1 //===-- ARMBaseRegisterInfo.cpp - ARM Register Information ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the base ARM implementation of TargetRegisterInfo class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "ARMBaseRegisterInfo.h"
14 #include "ARM.h"
15 #include "ARMBaseInstrInfo.h"
16 #include "ARMFrameLowering.h"
17 #include "ARMMachineFunctionInfo.h"
18 #include "ARMSubtarget.h"
19 #include "MCTargetDesc/ARMAddressingModes.h"
20 #include "MCTargetDesc/ARMBaseInfo.h"
21 #include "llvm/ADT/BitVector.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/CodeGen/MachineBasicBlock.h"
25 #include "llvm/CodeGen/MachineConstantPool.h"
26 #include "llvm/CodeGen/MachineFrameInfo.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineInstr.h"
29 #include "llvm/CodeGen/MachineInstrBuilder.h"
30 #include "llvm/CodeGen/MachineOperand.h"
31 #include "llvm/CodeGen/MachineRegisterInfo.h"
32 #include "llvm/CodeGen/RegisterScavenging.h"
33 #include "llvm/CodeGen/TargetInstrInfo.h"
34 #include "llvm/CodeGen/TargetRegisterInfo.h"
35 #include "llvm/CodeGen/VirtRegMap.h"
36 #include "llvm/IR/Attributes.h"
37 #include "llvm/IR/Constants.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/Type.h"
41 #include "llvm/MC/MCInstrDesc.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Support/ErrorHandling.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include "llvm/Target/TargetMachine.h"
46 #include "llvm/Target/TargetOptions.h"
47 #include <cassert>
48 #include <utility>
49 
50 #define DEBUG_TYPE "arm-register-info"
51 
52 #define GET_REGINFO_TARGET_DESC
53 #include "ARMGenRegisterInfo.inc"
54 
55 using namespace llvm;
56 
57 ARMBaseRegisterInfo::ARMBaseRegisterInfo()
58     : ARMGenRegisterInfo(ARM::LR, 0, 0, ARM::PC) {
59   ARM_MC::initLLVMToCVRegMapping(this);
60 }
61 
62 const MCPhysReg*
63 ARMBaseRegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
64   const ARMSubtarget &STI = MF->getSubtarget<ARMSubtarget>();
65   bool UseSplitPush = STI.splitFramePushPop(*MF);
66   const Function &F = MF->getFunction();
67 
68   if (F.getCallingConv() == CallingConv::GHC) {
69     // GHC set of callee saved regs is empty as all those regs are
70     // used for passing STG regs around
71     return CSR_NoRegs_SaveList;
72   } else if (STI.splitFramePointerPush(*MF)) {
73     return CSR_Win_SplitFP_SaveList;
74   } else if (F.getCallingConv() == CallingConv::CFGuard_Check) {
75     return CSR_Win_AAPCS_CFGuard_Check_SaveList;
76   } else if (F.getCallingConv() == CallingConv::SwiftTail) {
77     return STI.isTargetDarwin()
78                ? CSR_iOS_SwiftTail_SaveList
79                : (UseSplitPush ? CSR_ATPCS_SplitPush_SwiftTail_SaveList
80                                : CSR_AAPCS_SwiftTail_SaveList);
81   } else if (F.hasFnAttribute("interrupt")) {
82     if (STI.isMClass()) {
83       // M-class CPUs have hardware which saves the registers needed to allow a
84       // function conforming to the AAPCS to function as a handler.
85       return UseSplitPush ? CSR_ATPCS_SplitPush_SaveList : CSR_AAPCS_SaveList;
86     } else if (F.getFnAttribute("interrupt").getValueAsString() == "FIQ") {
87       // Fast interrupt mode gives the handler a private copy of R8-R14, so less
88       // need to be saved to restore user-mode state.
89       return CSR_FIQ_SaveList;
90     } else {
91       // Generally only R13-R14 (i.e. SP, LR) are automatically preserved by
92       // exception handling.
