1//===-- SISchedule.td - SI Scheduling definitions -------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// MachineModel definitions for Southern Islands (SI)
10//
11//===----------------------------------------------------------------------===//
12
13def : PredicateProlog<[{
14  const SIInstrInfo *TII =
15    static_cast<const SIInstrInfo*>(SchedModel->getInstrInfo());
16  (void)TII;
17}]>;
18
19def WriteBranch : SchedWrite;
20def WriteExport : SchedWrite;
21def WriteLDS    : SchedWrite;
22def WriteSALU   : SchedWrite;
23def WriteSMEM   : SchedWrite;
24def WriteVMEM   : SchedWrite;
25def WriteBarrier : SchedWrite;
26
27def MIVGPRRead  : SchedRead;
28def MIMFMARead  : SchedRead;
29
30// Normal 16 or 32 bit VALU instructions
31def Write32Bit         : SchedWrite;
32// Conversion to or from F32 (but not converting F64 to or from F32)
33def WriteFloatCvt      : SchedWrite;
34// F16 or F32 transcendental instructions (these are quarter rate)
35def WriteTrans32       : SchedWrite;
36// Other quarter rate VALU instructions
37def WriteQuarterRate32 : SchedWrite;
38
39def WriteFloatFMA   : SchedWrite;
40
41// Slow quarter rate f64 instruction.
42def WriteDouble : SchedWrite;
43
44// half rate f64 instruction (same as v_add_f64)
45def WriteDoubleAdd  : SchedWrite;
46
47// Conversion to or from f64 instruction
48def WriteDoubleCvt  : SchedWrite;
49
50// F64 "transcendental" (actually only reciprocal and/or square root)
51// instructions
52def WriteTrans64    : SchedWrite;
53
54// Half rate 64-bit instructions.
55def Write64Bit : SchedWrite;
56
57// Integer multiplications.
58def WriteIntMul : SchedWrite;
59
60// mAI multipass instructions.
61def Write2PassMAI  : SchedWrite;
62def Write4PassMAI  : SchedWrite;
63def Write8PassMAI  : SchedWrite;
64def Write16PassMAI : SchedWrite;
65def Write4PassDGEMM : SchedWrite;
66def Write8PassDGEMM : SchedWrite;
67
68// FIXME: Should there be a class for instructions which are VALU
69// instructions and have VALU rates, but write to the SALU (i.e. VOPC
70// instructions)
71
72class SISchedMachineModel : SchedMachineModel {
73  let CompleteModel = 1;
74  // MicroOpBufferSize = 1 means that instructions will always be added
75  // the ready queue when they become available.  This exposes them
76  // to the register pressure analysis.
77  let MicroOpBufferSize = 1;
78  let IssueWidth = 1;
79  let PostRAScheduler = 1;
80
81  // FIXME:Approximate 2 * branch cost.  Try to hack around bad
82  // early-ifcvt heuristics. These need improvement to avoid the OOE
83  // heuristics.
84  int MispredictPenalty = 20;
85}
86
87def SIFullSpeedModel : SISchedMachineModel;
88def SIQuarterSpeedModel : SISchedMachineModel;
89def SIDPFullSpeedModel : SISchedMachineModel;
90def SIDPGFX940FullSpeedModel : SISchedMachineModel;
91def GFX10SpeedModel : SISchedMachineModel;
92def GFX11SpeedModel : SISchedMachineModel;
93
94// XXX: Are the resource counts correct?
95def HWBranch : ProcResource<1> {
96  let BufferSize = 1;
97}
98def HWExport : ProcResource<1> {
99  let BufferSize = 1;
100}
101def HWLGKM   : ProcResource<1> {
102  let BufferSize = 1;
103}
104def HWSALU   : ProcResource<1> {
105  let BufferSize = 1;
106}
107def HWVMEM   : ProcResource<1> {
108  let BufferSize = 1;
109}
110def HWVALU   : ProcResource<1> {
111  let BufferSize = 1;
112}
113def HWTransVALU : ProcResource<1> { // Transcendental VALU
114  let BufferSize = 1;
115}
116def HWRC   : ProcResource<1> { // Register destination cache
117  let BufferSize = 1;
118}
119def HWXDL   : ProcResource<1> { // MFMA CU
120  let BufferSize = 0;
121}
122
123class HWWriteRes<SchedWrite write, list<ProcResourceKind> resources,
124                 int latency> : WriteRes<write, resources> {
125  let Latency = latency;
126}
127
128class HWVALUWriteRes<SchedWrite write, int latency> :
129  HWWriteRes<write, [HWVALU], latency>;
130
131def PredMIReadVGPR : SchedPredicate<[{TII->hasVGPRUses(*MI)}]>;
132
133def MIReadVGPR : SchedReadVariant<[
134      SchedVar<PredMIReadVGPR, [MIVGPRRead]>,
135      SchedVar<NoSchedPred, [ReadDefault]>]>;
136
137// The latency numbers are taken from AMD Accelerated Parallel Processing
138// guide. They may not be accurate.
