1 //===- ARMFrameLowering.cpp - ARM Frame Information -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the ARM implementation of TargetFrameLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "ARMFrameLowering.h"
14 #include "ARMBaseInstrInfo.h"
15 #include "ARMBaseRegisterInfo.h"
16 #include "ARMConstantPoolValue.h"
17 #include "ARMMachineFunctionInfo.h"
18 #include "ARMSubtarget.h"
19 #include "MCTargetDesc/ARMAddressingModes.h"
20 #include "MCTargetDesc/ARMBaseInfo.h"
21 #include "Utils/ARMBaseInfo.h"
22 #include "llvm/ADT/BitVector.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineConstantPool.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineInstrBuilder.h"
32 #include "llvm/CodeGen/MachineJumpTableInfo.h"
33 #include "llvm/CodeGen/MachineModuleInfo.h"
34 #include "llvm/CodeGen/MachineOperand.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/RegisterScavenging.h"
37 #include "llvm/CodeGen/TargetInstrInfo.h"
38 #include "llvm/CodeGen/TargetOpcodes.h"
39 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/IR/Attributes.h"
42 #include "llvm/IR/CallingConv.h"
43 #include "llvm/IR/DebugLoc.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/MC/MCContext.h"
46 #include "llvm/MC/MCDwarf.h"
47 #include "llvm/MC/MCInstrDesc.h"
48 #include "llvm/MC/MCRegisterInfo.h"
49 #include "llvm/Support/CodeGen.h"
50 #include "llvm/Support/CommandLine.h"
51 #include "llvm/Support/Compiler.h"
52 #include "llvm/Support/Debug.h"
53 #include "llvm/Support/ErrorHandling.h"
54 #include "llvm/Support/MathExtras.h"
55 #include "llvm/Support/raw_ostream.h"
56 #include "llvm/Target/TargetMachine.h"
57 #include "llvm/Target/TargetOptions.h"
58 #include <algorithm>
59 #include <cassert>
60 #include <cstddef>
61 #include <cstdint>
62 #include <iterator>
63 #include <utility>
64 #include <vector>
65 
66 #define DEBUG_TYPE "arm-frame-lowering"
67 
68 using namespace llvm;
69 
70 static cl::opt<bool>
71 SpillAlignedNEONRegs("align-neon-spills", cl::Hidden, cl::init(true),
72                      cl::desc("Align ARM NEON spills in prolog and epilog"));
73 
74 static MachineBasicBlock::iterator
75 skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI,
76                         unsigned NumAlignedDPRCS2Regs);
77 
78 ARMFrameLowering::ARMFrameLowering(const ARMSubtarget &sti)
79     : TargetFrameLowering(StackGrowsDown, sti.getStackAlignment(), 0, Align(4)),
80       STI(sti) {}
81 
82 bool ARMFrameLowering::keepFramePointer(const MachineFunction &MF) const {
83   // iOS always has a FP for backtracking, force other targets to keep their FP
84   // when doing FastISel. The emitted code is currently superior, and in cases
85   // like test-suite's lencod FastISel isn't quite correct when FP is eliminated.
86   return MF.getSubtarget<ARMSubtarget>().useFastISel();
87 }
88 
89 /// Returns true if the target can safely skip saving callee-saved registers
90 /// for noreturn nounwind functions.
91 bool ARMFrameLowering::enableCalleeSaveSkip(const MachineFunction &MF) const {
92   assert(MF.getFunction().hasFnAttribute(Attribute::NoReturn) &&
93          MF.getFunction().hasFnAttribute(Attribute::NoUnwind) &&
94          !MF.getFunction().hasFnAttribute(Attribute::UWTable));
95 
96   // Frame pointer and link register are not treated as normal CSR, thus we
97   // can always skip CSR saves for nonreturning functions.
98   return true;
99 }
100 
101 /// hasFP - Return true if the specified function should have a dedicated frame
102 /// pointer register.  This is true if the function has variable sized allocas
103 /// or if frame pointer elimination is disabled.
104 bool ARMFrameLowering::hasFP(const MachineFunction &MF) const {
105   const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
106   const MachineFrameInfo &MFI = MF.getFrameInfo();
107 
108   // ABI-required frame pointer.
109   if (MF.getTarget().Options.DisableFramePointerElim(MF))
110     return true;
111 
112   // Frame pointer required for use within this function.
113   return (RegInfo->needsStackRealignment(MF) ||
114           MFI.hasVarSizedObjects() ||
115           MFI.isFrameAddressTaken());
116 }
117 
118 /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is
119 /// not required, we reserve argument space for call sites in the function
120 /// immediately on entry to the current function.  This eliminates the need for
121 /// add/sub sp brackets around call sites.  Returns true if the call frame is
122 /// included as part of the stack frame.
123 bool ARMFrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
124   const MachineFrameInfo &MFI = MF.getFrameInfo();
125   unsigned CFSize = MFI.getMaxCallFrameSize();
126   // It's not always a good idea to include the call frame as part of the
127   // stack frame. ARM (especially Thumb) has small immediate offset to
128   // address the stack frame. So a large call frame can cause poor codegen
129   // and may even makes it impossible to scavenge a register.
130   if (CFSize >= ((1 << 12) - 1) / 2)  // Half of imm12
131     return false;
132 
133   return !MFI.hasVarSizedObjects();
134 }
135 
136 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the
137 /// call frame pseudos can be simplified.  Unlike most targets, having a FP
138 /// is not sufficient here since we still may reference some objects via SP
139 /// even when FP is available in Thumb2 mode.
140 bool
141 ARMFrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const {
142   return hasReservedCallFrame(MF) || MF.getFrameInfo().hasVarSizedObjects();
143 }
144 
145 static bool isCSRestore(MachineInstr &MI, const ARMBaseInstrInfo &TII,
146                         const MCPhysReg *CSRegs) {
147   // Integer spill area is handled with "pop".
148   if (isPopOpcode(MI.getOpcode())) {
149     // The first two operands are predicates. The last two are
150     // imp-def and imp-use of SP. Check everything in between.
151     for (int i = 5, e = MI.getNumOperands(); i != e; ++i)
152       if (!isCalleeSavedRegister(MI.getOperand(i).getReg(), CSRegs))
153         return false;
154     return true;
155   }
156   if ((MI.getOpcode() == ARM::LDR_POST_IMM ||
157        MI.getOpcode() == ARM::LDR_POST_REG ||
158        MI.getOpcode() == ARM::t2LDR_POST) &&
159       isCalleeSavedRegister(MI.getOperand(0).getReg(), CSRegs) &&
160       MI.getOperand(1).getReg() == ARM::SP)
161     return true;
162 
163   return false;
164 }
165 
166 static void emitRegPlusImmediate(
167     bool isARM, MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
168     const DebugLoc &dl, const ARMBaseInstrInfo &TII, unsigned DestReg,
169     unsigned SrcReg, int NumBytes, unsigned MIFlags = MachineInstr::NoFlags,
170     ARMCC::CondCodes Pred = ARMCC::AL, unsigned PredReg = 0) {
171   if (isARM)
172     emitARMRegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes,
173                             Pred, PredReg, TII, MIFlags);
174   else
175     emitT2RegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes,
176                            Pred, PredReg, TII, MIFlags);
177 }
178 
179 static void emitSPUpdate(bool isARM, MachineBasicBlock &MBB,
180                          MachineBasicBlock::iterator &MBBI, const DebugLoc &dl,
181                          const ARMBaseInstrInfo &TII, int NumBytes,
182                          unsigned MIFlags = MachineInstr::NoFlags,
183                          ARMCC::CondCodes Pred = ARMCC::AL,
184                          unsigned PredReg = 0) {
185   emitRegPlusImmediate(isARM, MBB, MBBI, dl, TII, ARM::SP, ARM::SP, NumBytes,
186                        MIFlags, Pred, PredReg);
187 }
188 
189 static int sizeOfSPAdjustment(const MachineInstr &MI) {
190   int RegSize;
191   switch (MI.getOpcode()) {
192   case ARM::VSTMDDB_UPD:
193     RegSize = 8;
194     break;
195   case ARM::STMDB_UPD:
196   case ARM::t2STMDB_UPD:
197     RegSize = 4;
198     break;
199   case ARM::t2STR_PRE:
200   case ARM::STR_PRE_IMM:
201     return 4;
202   default:
203     llvm_unreachable("Unknown push or pop like instruction");
204   }
205 
206   int count = 0;
207   // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+
208   // pred) so the list starts at 4.
209   for (int i = MI.getNumOperands() - 1; i >= 4; --i)
210     count += RegSize;
211   return count;
212 }
213 
214 static bool WindowsRequiresStackProbe(const MachineFunction &MF,
215                                       size_t StackSizeInBytes) {
216   const MachineFrameInfo &MFI = MF.getFrameInfo();
217   const Function &F = MF.getFunction();
218   unsigned StackProbeSize = (MFI.getStackProtectorIndex() > 0) ? 4080 : 4096;
219   if (F.hasFnAttribute("stack-probe-size"))
220     F.getFnAttribute("stack-probe-size")
221         .getValueAsString()
222         .getAsInteger(0, StackProbeSize);
223   return (StackSizeInBytes >= StackProbeSize) &&
224          !F.hasFnAttribute("no-stack-arg-probe");
225 }
226 
227 namespace {
228 
229 struct StackAdjustingInsts {
230   struct InstInfo {
231     MachineBasicBlock::iterator I;
232     unsigned SPAdjust;
233     bool BeforeFPSet;
234   };
235 
236   SmallVector<InstInfo, 4> Insts;
237 
238   void addInst(MachineBasicBlock::iterator I, unsigned SPAdjust,
239                bool BeforeFPSet = false) {
240     InstInfo Info = {I, SPAdjust, BeforeFPSet};
241     Insts.push_back(Info);
242   }
243 
244   void addExtraBytes(const MachineBasicBlock::iterator I, unsigned ExtraBytes) {
245     auto Info =
246         llvm::find_if(Insts, [&](InstInfo &Info) { return Info.I == I; });
247     assert(Info != Insts.end() && "invalid sp adjusting instruction");
248     Info->SPAdjust += ExtraBytes;
249   }
250 
251   void emitDefCFAOffsets(MachineBasicBlock &MBB, const DebugLoc &dl,
252                          const ARMBaseInstrInfo &TII, bool HasFP) {
253     MachineFunction &MF = *MBB.getParent();
254     unsigned CFAOffset = 0;
255     for (auto &Info : Insts) {
256       if (HasFP && !Info.BeforeFPSet)
257         return;
258 
259       CFAOffset -= Info.SPAdjust;
260       unsigned CFIIndex = MF.addFrameInst(
261           MCCFIInstruction::createDefCfaOffset(nullptr, CFAOffset));
262       BuildMI(MBB, std::next(Info.I), dl,
263               TII.get(TargetOpcode::CFI_INSTRUCTION))
264               .addCFIIndex(CFIIndex)
265               .setMIFlags(MachineInstr::FrameSetup);
266     }
267   }
268 };
269 
270 } // end anonymous namespace
271 
272 /// Emit an instruction sequence that will align the address in
273 /// register Reg by zero-ing out the lower bits.  For versions of the
274 /// architecture that support Neon, this must be done in a single
275 /// instruction, since skipAlignedDPRCS2Spills assumes it is done in a
276 /// single instruction. That function only gets called when optimizing
277 /// spilling of D registers on a core with the Neon instruction set
278 /// present.
279 static void emitAligningInstructions(MachineFunction &MF, ARMFunctionInfo *AFI,
280                                      const TargetInstrInfo &TII,
281                                      MachineBasicBlock &MBB,
282                                      MachineBasicBlock::iterator MBBI,
283                                      const DebugLoc &DL, const unsigned Reg,
284                                      const unsigned Alignment,
285                                      const bool MustBeSingleInstruction) {
286   const ARMSubtarget &AST =
287       static_cast<const ARMSubtarget &>(MF.getSubtarget());
288   const bool CanUseBFC = AST.hasV6T2Ops() || AST.hasV7Ops();
289   const unsigned AlignMask = Alignment - 1;
290   const unsigned NrBitsToZero = countTrailingZeros(Alignment);
291   assert(!AFI->isThumb1OnlyFunction() && "Thumb1 not supported");
292   if (!AFI->isThumbFunction()) {
293     // if the BFC instruction is available, use that to zero the lower
294     // bits:
295     //   bfc Reg, #0, log2(Alignment)
296     // otherwise use BIC, if the mask to zero the required number of bits
297     // can be encoded in the bic immediate field
298     //   bic Reg, Reg, Alignment-1
299     // otherwise, emit
300     //   lsr Reg, Reg, log2(Alignment)
301     //   lsl Reg, Reg, log2(Alignment)
302     if (CanUseBFC) {
303       BuildMI(MBB, MBBI, DL, TII.get(ARM::BFC), Reg)
304           .addReg(Reg, RegState::Kill)
305           .addImm(~AlignMask)
306           .add(predOps(ARMCC::AL));
307     } else if (AlignMask <= 255) {
308       BuildMI(MBB, MBBI, DL, TII.get(ARM::BICri), Reg)
309           .addReg(Reg, RegState::Kill)
310           .addImm(AlignMask)
311           .add(predOps(ARMCC::AL))
312           .add(condCodeOp());
313     } else {
314       assert(!MustBeSingleInstruction &&
315              "Shouldn't call emitAligningInstructions demanding a single "
316              "instruction to be emitted for large stack alignment for a target "
317              "without BFC.");
318       BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg)
319           .addReg(Reg, RegState::Kill)
320           .addImm(ARM_AM::getSORegOpc(ARM_AM::lsr, NrBitsToZero))
321           .add(predOps(ARMCC::AL))
322           .add(condCodeOp());
323       BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg)
324           .addReg(Reg, RegState::Kill)
325           .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, NrBitsToZero))
326           .add(predOps(ARMCC::AL))
327           .add(condCodeOp());
328     }
329   } else {
330     // Since this is only reached for Thumb-2 targets, the BFC instruction
331     // should always be available.
332     assert(CanUseBFC);
333     BuildMI(MBB, MBBI, DL, TII.get(ARM::t2BFC), Reg)
334         .addReg(Reg, RegState::Kill)
335         .addImm(~AlignMask)
336         .add(predOps(ARMCC::AL));
337   }
338 }
339 
340 /// We need the offset of the frame pointer relative to other MachineFrameInfo
341 /// offsets which are encoded relative to SP at function begin.
342 /// See also emitPrologue() for how the FP is set up.
343 /// Unfortunately we cannot determine this value in determineCalleeSaves() yet
344 /// as assignCalleeSavedSpillSlots() hasn't run at this point. Instead we use
345 /// this to produce a conservative estimate that we check in an assert() later.
346 static int getMaxFPOffset(const Function &F, const ARMFunctionInfo &AFI) {
347   // For Thumb1, push.w isn't available, so the first push will always push
348   // r7 and lr onto the stack first.