93       return CSR_GenericInt_SaveList;
94     }
95   }
96 
97   if (STI.getTargetLowering()->supportSwiftError() &&
98       F.getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
99     if (STI.isTargetDarwin())
100       return CSR_iOS_SwiftError_SaveList;
101 
102     return UseSplitPush ? CSR_ATPCS_SplitPush_SwiftError_SaveList :
103       CSR_AAPCS_SwiftError_SaveList;
104   }
105 
106   if (STI.isTargetDarwin() && F.getCallingConv() == CallingConv::CXX_FAST_TLS)
107     return MF->getInfo<ARMFunctionInfo>()->isSplitCSR()
108                ? CSR_iOS_CXX_TLS_PE_SaveList
109                : CSR_iOS_CXX_TLS_SaveList;
110 
111   if (STI.isTargetDarwin())
112     return CSR_iOS_SaveList;
113 
114   if (UseSplitPush)
115     return STI.createAAPCSFrameChain() ? CSR_AAPCS_SplitPush_SaveList
116                                        : CSR_ATPCS_SplitPush_SaveList;
117 
118   return CSR_AAPCS_SaveList;
119 }
120 
121 const MCPhysReg *ARMBaseRegisterInfo::getCalleeSavedRegsViaCopy(
122     const MachineFunction *MF) const {
123   assert(MF && "Invalid MachineFunction pointer.");
124   if (MF->getFunction().getCallingConv() == CallingConv::CXX_FAST_TLS &&
125       MF->getInfo<ARMFunctionInfo>()->isSplitCSR())
126     return CSR_iOS_CXX_TLS_ViaCopy_SaveList;
127   return nullptr;
128 }
129 
130 const uint32_t *
131 ARMBaseRegisterInfo::getCallPreservedMask(const MachineFunction &MF,
132                                           CallingConv::ID CC) const {
133   const ARMSubtarget &STI = MF.getSubtarget<ARMSubtarget>();
134   if (CC == CallingConv::GHC)
135     // This is academic because all GHC calls are (supposed to be) tail calls
136     return CSR_NoRegs_RegMask;
137   if (CC == CallingConv::CFGuard_Check)
138     return CSR_Win_AAPCS_CFGuard_Check_RegMask;
139   if (CC == CallingConv::SwiftTail) {
140     return STI.isTargetDarwin() ? CSR_iOS_SwiftTail_RegMask
141                                 : CSR_AAPCS_SwiftTail_RegMask;
142   }
143   if (STI.getTargetLowering()->supportSwiftError() &&
144       MF.getFunction().getAttributes().hasAttrSomewhere(Attribute::SwiftError))
145     return STI.isTargetDarwin() ? CSR_iOS_SwiftError_RegMask
146                                 : CSR_AAPCS_SwiftError_RegMask;
147 
148   if (STI.isTargetDarwin() && CC == CallingConv::CXX_FAST_TLS)
149     return CSR_iOS_CXX_TLS_RegMask;
150   return STI.isTargetDarwin() ? CSR_iOS_RegMask : CSR_AAPCS_RegMask;
151 }
152 
153 const uint32_t*
154 ARMBaseRegisterInfo::getNoPreservedMask() const {
155   return CSR_NoRegs_RegMask;
156 }
157 
158 const uint32_t *
159 ARMBaseRegisterInfo::getTLSCallPreservedMask(const MachineFunction &MF) const {
160   assert(MF.getSubtarget<ARMSubtarget>().isTargetDarwin() &&
161          "only know about special TLS call on Darwin");
162   return CSR_iOS_TLSCall_RegMask;
163 }
164 
165 const uint32_t *
166 ARMBaseRegisterInfo::getSjLjDispatchPreservedMask(const MachineFunction &MF) const {
167   const ARMSubtarget &STI = MF.getSubtarget<ARMSubtarget>();
168   if (!STI.useSoftFloat() && STI.hasVFP2Base() && !STI.isThumb1Only())
169     return CSR_NoRegs_RegMask;
170   else
171     return CSR_FPRegs_RegMask;
172 }
173 
174 const uint32_t *
175 ARMBaseRegisterInfo::getThisReturnPreservedMask(const MachineFunction &MF,
176                                                 CallingConv::ID CC) const {
177   const ARMSubtarget &STI = MF.getSubtarget<ARMSubtarget>();
178   // This should return a register mask that is the same as that returned by
179   // getCallPreservedMask but that additionally preserves the register used for
180   // the first i32 argument (which must also be the register used to return a
181   // single i32 return value)
182   //
183   // In case that the calling convention does not use the same register for
184   // both or otherwise does not want to enable this optimization, the function
185   // should return NULL
186   if (CC == CallingConv::GHC)
187     // This is academic because all GHC calls are (supposed to be) tail calls
188     return nullptr;
189   return STI.isTargetDarwin() ? CSR_iOS_ThisReturn_RegMask
190                               : CSR_AAPCS_ThisReturn_RegMask;
191 }
192 
193 ArrayRef<MCPhysReg> ARMBaseRegisterInfo::getIntraCallClobberedRegs(
194     const MachineFunction *MF) const {
195   static const MCPhysReg IntraCallClobberedRegs[] = {ARM::R12};
196   return ArrayRef<MCPhysReg>(IntraCallClobberedRegs);
197 }
198 
199 BitVector ARMBaseRegisterInfo::
200 getReservedRegs(const MachineFunction &MF) const {
201   const ARMSubtarget &STI = MF.getSubtarget<ARMSubtarget>();
202   const ARMFrameLowering *TFI = getFrameLowering(MF);
203 
204   // FIXME: avoid re-calculating this every time.
205   BitVector Reserved(getNumRegs());
206   markSuperRegs(Reserved, ARM::SP);
207   markSuperRegs(Reserved, ARM::PC);
208   markSuperRegs(Reserved, ARM::FPSCR);
209   markSuperRegs(Reserved, ARM::APSR_NZCV);
210   if (TFI->hasFP(MF))
211     markSuperRegs(Reserved, STI.getFramePointerReg());
212   if (hasBasePointer(MF))
213     markSuperRegs(Reserved, BasePtr);
214   // Some targets reserve R9.
215   if (STI.isR9Reserved())
216     markSuperRegs(Reserved, ARM::R9);
217   // Reserve D16-D31 if the subtarget doesn't support them.
