT is buggy on SI, so the F32 version is never used and (x-floor(x)) is
2644// used instead. However, SI doesn't have V_FLOOR_F64, so the most efficient
2645// way to implement it is using V_FRACT_F64.
2646// The workaround for the V_FRACT bug is:
2647//    fract(x) = isnan(x) ? x : min(V_FRACT(x), 0.99999999999999999)
2648
2649// Convert floor(x) to (x - fract(x))
2650
2651// Don't bother handling this for GlobalISel, it's handled during
2652// lowering.
2653//
2654// FIXME: DAG should also custom lower this.
2655def : GCNPat <
2656  (f64 (ffloor (f64 (VOP3Mods f64:$x, i32:$mods)))),
2657  (V_ADD_F64_e64
2658      $mods,
2659      $x,
2660      SRCMODS.NEG,
2661      (V_CNDMASK_B64_PSEUDO
2662         (V_MIN_F64_e64
2663             SRCMODS.NONE,
2664             (V_FRACT_F64_e64 $mods, $x),
2665             SRCMODS.NONE,
2666             (V_MOV_B64_PSEUDO 0x3fefffffffffffff)),
2667         $x,
2668         (V_CMP_CLASS_F64_e64 SRCMODS.NONE, $x, (i32 3 /*NaN*/))))
2669>;
2670
2671} // End SubtargetPredicates = isGFX6
2672
2673//============================================================================//
2674// Miscellaneous Optimization Patterns
2675//============================================================================//
2676
2677// Undo sub x, c -> add x, -c canonicalization since c is more likely
2678// an inline immediate than -c.
2679// TODO: Also do for 64-bit.
2680def : GCNPat<
2681  (add i32:$src0, (i32 NegSubInlineConst32:$src1)),
2682  (S_SUB_I32 SReg_32:$src0, NegSubInlineConst32:$src1)
2683>;
2684
2685def : GCNPat<
2686  (add i32:$src0, (i32 NegSubInlineConst32:$src1)),
2687  (V_SUB_U32_e64 VS_32:$src0, NegSubInlineConst32:$src1)> {
2688  let SubtargetPredicate = HasAddNoCarryInsts;
2689}
2690
2691def : GCNPat<
2692  (add i32:$src0, (i32 NegSubInlineConst32:$src1)),
2693  (V_SUB_CO_U32_e64 VS_32:$src0, NegSubInlineConst32:$src1)> {
2694  let SubtargetPredicate = NotHasAddNoCarryInsts;
2695}
2696
2697
2698// Avoid pointlessly materializing a constant in VGPR.
2699// FIXME: Should also do this for readlane, but tablegen crashes on
2700// the ignored src1.
2701def : GCNPat<
2702  (int_amdgcn_readfirstlane (i32 imm:$src)),
2703  (S_MOV_B32 SReg_32:$src)
2704>;
2705
2706multiclass BFMPatterns <ValueType vt, InstSI BFM, InstSI MOV> {
2707  def : GCNPat <
2708    (vt (shl (vt (add (vt (shl 1, vt:$a)), -1)), vt:$b)),
2709    (BFM $a, $b)
2710  >;
2711
2712  def : GCNPat <
2713    (vt (add (vt (shl 1, vt:$a)), -1)),
2714    (BFM $a, (MOV (i32 0)))
2715  >;
2716}
2717
2718defm : BFMPatterns <i32, S_BFM_B32, S_MOV_B32>;
2719// FIXME: defm : BFMPatterns <i64, S_BFM_B64, S_MOV_B64>;
2720
2721// Bitfield extract patterns
2722
2723def IMMZeroBasedBitfieldMask : ImmLeaf <i32, [{
2724  return isMask_32(Imm);
2725}]>;
2726
2727def IMMPopCount : SDNodeXForm<imm, [{
2728  return CurDAG->getTargetConstant(countPopulation(N->getZExtValue()), SDLoc(N),
2729                                   MVT::i32);
2730}]>;
2731
2732def : AMDGPUPat <
2733  (DivergentBinFrag<and> (i32 (srl i32:$src, i32:$rshift)),
2734                         IMMZeroBasedBitfieldMask:$mask),