139
140// The latency values are 1 / (operations / cycle) / 4.
141multiclass SICommonWriteRes {
142
143  let RetireOOO = 1 in { // llvm-mca specific flag
144  def : HWWriteRes<WriteBranch,  [HWBranch], 8>;
145  def : HWWriteRes<WriteExport,  [HWExport], 4>;
146  def : HWWriteRes<WriteLDS,     [HWLGKM],   5>; // Can be between 2 and 64
147  def : HWWriteRes<WriteSALU,    [HWSALU],   1>;
148  def : HWWriteRes<WriteSMEM,    [HWLGKM],   5>;
149  def : HWWriteRes<WriteVMEM,    [HWVMEM],   80>;
150  def : HWWriteRes<WriteBarrier, [HWBranch], 500>; // XXX: Guessed ???
151
152  def : HWVALUWriteRes<Write32Bit,         1>;
153  def : HWVALUWriteRes<WriteFloatCvt,      4>;
154  def : HWVALUWriteRes<WriteTrans32,       4>;
155  def : HWVALUWriteRes<WriteQuarterRate32, 4>;
156
157  def : HWVALUWriteRes<Write4PassDGEMM,    4>;
158  def : HWVALUWriteRes<Write8PassDGEMM,   16>;
159
160  let ResourceCycles = [2] in
161  def : HWWriteRes<Write2PassMAI,  [HWXDL], 2>;
162  let ResourceCycles = [4] in
163  def : HWWriteRes<Write4PassMAI,  [HWXDL], 4>;
164  let ResourceCycles = [8] in
165  def : HWWriteRes<Write8PassMAI,  [HWXDL], 8>;
166  let ResourceCycles = [16] in
167  def : HWWriteRes<Write16PassMAI, [HWXDL], 16>;
168  } // End RetireOOO = 1
169
170  def : ReadAdvance<MIVGPRRead, -2>;
171
172  // Technically mfma reads can be from 0 to 4 cycles but that does not make
173  // sense to model because its register setup is huge. In particular if we
174  // properly model read advance as -2 for a vgpr read it will result in a
175  // bad scheduling of acc writes before that mfma. To avoid it we would
176  // need to consume 2 or 4 more vgprs to be initialized before the acc
177  // write sequence. Just assume worst case here.
178  def : ReadAdvance<MIMFMARead, -4>;
179}
180
181def PredIsVGPR32Copy : SchedPredicate<[{TII->isVGPRCopy(*MI) && TII->getOpSize(*MI, 0) <= 32}]>;
182def PredIsVGPR64Copy : SchedPredicate<[{TII->isVGPRCopy(*MI) && TII->getOpSize(*MI, 0) > 32}]>;
183def WriteCopy : SchedWriteVariant<[
184    SchedVar<PredIsVGPR32Copy, [Write32Bit]>,
185    SchedVar<PredIsVGPR64Copy, [Write64Bit]>,
186    SchedVar<NoSchedPred, [WriteSALU]>]>;
187
188let SchedModel = SIFullSpeedModel in {
189
190defm : SICommonWriteRes;
191
192let RetireOOO = 1 in { // llvm-mca specific flag
193def : HWVALUWriteRes<Write64Bit,       2>;
194def : HWVALUWriteRes<WriteIntMul,      4>;
195def : HWVALUWriteRes<WriteFloatFMA,    1>;
196def : HWVALUWriteRes<WriteDouble,      4>;
197def : HWVALUWriteRes<WriteDoubleAdd,   2>;
198def : HWVALUWriteRes<WriteDoubleCvt,   4>;
199def : HWVALUWriteRes<WriteTrans64,     4>;
200} // End RetireOOO = 1
201
202def : InstRW<[WriteCopy], (instrs COPY)>;
203
204} // End SchedModel = SIFullSpeedModel
205
206let SchedModel = SIQuarterSpeedModel in {
207
208defm : SICommonWriteRes;
209
210let RetireOOO = 1 in { // llvm-mca specific flag
211def : HWVALUWriteRes<Write64Bit,       2>;
212def : HWVALUWriteRes<WriteIntMul,      4>;
213def : HWVALUWriteRes<WriteFloatFMA,    16>;
214def : HWVALUWriteRes<WriteDouble,      16>;
215def : HWVALUWriteRes<WriteDoubleAdd,    8>;
216def : HWVALUWriteRes<WriteDoubleCvt,    4>;
217def : HWVALUWriteRes<WriteTrans64,     16>;
218} // End RetireOOO = 1
219
220def : InstRW<[WriteCopy], (instrs COPY)>;
