1 //===- ARMISelLowering.cpp - ARM DAG Lowering Implementation --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that ARM uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "ARMISelLowering.h"
15 #include "ARMBaseInstrInfo.h"
16 #include "ARMBaseRegisterInfo.h"
17 #include "ARMCallingConv.h"
18 #include "ARMConstantPoolValue.h"
19 #include "ARMMachineFunctionInfo.h"
20 #include "ARMPerfectShuffle.h"
21 #include "ARMRegisterInfo.h"
22 #include "ARMSelectionDAGInfo.h"
23 #include "ARMSubtarget.h"
24 #include "ARMTargetTransformInfo.h"
25 #include "MCTargetDesc/ARMAddressingModes.h"
26 #include "MCTargetDesc/ARMBaseInfo.h"
27 #include "Utils/ARMBaseInfo.h"
28 #include "llvm/ADT/APFloat.h"
29 #include "llvm/ADT/APInt.h"
30 #include "llvm/ADT/ArrayRef.h"
31 #include "llvm/ADT/BitVector.h"
32 #include "llvm/ADT/DenseMap.h"
33 #include "llvm/ADT/STLExtras.h"
34 #include "llvm/ADT/SmallPtrSet.h"
35 #include "llvm/ADT/SmallVector.h"
36 #include "llvm/ADT/Statistic.h"
37 #include "llvm/ADT/StringExtras.h"
38 #include "llvm/ADT/StringRef.h"
39 #include "llvm/ADT/StringSwitch.h"
40 #include "llvm/ADT/Twine.h"
41 #include "llvm/Analysis/VectorUtils.h"
42 #include "llvm/CodeGen/CallingConvLower.h"
43 #include "llvm/CodeGen/ComplexDeinterleavingPass.h"
44 #include "llvm/CodeGen/ISDOpcodes.h"
45 #include "llvm/CodeGen/IntrinsicLowering.h"
46 #include "llvm/CodeGen/MachineBasicBlock.h"
47 #include "llvm/CodeGen/MachineConstantPool.h"
48 #include "llvm/CodeGen/MachineFrameInfo.h"
49 #include "llvm/CodeGen/MachineFunction.h"
50 #include "llvm/CodeGen/MachineInstr.h"
51 #include "llvm/CodeGen/MachineInstrBuilder.h"
52 #include "llvm/CodeGen/MachineJumpTableInfo.h"
53 #include "llvm/CodeGen/MachineMemOperand.h"
54 #include "llvm/CodeGen/MachineOperand.h"
55 #include "llvm/CodeGen/MachineRegisterInfo.h"
56 #include "llvm/CodeGen/MachineValueType.h"
57 #include "llvm/CodeGen/RuntimeLibcalls.h"
58 #include "llvm/CodeGen/SelectionDAG.h"
59 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
60 #include "llvm/CodeGen/SelectionDAGNodes.h"
61 #include "llvm/CodeGen/TargetInstrInfo.h"
62 #include "llvm/CodeGen/TargetLowering.h"
63 #include "llvm/CodeGen/TargetOpcodes.h"
64 #include "llvm/CodeGen/TargetRegisterInfo.h"
65 #include "llvm/CodeGen/TargetSubtargetInfo.h"
66 #include "llvm/CodeGen/ValueTypes.h"
67 #include "llvm/IR/Attributes.h"
68 #include "llvm/IR/CallingConv.h"
69 #include "llvm/IR/Constant.h"
70 #include "llvm/IR/Constants.h"
71 #include "llvm/IR/DataLayout.h"
72 #include "llvm/IR/DebugLoc.h"
73 #include "llvm/IR/DerivedTypes.h"
74 #include "llvm/IR/Function.h"
75 #include "llvm/IR/GlobalAlias.h"
76 #include "llvm/IR/GlobalValue.h"
77 #include "llvm/IR/GlobalVariable.h"
78 #include "llvm/IR/IRBuilder.h"
79 #include "llvm/IR/InlineAsm.h"
80 #include "llvm/IR/Instruction.h"
81 #include "llvm/IR/Instructions.h"
82 #include "llvm/IR/IntrinsicInst.h"
83 #include "llvm/IR/Intrinsics.h"
84 #include "llvm/IR/IntrinsicsARM.h"
85 #include "llvm/IR/Module.h"
86 #include "llvm/IR/PatternMatch.h"
87 #include "llvm/IR/Type.h"
88 #include "llvm/IR/User.h"
89 #include "llvm/IR/Value.h"
90 #include "llvm/MC/MCInstrDesc.h"
91 #include "llvm/MC/MCInstrItineraries.h"
92 #include "llvm/MC/MCRegisterInfo.h"
93 #include "llvm/MC/MCSchedule.h"
94 #include "llvm/Support/AtomicOrdering.h"
95 #include "llvm/Support/BranchProbability.h"
96 #include "llvm/Support/Casting.h"
97 #include "llvm/Support/CodeGen.h"
98 #include "llvm/Support/CommandLine.h"
99 #include "llvm/Support/Compiler.h"
100 #include "llvm/Support/Debug.h"
101 #include "llvm/Support/ErrorHandling.h"
102 #include "llvm/Support/KnownBits.h"
103 #include "llvm/Support/MathExtras.h"
104 #include "llvm/Support/raw_ostream.h"
105 #include "llvm/Target/TargetMachine.h"
106 #include "llvm/Target/TargetOptions.h"
107 #include "llvm/TargetParser/Triple.h"
108 #include <algorithm>
109 #include <cassert>
110 #include <cstdint>
111 #include <cstdlib>
112 #include <iterator>
113 #include <limits>
114 #include <optional>
115 #include <tuple>
116 #include <utility>
117 #include <vector>
118 
119 using namespace llvm;
120 using namespace llvm::PatternMatch;
121 
122 #define DEBUG_TYPE "arm-isel"
123 
124 STATISTIC(NumTailCalls, "Number of tail calls");
125 STATISTIC(NumMovwMovt, "Number of GAs materialized with movw + movt");
126 STATISTIC(NumLoopByVals, "Number of loops generated for byval arguments");
127 STATISTIC(NumConstpoolPromoted,
128   "Number of constants with their storage promoted into constant pools");
129 
130 static cl::opt<bool>
131 ARMInterworking("arm-interworking", cl::Hidden,
132   cl::desc("Enable / disable ARM interworking (for debugging only)"),
133   cl::init(true));
134 
135 static cl::opt<bool> EnableConstpoolPromotion(
136     "arm-promote-constant", cl::Hidden,
137     cl::desc("Enable / disable promotion of unnamed_addr constants into "
138              "constant pools"),
139     cl::init(false)); // FIXME: set to true by default once PR32780 is fixed
140 static cl::opt<unsigned> ConstpoolPromotionMaxSize(
141     "arm-promote-constant-max-size", cl::Hidden,
142     cl::desc("Maximum size of constant to promote into a constant pool"),
143     cl::init(64));
144 static cl::opt<unsigned> ConstpoolPromotionMaxTotal(
145     "arm-promote-constant-max-total", cl::Hidden,
146     cl::desc("Maximum size of ALL constants to promote into a constant pool"),
147     cl::init(128));
148 
149 cl::opt<unsigned>
150 MVEMaxSupportedInterleaveFactor("mve-max-interleave-factor", cl::Hidden,
151   cl::desc("Maximum interleave factor for MVE VLDn to generate."),
152   cl::init(2));
153 
154 // The APCS parameter registers.
155 static const MCPhysReg GPRArgRegs[] = {
156   ARM::R0, ARM::R1, ARM::R2, ARM::R3
157 };
158 
159 void ARMTargetLowering::addTypeForNEON(MVT VT, MVT PromotedLdStVT) {
160   if (VT != PromotedLdStVT) {
161     setOperationAction(ISD::LOAD, VT, Promote);
162     AddPromotedToType (ISD::LOAD, VT, PromotedLdStVT);
163 
164     setOperationAction(ISD::STORE, VT, Promote);
165     AddPromotedToType (ISD::STORE, VT, PromotedLdStVT);
166   }
167 
168   MVT ElemTy = VT.getVectorElementType();
169   if (ElemTy != MVT::f64)
170     setOperationAction(ISD::SETCC, VT, Custom);
171   setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
172   setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
173   if (ElemTy == MVT::i32) {
174     setOperationAction(ISD::SINT_TO_FP, VT, Custom);
175     setOperationAction(ISD::UINT_TO_FP, VT, Custom);
176     setOperationAction(ISD::FP_TO_SINT, VT, Custom);
177     setOperationAction(ISD::FP_TO_UINT, VT, Custom);
178   } else {
179     setOperationAction(ISD::SINT_TO_FP, VT, Expand);
180     setOperationAction(ISD::UINT_TO_FP, VT, Expand);
181     setOperationAction(ISD::FP_TO_SINT, VT, Expand);
182     setOperationAction(ISD::FP_TO_UINT, VT, Expand);
183   }
184   setOperationAction(ISD::BUILD_VECTOR,      VT, Custom);
185   setOperationAction(ISD::VECTOR_SHUFFLE,    VT, Custom);
186   setOperationAction(ISD::CONCAT_VECTORS,    VT, Legal);
187   setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal);
188   setOperationAction(ISD::SELECT,            VT, Expand);
189   setOperationAction(ISD::SELECT_CC,         VT, Expand);
190   setOperationAction(ISD::VSELECT,           VT, Expand);
191   setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
192   if (VT.isInteger()) {
193     setOperationAction(ISD::SHL, VT, Custom);
194     setOperationAction(ISD::SRA, VT, Custom);
195     setOperationAction(ISD::SRL, VT, Custom);
196   }
197 
198   // Neon does not support vector divide/remainder operations.
199   setOperationAction(ISD::SDIV, VT, Expand);
200   setOperationAction(ISD::UDIV, VT, Expand);
201   setOperationAction(ISD::FDIV, VT, Expand);
202   setOperationAction(ISD::SREM, VT, Expand);
203   setOperationAction(ISD::UREM, VT, Expand);
204   setOperationAction(ISD::FREM, VT, Expand);
205   setOperationAction(ISD::SDIVREM, VT, Expand);
206   setOperationAction(ISD::UDIVREM, VT, Expand);
207 
208   if (!VT.isFloatingPoint() &&
209       VT != MVT::v2i64 && VT != MVT::v1i64)
210     for (auto Opcode : {ISD::ABS, ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX})
211       setOperationAction(Opcode, VT, Legal);
212   if (!VT.isFloatingPoint())
213     for (auto Opcode : {ISD::SADDSAT, ISD::UADDSAT, ISD::SSUBSAT, ISD::USUBSAT})
214       setOperationAction(Opcode, VT, Legal);
215 }
216 
217 void ARMTargetLowering::addDRTypeForNEON(MVT VT) {
218   addRegisterClass(VT, &ARM::DPRRegClass);
219   addTypeForNEON(VT, MVT::f64);
220 }
221 
222 void ARMTargetLowering::addQRTypeForNEON(MVT VT) {
223   addRegisterClass(VT, &ARM::DPairRegClass);
224   addTypeForNEON(VT, MVT::v2f64);
225 }
226 
227 void ARMTargetLowering::setAllExpand(MVT VT) {
228   for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
229     setOperationAction(Opc, VT, Expand);
230 
231   // We support these really simple operations even on types where all
232   // the actual arithmetic has to be broken down into simpler
233   // operations or turned into library calls.
234   setOperationAction(ISD::BITCAST, VT, Legal);
235   setOperationAction(ISD::LOAD, VT, Legal);
236   setOperationAction(ISD::STORE, VT, Legal);
237   setOperationAction(ISD::UNDEF, VT, Legal);
238 }
239 
240 void ARMTargetLowering::addAllExtLoads(const MVT From, const MVT To,
241                                        LegalizeAction Action) {
242   setLoadExtAction(ISD::EXTLOAD,  From, To, Action);
243   setLoadExtAction(ISD::ZEXTLOAD, From, To, Action);
244   setLoadExtAction(ISD::SEXTLOAD, From, To, Action);
245 }
246 
247 void ARMTargetLowering::addMVEVectorTypes(bool HasMVEFP) {
248   const MVT IntTypes[] = { MVT::v16i8, MVT::v8i16, MVT::v4i32 };
249 
250   for (auto VT : IntTypes) {
251     addRegisterClass(VT, &ARM::MQPRRegClass);
252     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
253     setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
254     setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
255     setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
256     setOperationAction(ISD::SHL, VT, Custom);
257     setOperationAction(ISD::SRA, VT, Custom);
258     setOperationAction(ISD::SRL, VT, Custom);
259     setOperationAction(ISD::SMIN, VT, Legal);
260     setOperationAction(ISD::SMAX, VT, Legal);
261     setOperationAction(ISD::UMIN, VT, Legal);
262     setOperationAction(ISD::UMAX, VT, Legal);
263     setOperationAction(ISD::ABS, VT, Legal);
264     setOperationAction(ISD::SETCC, VT, Custom);
265     setOperationAction(ISD::MLOAD, VT, Custom);
266     setOperationAction(ISD::MSTORE, VT, Legal);
267     setOperationAction(ISD::CTLZ, VT, Legal);
268     setOperationAction(ISD::CTTZ, VT, Custom);
269     setOperationAction(ISD::BITREVERSE, VT, Legal);
270     setOperationAction(ISD::BSWAP, VT, Legal);
271     setOperationAction(ISD::SADDSAT, VT, Legal);
272     setOperationAction(ISD::UADDSAT, VT, Legal);
273     setOperationAction(ISD::SSUBSAT, VT, Legal);
274     setOperationAction(ISD::USUBSAT, VT, Legal);
275     setOperationAction(ISD::ABDS, VT, Legal);
276     setOperationAction(ISD::ABDU, VT, Legal);
277     setOperationAction(ISD::AVGFLOORS, VT, Legal);
278     setOperationAction(ISD::AVGFLOORU, VT, Legal);
279     setOperationAction(ISD::AVGCEILS, VT, Legal);
280     setOperationAction(ISD::AVGCEILU, VT, Legal);
281 
282     // No native support for these.
283     setOperationAction(ISD::UDIV, VT, Expand);
284     setOperationAction(ISD::SDIV, VT, Expand);
285     setOperationAction(ISD::UREM, VT, Expand);
286     setOperationAction(ISD::SREM, VT, Expand);
287     setOperationAction(ISD::UDIVREM, VT, Expand);
288     setOperationAction(ISD::SDIVREM, VT, Expand);
289     setOperationAction(ISD::CTPOP, VT, Expand);
290     setOperationAction(ISD::SELECT, VT, Expand);
291     setOperationAction(ISD::SELECT_CC, VT, Expand);
292 
293     // Vector reductions
294     setOperationAction(ISD::VECREDUCE_ADD, VT, Legal);
295     setOperationAction(ISD::VECREDUCE_SMAX, VT, Legal);
296     setOperationAction(ISD::VECREDUCE_UMAX, VT, Legal);
297     setOperationAction(ISD::VECREDUCE_SMIN, VT, Legal);
298     setOperationAction(ISD::VECREDUCE_UMIN, VT, Legal);
299     setOperationAction(ISD::VECREDUCE_MUL, VT, Custom);
300     setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
301     setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
302     setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
303 
304     if (!HasMVEFP) {
305       setOperationAction(ISD::SINT_TO_FP, VT, Expand);
306       setOperationAction(ISD::UINT_TO_FP, VT, Expand);
307       setOperationAction(ISD::FP_TO_SINT, VT, Expand);
308       setOperationAction(ISD::FP_TO_UINT, VT, Expand);
309     } else {
310       setOperationAction(ISD::FP_TO_SINT_SAT, VT, Custom);
311       setOperationAction(ISD::FP_TO_UINT_SAT, VT, Custom);
312     }
313 
314     // Pre and Post inc are supported on loads and stores
315     for (unsigned im = (unsigned)ISD::PRE_INC;
316          im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
317       setIndexedLoadAction(im, VT, Legal);
318       setIndexedStoreAction(im, VT, Legal);
319       setIndexedMaskedLoadAction(im, VT, Legal);
320       setIndexedMaskedStoreAction(im, VT, Legal);
321     }
322   }
323 
324   const MVT FloatTypes[] = { MVT::v8f16, MVT::v4f32 };
325   for (auto VT : FloatTypes) {
326     addRegisterClass(VT, &ARM::MQPRRegClass);
327     if (!HasMVEFP)
328       setAllExpand(VT);
329 
330     // These are legal or custom whether we have MVE.fp or not
331     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
332     setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
333     setOperationAction(ISD::INSERT_VECTOR_ELT, VT.getVectorElementType(), Custom);
334     setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
335     setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
336     setOperationAction(ISD::BUILD_VECTOR, VT.getVectorElementType(), Custom);
337     setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Legal);
338     setOperationAction(ISD::SETCC, VT, Custom);
339     setOperationAction(ISD::MLOAD, VT, Custom);
340     setOperationAction(ISD::MSTORE, VT, Legal);
341     setOperationAction(ISD::SELECT, VT, Expand);
342     setOperationAction(ISD::SELECT_CC, VT, Expand);
343 
344     // Pre and Post inc are supported on loads and stores
345     for (unsigned im = (unsigned)ISD::PRE_INC;
346          im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
347       setIndexedLoadAction(im, VT, Legal);
348       setIndexedStoreAction(im, VT, Legal);
349       setIndexedMaskedLoadAction(im, VT, Legal);
350       setIndexedMaskedStoreAction(im, VT, Legal);
351     }
352 
353     if (HasMVEFP) {
354       setOperationAction(ISD::FMINNUM, VT, Legal);
355       setOperationAction(ISD::FMAXNUM, VT, Legal);
356       setOperationAction(ISD::FROUND, VT, Legal);
357       setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
358       setOperationAction(ISD::VECREDUCE_FMUL, VT, Custom);
359       setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
360       setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
361 
362       // No native support for these.
363       setOperationAction(ISD::FDIV, VT, Expand);
364       setOperationAction(ISD::FREM, VT, Expand);
365       setOperationAction(ISD::FSQRT, VT, Expand);
366       setOperationAction(ISD::FSIN, VT, Expand);
367       setOperationAction(ISD::FCOS, VT, Expand);
368       setOperationAction(ISD::FPOW, VT, Expand);
369       setOperationAction(ISD::FLOG, VT, Expand);
370       setOperationAction(ISD::FLOG2, VT, Expand);
371       setOperationAction(ISD::FLOG10, VT, Expand);
372       setOperationAction(ISD::FEXP, VT, Expand);
373       setOperationAction(ISD::FEXP2, VT, Expand);
374       setOperationAction(ISD::FEXP10, VT, Expand);
375       setOperationAction(ISD::FNEARBYINT, VT, Expand);
376     }
377   }
378 
379   // Custom Expand smaller than legal vector reductions to prevent false zero
380   // items being added.
381   setOperationAction(ISD::VECREDUCE_FADD, MVT::v4f16, Custom);
382   setOperationAction(ISD::VECREDUCE_FMUL, MVT::v4f16, Custom);
383   setOperationAction(ISD::VECREDUCE_FMIN, MVT::v4f16, Custom);
384   setOperationAction(ISD::VECREDUCE_FMAX, MVT::v4f16, Custom);
385   setOperationAction(ISD::VECREDUCE_FADD, MVT::v2f16, Custom);
386   setOperationAction(ISD::VECREDUCE_FMUL, MVT::v2f16, Custom);
387   setOperationAction(ISD::VECREDUCE_FMIN, MVT::v2f16, Custom);
388   setOperationAction(ISD::VECREDUCE_FMAX, MVT::v2f16, Custom);
389 
390   // We 'support' these types up to bitcast/load/store level, regardless of
391   // MVE integer-only / float support. Only doing FP data processing on the FP
392   // vector types is inhibited at integer-only level.
393   const MVT LongTypes[] = { MVT::v2i64, MVT::v2f64 };
394   for (auto VT : LongTypes) {
395     addRegisterClass(VT, &ARM::MQPRRegClass);
396     setAllExpand(VT);
397     setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
398     setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
399     setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
400     setOperationAction(ISD::VSELECT, VT, Legal);
401     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
402   }
403   setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
404 
405   // We can do bitwise operations on v2i64 vectors
406   setOperationAction(ISD::AND, MVT::v2i64, Legal);
407   setOperationAction(ISD::OR, MVT::v2i64, Legal);
408   setOperationAction(ISD::XOR, MVT::v2i64, Legal);
409 
410   // It is legal to extload from v4i8 to v4i16 or v4i32.
411   addAllExtLoads(MVT::v8i16, MVT::v8i8, Legal);
412   addAllExtLoads(MVT::v4i32, MVT::v4i16, Legal);
413   addAllExtLoads(MVT::v4i32, MVT::v4i8, Legal);
414 
415   // It is legal to sign extend from v4i8/v4i16 to v4i32 or v8i8 to v8i16.
416   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8,  Legal);
417   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal);
418   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal);
419   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v8i8,  Legal);
420   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v8i16, Legal);
421 
422   // Some truncating stores are legal too.
423   setTruncStoreAction(MVT::v4i32, MVT::v4i16, Legal);
424   setTruncStoreAction(MVT::v4i32, MVT::v4i8,  Legal);
425   setTruncStoreAction(MVT::v8i16, MVT::v8i8,  Legal);
426 
427   // Pre and Post inc on these are legal, given the correct extends
428   for (unsigned im = (unsigned)ISD::PRE_INC;
429        im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
430     for (auto VT : {MVT::v8i8, MVT::v4i8, MVT::v4i16}) {
431       setIndexedLoadAction(im, VT, Legal);
432       setIndexedStoreAction(im, VT, Legal);
433       setIndexedMaskedLoadAction(im, VT, Legal);
434       setIndexedMaskedStoreAction(im, VT, Legal);
435     }
436   }
437 
438   // Predicate types
439   const MVT pTypes[] = {MVT::v16i1, MVT::v8i1, MVT::v4i1, MVT::v2i1};
440   for (auto VT : pTypes) {
441     addRegisterClass(VT, &ARM::VCCRRegClass);
442     setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
443     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
444     setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
445     setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
446     setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
447     setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
448     setOperationAction(ISD::SETCC, VT, Custom);
449     setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
450     setOperationAction(ISD::LOAD, VT, Custom);
451     setOperationAction(ISD::STORE, VT, Custom);
452     setOperationAction(ISD::TRUNCATE, VT, Custom);
453     setOperationAction(ISD::VSELECT, VT, Expand);
454     setOperationAction(ISD::SELECT, VT, Expand);
455     setOperationAction(ISD::SELECT_CC, VT, Expand);
456 
457     if (!HasMVEFP) {
458       setOperationAction(ISD::SINT_TO_FP, VT, Expand);
459       setOperationAction(ISD::UINT_TO_FP, VT, Expand);
460       setOperationAction(ISD::FP_TO_SINT, VT, Expand);
461       setOperationAction(ISD::FP_TO_UINT, VT, Expand);
462     }
463   }
464   setOperationAction(ISD::SETCC, MVT::v2i1, Expand);
465   setOperationAction(ISD::TRUNCATE, MVT::v2i1, Expand);
466   setOperationAction(ISD::AND, MVT::v2i1, Expand);
467   setOperationAction(ISD::OR, MVT::v2i1, Expand);
468   setOperationAction(ISD::XOR, MVT::v2i1, Expand);
469   setOperationAction(ISD::SINT_TO_FP, MVT::v2i1, Expand);
470   setOperationAction(ISD::UINT_TO_FP, MVT::v2i1, Expand);
471   setOperationAction(ISD::FP_TO_SINT, MVT::v2i1, Expand);
472   setOperationAction(ISD::FP_TO_UINT, MVT::v2i1, Expand);
473 
474   setOperationAction(ISD::SIGN_EXTEND, MVT::v8i32, Custom);
475   setOperationAction(ISD::SIGN_EXTEND, MVT::v16i16, Custom);
476   setOperationAction(ISD::SIGN_EXTEND, MVT::v16i32, Custom);
477   setOperationAction(ISD::ZERO_EXTEND, MVT::v8i32, Custom);
478   setOperationAction(ISD::ZERO_EXTEND, MVT::v16i16, Custom);
479   setOperationAction(ISD::ZERO_EXTEND, MVT::v16i32, Custom);
480   setOperationAction(ISD::TRUNCATE, MVT::v8i32, Custom);
481   setOperationAction(ISD::TRUNCATE, MVT::v16i16, Custom);
482 }
483 
484 ARMTargetLowering::ARMTargetLowering(const TargetMachine &TM,
485                                      const ARMSubtarget &STI)
486     : TargetLowering(TM), Subtarget(&STI) {
487   RegInfo = Subtarget->getRegisterInfo();
488   Itins = Subtarget->getInstrItineraryData();
489 
490   setBooleanContents(ZeroOrOneBooleanContent);
491   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
492 
493   if (!Subtarget->isTargetDarwin() && !Subtarget->isTargetIOS() &&
494       !Subtarget->isTargetWatchOS() && !Subtarget->isTargetDriverKit()) {
495     bool IsHFTarget = TM.Options.FloatABIType == FloatABI::Hard;
496     for (int LCID = 0; LCID < RTLIB::UNKNOWN_LIBCALL; ++LCID)
497       setLibcallCallingConv(static_cast<RTLIB::Libcall>(LCID),
498                             IsHFTarget ? CallingConv::ARM_AAPCS_VFP
499                                        : CallingConv::ARM_AAPCS);
500   }
501 
502   if (Subtarget->isTargetMachO()) {
503     // Uses VFP for Thumb libfuncs if available.
504     if (Subtarget->isThumb() && Subtarget->hasVFP2Base() &&
505         Subtarget->hasARMOps() && !Subtarget->useSoftFloat()) {
506       static const struct {
507         const RTLIB::Libcall Op;
508         const char * const Name;
509         const ISD::CondCode Cond;
510       } LibraryCalls[] = {
511         // Single-precision floating-point arithmetic.
512         { RTLIB::ADD_F32, "__addsf3vfp", ISD::SETCC_INVALID },
513         { RTLIB::SUB_F32, "__subsf3vfp", ISD::SETCC_INVALID },
514         { RTLIB::MUL_F32, "__mulsf3vfp", ISD::SETCC_INVALID },
515         { RTLIB::DIV_F32, "__divsf3vfp", ISD::SETCC_INVALID },
516 
517         // Double-precision floating-point arithmetic.
518         { RTLIB::ADD_F64, "__adddf3vfp", ISD::SETCC_INVALID },
519         { RTLIB::SUB_F64, "__subdf3vfp", ISD::SETCC_INVALID },
520         { RTLIB::MUL_F64, "__muldf3vfp", ISD::SETCC_INVALID },
521         { RTLIB::DIV_F64, "__divdf3vfp", ISD::SETCC_INVALID },
522 
523         // Single-precision comparisons.
524         { RTLIB::OEQ_F32, "__eqsf2vfp",    ISD::SETNE },
525         { RTLIB::UNE_F32, "__nesf2vfp",    ISD::SETNE },
526         { RTLIB::OLT_F32, "__ltsf2vfp",    ISD::SETNE },
527         { RTLIB::OLE_F32, "__lesf2vfp",    ISD::SETNE },
528         { RTLIB::OGE_F32, "__gesf2vfp",    ISD::SETNE },
529         { RTLIB::OGT_F32, "__gtsf2vfp",    ISD::SETNE },
530         { RTLIB::UO_F32,  "__unordsf2vfp", ISD::SETNE },
531 
532         // Double-precision comparisons.
533         { RTLIB::OEQ_F64, "__eqdf2vfp",    ISD::SETNE },
534         { RTLIB::UNE_F64, "__nedf2vfp",    ISD::SETNE },
535         { RTLIB::OLT_F64, "__ltdf2vfp",    ISD::SETNE },
536         { RTLIB::OLE_F64, "__ledf2vfp",    ISD::SETNE },
537         { RTLIB::OGE_F64, "__gedf2vfp",    ISD::SETNE },
538         { RTLIB::OGT_F64, "__gtdf2vfp",    ISD::SETNE },
539         { RTLIB::UO_F64,  "__unorddf2vfp", ISD::SETNE },
540 
541         // Floating-point to integer conversions.
542         // i64 conversions are done via library routines even when generating VFP
543         // instructions, so use the same ones.
544         { RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp",    ISD::SETCC_INVALID },
545         { RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp", ISD::SETCC_INVALID },
546         { RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp",    ISD::SETCC_INVALID },
547         { RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp", ISD::SETCC_INVALID },
548 
549         // Conversions between floating types.
550         { RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp",  ISD::SETCC_INVALID },
551         { RTLIB::FPEXT_F32_F64,   "__extendsfdf2vfp", ISD::SETCC_INVALID },
552 
553         // Integer to floating-point conversions.
554         // i64 conversions are done via library routines even when generating VFP
555         // instructions, so use the same ones.
556         // FIXME: There appears to be some naming inconsistency in ARM libgcc:
557         // e.g., __floatunsidf vs. __floatunssidfvfp.
558         { RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp",    ISD::SETCC_INVALID },
559         { RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp", ISD::SETCC_INVALID },
560         { RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp",    ISD::SETCC_INVALID },
561         { RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp", ISD::SETCC_INVALID },
562       };
563 
564       for (const auto &LC : LibraryCalls) {
565         setLibcallName(LC.Op, LC.Name);
566         if (LC.Cond != ISD::SETCC_INVALID)
567           setCmpLibcallCC(LC.Op, LC.Cond);
568       }
569     }
570   }
571 
572   // These libcalls are not available in 32-bit.
573   setLibcallName(RTLIB::SHL_I128, nullptr);
574   setLibcallName(RTLIB::SRL_I128, nullptr);
575   setLibcallName(RTLIB::SRA_I128, nullptr);
576   setLibcallName(RTLIB::MUL_I128, nullptr);
577   setLibcallName(RTLIB::MULO_I64, nullptr);
578   setLibcallName(RTLIB::MULO_I128, nullptr);
579 
580   // RTLIB
581   if (Subtarget->isAAPCS_ABI() &&
582       (Subtarget->isTargetAEABI() || Subtarget->isTargetGNUAEABI() ||
583        Subtarget->isTargetMuslAEABI() || Subtarget->isTargetAndroid())) {
584     static const struct {
585       const RTLIB::Libcall Op;
586       const char * const Name;
587       const CallingConv::ID CC;
588       const ISD::CondCode Cond;
589     } LibraryCalls[] = {
590       // Double-precision floating-point arithmetic helper functions
591       // RTABI chapter 4.1.2, Table 2
592       { RTLIB::ADD_F64, "__aeabi_dadd", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
593       { RTLIB::DIV_F64, "__aeabi_ddiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
594       { RTLIB::MUL_F64, "__aeabi_dmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
595       { RTLIB::SUB_F64, "__aeabi_dsub", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
596 
597       // Double-precision floating-point comparison helper functions
598       // RTABI chapter 4.1.2, Table 3
599       { RTLIB::OEQ_F64, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS, ISD::SETNE },
600       { RTLIB::UNE_F64, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS, ISD::SETEQ },
601       { RTLIB::OLT_F64, "__aeabi_dcmplt", CallingConv::ARM_AAPCS, ISD::SETNE },
602       { RTLIB::OLE_F64, "__aeabi_dcmple", CallingConv::ARM_AAPCS, ISD::SETNE },
603       { RTLIB::OGE_F64, "__aeabi_dcmpge", CallingConv::ARM_AAPCS, ISD::SETNE },
604       { RTLIB::OGT_F64, "__aeabi_dcmpgt", CallingConv::ARM_AAPCS, ISD::SETNE },
605       { RTLIB::UO_F64,  "__aeabi_dcmpun", CallingConv::ARM_AAPCS, ISD::SETNE },
606 
607       // Single-precision floating-point arithmetic helper functions
608       // RTABI chapter 4.1.2, Table 4
609       { RTLIB::ADD_F32, "__aeabi_fadd", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
610       { RTLIB::DIV_F32, "__aeabi_fdiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
611       { RTLIB::MUL_F32, "__aeabi_fmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
612       { RTLIB::SUB_F32, "__aeabi_fsub", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
613 
614       // Single-precision floating-point comparison helper functions
615       // RTABI chapter 4.1.2, Table 5
616       { RTLIB::OEQ_F32, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS, ISD::SETNE },
617       { RTLIB::UNE_F32, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS, ISD::SETEQ },
618       { RTLIB::OLT_F32, "__aeabi_fcmplt", CallingConv::ARM_AAPCS, ISD::SETNE },
619       { RTLIB::OLE_F32, "__aeabi_fcmple", CallingConv::ARM_AAPCS, ISD::SETNE },
620       { RTLIB::OGE_F32, "__aeabi_fcmpge", CallingConv::ARM_AAPCS, ISD::SETNE },
621       { RTLIB::OGT_F32, "__aeabi_fcmpgt", CallingConv::ARM_AAPCS, ISD::SETNE },
622       { RTLIB::UO_F32,  "__aeabi_fcmpun", CallingConv::ARM_AAPCS, ISD::SETNE },
623 
624       // Floating-point to integer conversions.