2735  (V_BFE_U32_e64 $src, $rshift, (i32 (IMMPopCount $mask)))
2736>;
2737
2738// x & ((1 << y) - 1)
2739def : AMDGPUPat <
2740  (DivergentBinFrag<and> i32:$src, (add_oneuse (shl_oneuse 1, i32:$width), -1)),
2741  (V_BFE_U32_e64 $src, (i32 0), $width)
2742>;
2743
2744// x & ~(-1 << y)
2745def : AMDGPUPat <
2746  (DivergentBinFrag<and> i32:$src,
2747                         (xor_oneuse (shl_oneuse -1, i32:$width), -1)),
2748  (V_BFE_U32_e64 $src, (i32 0), $width)
2749>;
2750
2751// x & (-1 >> (bitwidth - y))
2752def : AMDGPUPat <
2753  (DivergentBinFrag<and> i32:$src, (srl_oneuse -1, (sub 32, i32:$width))),
2754  (V_BFE_U32_e64 $src, (i32 0), $width)
2755>;
2756
2757// x << (bitwidth - y) >> (bitwidth - y)
2758def : AMDGPUPat <
2759  (DivergentBinFrag<srl> (shl_oneuse i32:$src, (sub 32, i32:$width)),
2760                         (sub 32, i32:$width)),
2761  (V_BFE_U32_e64 $src, (i32 0), $width)
2762>;
2763
2764def : AMDGPUPat <
2765  (DivergentBinFrag<sra> (shl_oneuse i32:$src, (sub 32, i32:$width)),
2766                         (sub 32, i32:$width)),
2767  (V_BFE_I32_e64 $src, (i32 0), $width)
2768>;
2769
2770// SHA-256 Ma patterns
2771
2772// ((x & z) | (y & (x | z))) -> BFI (XOR x, y), z, y
2773def : AMDGPUPat <
2774  (DivergentBinFrag<or> (and i32:$x, i32:$z),
2775                        (and i32:$y, (or i32:$x, i32:$z))),
2776  (V_BFI_B32_e64 (V_XOR_B32_e64 VSrc_b32:$x, VSrc_b32:$y), VSrc_b32:$z, VSrc_b32:$y)
2777>;
2778
2779def : AMDGPUPat <
2780  (DivergentBinFrag<or> (and i64:$x, i64:$z),
2781                        (and i64:$y, (or i64:$x, i64:$z))),
2782  (REG_SEQUENCE VReg_64,
2783    (V_BFI_B32_e64 (V_XOR_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$x, sub0)),
2784                    (i32 (EXTRACT_SUBREG VReg_64:$y, sub0))),
2785               (i32 (EXTRACT_SUBREG VReg_64:$z, sub0)),
2786               (i32 (EXTRACT_SUBREG VReg_64:$y, sub0))), sub0,
2787    (V_BFI_B32_e64 (V_XOR_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$x, sub1)),
2788                    (i32 (EXTRACT_SUBREG VReg_64:$y, sub1))),
2789               (i32 (EXTRACT_SUBREG VReg_64:$z, sub1)),
2790               (i32 (EXTRACT_SUBREG VReg_64:$y, sub1))), sub1)
2791>;
2792
2793multiclass IntMed3Pat<Instruction med3Inst,
2794                 SDPatternOperator min,
2795                 SDPatternOperator max,
2796                 SDPatternOperator min_oneuse,
2797                 SDPatternOperator max_oneuse> {
2798
2799  // This matches 16 permutations of
2800  // min(max(a, b), max(min(a, b), c))
2801  def : AMDGPUPat <
2802  (min (max_oneuse i32:$src0, i32:$src1),
2803       (max_oneuse (min_oneuse i32:$src0, i32:$src1), i32:$src2)),
2804  (med3Inst VSrc_b32:$src0, VSrc_b32:$src1, VSrc_b32:$src2)
2805>;
2806
2807  // This matches 16 permutations of
2808  // max(min(x, y), min(max(x, y), z))
2809  def : AMDGPUPat <
2810  (max (min_oneuse i32:$src0, i32:$src1),
2811       (min_oneuse (max_oneuse i32:$src0, i32:$src1), i32:$src2)),
2812  (med3Inst VSrc_b32:$src0, VSrc_b32:$src1, VSrc_b32:$src2)
2813>;
2814}
2815
2816defm : IntMed3Pat<V_MED3_I32_e64, smin, smax, smin_oneuse, smax_oneuse>;