349   if (AFI.isThumb1OnlyFunction())
350     return -AFI.getArgRegsSaveSize() - (2 * 4);
351   // This is a conservative estimation: Assume the frame pointer being r7 and
352   // pc("r15") up to r8 getting spilled before (= 8 registers).
353   return -AFI.getArgRegsSaveSize() - (8 * 4);
354 }
355 
356 void ARMFrameLowering::emitPrologue(MachineFunction &MF,
357                                     MachineBasicBlock &MBB) const {
358   MachineBasicBlock::iterator MBBI = MBB.begin();
359   MachineFrameInfo  &MFI = MF.getFrameInfo();
360   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
361   MachineModuleInfo &MMI = MF.getMMI();
362   MCContext &Context = MMI.getContext();
363   const TargetMachine &TM = MF.getTarget();
364   const MCRegisterInfo *MRI = Context.getRegisterInfo();
365   const ARMBaseRegisterInfo *RegInfo = STI.getRegisterInfo();
366   const ARMBaseInstrInfo &TII = *STI.getInstrInfo();
367   assert(!AFI->isThumb1OnlyFunction() &&
368          "This emitPrologue does not support Thumb1!");
369   bool isARM = !AFI->isThumbFunction();
370   unsigned Align = STI.getFrameLowering()->getStackAlignment();
371   unsigned ArgRegsSaveSize = AFI->getArgRegsSaveSize();
372   unsigned NumBytes = MFI.getStackSize();
373   const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
374 
375   // Debug location must be unknown since the first debug location is used
376   // to determine the end of the prologue.
377   DebugLoc dl;
378 
379   Register FramePtr = RegInfo->getFrameRegister(MF);
380 
381   // Determine the sizes of each callee-save spill areas and record which frame
382   // belongs to which callee-save spill areas.
383   unsigned GPRCS1Size = 0, GPRCS2Size = 0, DPRCSSize = 0;
384   int FramePtrSpillFI = 0;
385   int D8SpillFI = 0;
386 
387   // All calls are tail calls in GHC calling conv, and functions have no
388   // prologue/epilogue.
389   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
390     return;
391 
392   StackAdjustingInsts DefCFAOffsetCandidates;
393   bool HasFP = hasFP(MF);
394 
395   // Allocate the vararg register save area.
396   if (ArgRegsSaveSize) {
397     emitSPUpdate(isARM, MBB, MBBI, dl, TII, -ArgRegsSaveSize,
398                  MachineInstr::FrameSetup);
399     DefCFAOffsetCandidates.addInst(std::prev(MBBI), ArgRegsSaveSize, true);
400   }
401 
402   if (!AFI->hasStackFrame() &&
403       (!STI.isTargetWindows() || !WindowsRequiresStackProbe(MF, NumBytes))) {
404     if (NumBytes - ArgRegsSaveSize != 0) {
405       emitSPUpdate(isARM, MBB, MBBI, dl, TII, -(NumBytes - ArgRegsSaveSize),
406                    MachineInstr::FrameSetup);
407       DefCFAOffsetCandidates.addInst(std::prev(MBBI),
408                                      NumBytes - ArgRegsSaveSize, true);
409     }
410     DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP);
411     return;
412   }
413 
414   // Determine spill area sizes.
415   for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
416     unsigned Reg = CSI[i].getReg();
417     int FI = CSI[i].getFrameIdx();
418     switch (Reg) {
419     case ARM::R8:
420     case ARM::R9:
421     case ARM::R10:
422     case ARM::R11:
423     case ARM::R12:
424       if (STI.splitFramePushPop(MF)) {
425         GPRCS2Size += 4;
426         break;
427       }
428       LLVM_FALLTHROUGH;
429     case ARM::R0:
430     case ARM::R1:
431     case ARM::R2:
432     case ARM::R3:
433     case ARM::R4:
434     case ARM::R5:
435     case ARM::R6:
436     case ARM::R7:
437     case ARM::LR:
438       if (Reg == FramePtr)
439         FramePtrSpillFI = FI;
440       GPRCS1Size += 4;
441       break;
442     default:
443       // This is a DPR. Exclude the aligned DPRCS2 spills.
444       if (Reg == ARM::D8)
445         D8SpillFI = FI;
446       if (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs())
447         DPRCSSize += 8;
448     }
449   }
450 
451   // Move past area 1.
452   MachineBasicBlock::iterator LastPush = MBB.end(), GPRCS1Push, GPRCS2Push;
453   if (GPRCS1Size > 0) {
454     GPRCS1Push = LastPush = MBBI++;
455     DefCFAOffsetCandidates.addInst(LastPush, GPRCS1Size, true);
456   }
457 
458   // Determine starting offsets of spill areas.
459   unsigned GPRCS1Offset = NumBytes - ArgRegsSaveSize - GPRCS1Size;
460   unsigned GPRCS2Offset = GPRCS1Offset - GPRCS2Size;
461   unsigned DPRAlign = DPRCSSize ? std::min(8U, Align) : 4U;
462   unsigned DPRGapSize = (GPRCS1Size + GPRCS2Size + ArgRegsSaveSize) % DPRAlign;
463   unsigned DPRCSOffset = GPRCS2Offset - DPRGapSize - DPRCSSize;
464   int FramePtrOffsetInPush = 0;
465   if (HasFP) {
466     int FPOffset = MFI.getObjectOffset(FramePtrSpillFI);
467     assert(getMaxFPOffset(MF.getFunction(), *AFI) <= FPOffset &&
468            "Max FP estimation is wrong");
469     FramePtrOffsetInPush = FPOffset + ArgRegsSaveSize;
470     AFI->setFramePtrSpillOffset(MFI.getObjectOffset(FramePtrSpillFI) +
471                                 NumBytes);
472   }
473   AFI->setGPRCalleeSavedArea1Offset(GPRCS1Offset);
474   AFI->setGPRCalleeSavedArea2Offset(GPRCS2Offset);
475   AFI->setDPRCalleeSavedAreaOffset(DPRCSOffset);
476 
477   // Move past area 2.
478   if (GPRCS2Size > 0) {
479     GPRCS2Push = LastPush = MBBI++;
480     DefCFAOffsetCandidates.addInst(LastPush, GPRCS2Size);
481   }
482 
483   // Prolog/epilog inserter assumes we correctly align DPRs on the stack, so our
484   // .cfi_offset operations will reflect that.
485   if (DPRGapSize) {
486     assert(DPRGapSize == 4 && "unexpected alignment requirements for DPRs");
487     if (LastPush != MBB.end() &&
488         tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, DPRGapSize))
489       DefCFAOffsetCandidates.addExtraBytes(LastPush, DPRGapSize);
490     else {
491       emitSPUpdate(isARM, MBB, MBBI, dl, TII, -DPRGapSize,
492                    MachineInstr::FrameSetup);
493       DefCFAOffsetCandidates.addInst(std::prev(MBBI), DPRGapSize);
494     }
495   }
496 
497   // Move past area 3.
498   if (DPRCSSize > 0) {
499     // Since vpush register list cannot have gaps, there may be multiple vpush
500     // instructions in the prologue.
501     while (MBBI != MBB.end() && MBBI->getOpcode() == ARM::VSTMDDB_UPD) {
502       DefCFAOffsetCandidates.addInst(MBBI, sizeOfSPAdjustment(*MBBI));
503       LastPush = MBBI++;
504     }
505   }
506 
507   // Move past the aligned DPRCS2 area.
508   if (AFI->getNumAlignedDPRCS2Regs() > 0) {
509     MBBI = skipAlignedDPRCS2Spills(MBBI, AFI->getNumAlignedDPRCS2Regs());
510     // The code inserted by emitAlignedDPRCS2Spills realigns the stack, and
511     // leaves the stack pointer pointing to the DPRCS2 area.
512     //
513     // Adjust NumBytes to represent the stack slots below the DPRCS2 area.
514     NumBytes += MFI.getObjectOffset(D8SpillFI);
515   } else
516     NumBytes = DPRCSOffset;
517 
518   if (STI.isTargetWindows() && WindowsRequiresStackProbe(MF, NumBytes)) {
519     uint32_t NumWords = NumBytes >> 2;
520 
521     if (NumWords < 65536)
522       BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi16), ARM::R4)
523           .addImm(NumWords)
524           .setMIFlags(MachineInstr::FrameSetup)
525           .add(predOps(ARMCC::AL));
526     else
527       BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi32imm), ARM::R4)
528         .addImm(NumWords)
529         .setMIFlags(MachineInstr::FrameSetup);
530 
531     switch (TM.getCodeModel()) {
532     case CodeModel::Tiny:
533       llvm_unreachable("Tiny code model not available on ARM.");
534     case CodeModel::Small:
535     case CodeModel::Medium:
536     case CodeModel::Kernel:
537       BuildMI(MBB, MBBI, dl, TII.get(ARM::tBL))
538           .add(predOps(ARMCC::AL))
539           .addExternalSymbol("__chkstk")
540           .addReg(ARM::R4, RegState::Implicit)
541           .setMIFlags(MachineInstr::FrameSetup);
542       break;
543     case CodeModel::Large:
544       BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi32imm), ARM::R12)
545         .addExternalSymbol("__chkstk")
546         .setMIFlags(MachineInstr::FrameSetup);
547 
548       BuildMI(MBB, MBBI, dl, TII.get(ARM::tBLXr))
549           .add(predOps(ARMCC::AL))
550           .addReg(ARM::R12, RegState::Kill)
551           .addReg(ARM::R4, RegState::Implicit)
552           .setMIFlags(MachineInstr::FrameSetup);
553       break;
554     }
555 
556     BuildMI(MBB, MBBI, dl, TII.get(ARM::t2SUBrr), ARM::SP)
557         .addReg(ARM::SP, RegState::Kill)
558         .addReg(ARM::R4, RegState::Kill)
559         .setMIFlags(MachineInstr::FrameSetup)
560         .add(predOps(ARMCC::AL))
561         .add(condCodeOp());
562     NumBytes = 0;
563   }
564 
565   if (NumBytes) {
566     // Adjust SP after all the callee-save spills.
567     if (AFI->getNumAlignedDPRCS2Regs() == 0 &&
568         tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, NumBytes))
569       DefCFAOffsetCandidates.addExtraBytes(LastPush, NumBytes);
570     else {
571       emitSPUpdate(isARM, MBB, MBBI, dl, TII, -NumBytes,
572                    MachineInstr::FrameSetup);
573       DefCFAOffsetCandidates.addInst(std::prev(MBBI), NumBytes);
574     }
575 
576     if (HasFP && isARM)
577       // Restore from fp only in ARM mode: e.g. sub sp, r7, #24
578       // Note it's not safe to do this in Thumb2 mode because it would have
579       // taken two instructions:
580       // mov sp, r7
581       // sub sp, #24
582       // If an interrupt is taken between the two instructions, then sp is in
583       // an inconsistent state (pointing to the middle of callee-saved area).
584       // The interrupt handler can end up clobbering the registers.
585       AFI->setShouldRestoreSPFromFP(true);
586   }
587 
588   // Set FP to point to the stack slot that contains the previous FP.
589   // For iOS, FP is R7, which has now been stored in spill area 1.
590   // Otherwise, if this is not iOS, all the callee-saved registers go
591   // into spill area 1, including the FP in R11.  In either case, it
592   // is in area one and the adjustment needs to take place just after
593   // that push.
594   if (HasFP) {
595     MachineBasicBlock::iterator AfterPush = std::next(GPRCS1Push);
596     unsigned PushSize = sizeOfSPAdjustment(*GPRCS1Push);
597     emitRegPlusImmediate(!AFI->isThumbFunction(), MBB, AfterPush,
598                          dl, TII, FramePtr, ARM::SP,
599                          PushSize + FramePtrOffsetInPush,
600                          MachineInstr::FrameSetup);
601     if (FramePtrOffsetInPush + PushSize != 0) {
602       unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createDefCfa(
603           nullptr, MRI->getDwarfRegNum(FramePtr, true),
604           -(ArgRegsSaveSize - FramePtrOffsetInPush)));
605       BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
606           .addCFIIndex(CFIIndex)
607           .setMIFlags(MachineInstr::FrameSetup);
608     } else {
609       unsigned CFIIndex =
610           MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(
611               nullptr, MRI->getDwarfRegNum(FramePtr, true)));
612       BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
613           .addCFIIndex(CFIIndex)
614           .setMIFlags(MachineInstr::FrameSetup);
615     }
616   }
617 
618   // Now that the prologue's actual instructions are finalised, we can insert
619   // the necessary DWARF cf instructions to describe the situation. Start by
620   // recording where each register ended up:
621   if (GPRCS1Size > 0) {
622     MachineBasicBlock::iterator Pos = std::next(GPRCS1Push);
623     int CFIIndex;
624     for (const auto &Entry : CSI) {
625       unsigned Reg = Entry.getReg();
626       int FI = Entry.getFrameIdx();
627       switch (Reg) {
628       case ARM::R8:
629       case ARM::R9:
630       case ARM::R10:
631       case ARM::R11:
632       case ARM::R12:
633         if (STI.splitFramePushPop(MF))
634           break;
635         LLVM_FALLTHROUGH;
636       case ARM::R0:
637       case ARM::R1:
638       case ARM::R2:
639       case ARM::R3:
640       case ARM::R4:
641       case ARM::R5:
642       case ARM::R6:
643       case ARM::R7:
644       case ARM::LR:
645         CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
646             nullptr, MRI->getDwarfRegNum(Reg, true), MFI.getObjectOffset(FI)));
647         BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
648             .addCFIIndex(CFIIndex)
649             .setMIFlags(MachineInstr::FrameSetup);
650         break;
651       }
652     }
653   }
654 
655   if (GPRCS2Size > 0) {
656     MachineBasicBlock::iterator Pos = std::next(GPRCS2Push);
657     for (const auto &Entry : CSI) {
658       unsigned Reg = Entry.getReg();
659       int FI = Entry.getFrameIdx();
660       switch (Reg) {
661       case ARM::R8:
662       case ARM::R9:
663       case ARM::R10:
664       case ARM::R11:
665       case ARM::R12:
666         if (STI.splitFramePushPop(MF)) {
667           unsigned DwarfReg =  MRI->getDwarfRegNum(Reg, true);
668           unsigned Offset = MFI.getObjectOffset(FI);
669           unsigned CFIIndex = MF.addFrameInst(
670               MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
671           BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
672               .addCFIIndex(CFIIndex)
673               .setMIFlags(MachineInstr::FrameSetup);
674         }
675         break;
676       }
677     }
678   }
679 
680   if (DPRCSSize > 0) {
681     // Since vpush register list cannot have gaps, there may be multiple vpush
682     // instructions in the prologue.