625       // RTABI chapter 4.1.2, Table 6
626       { RTLIB::FPTOSINT_F64_I32, "__aeabi_d2iz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
627       { RTLIB::FPTOUINT_F64_I32, "__aeabi_d2uiz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
628       { RTLIB::FPTOSINT_F64_I64, "__aeabi_d2lz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
629       { RTLIB::FPTOUINT_F64_I64, "__aeabi_d2ulz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
630       { RTLIB::FPTOSINT_F32_I32, "__aeabi_f2iz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
631       { RTLIB::FPTOUINT_F32_I32, "__aeabi_f2uiz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
632       { RTLIB::FPTOSINT_F32_I64, "__aeabi_f2lz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
633       { RTLIB::FPTOUINT_F32_I64, "__aeabi_f2ulz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
634 
635       // Conversions between floating types.
636       // RTABI chapter 4.1.2, Table 7
637       { RTLIB::FPROUND_F64_F32, "__aeabi_d2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
638       { RTLIB::FPROUND_F64_F16, "__aeabi_d2h", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
639       { RTLIB::FPEXT_F32_F64,   "__aeabi_f2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
640 
641       // Integer to floating-point conversions.
642       // RTABI chapter 4.1.2, Table 8
643       { RTLIB::SINTTOFP_I32_F64, "__aeabi_i2d",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
644       { RTLIB::UINTTOFP_I32_F64, "__aeabi_ui2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
645       { RTLIB::SINTTOFP_I64_F64, "__aeabi_l2d",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
646       { RTLIB::UINTTOFP_I64_F64, "__aeabi_ul2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
647       { RTLIB::SINTTOFP_I32_F32, "__aeabi_i2f",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
648       { RTLIB::UINTTOFP_I32_F32, "__aeabi_ui2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
649       { RTLIB::SINTTOFP_I64_F32, "__aeabi_l2f",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
650       { RTLIB::UINTTOFP_I64_F32, "__aeabi_ul2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
651 
652       // Long long helper functions
653       // RTABI chapter 4.2, Table 9
654       { RTLIB::MUL_I64, "__aeabi_lmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
655       { RTLIB::SHL_I64, "__aeabi_llsl", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
656       { RTLIB::SRL_I64, "__aeabi_llsr", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
657       { RTLIB::SRA_I64, "__aeabi_lasr", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
658 
659       // Integer division functions
660       // RTABI chapter 4.3.1
661       { RTLIB::SDIV_I8,  "__aeabi_idiv",     CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
662       { RTLIB::SDIV_I16, "__aeabi_idiv",     CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
663       { RTLIB::SDIV_I32, "__aeabi_idiv",     CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
664       { RTLIB::SDIV_I64, "__aeabi_ldivmod",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
665       { RTLIB::UDIV_I8,  "__aeabi_uidiv",    CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
666       { RTLIB::UDIV_I16, "__aeabi_uidiv",    CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
667       { RTLIB::UDIV_I32, "__aeabi_uidiv",    CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
668       { RTLIB::UDIV_I64, "__aeabi_uldivmod", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
669     };
670 
671     for (const auto &LC : LibraryCalls) {
672       setLibcallName(LC.Op, LC.Name);
673       setLibcallCallingConv(LC.Op, LC.CC);
674       if (LC.Cond != ISD::SETCC_INVALID)
675         setCmpLibcallCC(LC.Op, LC.Cond);
676     }
677 
678     // EABI dependent RTLIB
679     if (TM.Options.EABIVersion == EABI::EABI4 ||
680         TM.Options.EABIVersion == EABI::EABI5) {
681       static const struct {
682         const RTLIB::Libcall Op;
683         const char *const Name;
684         const CallingConv::ID CC;
685         const ISD::CondCode Cond;
686       } MemOpsLibraryCalls[] = {
687         // Memory operations
688         // RTABI chapter 4.3.4
689         { RTLIB::MEMCPY,  "__aeabi_memcpy",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
690         { RTLIB::MEMMOVE, "__aeabi_memmove", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
691         { RTLIB::MEMSET,  "__aeabi_memset",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
692       };
693 
694       for (const auto &LC : MemOpsLibraryCalls) {
695         setLibcallName(LC.Op, LC.Name);
696         setLibcallCallingConv(LC.Op, LC.CC);
697         if (LC.Cond != ISD::SETCC_INVALID)
698           setCmpLibcallCC(LC.Op, LC.Cond);
699       }
700     }
701   }
702 
703   if (Subtarget->isTargetWindows()) {
704     static const struct {
705       const RTLIB::Libcall Op;
706       const char * const Name;
707       const CallingConv::ID CC;
708     } LibraryCalls[] = {
709       { RTLIB::FPTOSINT_F32_I64, "__stoi64", CallingConv::ARM_AAPCS_VFP },
710       { RTLIB::FPTOSINT_F64_I64, "__dtoi64", CallingConv::ARM_AAPCS_VFP },
711       { RTLIB::FPTOUINT_F32_I64, "__stou64", CallingConv::ARM_AAPCS_VFP },
712       { RTLIB::FPTOUINT_F64_I64, "__dtou64", CallingConv::ARM_AAPCS_VFP },
713       { RTLIB::SINTTOFP_I64_F32, "__i64tos", CallingConv::ARM_AAPCS_VFP },
714       { RTLIB::SINTTOFP_I64_F64, "__i64tod", CallingConv::ARM_AAPCS_VFP },
715       { RTLIB::UINTTOFP_I64_F32, "__u64tos", CallingConv::ARM_AAPCS_VFP },
716       { RTLIB::UINTTOFP_I64_F64, "__u64tod", CallingConv::ARM_AAPCS_VFP },
717     };
718 
719     for (const auto &LC : LibraryCalls) {
720       setLibcallName(LC.Op, LC.Name);
721       setLibcallCallingConv(LC.Op, LC.CC);
722     }
723   }
724 
725   // Use divmod compiler-rt calls for iOS 5.0 and later.
726   if (Subtarget->isTargetMachO() &&
727       !(Subtarget->isTargetIOS() &&
728         Subtarget->getTargetTriple().isOSVersionLT(5, 0))) {
729     setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4");
730     setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4");
731   }
732 
733   // The half <-> float conversion functions are always soft-float on
734   // non-watchos platforms, but are needed for some targets which use a
735   // hard-float calling convention by default.
736   if (!Subtarget->isTargetWatchABI()) {
737     if (Subtarget->isAAPCS_ABI()) {
738       setLibcallCallingConv(RTLIB::FPROUND_F32_F16, CallingConv::ARM_AAPCS);
739       setLibcallCallingConv(RTLIB::FPROUND_F64_F16, CallingConv::ARM_AAPCS);
740       setLibcallCallingConv(RTLIB::FPEXT_F16_F32, CallingConv::ARM_AAPCS);
741     } else {
742       setLibcallCallingConv(RTLIB::FPROUND_F32_F16, CallingConv::ARM_APCS);
743       setLibcallCallingConv(RTLIB::FPROUND_F64_F16, CallingConv::ARM_APCS);
744       setLibcallCallingConv(RTLIB::FPEXT_F16_F32, CallingConv::ARM_APCS);
745     }
746   }
747 
748   // In EABI, these functions have an __aeabi_ prefix, but in GNUEABI they have
749   // a __gnu_ prefix (which is the default).
750   if (Subtarget->isTargetAEABI()) {
751     static const struct {
752       const RTLIB::Libcall Op;
753       const char * const Name;
754       const CallingConv::ID CC;
755     } LibraryCalls[] = {
756       { RTLIB::FPROUND_F32_F16, "__aeabi_f2h", CallingConv::ARM_AAPCS },
757       { RTLIB::FPROUND_F64_F16, "__aeabi_d2h", CallingConv::ARM_AAPCS },
758       { RTLIB::FPEXT_F16_F32, "__aeabi_h2f", CallingConv::ARM_AAPCS },
759     };
760 
761     for (const auto &LC : LibraryCalls) {
762       setLibcallName(LC.Op, LC.Name);
763       setLibcallCallingConv(LC.Op, LC.CC);
764     }
765   }
766 
767   if (Subtarget->isThumb1Only())
768     addRegisterClass(MVT::i32, &ARM::tGPRRegClass);
769   else
770     addRegisterClass(MVT::i32, &ARM::GPRRegClass);
771 
772   if (!Subtarget->useSoftFloat() && !Subtarget->isThumb1Only() &&
773       Subtarget->hasFPRegs()) {
774     addRegisterClass(MVT::f32, &ARM::SPRRegClass);
775     addRegisterClass(MVT::f64, &ARM::DPRRegClass);
776 
777     setOperationAction(ISD::FP_TO_SINT_SAT, MVT::i32, Custom);
778     setOperationAction(ISD::FP_TO_UINT_SAT, MVT::i32, Custom);
779     setOperationAction(ISD::FP_TO_SINT_SAT, MVT::i64, Custom);
780     setOperationAction(ISD::FP_TO_UINT_SAT, MVT::i64, Custom);
781 
782     if (!Subtarget->hasVFP2Base())
783       setAllExpand(MVT::f32);
784     if (!Subtarget->hasFP64())
785       setAllExpand(MVT::f64);
786   }
787 
788   if (Subtarget->hasFullFP16()) {
789     addRegisterClass(MVT::f16, &ARM::HPRRegClass);
790     setOperationAction(ISD::BITCAST, MVT::i16, Custom);
791     setOperationAction(ISD::BITCAST, MVT::f16, Custom);
792 
793     setOperationAction(ISD::FMINNUM, MVT::f16, Legal);
794     setOperationAction(ISD::FMAXNUM, MVT::f16, Legal);
795   }
796 
797   if (Subtarget->hasBF16()) {
798     addRegisterClass(MVT::bf16, &ARM::HPRRegClass);
799     setAllExpand(MVT::bf16);
800     if (!Subtarget->hasFullFP16())
801       setOperationAction(ISD::BITCAST, MVT::bf16, Custom);
802   }
803 
804   for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
805     for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
806       setTruncStoreAction(VT, InnerVT, Expand);
807       addAllExtLoads(VT, InnerVT, Expand);
808     }
809 
810     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
811     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
812 
813     setOperationAction(ISD::BSWAP, VT, Expand);
814   }
815 
816   setOperationAction(ISD::ConstantFP, MVT::f32, Custom);
817   setOperationAction(ISD::ConstantFP, MVT::f64, Custom);
818 
819   setOperationAction(ISD::READ_REGISTER, MVT::i64, Custom);
820   setOperationAction(ISD::WRITE_REGISTER, MVT::i64, Custom);
821 
822   if (Subtarget->hasMVEIntegerOps())
823     addMVEVectorTypes(Subtarget->hasMVEFloatOps());
824 
825   // Combine low-overhead loop intrinsics so that we can lower i1 types.
826   if (Subtarget->hasLOB()) {
827     setTargetDAGCombine({ISD::BRCOND, ISD::BR_CC});
828   }
829 
830   if (Subtarget->hasNEON()) {
831     addDRTypeForNEON(MVT::v2f32);
832     addDRTypeForNEON(MVT::v8i8);
833     addDRTypeForNEON(MVT::v4i16);
834     addDRTypeForNEON(MVT::v2i32);
835     addDRTypeForNEON(MVT::v1i64);
836 
837     addQRTypeForNEON(MVT::v4f32);
838     addQRTypeForNEON(MVT::v2f64);
839     addQRTypeForNEON(MVT::v16i8);
840     addQRTypeForNEON(MVT::v8i16);
841     addQRTypeForNEON(MVT::v4i32);
842     addQRTypeForNEON(MVT::v2i64);
843 
844     if (Subtarget->hasFullFP16()) {
845       addQRTypeForNEON(MVT::v8f16);
846       addDRTypeForNEON(MVT::v4f16);
847     }
848 
849     if (Subtarget->hasBF16()) {
850       addQRTypeForNEON(MVT::v8bf16);
851       addDRTypeForNEON(MVT::v4bf16);
852     }
853   }
854 
855   if (Subtarget->hasMVEIntegerOps() || Subtarget->hasNEON()) {
856     // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
857     // none of Neon, MVE or VFP supports any arithmetic operations on it.
858     setOperationAction(ISD::FADD, MVT::v2f64, Expand);
859     setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
860     setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
861     // FIXME: Code duplication: FDIV and FREM are expanded always, see
862     // ARMTargetLowering::addTypeForNEON method for details.
863     setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
864     setOperationAction(ISD::FREM, MVT::v2f64, Expand);
865     // FIXME: Create unittest.
866     // In another words, find a way when "copysign" appears in DAG with vector
867     // operands.
868     setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
869     // FIXME: Code duplication: SETCC has custom operation action, see
870     // ARMTargetLowering::addTypeForNEON method for details.
871     setOperationAction(ISD::SETCC, MVT::v2f64, Expand);
872     // FIXME: Create unittest for FNEG and for FABS.
873     setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
874     setOperationAction(ISD::FABS, MVT::v2f64, Expand);
875     setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
876     setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
877     setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
878     setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
879     setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
880     setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
881     setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
882     setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
883     setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
884     setOperationAction(ISD::FEXP10, MVT::v2f64, Expand);
885     // FIXME: Create unittest for FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR.
886     setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
887     setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
888     setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
889     setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
890     setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
891     setOperationAction(ISD::FMA, MVT::v2f64, Expand);
892   }
893 
894   if (Subtarget->hasNEON()) {
895     // The same with v4f32. But keep in mind that vadd, vsub, vmul are natively
896     // supported for v4f32.
897     setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
898     setOperationAction(ISD::FSIN, MVT::v4f32, Expand);
899     setOperationAction(ISD::FCOS, MVT::v4f32, Expand);
900     setOperationAction(ISD::FPOW, MVT::v4f32, Expand);
901     setOperationAction(ISD::FLOG, MVT::v4f32, Expand);
902     setOperationAction(ISD::FLOG2, MVT::v4f32, Expand);
903     setOperationAction(ISD::FLOG10, MVT::v4f32, Expand);
904     setOperationAction(ISD::FEXP, MVT::v4f32, Expand);
905     setOperationAction(ISD::FEXP2, MVT::v4f32, Expand);
906     setOperationAction(ISD::FEXP10, MVT::v4f32, Expand);
907     setOperationAction(ISD::FCEIL, MVT::v4f32, Expand);
908     setOperationAction(ISD::FTRUNC, MVT::v4f32, Expand);
909     setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
910     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
911     setOperationAction(ISD::FFLOOR, MVT::v4f32, Expand);
912 
913     // Mark v2f32 intrinsics.
914     setOperationAction(ISD::FSQRT, MVT::v2f32, Expand);
915     setOperationAction(ISD::FSIN, MVT::v2f32, Expand);
916     setOperationAction(ISD::FCOS, MVT::v2f32, Expand);
917     setOperationAction(ISD::FPOW, MVT::v2f32, Expand);
918     setOperationAction(ISD::FLOG, MVT::v2f32, Expand);
919     setOperationAction(ISD::FLOG2, MVT::v2f32, Expand);
920     setOperationAction(ISD::FLOG10, MVT::v2f32, Expand);
921     setOperationAction(ISD::FEXP, MVT::v2f32, Expand);
922     setOperationAction(ISD::FEXP2, MVT::v2f32, Expand);
923     setOperationAction(ISD::FEXP10, MVT::v2f32, Expand);
924     setOperationAction(ISD::FCEIL, MVT::v2f32, Expand);
925     setOperationAction(ISD::FTRUNC, MVT::v2f32, Expand);
926     setOperationAction(ISD::FRINT, MVT::v2f32, Expand);
927     setOperationAction(ISD::FNEARBYINT, MVT::v2f32, Expand);
928     setOperationAction(ISD::FFLOOR, MVT::v2f32, Expand);
929 
930     // Neon does not support some operations on v1i64 and v2i64 types.
931     setOperationAction(ISD::MUL, MVT::v1i64, Expand);
932     // Custom handling for some quad-vector types to detect VMULL.
933     setOperationAction(ISD::MUL, MVT::v8i16, Custom);
934     setOperationAction(ISD::MUL, MVT::v4i32, Custom);
935     setOperationAction(ISD::MUL, MVT::v2i64, Custom);
936     // Custom handling for some vector types to avoid expensive expansions
937     setOperationAction(ISD::SDIV, MVT::v4i16, Custom);
938     setOperationAction(ISD::SDIV, MVT::v8i8, Custom);
939     setOperationAction(ISD::UDIV, MVT::v4i16, Custom);
940     setOperationAction(ISD::UDIV, MVT::v8i8, Custom);
941     // Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with
942     // a destination type that is wider than the source, and nor does
943     // it have a FP_TO_[SU]INT instruction with a narrower destination than
944     // source.
945     setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
946     setOperationAction(ISD::SINT_TO_FP, MVT::v8i16, Custom);
947     setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
948     setOperationAction(ISD::UINT_TO_FP, MVT::v8i16, Custom);
949     setOperationAction(ISD::FP_TO_UINT, MVT::v4i16, Custom);
950     setOperationAction(ISD::FP_TO_UINT, MVT::v8i16, Custom);
951     setOperationAction(ISD::FP_TO_SINT, MVT::v4i16, Custom);
952     setOperationAction(ISD::FP_TO_SINT, MVT::v8i16, Custom);
953 
954     setOperationAction(ISD::FP_ROUND,   MVT::v2f32, Expand);
955     setOperationAction(ISD::FP_EXTEND,  MVT::v2f64, Expand);
956 
957     // NEON does not have single instruction CTPOP for vectors with element
958     // types wider than 8-bits.  However, custom lowering can leverage the
959     // v8i8/v16i8 vcnt instruction.
960     setOperationAction(ISD::CTPOP,      MVT::v2i32, Custom);
961     setOperationAction(ISD::CTPOP,      MVT::v4i32, Custom);
962     setOperationAction(ISD::CTPOP,      MVT::v4i16, Custom);
963     setOperationAction(ISD::CTPOP,      MVT::v8i16, Custom);
964     setOperationAction(ISD::CTPOP,      MVT::v1i64, Custom);
965     setOperationAction(ISD::CTPOP,      MVT::v2i64, Custom);
966 
967     setOperationAction(ISD::CTLZ,       MVT::v1i64, Expand);
968     setOperationAction(ISD::CTLZ,       MVT::v2i64, Expand);
969 
970     // NEON does not have single instruction CTTZ for vectors.
971     setOperationAction(ISD::CTTZ, MVT::v8i8, Custom);
972     setOperationAction(ISD::CTTZ, MVT::v4i16, Custom);
973     setOperationAction(ISD::CTTZ, MVT::v2i32, Custom);
974     setOperationAction(ISD::CTTZ, MVT::v1i64, Custom);
975 
976     setOperationAction(ISD::CTTZ, MVT::v16i8, Custom);
977     setOperationAction(ISD::CTTZ, MVT::v8i16, Custom);
978     setOperationAction(ISD::CTTZ, MVT::v4i32, Custom);
979     setOperationAction(ISD::CTTZ, MVT::v2i64, Custom);
980 
981     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v8i8, Custom);
982     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v4i16, Custom);
983     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v2i32, Custom);
984     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v1i64, Custom);
985 
986     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v16i8, Custom);
987     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v8i16, Custom);
988     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v4i32, Custom);
989     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v2i64, Custom);
990 
991     for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
992       setOperationAction(ISD::MULHS, VT, Expand);
993       setOperationAction(ISD::MULHU, VT, Expand);
994     }
995 
996     // NEON only has FMA instructions as of VFP4.
997     if (!Subtarget->hasVFP4Base()) {
998       setOperationAction(ISD::FMA, MVT::v2f32, Expand);
999       setOperationAction(ISD::FMA, MVT::v4f32, Expand);
1000     }
1001 
1002     setTargetDAGCombine({ISD::SHL, ISD::SRL, ISD::SRA, ISD::FP_TO_SINT,
1003                          ISD::FP_TO_UINT, ISD::FDIV, ISD::LOAD});
1004 
1005     // It is legal to extload from v4i8 to v4i16 or v4i32.
1006     for (MVT Ty : {MVT::v8i8, MVT::v4i8, MVT::v2i8, MVT::v4i16, MVT::v2i16,
1007                    MVT::v2i32}) {
1008       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
1009         setLoadExtAction(ISD::EXTLOAD, VT, Ty, Legal);
1010         setLoadExtAction(ISD::ZEXTLOAD, VT, Ty, Legal);
1011         setLoadExtAction(ISD::SEXTLOAD, VT, Ty, Legal);
1012       }
1013     }
1014 
1015     for (auto VT : {MVT::v8i8, MVT::v4i16, MVT::v2i32, MVT::v16i8, MVT::v8i16,
1016                     MVT::v4i32}) {
1017       setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
1018       setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
1019       setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
1020       setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
1021     }
1022   }
1023 
1024   if (Subtarget->hasNEON() || Subtarget->hasMVEIntegerOps()) {
1025     setTargetDAGCombine(
1026         {ISD::BUILD_VECTOR, ISD::VECTOR_SHUFFLE, ISD::INSERT_SUBVECTOR,
1027          ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT,
1028          ISD::SIGN_EXTEND_INREG, ISD::STORE, ISD::SIGN_EXTEND, ISD::ZERO_EXTEND,
1029          ISD::ANY_EXTEND, ISD::INTRINSIC_WO_CHAIN, ISD::INTRINSIC_W_CHAIN,
1030          ISD::INTRINSIC_VOID, ISD::VECREDUCE_ADD, ISD::ADD, ISD::BITCAST});
1031   }
1032   if (Subtarget->hasMVEIntegerOps()) {
1033     setTargetDAGCombine({ISD::SMIN, ISD::UMIN, ISD::SMAX, ISD::UMAX,
1034                          ISD::FP_EXTEND, ISD::SELECT, ISD::SELECT_CC,
1035                          ISD::SETCC});
1036   }
1037   if (Subtarget->hasMVEFloatOps()) {
1038     setTargetDAGCombine(ISD::FADD);
1039   }
1040 
1041   if (!Subtarget->hasFP64()) {
1042     // When targeting a floating-point unit with only single-precision
1043     // operations, f64 is legal for the few double-precision instructions which
1044     // are present However, no double-precision operations other than moves,
1045     // loads and stores are provided by the hardware.
1046     setOperationAction(ISD::FADD,       MVT::f64, Expand);
1047     setOperationAction(ISD::FSUB,       MVT::f64, Expand);
1048     setOperationAction(ISD::FMUL,       MVT::f64, Expand);
1049     setOperationAction(ISD::FMA,        MVT::f64, Expand);
1050     setOperationAction(ISD::FDIV,       MVT::f64, Expand);
1051     setOperationAction(ISD::FREM,       MVT::f64, Expand);
1052     setOperationAction(ISD::FCOPYSIGN,  MVT::f64, Expand);
1053     setOperationAction(ISD::FGETSIGN,   MVT::f64, Expand);
1054     setOperationAction(ISD::FNEG,       MVT::f64, Expand);
1055     setOperationAction(ISD::FABS,       MVT::f64, Expand);
1056     setOperationAction(ISD::FSQRT,      MVT::f64, Expand);
1057     setOperationAction(ISD::FSIN,       MVT::f64, Expand);
1058     setOperationAction(ISD::FCOS,       MVT::f64, Expand);
1059     setOperationAction(ISD::FPOW,       MVT::f64, Expand);
1060     setOperationAction(ISD::FLOG,       MVT::f64, Expand);
1061     setOperationAction(ISD::FLOG2,      MVT::f64, Expand);
1062     setOperationAction(ISD::FLOG10,     MVT::f64, Expand);
1063     setOperationAction(ISD::FEXP,       MVT::f64, Expand);
1064     setOperationAction(ISD::FEXP2,      MVT::f64, Expand);
1065     setOperationAction(ISD::FEXP10,      MVT::f64, Expand);
1066     setOperationAction(ISD::FCEIL,      MVT::f64, Expand);
1067     setOperationAction(ISD::FTRUNC,     MVT::f64, Expand);
1068     setOperationAction(ISD::FRINT,      MVT::f64, Expand);
1069     setOperationAction(ISD::FNEARBYINT, MVT::f64, Expand);
1070     setOperationAction(ISD::FFLOOR,     MVT::f64, Expand);
1071     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
1072     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
1073     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
1074     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
1075     setOperationAction(ISD::FP_TO_SINT, MVT::f64, Custom);
1076     setOperationAction(ISD::FP_TO_UINT, MVT::f64, Custom);
1077     setOperationAction(ISD::FP_ROUND,   MVT::f32, Custom);
1078     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
1079     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
1080     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::f64, Custom);
1081     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::f64, Custom);
1082     setOperationAction(ISD::STRICT_FP_ROUND,   MVT::f32, Custom);
1083   }
1084 
1085   if (!Subtarget->hasFP64() || !Subtarget->hasFPARMv8Base()) {
1086     setOperationAction(ISD::FP_EXTEND,  MVT::f64, Custom);
1087     setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Custom);
1088     if (Subtarget->hasFullFP16()) {
1089       setOperationAction(ISD::FP_ROUND,  MVT::f16, Custom);
1090       setOperationAction(ISD::STRICT_FP_ROUND, MVT::f16, Custom);
1091     }
1092   }
1093 
1094   if (!Subtarget->hasFP16()) {
1095     setOperationAction(ISD::FP_EXTEND,  MVT::f32, Custom);
1096     setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Custom);
1097   }
1098 
1099   computeRegisterProperties(Subtarget->getRegisterInfo());
1100 
1101   // ARM does not have floating-point extending loads.
1102   for (MVT VT : MVT::fp_valuetypes()) {
1103     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
1104     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand);
1105   }
1106 
1107   // ... or truncating stores
1108   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
1109   setTruncStoreAction(MVT::f32, MVT::f16, Expand);
1110   setTruncStoreAction(MVT::f64, MVT::f16, Expand);
1111 
1112   // ARM does not have i1 sign extending load.
1113   for (MVT VT : MVT::integer_valuetypes())
1114     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
1115 
1116   // ARM supports all 4 flavors of integer indexed load / store.
1117   if (!Subtarget->isThumb1Only()) {
1118     for (unsigned im = (unsigned)ISD::PRE_INC;
1119          im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
1120       setIndexedLoadAction(im,  MVT::i1,  Legal);
1121       setIndexedLoadAction(im,  MVT::i8,  Legal);
1122       setIndexedLoadAction(im,  MVT::i16, Legal);
1123       setIndexedLoadAction(im,  MVT::i32, Legal);
1124       setIndexedStoreAction(im, MVT::i1,  Legal);
1125       setIndexedStoreAction(im, MVT::i8,  Legal);
1126       setIndexedStoreAction(im, MVT::i16, Legal);
1127       setIndexedStoreAction(im, MVT::i32, Legal);
1128     }
1129   } else {
1130     // Thumb-1 has limited post-inc load/store support - LDM r0!, {r1}.
1131     setIndexedLoadAction(ISD::POST_INC, MVT::i32,  Legal);
1132     setIndexedStoreAction(ISD::POST_INC, MVT::i32,  Legal);
1133   }
1134 
1135   setOperationAction(ISD::SADDO, MVT::i32, Custom);
1136   setOperationAction(ISD::UADDO, MVT::i32, Custom);
1137   setOperationAction(ISD::SSUBO, MVT::i32, Custom);
1138   setOperationAction(ISD::USUBO, MVT::i32, Custom);
1139 
1140   setOperationAction(ISD::UADDO_CARRY, MVT::i32, Custom);
1141   setOperationAction(ISD::USUBO_CARRY, MVT::i32, Custom);
1142   if (Subtarget->hasDSP()) {
1143     setOperationAction(ISD::SADDSAT, MVT::i8, Custom);
1144     setOperationAction(ISD::SSUBSAT, MVT::i8, Custom);
1145     setOperationAction(ISD::SADDSAT, MVT::i16, Custom);
1146     setOperationAction(ISD::SSUBSAT, MVT::i16, Custom);
1147     setOperationAction(ISD::UADDSAT, MVT::i8, Custom);
1148     setOperationAction(ISD::USUBSAT, MVT::i8, Custom);
1149     setOperationAction(ISD::UADDSAT, MVT::i16, Custom);
1150     setOperationAction(ISD::USUBSAT, MVT::i16, Custom);
1151   }
1152   if (Subtarget->hasBaseDSP()) {
1153     setOperationAction(ISD::SADDSAT, MVT::i32, Legal);
1154     setOperationAction(ISD::SSUBSAT, MVT::i32, Legal);
1155   }
1156 
1157   // i64 operation support.
1158   setOperationAction(ISD::MUL,     MVT::i64, Expand);
1159   setOperationAction(ISD::MULHU,   MVT::i32, Expand);
1160   if (Subtarget->isThumb1Only()) {
1161     setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
1162     setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
1163   }
1164   if (Subtarget->isThumb1Only() || !Subtarget->hasV6Ops()
1165       || (Subtarget->isThumb2() && !Subtarget->hasDSP()))
1166     setOperationAction(ISD::MULHS, MVT::i32, Expand);
1167 
1168   setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
1169   setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
1170   setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
1171   setOperationAction(ISD::SRL,       MVT::i64, Custom);
1172   setOperationAction(ISD::SRA,       MVT::i64, Custom);
1173   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
1174   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
1175   setOperationAction(ISD::LOAD, MVT::i64, Custom);
1176   setOperationAction(ISD::STORE, MVT::i64, Custom);
1177 
1178   // MVE lowers 64 bit shifts to lsll and lsrl
1179   // assuming that ISD::SRL and SRA of i64 are already marked custom
1180   if (Subtarget->hasMVEIntegerOps())
1181     setOperationAction(ISD::SHL, MVT::i64, Custom);
1182 
1183   // Expand to __aeabi_l{lsl,lsr,asr} calls for Thumb1.
1184   if (Subtarget->isThumb1Only()) {
1185     setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
1186     setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
1187     setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
1188   }
1189 
1190   if (!Subtarget->isThumb1Only() && Subtarget->hasV6T2Ops())
1191     setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
1192 
1193   // ARM does not have ROTL.
1194   setOperationAction(ISD::ROTL, MVT::i32, Expand);
1195   for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
1196     setOperationAction(ISD::ROTL, VT, Expand);
1197     setOperationAction(ISD::ROTR, VT, Expand);
1198   }
1199   setOperationAction(ISD::CTTZ,  MVT::i32, Custom);
1200   setOperationAction(ISD::CTPOP, MVT::i32, Expand);
1201   if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only()) {
1202     setOperationAction(ISD::CTLZ, MVT::i32, Expand);
1203     setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, LibCall);
1204   }
1205 
1206   // @llvm.readcyclecounter requires the Performance Monitors extension.
1207   // Default to the 0 expansion on unsupported platforms.
1208   // FIXME: Technically there are older ARM CPUs that have
1209   // implementation-specific ways of obtaining this information.
1210   if (Subtarget->hasPerfMon())
1211     setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Custom);
1212 
1213   // Only ARMv6 has BSWAP.
1214   if (!Subtarget->hasV6Ops())
1215     setOperationAction(ISD::BSWAP, MVT::i32, Expand);
1216 
1217   bool hasDivide = Subtarget->isThumb() ? Subtarget->hasDivideInThumbMode()
1218                                         : Subtarget->hasDivideInARMMode();
1219   if (!hasDivide) {
1220     // These are expanded into libcalls if the cpu doesn't have HW divider.