2817defm : IntMed3Pat<V_MED3_U32_e64, umin, umax, umin_oneuse, umax_oneuse>;
2818
2819// This matches 16 permutations of
2820// max(min(x, y), min(max(x, y), z))
2821class FPMed3Pat<ValueType vt,
2822                //SDPatternOperator max, SDPatternOperator min,
2823                Instruction med3Inst> : GCNPat<
2824  (fmaxnum_like (fminnum_like_oneuse (VOP3Mods_nnan vt:$src0, i32:$src0_mods),
2825                           (VOP3Mods_nnan vt:$src1, i32:$src1_mods)),
2826           (fminnum_like_oneuse (fmaxnum_like_oneuse (VOP3Mods_nnan vt:$src0, i32:$src0_mods),
2827                                           (VOP3Mods_nnan vt:$src1, i32:$src1_mods)),
2828                           (vt (VOP3Mods_nnan vt:$src2, i32:$src2_mods)))),
2829  (med3Inst $src0_mods, $src0, $src1_mods, $src1, $src2_mods, $src2, DSTCLAMP.NONE, DSTOMOD.NONE)
2830>;
2831
2832class FP16Med3Pat<ValueType vt,
2833                Instruction med3Inst> : GCNPat<
2834  (fmaxnum_like (fminnum_like_oneuse (VOP3Mods_nnan vt:$src0, i32:$src0_mods),
2835                                     (VOP3Mods_nnan vt:$src1, i32:$src1_mods)),
2836           (fminnum_like_oneuse (fmaxnum_like_oneuse (VOP3Mods_nnan vt:$src0, i32:$src0_mods),
2837                                                     (VOP3Mods_nnan vt:$src1, i32:$src1_mods)),
2838                           (vt (VOP3Mods_nnan vt:$src2, i32:$src2_mods)))),
2839  (med3Inst $src0_mods, $src0, $src1_mods, $src1, $src2_mods, $src2, DSTCLAMP.NONE)
2840>;
2841
2842multiclass Int16Med3Pat<Instruction med3Inst,
2843                   SDPatternOperator min,
2844                   SDPatternOperator max,
2845                   SDPatternOperator max_oneuse,
2846                   SDPatternOperator min_oneuse> {
2847  // This matches 16 permutations of
2848  // max(min(x, y), min(max(x, y), z))
2849  def : GCNPat <
2850  (max (min_oneuse i16:$src0, i16:$src1),
2851       (min_oneuse (max_oneuse i16:$src0, i16:$src1), i16:$src2)),
2852  (med3Inst SRCMODS.NONE, VSrc_b16:$src0, SRCMODS.NONE, VSrc_b16:$src1, SRCMODS.NONE, VSrc_b16:$src2, DSTCLAMP.NONE)
2853>;
2854
2855  // This matches 16 permutations of
2856  // min(max(a, b), max(min(a, b), c))
2857  def : GCNPat <
2858  (min (max_oneuse i16:$src0, i16:$src1),
2859      (max_oneuse (min_oneuse i16:$src0, i16:$src1), i16:$src2)),
2860  (med3Inst SRCMODS.NONE, VSrc_b16:$src0, SRCMODS.NONE, VSrc_b16:$src1, SRCMODS.NONE, VSrc_b16:$src2, DSTCLAMP.NONE)
2861>;
2862}
2863
2864def : FPMed3Pat<f32, V_MED3_F32_e64>;
2865
2866let OtherPredicates = [isGFX9Plus] in {
2867def : FP16Med3Pat<f16, V_MED3_F16_e64>;
2868defm : Int16Med3Pat<V_MED3_I16_e64, smin, smax, smax_oneuse, smin_oneuse>;
2869defm : Int16Med3Pat<V_MED3_U16_e64, umin, umax, umax_oneuse, umin_oneuse>;
2870} // End Predicates = [isGFX9Plus]
2871
2872class AMDGPUGenericInstruction : GenericInstruction {
2873  let Namespace = "AMDGPU";
2874}
2875
2876// Convert a wave address to a swizzled vector address (i.e. this is
2877// for copying the stack pointer to a vector address appropriate to
2878// use in the offset field of mubuf instructions).
