1//===-- SISchedule.td - SI Scheduling definitions -------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// MachineModel definitions for Southern Islands (SI)
10//
11//===----------------------------------------------------------------------===//
12
13def : PredicateProlog<[{
14  const SIInstrInfo *TII =
15    static_cast<const SIInstrInfo*>(SchedModel->getInstrInfo());
16  (void)TII;
17}]>;
18
19def WriteBranch : SchedWrite;
20def WriteExport : SchedWrite;
21def WriteLDS    : SchedWrite;
22def WriteSALU   : SchedWrite;
23def WriteSMEM   : SchedWrite;
24def WriteVMEM   : SchedWrite;
25def WriteBarrier : SchedWrite;
26
27def MIVGPRRead  : SchedRead;
28def MIMFMARead  : SchedRead;
29
30// Normal 16 or 32 bit VALU instructions
31def Write32Bit         : SchedWrite;
32// Conversion to or from F32 (but not converting F64 to or from F32)
33def WriteFloatCvt      : SchedWrite;
34// F16 or F32 transcendental instructions (these are quarter rate)
35def WriteTrans32       : SchedWrite;
36// Other quarter rate VALU instructions
37def WriteQuarterRate32 : SchedWrite;
38
39def WriteFloatFMA   : SchedWrite;
40
41// Slow quarter rate f64 instruction.
42def WriteDouble : SchedWrite;
43
44// half rate f64 instruction (same as v_add_f64)
45def WriteDoubleAdd  : SchedWrite;
46
47// Conversion to or from f64 instruction
48def WriteDoubleCvt  : SchedWrite;
49
50// F64 "transcendental" (actually only reciprocal and/or square root)
51// instructions
52def WriteTrans64    : SchedWrite;
53
54// Half rate 64-bit instructions.
55def Write64Bit : SchedWrite;
56
57// Integer multiplications.
58def WriteIntMul : SchedWrite;
59
60// mAI multipass instructions.
61def Write2PassMAI  : SchedWrite;
62def Write8PassMAI  : SchedWrite;
63def Write16PassMAI : SchedWrite;
64def Write4PassDGEMM : SchedWrite;
65def Write8PassDGEMM : SchedWrite;
66
67// FIXME: Should there be a class for instructions which are VALU
68// instructions and have VALU rates, but write to the SALU (i.e. VOPC
69// instructions)
70
71class SISchedMachineModel : SchedMachineModel {
72  let CompleteModel = 1;
73  // MicroOpBufferSize = 1 means that instructions will always be added
74  // the ready queue when they become available.  This exposes them
75  // to the register pressure analysis.
76  let MicroOpBufferSize = 1;
77  let IssueWidth = 1;
78  let PostRAScheduler = 1;
79
80  // FIXME:Approximate 2 * branch cost.  Try to hack around bad
81  // early-ifcvt heuristics. These need improvement to avoid the OOE
82  // heuristics.
83  int MispredictPenalty = 20;
84}
85
86def SIFullSpeedModel : SISchedMachineModel;
87def SIQuarterSpeedModel : SISchedMachineModel;
88def SIDPFullSpeedModel : SISchedMachineModel;
89def GFX10SpeedModel : SISchedMachineModel;
90
91// XXX: Are the resource counts correct?
92def HWBranch : ProcResource<1> {
93  let BufferSize = 1;
94}
95def HWExport : ProcResource<1> {
96  let BufferSize = 7; // Taken from S_WAITCNT
97}
98def HWLGKM   : ProcResource<1> {
99  let BufferSize = 31;  // Taken from S_WAITCNT
100}
101def HWSALU   : ProcResource<1> {
102  let BufferSize = 1;
103}
104def HWVMEM   : ProcResource<1> {
105  let BufferSize = 15;  // Taken from S_WAITCNT
106}
107def HWVALU   : ProcResource<1> {
108  let BufferSize = 1;
109}
110def HWTransVALU : ProcResource<1> { // Transcendental VALU
111  let BufferSize = 1;
112}
113def HWRC   : ProcResource<1> { // Register destination cache
114  let BufferSize = 1;
115}
116def HWXDL   : ProcResource<1> { // MFMA CU
117  let BufferSize = 0;
118}
119
120class HWWriteRes<SchedWrite write, list<ProcResourceKind> resources,
121                 int latency> : WriteRes<write, resources> {
122  let Latency = latency;
123}
124
125class HWVALUWriteRes<SchedWrite write, int latency> :
126  HWWriteRes<write, [HWVALU], latency>;
127
128def PredMIReadVGPR : SchedPredicate<[{TII->hasVGPRUses(*MI)}]>;
129
130def MIReadVGPR : SchedReadVariant<[
131      SchedVar<PredMIReadVGPR, [MIVGPRRead]>,
132      SchedVar<NoSchedPred, [ReadDefault]>]>;
133
134// The latency numbers are taken from AMD Accelerated Parallel Processing
135// guide. They may not be accurate.