1221     setOperationAction(ISD::SDIV,  MVT::i32, LibCall);
1222     setOperationAction(ISD::UDIV,  MVT::i32, LibCall);
1223   }
1224 
1225   if (Subtarget->isTargetWindows() && !Subtarget->hasDivideInThumbMode()) {
1226     setOperationAction(ISD::SDIV, MVT::i32, Custom);
1227     setOperationAction(ISD::UDIV, MVT::i32, Custom);
1228 
1229     setOperationAction(ISD::SDIV, MVT::i64, Custom);
1230     setOperationAction(ISD::UDIV, MVT::i64, Custom);
1231   }
1232 
1233   setOperationAction(ISD::SREM,  MVT::i32, Expand);
1234   setOperationAction(ISD::UREM,  MVT::i32, Expand);
1235 
1236   // Register based DivRem for AEABI (RTABI 4.2)
1237   if (Subtarget->isTargetAEABI() || Subtarget->isTargetAndroid() ||
1238       Subtarget->isTargetGNUAEABI() || Subtarget->isTargetMuslAEABI() ||
1239       Subtarget->isTargetWindows()) {
1240     setOperationAction(ISD::SREM, MVT::i64, Custom);
1241     setOperationAction(ISD::UREM, MVT::i64, Custom);
1242     HasStandaloneRem = false;
1243 
1244     if (Subtarget->isTargetWindows()) {
1245       const struct {
1246         const RTLIB::Libcall Op;
1247         const char * const Name;
1248         const CallingConv::ID CC;
1249       } LibraryCalls[] = {
1250         { RTLIB::SDIVREM_I8, "__rt_sdiv", CallingConv::ARM_AAPCS },
1251         { RTLIB::SDIVREM_I16, "__rt_sdiv", CallingConv::ARM_AAPCS },
1252         { RTLIB::SDIVREM_I32, "__rt_sdiv", CallingConv::ARM_AAPCS },
1253         { RTLIB::SDIVREM_I64, "__rt_sdiv64", CallingConv::ARM_AAPCS },
1254 
1255         { RTLIB::UDIVREM_I8, "__rt_udiv", CallingConv::ARM_AAPCS },
1256         { RTLIB::UDIVREM_I16, "__rt_udiv", CallingConv::ARM_AAPCS },
1257         { RTLIB::UDIVREM_I32, "__rt_udiv", CallingConv::ARM_AAPCS },
1258         { RTLIB::UDIVREM_I64, "__rt_udiv64", CallingConv::ARM_AAPCS },
1259       };
1260 
1261       for (const auto &LC : LibraryCalls) {
1262         setLibcallName(LC.Op, LC.Name);
1263         setLibcallCallingConv(LC.Op, LC.CC);
1264       }
1265     } else {
1266       const struct {
1267         const RTLIB::Libcall Op;
1268         const char * const Name;
1269         const CallingConv::ID CC;
1270       } LibraryCalls[] = {
1271         { RTLIB::SDIVREM_I8, "__aeabi_idivmod", CallingConv::ARM_AAPCS },
1272         { RTLIB::SDIVREM_I16, "__aeabi_idivmod", CallingConv::ARM_AAPCS },
1273         { RTLIB::SDIVREM_I32, "__aeabi_idivmod", CallingConv::ARM_AAPCS },
1274         { RTLIB::SDIVREM_I64, "__aeabi_ldivmod", CallingConv::ARM_AAPCS },
1275 
1276         { RTLIB::UDIVREM_I8, "__aeabi_uidivmod", CallingConv::ARM_AAPCS },
1277         { RTLIB::UDIVREM_I16, "__aeabi_uidivmod", CallingConv::ARM_AAPCS },
1278         { RTLIB::UDIVREM_I32, "__aeabi_uidivmod", CallingConv::ARM_AAPCS },
1279         { RTLIB::UDIVREM_I64, "__aeabi_uldivmod", CallingConv::ARM_AAPCS },
1280       };
1281 
1282       for (const auto &LC : LibraryCalls) {
1283         setLibcallName(LC.Op, LC.Name);
1284         setLibcallCallingConv(LC.Op, LC.CC);
1285       }
1286     }
1287 
1288     setOperationAction(ISD::SDIVREM, MVT::i32, Custom);
1289     setOperationAction(ISD::UDIVREM, MVT::i32, Custom);
1290     setOperationAction(ISD::SDIVREM, MVT::i64, Custom);
1291     setOperationAction(ISD::UDIVREM, MVT::i64, Custom);
1292   } else {
1293     setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
1294     setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
1295   }
1296 
1297   if (Subtarget->getTargetTriple().isOSMSVCRT()) {
1298     // MSVCRT doesn't have powi; fall back to pow
1299     setLibcallName(RTLIB::POWI_F32, nullptr);
1300     setLibcallName(RTLIB::POWI_F64, nullptr);
1301   }
1302 
1303   setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
1304   setOperationAction(ISD::ConstantPool,  MVT::i32,   Custom);
1305   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
1306   setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
1307 
1308   setOperationAction(ISD::TRAP, MVT::Other, Legal);
1309   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
1310 
1311   // Use the default implementation.
1312   setOperationAction(ISD::VASTART,            MVT::Other, Custom);
1313   setOperationAction(ISD::VAARG,              MVT::Other, Expand);
1314   setOperationAction(ISD::VACOPY,             MVT::Other, Expand);
1315   setOperationAction(ISD::VAEND,              MVT::Other, Expand);
1316   setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
1317   setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
1318 
1319   if (Subtarget->isTargetWindows())
1320     setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
1321   else
1322     setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
1323 
1324   // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
1325   // the default expansion.
1326   InsertFencesForAtomic = false;
1327   if (Subtarget->hasAnyDataBarrier() &&
1328       (!Subtarget->isThumb() || Subtarget->hasV8MBaselineOps())) {
1329     // ATOMIC_FENCE needs custom lowering; the others should have been expanded
1330     // to ldrex/strex loops already.
1331     setOperationAction(ISD::ATOMIC_FENCE,     MVT::Other, Custom);
1332     if (!Subtarget->isThumb() || !Subtarget->isMClass())
1333       setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i64, Custom);
1334 
1335     // On v8, we have particularly efficient implementations of atomic fences
1336     // if they can be combined with nearby atomic loads and stores.
1337     if (!Subtarget->hasAcquireRelease() ||
1338         getTargetMachine().getOptLevel() == CodeGenOptLevel::None) {
1339       // Automatically insert fences (dmb ish) around ATOMIC_SWAP etc.
1340       InsertFencesForAtomic = true;
1341     }
1342   } else {
1343     // If there's anything we can use as a barrier, go through custom lowering
1344     // for ATOMIC_FENCE.
1345     // If target has DMB in thumb, Fences can be inserted.
1346     if (Subtarget->hasDataBarrier())
1347       InsertFencesForAtomic = true;
1348 
1349     setOperationAction(ISD::ATOMIC_FENCE,   MVT::Other,
1350                        Subtarget->hasAnyDataBarrier() ? Custom : Expand);
1351 
1352     // Set them all for libcall, which will force libcalls.
1353     setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, LibCall);
1354     setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, LibCall);
1355     setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, LibCall);
1356     setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, LibCall);
1357     setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, LibCall);
1358     setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, LibCall);
1359     setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, LibCall);
1360     setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, LibCall);
1361     setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, LibCall);
1362     setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, LibCall);
1363     setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, LibCall);
1364     setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, LibCall);
1365     // Mark ATOMIC_LOAD and ATOMIC_STORE custom so we can handle the
1366     // Unordered/Monotonic case.
1367     if (!InsertFencesForAtomic) {
1368       setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
1369       setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
1370     }
1371   }
1372 
1373   // Compute supported atomic widths.
1374   if (Subtarget->isTargetLinux() ||
1375       (!Subtarget->isMClass() && Subtarget->hasV6Ops())) {
1376     // For targets where __sync_* routines are reliably available, we use them
1377     // if necessary.
1378     //
1379     // ARM Linux always supports 64-bit atomics through kernel-assisted atomic
1380     // routines (kernel 3.1 or later). FIXME: Not with compiler-rt?
1381     //
1382     // ARMv6 targets have native instructions in ARM mode. For Thumb mode,
1383     // such targets should provide __sync_* routines, which use the ARM mode
1384     // instructions. (ARMv6 doesn't have dmb, but it has an equivalent
1385     // encoding; see ARMISD::MEMBARRIER_MCR.)
1386     setMaxAtomicSizeInBitsSupported(64);
1387   } else if ((Subtarget->isMClass() && Subtarget->hasV8MBaselineOps()) ||
1388              Subtarget->hasForced32BitAtomics()) {
1389     // Cortex-M (besides Cortex-M0) have 32-bit atomics.
1390     setMaxAtomicSizeInBitsSupported(32);
1391   } else {
1392     // We can't assume anything about other targets; just use libatomic
1393     // routines.
1394     setMaxAtomicSizeInBitsSupported(0);
1395   }
1396 
1397   setMaxDivRemBitWidthSupported(64);
1398 
1399   setOperationAction(ISD::PREFETCH,         MVT::Other, Custom);
1400 
1401   // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
1402   if (!Subtarget->hasV6Ops()) {
1403     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
1404     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
1405   }
1406   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
1407 
1408   if (!Subtarget->useSoftFloat() && Subtarget->hasFPRegs() &&
1409       !Subtarget->isThumb1Only()) {
1410     // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
1411     // iff target supports vfp2.
1412     setOperationAction(ISD::BITCAST, MVT::i64, Custom);
1413     setOperationAction(ISD::GET_ROUNDING, MVT::i32, Custom);
1414     setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom);
1415     setOperationAction(ISD::GET_FPENV, MVT::i32, Legal);
1416     setOperationAction(ISD::SET_FPENV, MVT::i32, Legal);
1417     setOperationAction(ISD::RESET_FPENV, MVT::Other, Legal);
1418     setOperationAction(ISD::GET_FPMODE, MVT::i32, Legal);
1419     setOperationAction(ISD::SET_FPMODE, MVT::i32, Custom);
1420     setOperationAction(ISD::RESET_FPMODE, MVT::Other, Custom);
1421   }
1422 
1423   // We want to custom lower some of our intrinsics.
1424   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1425   setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
1426   setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
1427   setOperationAction(ISD::EH_SJLJ_SETUP_DISPATCH, MVT::Other, Custom);
1428   if (Subtarget->useSjLjEH())
1429     setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume");
1430 
1431   setOperationAction(ISD::SETCC,     MVT::i32, Expand);
1432   setOperationAction(ISD::SETCC,     MVT::f32, Expand);
1433   setOperationAction(ISD::SETCC,     MVT::f64, Expand);
1434   setOperationAction(ISD::SELECT,    MVT::i32, Custom);
1435   setOperationAction(ISD::SELECT,    MVT::f32, Custom);
1436   setOperationAction(ISD::SELECT,    MVT::f64, Custom);
1437   setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
1438   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
1439   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
1440   if (Subtarget->hasFullFP16()) {
1441     setOperationAction(ISD::SETCC,     MVT::f16, Expand);
1442     setOperationAction(ISD::SELECT,    MVT::f16, Custom);
1443     setOperationAction(ISD::SELECT_CC, MVT::f16, Custom);
1444   }
1445 
1446   setOperationAction(ISD::SETCCCARRY, MVT::i32, Custom);
1447 
1448   setOperationAction(ISD::BRCOND,    MVT::Other, Custom);
1449   setOperationAction(ISD::BR_CC,     MVT::i32,   Custom);
1450   if (Subtarget->hasFullFP16())
1451       setOperationAction(ISD::BR_CC, MVT::f16,   Custom);
1452   setOperationAction(ISD::BR_CC,     MVT::f32,   Custom);
1453   setOperationAction(ISD::BR_CC,     MVT::f64,   Custom);
1454   setOperationAction(ISD::BR_JT,     MVT::Other, Custom);
1455 
1456   // We don't support sin/cos/fmod/copysign/pow
1457   setOperationAction(ISD::FSIN,      MVT::f64, Expand);
1458   setOperationAction(ISD::FSIN,      MVT::f32, Expand);
1459   setOperationAction(ISD::FCOS,      MVT::f32, Expand);
1460   setOperationAction(ISD::FCOS,      MVT::f64, Expand);
1461   setOperationAction(ISD::FSINCOS,   MVT::f64, Expand);
1462   setOperationAction(ISD::FSINCOS,   MVT::f32, Expand);
1463   setOperationAction(ISD::FREM,      MVT::f64, Expand);
1464   setOperationAction(ISD::FREM,      MVT::f32, Expand);
1465   if (!Subtarget->useSoftFloat() && Subtarget->hasVFP2Base() &&
1466       !Subtarget->isThumb1Only()) {
1467     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
1468     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
1469   }
1470   setOperationAction(ISD::FPOW,      MVT::f64, Expand);
1471   setOperationAction(ISD::FPOW,      MVT::f32, Expand);
1472 
1473   if (!Subtarget->hasVFP4Base()) {
1474     setOperationAction(ISD::FMA, MVT::f64, Expand);
1475     setOperationAction(ISD::FMA, MVT::f32, Expand);
1476   }
1477 
1478   // Various VFP goodness
1479   if (!Subtarget->useSoftFloat() && !Subtarget->isThumb1Only()) {
1480     // FP-ARMv8 adds f64 <-> f16 conversion. Before that it should be expanded.
1481     if (!Subtarget->hasFPARMv8Base() || !Subtarget->hasFP64()) {
1482       setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
1483       setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
1484     }
1485 
1486     // fp16 is a special v7 extension that adds f16 <-> f32 conversions.
1487     if (!Subtarget->hasFP16()) {
1488       setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
1489       setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
1490     }
1491 
1492     // Strict floating-point comparisons need custom lowering.
1493     setOperationAction(ISD::STRICT_FSETCC,  MVT::f16, Custom);
1494     setOperationAction(ISD::STRICT_FSETCCS, MVT::f16, Custom);
1495     setOperationAction(ISD::STRICT_FSETCC,  MVT::f32, Custom);
1496     setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Custom);
1497     setOperationAction(ISD::STRICT_FSETCC,  MVT::f64, Custom);
1498     setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Custom);
1499   }
1500 
1501   // Use __sincos_stret if available.
1502   if (getLibcallName(RTLIB::SINCOS_STRET_F32) != nullptr &&
1503       getLibcallName(RTLIB::SINCOS_STRET_F64) != nullptr) {
1504     setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
1505     setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
1506   }
1507 
1508   // FP-ARMv8 implements a lot of rounding-like FP operations.
1509   if (Subtarget->hasFPARMv8Base()) {
1510     setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
1511     setOperationAction(ISD::FCEIL, MVT::f32, Legal);
1512     setOperationAction(ISD::FROUND, MVT::f32, Legal);
1513     setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
1514     setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
1515     setOperationAction(ISD::FRINT, MVT::f32, Legal);
1516     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
1517     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
1518     if (Subtarget->hasNEON()) {
1519       setOperationAction(ISD::FMINNUM, MVT::v2f32, Legal);
1520       setOperationAction(ISD::FMAXNUM, MVT::v2f32, Legal);
1521       setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
1522       setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
1523     }
1524 
1525     if (Subtarget->hasFP64()) {
1526       setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
1527       setOperationAction(ISD::FCEIL, MVT::f64, Legal);
1528       setOperationAction(ISD::FROUND, MVT::f64, Legal);
1529       setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
1530       setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
1531       setOperationAction(ISD::FRINT, MVT::f64, Legal);
1532       setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
1533       setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
1534     }
1535   }
1536 
1537   // FP16 often need to be promoted to call lib functions
1538   if (Subtarget->hasFullFP16()) {
1539     setOperationAction(ISD::FREM, MVT::f16, Promote);
1540     setOperationAction(ISD::FCOPYSIGN, MVT::f16, Expand);
1541     setOperationAction(ISD::FSIN, MVT::f16, Promote);
1542     setOperationAction(ISD::FCOS, MVT::f16, Promote);
1543     setOperationAction(ISD::FSINCOS, MVT::f16, Promote);
1544     setOperationAction(ISD::FPOWI, MVT::f16, Promote);
1545     setOperationAction(ISD::FPOW, MVT::f16, Promote);
1546     setOperationAction(ISD::FEXP, MVT::f16, Promote);
1547     setOperationAction(ISD::FEXP2, MVT::f16, Promote);
1548     setOperationAction(ISD::FEXP10, MVT::f16, Promote);
1549     setOperationAction(ISD::FLOG, MVT::f16, Promote);
1550     setOperationAction(ISD::FLOG10, MVT::f16, Promote);
1551     setOperationAction(ISD::FLOG2, MVT::f16, Promote);
1552 
1553     setOperationAction(ISD::FROUND, MVT::f16, Legal);
1554   }
1555 
1556   if (Subtarget->hasNEON()) {
1557     // vmin and vmax aren't available in a scalar form, so we can use
1558     // a NEON instruction with an undef lane instead.  This has a performance
1559     // penalty on some cores, so we don't do this unless we have been
1560     // asked to by the core tuning model.
1561     if (Subtarget->useNEONForSinglePrecisionFP()) {
1562       setOperationAction(ISD::FMINIMUM, MVT::f32, Legal);
1563       setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal);
1564       setOperationAction(ISD::FMINIMUM, MVT::f16, Legal);
1565       setOperationAction(ISD::FMAXIMUM, MVT::f16, Legal);
1566     }
1567     setOperationAction(ISD::FMINIMUM, MVT::v2f32, Legal);
1568     setOperationAction(ISD::FMAXIMUM, MVT::v2f32, Legal);
1569     setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal);
1570     setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal);
1571 
1572     if (Subtarget->hasFullFP16()) {
1573       setOperationAction(ISD::FMINNUM, MVT::v4f16, Legal);
1574       setOperationAction(ISD::FMAXNUM, MVT::v4f16, Legal);
1575       setOperationAction(ISD::FMINNUM, MVT::v8f16, Legal);
1576       setOperationAction(ISD::FMAXNUM, MVT::v8f16, Legal);
1577 
1578       setOperationAction(ISD::FMINIMUM, MVT::v4f16, Legal);
1579       setOperationAction(ISD::FMAXIMUM, MVT::v4f16, Legal);
1580       setOperationAction(ISD::FMINIMUM, MVT::v8f16, Legal);
1581       setOperationAction(ISD::FMAXIMUM, MVT::v8f16, Legal);
1582     }
1583   }
1584 
1585   // We have target-specific dag combine patterns for the following nodes:
1586   // ARMISD::VMOVRRD  - No need to call setTargetDAGCombine
1587   setTargetDAGCombine(
1588       {ISD::ADD, ISD::SUB, ISD::MUL, ISD::AND, ISD::OR, ISD::XOR});
1589 
1590   if (Subtarget->hasMVEIntegerOps())
1591     setTargetDAGCombine(ISD::VSELECT);
1592 
1593   if (Subtarget->hasV6Ops())
1594     setTargetDAGCombine(ISD::SRL);
1595   if (Subtarget->isThumb1Only())
1596     setTargetDAGCombine(ISD::SHL);
1597   // Attempt to lower smin/smax to ssat/usat
1598   if ((!Subtarget->isThumb() && Subtarget->hasV6Ops()) ||
1599       Subtarget->isThumb2()) {
1600     setTargetDAGCombine({ISD::SMIN, ISD::SMAX});
1601   }
1602 
1603   setStackPointerRegisterToSaveRestore(ARM::SP);
1604 
1605   if (Subtarget->useSoftFloat() || Subtarget->isThumb1Only() ||
1606       !Subtarget->hasVFP2Base() || Subtarget->hasMinSize())
1607     setSchedulingPreference(Sched::RegPressure);
1608   else
1609     setSchedulingPreference(Sched::Hybrid);
1610 
1611   //// temporary - rewrite interface to use type
1612   MaxStoresPerMemset = 8;
1613   MaxStoresPerMemsetOptSize = 4;
1614   MaxStoresPerMemcpy = 4; // For @llvm.memcpy -> sequence of stores
1615   MaxStoresPerMemcpyOptSize = 2;
1616   MaxStoresPerMemmove = 4; // For @llvm.memmove -> sequence of stores
1617   MaxStoresPerMemmoveOptSize = 2;
1618 
1619   // On ARM arguments smaller than 4 bytes are extended, so all arguments
1620   // are at least 4 bytes aligned.
1621   setMinStackArgumentAlignment(Align(4));
1622 
1623   // Prefer likely predicted branches to selects on out-of-order cores.
1624   PredictableSelectIsExpensive = Subtarget->getSchedModel().isOutOfOrder();
1625 
1626   setPrefLoopAlignment(Align(1ULL << Subtarget->getPrefLoopLogAlignment()));
1627   setPrefFunctionAlignment(Align(1ULL << Subtarget->getPrefLoopLogAlignment()));
1628 
1629   setMinFunctionAlignment(Subtarget->isThumb() ? Align(2) : Align(4));
1630 
1631   if (Subtarget->isThumb() || Subtarget->isThumb2())
1632     setTargetDAGCombine(ISD::ABS);
1633 }
1634 
1635 bool ARMTargetLowering::useSoftFloat() const {
1636   return Subtarget->useSoftFloat();
1637 }
1638 
1639 // FIXME: It might make sense to define the representative register class as the
1640 // nearest super-register that has a non-null superset. For example, DPR_VFP2 is
1641 // a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently,
1642 // SPR's representative would be DPR_VFP2. This should work well if register
1643 // pressure tracking were modified such that a register use would increment the
1644 // pressure of the register class's representative and all of it's super
1645 // classes' representatives transitively. We have not implemented this because
1646 // of the difficulty prior to coalescing of modeling operand register classes
1647 // due to the common occurrence of cross class copies and subregister insertions
1648 // and extractions.
1649 std::pair<const TargetRegisterClass *, uint8_t>
1650 ARMTargetLowering::findRepresentativeClass(const TargetRegisterInfo *TRI,
1651                                            MVT VT) const {
1652   const TargetRegisterClass *RRC = nullptr;
1653   uint8_t Cost = 1;
1654   switch (VT.SimpleTy) {
1655   default:
1656     return TargetLowering::findRepresentativeClass(TRI, VT);
1657   // Use DPR as representative register class for all floating point
1658   // and vector types. Since there are 32 SPR registers and 32 DPR registers so
1659   // the cost is 1 for both f32 and f64.
1660   case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16:
1661   case MVT::v2i32: case MVT::v1i64: case MVT::v2f32:
1662     RRC = &ARM::DPRRegClass;
1663     // When NEON is used for SP, only half of the register file is available
1664     // because operations that define both SP and DP results will be constrained
1665     // to the VFP2 class (D0-D15). We currently model this constraint prior to
1666     // coalescing by double-counting the SP regs. See the FIXME above.
1667     if (Subtarget->useNEONForSinglePrecisionFP())
1668       Cost = 2;
1669     break;
1670   case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1671   case MVT::v4f32: case MVT::v2f64:
1672     RRC = &ARM::DPRRegClass;
1673     Cost = 2;
1674     break;
1675   case MVT::v4i64:
1676     RRC = &ARM::DPRRegClass;
1677     Cost = 4;
1678     break;
1679   case MVT::v8i64:
1680     RRC = &ARM::DPRRegClass;
1681     Cost = 8;
1682     break;
1683   }
1684   return std::make_pair(RRC, Cost);
1685 }
1686 
1687 const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
1688 #define MAKE_CASE(V)                                                           \
1689   case V:                                                                      \
1690     return #V;
1691   switch ((ARMISD::NodeType)Opcode) {
1692   case ARMISD::FIRST_NUMBER:
1693     break;
1694     MAKE_CASE(ARMISD::Wrapper)
1695     MAKE_CASE(ARMISD::WrapperPIC)
1696     MAKE_CASE(ARMISD::WrapperJT)
1697     MAKE_CASE(ARMISD::COPY_STRUCT_BYVAL)
1698     MAKE_CASE(ARMISD::CALL)
1699     MAKE_CASE(ARMISD::CALL_PRED)
1700     MAKE_CASE(ARMISD::CALL_NOLINK)
1701     MAKE_CASE(ARMISD::tSECALL)
1702     MAKE_CASE(ARMISD::t2CALL_BTI)
1703     MAKE_CASE(ARMISD::BRCOND)
1704     MAKE_CASE(ARMISD::BR_JT)
1705     MAKE_CASE(ARMISD::BR2_JT)
1706     MAKE_CASE(ARMISD::RET_GLUE)
1707     MAKE_CASE(ARMISD::SERET_GLUE)
1708     MAKE_CASE(ARMISD::INTRET_GLUE)
1709     MAKE_CASE(ARMISD::PIC_ADD)
1710     MAKE_CASE(ARMISD::CMP)
1711     MAKE_CASE(ARMISD::CMN)
1712     MAKE_CASE(ARMISD::CMPZ)
1713     MAKE_CASE(ARMISD::CMPFP)
1714     MAKE_CASE(ARMISD::CMPFPE)
1715     MAKE_CASE(ARMISD::CMPFPw0)
1716     MAKE_CASE(ARMISD::CMPFPEw0)
1717     MAKE_CASE(ARMISD::BCC_i64)
1718     MAKE_CASE(ARMISD::FMSTAT)
1719     MAKE_CASE(ARMISD::CMOV)
1720     MAKE_CASE(ARMISD::SUBS)
1721     MAKE_CASE(ARMISD::SSAT)
1722     MAKE_CASE(ARMISD::USAT)
1723     MAKE_CASE(ARMISD::ASRL)
1724     MAKE_CASE(ARMISD::LSRL)
1725     MAKE_CASE(ARMISD::LSLL)
1726     MAKE_CASE(ARMISD::SRL_GLUE)
1727     MAKE_CASE(ARMISD::SRA_GLUE)
1728     MAKE_CASE(ARMISD::RRX)
1729     MAKE_CASE(ARMISD::ADDC)
1730     MAKE_CASE(ARMISD::ADDE)
1731     MAKE_CASE(ARMISD::SUBC)
1732     MAKE_CASE(ARMISD::SUBE)
1733     MAKE_CASE(ARMISD::LSLS)
1734     MAKE_CASE(ARMISD::VMOVRRD)
1735     MAKE_CASE(ARMISD::VMOVDRR)
1736     MAKE_CASE(ARMISD::VMOVhr)
1737     MAKE_CASE(ARMISD::VMOVrh)
1738     MAKE_CASE(ARMISD::VMOVSR)
1739     MAKE_CASE(ARMISD::EH_SJLJ_SETJMP)
1740     MAKE_CASE(ARMISD::EH_SJLJ_LONGJMP)
1741     MAKE_CASE(ARMISD::EH_SJLJ_SETUP_DISPATCH)
1742     MAKE_CASE(ARMISD::TC_RETURN)
1743     MAKE_CASE(ARMISD::THREAD_POINTER)
1744     MAKE_CASE(ARMISD::DYN_ALLOC)
1745     MAKE_CASE(ARMISD::MEMBARRIER_MCR)
1746     MAKE_CASE(ARMISD::PRELOAD)
1747     MAKE_CASE(ARMISD::LDRD)
1748     MAKE_CASE(ARMISD::STRD)
1749     MAKE_CASE(ARMISD::WIN__CHKSTK)
1750     MAKE_CASE(ARMISD::WIN__DBZCHK)
1751     MAKE_CASE(ARMISD::PREDICATE_CAST)
1752     MAKE_CASE(ARMISD::VECTOR_REG_CAST)
1753     MAKE_CASE(ARMISD::MVESEXT)
1754     MAKE_CASE(ARMISD::MVEZEXT)
1755     MAKE_CASE(ARMISD::MVETRUNC)
1756     MAKE_CASE(ARMISD::VCMP)
1757     MAKE_CASE(ARMISD::VCMPZ)
1758     MAKE_CASE(ARMISD::VTST)
1759     MAKE_CASE(ARMISD::VSHLs)
1760     MAKE_CASE(ARMISD::VSHLu)
1761     MAKE_CASE(ARMISD::VSHLIMM)
1762     MAKE_CASE(ARMISD::VSHRsIMM)
1763     MAKE_CASE(ARMISD::VSHRuIMM)
1764     MAKE_CASE(ARMISD::VRSHRsIMM)
1765     MAKE_CASE(ARMISD::VRSHRuIMM)
1766     MAKE_CASE(ARMISD::VRSHRNIMM)
1767     MAKE_CASE(ARMISD::VQSHLsIMM)
1768     MAKE_CASE(ARMISD::VQSHLuIMM)
1769     MAKE_CASE(ARMISD::VQSHLsuIMM)
1770     MAKE_CASE(ARMISD::VQSHRNsIMM)
1771     MAKE_CASE(ARMISD::VQSHRNuIMM)
1772     MAKE_CASE(ARMISD::VQSHRNsuIMM)
1773     MAKE_CASE(ARMISD::VQRSHRNsIMM)
1774     MAKE_CASE(ARMISD::VQRSHRNuIMM)
1775     MAKE_CASE(ARMISD::VQRSHRNsuIMM)
1776     MAKE_CASE(ARMISD::VSLIIMM)
1777     MAKE_CASE(ARMISD::VSRIIMM)
1778     MAKE_CASE(ARMISD::VGETLANEu)
1779     MAKE_CASE(ARMISD::VGETLANEs)
1780     MAKE_CASE(ARMISD::VMOVIMM)
1781     MAKE_CASE(ARMISD::VMVNIMM)
1782     MAKE_CASE(ARMISD::VMOVFPIMM)
1783     MAKE_CASE(ARMISD::VDUP)
1784     MAKE_CASE(ARMISD::VDUPLANE)
1785     MAKE_CASE(ARMISD::VEXT)
1786     MAKE_CASE(ARMISD::VREV64)
1787     MAKE_CASE(ARMISD::VREV32)
1788     MAKE_CASE(ARMISD::VREV16)
1789     MAKE_CASE(ARMISD::VZIP)
1790     MAKE_CASE(ARMISD::VUZP)
1791     MAKE_CASE(ARMISD::VTRN)
1792     MAKE_CASE(ARMISD::VTBL1)
1793     MAKE_CASE(ARMISD::VTBL2)
1794     MAKE_CASE(ARMISD::VMOVN)
1795     MAKE_CASE(ARMISD::VQMOVNs)
1796     MAKE_CASE(ARMISD::VQMOVNu)
1797     MAKE_CASE(ARMISD::VCVTN)
1798     MAKE_CASE(ARMISD::VCVTL)
1799     MAKE_CASE(ARMISD::VIDUP)
1800     MAKE_CASE(ARMISD::VMULLs)
1801     MAKE_CASE(ARMISD::VMULLu)
1802     MAKE_CASE(ARMISD::VQDMULH)
1803     MAKE_CASE(ARMISD::VADDVs)
1804     MAKE_CASE(ARMISD::VADDVu)
1805     MAKE_CASE(ARMISD::VADDVps)
1806     MAKE_CASE(ARMISD::VADDVpu)
1807     MAKE_CASE(ARMISD::VADDLVs)
1808     MAKE_CASE(ARMISD::VADDLVu)
1809     MAKE_CASE(ARMISD::VADDLVAs)
1810     MAKE_CASE(ARMISD::VADDLVAu)
1811     MAKE_CASE(ARMISD::VADDLVps)
1812     MAKE_CASE(ARMISD::VADDLVpu)
1813     MAKE_CASE(ARMISD::VADDLVAps)
1814     MAKE_CASE(ARMISD::VADDLVApu)
1815     MAKE_CASE(ARMISD::VMLAVs)
1816     MAKE_CASE(ARMISD::VMLAVu)
1817     MAKE_CASE(ARMISD::VMLAVps)
1818     MAKE_CASE(ARMISD::VMLAVpu)
1819     MAKE_CASE(ARMISD::VMLALVs)
1820     MAKE_CASE(ARMISD::VMLALVu)
1821     MAKE_CASE(ARMISD::VMLALVps)
1822     MAKE_CASE(ARMISD::VMLALVpu)
1823     MAKE_CASE(ARMISD::VMLALVAs)
1824     MAKE_CASE(ARMISD::VMLALVAu)
1825     MAKE_CASE(ARMISD::VMLALVAps)
1826     MAKE_CASE(ARMISD::VMLALVApu)
1827     MAKE_CASE(ARMISD::VMINVu)
1828     MAKE_CASE(ARMISD::VMINVs)
1829     MAKE_CASE(ARMISD::VMAXVu)
1830     MAKE_CASE(ARMISD::VMAXVs)
1831     MAKE_CASE(ARMISD::UMAAL)
1832     MAKE_CASE(ARMISD::UMLAL)
1833     MAKE_CASE(ARMISD::SMLAL)
1834     MAKE_CASE(ARMISD::SMLALBB)
1835     MAKE_CASE(ARMISD::SMLALBT)
1836     MAKE_CASE(ARMISD::SMLALTB)
1837     MAKE_CASE(ARMISD::SMLALTT)
1838     MAKE_CASE(ARMISD::SMULWB)
1839     MAKE_CASE(ARMISD::SMULWT)
1840     MAKE_CASE(ARMISD::SMLALD)
1841     MAKE_CASE(ARMISD::SMLALDX)
1842     MAKE_CASE(ARMISD::SMLSLD)
1843     MAKE_CASE(ARMISD::SMLSLDX)
1844     MAKE_CASE(ARMISD::SMMLAR)
1845     MAKE_CASE(ARMISD::SMMLSR)
1846     MAKE_CASE(ARMISD::QADD16b)
1847     MAKE_CASE(ARMISD::QSUB16b)
1848     MAKE_CASE(ARMISD::QADD8b)
1849     MAKE_CASE(ARMISD::QSUB8b)
1850     MAKE_CASE(ARMISD::UQADD16b)
1851     MAKE_CASE(ARMISD::UQSUB16b)
1852     MAKE_CASE(ARMISD::UQADD8b)
1853     MAKE_CASE(ARMISD::UQSUB8b)
1854     MAKE_CASE(ARMISD::BUILD_VECTOR)
1855     MAKE_CASE(ARMISD::BFI)
1856     MAKE_CASE(ARMISD::VORRIMM)
1857     MAKE_CASE(ARMISD::VBICIMM)
1858     MAKE_CASE(ARMISD::VBSP)
1859     MAKE_CASE(ARMISD::MEMCPY)
1860     MAKE_CASE(ARMISD::VLD1DUP)
1861     MAKE_CASE(ARMISD::VLD2DUP)
1862     MAKE_CASE(ARMISD::VLD3DUP)
1863     MAKE_CASE(ARMISD::VLD4DUP)
1864     MAKE_CASE(ARMISD::VLD1_UPD)
1865     MAKE_CASE(ARMISD::VLD2_UPD)
1866     MAKE_CASE(ARMISD::VLD3_UPD)
1867     MAKE_CASE(ARMISD::VLD4_UPD)
1868     MAKE_CASE(ARMISD::VLD1x2_UPD)
1869     MAKE_CASE(ARMISD::VLD1x3_UPD)
1870     MAKE_CASE(ARMISD::VLD1x4_UPD)
1871     MAKE_CASE(ARMISD::VLD2LN_UPD)
1872     MAKE_CASE(ARMISD::VLD3LN_UPD)
1873     MAKE_CASE(ARMISD::VLD4LN_UPD)
1874     MAKE_CASE(ARMISD::VLD1DUP_UPD)
1875     MAKE_CASE(ARMISD::VLD2DUP_UPD)
1876     MAKE_CASE(ARMISD::VLD3DUP_UPD)
1877     MAKE_CASE(ARMISD::VLD4DUP_UPD)
1878     MAKE_CASE(ARMISD::VST1_UPD)
1879     MAKE_CASE(ARMISD::VST2_UPD)
1880     MAKE_CASE(ARMISD::VST3_UPD)
1881     MAKE_CASE(ARMISD::VST4_UPD)
1882     MAKE_CASE(ARMISD::VST1x2_UPD)
1883     MAKE_CASE(ARMISD::VST1x3_UPD)
1884     MAKE_CASE(ARMISD::VST1x4_UPD)
1885     MAKE_CASE(ARMISD::VST2LN_UPD)
1886     MAKE_CASE(ARMISD::VST3LN_UPD)
1887     MAKE_CASE(ARMISD::VST4LN_UPD)
1888     MAKE_CASE(ARMISD::WLS)
1889     MAKE_CASE(ARMISD::WLSSETUP)
1890     MAKE_CASE(ARMISD::LE)
1891     MAKE_CASE(ARMISD::LOOP_DEC)
1892     MAKE_CASE(ARMISD::CSINV)
1893     MAKE_CASE(ARMISD::CSNEG)
1894     MAKE_CASE(ARMISD::CSINC)
1895     MAKE_CASE(ARMISD::MEMCPYLOOP)
1896     MAKE_CASE(ARMISD::MEMSETLOOP)
1897 #undef MAKE_CASE
1898   }
1899   return nullptr;
1900 }
1901 
1902 EVT ARMTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &,
1903                                           EVT VT) const {
1904   if (!VT.isVector())
1905     return getPointerTy(DL);
1906 
1907   // MVE has a predicate register.