2879def G_AMDGPU_WAVE_ADDRESS : AMDGPUGenericInstruction {
2880  let OutOperandList = (outs type0:$dst);
2881  let InOperandList = (ins type0:$src);
2882  let hasSideEffects = 0;
2883}
2884
2885// Returns -1 if the input is zero.
2886def G_AMDGPU_FFBH_U32 : AMDGPUGenericInstruction {
2887  let OutOperandList = (outs type0:$dst);
2888  let InOperandList = (ins type1:$src);
2889  let hasSideEffects = 0;
2890}
2891
2892// Returns -1 if the input is zero.
2893def G_AMDGPU_FFBL_B32 : AMDGPUGenericInstruction {
2894  let OutOperandList = (outs type0:$dst);
2895  let InOperandList = (ins type1:$src);
2896  let hasSideEffects = 0;
2897}
2898
2899def G_AMDGPU_RCP_IFLAG : AMDGPUGenericInstruction {
2900  let OutOperandList = (outs type0:$dst);
2901  let InOperandList = (ins type1:$src);
2902  let hasSideEffects = 0;
2903}
2904
2905class BufferLoadGenericInstruction : AMDGPUGenericInstruction {
2906  let OutOperandList = (outs type0:$dst);
2907  let InOperandList = (ins type1:$rsrc, type2:$vindex, type2:$voffset,
2908                           type2:$soffset, untyped_imm_0:$offset,
2909                           untyped_imm_0:$cachepolicy, untyped_imm_0:$idxen);
2910  let hasSideEffects = 0;
2911  let mayLoad = 1;
2912}
2913
2914class TBufferLoadGenericInstruction : AMDGPUGenericInstruction {
2915  let OutOperandList = (outs type0:$dst);
2916  let InOperandList = (ins type1:$rsrc, type2:$vindex, type2:$voffset,
2917                           type2:$soffset, untyped_imm_0:$offset, untyped_imm_0:$format,
2918                           untyped_imm_0:$cachepolicy, untyped_imm_0:$idxen);
2919  let hasSideEffects = 0;
2920  let mayLoad = 1;
2921}
2922
2923def G_AMDGPU_BUFFER_LOAD_UBYTE : BufferLoadGenericInstruction;
2924def G_AMDGPU_BUFFER_LOAD_SBYTE : BufferLoadGenericInstruction;
2925def G_AMDGPU_BUFFER_LOAD_USHORT : BufferLoadGenericInstruction;
2926def G_AMDGPU_BUFFER_LOAD_SSHORT : BufferLoadGenericInstruction;
2927def G_AMDGPU_BUFFER_LOAD : BufferLoadGenericInstruction;
2928def G_AMDGPU_BUFFER_LOAD_FORMAT : BufferLoadGenericInstruction;
2929def G_AMDGPU_BUFFER_LOAD_FORMAT_D16 : BufferLoadGenericInstruction;
2930def G_AMDGPU_TBUFFER_LOAD_FORMAT : TBufferLoadGenericInstruction;
2931def G_AMDGPU_TBUFFER_LOAD_FORMAT_D16 : TBufferLoadGenericInstruction;
2932
2933class BufferStoreGenericInstruction : AMDGPUGenericInstruction {
2934  let OutOperandList = (outs);
2935  let InOperandList = (ins type0:$vdata, type1:$rsrc, type2:$vindex, type2:$voffset,
2936                           type2:$soffset, untyped_imm_0:$offset,
2937                           untyped_imm_0:$cachepolicy, untyped_imm_0:$idxen);
2938  let hasSideEffects = 0;
2939  let mayStore = 1;
2940}
2941
2942class TBufferStoreGenericInstruction : AMDGPUGenericInstruction {