218   if (!STI.hasD32()) {
219     static_assert(ARM::D31 == ARM::D16 + 15, "Register list not consecutive!");
220     for (unsigned R = 0; R < 16; ++R)
221       markSuperRegs(Reserved, ARM::D16 + R);
222   }
223   const TargetRegisterClass &RC = ARM::GPRPairRegClass;
224   for (unsigned Reg : RC)
225     for (MCPhysReg S : subregs(Reg))
226       if (Reserved.test(S))
227         markSuperRegs(Reserved, Reg);
228   // For v8.1m architecture
229   markSuperRegs(Reserved, ARM::ZR);
230 
231   assert(checkAllSuperRegsMarked(Reserved));
232   return Reserved;
233 }
234 
235 bool ARMBaseRegisterInfo::
236 isAsmClobberable(const MachineFunction &MF, MCRegister PhysReg) const {
237   return !getReservedRegs(MF).test(PhysReg);
238 }
239 
240 bool ARMBaseRegisterInfo::isInlineAsmReadOnlyReg(const MachineFunction &MF,
241                                                  unsigned PhysReg) const {
242   const ARMSubtarget &STI = MF.getSubtarget<ARMSubtarget>();
243   const ARMFrameLowering *TFI = getFrameLowering(MF);
244 
245   BitVector Reserved(getNumRegs());
246   markSuperRegs(Reserved, ARM::PC);
247   if (TFI->isFPReserved(MF))
248     markSuperRegs(Reserved, STI.getFramePointerReg());
249   if (hasBasePointer(MF))
250     markSuperRegs(Reserved, BasePtr);
251   assert(checkAllSuperRegsMarked(Reserved));
252   return Reserved.test(PhysReg);
253 }
254 
255 const TargetRegisterClass *
256 ARMBaseRegisterInfo::getLargestLegalSuperClass(const TargetRegisterClass *RC,
257                                                const MachineFunction &MF) const {
258   const TargetRegisterClass *Super = RC;
259   TargetRegisterClass::sc_iterator I = RC->getSuperClasses();
260   do {
261     switch (Super->getID()) {
262     case ARM::GPRRegClassID:
263     case ARM::SPRRegClassID:
264     case ARM::DPRRegClassID:
265     case ARM::GPRPairRegClassID:
266       return Super;
267     case ARM::QPRRegClassID:
268     case ARM::QQPRRegClassID:
269     case ARM::QQQQPRRegClassID:
270       if (MF.getSubtarget<ARMSubtarget>().hasNEON())
271         return Super;
272       break;
273     case ARM::MQPRRegClassID:
274     case ARM::MQQPRRegClassID:
275     case ARM::MQQQQPRRegClassID:
276       if (MF.getSubtarget<ARMSubtarget>().hasMVEIntegerOps())
277         return Super;
278       break;
279     }
280     Super = *I++;
281   } while (Super);
282   return RC;
283 }
284 
285 const TargetRegisterClass *
286 ARMBaseRegisterInfo::getPointerRegClass(const MachineFunction &MF, unsigned Kind)
287                                                                          const {
288   return &ARM::GPRRegClass;
289 }
290 
291 const TargetRegisterClass *
292 ARMBaseRegisterInfo::getCrossCopyRegClass(const TargetRegisterClass *RC) const {
293   if (RC == &ARM::CCRRegClass)
294     return &ARM::rGPRRegClass;  // Can't copy CCR registers.
295   return RC;
296 }
297 
298 unsigned
299 ARMBaseRegisterInfo::getRegPressureLimit(const TargetRegisterClass *RC,
300                                          MachineFunction &MF) const {
301   const ARMSubtarget &STI = MF.getSubtarget<ARMSubtarget>();
302   const ARMFrameLowering *TFI = getFrameLowering(MF);
303 
304   switch (RC->getID()) {
305   default:
306     return 0;
307   case ARM::tGPRRegClassID: {
308     // hasFP ends up calling getMaxCallFrameComputed() which may not be
309     // available when getPressureLimit() is called as part of
310     // ScheduleDAGRRList.
311     bool HasFP = MF.getFrameInfo().isMaxCallFrameSizeComputed()
312                  ? TFI->hasFP(MF) : true;
313     return 5 - HasFP;
314   }
315   case ARM::GPRRegClassID: {
316     bool HasFP = MF.getFrameInfo().isMaxCallFrameSizeComputed()
317                  ? TFI->hasFP(MF) : true;
318     return 10 - HasFP - (STI.isR9Reserved() ? 1 : 0);
319   }
320   case ARM::SPRRegClassID:  // Currently not used as 'rep' register class.
321   case ARM::DPRRegClassID:
322     return 32 - 10;
323   }
324 }
325 
326 // Get the other register in a GPRPair.
327 static MCPhysReg getPairedGPR(MCPhysReg Reg, bool Odd,
328                               const MCRegisterInfo *RI) {
329   for (MCPhysReg Super : RI->superregs(Reg))
330     if (ARM::GPRPairRegClass.contains(Super))
331       return RI->getSubReg(Super, Odd ? ARM::gsub_1 : ARM::gsub_0);
332   return 0;
333 }
334 
335 // Resolve the RegPairEven / RegPairOdd register allocator hints.
336 bool ARMBaseRegisterInfo::getRegAllocationHints(
337     Register VirtReg, ArrayRef<MCPhysReg> Order,
338     SmallVectorImpl<MCPhysReg> &Hints, const MachineFunction &MF,
339     const VirtRegMap *VRM, const LiveRegMatrix *Matrix) const {
340   const MachineRegisterInfo &MRI = MF.getRegInfo();
341   std::pair<unsigned, Register> Hint = MRI.getRegAllocationHint(VirtReg);
342 
343   unsigned Odd;
344   switch (Hint.first) {
345   case ARMRI::RegPairEven:
346     Odd = 0;
347     break;
348   case ARMRI::RegPairOdd:
349     Odd = 1;
350     break;
351   case ARMRI::RegLR:
352     TargetRegisterInfo::getRegAllocationHints(VirtReg, Order, Hints, MF, VRM);
353     if (MRI.getRegClass(VirtReg)->contains(ARM::LR))
354       Hints.push_back(ARM::LR);
355     return false;
356   default:
357     return TargetRegisterInfo::getRegAllocationHints(VirtReg, Order, Hints, MF, VRM);
358   }
359 
360   // This register should preferably be even (Odd == 0) or odd (Odd == 1).