1908   if ((Subtarget->hasMVEIntegerOps() &&
1909        (VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
1910         VT == MVT::v16i8)) ||
1911       (Subtarget->hasMVEFloatOps() &&
1912        (VT == MVT::v2f64 || VT == MVT::v4f32 || VT == MVT::v8f16)))
1913     return MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
1914   return VT.changeVectorElementTypeToInteger();
1915 }
1916 
1917 /// getRegClassFor - Return the register class that should be used for the
1918 /// specified value type.
1919 const TargetRegisterClass *
1920 ARMTargetLowering::getRegClassFor(MVT VT, bool isDivergent) const {
1921   (void)isDivergent;
1922   // Map v4i64 to QQ registers but do not make the type legal. Similarly map
1923   // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
1924   // load / store 4 to 8 consecutive NEON D registers, or 2 to 4 consecutive
1925   // MVE Q registers.
1926   if (Subtarget->hasNEON()) {
1927     if (VT == MVT::v4i64)
1928       return &ARM::QQPRRegClass;
1929     if (VT == MVT::v8i64)
1930       return &ARM::QQQQPRRegClass;
1931   }
1932   if (Subtarget->hasMVEIntegerOps()) {
1933     if (VT == MVT::v4i64)
1934       return &ARM::MQQPRRegClass;
1935     if (VT == MVT::v8i64)
1936       return &ARM::MQQQQPRRegClass;
1937   }
1938   return TargetLowering::getRegClassFor(VT);
1939 }
1940 
1941 // memcpy, and other memory intrinsics, typically tries to use LDM/STM if the
1942 // source/dest is aligned and the copy size is large enough. We therefore want
1943 // to align such objects passed to memory intrinsics.
1944 bool ARMTargetLowering::shouldAlignPointerArgs(CallInst *CI, unsigned &MinSize,
1945                                                Align &PrefAlign) const {
1946   if (!isa<MemIntrinsic>(CI))
1947     return false;
1948   MinSize = 8;
1949   // On ARM11 onwards (excluding M class) 8-byte aligned LDM is typically 1
1950   // cycle faster than 4-byte aligned LDM.
1951   PrefAlign =
1952       (Subtarget->hasV6Ops() && !Subtarget->isMClass() ? Align(8) : Align(4));
1953   return true;
1954 }
1955 
1956 // Create a fast isel object.
1957 FastISel *
1958 ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
1959                                   const TargetLibraryInfo *libInfo) const {
1960   return ARM::createFastISel(funcInfo, libInfo);
1961 }
1962 
1963 Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const {
1964   unsigned NumVals = N->getNumValues();
1965   if (!NumVals)
1966     return Sched::RegPressure;
1967 
1968   for (unsigned i = 0; i != NumVals; ++i) {
1969     EVT VT = N->getValueType(i);
1970     if (VT == MVT::Glue || VT == MVT::Other)
1971       continue;
1972     if (VT.isFloatingPoint() || VT.isVector())
1973       return Sched::ILP;
1974   }
1975 
1976   if (!N->isMachineOpcode())
1977     return Sched::RegPressure;
1978 
1979   // Load are scheduled for latency even if there instruction itinerary
1980   // is not available.
1981   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
1982   const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
1983 
1984   if (MCID.getNumDefs() == 0)
1985     return Sched::RegPressure;
1986   if (!Itins->isEmpty() &&
1987       Itins->getOperandCycle(MCID.getSchedClass(), 0) > 2U)
1988     return Sched::ILP;
1989 
1990   return Sched::RegPressure;
1991 }
1992 
1993 //===----------------------------------------------------------------------===//
1994 // Lowering Code
1995 //===----------------------------------------------------------------------===//
1996 
1997 static bool isSRL16(const SDValue &Op) {
1998   if (Op.getOpcode() != ISD::SRL)
1999     return false;
2000   if (auto Const = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2001     return Const->getZExtValue() == 16;
2002   return false;
2003 }
2004 
2005 static bool isSRA16(const SDValue &Op) {
2006   if (Op.getOpcode() != ISD::SRA)
2007     return false;
2008   if (auto Const = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2009     return Const->getZExtValue() == 16;
2010   return false;
2011 }
2012 
2013 static bool isSHL16(const SDValue &Op) {
2014   if (Op.getOpcode() != ISD::SHL)
2015     return false;
2016   if (auto Const = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2017     return Const->getZExtValue() == 16;
2018   return false;
2019 }
2020 
2021 // Check for a signed 16-bit value. We special case SRA because it makes it
2022 // more simple when also looking for SRAs that aren't sign extending a
2023 // smaller value. Without the check, we'd need to take extra care with
2024 // checking order for some operations.
2025 static bool isS16(const SDValue &Op, SelectionDAG &DAG) {
2026   if (isSRA16(Op))
2027     return isSHL16(Op.getOperand(0));
2028   return DAG.ComputeNumSignBits(Op) == 17;
2029 }
2030 
2031 /// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
2032 static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
2033   switch (CC) {
2034   default: llvm_unreachable("Unknown condition code!");
2035   case ISD::SETNE:  return ARMCC::NE;
2036   case ISD::SETEQ:  return ARMCC::EQ;
2037   case ISD::SETGT:  return ARMCC::GT;
2038   case ISD::SETGE:  return ARMCC::GE;
2039   case ISD::SETLT:  return ARMCC::LT;
2040   case ISD::SETLE:  return ARMCC::LE;
2041   case ISD::SETUGT: return ARMCC::HI;
2042   case ISD::SETUGE: return ARMCC::HS;
2043   case ISD::SETULT: return ARMCC::LO;
2044   case ISD::SETULE: return ARMCC::LS;
2045   }
2046 }
2047 
2048 /// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
2049 static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
2050                         ARMCC::CondCodes &CondCode2) {
2051   CondCode2 = ARMCC::AL;
2052   switch (CC) {
2053   default: llvm_unreachable("Unknown FP condition!");
2054   case ISD::SETEQ:
2055   case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
2056   case ISD::SETGT:
2057   case ISD::SETOGT: CondCode = ARMCC::GT; break;
2058   case ISD::SETGE:
2059   case ISD::SETOGE: CondCode = ARMCC::GE; break;
2060   case ISD::SETOLT: CondCode = ARMCC::MI; break;
2061   case ISD::SETOLE: CondCode = ARMCC::LS; break;
2062   case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
2063   case ISD::SETO:   CondCode = ARMCC::VC; break;
2064   case ISD::SETUO:  CondCode = ARMCC::VS; break;
2065   case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
2066   case ISD::SETUGT: CondCode = ARMCC::HI; break;
2067   case ISD::SETUGE: CondCode = ARMCC::PL; break;
2068   case ISD::SETLT:
2069   case ISD::SETULT: CondCode = ARMCC::LT; break;
2070   case ISD::SETLE:
2071   case ISD::SETULE: CondCode = ARMCC::LE; break;
2072   case ISD::SETNE:
2073   case ISD::SETUNE: CondCode = ARMCC::NE; break;
2074   }
2075 }
2076 
2077 //===----------------------------------------------------------------------===//
2078 //                      Calling Convention Implementation
2079 //===----------------------------------------------------------------------===//
2080 
2081 /// getEffectiveCallingConv - Get the effective calling convention, taking into
2082 /// account presence of floating point hardware and calling convention
2083 /// limitations, such as support for variadic functions.
2084 CallingConv::ID
2085 ARMTargetLowering::getEffectiveCallingConv(CallingConv::ID CC,
2086                                            bool isVarArg) const {
2087   switch (CC) {
2088   default:
2089     report_fatal_error("Unsupported calling convention");
2090   case CallingConv::ARM_AAPCS:
2091   case CallingConv::ARM_APCS:
2092   case CallingConv::GHC:
2093   case CallingConv::CFGuard_Check:
2094     return CC;
2095   case CallingConv::PreserveMost:
2096     return CallingConv::PreserveMost;
2097   case CallingConv::PreserveAll:
2098     return CallingConv::PreserveAll;
2099   case CallingConv::ARM_AAPCS_VFP:
2100   case CallingConv::Swift:
2101   case CallingConv::SwiftTail:
2102     return isVarArg ? CallingConv::ARM_AAPCS : CallingConv::ARM_AAPCS_VFP;
2103   case CallingConv::C:
2104   case CallingConv::Tail:
2105     if (!Subtarget->isAAPCS_ABI())
2106       return CallingConv::ARM_APCS;
2107     else if (Subtarget->hasFPRegs() && !Subtarget->isThumb1Only() &&
2108              getTargetMachine().Options.FloatABIType == FloatABI::Hard &&
2109              !isVarArg)
2110       return CallingConv::ARM_AAPCS_VFP;
2111     else
2112       return CallingConv::ARM_AAPCS;
2113   case CallingConv::Fast:
2114   case CallingConv::CXX_FAST_TLS:
2115     if (!Subtarget->isAAPCS_ABI()) {
2116       if (Subtarget->hasVFP2Base() && !Subtarget->isThumb1Only() && !isVarArg)
2117         return CallingConv::Fast;
2118       return CallingConv::ARM_APCS;
2119     } else if (Subtarget->hasVFP2Base() &&
2120                !Subtarget->isThumb1Only() && !isVarArg)
2121       return CallingConv::ARM_AAPCS_VFP;
2122     else
2123       return CallingConv::ARM_AAPCS;
2124   }
2125 }
2126 
2127 CCAssignFn *ARMTargetLowering::CCAssignFnForCall(CallingConv::ID CC,
2128                                                  bool isVarArg) const {
2129   return CCAssignFnForNode(CC, false, isVarArg);
2130 }
2131 
2132 CCAssignFn *ARMTargetLowering::CCAssignFnForReturn(CallingConv::ID CC,
2133                                                    bool isVarArg) const {
2134   return CCAssignFnForNode(CC, true, isVarArg);
2135 }
2136 
2137 /// CCAssignFnForNode - Selects the correct CCAssignFn for the given
2138 /// CallingConvention.
2139 CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
2140                                                  bool Return,
2141                                                  bool isVarArg) const {
2142   switch (getEffectiveCallingConv(CC, isVarArg)) {
2143   default:
2144     report_fatal_error("Unsupported calling convention");
2145   case CallingConv::ARM_APCS:
2146     return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
2147   case CallingConv::ARM_AAPCS:
2148     return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
2149   case CallingConv::ARM_AAPCS_VFP:
2150     return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
2151   case CallingConv::Fast:
2152     return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
2153   case CallingConv::GHC:
2154     return (Return ? RetCC_ARM_APCS : CC_ARM_APCS_GHC);
2155   case CallingConv::PreserveMost:
2156     return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
2157   case CallingConv::PreserveAll:
2158     return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
2159   case CallingConv::CFGuard_Check:
2160     return (Return ? RetCC_ARM_AAPCS : CC_ARM_Win32_CFGuard_Check);
2161   }
2162 }
2163 
2164 SDValue ARMTargetLowering::MoveToHPR(const SDLoc &dl, SelectionDAG &DAG,
2165                                      MVT LocVT, MVT ValVT, SDValue Val) const {
2166   Val = DAG.getNode(ISD::BITCAST, dl, MVT::getIntegerVT(LocVT.getSizeInBits()),
2167                     Val);
2168   if (Subtarget->hasFullFP16()) {
2169     Val = DAG.getNode(ARMISD::VMOVhr, dl, ValVT, Val);
2170   } else {
2171     Val = DAG.getNode(ISD::TRUNCATE, dl,
2172                       MVT::getIntegerVT(ValVT.getSizeInBits()), Val);
2173     Val = DAG.getNode(ISD::BITCAST, dl, ValVT, Val);
2174   }
2175   return Val;
2176 }
2177 
2178 SDValue ARMTargetLowering::MoveFromHPR(const SDLoc &dl, SelectionDAG &DAG,
2179                                        MVT LocVT, MVT ValVT,
2180                                        SDValue Val) const {
2181   if (Subtarget->hasFullFP16()) {
2182     Val = DAG.getNode(ARMISD::VMOVrh, dl,
2183                       MVT::getIntegerVT(LocVT.getSizeInBits()), Val);
2184   } else {
2185     Val = DAG.getNode(ISD::BITCAST, dl,
2186                       MVT::getIntegerVT(ValVT.getSizeInBits()), Val);
2187     Val = DAG.getNode(ISD::ZERO_EXTEND, dl,
2188                       MVT::getIntegerVT(LocVT.getSizeInBits()), Val);
2189   }
2190   return DAG.getNode(ISD::BITCAST, dl, LocVT, Val);
2191 }
2192 
2193 /// LowerCallResult - Lower the result values of a call into the
2194 /// appropriate copies out of appropriate physical registers.
2195 SDValue ARMTargetLowering::LowerCallResult(
2196     SDValue Chain, SDValue InGlue, CallingConv::ID CallConv, bool isVarArg,
2197     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
2198     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool isThisReturn,
2199     SDValue ThisVal) const {
2200   // Assign locations to each value returned by this call.
2201   SmallVector<CCValAssign, 16> RVLocs;
2202   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
2203                  *DAG.getContext());
2204   CCInfo.AnalyzeCallResult(Ins, CCAssignFnForReturn(CallConv, isVarArg));
2205 
2206   // Copy all of the result registers out of their specified physreg.
2207   for (unsigned i = 0; i != RVLocs.size(); ++i) {
2208     CCValAssign VA = RVLocs[i];
2209 
2210     // Pass 'this' value directly from the argument to return value, to avoid
2211     // reg unit interference
2212     if (i == 0 && isThisReturn) {
2213       assert(!VA.needsCustom() && VA.getLocVT() == MVT::i32 &&
2214              "unexpected return calling convention register assignment");
2215       InVals.push_back(ThisVal);
2216       continue;
2217     }
2218 
2219     SDValue Val;
2220     if (VA.needsCustom() &&
2221         (VA.getLocVT() == MVT::f64 || VA.getLocVT() == MVT::v2f64)) {
2222       // Handle f64 or half of a v2f64.
2223       SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
2224                                       InGlue);
2225       Chain = Lo.getValue(1);
2226       InGlue = Lo.getValue(2);
2227       VA = RVLocs[++i]; // skip ahead to next loc
2228       SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
2229                                       InGlue);
2230       Chain = Hi.getValue(1);
2231       InGlue = Hi.getValue(2);
2232       if (!Subtarget->isLittle())
2233         std::swap (Lo, Hi);
2234       Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
2235 
2236       if (VA.getLocVT() == MVT::v2f64) {
2237         SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
2238         Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
2239                           DAG.getConstant(0, dl, MVT::i32));
2240 
2241         VA = RVLocs[++i]; // skip ahead to next loc
2242         Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InGlue);
2243         Chain = Lo.getValue(1);
2244         InGlue = Lo.getValue(2);
2245         VA = RVLocs[++i]; // skip ahead to next loc
2246         Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InGlue);
2247         Chain = Hi.getValue(1);
2248         InGlue = Hi.getValue(2);
2249         if (!Subtarget->isLittle())
2250           std::swap (Lo, Hi);
2251         Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
2252         Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
2253                           DAG.getConstant(1, dl, MVT::i32));
2254       }
2255     } else {
2256       Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
2257                                InGlue);
2258       Chain = Val.getValue(1);
2259       InGlue = Val.getValue(2);
2260     }
2261 
2262     switch (VA.getLocInfo()) {
2263     default: llvm_unreachable("Unknown loc info!");
2264     case CCValAssign::Full: break;
2265     case CCValAssign::BCvt:
2266       Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val);
2267       break;
2268     }
2269 
2270     // f16 arguments have their size extended to 4 bytes and passed as if they
2271     // had been copied to the LSBs of a 32-bit register.
2272     // For that, it's passed extended to i32 (soft ABI) or to f32 (hard ABI)
2273     if (VA.needsCustom() &&
2274         (VA.getValVT() == MVT::f16 || VA.getValVT() == MVT::bf16))
2275       Val = MoveToHPR(dl, DAG, VA.getLocVT(), VA.getValVT(), Val);
2276 
2277     InVals.push_back(Val);
2278   }
2279 
2280   return Chain;
2281 }
2282 
2283 std::pair<SDValue, MachinePointerInfo> ARMTargetLowering::computeAddrForCallArg(
2284     const SDLoc &dl, SelectionDAG &DAG, const CCValAssign &VA, SDValue StackPtr,
2285     bool IsTailCall, int SPDiff) const {
2286   SDValue DstAddr;
2287   MachinePointerInfo DstInfo;
2288   int32_t Offset = VA.getLocMemOffset();
2289   MachineFunction &MF = DAG.getMachineFunction();
2290 
2291   if (IsTailCall) {
2292         Offset += SPDiff;
2293         auto PtrVT = getPointerTy(DAG.getDataLayout());
2294         int Size = VA.getLocVT().getFixedSizeInBits() / 8;
2295         int FI = MF.getFrameInfo().CreateFixedObject(Size, Offset, true);
2296         DstAddr = DAG.getFrameIndex(FI, PtrVT);
2297         DstInfo =
2298             MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
2299   } else {
2300         SDValue PtrOff = DAG.getIntPtrConstant(Offset, dl);
2301         DstAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
2302                               StackPtr, PtrOff);
2303         DstInfo =
2304             MachinePointerInfo::getStack(DAG.getMachineFunction(), Offset);
2305   }
2306 
2307   return std::make_pair(DstAddr, DstInfo);
2308 }
2309 
2310 void ARMTargetLowering::PassF64ArgInRegs(const SDLoc &dl, SelectionDAG &DAG,
2311                                          SDValue Chain, SDValue &Arg,
2312                                          RegsToPassVector &RegsToPass,
2313                                          CCValAssign &VA, CCValAssign &NextVA,
2314                                          SDValue &StackPtr,
2315                                          SmallVectorImpl<SDValue> &MemOpChains,
2316                                          bool IsTailCall,
2317                                          int SPDiff) const {
2318   SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
2319                               DAG.getVTList(MVT::i32, MVT::i32), Arg);
2320   unsigned id = Subtarget->isLittle() ? 0 : 1;
2321   RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd.getValue(id)));
2322 
2323   if (NextVA.isRegLoc())
2324     RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1-id)));
2325   else {
2326     assert(NextVA.isMemLoc());
2327     if (!StackPtr.getNode())
2328       StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP,
2329                                     getPointerTy(DAG.getDataLayout()));
2330 
2331     SDValue DstAddr;
2332     MachinePointerInfo DstInfo;
2333     std::tie(DstAddr, DstInfo) =
2334         computeAddrForCallArg(dl, DAG, NextVA, StackPtr, IsTailCall, SPDiff);
2335     MemOpChains.push_back(
2336         DAG.getStore(Chain, dl, fmrrd.getValue(1 - id), DstAddr, DstInfo));
2337   }
2338 }
2339 
2340 static bool canGuaranteeTCO(CallingConv::ID CC, bool GuaranteeTailCalls) {
2341   return (CC == CallingConv::Fast && GuaranteeTailCalls) ||
2342          CC == CallingConv::Tail || CC == CallingConv::SwiftTail;
2343 }
2344 
2345 /// LowerCall - Lowering a call into a callseq_start <-
2346 /// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
2347 /// nodes.
2348 SDValue
2349 ARMTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
2350                              SmallVectorImpl<SDValue> &InVals) const {
2351   SelectionDAG &DAG                     = CLI.DAG;
2352   SDLoc &dl                             = CLI.DL;
2353   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
2354   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
2355   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
2356   SDValue Chain                         = CLI.Chain;
2357   SDValue Callee                        = CLI.Callee;
2358   bool &isTailCall                      = CLI.IsTailCall;
2359   CallingConv::ID CallConv              = CLI.CallConv;
2360   bool doesNotRet                       = CLI.DoesNotReturn;
2361   bool isVarArg                         = CLI.IsVarArg;
2362 
2363   MachineFunction &MF = DAG.getMachineFunction();
2364   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2365   MachineFunction::CallSiteInfo CSInfo;
2366   bool isStructRet = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
2367   bool isThisReturn = false;
2368   bool isCmseNSCall   = false;
2369   bool isSibCall = false;
2370   bool PreferIndirect = false;
2371   bool GuardWithBTI = false;
2372 
2373   // Lower 'returns_twice' calls to a pseudo-instruction.
2374   if (CLI.CB && CLI.CB->getAttributes().hasFnAttr(Attribute::ReturnsTwice) &&
2375       !Subtarget->noBTIAtReturnTwice())
2376     GuardWithBTI = AFI->branchTargetEnforcement();
2377 
2378   // Determine whether this is a non-secure function call.
2379   if (CLI.CB && CLI.CB->getAttributes().hasFnAttr("cmse_nonsecure_call"))
2380     isCmseNSCall = true;
2381 
2382   // Disable tail calls if they're not supported.
2383   if (!Subtarget->supportsTailCall())
2384     isTailCall = false;
2385 
2386   // For both the non-secure calls and the returns from a CMSE entry function,
2387   // the function needs to do some extra work afte r the call, or before the
2388   // return, respectively, thus it cannot end with atail call
2389   if (isCmseNSCall || AFI->isCmseNSEntryFunction())
2390     isTailCall = false;
2391 
2392   if (isa<GlobalAddressSDNode>(Callee)) {
2393     // If we're optimizing for minimum size and the function is called three or
2394     // more times in this block, we can improve codesize by calling indirectly
2395     // as BLXr has a 16-bit encoding.
2396     auto *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal();
2397     if (CLI.CB) {
2398       auto *BB = CLI.CB->getParent();
2399       PreferIndirect = Subtarget->isThumb() && Subtarget->hasMinSize() &&
2400                        count_if(GV->users(), [&BB](const User *U) {
2401                          return isa<Instruction>(U) &&
2402                                 cast<Instruction>(U)->getParent() == BB;
2403                        }) > 2;
2404     }
2405   }
2406   if (isTailCall) {
2407     // Check if it's really possible to do a tail call.
2408     isTailCall = IsEligibleForTailCallOptimization(
2409         Callee, CallConv, isVarArg, isStructRet,
2410         MF.getFunction().hasStructRetAttr(), Outs, OutVals, Ins, DAG,
2411         PreferIndirect);
2412 
2413     if (isTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt &&
2414         CallConv != CallingConv::Tail && CallConv != CallingConv::SwiftTail)
2415       isSibCall = true;
2416 
2417     // We don't support GuaranteedTailCallOpt for ARM, only automatically
2418     // detected sibcalls.
2419     if (isTailCall)
2420       ++NumTailCalls;
2421   }
2422 
2423   if (!isTailCall && CLI.CB && CLI.CB->isMustTailCall())
2424     report_fatal_error("failed to perform tail call elimination on a call "
2425                        "site marked musttail");
2426   // Analyze operands of the call, assigning locations to each operand.
2427   SmallVector<CCValAssign, 16> ArgLocs;
2428   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
2429                  *DAG.getContext());
2430   CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CallConv, isVarArg));
2431 
2432   // Get a count of how many bytes are to be pushed on the stack.
2433   unsigned NumBytes = CCInfo.getStackSize();
2434 
2435   // SPDiff is the byte offset of the call's argument area from the callee's.
2436   // Stores to callee stack arguments will be placed in FixedStackSlots offset
2437   // by this amount for a tail call. In a sibling call it must be 0 because the
2438   // caller will deallocate the entire stack and the callee still expects its
2439   // arguments to begin at SP+0. Completely unused for non-tail calls.
2440   int SPDiff = 0;
2441 
2442   if (isTailCall && !isSibCall) {
2443     auto FuncInfo = MF.getInfo<ARMFunctionInfo>();
2444     unsigned NumReusableBytes = FuncInfo->getArgumentStackSize();
2445 
2446     // Since callee will pop argument stack as a tail call, we must keep the
2447     // popped size 16-byte aligned.
2448     Align StackAlign = DAG.getDataLayout().getStackAlignment();
2449     NumBytes = alignTo(NumBytes, StackAlign);
2450 
2451     // SPDiff will be negative if this tail call requires more space than we
2452     // would automatically have in our incoming argument space. Positive if we
2453     // can actually shrink the stack.
2454     SPDiff = NumReusableBytes - NumBytes;
2455 
2456     // If this call requires more stack than we have available from
2457     // LowerFormalArguments, tell FrameLowering to reserve space for it.
2458     if (SPDiff < 0 && AFI->getArgRegsSaveSize() < (unsigned)-SPDiff)
2459       AFI->setArgRegsSaveSize(-SPDiff);
2460   }
2461 
2462   if (isSibCall) {
2463     // For sibling tail calls, memory operands are available in our caller's stack.
2464     NumBytes = 0;
2465   } else {
2466     // Adjust the stack pointer for the new arguments...
2467     // These operations are automatically eliminated by the prolog/epilog pass
2468     Chain = DAG.getCALLSEQ_START(Chain, isTailCall ? 0 : NumBytes, 0, dl);
2469   }
2470 
2471   SDValue StackPtr =
2472       DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy(DAG.getDataLayout()));
2473 
2474   RegsToPassVector RegsToPass;
2475   SmallVector<SDValue, 8> MemOpChains;
2476 
2477   // During a tail call, stores to the argument area must happen after all of
2478   // the function's incoming arguments have been loaded because they may alias.
2479   // This is done by folding in a TokenFactor from LowerFormalArguments, but
2480   // there's no point in doing so repeatedly so this tracks whether that's
2481   // happened yet.
2482   bool AfterFormalArgLoads = false;
2483 
2484   // Walk the register/memloc assignments, inserting copies/loads.  In the case
2485   // of tail call optimization, arguments are handled later.
2486   for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
2487        i != e;
2488        ++i, ++realArgIdx) {
2489     CCValAssign &VA = ArgLocs[i];
2490     SDValue Arg = OutVals[realArgIdx];
2491     ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
2492     bool isByVal = Flags.isByVal();
2493 
2494     // Promote the value if needed.
2495     switch (VA.getLocInfo()) {
2496     default: llvm_unreachable("Unknown loc info!");
2497     case CCValAssign::Full: break;
2498     case CCValAssign::SExt:
2499       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
2500       break;
2501     case CCValAssign::ZExt:
2502       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
2503       break;
2504     case CCValAssign::AExt:
2505       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
2506       break;
2507     case CCValAssign::BCvt:
2508       Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
2509       break;
2510     }
2511 
2512     if (isTailCall && VA.isMemLoc() && !AfterFormalArgLoads) {
2513       Chain = DAG.getStackArgumentTokenFactor(Chain);
2514       AfterFormalArgLoads = true;
2515     }
2516 
2517     // f16 arguments have their size extended to 4 bytes and passed as if they
2518     // had been copied to the LSBs of a 32-bit register.
2519     // For that, it's passed extended to i32 (soft ABI) or to f32 (hard ABI)
2520     if (VA.needsCustom() &&
2521         (VA.getValVT() == MVT::f16 || VA.getValVT() == MVT::bf16)) {
2522       Arg = MoveFromHPR(dl, DAG, VA.getLocVT(), VA.getValVT(), Arg);
2523     } else {
2524       // f16 arguments could have been extended prior to argument lowering.
2525       // Mask them arguments if this is a CMSE nonsecure call.