2943  let OutOperandList = (outs);
2944  let InOperandList = (ins type0:$vdata, type1:$rsrc, type2:$vindex, type2:$voffset,
2945                           type2:$soffset, untyped_imm_0:$offset,
2946                           untyped_imm_0:$format,
2947                           untyped_imm_0:$cachepolicy, untyped_imm_0:$idxen);
2948  let hasSideEffects = 0;
2949  let mayStore = 1;
2950}
2951
2952def G_AMDGPU_BUFFER_STORE : BufferStoreGenericInstruction;
2953def G_AMDGPU_BUFFER_STORE_BYTE : BufferStoreGenericInstruction;
2954def G_AMDGPU_BUFFER_STORE_SHORT : BufferStoreGenericInstruction;
2955def G_AMDGPU_BUFFER_STORE_FORMAT : BufferStoreGenericInstruction;
2956def G_AMDGPU_BUFFER_STORE_FORMAT_D16 : BufferStoreGenericInstruction;
2957def G_AMDGPU_TBUFFER_STORE_FORMAT : TBufferStoreGenericInstruction;
2958def G_AMDGPU_TBUFFER_STORE_FORMAT_D16 : TBufferStoreGenericInstruction;
2959
2960def G_AMDGPU_FMIN_LEGACY : AMDGPUGenericInstruction {
2961  let OutOperandList = (outs type0:$dst);
2962  let InOperandList = (ins type0:$src0, type0:$src1);
2963  let hasSideEffects = 0;
2964}
2965
2966def G_AMDGPU_FMAX_LEGACY : AMDGPUGenericInstruction {
2967  let OutOperandList = (outs type0:$dst);
2968  let InOperandList = (ins type0:$src0, type0:$src1);
2969  let hasSideEffects = 0;
2970}
2971
2972foreach N = 0-3 in {
2973def G_AMDGPU_CVT_F32_UBYTE#N : AMDGPUGenericInstruction {
2974  let OutOperandList = (outs type0:$dst);
2975  let InOperandList = (ins type0:$src0);
2976  let hasSideEffects = 0;
2977}
2978}
2979
2980def G_AMDGPU_CVT_PK_I16_I32 : AMDGPUGenericInstruction {
2981  let OutOperandList = (outs type0:$dst);
2982  let InOperandList = (ins type0:$src0, type0:$src1);
2983  let hasSideEffects = 0;
2984}
2985
2986def G_AMDGPU_SMED3 : AMDGPUGenericInstruction {
2987  let OutOperandList = (outs type0:$dst);
2988  let InOperandList = (ins type0:$src0, type0:$src1, type0:$src2);
2989  let hasSideEffects = 0;
2990}
2991
2992def G_AMDGPU_UMED3 : AMDGPUGenericInstruction {
2993  let OutOperandList = (outs type0:$dst);
2994  let InOperandList = (ins type0:$src0, type0:$src1, type0:$src2);
2995  let hasSideEffects = 0;
2996}
2997
2998def G_AMDGPU_FMED3 : AMDGPUGenericInstruction {
2999  let OutOperandList = (outs type0:$dst);
3000  let InOperandList = (ins type0:$src0, type0:$src1, type0:$src2);
3001  let hasSideEffects = 0;
3002}
3003
3004def G_AMDGPU_CLAMP : AMDGPUGenericInstruction {
3005  let OutOperandList = (outs type0:$dst);
3006  let InOperandList = (ins type0:$src);
3007  let hasSideEffects = 0;
3008}
3009
3010// Atomic cmpxchg. $cmpval ad $newval are packed in a single vector
3011// operand Expects a MachineMemOperand in addition to explicit
3012// operands.