221def : InstRW<[Write64Bit, MIReadVGPR], (instregex "^V_ACCVGPR_WRITE_B32_e64$")>;
222def : InstRW<[Write2PassMAI,  MIMFMARead], (instregex "^V_MFMA_..._4X4X")>;
223def : InstRW<[Write8PassMAI,  MIMFMARead], (instregex "^V_MFMA_..._16X16X")>;
224def : InstRW<[Write16PassMAI, MIMFMARead], (instregex "^V_MFMA_..._32X32X")>;
225
226}  // End SchedModel = SIQuarterSpeedModel
227
228let SchedModel = SIDPFullSpeedModel in {
229
230defm : SICommonWriteRes;
231
232let RetireOOO = 1 in { // llvm-mca specific flag
233def : HWVALUWriteRes<WriteFloatFMA,    1>;
234def : HWVALUWriteRes<WriteDouble,      1>;
235def : HWVALUWriteRes<WriteDoubleAdd,   1>;
236def : HWVALUWriteRes<WriteDoubleCvt,   1>;
237def : HWVALUWriteRes<WriteTrans64,     4>;
238def : HWVALUWriteRes<WriteIntMul,      1>;
239def : HWVALUWriteRes<Write64Bit,       1>;
240} // End RetireOOO = 1
241
242def : InstRW<[WriteCopy], (instrs COPY)>;
243def : InstRW<[Write64Bit], (instregex "^V_ACCVGPR_WRITE_B32_e64$")>;
244def : InstRW<[Write2PassMAI,   MIMFMARead], (instregex "^V_MFMA_.32_4X4X")>;
245def : InstRW<[Write8PassMAI,   MIMFMARead], (instregex "^V_MFMA_.32_16X16X")>;
246def : InstRW<[Write16PassMAI,  MIMFMARead], (instregex "^V_MFMA_.32_32X32X")>;
247def : InstRW<[Write4PassDGEMM, MIMFMARead], (instregex "^V_MFMA_.64_4X4X")>;
248def : InstRW<[Write8PassDGEMM, MIMFMARead], (instregex "^V_MFMA_.64_16X16X")>;
249
250} // End SchedModel = SIDPFullSpeedModel
251
252let SchedModel = SIDPGFX940FullSpeedModel in {
253
254defm : SICommonWriteRes;
255
256def : HWVALUWriteRes<WriteFloatFMA,    1>;
257def : HWVALUWriteRes<WriteDouble,      1>;
258def : HWVALUWriteRes<WriteDoubleAdd,   1>;
259def : HWVALUWriteRes<WriteDoubleCvt,   1>;
260def : HWVALUWriteRes<WriteTrans64,     4>;
261def : HWVALUWriteRes<WriteIntMul,      1>;
262def : HWVALUWriteRes<Write64Bit,       1>;
263
264def : InstRW<[WriteCopy], (instrs COPY)>;
265def : InstRW<[Write64Bit], (instregex "^V_ACCVGPR_WRITE_B32_e64$")>;
266def : InstRW<[Write2PassMAI,   MIMFMARead], (instregex "^V_MFMA_.32_4X4X")>;
267
268def : InstRW<[Write4PassMAI,   MIMFMARead], (instregex "^V_MFMA_.32_16X16X8X")>;
269def : InstRW<[Write4PassMAI,   MIMFMARead], (instregex "^V_MFMA_.32_16X16X16")>;
270def : InstRW<[Write4PassMAI,   MIMFMARead], (instregex "^V_MFMA_.32_16X16X32")>;
271def : InstRW<[Write8PassMAI,   MIMFMARead], (instregex "^V_MFMA_.32_16X16X[14][FBI]")>;
272
273def : InstRW<[Write8PassMAI,   MIMFMARead], (instregex "^V_MFMA_.32_32X32X4XF")>;
274def : InstRW<[Write8PassMAI,   MIMFMARead], (instregex "^V_MFMA_.32_32X32X8")>;
275def : InstRW<[Write8PassMAI,   MIMFMARead], (instregex "^V_MFMA_.32_32X32X16")>;
276def : InstRW<[Write16PassMAI,  MIMFMARead], (instregex "^V_MFMA_.32_32X32X[124][FBI]")>;
277
278def : InstRW<[Write4PassDGEMM, MIMFMARead], (instregex "^V_MFMA_.64_4X4X")>;
279def : InstRW<[Write8PassDGEMM, MIMFMARead], (instregex "^V_MFMA_.64_16X16X")>;
280
281def : InstRW<[Write4PassMAI,   MIMFMARead], (instregex "^V_SMFMAC_.32_16X16X")>;
282def : InstRW<[Write8PassMAI,   MIMFMARead], (instregex "^V_SMFMAC_.32_32X32X")>;
283
284} // End SchedModel = SIDPGFX940FullSpeedModel
285
286let SchedModel = GFX10SpeedModel in {
287
288// The latency values are 1 / (operations / cycle).