2526       auto ArgVT = Outs[realArgIdx].ArgVT;
2527       if (isCmseNSCall && (ArgVT == MVT::f16)) {
2528         auto LocBits = VA.getLocVT().getSizeInBits();
2529         auto MaskValue = APInt::getLowBitsSet(LocBits, ArgVT.getSizeInBits());
2530         SDValue Mask =
2531             DAG.getConstant(MaskValue, dl, MVT::getIntegerVT(LocBits));
2532         Arg = DAG.getNode(ISD::BITCAST, dl, MVT::getIntegerVT(LocBits), Arg);
2533         Arg = DAG.getNode(ISD::AND, dl, MVT::getIntegerVT(LocBits), Arg, Mask);
2534         Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
2535       }
2536     }
2537 
2538     // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
2539     if (VA.needsCustom() && VA.getLocVT() == MVT::v2f64) {
2540       SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
2541                                 DAG.getConstant(0, dl, MVT::i32));
2542       SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
2543                                 DAG.getConstant(1, dl, MVT::i32));
2544 
2545       PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass, VA, ArgLocs[++i],
2546                        StackPtr, MemOpChains, isTailCall, SPDiff);
2547 
2548       VA = ArgLocs[++i]; // skip ahead to next loc
2549       if (VA.isRegLoc()) {
2550         PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass, VA, ArgLocs[++i],
2551                          StackPtr, MemOpChains, isTailCall, SPDiff);
2552       } else {
2553         assert(VA.isMemLoc());
2554         SDValue DstAddr;
2555         MachinePointerInfo DstInfo;
2556         std::tie(DstAddr, DstInfo) =
2557             computeAddrForCallArg(dl, DAG, VA, StackPtr, isTailCall, SPDiff);
2558         MemOpChains.push_back(DAG.getStore(Chain, dl, Op1, DstAddr, DstInfo));
2559       }
2560     } else if (VA.needsCustom() && VA.getLocVT() == MVT::f64) {
2561       PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
2562                        StackPtr, MemOpChains, isTailCall, SPDiff);
2563     } else if (VA.isRegLoc()) {
2564       if (realArgIdx == 0 && Flags.isReturned() && !Flags.isSwiftSelf() &&
2565           Outs[0].VT == MVT::i32) {
2566         assert(VA.getLocVT() == MVT::i32 &&
2567                "unexpected calling convention register assignment");
2568         assert(!Ins.empty() && Ins[0].VT == MVT::i32 &&
2569                "unexpected use of 'returned'");
2570         isThisReturn = true;
2571       }
2572       const TargetOptions &Options = DAG.getTarget().Options;
2573       if (Options.EmitCallSiteInfo)
2574         CSInfo.emplace_back(VA.getLocReg(), i);
2575       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2576     } else if (isByVal) {
2577       assert(VA.isMemLoc());
2578       unsigned offset = 0;
2579 
2580       // True if this byval aggregate will be split between registers
2581       // and memory.
2582       unsigned ByValArgsCount = CCInfo.getInRegsParamsCount();
2583       unsigned CurByValIdx = CCInfo.getInRegsParamsProcessed();
2584 
2585       if (CurByValIdx < ByValArgsCount) {
2586 
2587         unsigned RegBegin, RegEnd;
2588         CCInfo.getInRegsParamInfo(CurByValIdx, RegBegin, RegEnd);
2589 
2590         EVT PtrVT =
2591             DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2592         unsigned int i, j;
2593         for (i = 0, j = RegBegin; j < RegEnd; i++, j++) {
2594           SDValue Const = DAG.getConstant(4*i, dl, MVT::i32);
2595           SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
2596           SDValue Load =
2597               DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo(),
2598                           DAG.InferPtrAlign(AddArg));
2599           MemOpChains.push_back(Load.getValue(1));
2600           RegsToPass.push_back(std::make_pair(j, Load));
2601         }
2602 
2603         // If parameter size outsides register area, "offset" value
2604         // helps us to calculate stack slot for remained part properly.
2605         offset = RegEnd - RegBegin;
2606 
2607         CCInfo.nextInRegsParam();
2608       }
2609 
2610       if (Flags.getByValSize() > 4*offset) {
2611         auto PtrVT = getPointerTy(DAG.getDataLayout());
2612         SDValue Dst;
2613         MachinePointerInfo DstInfo;
2614         std::tie(Dst, DstInfo) =
2615             computeAddrForCallArg(dl, DAG, VA, StackPtr, isTailCall, SPDiff);
2616         SDValue SrcOffset = DAG.getIntPtrConstant(4*offset, dl);
2617         SDValue Src = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, SrcOffset);
2618         SDValue SizeNode = DAG.getConstant(Flags.getByValSize() - 4*offset, dl,
2619                                            MVT::i32);
2620         SDValue AlignNode =
2621             DAG.getConstant(Flags.getNonZeroByValAlign().value(), dl, MVT::i32);
2622 
2623         SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
2624         SDValue Ops[] = { Chain, Dst, Src, SizeNode, AlignNode};
2625         MemOpChains.push_back(DAG.getNode(ARMISD::COPY_STRUCT_BYVAL, dl, VTs,
2626                                           Ops));
2627       }
2628     } else {
2629       assert(VA.isMemLoc());
2630       SDValue DstAddr;
2631       MachinePointerInfo DstInfo;
2632       std::tie(DstAddr, DstInfo) =
2633           computeAddrForCallArg(dl, DAG, VA, StackPtr, isTailCall, SPDiff);
2634 
2635       SDValue Store = DAG.getStore(Chain, dl, Arg, DstAddr, DstInfo);
2636       MemOpChains.push_back(Store);
2637     }
2638   }
2639 
2640   if (!MemOpChains.empty())
2641     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
2642 
2643   // Build a sequence of copy-to-reg nodes chained together with token chain
2644   // and flag operands which copy the outgoing args into the appropriate regs.
2645   SDValue InGlue;
2646   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2647     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2648                              RegsToPass[i].second, InGlue);
2649     InGlue = Chain.getValue(1);
2650   }
2651 
2652   // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2653   // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2654   // node so that legalize doesn't hack it.
2655   bool isDirect = false;
2656 
2657   const TargetMachine &TM = getTargetMachine();
2658   const Module *Mod = MF.getFunction().getParent();
2659   const GlobalValue *GVal = nullptr;
2660   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2661     GVal = G->getGlobal();
2662   bool isStub =
2663       !TM.shouldAssumeDSOLocal(*Mod, GVal) && Subtarget->isTargetMachO();
2664 
2665   bool isARMFunc = !Subtarget->isThumb() || (isStub && !Subtarget->isMClass());
2666   bool isLocalARMFunc = false;
2667   auto PtrVt = getPointerTy(DAG.getDataLayout());
2668 
2669   if (Subtarget->genLongCalls()) {
2670     assert((!isPositionIndependent() || Subtarget->isTargetWindows()) &&
2671            "long-calls codegen is not position independent!");
2672     // Handle a global address or an external symbol. If it's not one of
2673     // those, the target's already in a register, so we don't need to do
2674     // anything extra.
2675     if (isa<GlobalAddressSDNode>(Callee)) {
2676       if (Subtarget->genExecuteOnly()) {
2677         if (Subtarget->useMovt())
2678           ++NumMovwMovt;
2679         Callee = DAG.getNode(ARMISD::Wrapper, dl, PtrVt,
2680                              DAG.getTargetGlobalAddress(GVal, dl, PtrVt));
2681       } else {
2682         // Create a constant pool entry for the callee address
2683         unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2684         ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(
2685             GVal, ARMPCLabelIndex, ARMCP::CPValue, 0);
2686 
2687         // Get the address of the callee into a register
2688         SDValue Addr = DAG.getTargetConstantPool(CPV, PtrVt, Align(4));
2689         Addr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Addr);
2690         Callee = DAG.getLoad(
2691             PtrVt, dl, DAG.getEntryNode(), Addr,
2692             MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2693       }
2694     } else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) {
2695       const char *Sym = S->getSymbol();
2696 
2697       if (Subtarget->genExecuteOnly()) {
2698         if (Subtarget->useMovt())
2699           ++NumMovwMovt;
2700         Callee = DAG.getNode(ARMISD::Wrapper, dl, PtrVt,
2701                              DAG.getTargetGlobalAddress(GVal, dl, PtrVt));
2702       } else {
2703         // Create a constant pool entry for the callee address
2704         unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2705         ARMConstantPoolValue *CPV = ARMConstantPoolSymbol::Create(
2706             *DAG.getContext(), Sym, ARMPCLabelIndex, 0);
2707 
2708         // Get the address of the callee into a register
2709         SDValue Addr = DAG.getTargetConstantPool(CPV, PtrVt, Align(4));
2710         Addr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Addr);
2711         Callee = DAG.getLoad(
2712             PtrVt, dl, DAG.getEntryNode(), Addr,
2713             MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2714       }
2715     }
2716   } else if (isa<GlobalAddressSDNode>(Callee)) {
2717     if (!PreferIndirect) {
2718       isDirect = true;
2719       bool isDef = GVal->isStrongDefinitionForLinker();
2720 
2721       // ARM call to a local ARM function is predicable.
2722       isLocalARMFunc = !Subtarget->isThumb() && (isDef || !ARMInterworking);
2723       // tBX takes a register source operand.
2724       if (isStub && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
2725         assert(Subtarget->isTargetMachO() && "WrapperPIC use on non-MachO?");
2726         Callee = DAG.getNode(
2727             ARMISD::WrapperPIC, dl, PtrVt,
2728             DAG.getTargetGlobalAddress(GVal, dl, PtrVt, 0, ARMII::MO_NONLAZY));
2729         Callee = DAG.getLoad(
2730             PtrVt, dl, DAG.getEntryNode(), Callee,
2731             MachinePointerInfo::getGOT(DAG.getMachineFunction()), MaybeAlign(),
2732             MachineMemOperand::MODereferenceable |
2733                 MachineMemOperand::MOInvariant);
2734       } else if (Subtarget->isTargetCOFF()) {
2735         assert(Subtarget->isTargetWindows() &&
2736                "Windows is the only supported COFF target");
2737         unsigned TargetFlags = ARMII::MO_NO_FLAG;
2738         if (GVal->hasDLLImportStorageClass())
2739           TargetFlags = ARMII::MO_DLLIMPORT;
2740         else if (!TM.shouldAssumeDSOLocal(*GVal->getParent(), GVal))
2741           TargetFlags = ARMII::MO_COFFSTUB;
2742         Callee = DAG.getTargetGlobalAddress(GVal, dl, PtrVt, /*offset=*/0,
2743                                             TargetFlags);
2744         if (TargetFlags & (ARMII::MO_DLLIMPORT | ARMII::MO_COFFSTUB))
2745           Callee =
2746               DAG.getLoad(PtrVt, dl, DAG.getEntryNode(),
2747                           DAG.getNode(ARMISD::Wrapper, dl, PtrVt, Callee),
2748                           MachinePointerInfo::getGOT(DAG.getMachineFunction()));
2749       } else {
2750         Callee = DAG.getTargetGlobalAddress(GVal, dl, PtrVt, 0, 0);
2751       }
2752     }
2753   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2754     isDirect = true;
2755     // tBX takes a register source operand.
2756     const char *Sym = S->getSymbol();
2757     if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
2758       unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2759       ARMConstantPoolValue *CPV =
2760         ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
2761                                       ARMPCLabelIndex, 4);
2762       SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, Align(4));
2763       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2764       Callee = DAG.getLoad(
2765           PtrVt, dl, DAG.getEntryNode(), CPAddr,
2766           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2767       SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
2768       Callee = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVt, Callee, PICLabel);
2769     } else {
2770       Callee = DAG.getTargetExternalSymbol(Sym, PtrVt, 0);
2771     }
2772   }
2773 
2774   if (isCmseNSCall) {
2775     assert(!isARMFunc && !isDirect &&
2776            "Cannot handle call to ARM function or direct call");
2777     if (NumBytes > 0) {
2778       DiagnosticInfoUnsupported Diag(DAG.getMachineFunction().getFunction(),
2779                                      "call to non-secure function would "
2780                                      "require passing arguments on stack",
2781                                      dl.getDebugLoc());
2782       DAG.getContext()->diagnose(Diag);
2783     }
2784     if (isStructRet) {
2785       DiagnosticInfoUnsupported Diag(
2786           DAG.getMachineFunction().getFunction(),
2787           "call to non-secure function would return value through pointer",
2788           dl.getDebugLoc());
2789       DAG.getContext()->diagnose(Diag);
2790     }
2791   }
2792 
2793   // FIXME: handle tail calls differently.
2794   unsigned CallOpc;
2795   if (Subtarget->isThumb()) {
2796     if (GuardWithBTI)
2797       CallOpc = ARMISD::t2CALL_BTI;
2798     else if (isCmseNSCall)
2799       CallOpc = ARMISD::tSECALL;
2800     else if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
2801       CallOpc = ARMISD::CALL_NOLINK;
2802     else
2803       CallOpc = ARMISD::CALL;
2804   } else {
2805     if (!isDirect && !Subtarget->hasV5TOps())
2806       CallOpc = ARMISD::CALL_NOLINK;
2807     else if (doesNotRet && isDirect && Subtarget->hasRetAddrStack() &&
2808              // Emit regular call when code size is the priority
2809              !Subtarget->hasMinSize())
2810       // "mov lr, pc; b _foo" to avoid confusing the RSP
2811       CallOpc = ARMISD::CALL_NOLINK;
2812     else
2813       CallOpc = isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL;
2814   }
2815 
2816   // We don't usually want to end the call-sequence here because we would tidy
2817   // the frame up *after* the call, however in the ABI-changing tail-call case
2818   // we've carefully laid out the parameters so that when sp is reset they'll be
2819   // in the correct location.
2820   if (isTailCall && !isSibCall) {
2821     Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InGlue, dl);
2822     InGlue = Chain.getValue(1);
2823   }
2824 
2825   std::vector<SDValue> Ops;
2826   Ops.push_back(Chain);
2827   Ops.push_back(Callee);
2828 
2829   if (isTailCall) {
2830     Ops.push_back(DAG.getTargetConstant(SPDiff, dl, MVT::i32));
2831   }
2832 
2833   // Add argument registers to the end of the list so that they are known live
2834   // into the call.
2835   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2836     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2837                                   RegsToPass[i].second.getValueType()));
2838 
2839   // Add a register mask operand representing the call-preserved registers.
2840   const uint32_t *Mask;
2841   const ARMBaseRegisterInfo *ARI = Subtarget->getRegisterInfo();
2842   if (isThisReturn) {
2843     // For 'this' returns, use the R0-preserving mask if applicable
2844     Mask = ARI->getThisReturnPreservedMask(MF, CallConv);
2845     if (!Mask) {
2846       // Set isThisReturn to false if the calling convention is not one that
2847       // allows 'returned' to be modeled in this way, so LowerCallResult does
2848       // not try to pass 'this' straight through
2849       isThisReturn = false;
2850       Mask = ARI->getCallPreservedMask(MF, CallConv);
2851     }
2852   } else
2853     Mask = ARI->getCallPreservedMask(MF, CallConv);
2854 
2855   assert(Mask && "Missing call preserved mask for calling convention");
2856   Ops.push_back(DAG.getRegisterMask(Mask));
2857 
2858   if (InGlue.getNode())
2859     Ops.push_back(InGlue);
2860 
2861   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2862   if (isTailCall) {
2863     MF.getFrameInfo().setHasTailCall();
2864     SDValue Ret = DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, Ops);
2865     DAG.addNoMergeSiteInfo(Ret.getNode(), CLI.NoMerge);
2866     DAG.addCallSiteInfo(Ret.getNode(), std::move(CSInfo));
2867     return Ret;
2868   }
2869 
2870   // Returns a chain and a flag for retval copy to use.
2871   Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops);
2872   DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
2873   InGlue = Chain.getValue(1);
2874   DAG.addCallSiteInfo(Chain.getNode(), std::move(CSInfo));
2875 
2876   // If we're guaranteeing tail-calls will be honoured, the callee must
2877   // pop its own argument stack on return. But this call is *not* a tail call so
2878   // we need to undo that after it returns to restore the status-quo.
2879   bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt;
2880   uint64_t CalleePopBytes =
2881       canGuaranteeTCO(CallConv, TailCallOpt) ? alignTo(NumBytes, 16) : -1ULL;
2882 
2883   Chain = DAG.getCALLSEQ_END(Chain, NumBytes, CalleePopBytes, InGlue, dl);
2884   if (!Ins.empty())
2885     InGlue = Chain.getValue(1);
2886 
2887   // Handle result values, copying them out of physregs into vregs that we
2888   // return.
2889   return LowerCallResult(Chain, InGlue, CallConv, isVarArg, Ins, dl, DAG,
2890                          InVals, isThisReturn,
2891                          isThisReturn ? OutVals[0] : SDValue());
2892 }
2893 
2894 /// HandleByVal - Every parameter *after* a byval parameter is passed
2895 /// on the stack.  Remember the next parameter register to allocate,
2896 /// and then confiscate the rest of the parameter registers to insure
2897 /// this.
2898 void ARMTargetLowering::HandleByVal(CCState *State, unsigned &Size,
2899                                     Align Alignment) const {
2900   // Byval (as with any stack) slots are always at least 4 byte aligned.
2901   Alignment = std::max(Alignment, Align(4));
2902 
2903   unsigned Reg = State->AllocateReg(GPRArgRegs);
2904   if (!Reg)
2905     return;
2906 
2907   unsigned AlignInRegs = Alignment.value() / 4;
2908   unsigned Waste = (ARM::R4 - Reg) % AlignInRegs;
2909   for (unsigned i = 0; i < Waste; ++i)
2910     Reg = State->AllocateReg(GPRArgRegs);
2911 
2912   if (!Reg)
2913     return;
2914 
2915   unsigned Excess = 4 * (ARM::R4 - Reg);
2916 
2917   // Special case when NSAA != SP and parameter size greater than size of
2918   // all remained GPR regs. In that case we can't split parameter, we must
2919   // send it to stack. We also must set NCRN to R4, so waste all
2920   // remained registers.
2921   const unsigned NSAAOffset = State->getStackSize();
2922   if (NSAAOffset != 0 && Size > Excess) {
2923     while (State->AllocateReg(GPRArgRegs))
2924       ;
2925     return;
2926   }
2927 
2928   // First register for byval parameter is the first register that wasn't
2929   // allocated before this method call, so it would be "reg".
2930   // If parameter is small enough to be saved in range [reg, r4), then
2931   // the end (first after last) register would be reg + param-size-in-regs,
2932   // else parameter would be splitted between registers and stack,
2933   // end register would be r4 in this case.
2934   unsigned ByValRegBegin = Reg;
2935   unsigned ByValRegEnd = std::min<unsigned>(Reg + Size / 4, ARM::R4);
2936   State->addInRegsParamInfo(ByValRegBegin, ByValRegEnd);
2937   // Note, first register is allocated in the beginning of function already,
2938   // allocate remained amount of registers we need.
2939   for (unsigned i = Reg + 1; i != ByValRegEnd; ++i)
2940     State->AllocateReg(GPRArgRegs);
2941   // A byval parameter that is split between registers and memory needs its
2942   // size truncated here.
2943   // In the case where the entire structure fits in registers, we set the
2944   // size in memory to zero.
2945   Size = std::max<int>(Size - Excess, 0);
2946 }
2947 
2948 /// MatchingStackOffset - Return true if the given stack call argument is
2949 /// already available in the same position (relatively) of the caller's
2950 /// incoming argument stack.
2951 static
2952 bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2953                          MachineFrameInfo &MFI, const MachineRegisterInfo *MRI,
2954                          const TargetInstrInfo *TII) {
2955   unsigned Bytes = Arg.getValueSizeInBits() / 8;
2956   int FI = std::numeric_limits<int>::max();
2957   if (Arg.getOpcode() == ISD::CopyFromReg) {
2958     Register VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2959     if (!VR.isVirtual())
2960       return false;
2961     MachineInstr *Def = MRI->getVRegDef(VR);
2962     if (!Def)
2963       return false;
2964     if (!Flags.isByVal()) {
2965       if (!TII->isLoadFromStackSlot(*Def, FI))
2966         return false;
2967     } else {
2968       return false;
2969     }
2970   } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2971     if (Flags.isByVal())
2972       // ByVal argument is passed in as a pointer but it's now being
2973       // dereferenced. e.g.
2974       // define @foo(%struct.X* %A) {
2975       //   tail call @bar(%struct.X* byval %A)
2976       // }
2977       return false;
2978     SDValue Ptr = Ld->getBasePtr();
2979     FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2980     if (!FINode)
2981       return false;
2982     FI = FINode->getIndex();
2983   } else
2984     return false;
2985 
2986   assert(FI != std::numeric_limits<int>::max());
2987   if (!MFI.isFixedObjectIndex(FI))
2988     return false;
2989   return Offset == MFI.getObjectOffset(FI) && Bytes == MFI.getObjectSize(FI);
2990 }
2991 
2992 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
2993 /// for tail call optimization. Targets which want to do tail call
2994 /// optimization should implement this function.
2995 bool ARMTargetLowering::IsEligibleForTailCallOptimization(
2996     SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg,
2997     bool isCalleeStructRet, bool isCallerStructRet,
2998     const SmallVectorImpl<ISD::OutputArg> &Outs,
2999     const SmallVectorImpl<SDValue> &OutVals,
3000     const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG,
3001     const bool isIndirect) const {
3002   MachineFunction &MF = DAG.getMachineFunction();
3003   const Function &CallerF = MF.getFunction();
3004   CallingConv::ID CallerCC = CallerF.getCallingConv();
3005 
3006   assert(Subtarget->supportsTailCall());
3007 
3008   // Indirect tail calls cannot be optimized for Thumb1 if the args
3009   // to the call take up r0-r3. The reason is that there are no legal registers
3010   // left to hold the pointer to the function to be called.
3011   // Similarly, if the function uses return address sign and authentication,
3012   // r12 is needed to hold the PAC and is not available to hold the callee
3013   // address.
3014   if (Outs.size() >= 4 &&
3015       (!isa<GlobalAddressSDNode>(Callee.getNode()) || isIndirect)) {
3016     if (Subtarget->isThumb1Only())
3017       return false;
3018     // Conservatively assume the function spills LR.
3019     if (MF.getInfo<ARMFunctionInfo>()->shouldSignReturnAddress(true))
3020       return false;
3021   }
3022 
3023   // Look for obvious safe cases to perform tail call optimization that do not
3024   // require ABI changes. This is what gcc calls sibcall.
3025 
3026   // Exception-handling functions need a special set of instructions to indicate
3027   // a return to the hardware. Tail-calling another function would probably
3028   // break this.
3029   if (CallerF.hasFnAttribute("interrupt"))
3030     return false;
3031 
3032   if (canGuaranteeTCO(CalleeCC, getTargetMachine().Options.GuaranteedTailCallOpt))
3033     return CalleeCC == CallerCC;
3034 
3035   // Also avoid sibcall optimization if either caller or callee uses struct
3036   // return semantics.
3037   if (isCalleeStructRet || isCallerStructRet)
3038     return false;
3039 
3040   // Externally-defined functions with weak linkage should not be
3041   // tail-called on ARM when the OS does not support dynamic
3042   // pre-emption of symbols, as the AAELF spec requires normal calls
3043   // to undefined weak functions to be replaced with a NOP or jump to the
3044   // next instruction. The behaviour of branch instructions in this
3045   // situation (as used for tail calls) is implementation-defined, so we
3046   // cannot rely on the linker replacing the tail call with a return.
3047   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
3048     const GlobalValue *GV = G->getGlobal();
3049     const Triple &TT = getTargetMachine().getTargetTriple();
3050     if (GV->hasExternalWeakLinkage() &&
3051         (!TT.isOSWindows() || TT.isOSBinFormatELF() || TT.isOSBinFormatMachO()))
3052       return false;
3053   }
3054 
3055   // Check that the call results are passed in the same way.
3056   LLVMContext &C = *DAG.getContext();
3057   if (!CCState::resultsCompatible(
3058           getEffectiveCallingConv(CalleeCC, isVarArg),
3059           getEffectiveCallingConv(CallerCC, CallerF.isVarArg()), MF, C, Ins,
3060           CCAssignFnForReturn(CalleeCC, isVarArg),
3061           CCAssignFnForReturn(CallerCC, CallerF.isVarArg())))
3062     return false;
3063   // The callee has to preserve all registers the caller needs to preserve.
3064   const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
3065   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
3066   if (CalleeCC != CallerCC) {
3067     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
3068     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
3069       return false;
3070   }
3071 
3072   // If Caller's vararg or byval argument has been split between registers and
3073   // stack, do not perform tail call, since part of the argument is in caller's
3074   // local frame.
3075   const ARMFunctionInfo *AFI_Caller = MF.getInfo<ARMFunctionInfo>();
3076   if (AFI_Caller->getArgRegsSaveSize())
3077     return false;
3078 
3079   // If the callee takes no arguments then go on to check the results of the
3080   // call.
3081   if (!Outs.empty()) {
3082     // Check if stack adjustment is needed. For now, do not do this if any
3083     // argument is passed on the stack.
3084     SmallVector<CCValAssign, 16> ArgLocs;
3085     CCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C);
3086     CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, isVarArg));
3087     if (CCInfo.getStackSize()) {
3088       // Check if the arguments are already laid out in the right way as
3089       // the caller's fixed stack objects.
3090       MachineFrameInfo &MFI = MF.getFrameInfo();
3091       const MachineRegisterInfo *MRI = &MF.getRegInfo();
3092       const TargetInstrInfo *TII = Subtarget->getInstrInfo();
3093       for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
3094            i != e;
3095            ++i, ++realArgIdx) {
3096         CCValAssign &VA = ArgLocs[i];
3097         EVT RegVT = VA.getLocVT();
3098         SDValue Arg = OutVals[realArgIdx];
3099         ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
3100         if (VA.getLocInfo() == CCValAssign::Indirect)
3101           return false;
3102         if (VA.needsCustom() && (RegVT == MVT::f64 || RegVT == MVT::v2f64)) {
3103           // f64 and vector types are split into multiple registers or
3104           // register/stack-slot combinations.  The types will not match
3105           // the registers; give up on memory f64 refs until we figure
3106           // out what to do about this.
3107           if (!VA.isRegLoc())
3108             return false;
3109           if (!ArgLocs[++i].isRegLoc())
3110             return false;
3111           if (RegVT == MVT::v2f64) {
3112             if (!ArgLocs[++i].isRegLoc())
3113               return false;
3114             if (!ArgLocs[++i].isRegLoc())
3115               return false;
3116           }
3117         } else if (!VA.isRegLoc()) {
3118           if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
3119                                    MFI, MRI, TII))
3120             return false;
3121         }
3122       }
3123     }
3124 
3125     const MachineRegisterInfo &MRI = MF.getRegInfo();
3126     if (!parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals))
3127       return false;
3128   }
3129 
3130   return true;
3131 }
3132 
3133 bool
3134 ARMTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
3135                                   MachineFunction &MF, bool isVarArg,
3136                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
3137                                   LLVMContext &Context) const {
3138   SmallVector<CCValAssign, 16> RVLocs;
3139   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
3140   return CCInfo.CheckReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg));
3141 }
3142 
3143 static SDValue LowerInterruptReturn(SmallVectorImpl<SDValue> &RetOps,
3144                                     const SDLoc &DL, SelectionDAG &DAG) {
3145   const MachineFunction &MF = DAG.getMachineFunction();
3146   const Function &F = MF.getFunction();
3147 
3148   StringRef IntKind = F.getFnAttribute("interrupt").getValueAsString();
3149 
3150   // See ARM ARM v7 B1.8.3. On exception entry LR is set to a possibly offset
3151   // version of the "preferred return address". These offsets affect the return
3152   // instruction if this is a return from PL1 without hypervisor extensions.
3153   //    IRQ/FIQ: +4     "subs pc, lr, #4"
3154   //    SWI:     0      "subs pc, lr, #0"
3155   //    ABORT:   +4     "subs pc, lr, #4"
3156   //    UNDEF:   +4/+2  "subs pc, lr, #0"
3157   // UNDEF varies depending on where the exception came from ARM or Thumb
3158   // mode. Alongside GCC, we throw our hands up in disgust and pretend it's 0.
3159 
3160   int64_t LROffset;
3161   if (IntKind == "" || IntKind == "IRQ" || IntKind == "FIQ" ||
3162       IntKind == "ABORT")
3163     LROffset = 4;
3164   else if (IntKind == "SWI" || IntKind == "UNDEF")
3165     LROffset = 0;
3166   else
3167     report_fatal_error("Unsupported interrupt attribute. If present, value "
3168                        "must be one of: IRQ, FIQ, SWI, ABORT or UNDEF");
3169 
3170   RetOps.insert(RetOps.begin() + 1,
3171                 DAG.getConstant(LROffset, DL, MVT::i32, false));
3172 
3173   return DAG.getNode(ARMISD::INTRET_GLUE, DL, MVT::Other, RetOps);
3174 }
3175 
3176 SDValue
3177 ARMTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
3178                                bool isVarArg,
3179                                const SmallVectorImpl<ISD::OutputArg> &Outs,
3180                                const SmallVectorImpl<SDValue> &OutVals,
3181                                const SDLoc &dl, SelectionDAG &DAG) const {
3182   // CCValAssign - represent the assignment of the return value to a location.
3183   SmallVector<CCValAssign, 16> RVLocs;
3184 
3185   // CCState - Info about the registers and stack slots.
3186   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
3187                  *DAG.getContext());
3188 
3189   // Analyze outgoing return values.
3190   CCInfo.AnalyzeReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg));
3191 
3192   SDValue Glue;
3193   SmallVector<SDValue, 4> RetOps;
3194   RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
3195   bool isLittleEndian = Subtarget->isLittle();
3196 
3197   MachineFunction &MF = DAG.getMachineFunction();
3198   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3199   AFI->setReturnRegsCount(RVLocs.size());
3200 
3201  // Report error if cmse entry function returns structure through first ptr arg.
3202   if (AFI->isCmseNSEntryFunction() && MF.getFunction().hasStructRetAttr()) {
3203     // Note: using an empty SDLoc(), as the first line of the function is a
3204     // better place to report than the last line.
3205     DiagnosticInfoUnsupported Diag(
3206         DAG.getMachineFunction().getFunction(),
3207         "secure entry function would return value through pointer",
3208         SDLoc().getDebugLoc());
3209     DAG.getContext()->diagnose(Diag);
3210   }
3211 
3212   // Copy the result values into the output registers.
3213   for (unsigned i = 0, realRVLocIdx = 0;
3214        i != RVLocs.size();
3215        ++i, ++realRVLocIdx) {
3216     CCValAssign &VA = RVLocs[i];
3217     assert(VA.isRegLoc() && "Can only return in registers!");
3218 
3219     SDValue Arg = OutVals[realRVLocIdx];
3220     bool ReturnF16 = false;
3221 
3222     if (Subtarget->hasFullFP16() && Subtarget->isTargetHardFloat()) {
3223       // Half-precision return values can be returned like this:
3224       //
3225       // t11 f16 = fadd ...
3226       // t12: i16 = bitcast t11
3227       //   t13: i32 = zero_extend t12
3228       // t14: f32 = bitcast t13  <~~~~~~~ Arg
3229       //
3230       // to avoid code generation for bitcasts, we simply set Arg to the node
3231       // that produces the f16 value, t11 in this case.
3232       //
3233       if (Arg.getValueType() == MVT::f32 && Arg.getOpcode() == ISD::BITCAST) {
3234         SDValue ZE = Arg.getOperand(0);
3235         if (ZE.getOpcode() == ISD::ZERO_EXTEND && ZE.getValueType() == MVT::i32) {
3236           SDValue BC = ZE.getOperand(0);
3237           if (BC.getOpcode() == ISD::BITCAST && BC.getValueType() == MVT::i16) {
3238             Arg = BC.getOperand(0);
3239             ReturnF16 = true;
3240           }
3241         }
3242       }
3243     }
3244 
3245     switch (VA.getLocInfo()) {
3246     default: llvm_unreachable("Unknown loc info!");
3247     case CCValAssign::Full: break;
3248     case CCValAssign::BCvt:
3249       if (!ReturnF16)
3250         Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
3251       break;
3252     }
3253 
3254     // Mask f16 arguments if this is a CMSE nonsecure entry.