136
137// The latency values are 1 / (operations / cycle) / 4.
138multiclass SICommonWriteRes {
139
140  def : HWWriteRes<WriteBranch,  [HWBranch], 8>;
141  def : HWWriteRes<WriteExport,  [HWExport], 4>;
142  def : HWWriteRes<WriteLDS,     [HWLGKM],   5>; // Can be between 2 and 64
143  def : HWWriteRes<WriteSALU,    [HWSALU],   1>;
144  def : HWWriteRes<WriteSMEM,    [HWLGKM],   5>;
145  def : HWWriteRes<WriteVMEM,    [HWVMEM],   80>;
146  def : HWWriteRes<WriteBarrier, [HWBranch], 500>; // XXX: Guessed ???
147
148  def : HWVALUWriteRes<Write32Bit,         1>;
149  def : HWVALUWriteRes<WriteFloatCvt,      4>;
150  def : HWVALUWriteRes<WriteTrans32,       4>;
151  def : HWVALUWriteRes<WriteQuarterRate32, 4>;
152
153  def : HWVALUWriteRes<Write4PassDGEMM,    4>;
154  def : HWVALUWriteRes<Write8PassDGEMM,   16>;
155
156  let ResourceCycles = [2] in
157  def : HWWriteRes<Write2PassMAI,  [HWXDL], 2>;
158  let ResourceCycles = [8] in
159  def : HWWriteRes<Write8PassMAI,  [HWXDL], 8>;
160  let ResourceCycles = [16] in
161  def : HWWriteRes<Write16PassMAI, [HWXDL], 16>;
162
163  def : ReadAdvance<MIVGPRRead, -2>;
164
165  // Technically mfma reads can be from 0 to 4 cycles but that does not make
166  // sense to model because its register setup is huge. In particular if we
167  // properly model read advance as -2 for a vgpr read it will result in a
168  // bad scheduling of acc writes before that mfma. To avoid it we would
169  // need to consume 2 or 4 more vgprs to be initialized before the acc
170  // write sequence. Just assume worst case here.
171  def : ReadAdvance<MIMFMARead, -4>;
172}
173
174def PredIsVGPR32Copy : SchedPredicate<[{TII->isVGPRCopy(*MI) && TII->getOpSize(*MI, 0) <= 32}]>;
175def PredIsVGPR64Copy : SchedPredicate<[{TII->isVGPRCopy(*MI) && TII->getOpSize(*MI, 0) > 32}]>;
176def WriteCopy : SchedWriteVariant<[
177    SchedVar<PredIsVGPR32Copy, [Write32Bit]>,
178    SchedVar<PredIsVGPR64Copy, [Write64Bit]>,
179    SchedVar<NoSchedPred, [WriteSALU]>]>;
180
181let SchedModel = SIFullSpeedModel in {
182
183defm : SICommonWriteRes;
184
185def : HWVALUWriteRes<Write64Bit,       2>;
186def : HWVALUWriteRes<WriteIntMul,      4>;
187def : HWVALUWriteRes<WriteFloatFMA,    1>;
188def : HWVALUWriteRes<WriteDouble,      4>;
189def : HWVALUWriteRes<WriteDoubleAdd,   2>;
190def : HWVALUWriteRes<WriteDoubleCvt,   4>;
191def : HWVALUWriteRes<WriteTrans64,     4>;
192
193def : InstRW<[WriteCopy], (instrs COPY)>;
194
195} // End SchedModel = SIFullSpeedModel
196
197let SchedModel = SIQuarterSpeedModel in {
198
199defm : SICommonWriteRes;
200
201def : HWVALUWriteRes<Write64Bit,       2>;
202def : HWVALUWriteRes<WriteIntMul,      4>;
203def : HWVALUWriteRes<WriteFloatFMA,    16>;
204def : HWVALUWriteRes<WriteDouble,      16>;
205def : HWVALUWriteRes<WriteDoubleAdd,    8>;
206def : HWVALUWriteRes<WriteDoubleCvt,    4>;