683     MachineBasicBlock::iterator Pos = std::next(LastPush);
684     for (const auto &Entry : CSI) {
685       unsigned Reg = Entry.getReg();
686       int FI = Entry.getFrameIdx();
687       if ((Reg >= ARM::D0 && Reg <= ARM::D31) &&
688           (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs())) {
689         unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
690         unsigned Offset = MFI.getObjectOffset(FI);
691         unsigned CFIIndex = MF.addFrameInst(
692             MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
693         BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
694             .addCFIIndex(CFIIndex)
695             .setMIFlags(MachineInstr::FrameSetup);
696       }
697     }
698   }
699 
700   // Now we can emit descriptions of where the canonical frame address was
701   // throughout the process. If we have a frame pointer, it takes over the job
702   // half-way through, so only the first few .cfi_def_cfa_offset instructions
703   // actually get emitted.
704   DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP);
705 
706   if (STI.isTargetELF() && hasFP(MF))
707     MFI.setOffsetAdjustment(MFI.getOffsetAdjustment() -
708                             AFI->getFramePtrSpillOffset());
709 
710   AFI->setGPRCalleeSavedArea1Size(GPRCS1Size);
711   AFI->setGPRCalleeSavedArea2Size(GPRCS2Size);
712   AFI->setDPRCalleeSavedGapSize(DPRGapSize);
713   AFI->setDPRCalleeSavedAreaSize(DPRCSSize);
714 
715   // If we need dynamic stack realignment, do it here. Be paranoid and make
716   // sure if we also have VLAs, we have a base pointer for frame access.
717   // If aligned NEON registers were spilled, the stack has already been
718   // realigned.
719   if (!AFI->getNumAlignedDPRCS2Regs() && RegInfo->needsStackRealignment(MF)) {
720     unsigned MaxAlign = MFI.getMaxAlignment();
721     assert(!AFI->isThumb1OnlyFunction());
722     if (!AFI->isThumbFunction()) {
723       emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::SP, MaxAlign,
724                                false);
725     } else {
726       // We cannot use sp as source/dest register here, thus we're using r4 to
727       // perform the calculations. We're emitting the following sequence:
728       // mov r4, sp
729       // -- use emitAligningInstructions to produce best sequence to zero
730       // -- out lower bits in r4
731       // mov sp, r4
732       // FIXME: It will be better just to find spare register here.
733       BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::R4)
734           .addReg(ARM::SP, RegState::Kill)
735           .add(predOps(ARMCC::AL));
736       emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::R4, MaxAlign,
737                                false);
738       BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP)
739           .addReg(ARM::R4, RegState::Kill)
740           .add(predOps(ARMCC::AL));
741     }
742 
743     AFI->setShouldRestoreSPFromFP(true);
744   }
745 
746   // If we need a base pointer, set it up here. It's whatever the value
747   // of the stack pointer is at this point. Any variable size objects
748   // will be allocated after this, so we can still use the base pointer
749   // to reference locals.
750   // FIXME: Clarify FrameSetup flags here.
751   if (RegInfo->hasBasePointer(MF)) {
752     if (isARM)
753       BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), RegInfo->getBaseRegister())
754           .addReg(ARM::SP)
755           .add(predOps(ARMCC::AL))
756           .add(condCodeOp());
757     else
758       BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), RegInfo->getBaseRegister())
759           .addReg(ARM::SP)
760           .add(predOps(ARMCC::AL));
761   }
762 
763   // If the frame has variable sized objects then the epilogue must restore
764   // the sp from fp. We can assume there's an FP here since hasFP already
765   // checks for hasVarSizedObjects.
766   if (MFI.hasVarSizedObjects())
767     AFI->setShouldRestoreSPFromFP(true);
768 }
769 
770 void ARMFrameLowering::emitEpilogue(MachineFunction &MF,
771                                     MachineBasicBlock &MBB) const {
772   MachineFrameInfo &MFI = MF.getFrameInfo();
773   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
774   const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
775   const ARMBaseInstrInfo &TII =
776       *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
777   assert(!AFI->isThumb1OnlyFunction() &&
778          "This emitEpilogue does not support Thumb1!");
779   bool isARM = !AFI->isThumbFunction();
780 
781   unsigned ArgRegsSaveSize = AFI->getArgRegsSaveSize();
782   int NumBytes = (int)MFI.getStackSize();
783   Register FramePtr = RegInfo->getFrameRegister(MF);
784 
785   // All calls are tail calls in GHC calling conv, and functions have no
786   // prologue/epilogue.
787   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
788     return;
789 
790   // First put ourselves on the first (from top) terminator instructions.
791   MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
792   DebugLoc dl = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
793 
794   if (!AFI->hasStackFrame()) {
795     if (NumBytes - ArgRegsSaveSize != 0)
796       emitSPUpdate(isARM, MBB, MBBI, dl, TII, NumBytes - ArgRegsSaveSize);
797   } else {
798     // Unwind MBBI to point to first LDR / VLDRD.
799     const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF);
800     if (MBBI != MBB.begin()) {
801       do {
802         --MBBI;
803       } while (MBBI != MBB.begin() && isCSRestore(*MBBI, TII, CSRegs));
804       if (!isCSRestore(*MBBI, TII, CSRegs))
805         ++MBBI;
806     }
807 
808     // Move SP to start of FP callee save spill area.
809     NumBytes -= (ArgRegsSaveSize +
810                  AFI->getGPRCalleeSavedArea1Size() +
811                  AFI->getGPRCalleeSavedArea2Size() +
812                  AFI->getDPRCalleeSavedGapSize() +
813                  AFI->getDPRCalleeSavedAreaSize());
814 
815     // Reset SP based on frame pointer only if the stack frame extends beyond
816     // frame pointer stack slot or target is ELF and the function has FP.
817     if (AFI->shouldRestoreSPFromFP()) {
818       NumBytes = AFI->getFramePtrSpillOffset() - NumBytes;
819       if (NumBytes) {
820         if (isARM)
821           emitARMRegPlusImmediate(MBB, MBBI, dl, ARM::SP, FramePtr, -NumBytes,
822                                   ARMCC::AL, 0, TII);
823         else {
824           // It's not possible to restore SP from FP in a single instruction.
825           // For iOS, this looks like:
826           // mov sp, r7
827           // sub sp, #24
828           // This is bad, if an interrupt is taken after the mov, sp is in an
829           // inconsistent state.
830           // Use the first callee-saved register as a scratch register.
831           assert(!MFI.getPristineRegs(MF).test(ARM::R4) &&
832                  "No scratch register to restore SP from FP!");
833           emitT2RegPlusImmediate(MBB, MBBI, dl, ARM::R4, FramePtr, -NumBytes,
834                                  ARMCC::AL, 0, TII);
835           BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP)
836               .addReg(ARM::R4)
837               .add(predOps(ARMCC::AL));
838         }
839       } else {
840         // Thumb2 or ARM.
841         if (isARM)
842           BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), ARM::SP)
843               .addReg(FramePtr)
844               .add(predOps(ARMCC::AL))
845               .add(condCodeOp());
846         else
847           BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP)
848               .addReg(FramePtr)
849               .add(predOps(ARMCC::AL));
850       }
851     } else if (NumBytes &&
852                !tryFoldSPUpdateIntoPushPop(STI, MF, &*MBBI, NumBytes))
853       emitSPUpdate(isARM, MBB, MBBI, dl, TII, NumBytes);
854 
855     // Increment past our save areas.
856     if (MBBI != MBB.end() && AFI->getDPRCalleeSavedAreaSize()) {
857       MBBI++;
858       // Since vpop register list cannot have gaps, there may be multiple vpop
859       // instructions in the epilogue.
860       while (MBBI != MBB.end() && MBBI->getOpcode() == ARM::VLDMDIA_UPD)
861         MBBI++;
862     }
863     if (AFI->getDPRCalleeSavedGapSize()) {
864       assert(AFI->getDPRCalleeSavedGapSize() == 4 &&
865              "unexpected DPR alignment gap");
866       emitSPUpdate(isARM, MBB, MBBI, dl, TII, AFI->getDPRCalleeSavedGapSize());
867     }
868 
869     if (AFI->getGPRCalleeSavedArea2Size()) MBBI++;
870     if (AFI->getGPRCalleeSavedArea1Size()) MBBI++;
871   }
872 
873   if (ArgRegsSaveSize)
874     emitSPUpdate(isARM, MBB, MBBI, dl, TII, ArgRegsSaveSize);
875 }
876 
877 /// getFrameIndexReference - Provide a base+offset reference to an FI slot for
878 /// debug info.  It's the same as what we use for resolving the code-gen
879 /// references for now.  FIXME: This can go wrong when references are
880 /// SP-relative and simple call frames aren't used.
881 int
882 ARMFrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI,
883                                          unsigned &FrameReg) const {
884   return ResolveFrameIndexReference(MF, FI, FrameReg, 0);
885 }
886 
887 int
888 ARMFrameLowering::ResolveFrameIndexReference(const MachineFunction &MF,
889                                              int FI, unsigned &FrameReg,
890                                              int SPAdj) const {
891   const MachineFrameInfo &MFI = MF.getFrameInfo();
892   const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>(
893       MF.getSubtarget().getRegisterInfo());
894   const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
895   int Offset = MFI.getObjectOffset(FI) + MFI.getStackSize();
896   int FPOffset = Offset - AFI->getFramePtrSpillOffset();
897   bool isFixed = MFI.isFixedObjectIndex(FI);
898 
899   FrameReg = ARM::SP;
900   Offset += SPAdj;
901 
902   // SP can move around if there are allocas.  We may also lose track of SP
903   // when emergency spilling inside a non-reserved call frame setup.
904   bool hasMovingSP = !hasReservedCallFrame(MF);
905 
906   // When dynamically realigning the stack, use the frame pointer for
907   // parameters, and the stack/base pointer for locals.
908   if (RegInfo->needsStackRealignment(MF)) {
909     assert(hasFP(MF) && "dynamic stack realignment without a FP!");
910     if (isFixed) {
911       FrameReg = RegInfo->getFrameRegister(MF);
912       Offset = FPOffset;
913     } else if (hasMovingSP) {
914       assert(RegInfo->hasBasePointer(MF) &&
915              "VLAs and dynamic stack alignment, but missing base pointer!");
916       FrameReg = RegInfo->getBaseRegister();
917       Offset -= SPAdj;
918     }
919     return Offset;
920   }
921 
922   // If there is a frame pointer, use it when we can.
923   if (hasFP(MF) && AFI->hasStackFrame()) {
924     // Use frame pointer to reference fixed objects. Use it for locals if
925     // there are VLAs (and thus the SP isn't reliable as a base).
926     if (isFixed || (hasMovingSP && !RegInfo->hasBasePointer(MF))) {
927       FrameReg = RegInfo->getFrameRegister(MF);
928       return FPOffset;
929     } else if (hasMovingSP) {
930       assert(RegInfo->hasBasePointer(MF) && "missing base pointer!");
931       if (AFI->isThumb2Function()) {
932         // Try to use the frame pointer if we can, else use the base pointer
933         // since it's available. This is handy for the emergency spill slot, in
934         // particular.
935         if (FPOffset >= -255 && FPOffset < 0) {
936           FrameReg = RegInfo->getFrameRegister(MF);
937           return FPOffset;
938         }
939       }
940     } else if (AFI->isThumbFunction()) {
941       // Prefer SP to base pointer, if the offset is suitably aligned and in
942       // range as the effective range of the immediate offset is bigger when
943       // basing off SP.
944       // Use  add <rd>, sp, #<imm8>
945       //      ldr <rd>, [sp, #<imm8>]
946       if (Offset >= 0 && (Offset & 3) == 0 && Offset <= 1020)
947         return Offset;
948       // In Thumb2 mode, the negative offset is very limited. Try to avoid
949       // out of range references. ldr <rt>,[<rn>, #-<imm8>]
950       if (AFI->isThumb2Function() && FPOffset >= -255 && FPOffset < 0) {
951         FrameReg = RegInfo->getFrameRegister(MF);
952         return FPOffset;
953       }
954     } else if (Offset > (FPOffset < 0 ? -FPOffset : FPOffset)) {
955       // Otherwise, use SP or FP, whichever is closer to the stack slot.
956       FrameReg = RegInfo->getFrameRegister(MF);
957       return FPOffset;
958     }
959   }
960   // Use the base pointer if we have one.
961   // FIXME: Maybe prefer sp on Thumb1 if it's legal and the offset is cheaper?
962   // That can happen if we forced a base pointer for a large call frame.
963   if (RegInfo->hasBasePointer(MF)) {
964     FrameReg = RegInfo->getBaseRegister();
965     Offset -= SPAdj;
966   }
967   return Offset;
968 }
969 
970 void ARMFrameLowering::emitPushInst(MachineBasicBlock &MBB,
971                                     MachineBasicBlock::iterator MI,
972                                     const std::vector<CalleeSavedInfo> &CSI,
973                                     unsigned StmOpc, unsigned StrOpc,
974                                     bool NoGap,
975                                     bool(*Func)(unsigned, bool),
976                                     unsigned NumAlignedDPRCS2Regs,
977                                     unsigned MIFlags) const {
978   MachineFunction &MF = *MBB.getParent();
979   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
980   const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
981 
982   DebugLoc DL;
983 
984   using RegAndKill = std::pair<unsigned, bool>;
985 
986   SmallVector<RegAndKill, 4> Regs;
987   unsigned i = CSI.size();
988   while (i != 0) {
989     unsigned LastReg = 0;
990     for (; i != 0; --i) {
991       unsigned Reg = CSI[i-1].getReg();
992       if (!(Func)(Reg, STI.splitFramePushPop(MF))) continue;
993 
994       // D-registers in the aligned area DPRCS2 are NOT spilled here.
995       if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs)
996         continue;
997 
998       const MachineRegisterInfo &MRI = MF.getRegInfo();
999       bool isLiveIn = MRI.isLiveIn(Reg);
1000       if (!isLiveIn && !MRI.isReserved(Reg))
1001         MBB.addLiveIn(Reg);
1002       // If NoGap is true, push consecutive registers and then leave the rest
1003       // for other instructions. e.g.
1004       // vpush {d8, d10, d11} -> vpush {d8}, vpush {d10, d11}
1005       if (NoGap && LastReg && LastReg != Reg-1)
1006         break;
1007       LastReg = Reg;
1008       // Do not set a kill flag on values that are also marked as live-in. This
1009       // happens with the @llvm-returnaddress intrinsic and with arguments
1010       // passed in callee saved registers.
1011       // Omitting the kill flags is conservatively correct even if the live-in
1012       // is not used after all.