3255     auto RetVT = Outs[realRVLocIdx].ArgVT;
3256     if (AFI->isCmseNSEntryFunction() && (RetVT == MVT::f16)) {
3257       if (VA.needsCustom() && VA.getValVT() == MVT::f16) {
3258         Arg = MoveFromHPR(dl, DAG, VA.getLocVT(), VA.getValVT(), Arg);
3259       } else {
3260         auto LocBits = VA.getLocVT().getSizeInBits();
3261         auto MaskValue = APInt::getLowBitsSet(LocBits, RetVT.getSizeInBits());
3262         SDValue Mask =
3263             DAG.getConstant(MaskValue, dl, MVT::getIntegerVT(LocBits));
3264         Arg = DAG.getNode(ISD::BITCAST, dl, MVT::getIntegerVT(LocBits), Arg);
3265         Arg = DAG.getNode(ISD::AND, dl, MVT::getIntegerVT(LocBits), Arg, Mask);
3266         Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
3267       }
3268     }
3269 
3270     if (VA.needsCustom() &&
3271         (VA.getLocVT() == MVT::v2f64 || VA.getLocVT() == MVT::f64)) {
3272       if (VA.getLocVT() == MVT::v2f64) {
3273         // Extract the first half and return it in two registers.
3274         SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
3275                                    DAG.getConstant(0, dl, MVT::i32));
3276         SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
3277                                        DAG.getVTList(MVT::i32, MVT::i32), Half);
3278 
3279         Chain =
3280             DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
3281                              HalfGPRs.getValue(isLittleEndian ? 0 : 1), Glue);
3282         Glue = Chain.getValue(1);
3283         RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
3284         VA = RVLocs[++i]; // skip ahead to next loc
3285         Chain =
3286             DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
3287                              HalfGPRs.getValue(isLittleEndian ? 1 : 0), Glue);
3288         Glue = Chain.getValue(1);
3289         RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
3290         VA = RVLocs[++i]; // skip ahead to next loc
3291 
3292         // Extract the 2nd half and fall through to handle it as an f64 value.
3293         Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
3294                           DAG.getConstant(1, dl, MVT::i32));
3295       }
3296       // Legalize ret f64 -> ret 2 x i32.  We always have fmrrd if f64 is
3297       // available.
3298       SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
3299                                   DAG.getVTList(MVT::i32, MVT::i32), Arg);
3300       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
3301                                fmrrd.getValue(isLittleEndian ? 0 : 1), Glue);
3302       Glue = Chain.getValue(1);
3303       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
3304       VA = RVLocs[++i]; // skip ahead to next loc
3305       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
3306                                fmrrd.getValue(isLittleEndian ? 1 : 0), Glue);
3307     } else
3308       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Glue);
3309 
3310     // Guarantee that all emitted copies are
3311     // stuck together, avoiding something bad.
3312     Glue = Chain.getValue(1);
3313     RetOps.push_back(DAG.getRegister(
3314         VA.getLocReg(), ReturnF16 ? Arg.getValueType() : VA.getLocVT()));
3315   }
3316   const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
3317   const MCPhysReg *I =
3318       TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
3319   if (I) {
3320     for (; *I; ++I) {
3321       if (ARM::GPRRegClass.contains(*I))
3322         RetOps.push_back(DAG.getRegister(*I, MVT::i32));
3323       else if (ARM::DPRRegClass.contains(*I))
3324         RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64)));
3325       else
3326         llvm_unreachable("Unexpected register class in CSRsViaCopy!");
3327     }
3328   }
3329 
3330   // Update chain and glue.
3331   RetOps[0] = Chain;
3332   if (Glue.getNode())
3333     RetOps.push_back(Glue);
3334 
3335   // CPUs which aren't M-class use a special sequence to return from
3336   // exceptions (roughly, any instruction setting pc and cpsr simultaneously,
3337   // though we use "subs pc, lr, #N").
3338   //
3339   // M-class CPUs actually use a normal return sequence with a special
3340   // (hardware-provided) value in LR, so the normal code path works.
3341   if (DAG.getMachineFunction().getFunction().hasFnAttribute("interrupt") &&
3342       !Subtarget->isMClass()) {
3343     if (Subtarget->isThumb1Only())
3344       report_fatal_error("interrupt attribute is not supported in Thumb1");
3345     return LowerInterruptReturn(RetOps, dl, DAG);
3346   }
3347 
3348   ARMISD::NodeType RetNode = AFI->isCmseNSEntryFunction() ? ARMISD::SERET_GLUE :
3349                                                             ARMISD::RET_GLUE;
3350   return DAG.getNode(RetNode, dl, MVT::Other, RetOps);
3351 }
3352 
3353 bool ARMTargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
3354   if (N->getNumValues() != 1)
3355     return false;
3356   if (!N->hasNUsesOfValue(1, 0))
3357     return false;
3358 
3359   SDValue TCChain = Chain;
3360   SDNode *Copy = *N->use_begin();
3361   if (Copy->getOpcode() == ISD::CopyToReg) {
3362     // If the copy has a glue operand, we conservatively assume it isn't safe to
3363     // perform a tail call.
3364     if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
3365       return false;
3366     TCChain = Copy->getOperand(0);
3367   } else if (Copy->getOpcode() == ARMISD::VMOVRRD) {
3368     SDNode *VMov = Copy;
3369     // f64 returned in a pair of GPRs.
3370     SmallPtrSet<SDNode*, 2> Copies;
3371     for (SDNode *U : VMov->uses()) {
3372       if (U->getOpcode() != ISD::CopyToReg)
3373         return false;
3374       Copies.insert(U);
3375     }
3376     if (Copies.size() > 2)
3377       return false;
3378 
3379     for (SDNode *U : VMov->uses()) {
3380       SDValue UseChain = U->getOperand(0);
3381       if (Copies.count(UseChain.getNode()))
3382         // Second CopyToReg
3383         Copy = U;
3384       else {
3385         // We are at the top of this chain.
3386         // If the copy has a glue operand, we conservatively assume it
3387         // isn't safe to perform a tail call.
3388         if (U->getOperand(U->getNumOperands() - 1).getValueType() == MVT::Glue)
3389           return false;
3390         // First CopyToReg
3391         TCChain = UseChain;
3392       }
3393     }
3394   } else if (Copy->getOpcode() == ISD::BITCAST) {
3395     // f32 returned in a single GPR.
3396     if (!Copy->hasOneUse())
3397       return false;
3398     Copy = *Copy->use_begin();
3399     if (Copy->getOpcode() != ISD::CopyToReg || !Copy->hasNUsesOfValue(1, 0))
3400       return false;
3401     // If the copy has a glue operand, we conservatively assume it isn't safe to
3402     // perform a tail call.
3403     if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
3404       return false;
3405     TCChain = Copy->getOperand(0);
3406   } else {
3407     return false;
3408   }
3409 
3410   bool HasRet = false;
3411   for (const SDNode *U : Copy->uses()) {
3412     if (U->getOpcode() != ARMISD::RET_GLUE &&
3413         U->getOpcode() != ARMISD::INTRET_GLUE)
3414       return false;
3415     HasRet = true;
3416   }
3417 
3418   if (!HasRet)
3419     return false;
3420 
3421   Chain = TCChain;
3422   return true;
3423 }
3424 
3425 bool ARMTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
3426   if (!Subtarget->supportsTailCall())
3427     return false;
3428 
3429   if (!CI->isTailCall())
3430     return false;
3431 
3432   return true;
3433 }
3434 
3435 // Trying to write a 64 bit value so need to split into two 32 bit values first,
3436 // and pass the lower and high parts through.
3437 static SDValue LowerWRITE_REGISTER(SDValue Op, SelectionDAG &DAG) {
3438   SDLoc DL(Op);
3439   SDValue WriteValue = Op->getOperand(2);
3440 
3441   // This function is only supposed to be called for i64 type argument.
3442   assert(WriteValue.getValueType() == MVT::i64
3443           && "LowerWRITE_REGISTER called for non-i64 type argument.");
3444 
3445   SDValue Lo, Hi;
3446   std::tie(Lo, Hi) = DAG.SplitScalar(WriteValue, DL, MVT::i32, MVT::i32);
3447   SDValue Ops[] = { Op->getOperand(0), Op->getOperand(1), Lo, Hi };
3448   return DAG.getNode(ISD::WRITE_REGISTER, DL, MVT::Other, Ops);
3449 }
3450 
3451 // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
3452 // their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
3453 // one of the above mentioned nodes. It has to be wrapped because otherwise
3454 // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
3455 // be used to form addressing mode. These wrapped nodes will be selected
3456 // into MOVi.
3457 SDValue ARMTargetLowering::LowerConstantPool(SDValue Op,
3458                                              SelectionDAG &DAG) const {
3459   EVT PtrVT = Op.getValueType();
3460   // FIXME there is no actual debug info here
3461   SDLoc dl(Op);
3462   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
3463   SDValue Res;
3464 
3465   // When generating execute-only code Constant Pools must be promoted to the
3466   // global data section. It's a bit ugly that we can't share them across basic
3467   // blocks, but this way we guarantee that execute-only behaves correct with
3468   // position-independent addressing modes.
3469   if (Subtarget->genExecuteOnly()) {
3470     auto AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
3471     auto T = const_cast<Type*>(CP->getType());
3472     auto C = const_cast<Constant*>(CP->getConstVal());
3473     auto M = const_cast<Module*>(DAG.getMachineFunction().
3474                                  getFunction().getParent());
3475     auto GV = new GlobalVariable(
3476                     *M, T, /*isConstant=*/true, GlobalVariable::InternalLinkage, C,
3477                     Twine(DAG.getDataLayout().getPrivateGlobalPrefix()) + "CP" +
3478                     Twine(DAG.getMachineFunction().getFunctionNumber()) + "_" +
3479                     Twine(AFI->createPICLabelUId())
3480                   );
3481     SDValue GA = DAG.getTargetGlobalAddress(dyn_cast<GlobalValue>(GV),
3482                                             dl, PtrVT);
3483     return LowerGlobalAddress(GA, DAG);
3484   }
3485 
3486   // The 16-bit ADR instruction can only encode offsets that are multiples of 4,
3487   // so we need to align to at least 4 bytes when we don't have 32-bit ADR.
3488   Align CPAlign = CP->getAlign();
3489   if (Subtarget->isThumb1Only())
3490     CPAlign = std::max(CPAlign, Align(4));
3491   if (CP->isMachineConstantPoolEntry())
3492     Res =
3493         DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, CPAlign);
3494   else
3495     Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CPAlign);
3496   return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
3497 }
3498 
3499 unsigned ARMTargetLowering::getJumpTableEncoding() const {
3500   // If we don't have a 32-bit pc-relative branch instruction then the jump
3501   // table consists of block addresses. Usually this is inline, but for
3502   // execute-only it must be placed out-of-line.
3503   if (Subtarget->genExecuteOnly() && !Subtarget->hasV8MBaselineOps())
3504     return MachineJumpTableInfo::EK_BlockAddress;
3505   return MachineJumpTableInfo::EK_Inline;
3506 }
3507 
3508 SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op,
3509                                              SelectionDAG &DAG) const {
3510   MachineFunction &MF = DAG.getMachineFunction();
3511   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3512   unsigned ARMPCLabelIndex = 0;
3513   SDLoc DL(Op);
3514   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3515   const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
3516   SDValue CPAddr;
3517   bool IsPositionIndependent = isPositionIndependent() || Subtarget->isROPI();
3518   if (!IsPositionIndependent) {
3519     CPAddr = DAG.getTargetConstantPool(BA, PtrVT, Align(4));
3520   } else {
3521     unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
3522     ARMPCLabelIndex = AFI->createPICLabelUId();
3523     ARMConstantPoolValue *CPV =
3524       ARMConstantPoolConstant::Create(BA, ARMPCLabelIndex,
3525                                       ARMCP::CPBlockAddress, PCAdj);
3526     CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, Align(4));
3527   }
3528   CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
3529   SDValue Result = DAG.getLoad(
3530       PtrVT, DL, DAG.getEntryNode(), CPAddr,
3531       MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3532   if (!IsPositionIndependent)
3533     return Result;
3534   SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, DL, MVT::i32);
3535   return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
3536 }
3537 
3538 /// Convert a TLS address reference into the correct sequence of loads
3539 /// and calls to compute the variable's address for Darwin, and return an
3540 /// SDValue containing the final node.
3541 
3542 /// Darwin only has one TLS scheme which must be capable of dealing with the
3543 /// fully general situation, in the worst case. This means:
3544 ///     + "extern __thread" declaration.
3545 ///     + Defined in a possibly unknown dynamic library.
3546 ///
3547 /// The general system is that each __thread variable has a [3 x i32] descriptor
3548 /// which contains information used by the runtime to calculate the address. The
3549 /// only part of this the compiler needs to know about is the first word, which
3550 /// contains a function pointer that must be called with the address of the
3551 /// entire descriptor in "r0".
3552 ///
3553 /// Since this descriptor may be in a different unit, in general access must
3554 /// proceed along the usual ARM rules. A common sequence to produce is:
3555 ///
3556 ///     movw rT1, :lower16:_var$non_lazy_ptr
3557 ///     movt rT1, :upper16:_var$non_lazy_ptr
3558 ///     ldr r0, [rT1]
3559 ///     ldr rT2, [r0]
3560 ///     blx rT2
3561 ///     [...address now in r0...]
3562 SDValue
3563 ARMTargetLowering::LowerGlobalTLSAddressDarwin(SDValue Op,
3564                                                SelectionDAG &DAG) const {
3565   assert(Subtarget->isTargetDarwin() &&
3566          "This function expects a Darwin target");
3567   SDLoc DL(Op);
3568 
3569   // First step is to get the address of the actua global symbol. This is where
3570   // the TLS descriptor lives.
3571   SDValue DescAddr = LowerGlobalAddressDarwin(Op, DAG);
3572 
3573   // The first entry in the descriptor is a function pointer that we must call
3574   // to obtain the address of the variable.
3575   SDValue Chain = DAG.getEntryNode();
3576   SDValue FuncTLVGet = DAG.getLoad(
3577       MVT::i32, DL, Chain, DescAddr,
3578       MachinePointerInfo::getGOT(DAG.getMachineFunction()), Align(4),
3579       MachineMemOperand::MONonTemporal | MachineMemOperand::MODereferenceable |
3580           MachineMemOperand::MOInvariant);
3581   Chain = FuncTLVGet.getValue(1);
3582 
3583   MachineFunction &F = DAG.getMachineFunction();
3584   MachineFrameInfo &MFI = F.getFrameInfo();
3585   MFI.setAdjustsStack(true);
3586 
3587   // TLS calls preserve all registers except those that absolutely must be
3588   // trashed: R0 (it takes an argument), LR (it's a call) and CPSR (let's not be
3589   // silly).
3590   auto TRI =
3591       getTargetMachine().getSubtargetImpl(F.getFunction())->getRegisterInfo();
3592   auto ARI = static_cast<const ARMRegisterInfo *>(TRI);
3593   const uint32_t *Mask = ARI->getTLSCallPreservedMask(DAG.getMachineFunction());
3594 
3595   // Finally, we can make the call. This is just a degenerate version of a
3596   // normal AArch64 call node: r0 takes the address of the descriptor, and
3597   // returns the address of the variable in this thread.
3598   Chain = DAG.getCopyToReg(Chain, DL, ARM::R0, DescAddr, SDValue());
3599   Chain =
3600       DAG.getNode(ARMISD::CALL, DL, DAG.getVTList(MVT::Other, MVT::Glue),
3601                   Chain, FuncTLVGet, DAG.getRegister(ARM::R0, MVT::i32),
3602                   DAG.getRegisterMask(Mask), Chain.getValue(1));
3603   return DAG.getCopyFromReg(Chain, DL, ARM::R0, MVT::i32, Chain.getValue(1));
3604 }
3605 
3606 SDValue
3607 ARMTargetLowering::LowerGlobalTLSAddressWindows(SDValue Op,
3608                                                 SelectionDAG &DAG) const {
3609   assert(Subtarget->isTargetWindows() && "Windows specific TLS lowering");
3610 
3611   SDValue Chain = DAG.getEntryNode();
3612   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3613   SDLoc DL(Op);
3614 
3615   // Load the current TEB (thread environment block)
3616   SDValue Ops[] = {Chain,
3617                    DAG.getTargetConstant(Intrinsic::arm_mrc, DL, MVT::i32),
3618                    DAG.getTargetConstant(15, DL, MVT::i32),
3619                    DAG.getTargetConstant(0, DL, MVT::i32),
3620                    DAG.getTargetConstant(13, DL, MVT::i32),
3621                    DAG.getTargetConstant(0, DL, MVT::i32),
3622                    DAG.getTargetConstant(2, DL, MVT::i32)};
3623   SDValue CurrentTEB = DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL,
3624                                    DAG.getVTList(MVT::i32, MVT::Other), Ops);
3625 
3626   SDValue TEB = CurrentTEB.getValue(0);
3627   Chain = CurrentTEB.getValue(1);
3628 
3629   // Load the ThreadLocalStoragePointer from the TEB
3630   // A pointer to the TLS array is located at offset 0x2c from the TEB.
3631   SDValue TLSArray =
3632       DAG.getNode(ISD::ADD, DL, PtrVT, TEB, DAG.getIntPtrConstant(0x2c, DL));
3633   TLSArray = DAG.getLoad(PtrVT, DL, Chain, TLSArray, MachinePointerInfo());
3634 
3635   // The pointer to the thread's TLS data area is at the TLS Index scaled by 4
3636   // offset into the TLSArray.
3637 
3638   // Load the TLS index from the C runtime
3639   SDValue TLSIndex =
3640       DAG.getTargetExternalSymbol("_tls_index", PtrVT, ARMII::MO_NO_FLAG);
3641   TLSIndex = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, TLSIndex);
3642   TLSIndex = DAG.getLoad(PtrVT, DL, Chain, TLSIndex, MachinePointerInfo());
3643 
3644   SDValue Slot = DAG.getNode(ISD::SHL, DL, PtrVT, TLSIndex,
3645                               DAG.getConstant(2, DL, MVT::i32));
3646   SDValue TLS = DAG.getLoad(PtrVT, DL, Chain,
3647                             DAG.getNode(ISD::ADD, DL, PtrVT, TLSArray, Slot),
3648                             MachinePointerInfo());
3649 
3650   // Get the offset of the start of the .tls section (section base)
3651   const auto *GA = cast<GlobalAddressSDNode>(Op);
3652   auto *CPV = ARMConstantPoolConstant::Create(GA->getGlobal(), ARMCP::SECREL);
3653   SDValue Offset = DAG.getLoad(
3654       PtrVT, DL, Chain,
3655       DAG.getNode(ARMISD::Wrapper, DL, MVT::i32,
3656                   DAG.getTargetConstantPool(CPV, PtrVT, Align(4))),
3657       MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3658 
3659   return DAG.getNode(ISD::ADD, DL, PtrVT, TLS, Offset);
3660 }
3661 
3662 // Lower ISD::GlobalTLSAddress using the "general dynamic" model
3663 SDValue
3664 ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
3665                                                  SelectionDAG &DAG) const {
3666   SDLoc dl(GA);
3667   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3668   unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
3669   MachineFunction &MF = DAG.getMachineFunction();
3670   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3671   unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
3672   ARMConstantPoolValue *CPV =
3673     ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
3674                                     ARMCP::CPValue, PCAdj, ARMCP::TLSGD, true);
3675   SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, Align(4));
3676   Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
3677   Argument = DAG.getLoad(
3678       PtrVT, dl, DAG.getEntryNode(), Argument,
3679       MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3680   SDValue Chain = Argument.getValue(1);
3681 
3682   SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
3683   Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
3684 
3685   // call __tls_get_addr.
3686   ArgListTy Args;
3687   ArgListEntry Entry;
3688   Entry.Node = Argument;
3689   Entry.Ty = (Type *) Type::getInt32Ty(*DAG.getContext());
3690   Args.push_back(Entry);
3691 
3692   // FIXME: is there useful debug info available here?
3693   TargetLowering::CallLoweringInfo CLI(DAG);
3694   CLI.setDebugLoc(dl).setChain(Chain).setLibCallee(
3695       CallingConv::C, Type::getInt32Ty(*DAG.getContext()),
3696       DAG.getExternalSymbol("__tls_get_addr", PtrVT), std::move(Args));
3697 
3698   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
3699   return CallResult.first;
3700 }
3701 
3702 // Lower ISD::GlobalTLSAddress using the "initial exec" or
3703 // "local exec" model.
3704 SDValue
3705 ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
3706                                         SelectionDAG &DAG,
3707                                         TLSModel::Model model) const {
3708   const GlobalValue *GV = GA->getGlobal();
3709   SDLoc dl(GA);
3710   SDValue Offset;
3711   SDValue Chain = DAG.getEntryNode();
3712   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3713   // Get the Thread Pointer
3714   SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
3715 
3716   if (model == TLSModel::InitialExec) {
3717     MachineFunction &MF = DAG.getMachineFunction();
3718     ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3719     unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
3720     // Initial exec model.
3721     unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
3722     ARMConstantPoolValue *CPV =
3723       ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
3724                                       ARMCP::CPValue, PCAdj, ARMCP::GOTTPOFF,
3725                                       true);
3726     Offset = DAG.getTargetConstantPool(CPV, PtrVT, Align(4));
3727     Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
3728     Offset = DAG.getLoad(
3729         PtrVT, dl, Chain, Offset,
3730         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3731     Chain = Offset.getValue(1);
3732 
3733     SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
3734     Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
3735 
3736     Offset = DAG.getLoad(
3737         PtrVT, dl, Chain, Offset,
3738         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3739   } else {
3740     // local exec model
3741     assert(model == TLSModel::LocalExec);
3742     ARMConstantPoolValue *CPV =
3743       ARMConstantPoolConstant::Create(GV, ARMCP::TPOFF);
3744     Offset = DAG.getTargetConstantPool(CPV, PtrVT, Align(4));
3745     Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
3746     Offset = DAG.getLoad(
3747         PtrVT, dl, Chain, Offset,
3748         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3749   }
3750 
3751   // The address of the thread local variable is the add of the thread
3752   // pointer with the offset of the variable.
3753   return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
3754 }
3755 
3756 SDValue
3757 ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
3758   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3759   if (DAG.getTarget().useEmulatedTLS())
3760     return LowerToTLSEmulatedModel(GA, DAG);
3761 
3762   if (Subtarget->isTargetDarwin())
3763     return LowerGlobalTLSAddressDarwin(Op, DAG);
3764 
3765   if (Subtarget->isTargetWindows())
3766     return LowerGlobalTLSAddressWindows(Op, DAG);
3767 
3768   // TODO: implement the "local dynamic" model
3769   assert(Subtarget->isTargetELF() && "Only ELF implemented here");
3770   TLSModel::Model model = getTargetMachine().getTLSModel(GA->getGlobal());
3771 
3772   switch (model) {
3773     case TLSModel::GeneralDynamic:
3774     case TLSModel::LocalDynamic:
3775       return LowerToTLSGeneralDynamicModel(GA, DAG);
3776     case TLSModel::InitialExec:
3777     case TLSModel::LocalExec:
3778       return LowerToTLSExecModels(GA, DAG, model);
3779   }
3780   llvm_unreachable("bogus TLS model");
3781 }
3782 
3783 /// Return true if all users of V are within function F, looking through
3784 /// ConstantExprs.
3785 static bool allUsersAreInFunction(const Value *V, const Function *F) {
3786   SmallVector<const User*,4> Worklist(V->users());
3787   while (!Worklist.empty()) {
3788     auto *U = Worklist.pop_back_val();
3789     if (isa<ConstantExpr>(U)) {
3790       append_range(Worklist, U->users());
3791       continue;
3792     }
3793 
3794     auto *I = dyn_cast<Instruction>(U);
3795     if (!I || I->getParent()->getParent() != F)
3796       return false;
3797   }
3798   return true;
3799 }
3800 
3801 static SDValue promoteToConstantPool(const ARMTargetLowering *TLI,
3802                                      const GlobalValue *GV, SelectionDAG &DAG,
3803                                      EVT PtrVT, const SDLoc &dl) {
3804   // If we're creating a pool entry for a constant global with unnamed address,
3805   // and the global is small enough, we can emit it inline into the constant pool
3806   // to save ourselves an indirection.
3807   //
3808   // This is a win if the constant is only used in one function (so it doesn't
3809   // need to be duplicated) or duplicating the constant wouldn't increase code
3810   // size (implying the constant is no larger than 4 bytes).
3811   const Function &F = DAG.getMachineFunction().getFunction();
3812 
3813   // We rely on this decision to inline being idemopotent and unrelated to the
3814   // use-site. We know that if we inline a variable at one use site, we'll
3815   // inline it elsewhere too (and reuse the constant pool entry). Fast-isel
3816   // doesn't know about this optimization, so bail out if it's enabled else
3817   // we could decide to inline here (and thus never emit the GV) but require
3818   // the GV from fast-isel generated code.
3819   if (!EnableConstpoolPromotion ||
3820       DAG.getMachineFunction().getTarget().Options.EnableFastISel)
3821       return SDValue();
3822 
3823   auto *GVar = dyn_cast<GlobalVariable>(GV);
3824   if (!GVar || !GVar->hasInitializer() ||
3825       !GVar->isConstant() || !GVar->hasGlobalUnnamedAddr() ||
3826       !GVar->hasLocalLinkage())
3827     return SDValue();
3828 
3829   // If we inline a value that contains relocations, we move the relocations
3830   // from .data to .text. This is not allowed in position-independent code.
3831   auto *Init = GVar->getInitializer();
3832   if ((TLI->isPositionIndependent() || TLI->getSubtarget()->isROPI()) &&
3833       Init->needsDynamicRelocation())
3834     return SDValue();
3835 
3836   // The constant islands pass can only really deal with alignment requests
3837   // <= 4 bytes and cannot pad constants itself. Therefore we cannot promote
3838   // any type wanting greater alignment requirements than 4 bytes. We also
3839   // can only promote constants that are multiples of 4 bytes in size or
3840   // are paddable to a multiple of 4. Currently we only try and pad constants
3841   // that are strings for simplicity.
3842   auto *CDAInit = dyn_cast<ConstantDataArray>(Init);
3843   unsigned Size = DAG.getDataLayout().getTypeAllocSize(Init->getType());
3844   Align PrefAlign = DAG.getDataLayout().getPreferredAlign(GVar);
3845   unsigned RequiredPadding = 4 - (Size % 4);
3846   bool PaddingPossible =
3847     RequiredPadding == 4 || (CDAInit && CDAInit->isString());
3848   if (!PaddingPossible || PrefAlign > 4 || Size > ConstpoolPromotionMaxSize ||
3849       Size == 0)
3850     return SDValue();
3851 
3852   unsigned PaddedSize = Size + ((RequiredPadding == 4) ? 0 : RequiredPadding);
3853   MachineFunction &MF = DAG.getMachineFunction();
3854   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3855 
3856   // We can't bloat the constant pool too much, else the ConstantIslands pass
3857   // may fail to converge. If we haven't promoted this global yet (it may have
3858   // multiple uses), and promoting it would increase the constant pool size (Sz
3859   // > 4), ensure we have space to do so up to MaxTotal.
3860   if (!AFI->getGlobalsPromotedToConstantPool().count(GVar) && Size > 4)
3861     if (AFI->getPromotedConstpoolIncrease() + PaddedSize - 4 >=
3862         ConstpoolPromotionMaxTotal)
3863       return SDValue();
3864 
3865   // This is only valid if all users are in a single function; we can't clone
3866   // the constant in general. The LLVM IR unnamed_addr allows merging
3867   // constants, but not cloning them.
3868   //
3869   // We could potentially allow cloning if we could prove all uses of the
3870   // constant in the current function don't care about the address, like
3871   // printf format strings. But that isn't implemented for now.
3872   if (!allUsersAreInFunction(GVar, &F))
3873     return SDValue();
3874 
3875   // We're going to inline this global. Pad it out if needed.
3876   if (RequiredPadding != 4) {
3877     StringRef S = CDAInit->getAsString();
3878 
3879     SmallVector<uint8_t,16> V(S.size());
3880     std::copy(S.bytes_begin(), S.bytes_end(), V.begin());
3881     while (RequiredPadding--)
3882       V.push_back(0);
3883     Init = ConstantDataArray::get(*DAG.getContext(), V);
3884   }
3885 
3886   auto CPVal = ARMConstantPoolConstant::Create(GVar, Init);
3887   SDValue CPAddr = DAG.getTargetConstantPool(CPVal, PtrVT, Align(4));
3888   if (!AFI->getGlobalsPromotedToConstantPool().count(GVar)) {
3889     AFI->markGlobalAsPromotedToConstantPool(GVar);
3890     AFI->setPromotedConstpoolIncrease(AFI->getPromotedConstpoolIncrease() +
3891                                       PaddedSize - 4);
3892   }
3893   ++NumConstpoolPromoted;
3894   return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
3895 }
3896 
3897 bool ARMTargetLowering::isReadOnly(const GlobalValue *GV) const {
3898   if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
3899     if (!(GV = GA->getAliaseeObject()))
3900       return false;
3901   if (const auto *V = dyn_cast<GlobalVariable>(GV))
3902     return V->isConstant();
3903   return isa<Function>(GV);
3904 }
3905 
3906 SDValue ARMTargetLowering::LowerGlobalAddress(SDValue Op,
3907                                               SelectionDAG &DAG) const {
3908   switch (Subtarget->getTargetTriple().getObjectFormat()) {
3909   default: llvm_unreachable("unknown object format");
3910   case Triple::COFF:
3911     return LowerGlobalAddressWindows(Op, DAG);
3912   case Triple::ELF:
3913     return LowerGlobalAddressELF(Op, DAG);
3914   case Triple::MachO:
3915     return LowerGlobalAddressDarwin(Op, DAG);
3916   }
3917 }
3918 
3919 SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
3920                                                  SelectionDAG &DAG) const {
3921   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3922   SDLoc dl(Op);
3923   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3924   const TargetMachine &TM = getTargetMachine();
3925   bool IsRO = isReadOnly(GV);
3926 
3927   // promoteToConstantPool only if not generating XO text section
3928   if (TM.shouldAssumeDSOLocal(*GV->getParent(), GV) && !Subtarget->genExecuteOnly())
3929     if (SDValue V = promoteToConstantPool(this, GV, DAG, PtrVT, dl))
3930       return V;
3931 
3932   if (isPositionIndependent()) {
3933     bool UseGOT_PREL = !TM.shouldAssumeDSOLocal(*GV->getParent(), GV);
3934     SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3935                                            UseGOT_PREL ? ARMII::MO_GOT : 0);
3936     SDValue Result = DAG.getNode(ARMISD::WrapperPIC, dl, PtrVT, G);
3937     if (UseGOT_PREL)
3938       Result =
3939           DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
3940                       MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3941     return Result;
3942   } else if (Subtarget->isROPI() && IsRO) {
3943     // PC-relative.
3944     SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT);
3945     SDValue Result = DAG.getNode(ARMISD::WrapperPIC, dl, PtrVT, G);
3946     return Result;
3947   } else if (Subtarget->isRWPI() && !IsRO) {
3948     // SB-relative.
3949     SDValue RelAddr;
3950     if (Subtarget->useMovt()) {
3951       ++NumMovwMovt;
3952       SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, ARMII::MO_SBREL);
3953       RelAddr = DAG.getNode(ARMISD::Wrapper, dl, PtrVT, G);
3954     } else { // use literal pool for address constant
3955       ARMConstantPoolValue *CPV =
3956         ARMConstantPoolConstant::Create(GV, ARMCP::SBREL);
3957       SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, Align(4));
3958       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
3959       RelAddr = DAG.getLoad(
3960           PtrVT, dl, DAG.getEntryNode(), CPAddr,
3961           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3962     }
3963     SDValue SB = DAG.getCopyFromReg(DAG.getEntryNode(), dl, ARM::R9, PtrVT);
3964     SDValue Result = DAG.getNode(ISD::ADD, dl, PtrVT, SB, RelAddr);
3965     return Result;
3966   }
3967 
3968   // If we have T2 ops, we can materialize the address directly via movt/movw
3969   // pair. This is always cheaper. If need to generate Execute Only code, and we
3970   // only have Thumb1 available, we can't use a constant pool and are forced to
3971   // use immediate relocations.
3972   if (Subtarget->useMovt() || Subtarget->genExecuteOnly()) {
3973     if (Subtarget->useMovt())
3974       ++NumMovwMovt;
3975     // FIXME: Once remat is capable of dealing with instructions with register
3976     // operands, expand this into two nodes.