207def : HWVALUWriteRes<WriteTrans64,     16>;
208
209def : InstRW<[WriteCopy], (instrs COPY)>;
210def : InstRW<[Write64Bit, MIReadVGPR], (instregex "^V_ACCVGPR_WRITE_B32_e64$")>;
211def : InstRW<[Write2PassMAI,  MIMFMARead], (instregex "^V_MFMA_..._4X4X")>;
212def : InstRW<[Write8PassMAI,  MIMFMARead], (instregex "^V_MFMA_..._16X16X")>;
213def : InstRW<[Write16PassMAI, MIMFMARead], (instregex "^V_MFMA_..._32X32X")>;
214
215}  // End SchedModel = SIQuarterSpeedModel
216
217let SchedModel = SIDPFullSpeedModel in {
218
219defm : SICommonWriteRes;
220
221def : HWVALUWriteRes<WriteFloatFMA,    1>;
222def : HWVALUWriteRes<WriteDouble,      1>;
223def : HWVALUWriteRes<WriteDoubleAdd,   1>;
224def : HWVALUWriteRes<WriteDoubleCvt,   1>;
225def : HWVALUWriteRes<WriteTrans64,     4>;
226def : HWVALUWriteRes<WriteIntMul,      1>;
227def : HWVALUWriteRes<Write64Bit,       1>;
228
229def : InstRW<[WriteCopy], (instrs COPY)>;
230def : InstRW<[Write64Bit], (instregex "^V_ACCVGPR_WRITE_B32_e64$")>;
231def : InstRW<[Write2PassMAI,   MIMFMARead], (instregex "^V_MFMA_.32_4X4X")>;
232def : InstRW<[Write8PassMAI,   MIMFMARead], (instregex "^V_MFMA_.32_16X16X")>;
233def : InstRW<[Write16PassMAI,  MIMFMARead], (instregex "^V_MFMA_.32_32X32X")>;
234def : InstRW<[Write4PassDGEMM, MIMFMARead], (instregex "^V_MFMA_.64_4X4X")>;
235def : InstRW<[Write8PassDGEMM, MIMFMARead], (instregex "^V_MFMA_.64_16X16X")>;
236
237} // End SchedModel = SIDPFullSpeedModel
238
239let SchedModel = GFX10SpeedModel in {
240
241// The latency values are 1 / (operations / cycle).
242// Add 1 stall cycle for VGPR read.
243def : HWWriteRes<Write32Bit,         [HWVALU, HWRC],   5>;
244def : HWWriteRes<WriteFloatCvt,      [HWVALU, HWRC],   5>;
245def : HWWriteRes<Write64Bit,         [HWVALU, HWRC],   6>;
246def : HWWriteRes<WriteTrans32,       [HWTransVALU, HWRC], 10>;
247def : HWWriteRes<WriteQuarterRate32, [HWVALU, HWRC],   8>;
248def : HWWriteRes<WriteFloatFMA,      [HWVALU, HWRC],   5>;
249def : HWWriteRes<WriteDouble,        [HWVALU, HWRC],   22>;
250def : HWWriteRes<WriteDoubleAdd,     [HWVALU, HWRC],   22>;
251def : HWWriteRes<WriteDoubleCvt,     [HWVALU, HWRC],   22>;
252def : HWWriteRes<WriteIntMul,        [HWVALU, HWRC],   8>;
253def : HWWriteRes<WriteTrans64,       [HWVALU, HWTransVALU, HWRC], 24>;
254
255def : HWWriteRes<WriteBranch,        [HWBranch],       32>;
256def : HWWriteRes<WriteExport,        [HWExport, HWRC], 16>;
257def : HWWriteRes<WriteLDS,           [HWLGKM,   HWRC], 20>;
258def : HWWriteRes<WriteSALU,          [HWSALU,   HWRC], 2>;
259def : HWWriteRes<WriteSMEM,          [HWLGKM,   HWRC], 20>;
260def : HWWriteRes<WriteVMEM,          [HWVMEM,   HWRC], 320>;
261def : HWWriteRes<WriteBarrier,       [HWBranch],       2000>;
262
263def : InstRW<[WriteCopy], (instrs COPY)>;
264
265}  // End SchedModel = GFX10SpeedModel
266