361   // Check if the other part of the pair has already been assigned, and provide
362   // the paired register as the first hint.
363   Register Paired = Hint.second;
364   if (!Paired)
365     return false;
366 
367   Register PairedPhys;
368   if (Paired.isPhysical()) {
369     PairedPhys = Paired;
370   } else if (VRM && VRM->hasPhys(Paired)) {
371     PairedPhys = getPairedGPR(VRM->getPhys(Paired), Odd, this);
372   }
373 
374   // First prefer the paired physreg.
375   if (PairedPhys && is_contained(Order, PairedPhys))
376     Hints.push_back(PairedPhys);
377 
378   // Then prefer even or odd registers.
379   for (MCPhysReg Reg : Order) {
380     if (Reg == PairedPhys || (getEncodingValue(Reg) & 1) != Odd)
381       continue;
382     // Don't provide hints that are paired to a reserved register.
383     MCPhysReg Paired = getPairedGPR(Reg, !Odd, this);
384     if (!Paired || MRI.isReserved(Paired))
385       continue;
386     Hints.push_back(Reg);
387   }
388   return false;
389 }
390 
391 void ARMBaseRegisterInfo::updateRegAllocHint(Register Reg, Register NewReg,
392                                              MachineFunction &MF) const {
393   MachineRegisterInfo *MRI = &MF.getRegInfo();
394   std::pair<unsigned, Register> Hint = MRI->getRegAllocationHint(Reg);
395   if ((Hint.first == ARMRI::RegPairOdd || Hint.first == ARMRI::RegPairEven) &&
396       Hint.second.isVirtual()) {
397     // If 'Reg' is one of the even / odd register pair and it's now changed
398     // (e.g. coalesced) into a different register. The other register of the
399     // pair allocation hint must be updated to reflect the relationship
400     // change.
401     Register OtherReg = Hint.second;
402     Hint = MRI->getRegAllocationHint(OtherReg);
403     // Make sure the pair has not already divorced.
404     if (Hint.second == Reg) {
405       MRI->setRegAllocationHint(OtherReg, Hint.first, NewReg);
406       if (NewReg.isVirtual())
407         MRI->setRegAllocationHint(NewReg,
408                                   Hint.first == ARMRI::RegPairOdd
409                                       ? ARMRI::RegPairEven
410                                       : ARMRI::RegPairOdd,
411                                   OtherReg);
412     }
413   }
414 }
415 
416 bool ARMBaseRegisterInfo::hasBasePointer(const MachineFunction &MF) const {
417   const MachineFrameInfo &MFI = MF.getFrameInfo();
418   const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
419   const ARMFrameLowering *TFI = getFrameLowering(MF);
420 
421   // If we have stack realignment and VLAs, we have no pointer to use to
422   // access the stack. If we have stack realignment, and a large call frame,
423   // we have no place to allocate the emergency spill slot.
424   if (hasStackRealignment(MF) && !TFI->hasReservedCallFrame(MF))
425     return true;
426 
427   // Thumb has trouble with negative offsets from the FP. Thumb2 has a limited
428   // negative range for ldr/str (255), and Thumb1 is positive offsets only.
429   //
430   // It's going to be better to use the SP or Base Pointer instead. When there
431   // are variable sized objects, we can't reference off of the SP, so we
432   // reserve a Base Pointer.
433   //
434   // For Thumb2, estimate whether a negative offset from the frame pointer
435   // will be sufficient to reach the whole stack frame. If a function has a
436   // smallish frame, it's less likely to have lots of spills and callee saved
437   // space, so it's all more likely to be within range of the frame pointer.
438   // If it's wrong, the scavenger will still enable access to work, it just
439   // won't be optimal.  (We should always be able to reach the emergency
440   // spill slot from the frame pointer.)
441   if (AFI->isThumb2Function() && MFI.hasVarSizedObjects() &&
442       MFI.getLocalFrameSize() >= 128)
443     return true;
444   // For Thumb1, if sp moves, nothing is in range, so force a base pointer.
445   // This is necessary for correctness in cases where we need an emergency
446   // spill slot. (In Thumb1, we can't use a negative offset from the frame
447   // pointer.)
448   if (AFI->isThumb1OnlyFunction() && !TFI->hasReservedCallFrame(MF))
449     return true;
450   return false;
451 }
452 
453 bool ARMBaseRegisterInfo::canRealignStack(const MachineFunction &MF) const {
454   const MachineRegisterInfo *MRI = &MF.getRegInfo();
455   const ARMFrameLowering *TFI = getFrameLowering(MF);
456   const ARMSubtarget &STI = MF.getSubtarget<ARMSubtarget>();
457   // We can't realign the stack if:
458   // 1. Dynamic stack realignment is explicitly disabled,
459   // 2. There are VLAs in the function and the base pointer is disabled.
460   if (!TargetRegisterInfo::canRealignStack(MF))
461     return false;
462   // Stack realignment requires a frame pointer.  If we already started
463   // register allocation with frame pointer elimination, it is too late now.
464   if (!MRI->canReserveReg(STI.getFramePointerReg()))
465     return false;
466   // We may also need a base pointer if there are dynamic allocas or stack
467   // pointer adjustments around calls.
468   if (TFI->hasReservedCallFrame(MF))
469     return true;
470   // A base pointer is required and allowed.  Check that it isn't too late to
471   // reserve it.