1013       Regs.push_back(std::make_pair(Reg, /*isKill=*/!isLiveIn));
1014     }
1015 
1016     if (Regs.empty())
1017       continue;
1018 
1019     llvm::sort(Regs, [&](const RegAndKill &LHS, const RegAndKill &RHS) {
1020       return TRI.getEncodingValue(LHS.first) < TRI.getEncodingValue(RHS.first);
1021     });
1022 
1023     if (Regs.size() > 1 || StrOpc== 0) {
1024       MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StmOpc), ARM::SP)
1025                                     .addReg(ARM::SP)
1026                                     .setMIFlags(MIFlags)
1027                                     .add(predOps(ARMCC::AL));
1028       for (unsigned i = 0, e = Regs.size(); i < e; ++i)
1029         MIB.addReg(Regs[i].first, getKillRegState(Regs[i].second));
1030     } else if (Regs.size() == 1) {
1031       BuildMI(MBB, MI, DL, TII.get(StrOpc), ARM::SP)
1032           .addReg(Regs[0].first, getKillRegState(Regs[0].second))
1033           .addReg(ARM::SP)
1034           .setMIFlags(MIFlags)
1035           .addImm(-4)
1036           .add(predOps(ARMCC::AL));
1037     }
1038     Regs.clear();
1039 
1040     // Put any subsequent vpush instructions before this one: they will refer to
1041     // higher register numbers so need to be pushed first in order to preserve
1042     // monotonicity.
1043     if (MI != MBB.begin())
1044       --MI;
1045   }
1046 }
1047 
1048 void ARMFrameLowering::emitPopInst(MachineBasicBlock &MBB,
1049                                    MachineBasicBlock::iterator MI,
1050                                    std::vector<CalleeSavedInfo> &CSI,
1051                                    unsigned LdmOpc, unsigned LdrOpc,
1052                                    bool isVarArg, bool NoGap,
1053                                    bool(*Func)(unsigned, bool),
1054                                    unsigned NumAlignedDPRCS2Regs) const {
1055   MachineFunction &MF = *MBB.getParent();
1056   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1057   const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
1058   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1059   DebugLoc DL;
1060   bool isTailCall = false;
1061   bool isInterrupt = false;
1062   bool isTrap = false;
1063   if (MBB.end() != MI) {
1064     DL = MI->getDebugLoc();
1065     unsigned RetOpcode = MI->getOpcode();
1066     isTailCall = (RetOpcode == ARM::TCRETURNdi || RetOpcode == ARM::TCRETURNri);
1067     isInterrupt =
1068         RetOpcode == ARM::SUBS_PC_LR || RetOpcode == ARM::t2SUBS_PC_LR;
1069     isTrap =
1070         RetOpcode == ARM::TRAP || RetOpcode == ARM::TRAPNaCl ||
1071         RetOpcode == ARM::tTRAP;
1072   }
1073 
1074   SmallVector<unsigned, 4> Regs;
1075   unsigned i = CSI.size();
1076   while (i != 0) {
1077     unsigned LastReg = 0;
1078     bool DeleteRet = false;
1079     for (; i != 0; --i) {
1080       CalleeSavedInfo &Info = CSI[i-1];
1081       unsigned Reg = Info.getReg();
1082       if (!(Func)(Reg, STI.splitFramePushPop(MF))) continue;
1083 
1084       // The aligned reloads from area DPRCS2 are not inserted here.
1085       if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs)
1086         continue;
1087 
1088       if (Reg == ARM::LR && !isTailCall && !isVarArg && !isInterrupt &&
1089           !isTrap && STI.hasV5TOps()) {
1090         if (MBB.succ_empty()) {
1091           Reg = ARM::PC;
1092           // Fold the return instruction into the LDM.
1093           DeleteRet = true;
1094           LdmOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_RET : ARM::LDMIA_RET;
1095           // We 'restore' LR into PC so it is not live out of the return block:
1096           // Clear Restored bit.
1097           Info.setRestored(false);
1098         } else
1099           LdmOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_UPD : ARM::LDMIA_UPD;
1100       }
1101 
1102       // If NoGap is true, pop consecutive registers and then leave the rest
1103       // for other instructions. e.g.
1104       // vpop {d8, d10, d11} -> vpop {d8}, vpop {d10, d11}
1105       if (NoGap && LastReg && LastReg != Reg-1)
1106         break;
1107 
1108       LastReg = Reg;
1109       Regs.push_back(Reg);
1110     }
1111 
1112     if (Regs.empty())
1113       continue;
1114 
1115     llvm::sort(Regs, [&](unsigned LHS, unsigned RHS) {
1116       return TRI.getEncodingValue(LHS) < TRI.getEncodingValue(RHS);
1117     });
1118 
1119     if (Regs.size() > 1 || LdrOpc == 0) {
1120       MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(LdmOpc), ARM::SP)
1121                                     .addReg(ARM::SP)
1122                                     .add(predOps(ARMCC::AL));
1123       for (unsigned i = 0, e = Regs.size(); i < e; ++i)
1124         MIB.addReg(Regs[i], getDefRegState(true));
1125       if (DeleteRet) {
1126         if (MI != MBB.end()) {
1127           MIB.copyImplicitOps(*MI);
1128           MI->eraseFromParent();
1129         }
1130       }
1131       MI = MIB;
1132     } else if (Regs.size() == 1) {
1133       // If we adjusted the reg to PC from LR above, switch it back here. We
1134       // only do that for LDM.
1135       if (Regs[0] == ARM::PC)
1136         Regs[0] = ARM::LR;
1137       MachineInstrBuilder MIB =
1138         BuildMI(MBB, MI, DL, TII.get(LdrOpc), Regs[0])
1139           .addReg(ARM::SP, RegState::Define)
1140           .addReg(ARM::SP);
1141       // ARM mode needs an extra reg0 here due to addrmode2. Will go away once
1142       // that refactoring is complete (eventually).
1143       if (LdrOpc == ARM::LDR_POST_REG || LdrOpc == ARM::LDR_POST_IMM) {
1144         MIB.addReg(0);
1145         MIB.addImm(ARM_AM::getAM2Opc(ARM_AM::add, 4, ARM_AM::no_shift));
1146       } else
1147         MIB.addImm(4);
1148       MIB.add(predOps(ARMCC::AL));
1149     }
1150     Regs.clear();
1151 
1152     // Put any subsequent vpop instructions after this one: they will refer to
1153     // higher register numbers so need to be popped afterwards.
1154     if (MI != MBB.end())
1155       ++MI;
1156   }
1157 }
1158 
1159 /// Emit aligned spill instructions for NumAlignedDPRCS2Regs D-registers
1160 /// starting from d8.  Also insert stack realignment code and leave the stack
1161 /// pointer pointing to the d8 spill slot.
1162 static void emitAlignedDPRCS2Spills(MachineBasicBlock &MBB,
1163                                     MachineBasicBlock::iterator MI,
1164                                     unsigned NumAlignedDPRCS2Regs,
1165                                     const std::vector<CalleeSavedInfo> &CSI,
1166                                     const TargetRegisterInfo *TRI) {
1167   MachineFunction &MF = *MBB.getParent();
1168   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1169   DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc();
1170   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1171   MachineFrameInfo &MFI = MF.getFrameInfo();
1172 
1173   // Mark the D-register spill slots as properly aligned.  Since MFI computes
1174   // stack slot layout backwards, this can actually mean that the d-reg stack
1175   // slot offsets can be wrong. The offset for d8 will always be correct.
1176   for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
1177     unsigned DNum = CSI[i].getReg() - ARM::D8;
1178     if (DNum > NumAlignedDPRCS2Regs - 1)
1179       continue;
1180     int FI = CSI[i].getFrameIdx();
1181     // The even-numbered registers will be 16-byte aligned, the odd-numbered
1182     // registers will be 8-byte aligned.
1183     MFI.setObjectAlignment(FI, DNum % 2 ? 8 : 16);
1184 
1185     // The stack slot for D8 needs to be maximally aligned because this is
1186     // actually the point where we align the stack pointer.  MachineFrameInfo
1187     // computes all offsets relative to the incoming stack pointer which is a
1188     // bit weird when realigning the stack.  Any extra padding for this
1189     // over-alignment is not realized because the code inserted below adjusts
1190     // the stack pointer by numregs * 8 before aligning the stack pointer.
1191     if (DNum == 0)
1192       MFI.setObjectAlignment(FI, MFI.getMaxAlignment());
1193   }
1194 
1195   // Move the stack pointer to the d8 spill slot, and align it at the same
1196   // time. Leave the stack slot address in the scratch register r4.
1197   //
1198   //   sub r4, sp, #numregs * 8
1199   //   bic r4, r4, #align - 1
1200   //   mov sp, r4
1201   //
1202   bool isThumb = AFI->isThumbFunction();
1203   assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1");
1204   AFI->setShouldRestoreSPFromFP(true);
1205 
1206   // sub r4, sp, #numregs * 8
1207   // The immediate is <= 64, so it doesn't need any special encoding.
1208   unsigned Opc = isThumb ? ARM::t2SUBri : ARM::SUBri;
1209   BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4)
1210       .addReg(ARM::SP)
1211       .addImm(8 * NumAlignedDPRCS2Regs)
1212       .add(predOps(ARMCC::AL))
1213       .add(condCodeOp());
1214 
1215   unsigned MaxAlign = MF.getFrameInfo().getMaxAlignment();
1216   // We must set parameter MustBeSingleInstruction to true, since
1217   // skipAlignedDPRCS2Spills expects exactly 3 instructions to perform
1218   // stack alignment.  Luckily, this can always be done since all ARM
1219   // architecture versions that support Neon also support the BFC
1220   // instruction.
1221   emitAligningInstructions(MF, AFI, TII, MBB, MI, DL, ARM::R4, MaxAlign, true);
1222 
1223   // mov sp, r4
1224   // The stack pointer must be adjusted before spilling anything, otherwise
1225   // the stack slots could be clobbered by an interrupt handler.
1226   // Leave r4 live, it is used below.
1227   Opc = isThumb ? ARM::tMOVr : ARM::MOVr;
1228   MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(Opc), ARM::SP)
1229                                 .addReg(ARM::R4)
1230                                 .add(predOps(ARMCC::AL));
1231   if (!isThumb)
1232     MIB.add(condCodeOp());
1233 
1234   // Now spill NumAlignedDPRCS2Regs registers starting from d8.
1235   // r4 holds the stack slot address.
1236   unsigned NextReg = ARM::D8;
1237 
1238   // 16-byte aligned vst1.64 with 4 d-regs and address writeback.
1239   // The writeback is only needed when emitting two vst1.64 instructions.
1240   if (NumAlignedDPRCS2Regs >= 6) {
1241     unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1242                                                &ARM::QQPRRegClass);
1243     MBB.addLiveIn(SupReg);
1244     BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Qwb_fixed), ARM::R4)
1245         .addReg(ARM::R4, RegState::Kill)
1246         .addImm(16)
1247         .addReg(NextReg)
1248         .addReg(SupReg, RegState::ImplicitKill)
1249         .add(predOps(ARMCC::AL));
1250     NextReg += 4;
1251     NumAlignedDPRCS2Regs -= 4;
1252   }
1253 
1254   // We won't modify r4 beyond this point.  It currently points to the next
1255   // register to be spilled.
1256   unsigned R4BaseReg = NextReg;
1257 
1258   // 16-byte aligned vst1.64 with 4 d-regs, no writeback.
1259   if (NumAlignedDPRCS2Regs >= 4) {
1260     unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1261                                                &ARM::QQPRRegClass);
1262     MBB.addLiveIn(SupReg);
1263     BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Q))
1264         .addReg(ARM::R4)
1265         .addImm(16)
1266         .addReg(NextReg)
1267         .addReg(SupReg, RegState::ImplicitKill)
1268         .add(predOps(ARMCC::AL));
1269     NextReg += 4;
1270     NumAlignedDPRCS2Regs -= 4;
1271   }
1272 
1273   // 16-byte aligned vst1.64 with 2 d-regs.
1274   if (NumAlignedDPRCS2Regs >= 2) {
1275     unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1276                                                &ARM::QPRRegClass);
1277     MBB.addLiveIn(SupReg);
1278     BuildMI(MBB, MI, DL, TII.get(ARM::VST1q64))
1279         .addReg(ARM::R4)
1280         .addImm(16)
1281         .addReg(SupReg)
1282         .add(predOps(ARMCC::AL));
1283     NextReg += 2;
1284     NumAlignedDPRCS2Regs -= 2;
1285   }
1286 
1287   // Finally, use a vanilla vstr.64 for the odd last register.
1288   if (NumAlignedDPRCS2Regs) {
1289     MBB.addLiveIn(NextReg);
1290     // vstr.64 uses addrmode5 which has an offset scale of 4.
1291     BuildMI(MBB, MI, DL, TII.get(ARM::VSTRD))
1292         .addReg(NextReg)
1293         .addReg(ARM::R4)
1294         .addImm((NextReg - R4BaseReg) * 2)
1295         .add(predOps(ARMCC::AL));
1296   }
1297 
1298   // The last spill instruction inserted should kill the scratch register r4.
1299   std::prev(MI)->addRegisterKilled(ARM::R4, TRI);
1300 }
1301 
1302 /// Skip past the code inserted by emitAlignedDPRCS2Spills, and return an
1303 /// iterator to the following instruction.
1304 static MachineBasicBlock::iterator
1305 skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI,
1306                         unsigned NumAlignedDPRCS2Regs) {
1307   //   sub r4, sp, #numregs * 8
1308   //   bic r4, r4, #align - 1
1309   //   mov sp, r4
1310   ++MI; ++MI; ++MI;
1311   assert(MI->mayStore() && "Expecting spill instruction");
1312 
1313   // These switches all fall through.
1314   switch(NumAlignedDPRCS2Regs) {
1315   case 7:
1316     ++MI;
1317     assert(MI->mayStore() && "Expecting spill instruction");
1318     LLVM_FALLTHROUGH;
1319   default:
1320     ++MI;
1321     assert(MI->mayStore() && "Expecting spill instruction");
1322     LLVM_FALLTHROUGH;
1323   case 1:
1324   case 2:
1325   case 4:
1326     assert(MI->killsRegister(ARM::R4) && "Missed kill flag");
1327     ++MI;
1328   }
1329   return MI;
1330 }
1331 
1332 /// Emit aligned reload instructions for NumAlignedDPRCS2Regs D-registers
1333 /// starting from d8.  These instructions are assumed to execute while the
1334 /// stack is still aligned, unlike the code inserted by emitPopInst.
1335 static void emitAlignedDPRCS2Restores(MachineBasicBlock &MBB,
1336                                       MachineBasicBlock::iterator MI,
1337                                       unsigned NumAlignedDPRCS2Regs,
1338                                       const std::vector<CalleeSavedInfo> &CSI,
1339                                       const TargetRegisterInfo *TRI) {
1340   MachineFunction &MF = *MBB.getParent();
1341   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1342   DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc();
1343   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1344 
1345   // Find the frame index assigned to d8.
1346   int D8SpillFI = 0;
1347   for (unsigned i = 0, e = CSI.size(); i != e; ++i)
1348     if (CSI[i].getReg() == ARM::D8) {
1349       D8SpillFI = CSI[i].getFrameIdx();
1350       break;
1351     }
1352 
1353   // Materialize the address of the d8 spill slot into the scratch register r4.