3977     return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
3978                        DAG.getTargetGlobalAddress(GV, dl, PtrVT));
3979   } else {
3980     SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, Align(4));
3981     CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
3982     return DAG.getLoad(
3983         PtrVT, dl, DAG.getEntryNode(), CPAddr,
3984         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3985   }
3986 }
3987 
3988 SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
3989                                                     SelectionDAG &DAG) const {
3990   assert(!Subtarget->isROPI() && !Subtarget->isRWPI() &&
3991          "ROPI/RWPI not currently supported for Darwin");
3992   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3993   SDLoc dl(Op);
3994   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3995 
3996   if (Subtarget->useMovt())
3997     ++NumMovwMovt;
3998 
3999   // FIXME: Once remat is capable of dealing with instructions with register
4000   // operands, expand this into multiple nodes
4001   unsigned Wrapper =
4002       isPositionIndependent() ? ARMISD::WrapperPIC : ARMISD::Wrapper;
4003 
4004   SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, ARMII::MO_NONLAZY);
4005   SDValue Result = DAG.getNode(Wrapper, dl, PtrVT, G);
4006 
4007   if (Subtarget->isGVIndirectSymbol(GV))
4008     Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
4009                          MachinePointerInfo::getGOT(DAG.getMachineFunction()));
4010   return Result;
4011 }
4012 
4013 SDValue ARMTargetLowering::LowerGlobalAddressWindows(SDValue Op,
4014                                                      SelectionDAG &DAG) const {
4015   assert(Subtarget->isTargetWindows() && "non-Windows COFF is not supported");
4016   assert(Subtarget->useMovt() &&
4017          "Windows on ARM expects to use movw/movt");
4018   assert(!Subtarget->isROPI() && !Subtarget->isRWPI() &&
4019          "ROPI/RWPI not currently supported for Windows");
4020 
4021   const TargetMachine &TM = getTargetMachine();
4022   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
4023   ARMII::TOF TargetFlags = ARMII::MO_NO_FLAG;
4024   if (GV->hasDLLImportStorageClass())
4025     TargetFlags = ARMII::MO_DLLIMPORT;
4026   else if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
4027     TargetFlags = ARMII::MO_COFFSTUB;
4028   EVT PtrVT = getPointerTy(DAG.getDataLayout());
4029   SDValue Result;
4030   SDLoc DL(Op);
4031 
4032   ++NumMovwMovt;
4033 
4034   // FIXME: Once remat is capable of dealing with instructions with register
4035   // operands, expand this into two nodes.
4036   Result = DAG.getNode(ARMISD::Wrapper, DL, PtrVT,
4037                        DAG.getTargetGlobalAddress(GV, DL, PtrVT, /*offset=*/0,
4038                                                   TargetFlags));
4039   if (TargetFlags & (ARMII::MO_DLLIMPORT | ARMII::MO_COFFSTUB))
4040     Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
4041                          MachinePointerInfo::getGOT(DAG.getMachineFunction()));
4042   return Result;
4043 }
4044 
4045 SDValue
4046 ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const {
4047   SDLoc dl(Op);
4048   SDValue Val = DAG.getConstant(0, dl, MVT::i32);
4049   return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl,
4050                      DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0),
4051                      Op.getOperand(1), Val);
4052 }
4053 
4054 SDValue
4055 ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const {
4056   SDLoc dl(Op);
4057   return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0),
4058                      Op.getOperand(1), DAG.getConstant(0, dl, MVT::i32));
4059 }
4060 
4061 SDValue ARMTargetLowering::LowerEH_SJLJ_SETUP_DISPATCH(SDValue Op,
4062                                                       SelectionDAG &DAG) const {
4063   SDLoc dl(Op);
4064   return DAG.getNode(ARMISD::EH_SJLJ_SETUP_DISPATCH, dl, MVT::Other,
4065                      Op.getOperand(0));
4066 }
4067 
4068 SDValue ARMTargetLowering::LowerINTRINSIC_VOID(
4069     SDValue Op, SelectionDAG &DAG, const ARMSubtarget *Subtarget) const {
4070   unsigned IntNo =
4071       cast<ConstantSDNode>(
4072           Op.getOperand(Op.getOperand(0).getValueType() == MVT::Other))
4073           ->getZExtValue();
4074   switch (IntNo) {
4075     default:
4076       return SDValue();  // Don't custom lower most intrinsics.
4077     case Intrinsic::arm_gnu_eabi_mcount: {
4078       MachineFunction &MF = DAG.getMachineFunction();
4079       EVT PtrVT = getPointerTy(DAG.getDataLayout());
4080       SDLoc dl(Op);
4081       SDValue Chain = Op.getOperand(0);
4082       // call "\01__gnu_mcount_nc"
4083       const ARMBaseRegisterInfo *ARI = Subtarget->getRegisterInfo();
4084       const uint32_t *Mask =
4085           ARI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C);
4086       assert(Mask && "Missing call preserved mask for calling convention");
4087       // Mark LR an implicit live-in.
4088       Register Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
4089       SDValue ReturnAddress =
4090           DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, PtrVT);
4091       constexpr EVT ResultTys[] = {MVT::Other, MVT::Glue};
4092       SDValue Callee =
4093           DAG.getTargetExternalSymbol("\01__gnu_mcount_nc", PtrVT, 0);
4094       SDValue RegisterMask = DAG.getRegisterMask(Mask);
4095       if (Subtarget->isThumb())
4096         return SDValue(
4097             DAG.getMachineNode(
4098                 ARM::tBL_PUSHLR, dl, ResultTys,
4099                 {ReturnAddress, DAG.getTargetConstant(ARMCC::AL, dl, PtrVT),
4100                  DAG.getRegister(0, PtrVT), Callee, RegisterMask, Chain}),
4101             0);
4102       return SDValue(
4103           DAG.getMachineNode(ARM::BL_PUSHLR, dl, ResultTys,
4104                              {ReturnAddress, Callee, RegisterMask, Chain}),
4105           0);
4106     }
4107   }
4108 }
4109 
4110 SDValue
4111 ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
4112                                           const ARMSubtarget *Subtarget) const {
4113   unsigned IntNo = Op.getConstantOperandVal(0);
4114   SDLoc dl(Op);
4115   switch (IntNo) {
4116   default: return SDValue();    // Don't custom lower most intrinsics.
4117   case Intrinsic::thread_pointer: {
4118     EVT PtrVT = getPointerTy(DAG.getDataLayout());
4119     return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
4120   }
4121   case Intrinsic::arm_cls: {
4122     const SDValue &Operand = Op.getOperand(1);
4123     const EVT VTy = Op.getValueType();
4124     SDValue SRA =
4125         DAG.getNode(ISD::SRA, dl, VTy, Operand, DAG.getConstant(31, dl, VTy));
4126     SDValue XOR = DAG.getNode(ISD::XOR, dl, VTy, SRA, Operand);
4127     SDValue SHL =
4128         DAG.getNode(ISD::SHL, dl, VTy, XOR, DAG.getConstant(1, dl, VTy));
4129     SDValue OR =
4130         DAG.getNode(ISD::OR, dl, VTy, SHL, DAG.getConstant(1, dl, VTy));
4131     SDValue Result = DAG.getNode(ISD::CTLZ, dl, VTy, OR);
4132     return Result;
4133   }
4134   case Intrinsic::arm_cls64: {
4135     // cls(x) = if cls(hi(x)) != 31 then cls(hi(x))
4136     //          else 31 + clz(if hi(x) == 0 then lo(x) else not(lo(x)))
4137     const SDValue &Operand = Op.getOperand(1);
4138     const EVT VTy = Op.getValueType();
4139     SDValue Lo, Hi;
4140     std::tie(Lo, Hi) = DAG.SplitScalar(Operand, dl, VTy, VTy);
4141     SDValue Constant0 = DAG.getConstant(0, dl, VTy);
4142     SDValue Constant1 = DAG.getConstant(1, dl, VTy);
4143     SDValue Constant31 = DAG.getConstant(31, dl, VTy);
4144     SDValue SRAHi = DAG.getNode(ISD::SRA, dl, VTy, Hi, Constant31);
4145     SDValue XORHi = DAG.getNode(ISD::XOR, dl, VTy, SRAHi, Hi);
4146     SDValue SHLHi = DAG.getNode(ISD::SHL, dl, VTy, XORHi, Constant1);
4147     SDValue ORHi = DAG.getNode(ISD::OR, dl, VTy, SHLHi, Constant1);
4148     SDValue CLSHi = DAG.getNode(ISD::CTLZ, dl, VTy, ORHi);
4149     SDValue CheckLo =
4150         DAG.getSetCC(dl, MVT::i1, CLSHi, Constant31, ISD::CondCode::SETEQ);
4151     SDValue HiIsZero =
4152         DAG.getSetCC(dl, MVT::i1, Hi, Constant0, ISD::CondCode::SETEQ);
4153     SDValue AdjustedLo =
4154         DAG.getSelect(dl, VTy, HiIsZero, Lo, DAG.getNOT(dl, Lo, VTy));
4155     SDValue CLZAdjustedLo = DAG.getNode(ISD::CTLZ, dl, VTy, AdjustedLo);
4156     SDValue Result =
4157         DAG.getSelect(dl, VTy, CheckLo,
4158                       DAG.getNode(ISD::ADD, dl, VTy, CLZAdjustedLo, Constant31), CLSHi);
4159     return Result;
4160   }
4161   case Intrinsic::eh_sjlj_lsda: {
4162     MachineFunction &MF = DAG.getMachineFunction();
4163     ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
4164     unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
4165     EVT PtrVT = getPointerTy(DAG.getDataLayout());
4166     SDValue CPAddr;
4167     bool IsPositionIndependent = isPositionIndependent();
4168     unsigned PCAdj = IsPositionIndependent ? (Subtarget->isThumb() ? 4 : 8) : 0;
4169     ARMConstantPoolValue *CPV =
4170       ARMConstantPoolConstant::Create(&MF.getFunction(), ARMPCLabelIndex,
4171                                       ARMCP::CPLSDA, PCAdj);
4172     CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, Align(4));
4173     CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
4174     SDValue Result = DAG.getLoad(
4175         PtrVT, dl, DAG.getEntryNode(), CPAddr,
4176         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
4177 
4178     if (IsPositionIndependent) {
4179       SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
4180       Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
4181     }
4182     return Result;
4183   }
4184   case Intrinsic::arm_neon_vabs:
4185     return DAG.getNode(ISD::ABS, SDLoc(Op), Op.getValueType(),
4186                         Op.getOperand(1));
4187   case Intrinsic::arm_neon_vmulls:
4188   case Intrinsic::arm_neon_vmullu: {
4189     unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmulls)
4190       ? ARMISD::VMULLs : ARMISD::VMULLu;
4191     return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
4192                        Op.getOperand(1), Op.getOperand(2));
4193   }
4194   case Intrinsic::arm_neon_vminnm:
4195   case Intrinsic::arm_neon_vmaxnm: {
4196     unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vminnm)
4197       ? ISD::FMINNUM : ISD::FMAXNUM;
4198     return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
4199                        Op.getOperand(1), Op.getOperand(2));
4200   }
4201   case Intrinsic::arm_neon_vminu:
4202   case Intrinsic::arm_neon_vmaxu: {
4203     if (Op.getValueType().isFloatingPoint())
4204       return SDValue();
4205     unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vminu)
4206       ? ISD::UMIN : ISD::UMAX;
4207     return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
4208                          Op.getOperand(1), Op.getOperand(2));
4209   }
4210   case Intrinsic::arm_neon_vmins:
4211   case Intrinsic::arm_neon_vmaxs: {
4212     // v{min,max}s is overloaded between signed integers and floats.
4213     if (!Op.getValueType().isFloatingPoint()) {
4214       unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmins)
4215         ? ISD::SMIN : ISD::SMAX;
4216       return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
4217                          Op.getOperand(1), Op.getOperand(2));
4218     }
4219     unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmins)
4220       ? ISD::FMINIMUM : ISD::FMAXIMUM;
4221     return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
4222                        Op.getOperand(1), Op.getOperand(2));
4223   }
4224   case Intrinsic::arm_neon_vtbl1:
4225     return DAG.getNode(ARMISD::VTBL1, SDLoc(Op), Op.getValueType(),
4226                        Op.getOperand(1), Op.getOperand(2));
4227   case Intrinsic::arm_neon_vtbl2:
4228     return DAG.getNode(ARMISD::VTBL2, SDLoc(Op), Op.getValueType(),
4229                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4230   case Intrinsic::arm_mve_pred_i2v:
4231   case Intrinsic::arm_mve_pred_v2i:
4232     return DAG.getNode(ARMISD::PREDICATE_CAST, SDLoc(Op), Op.getValueType(),
4233                        Op.getOperand(1));
4234   case Intrinsic::arm_mve_vreinterpretq:
4235     return DAG.getNode(ARMISD::VECTOR_REG_CAST, SDLoc(Op), Op.getValueType(),
4236                        Op.getOperand(1));
4237   case Intrinsic::arm_mve_lsll:
4238     return DAG.getNode(ARMISD::LSLL, SDLoc(Op), Op->getVTList(),
4239                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4240   case Intrinsic::arm_mve_asrl:
4241     return DAG.getNode(ARMISD::ASRL, SDLoc(Op), Op->getVTList(),
4242                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4243   }
4244 }
4245 
4246 static SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG,
4247                                  const ARMSubtarget *Subtarget) {
4248   SDLoc dl(Op);
4249   auto SSID = static_cast<SyncScope::ID>(Op.getConstantOperandVal(2));
4250   if (SSID == SyncScope::SingleThread)
4251     return Op;
4252 
4253   if (!Subtarget->hasDataBarrier()) {
4254     // Some ARMv6 cpus can support data barriers with an mcr instruction.
4255     // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
4256     // here.
4257     assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
4258            "Unexpected ISD::ATOMIC_FENCE encountered. Should be libcall!");
4259     return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
4260                        DAG.getConstant(0, dl, MVT::i32));
4261   }
4262 
4263   AtomicOrdering Ord =
4264       static_cast<AtomicOrdering>(Op.getConstantOperandVal(1));
4265   ARM_MB::MemBOpt Domain = ARM_MB::ISH;
4266   if (Subtarget->isMClass()) {
4267     // Only a full system barrier exists in the M-class architectures.
4268     Domain = ARM_MB::SY;
4269   } else if (Subtarget->preferISHSTBarriers() &&
4270              Ord == AtomicOrdering::Release) {
4271     // Swift happens to implement ISHST barriers in a way that's compatible with
4272     // Release semantics but weaker than ISH so we'd be fools not to use
4273     // it. Beware: other processors probably don't!
4274     Domain = ARM_MB::ISHST;
4275   }
4276 
4277   return DAG.getNode(ISD::INTRINSIC_VOID, dl, MVT::Other, Op.getOperand(0),
4278                      DAG.getConstant(Intrinsic::arm_dmb, dl, MVT::i32),
4279                      DAG.getConstant(Domain, dl, MVT::i32));
4280 }
4281 
4282 static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG,
4283                              const ARMSubtarget *Subtarget) {
4284   // ARM pre v5TE and Thumb1 does not have preload instructions.
4285   if (!(Subtarget->isThumb2() ||
4286         (!Subtarget->isThumb1Only() && Subtarget->hasV5TEOps())))
4287     // Just preserve the chain.
4288     return Op.getOperand(0);
4289 
4290   SDLoc dl(Op);
4291   unsigned isRead = ~Op.getConstantOperandVal(2) & 1;
4292   if (!isRead &&
4293       (!Subtarget->hasV7Ops() || !Subtarget->hasMPExtension()))
4294     // ARMv7 with MP extension has PLDW.
4295     return Op.getOperand(0);
4296 
4297   unsigned isData = Op.getConstantOperandVal(4);
4298   if (Subtarget->isThumb()) {
4299     // Invert the bits.
4300     isRead = ~isRead & 1;
4301     isData = ~isData & 1;
4302   }
4303 
4304   return DAG.getNode(ARMISD::PRELOAD, dl, MVT::Other, Op.getOperand(0),
4305                      Op.getOperand(1), DAG.getConstant(isRead, dl, MVT::i32),
4306                      DAG.getConstant(isData, dl, MVT::i32));
4307 }
4308 
4309 static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) {
4310   MachineFunction &MF = DAG.getMachineFunction();
4311   ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>();
4312 
4313   // vastart just stores the address of the VarArgsFrameIndex slot into the
4314   // memory location argument.
4315   SDLoc dl(Op);
4316   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
4317   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4318   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
4319   return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
4320                       MachinePointerInfo(SV));
4321 }
4322 
4323 SDValue ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA,
4324                                                 CCValAssign &NextVA,
4325                                                 SDValue &Root,
4326                                                 SelectionDAG &DAG,
4327                                                 const SDLoc &dl) const {
4328   MachineFunction &MF = DAG.getMachineFunction();
4329   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
4330 
4331   const TargetRegisterClass *RC;
4332   if (AFI->isThumb1OnlyFunction())
4333     RC = &ARM::tGPRRegClass;
4334   else
4335     RC = &ARM::GPRRegClass;
4336 
4337   // Transform the arguments stored in physical registers into virtual ones.
4338   Register Reg = MF.addLiveIn(VA.getLocReg(), RC);
4339   SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
4340 
4341   SDValue ArgValue2;
4342   if (NextVA.isMemLoc()) {
4343     MachineFrameInfo &MFI = MF.getFrameInfo();
4344     int FI = MFI.CreateFixedObject(4, NextVA.getLocMemOffset(), true);
4345 
4346     // Create load node to retrieve arguments from the stack.
4347     SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
4348     ArgValue2 = DAG.getLoad(
4349         MVT::i32, dl, Root, FIN,
4350         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI));
4351   } else {
4352     Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
4353     ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
4354   }
4355   if (!Subtarget->isLittle())
4356     std::swap (ArgValue, ArgValue2);
4357   return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
4358 }
4359 
4360 // The remaining GPRs hold either the beginning of variable-argument
4361 // data, or the beginning of an aggregate passed by value (usually
4362 // byval).  Either way, we allocate stack slots adjacent to the data
4363 // provided by our caller, and store the unallocated registers there.
4364 // If this is a variadic function, the va_list pointer will begin with
4365 // these values; otherwise, this reassembles a (byval) structure that
4366 // was split between registers and memory.
4367 // Return: The frame index registers were stored into.
4368 int ARMTargetLowering::StoreByValRegs(CCState &CCInfo, SelectionDAG &DAG,
4369                                       const SDLoc &dl, SDValue &Chain,
4370                                       const Value *OrigArg,
4371                                       unsigned InRegsParamRecordIdx,
4372                                       int ArgOffset, unsigned ArgSize) const {
4373   // Currently, two use-cases possible:
4374   // Case #1. Non-var-args function, and we meet first byval parameter.
4375   //          Setup first unallocated register as first byval register;
4376   //          eat all remained registers
4377   //          (these two actions are performed by HandleByVal method).
4378   //          Then, here, we initialize stack frame with
4379   //          "store-reg" instructions.
4380   // Case #2. Var-args function, that doesn't contain byval parameters.
4381   //          The same: eat all remained unallocated registers,
4382   //          initialize stack frame.
4383 
4384   MachineFunction &MF = DAG.getMachineFunction();
4385   MachineFrameInfo &MFI = MF.getFrameInfo();
4386   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
4387   unsigned RBegin, REnd;
4388   if (InRegsParamRecordIdx < CCInfo.getInRegsParamsCount()) {
4389     CCInfo.getInRegsParamInfo(InRegsParamRecordIdx, RBegin, REnd);
4390   } else {
4391     unsigned RBeginIdx = CCInfo.getFirstUnallocated(GPRArgRegs);
4392     RBegin = RBeginIdx == 4 ? (unsigned)ARM::R4 : GPRArgRegs[RBeginIdx];
4393     REnd = ARM::R4;
4394   }
4395 
4396   if (REnd != RBegin)
4397     ArgOffset = -4 * (ARM::R4 - RBegin);
4398 
4399   auto PtrVT = getPointerTy(DAG.getDataLayout());
4400   int FrameIndex = MFI.CreateFixedObject(ArgSize, ArgOffset, false);
4401   SDValue FIN = DAG.getFrameIndex(FrameIndex, PtrVT);
4402 
4403   SmallVector<SDValue, 4> MemOps;
4404   const TargetRegisterClass *RC =
4405       AFI->isThumb1OnlyFunction() ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
4406 
4407   for (unsigned Reg = RBegin, i = 0; Reg < REnd; ++Reg, ++i) {
4408     Register VReg = MF.addLiveIn(Reg, RC);
4409     SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
4410     SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
4411                                  MachinePointerInfo(OrigArg, 4 * i));
4412     MemOps.push_back(Store);
4413     FIN = DAG.getNode(ISD::ADD, dl, PtrVT, FIN, DAG.getConstant(4, dl, PtrVT));
4414   }
4415 
4416   if (!MemOps.empty())
4417     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4418   return FrameIndex;
4419 }
4420 
4421 // Setup stack frame, the va_list pointer will start from.
4422 void ARMTargetLowering::VarArgStyleRegisters(CCState &CCInfo, SelectionDAG &DAG,
4423                                              const SDLoc &dl, SDValue &Chain,
4424                                              unsigned ArgOffset,
4425                                              unsigned TotalArgRegsSaveSize,
4426                                              bool ForceMutable) const {
4427   MachineFunction &MF = DAG.getMachineFunction();
4428   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
4429 
4430   // Try to store any remaining integer argument regs
4431   // to their spots on the stack so that they may be loaded by dereferencing
4432   // the result of va_next.
4433   // If there is no regs to be stored, just point address after last
4434   // argument passed via stack.
4435   int FrameIndex = StoreByValRegs(
4436       CCInfo, DAG, dl, Chain, nullptr, CCInfo.getInRegsParamsCount(),
4437       CCInfo.getStackSize(), std::max(4U, TotalArgRegsSaveSize));
4438   AFI->setVarArgsFrameIndex(FrameIndex);
4439 }
4440 
4441 bool ARMTargetLowering::splitValueIntoRegisterParts(
4442     SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
4443     unsigned NumParts, MVT PartVT, std::optional<CallingConv::ID> CC) const {
4444   EVT ValueVT = Val.getValueType();
4445   if ((ValueVT == MVT::f16 || ValueVT == MVT::bf16) && PartVT == MVT::f32) {
4446     unsigned ValueBits = ValueVT.getSizeInBits();
4447     unsigned PartBits = PartVT.getSizeInBits();
4448     Val = DAG.getNode(ISD::BITCAST, DL, MVT::getIntegerVT(ValueBits), Val);
4449     Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::getIntegerVT(PartBits), Val);
4450     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
4451     Parts[0] = Val;
4452     return true;
4453   }
4454   return false;
4455 }
4456 
4457 SDValue ARMTargetLowering::joinRegisterPartsIntoValue(
4458     SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts,
4459     MVT PartVT, EVT ValueVT, std::optional<CallingConv::ID> CC) const {
4460   if ((ValueVT == MVT::f16 || ValueVT == MVT::bf16) && PartVT == MVT::f32) {
4461     unsigned ValueBits = ValueVT.getSizeInBits();
4462     unsigned PartBits = PartVT.getSizeInBits();
4463     SDValue Val = Parts[0];
4464 
4465     Val = DAG.getNode(ISD::BITCAST, DL, MVT::getIntegerVT(PartBits), Val);
4466     Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::getIntegerVT(ValueBits), Val);
4467     Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
4468     return Val;
4469   }
4470   return SDValue();
4471 }
4472 
4473 SDValue ARMTargetLowering::LowerFormalArguments(
4474     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
4475     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
4476     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
4477   MachineFunction &MF = DAG.getMachineFunction();
4478   MachineFrameInfo &MFI = MF.getFrameInfo();
4479 
4480   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
4481 
4482   // Assign locations to all of the incoming arguments.
4483   SmallVector<CCValAssign, 16> ArgLocs;
4484   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
4485                  *DAG.getContext());
4486   CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForCall(CallConv, isVarArg));
4487 
4488   SmallVector<SDValue, 16> ArgValues;
4489   SDValue ArgValue;
4490   Function::const_arg_iterator CurOrigArg = MF.getFunction().arg_begin();
4491   unsigned CurArgIdx = 0;
4492 
4493   // Initially ArgRegsSaveSize is zero.
4494   // Then we increase this value each time we meet byval parameter.
4495   // We also increase this value in case of varargs function.
4496   AFI->setArgRegsSaveSize(0);
4497 
4498   // Calculate the amount of stack space that we need to allocate to store
4499   // byval and variadic arguments that are passed in registers.
4500   // We need to know this before we allocate the first byval or variadic
4501   // argument, as they will be allocated a stack slot below the CFA (Canonical
4502   // Frame Address, the stack pointer at entry to the function).
4503   unsigned ArgRegBegin = ARM::R4;
4504   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
4505     if (CCInfo.getInRegsParamsProcessed() >= CCInfo.getInRegsParamsCount())
4506       break;
4507 
4508     CCValAssign &VA = ArgLocs[i];
4509     unsigned Index = VA.getValNo();
4510     ISD::ArgFlagsTy Flags = Ins[Index].Flags;
4511     if (!Flags.isByVal())
4512       continue;
4513 
4514     assert(VA.isMemLoc() && "unexpected byval pointer in reg");
4515     unsigned RBegin, REnd;
4516     CCInfo.getInRegsParamInfo(CCInfo.getInRegsParamsProcessed(), RBegin, REnd);
4517     ArgRegBegin = std::min(ArgRegBegin, RBegin);
4518 
4519     CCInfo.nextInRegsParam();
4520   }
4521   CCInfo.rewindByValRegsInfo();
4522 
4523   int lastInsIndex = -1;
4524   if (isVarArg && MFI.hasVAStart()) {
4525     unsigned RegIdx = CCInfo.getFirstUnallocated(GPRArgRegs);
4526     if (RegIdx != std::size(GPRArgRegs))
4527       ArgRegBegin = std::min(ArgRegBegin, (unsigned)GPRArgRegs[RegIdx]);
4528   }
4529 
4530   unsigned TotalArgRegsSaveSize = 4 * (ARM::R4 - ArgRegBegin);
4531   AFI->setArgRegsSaveSize(TotalArgRegsSaveSize);
4532   auto PtrVT = getPointerTy(DAG.getDataLayout());
4533 
4534   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
4535     CCValAssign &VA = ArgLocs[i];
4536     if (Ins[VA.getValNo()].isOrigArg()) {
4537       std::advance(CurOrigArg,
4538                    Ins[VA.getValNo()].getOrigArgIndex() - CurArgIdx);
4539       CurArgIdx = Ins[VA.getValNo()].getOrigArgIndex();
4540     }
4541     // Arguments stored in registers.
4542     if (VA.isRegLoc()) {
4543       EVT RegVT = VA.getLocVT();
4544 
4545       if (VA.needsCustom() && VA.getLocVT() == MVT::v2f64) {
4546         // f64 and vector types are split up into multiple registers or
4547         // combinations of registers and stack slots.
4548         SDValue ArgValue1 =
4549             GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
4550         VA = ArgLocs[++i]; // skip ahead to next loc
4551         SDValue ArgValue2;
4552         if (VA.isMemLoc()) {
4553           int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), true);
4554           SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4555           ArgValue2 = DAG.getLoad(
4556               MVT::f64, dl, Chain, FIN,
4557               MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI));
4558         } else {
4559           ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
4560         }
4561         ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
4562         ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, ArgValue,
4563                                ArgValue1, DAG.getIntPtrConstant(0, dl));
4564         ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, ArgValue,
4565                                ArgValue2, DAG.getIntPtrConstant(1, dl));
4566       } else if (VA.needsCustom() && VA.getLocVT() == MVT::f64) {
4567         ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
4568       } else {
4569         const TargetRegisterClass *RC;
4570 
4571         if (RegVT == MVT::f16 || RegVT == MVT::bf16)
4572           RC = &ARM::HPRRegClass;
4573         else if (RegVT == MVT::f32)
4574           RC = &ARM::SPRRegClass;
4575         else if (RegVT == MVT::f64 || RegVT == MVT::v4f16 ||
4576                  RegVT == MVT::v4bf16)
4577           RC = &ARM::DPRRegClass;
4578         else if (RegVT == MVT::v2f64 || RegVT == MVT::v8f16 ||
4579                  RegVT == MVT::v8bf16)
4580           RC = &ARM::QPRRegClass;
4581         else if (RegVT == MVT::i32)
4582           RC = AFI->isThumb1OnlyFunction() ? &ARM::tGPRRegClass
4583                                            : &ARM::GPRRegClass;
4584         else
4585           llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
4586 
4587         // Transform the arguments in physical registers into virtual ones.
4588         Register Reg = MF.addLiveIn(VA.getLocReg(), RC);
4589         ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
4590 
4591         // If this value is passed in r0 and has the returned attribute (e.g.
4592         // C++ 'structors), record this fact for later use.
4593         if (VA.getLocReg() == ARM::R0 && Ins[VA.getValNo()].Flags.isReturned()) {
4594           AFI->setPreservesR0();
4595         }
4596       }
4597 
4598       // If this is an 8 or 16-bit value, it is really passed promoted
4599       // to 32 bits.  Insert an assert[sz]ext to capture this, then
4600       // truncate to the right size.
4601       switch (VA.getLocInfo()) {
4602       default: llvm_unreachable("Unknown loc info!");
4603       case CCValAssign::Full: break;
4604       case CCValAssign::BCvt:
4605         ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
4606         break;
4607       case CCValAssign::SExt:
4608         ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
4609                                DAG.getValueType(VA.getValVT()));
4610         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
4611         break;
4612       case CCValAssign::ZExt:
4613         ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
4614                                DAG.getValueType(VA.getValVT()));
4615         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
4616         break;
4617       }
4618 
4619       // f16 arguments have their size extended to 4 bytes and passed as if they
4620       // had been copied to the LSBs of a 32-bit register.
4621       // For that, it's passed extended to i32 (soft ABI) or to f32 (hard ABI)
4622       if (VA.needsCustom() &&
4623           (VA.getValVT() == MVT::f16 || VA.getValVT() == MVT::bf16))
4624         ArgValue = MoveToHPR(dl, DAG, VA.getLocVT(), VA.getValVT(), ArgValue);
4625 
4626       InVals.push_back(ArgValue);
4627     } else { // VA.isRegLoc()
4628       // Only arguments passed on the stack should make it here.
4629       assert(VA.isMemLoc());
4630       assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
4631 
4632       int index = VA.getValNo();
4633 
4634       // Some Ins[] entries become multiple ArgLoc[] entries.
4635       // Process them only once.
4636       if (index != lastInsIndex)
4637         {
4638           ISD::ArgFlagsTy Flags = Ins[index].Flags;
4639           // FIXME: For now, all byval parameter objects are marked mutable.
4640           // This can be changed with more analysis.
4641           // In case of tail call optimization mark all arguments mutable.
4642           // Since they could be overwritten by lowering of arguments in case of
4643           // a tail call.
4644           if (Flags.isByVal()) {
4645             assert(Ins[index].isOrigArg() &&
4646                    "Byval arguments cannot be implicit");
4647             unsigned CurByValIndex = CCInfo.getInRegsParamsProcessed();
4648 
4649             int FrameIndex = StoreByValRegs(
4650                 CCInfo, DAG, dl, Chain, &*CurOrigArg, CurByValIndex,
4651                 VA.getLocMemOffset(), Flags.getByValSize());
4652             InVals.push_back(DAG.getFrameIndex(FrameIndex, PtrVT));
4653             CCInfo.nextInRegsParam();
4654           } else {
4655             unsigned FIOffset = VA.getLocMemOffset();
4656             int FI = MFI.CreateFixedObject(VA.getLocVT().getSizeInBits()/8,
4657                                            FIOffset, true);
4658 
4659             // Create load nodes to retrieve arguments from the stack.