472   return MRI->canReserveReg(BasePtr);
473 }
474 
475 bool ARMBaseRegisterInfo::
476 cannotEliminateFrame(const MachineFunction &MF) const {
477   const MachineFrameInfo &MFI = MF.getFrameInfo();
478   if (MF.getTarget().Options.DisableFramePointerElim(MF) && MFI.adjustsStack())
479     return true;
480   return MFI.hasVarSizedObjects() || MFI.isFrameAddressTaken() ||
481          hasStackRealignment(MF);
482 }
483 
484 Register
485 ARMBaseRegisterInfo::getFrameRegister(const MachineFunction &MF) const {
486   const ARMSubtarget &STI = MF.getSubtarget<ARMSubtarget>();
487   const ARMFrameLowering *TFI = getFrameLowering(MF);
488 
489   if (TFI->hasFP(MF))
490     return STI.getFramePointerReg();
491   return ARM::SP;
492 }
493 
494 /// emitLoadConstPool - Emits a load from constpool to materialize the
495 /// specified immediate.
496 void ARMBaseRegisterInfo::emitLoadConstPool(
497     MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
498     const DebugLoc &dl, Register DestReg, unsigned SubIdx, int Val,
499     ARMCC::CondCodes Pred, Register PredReg, unsigned MIFlags) const {
500   MachineFunction &MF = *MBB.getParent();
501   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
502   MachineConstantPool *ConstantPool = MF.getConstantPool();
503   const Constant *C =
504         ConstantInt::get(Type::getInt32Ty(MF.getFunction().getContext()), Val);
505   unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align(4));
506 
507   BuildMI(MBB, MBBI, dl, TII.get(ARM::LDRcp))
508       .addReg(DestReg, getDefRegState(true), SubIdx)
509       .addConstantPoolIndex(Idx)
510       .addImm(0)
511       .add(predOps(Pred, PredReg))
512       .setMIFlags(MIFlags);
513 }
514 
515 bool ARMBaseRegisterInfo::
516 requiresRegisterScavenging(const MachineFunction &MF) const {
517   return true;
518 }
519 
520 bool ARMBaseRegisterInfo::
521 requiresFrameIndexScavenging(const MachineFunction &MF) const {
522   return true;
523 }
524 
525 bool ARMBaseRegisterInfo::
526 requiresVirtualBaseRegisters(const MachineFunction &MF) const {
527   return true;
528 }
529 
530 int64_t ARMBaseRegisterInfo::
531 getFrameIndexInstrOffset(const MachineInstr *MI, int Idx) const {
532   const MCInstrDesc &Desc = MI->getDesc();
533   unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask);
534   int64_t InstrOffs = 0;
535   int Scale = 1;
536   unsigned ImmIdx = 0;
537   switch (AddrMode) {
538   case ARMII::AddrModeT2_i8:
539   case ARMII::AddrModeT2_i8neg:
540   case ARMII::AddrModeT2_i8pos:
541   case ARMII::AddrModeT2_i12:
542   case ARMII::AddrMode_i12:
543     InstrOffs = MI->getOperand(Idx+1).getImm();
544     Scale = 1;
545     break;
546   case ARMII::AddrMode5: {
547     // VFP address mode.
548     const MachineOperand &OffOp = MI->getOperand(Idx+1);
549     InstrOffs = ARM_AM::getAM5Offset(OffOp.getImm());
550     if (ARM_AM::getAM5Op(OffOp.getImm()) == ARM_AM::sub)
551       InstrOffs = -InstrOffs;
552     Scale = 4;
553     break;
554   }
555   case ARMII::AddrMode2:
556     ImmIdx = Idx+2;
557     InstrOffs = ARM_AM::getAM2Offset(MI->getOperand(ImmIdx).getImm());
558     if (ARM_AM::getAM2Op(MI->getOperand(ImmIdx).getImm()) == ARM_AM::sub)
559       InstrOffs = -InstrOffs;
560     break;
561   case ARMII::AddrMode3:
562     ImmIdx = Idx+2;
563     InstrOffs = ARM_AM::getAM3Offset(MI->getOperand(ImmIdx).getImm());
564     if (ARM_AM::getAM3Op(MI->getOperand(ImmIdx).getImm()) == ARM_AM::sub)
565       InstrOffs = -InstrOffs;
566     break;
567   case ARMII::AddrModeT1_s:
568     ImmIdx = Idx+1;
569     InstrOffs = MI->getOperand(ImmIdx).getImm();
570     Scale = 4;
571     break;
572   default:
573     llvm_unreachable("Unsupported addressing mode!");
574   }
575 
576   return InstrOffs * Scale;
577 }
578 
579 /// needsFrameBaseReg - Returns true if the instruction's frame index
580 /// reference would be better served by a base register other than FP
581 /// or SP. Used by LocalStackFrameAllocation to determine which frame index
582 /// references it should create new base registers for.
583 bool ARMBaseRegisterInfo::
584 needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const {
585   for (unsigned i = 0; !MI->getOperand(i).isFI(); ++i) {
586     assert(i < MI->getNumOperands() &&"Instr doesn't have FrameIndex operand!");
587   }
588 
589   // It's the load/store FI references that cause issues, as it can be difficult
590   // to materialize the offset if it won't fit in the literal field. Estimate
591   // based on the size of the local frame and some conservative assumptions
592   // about the rest of the stack frame (note, this is pre-regalloc, so
593   // we don't know everything for certain yet) whether this offset is likely
594   // to be out of range of the immediate. Return true if so.
595 
596   // We only generate virtual base registers for loads and stores, so
597   // return false for everything else.