3013def G_AMDGPU_ATOMIC_CMPXCHG : AMDGPUGenericInstruction {
3014  let OutOperandList = (outs type0:$oldval);
3015  let InOperandList = (ins ptype1:$addr, type0:$cmpval_newval);
3016  let hasSideEffects = 0;
3017  let mayLoad = 1;
3018  let mayStore = 1;
3019}
3020
3021let Namespace = "AMDGPU" in {
3022def G_AMDGPU_ATOMIC_INC : G_ATOMICRMW_OP;
3023def G_AMDGPU_ATOMIC_DEC : G_ATOMICRMW_OP;
3024def G_AMDGPU_ATOMIC_FMIN : G_ATOMICRMW_OP;
3025def G_AMDGPU_ATOMIC_FMAX : G_ATOMICRMW_OP;
3026}
3027
3028class BufferAtomicGenericInstruction<bit NoRtn = 0> : AMDGPUGenericInstruction {
3029  let OutOperandList = !if(NoRtn, (outs), (outs type0:$dst));
3030  let InOperandList = (ins type0:$vdata, type1:$rsrc, type2:$vindex, type2:$voffset,
3031                           type2:$soffset, untyped_imm_0:$offset,
3032                           untyped_imm_0:$cachepolicy, untyped_imm_0:$idxen);
3033  let hasSideEffects = 0;
3034  let mayLoad = 1;
3035  let mayStore = 1;
3036}
3037
3038def G_AMDGPU_BUFFER_ATOMIC_SWAP : BufferAtomicGenericInstruction;
3039def G_AMDGPU_BUFFER_ATOMIC_ADD : BufferAtomicGenericInstruction;
3040def G_AMDGPU_BUFFER_ATOMIC_SUB : BufferAtomicGenericInstruction;
3041def G_AMDGPU_BUFFER_ATOMIC_SMIN : BufferAtomicGenericInstruction;
3042def G_AMDGPU_BUFFER_ATOMIC_UMIN : BufferAtomicGenericInstruction;
3043def G_AMDGPU_BUFFER_ATOMIC_SMAX : BufferAtomicGenericInstruction;
3044def G_AMDGPU_BUFFER_ATOMIC_UMAX : BufferAtomicGenericInstruction;
3045def G_AMDGPU_BUFFER_ATOMIC_AND : BufferAtomicGenericInstruction;
3046def G_AMDGPU_BUFFER_ATOMIC_OR : BufferAtomicGenericInstruction;
3047def G_AMDGPU_BUFFER_ATOMIC_XOR : BufferAtomicGenericInstruction;
3048def G_AMDGPU_BUFFER_ATOMIC_INC : BufferAtomicGenericInstruction;
3049def G_AMDGPU_BUFFER_ATOMIC_DEC : BufferAtomicGenericInstruction;
3050def G_AMDGPU_BUFFER_ATOMIC_FADD : BufferAtomicGenericInstruction;
3051def G_AMDGPU_BUFFER_ATOMIC_FMIN : BufferAtomicGenericInstruction;
3052def G_AMDGPU_BUFFER_ATOMIC_FMAX : BufferAtomicGenericInstruction;
3053
3054def G_AMDGPU_BUFFER_ATOMIC_CMPSWAP : AMDGPUGenericInstruction {
3055  let OutOperandList = (outs type0:$dst);
3056  let InOperandList = (ins type0:$vdata, type0:$cmp, type1:$rsrc, type2:$vindex,
3057                           type2:$voffset, type2:$soffset, untyped_imm_0:$offset,
3058                           untyped_imm_0:$cachepolicy, untyped_imm_0:$idxen);
3059  let hasSideEffects = 0;
3060  let mayLoad = 1;
3061  let mayStore = 1;
3062}
3063
3064// Wrapper around llvm.amdgcn.s.buffer.load. This is mostly needed as
3065// a workaround for the intrinsic being defined as readnone, but
3066// really needs a memory operand.