1354   // This can be fairly complicated if the stack frame is large, so just use
1355   // the normal frame index elimination mechanism to do it.  This code runs as
1356   // the initial part of the epilog where the stack and base pointers haven't
1357   // been changed yet.
1358   bool isThumb = AFI->isThumbFunction();
1359   assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1");
1360 
1361   unsigned Opc = isThumb ? ARM::t2ADDri : ARM::ADDri;
1362   BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4)
1363       .addFrameIndex(D8SpillFI)
1364       .addImm(0)
1365       .add(predOps(ARMCC::AL))
1366       .add(condCodeOp());
1367 
1368   // Now restore NumAlignedDPRCS2Regs registers starting from d8.
1369   unsigned NextReg = ARM::D8;
1370 
1371   // 16-byte aligned vld1.64 with 4 d-regs and writeback.
1372   if (NumAlignedDPRCS2Regs >= 6) {
1373     unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1374                                                &ARM::QQPRRegClass);
1375     BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Qwb_fixed), NextReg)
1376         .addReg(ARM::R4, RegState::Define)
1377         .addReg(ARM::R4, RegState::Kill)
1378         .addImm(16)
1379         .addReg(SupReg, RegState::ImplicitDefine)
1380         .add(predOps(ARMCC::AL));
1381     NextReg += 4;
1382     NumAlignedDPRCS2Regs -= 4;
1383   }
1384 
1385   // We won't modify r4 beyond this point.  It currently points to the next
1386   // register to be spilled.
1387   unsigned R4BaseReg = NextReg;
1388 
1389   // 16-byte aligned vld1.64 with 4 d-regs, no writeback.
1390   if (NumAlignedDPRCS2Regs >= 4) {
1391     unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1392                                                &ARM::QQPRRegClass);
1393     BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Q), NextReg)
1394         .addReg(ARM::R4)
1395         .addImm(16)
1396         .addReg(SupReg, RegState::ImplicitDefine)
1397         .add(predOps(ARMCC::AL));
1398     NextReg += 4;
1399     NumAlignedDPRCS2Regs -= 4;
1400   }
1401 
1402   // 16-byte aligned vld1.64 with 2 d-regs.
1403   if (NumAlignedDPRCS2Regs >= 2) {
1404     unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1405                                                &ARM::QPRRegClass);
1406     BuildMI(MBB, MI, DL, TII.get(ARM::VLD1q64), SupReg)
1407         .addReg(ARM::R4)
1408         .addImm(16)
1409         .add(predOps(ARMCC::AL));
1410     NextReg += 2;
1411     NumAlignedDPRCS2Regs -= 2;
1412   }
1413 
1414   // Finally, use a vanilla vldr.64 for the remaining odd register.
1415   if (NumAlignedDPRCS2Regs)
1416     BuildMI(MBB, MI, DL, TII.get(ARM::VLDRD), NextReg)
1417         .addReg(ARM::R4)
1418         .addImm(2 * (NextReg - R4BaseReg))
1419         .add(predOps(ARMCC::AL));
1420 
1421   // Last store kills r4.
1422   std::prev(MI)->addRegisterKilled(ARM::R4, TRI);
1423 }
1424 
1425 bool ARMFrameLowering::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
1426                                         MachineBasicBlock::iterator MI,
1427                                         const std::vector<CalleeSavedInfo> &CSI,
1428                                         const TargetRegisterInfo *TRI) const {
1429   if (CSI.empty())
1430     return false;
1431 
1432   MachineFunction &MF = *MBB.getParent();
1433   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1434 
1435   unsigned PushOpc = AFI->isThumbFunction() ? ARM::t2STMDB_UPD : ARM::STMDB_UPD;
1436   unsigned PushOneOpc = AFI->isThumbFunction() ?
1437     ARM::t2STR_PRE : ARM::STR_PRE_IMM;
1438   unsigned FltOpc = ARM::VSTMDDB_UPD;
1439   unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs();
1440   emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, &isARMArea1Register, 0,
1441                MachineInstr::FrameSetup);
1442   emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, &isARMArea2Register, 0,
1443                MachineInstr::FrameSetup);
1444   emitPushInst(MBB, MI, CSI, FltOpc, 0, true, &isARMArea3Register,
1445                NumAlignedDPRCS2Regs, MachineInstr::FrameSetup);
1446 
1447   // The code above does not insert spill code for the aligned DPRCS2 registers.
1448   // The stack realignment code will be inserted between the push instructions
1449   // and these spills.
1450   if (NumAlignedDPRCS2Regs)
1451     emitAlignedDPRCS2Spills(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI);
1452 
1453   return true;
1454 }
1455 
1456 bool ARMFrameLowering::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
1457                                         MachineBasicBlock::iterator MI,
1458                                         std::vector<CalleeSavedInfo> &CSI,
1459                                         const TargetRegisterInfo *TRI) const {
1460   if (CSI.empty())
1461     return false;
1462 
1463   MachineFunction &MF = *MBB.getParent();
1464   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1465   bool isVarArg = AFI->getArgRegsSaveSize() > 0;
1466   unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs();
1467 
1468   // The emitPopInst calls below do not insert reloads for the aligned DPRCS2
1469   // registers. Do that here instead.
1470   if (NumAlignedDPRCS2Regs)
1471     emitAlignedDPRCS2Restores(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI);
1472 
1473   unsigned PopOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_UPD : ARM::LDMIA_UPD;
1474   unsigned LdrOpc = AFI->isThumbFunction() ? ARM::t2LDR_POST :ARM::LDR_POST_IMM;
1475   unsigned FltOpc = ARM::VLDMDIA_UPD;
1476   emitPopInst(MBB, MI, CSI, FltOpc, 0, isVarArg, true, &isARMArea3Register,
1477               NumAlignedDPRCS2Regs);
1478   emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false,
1479               &isARMArea2Register, 0);
1480   emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false,
1481               &isARMArea1Register, 0);
1482 
1483   return true;
1484 }
1485 
1486 // FIXME: Make generic?
1487 static unsigned EstimateFunctionSizeInBytes(const MachineFunction &MF,
1488                                             const ARMBaseInstrInfo &TII) {
1489   unsigned FnSize = 0;
1490   for (auto &MBB : MF) {
1491     for (auto &MI : MBB)
1492       FnSize += TII.getInstSizeInBytes(MI);
1493   }
1494   if (MF.getJumpTableInfo())
1495     for (auto &Table: MF.getJumpTableInfo()->getJumpTables())
1496       FnSize += Table.MBBs.size() * 4;
1497   FnSize += MF.getConstantPool()->getConstants().size() * 4;
1498   return FnSize;
1499 }
1500 
1501 /// estimateRSStackSizeLimit - Look at each instruction that references stack
1502 /// frames and return the stack size limit beyond which some of these
1503 /// instructions will require a scratch register during their expansion later.
1504 // FIXME: Move to TII?
1505 static unsigned estimateRSStackSizeLimit(MachineFunction &MF,
1506                                          const TargetFrameLowering *TFI,
1507                                          bool &HasNonSPFrameIndex) {
1508   const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1509   const ARMBaseInstrInfo &TII =
1510       *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
1511   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1512   unsigned Limit = (1 << 12) - 1;
1513   for (auto &MBB : MF) {
1514     for (auto &MI : MBB) {
1515       if (MI.isDebugInstr())
1516         continue;
1517       for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1518         if (!MI.getOperand(i).isFI())
1519           continue;
1520 
1521         // When using ADDri to get the address of a stack object, 255 is the
1522         // largest offset guaranteed to fit in the immediate offset.
1523         if (MI.getOpcode() == ARM::ADDri) {
1524           Limit = std::min(Limit, (1U << 8) - 1);
1525           break;
1526         }
1527         // t2ADDri will not require an extra register, it can reuse the
1528         // destination.
1529         if (MI.getOpcode() == ARM::t2ADDri || MI.getOpcode() == ARM::t2ADDri12)
1530           break;
1531 
1532         const MCInstrDesc &MCID = MI.getDesc();
1533         const TargetRegisterClass *RegClass = TII.getRegClass(MCID, i, TRI, MF);
1534         if (RegClass && !RegClass->contains(ARM::SP))
1535           HasNonSPFrameIndex = true;
1536 
1537         // Otherwise check the addressing mode.
1538         switch (MI.getDesc().TSFlags & ARMII::AddrModeMask) {
1539         case ARMII::AddrMode_i12:
1540         case ARMII::AddrMode2:
1541           // Default 12 bit limit.
1542           break;
1543         case ARMII::AddrMode3:
1544         case ARMII::AddrModeT2_i8:
1545           Limit = std::min(Limit, (1U << 8) - 1);
1546           break;
1547         case ARMII::AddrMode5FP16:
1548           Limit = std::min(Limit, ((1U << 8) - 1) * 2);
1549           break;
1550         case ARMII::AddrMode5:
1551         case ARMII::AddrModeT2_i8s4:
1552         case ARMII::AddrModeT2_ldrex:
1553           Limit = std::min(Limit, ((1U << 8) - 1) * 4);
1554           break;
1555         case ARMII::AddrModeT2_i12:
1556           // i12 supports only positive offset so these will be converted to
1557           // i8 opcodes. See llvm::rewriteT2FrameIndex.
1558           if (TFI->hasFP(MF) && AFI->hasStackFrame())
1559             Limit = std::min(Limit, (1U << 8) - 1);
1560           break;
1561         case ARMII::AddrMode4:
1562         case ARMII::AddrMode6:
1563           // Addressing modes 4 & 6 (load/store) instructions can't encode an
1564           // immediate offset for stack references.
1565           return 0;
1566         case ARMII::AddrModeT2_i7:
1567           Limit = std::min(Limit, ((1U << 7) - 1) * 1);
1568           break;
1569         case ARMII::AddrModeT2_i7s2:
1570           Limit = std::min(Limit, ((1U << 7) - 1) * 2);
1571           break;
1572         case ARMII::AddrModeT2_i7s4:
1573           Limit = std::min(Limit, ((1U << 7) - 1) * 4);
1574           break;
1575         default:
1576           llvm_unreachable("Unhandled addressing mode in stack size limit calculation");
1577         }
1578         break; // At most one FI per instruction
1579       }
1580     }
1581   }
1582 
1583   return Limit;
1584 }
1585 
1586 // In functions that realign the stack, it can be an advantage to spill the
1587 // callee-saved vector registers after realigning the stack. The vst1 and vld1
1588 // instructions take alignment hints that can improve performance.
1589 static void
1590 checkNumAlignedDPRCS2Regs(MachineFunction &MF, BitVector &SavedRegs) {
1591   MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(0);
1592   if (!SpillAlignedNEONRegs)
1593     return;
1594 
1595   // Naked functions don't spill callee-saved registers.
1596   if (MF.getFunction().hasFnAttribute(Attribute::Naked))
1597     return;
1598 
1599   // We are planning to use NEON instructions vst1 / vld1.
1600   if (!static_cast<const ARMSubtarget &>(MF.getSubtarget()).hasNEON())
1601     return;
1602 
1603   // Don't bother if the default stack alignment is sufficiently high.
1604   if (MF.getSubtarget().getFrameLowering()->getStackAlignment() >= 8)
1605     return;
1606 
1607   // Aligned spills require stack realignment.
1608   if (!static_cast<const ARMBaseRegisterInfo *>(
1609            MF.getSubtarget().getRegisterInfo())->canRealignStack(MF))
1610     return;
1611 
1612   // We always spill contiguous d-registers starting from d8. Count how many
1613   // needs spilling.  The register allocator will almost always use the
1614   // callee-saved registers in order, but it can happen that there are holes in
1615   // the range.  Registers above the hole will be spilled to the standard DPRCS
1616   // area.
1617   unsigned NumSpills = 0;
1618   for (; NumSpills < 8; ++NumSpills)
1619     if (!SavedRegs.test(ARM::D8 + NumSpills))
1620       break;
1621 
1622   // Don't do this for just one d-register. It's not worth it.
1623   if (NumSpills < 2)
1624     return;
1625 
1626   // Spill the first NumSpills D-registers after realigning the stack.
1627   MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(NumSpills);
1628 
1629   // A scratch register is required for the vst1 / vld1 instructions.
1630   SavedRegs.set(ARM::R4);
1631 }
1632 
1633 void ARMFrameLowering::determineCalleeSaves(MachineFunction &MF,
1634                                             BitVector &SavedRegs,
1635                                             RegScavenger *RS) const {
1636   TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
1637   // This tells PEI to spill the FP as if it is any other callee-save register
1638   // to take advantage the eliminateFrameIndex machinery. This also ensures it
1639   // is spilled in the order specified by getCalleeSavedRegs() to make it easier
1640   // to combine multiple loads / stores.
1641   bool CanEliminateFrame = true;
1642   bool CS1Spilled = false;
1643   bool LRSpilled = false;
1644   unsigned NumGPRSpills = 0;
1645   unsigned NumFPRSpills = 0;
1646   SmallVector<unsigned, 4> UnspilledCS1GPRs;
1647   SmallVector<unsigned, 4> UnspilledCS2GPRs;
1648   const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>(
1649       MF.getSubtarget().getRegisterInfo());
1650   const ARMBaseInstrInfo &TII =
1651       *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
1652   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1653   MachineFrameInfo &MFI = MF.getFrameInfo();
1654   MachineRegisterInfo &MRI = MF.getRegInfo();
1655   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1656   (void)TRI;  // Silence unused warning in non-assert builds.
1657   Register FramePtr = RegInfo->getFrameRegister(MF);
1658 
1659   // Spill R4 if Thumb2 function requires stack realignment - it will be used as
1660   // scratch register. Also spill R4 if Thumb2 function has varsized objects,
1661   // since it's not always possible to restore sp from fp in a single
1662   // instruction.
1663   // FIXME: It will be better just to find spare register here.
1664   if (AFI->isThumb2Function() &&
1665       (MFI.hasVarSizedObjects() || RegInfo->needsStackRealignment(MF)))
1666     SavedRegs.set(ARM::R4);
1667 
1668   // If a stack probe will be emitted, spill R4 and LR, since they are
1669   // clobbered by the stack probe call.
1670   // This estimate should be a safe, conservative estimate. The actual
1671   // stack probe is enabled based on the size of the local objects;
1672   // this estimate also includes the varargs store size.
1673   if (STI.isTargetWindows() &&
1674       WindowsRequiresStackProbe(MF, MFI.estimateStackSize(MF))) {
1675     SavedRegs.set(ARM::R4);
1676     SavedRegs.set(ARM::LR);
1677   }
1678 
1679   if (AFI->isThumb1OnlyFunction()) {
1680     // Spill LR if Thumb1 function uses variable length argument lists.