598   unsigned Opc = MI->getOpcode();
599   switch (Opc) {
600   case ARM::LDRi12: case ARM::LDRH: case ARM::LDRBi12:
601   case ARM::STRi12: case ARM::STRH: case ARM::STRBi12:
602   case ARM::t2LDRi12: case ARM::t2LDRi8:
603   case ARM::t2STRi12: case ARM::t2STRi8:
604   case ARM::VLDRS: case ARM::VLDRD:
605   case ARM::VSTRS: case ARM::VSTRD:
606   case ARM::tSTRspi: case ARM::tLDRspi:
607     break;
608   default:
609     return false;
610   }
611 
612   // Without a virtual base register, if the function has variable sized
613   // objects, all fixed-size local references will be via the frame pointer,
614   // Approximate the offset and see if it's legal for the instruction.
615   // Note that the incoming offset is based on the SP value at function entry,
616   // so it'll be negative.
617   MachineFunction &MF = *MI->getParent()->getParent();
618   const ARMFrameLowering *TFI = getFrameLowering(MF);
619   MachineFrameInfo &MFI = MF.getFrameInfo();
620   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
621 
622   // Estimate an offset from the frame pointer.
623   // Conservatively assume all callee-saved registers get pushed. R4-R6
624   // will be earlier than the FP, so we ignore those.
625   // R7, LR
626   int64_t FPOffset = Offset - 8;
627   // ARM and Thumb2 functions also need to consider R8-R11 and D8-D15
628   if (!AFI->isThumbFunction() || !AFI->isThumb1OnlyFunction())
629     FPOffset -= 80;
630   // Estimate an offset from the stack pointer.
631   // The incoming offset is relating to the SP at the start of the function,
632   // but when we access the local it'll be relative to the SP after local
633   // allocation, so adjust our SP-relative offset by that allocation size.
634   Offset += MFI.getLocalFrameSize();
635   // Assume that we'll have at least some spill slots allocated.
636   // FIXME: This is a total SWAG number. We should run some statistics
637   //        and pick a real one.
638   Offset += 128; // 128 bytes of spill slots
639 
640   // If there's a frame pointer and the addressing mode allows it, try using it.
641   // The FP is only available if there is no dynamic realignment. We
642   // don't know for sure yet whether we'll need that, so we guess based
643   // on whether there are any local variables that would trigger it.
644   if (TFI->hasFP(MF) &&
645       !((MFI.getLocalFrameMaxAlign() > TFI->getStackAlign()) &&
646         canRealignStack(MF))) {
647     if (isFrameOffsetLegal(MI, getFrameRegister(MF), FPOffset))
648       return false;
649   }
650   // If we can reference via the stack pointer, try that.
651   // FIXME: This (and the code that resolves the references) can be improved
652   //        to only disallow SP relative references in the live range of
653   //        the VLA(s). In practice, it's unclear how much difference that
654   //        would make, but it may be worth doing.
655   if (!MFI.hasVarSizedObjects() && isFrameOffsetLegal(MI, ARM::SP, Offset))
656     return false;
657 
658   // The offset likely isn't legal, we want to allocate a virtual base register.
659   return true;
660 }
661 
662 /// materializeFrameBaseRegister - Insert defining instruction(s) for BaseReg to
663 /// be a pointer to FrameIdx at the beginning of the basic block.
664 Register
665 ARMBaseRegisterInfo::materializeFrameBaseRegister(MachineBasicBlock *MBB,
666                                                   int FrameIdx,
667                                                   int64_t Offset) const {
668   ARMFunctionInfo *AFI = MBB->getParent()->getInfo<ARMFunctionInfo>();
669   unsigned ADDriOpc = !AFI->isThumbFunction() ? ARM::ADDri :
670     (AFI->isThumb1OnlyFunction() ? ARM::tADDframe : ARM::t2ADDri);
671 
672   MachineBasicBlock::iterator Ins = MBB->begin();
673   DebugLoc DL;                  // Defaults to "unknown"
674   if (Ins != MBB->end())
675     DL = Ins->getDebugLoc();
676 
677   const MachineFunction &MF = *MBB->getParent();
678   MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
679   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
680   const MCInstrDesc &MCID = TII.get(ADDriOpc);
681   Register BaseReg = MRI.createVirtualRegister(&ARM::GPRRegClass);
682   MRI.constrainRegClass(BaseReg, TII.getRegClass(MCID, 0, this, MF));
683 
684   MachineInstrBuilder MIB = BuildMI(*MBB, Ins, DL, MCID, BaseReg)
685     .addFrameIndex(FrameIdx).addImm(Offset);
686 
687   if (!AFI->isThumb1OnlyFunction())
688     MIB.add(predOps(ARMCC::AL)).add(condCodeOp());
689 
690   return BaseReg;
691 }
692 
693 void ARMBaseRegisterInfo::resolveFrameIndex(MachineInstr &MI, Register BaseReg,
694                                             int64_t Offset) const {
695   MachineBasicBlock &MBB = *MI.getParent();
696   MachineFunction &MF = *MBB.getParent();
697   const ARMBaseInstrInfo &TII =
698       *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
699   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
700   int Off = Offset; // ARM doesn't need the general 64-bit offsets
701   unsigned i = 0;
702 
703   assert(!AFI->isThumb1OnlyFunction() &&
704          "This resolveFrameIndex does not support Thumb1!");
705 
706   while (!MI.getOperand(i).isFI()) {
707     ++i;
708     assert(i < MI.getNumOperands() && "Instr doesn't have FrameIndex operand!");
709   }
710   bool Done = false;
711   if (!AFI->isThumbFunction())
712     Done = rewriteARMFrameIndex(MI, i, BaseReg, Off, TII);
713   else {
714     assert(AFI->isThumb2Function());
715     Done = rewriteT2FrameIndex(MI, i, BaseReg, Off, TII, this);
716   }
717   assert(Done && "Unable to resolve frame index!");
718   (void)Done;
719 }
720 
721 bool ARMBaseRegisterInfo::isFrameOffsetLegal(const MachineInstr *MI,
722                                              Register BaseReg,
723                                              int64_t Offset) const {
724   const MCInstrDesc &Desc = MI->getDesc();
725   unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask);
726   unsigned i = 0;
727   for (; !MI->getOperand(i).isFI(); ++i)
728     assert(i+1 < MI->getNumOperands() && "Instr doesn't have FrameIndex operand!");
729 
730   // AddrMode4 and AddrMode6 cannot handle any offset.