3067def G_AMDGPU_S_BUFFER_LOAD : AMDGPUGenericInstruction {
3068  let OutOperandList = (outs type0:$dst);
3069  let InOperandList = (ins type1:$rsrc, type2:$offset, untyped_imm_0:$cachepolicy);
3070  let hasSideEffects = 0;
3071  let mayLoad = 1;
3072  let mayStore = 0;
3073}
3074
3075// This is equivalent to the G_INTRINSIC*, but the operands may have
3076// been legalized depending on the subtarget requirements.
3077def G_AMDGPU_INTRIN_IMAGE_LOAD : AMDGPUGenericInstruction {
3078  let OutOperandList = (outs type0:$dst);
3079  let InOperandList = (ins unknown:$intrin, variable_ops);
3080  let hasSideEffects = 0;
3081  let mayLoad = 1;
3082
3083  // FIXME: Use separate opcode for atomics.
3084  let mayStore = 1;
3085}
3086
3087def G_AMDGPU_INTRIN_IMAGE_LOAD_D16 : AMDGPUGenericInstruction {
3088  let OutOperandList = (outs type0:$dst);
3089  let InOperandList = (ins unknown:$intrin, variable_ops);
3090  let hasSideEffects = 0;
3091  let mayLoad = 1;
3092
3093  // FIXME: Use separate opcode for atomics.
3094  let mayStore = 1;
3095}
3096
3097// This is equivalent to the G_INTRINSIC*, but the operands may have
3098// been legalized depending on the subtarget requirements.
3099def G_AMDGPU_INTRIN_IMAGE_STORE : AMDGPUGenericInstruction {
3100  let OutOperandList = (outs);
3101  let InOperandList = (ins unknown:$intrin, variable_ops);
3102  let hasSideEffects = 0;
3103  let mayStore = 1;
3104}
3105
3106def G_AMDGPU_INTRIN_IMAGE_STORE_D16 : AMDGPUGenericInstruction {
3107  let OutOperandList = (outs);
3108  let InOperandList = (ins unknown:$intrin, variable_ops);
3109  let hasSideEffects = 0;
3110  let mayStore = 1;
3111}
3112
3113def G_AMDGPU_INTRIN_BVH_INTERSECT_RAY : AMDGPUGenericInstruction {
3114  let OutOperandList = (outs type0:$dst);
3115  let InOperandList = (ins unknown:$intrin, variable_ops);
3116  let hasSideEffects = 0;
3117  let mayLoad = 1;
3118  let mayStore = 0;
3119}
3120
3121// Generic instruction for SI_CALL, so we can select the register bank and insert a waterfall loop
3122// if necessary.
3123def G_SI_CALL : AMDGPUGenericInstruction {
3124  let OutOperandList = (outs SReg_64:$dst);
3125  let InOperandList = (ins type0:$src0, unknown:$callee);
3126  let Size = 4;
3127  let isCall = 1;
3128  let UseNamedOperandTable = 1;
3129  let SchedRW = [WriteBranch];
3130  // TODO: Should really base this on the call target
3131  let isConvergent = 1;
3132}
3133