1681     if (AFI->getArgRegsSaveSize() > 0)
1682       SavedRegs.set(ARM::LR);
1683 
1684     // Spill R4 if Thumb1 epilogue has to restore SP from FP or the function
1685     // requires stack alignment.  We don't know for sure what the stack size
1686     // will be, but for this, an estimate is good enough. If there anything
1687     // changes it, it'll be a spill, which implies we've used all the registers
1688     // and so R4 is already used, so not marking it here will be OK.
1689     // FIXME: It will be better just to find spare register here.
1690     if (MFI.hasVarSizedObjects() || RegInfo->needsStackRealignment(MF) ||
1691         MFI.estimateStackSize(MF) > 508)
1692       SavedRegs.set(ARM::R4);
1693   }
1694 
1695   // See if we can spill vector registers to aligned stack.
1696   checkNumAlignedDPRCS2Regs(MF, SavedRegs);
1697 
1698   // Spill the BasePtr if it's used.
1699   if (RegInfo->hasBasePointer(MF))
1700     SavedRegs.set(RegInfo->getBaseRegister());
1701 
1702   // Don't spill FP if the frame can be eliminated. This is determined
1703   // by scanning the callee-save registers to see if any is modified.
1704   const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF);
1705   for (unsigned i = 0; CSRegs[i]; ++i) {
1706     unsigned Reg = CSRegs[i];
1707     bool Spilled = false;
1708     if (SavedRegs.test(Reg)) {
1709       Spilled = true;
1710       CanEliminateFrame = false;
1711     }
1712 
1713     if (!ARM::GPRRegClass.contains(Reg)) {
1714       if (Spilled) {
1715         if (ARM::SPRRegClass.contains(Reg))
1716           NumFPRSpills++;
1717         else if (ARM::DPRRegClass.contains(Reg))
1718           NumFPRSpills += 2;
1719         else if (ARM::QPRRegClass.contains(Reg))
1720           NumFPRSpills += 4;
1721       }
1722       continue;
1723     }
1724 
1725     if (Spilled) {
1726       NumGPRSpills++;
1727 
1728       if (!STI.splitFramePushPop(MF)) {
1729         if (Reg == ARM::LR)
1730           LRSpilled = true;
1731         CS1Spilled = true;
1732         continue;
1733       }
1734 
1735       // Keep track if LR and any of R4, R5, R6, and R7 is spilled.
1736       switch (Reg) {
1737       case ARM::LR:
1738         LRSpilled = true;
1739         LLVM_FALLTHROUGH;
1740       case ARM::R0: case ARM::R1:
1741       case ARM::R2: case ARM::R3:
1742       case ARM::R4: case ARM::R5:
1743       case ARM::R6: case ARM::R7:
1744         CS1Spilled = true;
1745         break;
1746       default:
1747         break;
1748       }
1749     } else {
1750       if (!STI.splitFramePushPop(MF)) {
1751         UnspilledCS1GPRs.push_back(Reg);
1752         continue;
1753       }
1754 
1755       switch (Reg) {
1756       case ARM::R0: case ARM::R1:
1757       case ARM::R2: case ARM::R3:
1758       case ARM::R4: case ARM::R5:
1759       case ARM::R6: case ARM::R7:
1760       case ARM::LR:
1761         UnspilledCS1GPRs.push_back(Reg);
1762         break;
1763       default:
1764         UnspilledCS2GPRs.push_back(Reg);
1765         break;
1766       }
1767     }
1768   }
1769 
1770   bool ForceLRSpill = false;
1771   if (!LRSpilled && AFI->isThumb1OnlyFunction()) {
1772     unsigned FnSize = EstimateFunctionSizeInBytes(MF, TII);
1773     // Force LR to be spilled if the Thumb function size is > 2048. This enables
1774     // use of BL to implement far jump. If it turns out that it's not needed
1775     // then the branch fix up path will undo it.
1776     if (FnSize >= (1 << 11)) {
1777       CanEliminateFrame = false;
1778       ForceLRSpill = true;
1779     }
1780   }
1781 
1782   // If any of the stack slot references may be out of range of an immediate
1783   // offset, make sure a register (or a spill slot) is available for the
1784   // register scavenger. Note that if we're indexing off the frame pointer, the
1785   // effective stack size is 4 bytes larger since the FP points to the stack
1786   // slot of the previous FP. Also, if we have variable sized objects in the
1787   // function, stack slot references will often be negative, and some of
1788   // our instructions are positive-offset only, so conservatively consider
1789   // that case to want a spill slot (or register) as well. Similarly, if
1790   // the function adjusts the stack pointer during execution and the
1791   // adjustments aren't already part of our stack size estimate, our offset
1792   // calculations may be off, so be conservative.
1793   // FIXME: We could add logic to be more precise about negative offsets
1794   //        and which instructions will need a scratch register for them. Is it
1795   //        worth the effort and added fragility?
1796   unsigned EstimatedStackSize =
1797       MFI.estimateStackSize(MF) + 4 * (NumGPRSpills + NumFPRSpills);
1798 
1799   // Determine biggest (positive) SP offset in MachineFrameInfo.
1800   int MaxFixedOffset = 0;
1801   for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) {
1802     int MaxObjectOffset = MFI.getObjectOffset(I) + MFI.getObjectSize(I);
1803     MaxFixedOffset = std::max(MaxFixedOffset, MaxObjectOffset);
1804   }
1805 
1806   bool HasFP = hasFP(MF);
1807   if (HasFP) {
1808     if (AFI->hasStackFrame())
1809       EstimatedStackSize += 4;
1810   } else {
1811     // If FP is not used, SP will be used to access arguments, so count the
1812     // size of arguments into the estimation.
1813     EstimatedStackSize += MaxFixedOffset;
1814   }
1815   EstimatedStackSize += 16; // For possible paddings.
1816 
1817   unsigned EstimatedRSStackSizeLimit, EstimatedRSFixedSizeLimit;
1818   bool HasNonSPFrameIndex = false;
1819   if (AFI->isThumb1OnlyFunction()) {
1820     // For Thumb1, don't bother to iterate over the function. The only
1821     // instruction that requires an emergency spill slot is a store to a
1822     // frame index.
1823     //
1824     // tSTRspi, which is used for sp-relative accesses, has an 8-bit unsigned
1825     // immediate. tSTRi, which is used for bp- and fp-relative accesses, has
1826     // a 5-bit unsigned immediate.
1827     //
1828     // We could try to check if the function actually contains a tSTRspi
1829     // that might need the spill slot, but it's not really important.
1830     // Functions with VLAs or extremely large call frames are rare, and
1831     // if a function is allocating more than 1KB of stack, an extra 4-byte
1832     // slot probably isn't relevant.
1833     if (RegInfo->hasBasePointer(MF))
1834       EstimatedRSStackSizeLimit = (1U << 5) * 4;
1835     else
1836       EstimatedRSStackSizeLimit = (1U << 8) * 4;
1837     EstimatedRSFixedSizeLimit = (1U << 5) * 4;
1838   } else {
1839     EstimatedRSStackSizeLimit =
1840         estimateRSStackSizeLimit(MF, this, HasNonSPFrameIndex);
1841     EstimatedRSFixedSizeLimit = EstimatedRSStackSizeLimit;
1842   }
1843   // Final estimate of whether sp or bp-relative accesses might require
1844   // scavenging.
1845   bool HasLargeStack = EstimatedStackSize > EstimatedRSStackSizeLimit;
1846 
1847   // If the stack pointer moves and we don't have a base pointer, the
1848   // estimate logic doesn't work. The actual offsets might be larger when
1849   // we're constructing a call frame, or we might need to use negative
1850   // offsets from fp.
1851   bool HasMovingSP = MFI.hasVarSizedObjects() ||
1852     (MFI.adjustsStack() && !canSimplifyCallFramePseudos(MF));
1853   bool HasBPOrFixedSP = RegInfo->hasBasePointer(MF) || !HasMovingSP;
1854 
1855   // If we have a frame pointer, we assume arguments will be accessed
1856   // relative to the frame pointer. Check whether fp-relative accesses to
1857   // arguments require scavenging.
1858   //
1859   // We could do slightly better on Thumb1; in some cases, an sp-relative
1860   // offset would be legal even though an fp-relative offset is not.
1861   int MaxFPOffset = getMaxFPOffset(MF.getFunction(), *AFI);
1862   bool HasLargeArgumentList =
1863       HasFP && (MaxFixedOffset - MaxFPOffset) > (int)EstimatedRSFixedSizeLimit;
1864 
1865   bool BigFrameOffsets = HasLargeStack || !HasBPOrFixedSP ||
1866                          HasLargeArgumentList || HasNonSPFrameIndex;
1867   LLVM_DEBUG(dbgs() << "EstimatedLimit: " << EstimatedRSStackSizeLimit
1868                     << "; EstimatedStack: " << EstimatedStackSize
1869                     << "; EstimatedFPStack: " << MaxFixedOffset - MaxFPOffset
1870                     << "; BigFrameOffsets: " << BigFrameOffsets << "\n");
1871   if (BigFrameOffsets ||
1872       !CanEliminateFrame || RegInfo->cannotEliminateFrame(MF)) {
1873     AFI->setHasStackFrame(true);
1874 
1875     if (HasFP) {
1876       SavedRegs.set(FramePtr);
1877       // If the frame pointer is required by the ABI, also spill LR so that we
1878       // emit a complete frame record.
1879       if (MF.getTarget().Options.DisableFramePointerElim(MF) && !LRSpilled) {
1880         SavedRegs.set(ARM::LR);
1881         LRSpilled = true;
1882         NumGPRSpills++;
1883         auto LRPos = llvm::find(UnspilledCS1GPRs, ARM::LR);
1884         if (LRPos != UnspilledCS1GPRs.end())
1885           UnspilledCS1GPRs.erase(LRPos);
1886       }
1887       auto FPPos = llvm::find(UnspilledCS1GPRs, FramePtr);
1888       if (FPPos != UnspilledCS1GPRs.end())
1889         UnspilledCS1GPRs.erase(FPPos);
1890       NumGPRSpills++;
1891       if (FramePtr == ARM::R7)
1892         CS1Spilled = true;
1893     }
1894 
1895     // This is true when we inserted a spill for a callee-save GPR which is
1896     // not otherwise used by the function. This guaranteees it is possible
1897     // to scavenge a register to hold the address of a stack slot. On Thumb1,
1898     // the register must be a valid operand to tSTRi, i.e. r4-r7. For other
1899     // subtargets, this is any GPR, i.e. r4-r11 or lr.
1900     //
1901     // If we don't insert a spill, we instead allocate an emergency spill
1902     // slot, which can be used by scavenging to spill an arbitrary register.
1903     //
1904     // We currently don't try to figure out whether any specific instruction
1905     // requires scavening an additional register.
1906     bool ExtraCSSpill = false;
1907 
1908     if (AFI->isThumb1OnlyFunction()) {
1909       // For Thumb1-only targets, we need some low registers when we save and
1910       // restore the high registers (which aren't allocatable, but could be
1911       // used by inline assembly) because the push/pop instructions can not
1912       // access high registers. If necessary, we might need to push more low
1913       // registers to ensure that there is at least one free that can be used
1914       // for the saving & restoring, and preferably we should ensure that as
1915       // many as are needed are available so that fewer push/pop instructions
1916       // are required.
1917 
1918       // Low registers which are not currently pushed, but could be (r4-r7).
1919       SmallVector<unsigned, 4> AvailableRegs;
1920 
1921       // Unused argument registers (r0-r3) can be clobbered in the prologue for
1922       // free.
1923       int EntryRegDeficit = 0;
1924       for (unsigned Reg : {ARM::R0, ARM::R1, ARM::R2, ARM::R3}) {
1925         if (!MF.getRegInfo().isLiveIn(Reg)) {
1926           --EntryRegDeficit;
1927           LLVM_DEBUG(dbgs()
1928                      << printReg(Reg, TRI)
1929                      << " is unused argument register, EntryRegDeficit = "
1930                      << EntryRegDeficit << "\n");
1931         }
1932       }
1933 
1934       // Unused return registers can be clobbered in the epilogue for free.
1935       int ExitRegDeficit = AFI->getReturnRegsCount() - 4;
1936       LLVM_DEBUG(dbgs() << AFI->getReturnRegsCount()
1937                         << " return regs used, ExitRegDeficit = "
1938                         << ExitRegDeficit << "\n");
1939 
1940       int RegDeficit = std::max(EntryRegDeficit, ExitRegDeficit);
1941       LLVM_DEBUG(dbgs() << "RegDeficit = " << RegDeficit << "\n");
1942 
1943       // r4-r6 can be used in the prologue if they are pushed by the first push
1944       // instruction.
1945       for (unsigned Reg : {ARM::R4, ARM::R5, ARM::R6}) {
1946         if (SavedRegs.test(Reg)) {
1947           --RegDeficit;
1948           LLVM_DEBUG(dbgs() << printReg(Reg, TRI)
1949                             << " is saved low register, RegDeficit = "
1950                             << RegDeficit << "\n");
1951         } else {
1952           AvailableRegs.push_back(Reg);
1953           LLVM_DEBUG(
1954               dbgs()
1955               << printReg(Reg, TRI)
1956               << " is non-saved low register, adding to AvailableRegs\n");
1957         }
1958       }
1959 
1960       // r7 can be used if it is not being used as the frame pointer.
1961       if (!HasFP) {
1962         if (SavedRegs.test(ARM::R7)) {
1963           --RegDeficit;
1964           LLVM_DEBUG(dbgs() << "%r7 is saved low register, RegDeficit = "
1965                             << RegDeficit << "\n");
1966         } else {
1967           AvailableRegs.push_back(ARM::R7);
1968           LLVM_DEBUG(
1969               dbgs()
1970               << "%r7 is non-saved low register, adding to AvailableRegs\n");
1971         }
1972       }
1973 
1974       // Each of r8-r11 needs to be copied to a low register, then pushed.
1975       for (unsigned Reg : {ARM::R8, ARM::R9, ARM::R10, ARM::R11}) {
1976         if (SavedRegs.test(Reg)) {
1977           ++RegDeficit;
1978           LLVM_DEBUG(dbgs() << printReg(Reg, TRI)
1979                             << " is saved high register, RegDeficit = "
1980                             << RegDeficit << "\n");
1981         }
1982       }
1983 
1984       // LR can only be used by PUSH, not POP, and can't be used at all if the
1985       // llvm.returnaddress intrinsic is used. This is only worth doing if we
1986       // are more limited at function entry than exit.
1987       if ((EntryRegDeficit > ExitRegDeficit) &&
1988           !(MF.getRegInfo().isLiveIn(ARM::LR) &&
1989             MF.getFrameInfo().isReturnAddressTaken())) {
1990         if (SavedRegs.test(ARM::LR)) {
1991           --RegDeficit;
1992           LLVM_DEBUG(dbgs() << "%lr is saved register, RegDeficit = "
1993                             << RegDeficit << "\n");
1994         } else {
1995           AvailableRegs.push_back(ARM::LR);
1996           LLVM_DEBUG(dbgs() << "%lr is not saved, adding to AvailableRegs\n");
1997         }
1998       }
1999 
2000       // If there are more high registers that need pushing than low registers
2001       // available, push some more low registers so that we can use fewer push
2002       // instructions. This might not reduce RegDeficit all the way to zero,
2003       // because we can only guarantee that r4-r6 are available, but r8-r11 may
2004       // need saving.