731   if (AddrMode == ARMII::AddrMode4 || AddrMode == ARMII::AddrMode6)
732     return Offset == 0;
733 
734   unsigned NumBits = 0;
735   unsigned Scale = 1;
736   bool isSigned = true;
737   switch (AddrMode) {
738   case ARMII::AddrModeT2_i8:
739   case ARMII::AddrModeT2_i8pos:
740   case ARMII::AddrModeT2_i8neg:
741   case ARMII::AddrModeT2_i12:
742     // i8 supports only negative, and i12 supports only positive, so
743     // based on Offset sign, consider the appropriate instruction
744     Scale = 1;
745     if (Offset < 0) {
746       NumBits = 8;
747       Offset = -Offset;
748     } else {
749       NumBits = 12;
750     }
751     break;
752   case ARMII::AddrMode5:
753     // VFP address mode.
754     NumBits = 8;
755     Scale = 4;
756     break;
757   case ARMII::AddrMode_i12:
758   case ARMII::AddrMode2:
759     NumBits = 12;
760     break;
761   case ARMII::AddrMode3:
762     NumBits = 8;
763     break;
764   case ARMII::AddrModeT1_s:
765     NumBits = (BaseReg == ARM::SP ? 8 : 5);
766     Scale = 4;
767     isSigned = false;
768     break;
769   default:
770     llvm_unreachable("Unsupported addressing mode!");
771   }
772 
773   Offset += getFrameIndexInstrOffset(MI, i);
774   // Make sure the offset is encodable for instructions that scale the
775   // immediate.
776   if ((Offset & (Scale-1)) != 0)
777     return false;
778 
779   if (isSigned && Offset < 0)
780     Offset = -Offset;
781 
782   unsigned Mask = (1 << NumBits) - 1;
783   if ((unsigned)Offset <= Mask * Scale)
784     return true;
785 
786   return false;
787 }
788 
789 bool
790 ARMBaseRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
791                                          int SPAdj, unsigned FIOperandNum,
792                                          RegScavenger *RS) const {
793   MachineInstr &MI = *II;
794   MachineBasicBlock &MBB = *MI.getParent();
795   MachineFunction &MF = *MBB.getParent();
796   const ARMBaseInstrInfo &TII =
797       *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
798   const ARMFrameLowering *TFI = getFrameLowering(MF);
799   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
800   assert(!AFI->isThumb1OnlyFunction() &&
801          "This eliminateFrameIndex does not support Thumb1!");
802   int FrameIndex = MI.getOperand(FIOperandNum).getIndex();
803   Register FrameReg;
804 
805   int Offset = TFI->ResolveFrameIndexReference(MF, FrameIndex, FrameReg, SPAdj);
806 
807   // PEI::scavengeFrameVirtualRegs() cannot accurately track SPAdj because the
808   // call frame setup/destroy instructions have already been eliminated.  That
809   // means the stack pointer cannot be used to access the emergency spill slot
810   // when !hasReservedCallFrame().
811 #ifndef NDEBUG
812   if (RS && FrameReg == ARM::SP && RS->isScavengingFrameIndex(FrameIndex)){
813     assert(TFI->hasReservedCallFrame(MF) &&
814            "Cannot use SP to access the emergency spill slot in "
815            "functions without a reserved call frame");
816     assert(!MF.getFrameInfo().hasVarSizedObjects() &&
817            "Cannot use SP to access the emergency spill slot in "
818            "functions with variable sized frame objects");
819   }
820 #endif // NDEBUG
821 
822   assert(!MI.isDebugValue() && "DBG_VALUEs should be handled in target-independent code");
823 
824   // Modify MI as necessary to handle as much of 'Offset' as possible
825   bool Done = false;
826   if (!AFI->isThumbFunction())
827     Done = rewriteARMFrameIndex(MI, FIOperandNum, FrameReg, Offset, TII);
828   else {
829     assert(AFI->isThumb2Function());
830     Done = rewriteT2FrameIndex(MI, FIOperandNum, FrameReg, Offset, TII, this);
831   }
832   if (Done)
833     return false;
834 
835   // If we get here, the immediate doesn't fit into the instruction.  We folded
836   // as much as possible above, handle the rest, providing a register that is
837   // SP+LargeImm.