289// Add 1 stall cycle for VGPR read.
290let RetireOOO = 1 in { // llvm-mca specific flag
291def : HWWriteRes<Write32Bit,         [HWVALU, HWRC],   5>;
292def : HWWriteRes<WriteFloatCvt,      [HWVALU, HWRC],   5>;
293def : HWWriteRes<Write64Bit,         [HWVALU, HWRC],   6>;
294def : HWWriteRes<WriteTrans32,       [HWTransVALU, HWRC], 10>;
295def : HWWriteRes<WriteQuarterRate32, [HWVALU, HWRC],   8>;
296def : HWWriteRes<WriteFloatFMA,      [HWVALU, HWRC],   5>;
297def : HWWriteRes<WriteDouble,        [HWVALU, HWRC],   22>;
298def : HWWriteRes<WriteDoubleAdd,     [HWVALU, HWRC],   22>;
299def : HWWriteRes<WriteDoubleCvt,     [HWVALU, HWRC],   22>;
300def : HWWriteRes<WriteIntMul,        [HWVALU, HWRC],   8>;
301def : HWWriteRes<WriteTrans64,       [HWVALU, HWTransVALU, HWRC], 24>;
302
303def : HWWriteRes<WriteBranch,        [HWBranch],       32>;
304def : HWWriteRes<WriteExport,        [HWExport, HWRC], 16>;
305def : HWWriteRes<WriteLDS,           [HWLGKM,   HWRC], 20>;
306def : HWWriteRes<WriteSALU,          [HWSALU,   HWRC], 2>;
307def : HWWriteRes<WriteSMEM,          [HWLGKM,   HWRC], 20>;
308def : HWWriteRes<WriteVMEM,          [HWVMEM,   HWRC], 320>;
309def : HWWriteRes<WriteBarrier,       [HWBranch],       2000>;
310} // End RetireOOO = 1
311
312def : InstRW<[WriteCopy], (instrs COPY)>;
313
314}  // End SchedModel = GFX10SpeedModel
315
316let SchedModel = GFX11SpeedModel in {
317
318def : HWWriteRes<Write32Bit,         [HWVALU, HWRC],   5>;
319def : HWWriteRes<WriteFloatCvt,      [HWVALU, HWRC],   5>;
320def : HWWriteRes<Write64Bit,         [HWVALU, HWRC],   6>;
321def : HWWriteRes<WriteTrans32,       [HWVALU, HWRC],   10>;
322def : HWWriteRes<WriteQuarterRate32, [HWVALU, HWRC],   8>;
323def : HWWriteRes<WriteFloatFMA,      [HWVALU, HWRC],   5>;
324def : HWWriteRes<WriteDouble,        [HWVALU, HWRC],   38>;
325def : HWWriteRes<WriteDoubleAdd,     [HWVALU, HWRC],   38>;
326def : HWWriteRes<WriteDoubleCvt,     [HWVALU, HWRC],   38>;
327def : HWWriteRes<WriteIntMul,        [HWVALU, HWRC],   8>;
328def : HWWriteRes<WriteTrans64,       [HWVALU, HWRC],   40>;
329
330def : HWWriteRes<WriteBranch,        [HWBranch],       32>;
331def : HWWriteRes<WriteExport,        [HWExport, HWRC], 16>;
332def : HWWriteRes<WriteLDS,           [HWLGKM,   HWRC], 20>;
333def : HWWriteRes<WriteSALU,          [HWSALU,   HWRC], 2>;
334def : HWWriteRes<WriteSMEM,          [HWLGKM,   HWRC], 20>;
335def : HWWriteRes<WriteVMEM,          [HWVMEM,   HWRC], 320>;
336def : HWWriteRes<WriteBarrier,       [HWBranch],       2000>;
337
338def : InstRW<[WriteCopy], (instrs COPY)>;
339
340}  // End SchedModel = GFX11SpeedModel
341