2005       LLVM_DEBUG(dbgs() << "Final RegDeficit = " << RegDeficit << "\n");
2006       for (; RegDeficit > 0 && !AvailableRegs.empty(); --RegDeficit) {
2007         unsigned Reg = AvailableRegs.pop_back_val();
2008         LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI)
2009                           << " to make up reg deficit\n");
2010         SavedRegs.set(Reg);
2011         NumGPRSpills++;
2012         CS1Spilled = true;
2013         assert(!MRI.isReserved(Reg) && "Should not be reserved");
2014         if (Reg != ARM::LR && !MRI.isPhysRegUsed(Reg))
2015           ExtraCSSpill = true;
2016         UnspilledCS1GPRs.erase(llvm::find(UnspilledCS1GPRs, Reg));
2017         if (Reg == ARM::LR)
2018           LRSpilled = true;
2019       }
2020       LLVM_DEBUG(dbgs() << "After adding spills, RegDeficit = " << RegDeficit
2021                         << "\n");
2022     }
2023 
2024     // Avoid spilling LR in Thumb1 if there's a tail call: it's expensive to
2025     // restore LR in that case.
2026     bool ExpensiveLRRestore = AFI->isThumb1OnlyFunction() && MFI.hasTailCall();
2027 
2028     // If LR is not spilled, but at least one of R4, R5, R6, and R7 is spilled.
2029     // Spill LR as well so we can fold BX_RET to the registers restore (LDM).
2030     if (!LRSpilled && CS1Spilled && !ExpensiveLRRestore) {
2031       SavedRegs.set(ARM::LR);
2032       NumGPRSpills++;
2033       SmallVectorImpl<unsigned>::iterator LRPos;
2034       LRPos = llvm::find(UnspilledCS1GPRs, (unsigned)ARM::LR);
2035       if (LRPos != UnspilledCS1GPRs.end())
2036         UnspilledCS1GPRs.erase(LRPos);
2037 
2038       ForceLRSpill = false;
2039       if (!MRI.isReserved(ARM::LR) && !MRI.isPhysRegUsed(ARM::LR) &&
2040           !AFI->isThumb1OnlyFunction())
2041         ExtraCSSpill = true;
2042     }
2043 
2044     // If stack and double are 8-byte aligned and we are spilling an odd number
2045     // of GPRs, spill one extra callee save GPR so we won't have to pad between
2046     // the integer and double callee save areas.
2047     LLVM_DEBUG(dbgs() << "NumGPRSpills = " << NumGPRSpills << "\n");
2048     unsigned TargetAlign = getStackAlignment();
2049     if (TargetAlign >= 8 && (NumGPRSpills & 1)) {
2050       if (CS1Spilled && !UnspilledCS1GPRs.empty()) {
2051         for (unsigned i = 0, e = UnspilledCS1GPRs.size(); i != e; ++i) {
2052           unsigned Reg = UnspilledCS1GPRs[i];
2053           // Don't spill high register if the function is thumb.  In the case of
2054           // Windows on ARM, accept R11 (frame pointer)
2055           if (!AFI->isThumbFunction() ||
2056               (STI.isTargetWindows() && Reg == ARM::R11) ||
2057               isARMLowRegister(Reg) ||
2058               (Reg == ARM::LR && !ExpensiveLRRestore)) {
2059             SavedRegs.set(Reg);
2060             LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI)
2061                               << " to make up alignment\n");
2062             if (!MRI.isReserved(Reg) && !MRI.isPhysRegUsed(Reg) &&
2063                 !(Reg == ARM::LR && AFI->isThumb1OnlyFunction()))
2064               ExtraCSSpill = true;
2065             break;
2066           }
2067         }
2068       } else if (!UnspilledCS2GPRs.empty() && !AFI->isThumb1OnlyFunction()) {
2069         unsigned Reg = UnspilledCS2GPRs.front();
2070         SavedRegs.set(Reg);
2071         LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI)
2072                           << " to make up alignment\n");
2073         if (!MRI.isReserved(Reg) && !MRI.isPhysRegUsed(Reg))
2074           ExtraCSSpill = true;
2075       }
2076     }
2077 
2078     // Estimate if we might need to scavenge a register at some point in order
2079     // to materialize a stack offset. If so, either spill one additional
2080     // callee-saved register or reserve a special spill slot to facilitate
2081     // register scavenging. Thumb1 needs a spill slot for stack pointer
2082     // adjustments also, even when the frame itself is small.
2083     if (BigFrameOffsets && !ExtraCSSpill) {
2084       // If any non-reserved CS register isn't spilled, just spill one or two
2085       // extra. That should take care of it!
2086       unsigned NumExtras = TargetAlign / 4;
2087       SmallVector<unsigned, 2> Extras;
2088       while (NumExtras && !UnspilledCS1GPRs.empty()) {
2089         unsigned Reg = UnspilledCS1GPRs.back();
2090         UnspilledCS1GPRs.pop_back();
2091         if (!MRI.isReserved(Reg) &&
2092             (!AFI->isThumb1OnlyFunction() || isARMLowRegister(Reg))) {
2093           Extras.push_back(Reg);
2094           NumExtras--;
2095         }
2096       }
2097       // For non-Thumb1 functions, also check for hi-reg CS registers
2098       if (!AFI->isThumb1OnlyFunction()) {
2099         while (NumExtras && !UnspilledCS2GPRs.empty()) {
2100           unsigned Reg = UnspilledCS2GPRs.back();
2101           UnspilledCS2GPRs.pop_back();
2102           if (!MRI.isReserved(Reg)) {
2103             Extras.push_back(Reg);
2104             NumExtras--;
2105           }
2106         }
2107       }
2108       if (NumExtras == 0) {
2109         for (unsigned Reg : Extras) {
2110           SavedRegs.set(Reg);
2111           if (!MRI.isPhysRegUsed(Reg))
2112             ExtraCSSpill = true;
2113         }
2114       }
2115       if (!ExtraCSSpill && RS) {
2116         // Reserve a slot closest to SP or frame pointer.
2117         LLVM_DEBUG(dbgs() << "Reserving emergency spill slot\n");
2118         const TargetRegisterClass &RC = ARM::GPRRegClass;
2119         unsigned Size = TRI->getSpillSize(RC);
2120         unsigned Align = TRI->getSpillAlignment(RC);
2121         RS->addScavengingFrameIndex(MFI.CreateStackObject(Size, Align, false));
2122       }
2123     }
2124   }
2125 
2126   if (ForceLRSpill) {
2127     SavedRegs.set(ARM::LR);
2128     AFI->setLRIsSpilledForFarJump(true);
2129   }
2130   AFI->setLRIsSpilled(SavedRegs.test(ARM::LR));
2131 }
2132 
2133 void ARMFrameLowering::getCalleeSaves(const MachineFunction &MF,
2134                                       BitVector &SavedRegs) const {
2135   TargetFrameLowering::getCalleeSaves(MF, SavedRegs);
2136 
2137   // If we have the "returned" parameter attribute which guarantees that we
2138   // return the value which was passed in r0 unmodified (e.g. C++ 'structors),
2139   // record that fact for IPRA.
2140   const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2141   if (AFI->getPreservesR0())
2142     SavedRegs.set(ARM::R0);
2143 }
2144 
2145 MachineBasicBlock::iterator ARMFrameLowering::eliminateCallFramePseudoInstr(
2146     MachineFunction &MF, MachineBasicBlock &MBB,
2147     MachineBasicBlock::iterator I) const {
2148   const ARMBaseInstrInfo &TII =
2149       *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
2150   if (!hasReservedCallFrame(MF)) {
2151     // If we have alloca, convert as follows:
2152     // ADJCALLSTACKDOWN -> sub, sp, sp, amount
2153     // ADJCALLSTACKUP   -> add, sp, sp, amount
2154     MachineInstr &Old = *I;
2155     DebugLoc dl = Old.getDebugLoc();
2156     unsigned Amount = TII.getFrameSize(Old);
2157     if (Amount != 0) {
2158       // We need to keep the stack aligned properly.  To do this, we round the
2159       // amount of space needed for the outgoing arguments up to the next
2160       // alignment boundary.
2161       Amount = alignSPAdjust(Amount);
2162 
2163       ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2164       assert(!AFI->isThumb1OnlyFunction() &&
2165              "This eliminateCallFramePseudoInstr does not support Thumb1!");
2166       bool isARM = !AFI->isThumbFunction();
2167 
2168       // Replace the pseudo instruction with a new instruction...
2169       unsigned Opc = Old.getOpcode();
2170       int PIdx = Old.findFirstPredOperandIdx();
2171       ARMCC::CondCodes Pred =
2172           (PIdx == -1) ? ARMCC::AL
2173                        : (ARMCC::CondCodes)Old.getOperand(PIdx).getImm();
2174       unsigned PredReg = TII.getFramePred(Old);
2175       if (Opc == ARM::ADJCALLSTACKDOWN || Opc == ARM::tADJCALLSTACKDOWN) {
2176         emitSPUpdate(isARM, MBB, I, dl, TII, -Amount, MachineInstr::NoFlags,
2177                      Pred, PredReg);
2178       } else {
2179         assert(Opc == ARM::ADJCALLSTACKUP || Opc == ARM::tADJCALLSTACKUP);
2180         emitSPUpdate(isARM, MBB, I, dl, TII, Amount, MachineInstr::NoFlags,
2181                      Pred, PredReg);
2182       }
2183     }
2184   }
2185   return MBB.erase(I);
2186 }
2187 
2188 /// Get the minimum constant for ARM that is greater than or equal to the
2189 /// argument. In ARM, constants can have any value that can be produced by
2190 /// rotating an 8-bit value to the right by an even number of bits within a
2191 /// 32-bit word.
2192 static uint32_t alignToARMConstant(uint32_t Value) {
2193   unsigned Shifted = 0;
2194 
2195   if (Value == 0)
2196       return 0;
2197 
2198   while (!(Value & 0xC0000000)) {
2199       Value = Value << 2;
2200       Shifted += 2;
2201   }
2202 
2203   bool Carry = (Value & 0x00FFFFFF);
2204   Value = ((Value & 0xFF000000) >> 24) + Carry;
2205 
2206   if (Value & 0x0000100)
2207       Value = Value & 0x000001FC;
2208 
2209   if (Shifted > 24)
2210       Value = Value >> (Shifted - 24);
2211   else
2212       Value = Value << (24 - Shifted);
2213 
2214   return Value;
2215 }
2216 
2217 // The stack limit in the TCB is set to this many bytes above the actual
2218 // stack limit.
2219 static const uint64_t kSplitStackAvailable = 256;
2220 
2221 // Adjust the function prologue to enable split stacks. This currently only
2222 // supports android and linux.
2223 //
2224 // The ABI of the segmented stack prologue is a little arbitrarily chosen, but
2225 // must be well defined in order to allow for consistent implementations of the
2226 // __morestack helper function. The ABI is also not a normal ABI in that it
2227 // doesn't follow the normal calling conventions because this allows the
2228 // prologue of each function to be optimized further.
2229 //
2230 // Currently, the ABI looks like (when calling __morestack)
2231 //
2232 //  * r4 holds the minimum stack size requested for this function call
2233 //  * r5 holds the stack size of the arguments to the function
2234 //  * the beginning of the function is 3 instructions after the call to
2235 //    __morestack
2236 //
2237 // Implementations of __morestack should use r4 to allocate a new stack, r5 to
2238 // place the arguments on to the new stack, and the 3-instruction knowledge to
2239 // jump directly to the body of the function when working on the new stack.
2240 //
2241 // An old (and possibly no longer compatible) implementation of __morestack for
2242 // ARM can be found at [1].
2243 //
2244 // [1] - https://github.com/mozilla/rust/blob/86efd9/src/rt/arch/arm/morestack.S
2245 void ARMFrameLowering::adjustForSegmentedStacks(
2246     MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
2247   unsigned Opcode;
2248   unsigned CFIIndex;
2249   const ARMSubtarget *ST = &MF.getSubtarget<ARMSubtarget>();
2250   bool Thumb = ST->isThumb();
2251 
2252   // Sadly, this currently doesn't support varargs, platforms other than
2253   // android/linux. Note that thumb1/thumb2 are support for android/linux.
2254   if (MF.getFunction().isVarArg())
2255     report_fatal_error("Segmented stacks do not support vararg functions.");
2256   if (!ST->isTargetAndroid() && !ST->isTargetLinux())
2257     report_fatal_error("Segmented stacks not supported on this platform.");
2258 
2259   MachineFrameInfo &MFI = MF.getFrameInfo();
2260   MachineModuleInfo &MMI = MF.getMMI();
2261   MCContext &Context = MMI.getContext();
2262   const MCRegisterInfo *MRI = Context.getRegisterInfo();
2263   const ARMBaseInstrInfo &TII =
2264       *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
2265   ARMFunctionInfo *ARMFI = MF.getInfo<ARMFunctionInfo>();
2266   DebugLoc DL;
2267 
2268   uint64_t StackSize = MFI.getStackSize();
2269 
2270   // Do not generate a prologue for leaf functions with a stack of size zero.
2271   // For non-leaf functions we have to allow for the possibility that the
2272   // callis to a non-split function, as in PR37807. This function could also
2273   // take the address of a non-split function. When the linker tries to adjust
2274   // its non-existent prologue, it would fail with an error. Mark the object
2275   // file so that such failures are not errors. See this Go language bug-report
2276   // https://go-review.googlesource.com/c/go/+/148819/
2277   if (StackSize == 0 && !MFI.hasTailCall()) {
2278     MF.getMMI().setHasNosplitStack(true);
2279     return;
2280   }
2281 
2282   // Use R4 and R5 as scratch registers.
2283   // We save R4 and R5 before use and restore them before leaving the function.
2284   unsigned ScratchReg0 = ARM::R4;
2285   unsigned ScratchReg1 = ARM::R5;
2286   uint64_t AlignedStackSize;
2287 
2288   MachineBasicBlock *PrevStackMBB = MF.CreateMachineBasicBlock();
2289   MachineBasicBlock *PostStackMBB = MF.CreateMachineBasicBlock();
2290   MachineBasicBlock *AllocMBB = MF.CreateMachineBasicBlock();
2291   MachineBasicBlock *GetMBB = MF.CreateMachineBasicBlock();
2292   MachineBasicBlock *McrMBB = MF.CreateMachineBasicBlock();
2293 
2294   // Grab everything that reaches PrologueMBB to update there liveness as well.