838   assert(
839       (Offset ||
840        (MI.getDesc().TSFlags & ARMII::AddrModeMask) == ARMII::AddrMode4 ||
841        (MI.getDesc().TSFlags & ARMII::AddrModeMask) == ARMII::AddrMode6 ||
842        (MI.getDesc().TSFlags & ARMII::AddrModeMask) == ARMII::AddrModeT2_i7 ||
843        (MI.getDesc().TSFlags & ARMII::AddrModeMask) == ARMII::AddrModeT2_i7s2 ||
844        (MI.getDesc().TSFlags & ARMII::AddrModeMask) ==
845            ARMII::AddrModeT2_i7s4) &&
846       "This code isn't needed if offset already handled!");
847 
848   unsigned ScratchReg = 0;
849   int PIdx = MI.findFirstPredOperandIdx();
850   ARMCC::CondCodes Pred = (PIdx == -1)
851     ? ARMCC::AL : (ARMCC::CondCodes)MI.getOperand(PIdx).getImm();
852   Register PredReg = (PIdx == -1) ? Register() : MI.getOperand(PIdx+1).getReg();
853 
854   const MCInstrDesc &MCID = MI.getDesc();
855   const TargetRegisterClass *RegClass =
856       TII.getRegClass(MCID, FIOperandNum, this, *MI.getParent()->getParent());
857 
858   if (Offset == 0 && (FrameReg.isVirtual() || RegClass->contains(FrameReg)))
859     // Must be addrmode4/6.
860     MI.getOperand(FIOperandNum).ChangeToRegister(FrameReg, false, false, false);
861   else {
862     ScratchReg = MF.getRegInfo().createVirtualRegister(RegClass);
863     if (!AFI->isThumbFunction())
864       emitARMRegPlusImmediate(MBB, II, MI.getDebugLoc(), ScratchReg, FrameReg,
865                               Offset, Pred, PredReg, TII);
866     else {
867       assert(AFI->isThumb2Function());
868       emitT2RegPlusImmediate(MBB, II, MI.getDebugLoc(), ScratchReg, FrameReg,
869                              Offset, Pred, PredReg, TII);
870     }
871     // Update the original instruction to use the scratch register.
872     MI.getOperand(FIOperandNum).ChangeToRegister(ScratchReg, false, false,true);
873   }
874   return false;
875 }
876 
877 bool ARMBaseRegisterInfo::shouldCoalesce(MachineInstr *MI,
878                                   const TargetRegisterClass *SrcRC,
879                                   unsigned SubReg,
880                                   const TargetRegisterClass *DstRC,
881                                   unsigned DstSubReg,
882                                   const TargetRegisterClass *NewRC,
883                                   LiveIntervals &LIS) const {
884   auto MBB = MI->getParent();
885   auto MF = MBB->getParent();
886   const MachineRegisterInfo &MRI = MF->getRegInfo();
887   // If not copying into a sub-register this should be ok because we shouldn't
888   // need to split the reg.
889   if (!DstSubReg)
890     return true;
891   // Small registers don't frequently cause a problem, so we can coalesce them.
892   if (getRegSizeInBits(*NewRC) < 256 && getRegSizeInBits(*DstRC) < 256 &&
893       getRegSizeInBits(*SrcRC) < 256)
894     return true;
895 
896   auto NewRCWeight =
897               MRI.getTargetRegisterInfo()->getRegClassWeight(NewRC);
898   auto SrcRCWeight =
899               MRI.getTargetRegisterInfo()->getRegClassWeight(SrcRC);
900   auto DstRCWeight =
901               MRI.getTargetRegisterInfo()->getRegClassWeight(DstRC);
902   // If the source register class is more expensive than the destination, the
903   // coalescing is probably profitable.
904   if (SrcRCWeight.RegWeight > NewRCWeight.RegWeight)
905     return true;
906   if (DstRCWeight.RegWeight > NewRCWeight.RegWeight)
907     return true;
908 
909   // If the register allocator isn't constrained, we can always allow coalescing
910   // unfortunately we don't know yet if we will be constrained.
911   // The goal of this heuristic is to restrict how many expensive registers
912   // we allow to coalesce in a given basic block.
913   auto AFI = MF->getInfo<ARMFunctionInfo>();
914   auto It = AFI->getCoalescedWeight(MBB);
915 
916   LLVM_DEBUG(dbgs() << "\tARM::shouldCoalesce - Coalesced Weight: "
917                     << It->second << "\n");
918   LLVM_DEBUG(dbgs() << "\tARM::shouldCoalesce - Reg Weight: "
919                     << NewRCWeight.RegWeight << "\n");
920 
921   // This number is the largest round number that which meets the criteria:
922   //  (1) addresses PR18825
923   //  (2) generates better code in some test cases (like vldm-shed-a9.ll)
924   //  (3) Doesn't regress any test cases (in-tree, test-suite, and SPEC)
925   // In practice the SizeMultiplier will only factor in for straight line code
926   // that uses a lot of NEON vectors, which isn't terribly common.
927   unsigned SizeMultiplier = MBB->size()/100;
928   SizeMultiplier = SizeMultiplier ? SizeMultiplier : 1;
929   if (It->second < NewRCWeight.WeightLimit * SizeMultiplier) {
930     It->second += NewRCWeight.RegWeight;
931     return true;
932   }
933   return false;
934 }
935 
936 bool ARMBaseRegisterInfo::shouldRewriteCopySrc(const TargetRegisterClass *DefRC,
937                                                unsigned DefSubReg,
938                                                const TargetRegisterClass *SrcRC,
939                                                unsigned SrcSubReg) const {
940   // We can't extract an SPR from an arbitary DPR (as opposed to a DPR_VFP2).
941   if (DefRC == &ARM::SPRRegClass && DefSubReg == 0 &&
942       SrcRC == &ARM::DPRRegClass &&
943       (SrcSubReg == ARM::ssub_0 || SrcSubReg == ARM::ssub_1))
944     return false;
945 
946   return TargetRegisterInfo::shouldRewriteCopySrc(DefRC, DefSubReg,
947                                                   SrcRC, SrcSubReg);
948 }
949