2295   SmallPtrSet<MachineBasicBlock *, 8> BeforePrologueRegion;
2296   SmallVector<MachineBasicBlock *, 2> WalkList;
2297   WalkList.push_back(&PrologueMBB);
2298 
2299   do {
2300     MachineBasicBlock *CurMBB = WalkList.pop_back_val();
2301     for (MachineBasicBlock *PredBB : CurMBB->predecessors()) {
2302       if (BeforePrologueRegion.insert(PredBB).second)
2303         WalkList.push_back(PredBB);
2304     }
2305   } while (!WalkList.empty());
2306 
2307   // The order in that list is important.
2308   // The blocks will all be inserted before PrologueMBB using that order.
2309   // Therefore the block that should appear first in the CFG should appear
2310   // first in the list.
2311   MachineBasicBlock *AddedBlocks[] = {PrevStackMBB, McrMBB, GetMBB, AllocMBB,
2312                                       PostStackMBB};
2313 
2314   for (MachineBasicBlock *B : AddedBlocks)
2315     BeforePrologueRegion.insert(B);
2316 
2317   for (const auto &LI : PrologueMBB.liveins()) {
2318     for (MachineBasicBlock *PredBB : BeforePrologueRegion)
2319       PredBB->addLiveIn(LI);
2320   }
2321 
2322   // Remove the newly added blocks from the list, since we know
2323   // we do not have to do the following updates for them.
2324   for (MachineBasicBlock *B : AddedBlocks) {
2325     BeforePrologueRegion.erase(B);
2326     MF.insert(PrologueMBB.getIterator(), B);
2327   }
2328 
2329   for (MachineBasicBlock *MBB : BeforePrologueRegion) {
2330     // Make sure the LiveIns are still sorted and unique.
2331     MBB->sortUniqueLiveIns();
2332     // Replace the edges to PrologueMBB by edges to the sequences
2333     // we are about to add.
2334     MBB->ReplaceUsesOfBlockWith(&PrologueMBB, AddedBlocks[0]);
2335   }
2336 
2337   // The required stack size that is aligned to ARM constant criterion.
2338   AlignedStackSize = alignToARMConstant(StackSize);
2339 
2340   // When the frame size is less than 256 we just compare the stack
2341   // boundary directly to the value of the stack pointer, per gcc.
2342   bool CompareStackPointer = AlignedStackSize < kSplitStackAvailable;
2343 
2344   // We will use two of the callee save registers as scratch registers so we
2345   // need to save those registers onto the stack.
2346   // We will use SR0 to hold stack limit and SR1 to hold the stack size
2347   // requested and arguments for __morestack().
2348   // SR0: Scratch Register #0
2349   // SR1: Scratch Register #1
2350   // push {SR0, SR1}
2351   if (Thumb) {
2352     BuildMI(PrevStackMBB, DL, TII.get(ARM::tPUSH))
2353         .add(predOps(ARMCC::AL))
2354         .addReg(ScratchReg0)
2355         .addReg(ScratchReg1);
2356   } else {
2357     BuildMI(PrevStackMBB, DL, TII.get(ARM::STMDB_UPD))
2358         .addReg(ARM::SP, RegState::Define)
2359         .addReg(ARM::SP)
2360         .add(predOps(ARMCC::AL))
2361         .addReg(ScratchReg0)
2362         .addReg(ScratchReg1);
2363   }
2364 
2365   // Emit the relevant DWARF information about the change in stack pointer as
2366   // well as where to find both r4 and r5 (the callee-save registers)
2367   CFIIndex =
2368       MF.addFrameInst(MCCFIInstruction::createDefCfaOffset(nullptr, -8));
2369   BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2370       .addCFIIndex(CFIIndex);
2371   CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
2372       nullptr, MRI->getDwarfRegNum(ScratchReg1, true), -4));
2373   BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2374       .addCFIIndex(CFIIndex);
2375   CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
2376       nullptr, MRI->getDwarfRegNum(ScratchReg0, true), -8));
2377   BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2378       .addCFIIndex(CFIIndex);
2379 
2380   // mov SR1, sp
2381   if (Thumb) {
2382     BuildMI(McrMBB, DL, TII.get(ARM::tMOVr), ScratchReg1)
2383         .addReg(ARM::SP)
2384         .add(predOps(ARMCC::AL));
2385   } else if (CompareStackPointer) {
2386     BuildMI(McrMBB, DL, TII.get(ARM::MOVr), ScratchReg1)
2387         .addReg(ARM::SP)
2388         .add(predOps(ARMCC::AL))
2389         .add(condCodeOp());
2390   }
2391 
2392   // sub SR1, sp, #StackSize
2393   if (!CompareStackPointer && Thumb) {
2394     BuildMI(McrMBB, DL, TII.get(ARM::tSUBi8), ScratchReg1)
2395         .add(condCodeOp())
2396         .addReg(ScratchReg1)
2397         .addImm(AlignedStackSize)
2398         .add(predOps(ARMCC::AL));
2399   } else if (!CompareStackPointer) {
2400     BuildMI(McrMBB, DL, TII.get(ARM::SUBri), ScratchReg1)
2401         .addReg(ARM::SP)
2402         .addImm(AlignedStackSize)
2403         .add(predOps(ARMCC::AL))
2404         .add(condCodeOp());
2405   }
2406 
2407   if (Thumb && ST->isThumb1Only()) {
2408     unsigned PCLabelId = ARMFI->createPICLabelUId();
2409     ARMConstantPoolValue *NewCPV = ARMConstantPoolSymbol::Create(
2410         MF.getFunction().getContext(), "__STACK_LIMIT", PCLabelId, 0);
2411     MachineConstantPool *MCP = MF.getConstantPool();
2412     unsigned CPI = MCP->getConstantPoolIndex(NewCPV, 4);
2413 
2414     // ldr SR0, [pc, offset(STACK_LIMIT)]
2415     BuildMI(GetMBB, DL, TII.get(ARM::tLDRpci), ScratchReg0)
2416         .addConstantPoolIndex(CPI)
2417         .add(predOps(ARMCC::AL));
2418 
2419     // ldr SR0, [SR0]
2420     BuildMI(GetMBB, DL, TII.get(ARM::tLDRi), ScratchReg0)
2421         .addReg(ScratchReg0)
2422         .addImm(0)
2423         .add(predOps(ARMCC::AL));
2424   } else {
2425     // Get TLS base address from the coprocessor
2426     // mrc p15, #0, SR0, c13, c0, #3
2427     BuildMI(McrMBB, DL, TII.get(Thumb ? ARM::t2MRC : ARM::MRC),
2428             ScratchReg0)
2429         .addImm(15)
2430         .addImm(0)
2431         .addImm(13)
2432         .addImm(0)
2433         .addImm(3)
2434         .add(predOps(ARMCC::AL));
2435 
2436     // Use the last tls slot on android and a private field of the TCP on linux.
2437     assert(ST->isTargetAndroid() || ST->isTargetLinux());
2438     unsigned TlsOffset = ST->isTargetAndroid() ? 63 : 1;
2439 
2440     // Get the stack limit from the right offset
2441     // ldr SR0, [sr0, #4 * TlsOffset]
2442     BuildMI(GetMBB, DL, TII.get(Thumb ? ARM::t2LDRi12 : ARM::LDRi12),
2443             ScratchReg0)
2444         .addReg(ScratchReg0)
2445         .addImm(4 * TlsOffset)
2446         .add(predOps(ARMCC::AL));
2447   }
2448 
2449   // Compare stack limit with stack size requested.
2450   // cmp SR0, SR1
2451   Opcode = Thumb ? ARM::tCMPr : ARM::CMPrr;
2452   BuildMI(GetMBB, DL, TII.get(Opcode))
2453       .addReg(ScratchReg0)
2454       .addReg(ScratchReg1)
2455       .add(predOps(ARMCC::AL));
2456 
2457   // This jump is taken if StackLimit < SP - stack required.
2458   Opcode = Thumb ? ARM::tBcc : ARM::Bcc;
2459   BuildMI(GetMBB, DL, TII.get(Opcode)).addMBB(PostStackMBB)
2460        .addImm(ARMCC::LO)
2461        .addReg(ARM::CPSR);
2462 
2463 
2464   // Calling __morestack(StackSize, Size of stack arguments).
2465   // __morestack knows that the stack size requested is in SR0(r4)
2466   // and amount size of stack arguments is in SR1(r5).
2467 
2468   // Pass first argument for the __morestack by Scratch Register #0.
2469   //   The amount size of stack required
2470   if (Thumb) {
2471     BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg0)
2472         .add(condCodeOp())
2473         .addImm(AlignedStackSize)
2474         .add(predOps(ARMCC::AL));
2475   } else {
2476     BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg0)
2477         .addImm(AlignedStackSize)
2478         .add(predOps(ARMCC::AL))
2479         .add(condCodeOp());
2480   }
2481   // Pass second argument for the __morestack by Scratch Register #1.
2482   //   The amount size of stack consumed to save function arguments.
2483   if (Thumb) {
2484     BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg1)
2485         .add(condCodeOp())
2486         .addImm(alignToARMConstant(ARMFI->getArgumentStackSize()))
2487         .add(predOps(ARMCC::AL));
2488   } else {
2489     BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg1)
2490         .addImm(alignToARMConstant(ARMFI->getArgumentStackSize()))
2491         .add(predOps(ARMCC::AL))
2492         .add(condCodeOp());
2493   }
2494 
2495   // push {lr} - Save return address of this function.
2496   if (Thumb) {
2497     BuildMI(AllocMBB, DL, TII.get(ARM::tPUSH))
2498         .add(predOps(ARMCC::AL))
2499         .addReg(ARM::LR);
2500   } else {
2501     BuildMI(AllocMBB, DL, TII.get(ARM::STMDB_UPD))
2502         .addReg(ARM::SP, RegState::Define)
2503         .addReg(ARM::SP)
2504         .add(predOps(ARMCC::AL))
2505         .addReg(ARM::LR);
2506   }
2507 
2508   // Emit the DWARF info about the change in stack as well as where to find the
2509   // previous link register
2510   CFIIndex =
2511       MF.addFrameInst(MCCFIInstruction::createDefCfaOffset(nullptr, -12));
2512   BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2513       .addCFIIndex(CFIIndex);
2514   CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
2515         nullptr, MRI->getDwarfRegNum(ARM::LR, true), -12));
2516   BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2517       .addCFIIndex(CFIIndex);
2518 
2519   // Call __morestack().
2520   if (Thumb) {
2521     BuildMI(AllocMBB, DL, TII.get(ARM::tBL))
2522         .add(predOps(ARMCC::AL))
2523         .addExternalSymbol("__morestack");
2524   } else {
2525     BuildMI(AllocMBB, DL, TII.get(ARM::BL))
2526         .addExternalSymbol("__morestack");
2527   }
2528 
2529   // pop {lr} - Restore return address of this original function.
2530   if (Thumb) {
2531     if (ST->isThumb1Only()) {
2532       BuildMI(AllocMBB, DL, TII.get(ARM::tPOP))
2533           .add(predOps(ARMCC::AL))
2534           .addReg(ScratchReg0);
2535       BuildMI(AllocMBB, DL, TII.get(ARM::tMOVr), ARM::LR)
2536           .addReg(ScratchReg0)
2537           .add(predOps(ARMCC::AL));
2538     } else {
2539       BuildMI(AllocMBB, DL, TII.get(ARM::t2LDR_POST))
2540           .addReg(ARM::LR, RegState::Define)
2541           .addReg(ARM::SP, RegState::Define)
2542           .addReg(ARM::SP)
2543           .addImm(4)
2544           .add(predOps(ARMCC::AL));
2545     }
2546   } else {
2547     BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD))
2548         .addReg(ARM::SP, RegState::Define)
2549         .addReg(ARM::SP)
2550         .add(predOps(ARMCC::AL))
2551         .addReg(ARM::LR);
2552   }
2553 
2554   // Restore SR0 and SR1 in case of __morestack() was called.
2555   // __morestack() will skip PostStackMBB block so we need to restore
2556   // scratch registers from here.
2557   // pop {SR0, SR1}
2558   if (Thumb) {
2559     BuildMI(AllocMBB, DL, TII.get(ARM::tPOP))
2560         .add(predOps(ARMCC::AL))
2561         .addReg(ScratchReg0)
2562         .addReg(ScratchReg1);
2563   } else {
2564     BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD))
2565         .addReg(ARM::SP, RegState::Define)
2566         .addReg(ARM::SP)
2567         .add(predOps(ARMCC::AL))
2568         .addReg(ScratchReg0)
2569         .addReg(ScratchReg1);
2570   }
2571 
2572   // Update the CFA offset now that we've popped
2573   CFIIndex = MF.addFrameInst(MCCFIInstruction::createDefCfaOffset(nullptr, 0));
2574   BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2575       .addCFIIndex(CFIIndex);
2576 
2577   // Return from this function.
2578   BuildMI(AllocMBB, DL, TII.get(ST->getReturnOpcode())).add(predOps(ARMCC::AL));
2579 
2580   // Restore SR0 and SR1 in case of __morestack() was not called.
2581   // pop {SR0, SR1}
2582   if (Thumb) {
2583     BuildMI(PostStackMBB, DL, TII.get(ARM::tPOP))
2584         .add(predOps(ARMCC::AL))
2585         .addReg(ScratchReg0)
2586         .addReg(ScratchReg1);
2587   } else {
2588     BuildMI(PostStackMBB, DL, TII.get(ARM::LDMIA_UPD))
2589         .addReg(ARM::SP, RegState::Define)
2590         .addReg(ARM::SP)
2591         .add(predOps(ARMCC::AL))
2592         .addReg(ScratchReg0)
2593         .addReg(ScratchReg1);
2594   }
2595 
2596   // Update the CFA offset now that we've popped
2597   CFIIndex = MF.addFrameInst(MCCFIInstruction::createDefCfaOffset(nullptr, 0));
2598   BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2599       .addCFIIndex(CFIIndex);
2600 
2601   // Tell debuggers that r4 and r5 are now the same as they were in the
2602   // previous function, that they're the "Same Value".
2603   CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(
2604       nullptr, MRI->getDwarfRegNum(ScratchReg0, true)));
2605   BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2606       .addCFIIndex(CFIIndex);
2607   CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(
2608       nullptr, MRI->getDwarfRegNum(ScratchReg1, true)));
2609   BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2610       .addCFIIndex(CFIIndex);
2611 
2612   // Organizing MBB lists
2613   PostStackMBB->addSuccessor(&PrologueMBB);
2614 
2615   AllocMBB->addSuccessor(PostStackMBB);
2616 
2617   GetMBB->addSuccessor(PostStackMBB);
2618   GetMBB->addSuccessor(AllocMBB);
2619 
2620   McrMBB->addSuccessor(GetMBB);
2621 
2622   PrevStackMBB->addSuccessor(McrMBB);
2623 
2624 #ifdef EXPENSIVE_CHECKS
2625   MF.verify();
2626 #endif
2627 }
2628