4660             SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4661             InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
4662                                          MachinePointerInfo::getFixedStack(
4663                                              DAG.getMachineFunction(), FI)));
4664           }
4665           lastInsIndex = index;
4666         }
4667     }
4668   }
4669 
4670   // varargs
4671   if (isVarArg && MFI.hasVAStart()) {
4672     VarArgStyleRegisters(CCInfo, DAG, dl, Chain, CCInfo.getStackSize(),
4673                          TotalArgRegsSaveSize);
4674     if (AFI->isCmseNSEntryFunction()) {
4675       DiagnosticInfoUnsupported Diag(
4676           DAG.getMachineFunction().getFunction(),
4677           "secure entry function must not be variadic", dl.getDebugLoc());
4678       DAG.getContext()->diagnose(Diag);
4679     }
4680   }
4681 
4682   unsigned StackArgSize = CCInfo.getStackSize();
4683   bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
4684   if (canGuaranteeTCO(CallConv, TailCallOpt)) {
4685     // The only way to guarantee a tail call is if the callee restores its
4686     // argument area, but it must also keep the stack aligned when doing so.
4687     const DataLayout &DL = DAG.getDataLayout();
4688     StackArgSize = alignTo(StackArgSize, DL.getStackAlignment());
4689 
4690     AFI->setArgumentStackToRestore(StackArgSize);
4691   }
4692   AFI->setArgumentStackSize(StackArgSize);
4693 
4694   if (CCInfo.getStackSize() > 0 && AFI->isCmseNSEntryFunction()) {
4695     DiagnosticInfoUnsupported Diag(
4696         DAG.getMachineFunction().getFunction(),
4697         "secure entry function requires arguments on stack", dl.getDebugLoc());
4698     DAG.getContext()->diagnose(Diag);
4699   }
4700 
4701   return Chain;
4702 }
4703 
4704 /// isFloatingPointZero - Return true if this is +0.0.
4705 static bool isFloatingPointZero(SDValue Op) {
4706   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
4707     return CFP->getValueAPF().isPosZero();
4708   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
4709     // Maybe this has already been legalized into the constant pool?
4710     if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
4711       SDValue WrapperOp = Op.getOperand(1).getOperand(0);
4712       if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
4713         if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
4714           return CFP->getValueAPF().isPosZero();
4715     }
4716   } else if (Op->getOpcode() == ISD::BITCAST &&
4717              Op->getValueType(0) == MVT::f64) {
4718     // Handle (ISD::BITCAST (ARMISD::VMOVIMM (ISD::TargetConstant 0)) MVT::f64)
4719     // created by LowerConstantFP().
4720     SDValue BitcastOp = Op->getOperand(0);
4721     if (BitcastOp->getOpcode() == ARMISD::VMOVIMM &&
4722         isNullConstant(BitcastOp->getOperand(0)))
4723       return true;
4724   }
4725   return false;
4726 }
4727 
4728 /// Returns appropriate ARM CMP (cmp) and corresponding condition code for
4729 /// the given operands.
4730 SDValue ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
4731                                      SDValue &ARMcc, SelectionDAG &DAG,
4732                                      const SDLoc &dl) const {
4733   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
4734     unsigned C = RHSC->getZExtValue();
4735     if (!isLegalICmpImmediate((int32_t)C)) {
4736       // Constant does not fit, try adjusting it by one.
4737       switch (CC) {
4738       default: break;
4739       case ISD::SETLT:
4740       case ISD::SETGE:
4741         if (C != 0x80000000 && isLegalICmpImmediate(C-1)) {
4742           CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
4743           RHS = DAG.getConstant(C - 1, dl, MVT::i32);
4744         }
4745         break;
4746       case ISD::SETULT:
4747       case ISD::SETUGE:
4748         if (C != 0 && isLegalICmpImmediate(C-1)) {
4749           CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
4750           RHS = DAG.getConstant(C - 1, dl, MVT::i32);
4751         }
4752         break;
4753       case ISD::SETLE:
4754       case ISD::SETGT:
4755         if (C != 0x7fffffff && isLegalICmpImmediate(C+1)) {
4756           CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
4757           RHS = DAG.getConstant(C + 1, dl, MVT::i32);
4758         }
4759         break;
4760       case ISD::SETULE:
4761       case ISD::SETUGT:
4762         if (C != 0xffffffff && isLegalICmpImmediate(C+1)) {
4763           CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
4764           RHS = DAG.getConstant(C + 1, dl, MVT::i32);
4765         }
4766         break;
4767       }
4768     }
4769   } else if ((ARM_AM::getShiftOpcForNode(LHS.getOpcode()) != ARM_AM::no_shift) &&
4770              (ARM_AM::getShiftOpcForNode(RHS.getOpcode()) == ARM_AM::no_shift)) {
4771     // In ARM and Thumb-2, the compare instructions can shift their second
4772     // operand.
4773     CC = ISD::getSetCCSwappedOperands(CC);
4774     std::swap(LHS, RHS);
4775   }
4776 
4777   // Thumb1 has very limited immediate modes, so turning an "and" into a
4778   // shift can save multiple instructions.
4779   //
4780   // If we have (x & C1), and C1 is an appropriate mask, we can transform it
4781   // into "((x << n) >> n)".  But that isn't necessarily profitable on its
4782   // own. If it's the operand to an unsigned comparison with an immediate,
4783   // we can eliminate one of the shifts: we transform
4784   // "((x << n) >> n) == C2" to "(x << n) == (C2 << n)".
4785   //
4786   // We avoid transforming cases which aren't profitable due to encoding
4787   // details:
4788   //
4789   // 1. C2 fits into the immediate field of a cmp, and the transformed version
4790   // would not; in that case, we're essentially trading one immediate load for
4791   // another.
4792   // 2. C1 is 255 or 65535, so we can use uxtb or uxth.
4793   // 3. C2 is zero; we have other code for this special case.
4794   //
4795   // FIXME: Figure out profitability for Thumb2; we usually can't save an
4796   // instruction, since the AND is always one instruction anyway, but we could
4797   // use narrow instructions in some cases.
4798   if (Subtarget->isThumb1Only() && LHS->getOpcode() == ISD::AND &&
4799       LHS->hasOneUse() && isa<ConstantSDNode>(LHS.getOperand(1)) &&
4800       LHS.getValueType() == MVT::i32 && isa<ConstantSDNode>(RHS) &&
4801       !isSignedIntSetCC(CC)) {
4802     unsigned Mask = LHS.getConstantOperandVal(1);
4803     auto *RHSC = cast<ConstantSDNode>(RHS.getNode());
4804     uint64_t RHSV = RHSC->getZExtValue();
4805     if (isMask_32(Mask) && (RHSV & ~Mask) == 0 && Mask != 255 && Mask != 65535) {
4806       unsigned ShiftBits = llvm::countl_zero(Mask);
4807       if (RHSV && (RHSV > 255 || (RHSV << ShiftBits) <= 255)) {
4808         SDValue ShiftAmt = DAG.getConstant(ShiftBits, dl, MVT::i32);
4809         LHS = DAG.getNode(ISD::SHL, dl, MVT::i32, LHS.getOperand(0), ShiftAmt);
4810         RHS = DAG.getConstant(RHSV << ShiftBits, dl, MVT::i32);
4811       }
4812     }
4813   }
4814 
4815   // The specific comparison "(x<<c) > 0x80000000U" can be optimized to a
4816   // single "lsls x, c+1".  The shift sets the "C" and "Z" flags the same
4817   // way a cmp would.
4818   // FIXME: Add support for ARM/Thumb2; this would need isel patterns, and
4819   // some tweaks to the heuristics for the previous and->shift transform.
4820   // FIXME: Optimize cases where the LHS isn't a shift.
4821   if (Subtarget->isThumb1Only() && LHS->getOpcode() == ISD::SHL &&
4822       isa<ConstantSDNode>(RHS) && RHS->getAsZExtVal() == 0x80000000U &&
4823       CC == ISD::SETUGT && isa<ConstantSDNode>(LHS.getOperand(1)) &&
4824       LHS.getConstantOperandVal(1) < 31) {
4825     unsigned ShiftAmt = LHS.getConstantOperandVal(1) + 1;
4826     SDValue Shift = DAG.getNode(ARMISD::LSLS, dl,
4827                                 DAG.getVTList(MVT::i32, MVT::i32),
4828                                 LHS.getOperand(0),
4829                                 DAG.getConstant(ShiftAmt, dl, MVT::i32));
4830     SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, ARM::CPSR,
4831                                      Shift.getValue(1), SDValue());
4832     ARMcc = DAG.getConstant(ARMCC::HI, dl, MVT::i32);
4833     return Chain.getValue(1);
4834   }
4835 
4836   ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
4837 
4838   // If the RHS is a constant zero then the V (overflow) flag will never be
4839   // set. This can allow us to simplify GE to PL or LT to MI, which can be
4840   // simpler for other passes (like the peephole optimiser) to deal with.
4841   if (isNullConstant(RHS)) {
4842     switch (CondCode) {
4843       default: break;
4844       case ARMCC::GE:
4845         CondCode = ARMCC::PL;
4846         break;
4847       case ARMCC::LT:
4848         CondCode = ARMCC::MI;
4849         break;
4850     }
4851   }
4852 
4853   ARMISD::NodeType CompareType;
4854   switch (CondCode) {
4855   default:
4856     CompareType = ARMISD::CMP;
4857     break;
4858   case ARMCC::EQ:
4859   case ARMCC::NE:
4860     // Uses only Z Flag
4861     CompareType = ARMISD::CMPZ;
4862     break;
4863   }
4864   ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
4865   return DAG.getNode(CompareType, dl, MVT::Glue, LHS, RHS);
4866 }
4867 
4868 /// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
4869 SDValue ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS,
4870                                      SelectionDAG &DAG, const SDLoc &dl,
4871                                      bool Signaling) const {
4872   assert(Subtarget->hasFP64() || RHS.getValueType() != MVT::f64);
4873   SDValue Cmp;
4874   if (!isFloatingPointZero(RHS))
4875     Cmp = DAG.getNode(Signaling ? ARMISD::CMPFPE : ARMISD::CMPFP,
4876                       dl, MVT::Glue, LHS, RHS);
4877   else
4878     Cmp = DAG.getNode(Signaling ? ARMISD::CMPFPEw0 : ARMISD::CMPFPw0,
4879                       dl, MVT::Glue, LHS);
4880   return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Glue, Cmp);
4881 }
4882 
4883 /// duplicateCmp - Glue values can have only one use, so this function
4884 /// duplicates a comparison node.
4885 SDValue
4886 ARMTargetLowering::duplicateCmp(SDValue Cmp, SelectionDAG &DAG) const {
4887   unsigned Opc = Cmp.getOpcode();
4888   SDLoc DL(Cmp);
4889   if (Opc == ARMISD::CMP || Opc == ARMISD::CMPZ)
4890     return DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
4891 
4892   assert(Opc == ARMISD::FMSTAT && "unexpected comparison operation");
4893   Cmp = Cmp.getOperand(0);
4894   Opc = Cmp.getOpcode();
4895   if (Opc == ARMISD::CMPFP)
4896     Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
4897   else {
4898     assert(Opc == ARMISD::CMPFPw0 && "unexpected operand of FMSTAT");
4899     Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0));
4900   }
4901   return DAG.getNode(ARMISD::FMSTAT, DL, MVT::Glue, Cmp);
4902 }
4903 
4904 // This function returns three things: the arithmetic computation itself
4905 // (Value), a comparison (OverflowCmp), and a condition code (ARMcc).  The
4906 // comparison and the condition code define the case in which the arithmetic
4907 // computation *does not* overflow.
4908 std::pair<SDValue, SDValue>
4909 ARMTargetLowering::getARMXALUOOp(SDValue Op, SelectionDAG &DAG,
4910                                  SDValue &ARMcc) const {
4911   assert(Op.getValueType() == MVT::i32 &&  "Unsupported value type");
4912 
4913   SDValue Value, OverflowCmp;
4914   SDValue LHS = Op.getOperand(0);
4915   SDValue RHS = Op.getOperand(1);
4916   SDLoc dl(Op);
4917 
4918   // FIXME: We are currently always generating CMPs because we don't support
4919   // generating CMN through the backend. This is not as good as the natural
4920   // CMP case because it causes a register dependency and cannot be folded
4921   // later.
4922 
4923   switch (Op.getOpcode()) {
4924   default:
4925     llvm_unreachable("Unknown overflow instruction!");
4926   case ISD::SADDO:
4927     ARMcc = DAG.getConstant(ARMCC::VC, dl, MVT::i32);
4928     Value = DAG.getNode(ISD::ADD, dl, Op.getValueType(), LHS, RHS);
4929     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value, LHS);
4930     break;
4931   case ISD::UADDO:
4932     ARMcc = DAG.getConstant(ARMCC::HS, dl, MVT::i32);
4933     // We use ADDC here to correspond to its use in LowerUnsignedALUO.
4934     // We do not use it in the USUBO case as Value may not be used.
4935     Value = DAG.getNode(ARMISD::ADDC, dl,
4936                         DAG.getVTList(Op.getValueType(), MVT::i32), LHS, RHS)
4937                 .getValue(0);
4938     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value, LHS);
4939     break;
4940   case ISD::SSUBO:
4941     ARMcc = DAG.getConstant(ARMCC::VC, dl, MVT::i32);
4942     Value = DAG.getNode(ISD::SUB, dl, Op.getValueType(), LHS, RHS);
4943     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, LHS, RHS);
4944     break;
4945   case ISD::USUBO:
4946     ARMcc = DAG.getConstant(ARMCC::HS, dl, MVT::i32);
4947     Value = DAG.getNode(ISD::SUB, dl, Op.getValueType(), LHS, RHS);
4948     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, LHS, RHS);
4949     break;
4950   case ISD::UMULO:
4951     // We generate a UMUL_LOHI and then check if the high word is 0.
4952     ARMcc = DAG.getConstant(ARMCC::EQ, dl, MVT::i32);
4953     Value = DAG.getNode(ISD::UMUL_LOHI, dl,
4954                         DAG.getVTList(Op.getValueType(), Op.getValueType()),
4955                         LHS, RHS);
4956     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value.getValue(1),
4957                               DAG.getConstant(0, dl, MVT::i32));
4958     Value = Value.getValue(0); // We only want the low 32 bits for the result.
4959     break;
4960   case ISD::SMULO:
4961     // We generate a SMUL_LOHI and then check if all the bits of the high word
4962     // are the same as the sign bit of the low word.
4963     ARMcc = DAG.getConstant(ARMCC::EQ, dl, MVT::i32);
4964     Value = DAG.getNode(ISD::SMUL_LOHI, dl,
4965                         DAG.getVTList(Op.getValueType(), Op.getValueType()),
4966                         LHS, RHS);
4967     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value.getValue(1),
4968                               DAG.getNode(ISD::SRA, dl, Op.getValueType(),
4969                                           Value.getValue(0),
4970                                           DAG.getConstant(31, dl, MVT::i32)));
4971     Value = Value.getValue(0); // We only want the low 32 bits for the result.
4972     break;
4973   } // switch (...)
4974 
4975   return std::make_pair(Value, OverflowCmp);
4976 }
4977 
4978 SDValue
4979 ARMTargetLowering::LowerSignedALUO(SDValue Op, SelectionDAG &DAG) const {
4980   // Let legalize expand this if it isn't a legal type yet.
4981   if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
4982     return SDValue();
4983 
4984   SDValue Value, OverflowCmp;
4985   SDValue ARMcc;
4986   std::tie(Value, OverflowCmp) = getARMXALUOOp(Op, DAG, ARMcc);
4987   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4988   SDLoc dl(Op);
4989   // We use 0 and 1 as false and true values.
4990   SDValue TVal = DAG.getConstant(1, dl, MVT::i32);
4991   SDValue FVal = DAG.getConstant(0, dl, MVT::i32);
4992   EVT VT = Op.getValueType();
4993 
4994   SDValue Overflow = DAG.getNode(ARMISD::CMOV, dl, VT, TVal, FVal,
4995                                  ARMcc, CCR, OverflowCmp);
4996 
4997   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
4998   return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow);
4999 }
5000 
5001 static SDValue ConvertBooleanCarryToCarryFlag(SDValue BoolCarry,
5002                                               SelectionDAG &DAG) {
5003   SDLoc DL(BoolCarry);
5004   EVT CarryVT = BoolCarry.getValueType();
5005 
5006   // This converts the boolean value carry into the carry flag by doing
5007   // ARMISD::SUBC Carry, 1
5008   SDValue Carry = DAG.getNode(ARMISD::SUBC, DL,
5009                               DAG.getVTList(CarryVT, MVT::i32),
5010                               BoolCarry, DAG.getConstant(1, DL, CarryVT));
5011   return Carry.getValue(1);
5012 }
5013 
5014 static SDValue ConvertCarryFlagToBooleanCarry(SDValue Flags, EVT VT,
5015                                               SelectionDAG &DAG) {
5016   SDLoc DL(Flags);
5017 
5018   // Now convert the carry flag into a boolean carry. We do this
5019   // using ARMISD:ADDE 0, 0, Carry
5020   return DAG.getNode(ARMISD::ADDE, DL, DAG.getVTList(VT, MVT::i32),
5021                      DAG.getConstant(0, DL, MVT::i32),
5022                      DAG.getConstant(0, DL, MVT::i32), Flags);
5023 }
5024 
5025 SDValue ARMTargetLowering::LowerUnsignedALUO(SDValue Op,
5026                                              SelectionDAG &DAG) const {
5027   // Let legalize expand this if it isn't a legal type yet.
5028   if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
5029     return SDValue();
5030 
5031   SDValue LHS = Op.getOperand(0);
5032   SDValue RHS = Op.getOperand(1);
5033   SDLoc dl(Op);
5034 
5035   EVT VT = Op.getValueType();
5036   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
5037   SDValue Value;
5038   SDValue Overflow;
5039   switch (Op.getOpcode()) {
5040   default:
5041     llvm_unreachable("Unknown overflow instruction!");
5042   case ISD::UADDO:
5043     Value = DAG.getNode(ARMISD::ADDC, dl, VTs, LHS, RHS);
5044     // Convert the carry flag into a boolean value.
5045     Overflow = ConvertCarryFlagToBooleanCarry(Value.getValue(1), VT, DAG);
5046     break;
5047   case ISD::USUBO: {
5048     Value = DAG.getNode(ARMISD::SUBC, dl, VTs, LHS, RHS);
5049     // Convert the carry flag into a boolean value.
5050     Overflow = ConvertCarryFlagToBooleanCarry(Value.getValue(1), VT, DAG);
5051     // ARMISD::SUBC returns 0 when we have to borrow, so make it an overflow
5052     // value. So compute 1 - C.
5053     Overflow = DAG.getNode(ISD::SUB, dl, MVT::i32,
5054                            DAG.getConstant(1, dl, MVT::i32), Overflow);
5055     break;
5056   }
5057   }
5058 
5059   return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow);
5060 }
5061 
5062 static SDValue LowerADDSUBSAT(SDValue Op, SelectionDAG &DAG,
5063                               const ARMSubtarget *Subtarget) {
5064   EVT VT = Op.getValueType();
5065   if (!Subtarget->hasV6Ops() || !Subtarget->hasDSP() || Subtarget->isThumb1Only())
5066     return SDValue();
5067   if (!VT.isSimple())
5068     return SDValue();
5069 
5070   unsigned NewOpcode;
5071   switch (VT.getSimpleVT().SimpleTy) {
5072   default:
5073     return SDValue();
5074   case MVT::i8:
5075     switch (Op->getOpcode()) {
5076     case ISD::UADDSAT:
5077       NewOpcode = ARMISD::UQADD8b;
5078       break;
5079     case ISD::SADDSAT:
5080       NewOpcode = ARMISD::QADD8b;
5081       break;
5082     case ISD::USUBSAT:
5083       NewOpcode = ARMISD::UQSUB8b;
5084       break;
5085     case ISD::SSUBSAT:
5086       NewOpcode = ARMISD::QSUB8b;
5087       break;
5088     }
5089     break;
5090   case MVT::i16:
5091     switch (Op->getOpcode()) {
5092     case ISD::UADDSAT:
5093       NewOpcode = ARMISD::UQADD16b;
5094       break;
5095     case ISD::SADDSAT:
5096       NewOpcode = ARMISD::QADD16b;
5097       break;
5098     case ISD::USUBSAT:
5099       NewOpcode = ARMISD::UQSUB16b;
5100       break;
5101     case ISD::SSUBSAT:
5102       NewOpcode = ARMISD::QSUB16b;
5103       break;
5104     }
5105     break;
5106   }
5107 
5108   SDLoc dl(Op);
5109   SDValue Add =
5110       DAG.getNode(NewOpcode, dl, MVT::i32,
5111                   DAG.getSExtOrTrunc(Op->getOperand(0), dl, MVT::i32),
5112                   DAG.getSExtOrTrunc(Op->getOperand(1), dl, MVT::i32));
5113   return DAG.getNode(ISD::TRUNCATE, dl, VT, Add);
5114 }
5115 
5116 SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
5117   SDValue Cond = Op.getOperand(0);
5118   SDValue SelectTrue = Op.getOperand(1);
5119   SDValue SelectFalse = Op.getOperand(2);
5120   SDLoc dl(Op);
5121   unsigned Opc = Cond.getOpcode();
5122 
5123   if (Cond.getResNo() == 1 &&
5124       (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
5125        Opc == ISD::USUBO)) {
5126     if (!DAG.getTargetLoweringInfo().isTypeLegal(Cond->getValueType(0)))
5127       return SDValue();
5128 
5129     SDValue Value, OverflowCmp;
5130     SDValue ARMcc;
5131     std::tie(Value, OverflowCmp) = getARMXALUOOp(Cond, DAG, ARMcc);
5132     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5133     EVT VT = Op.getValueType();
5134 
5135     return getCMOV(dl, VT, SelectTrue, SelectFalse, ARMcc, CCR,
5136                    OverflowCmp, DAG);
5137   }
5138 
5139   // Convert:
5140   //
5141   //   (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
5142   //   (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
5143   //
5144   if (Cond.getOpcode() == ARMISD::CMOV && Cond.hasOneUse()) {
5145     const ConstantSDNode *CMOVTrue =
5146       dyn_cast<ConstantSDNode>(Cond.getOperand(0));
5147     const ConstantSDNode *CMOVFalse =
5148       dyn_cast<ConstantSDNode>(Cond.getOperand(1));
5149 
5150     if (CMOVTrue && CMOVFalse) {
5151       unsigned CMOVTrueVal = CMOVTrue->getZExtValue();
5152       unsigned CMOVFalseVal = CMOVFalse->getZExtValue();
5153 
5154       SDValue True;
5155       SDValue False;
5156       if (CMOVTrueVal == 1 && CMOVFalseVal == 0) {
5157         True = SelectTrue;
5158         False = SelectFalse;
5159       } else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) {
5160         True = SelectFalse;
5161         False = SelectTrue;
5162       }
5163 
5164       if (True.getNode() && False.getNode()) {
5165         EVT VT = Op.getValueType();
5166         SDValue ARMcc = Cond.getOperand(2);
5167         SDValue CCR = Cond.getOperand(3);
5168         SDValue Cmp = duplicateCmp(Cond.getOperand(4), DAG);
5169         assert(True.getValueType() == VT);
5170         return getCMOV(dl, VT, True, False, ARMcc, CCR, Cmp, DAG);
5171       }
5172     }
5173   }
5174 
5175   // ARM's BooleanContents value is UndefinedBooleanContent. Mask out the
5176   // undefined bits before doing a full-word comparison with zero.
5177   Cond = DAG.getNode(ISD::AND, dl, Cond.getValueType(), Cond,
5178                      DAG.getConstant(1, dl, Cond.getValueType()));
5179 
5180   return DAG.getSelectCC(dl, Cond,
5181                          DAG.getConstant(0, dl, Cond.getValueType()),
5182                          SelectTrue, SelectFalse, ISD::SETNE);
5183 }
5184 
5185 static void checkVSELConstraints(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
5186                                  bool &swpCmpOps, bool &swpVselOps) {
5187   // Start by selecting the GE condition code for opcodes that return true for
5188   // 'equality'
5189   if (CC == ISD::SETUGE || CC == ISD::SETOGE || CC == ISD::SETOLE ||
5190       CC == ISD::SETULE || CC == ISD::SETGE  || CC == ISD::SETLE)
5191     CondCode = ARMCC::GE;
5192 
5193   // and GT for opcodes that return false for 'equality'.
5194   else if (CC == ISD::SETUGT || CC == ISD::SETOGT || CC == ISD::SETOLT ||
5195            CC == ISD::SETULT || CC == ISD::SETGT  || CC == ISD::SETLT)
5196     CondCode = ARMCC::GT;
5197 
5198   // Since we are constrained to GE/GT, if the opcode contains 'less', we need
5199   // to swap the compare operands.
5200   if (CC == ISD::SETOLE || CC == ISD::SETULE || CC == ISD::SETOLT ||
5201       CC == ISD::SETULT || CC == ISD::SETLE  || CC == ISD::SETLT)
5202     swpCmpOps = true;
5203 
5204   // Both GT and GE are ordered comparisons, and return false for 'unordered'.
5205   // If we have an unordered opcode, we need to swap the operands to the VSEL
5206   // instruction (effectively negating the condition).
5207   //
5208   // This also has the effect of swapping which one of 'less' or 'greater'
5209   // returns true, so we also swap the compare operands. It also switches
5210   // whether we return true for 'equality', so we compensate by picking the
5211   // opposite condition code to our original choice.
5212   if (CC == ISD::SETULE || CC == ISD::SETULT || CC == ISD::SETUGE ||
5213       CC == ISD::SETUGT) {
5214     swpCmpOps = !swpCmpOps;
5215     swpVselOps = !swpVselOps;
5216     CondCode = CondCode == ARMCC::GT ? ARMCC::GE : ARMCC::GT;
5217   }
5218 
5219   // 'ordered' is 'anything but unordered', so use the VS condition code and
5220   // swap the VSEL operands.
5221   if (CC == ISD::SETO) {
5222     CondCode = ARMCC::VS;
5223     swpVselOps = true;
5224   }
5225 
5226   // 'unordered or not equal' is 'anything but equal', so use the EQ condition
5227   // code and swap the VSEL operands. Also do this if we don't care about the
5228   // unordered case.
5229   if (CC == ISD::SETUNE || CC == ISD::SETNE) {
5230     CondCode = ARMCC::EQ;
5231     swpVselOps = true;
5232   }
5233 }
5234 
5235 SDValue ARMTargetLowering::getCMOV(const SDLoc &dl, EVT VT, SDValue FalseVal,
5236                                    SDValue TrueVal, SDValue ARMcc, SDValue CCR,
5237                                    SDValue Cmp, SelectionDAG &DAG) const {
5238   if (!Subtarget->hasFP64() && VT == MVT::f64) {
5239     FalseVal = DAG.getNode(ARMISD::VMOVRRD, dl,
5240                            DAG.getVTList(MVT::i32, MVT::i32), FalseVal);
5241     TrueVal = DAG.getNode(ARMISD::VMOVRRD, dl,
5242                           DAG.getVTList(MVT::i32, MVT::i32), TrueVal);
5243 
5244     SDValue TrueLow = TrueVal.getValue(0);
5245     SDValue TrueHigh = TrueVal.getValue(1);
5246     SDValue FalseLow = FalseVal.getValue(0);
5247     SDValue FalseHigh = FalseVal.getValue(1);
5248 
5249     SDValue Low = DAG.getNode(ARMISD::CMOV, dl, MVT::i32, FalseLow, TrueLow,
5250                               ARMcc, CCR, Cmp);
5251     SDValue High = DAG.getNode(ARMISD::CMOV, dl, MVT::i32, FalseHigh, TrueHigh,
5252                                ARMcc, CCR, duplicateCmp(Cmp, DAG));
5253 
5254     return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Low, High);
5255   } else {
5256     return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR,
5257                        Cmp);
5258   }
5259 }
5260 
5261 static bool isGTorGE(ISD::CondCode CC) {
5262   return CC == ISD::SETGT || CC == ISD::SETGE;
5263 }
5264 
5265 static bool isLTorLE(ISD::CondCode CC) {
5266   return CC == ISD::SETLT || CC == ISD::SETLE;
5267 }
5268 
5269 // See if a conditional (LHS CC RHS ? TrueVal : FalseVal) is lower-saturating.
5270 // All of these conditions (and their <= and >= counterparts) will do:
5271 //          x < k ? k : x
5272 //          x > k ? x : k
5273 //          k < x ? x : k
5274 //          k > x ? k : x
5275 static bool isLowerSaturate(const SDValue LHS, const SDValue RHS,
5276                             const SDValue TrueVal, const SDValue FalseVal,
5277                             const ISD::CondCode CC, const SDValue K) {
5278   return (isGTorGE(CC) &&
5279           ((K == LHS && K == TrueVal) || (K == RHS && K == FalseVal))) ||
5280          (isLTorLE(CC) &&
5281           ((K == RHS && K == TrueVal) || (K == LHS && K == FalseVal)));
5282 }
5283 
5284 // Check if two chained conditionals could be converted into SSAT or USAT.
5285 //
5286 // SSAT can replace a set of two conditional selectors that bound a number to an
5287 // interval of type [k, ~k] when k + 1 is a power of 2. Here are some examples:
5288 //
5289 //     x < -k ? -k : (x > k ? k : x)
5290 //     x < -k ? -k : (x < k ? x : k)
5291 //     x > -k ? (x > k ? k : x) : -k
5292 //     x < k ? (x < -k ? -k : x) : k
5293 //     etc.
5294 //
5295 // LLVM canonicalizes these to either a min(max()) or a max(min())
5296 // pattern. This function tries to match one of these and will return a SSAT
5297 // node if successful.
5298 //
5299 // USAT works similarily to SSAT but bounds on the interval [0, k] where k + 1
5300 // is a power of 2.
5301 static SDValue LowerSaturatingConditional(SDValue Op, SelectionDAG &DAG) {
5302   EVT VT = Op.getValueType();
5303   SDValue V1 = Op.getOperand(0);
5304   SDValue K1 = Op.getOperand(1);
5305   SDValue TrueVal1 = Op.getOperand(2);
5306   SDValue FalseVal1 = Op.getOperand(3);
5307   ISD::CondCode CC1 = cast<CondCodeSDNode>(Op.getOperand(4))->get();
5308 
5309   const SDValue Op2 = isa<ConstantSDNode>(TrueVal1) ? FalseVal1 : TrueVal1;
5310   if (Op2.getOpcode() != ISD::SELECT_CC)
5311     return SDValue();
5312 
5313   SDValue V2 = Op2.getOperand(0);
5314   SDValue K2 = Op2.getOperand(1);
5315   SDValue TrueVal2 = Op2.getOperand(2);
5316   SDValue FalseVal2 = Op2.getOperand(3);
5317   ISD::CondCode CC2 = cast<CondCodeSDNode>(Op2.getOperand(4))->get();
5318 
5319   SDValue V1Tmp = V1;
5320   SDValue V2Tmp = V2;
5321 
5322   // Check that the registers and the constants match a max(min()) or min(max())
5323   // pattern
5324   if (V1Tmp != TrueVal1 || V2Tmp != TrueVal2 || K1 != FalseVal1 ||
5325       K2 != FalseVal2 ||
5326       !((isGTorGE(CC1) && isLTorLE(CC2)) || (isLTorLE(CC1) && isGTorGE(CC2))))
5327     return SDValue();
5328 
5329   // Check that the constant in the lower-bound check is
5330   // the opposite of the constant in the upper-bound check
5331   // in 1's complement.
5332   if (!isa<ConstantSDNode>(K1) || !isa<ConstantSDNode>(K2))
5333     return SDValue();
5334 
5335   int64_t Val1 = cast<ConstantSDNode>(K1)->getSExtValue();
5336   int64_t Val2 = cast<ConstantSDNode>(K2)->getSExtValue();
5337   int64_t PosVal = std::max(Val1, Val2);
5338   int64_t NegVal = std::min(Val1, Val2);
5339 
5340   if (!((Val1 > Val2 && isLTorLE(CC1)) || (Val1 < Val2 && isLTorLE(CC2))) ||
5341       !isPowerOf2_64(PosVal + 1))
5342     return SDValue();
5343 
5344   // Handle the difference between USAT (unsigned) and SSAT (signed)
5345   // saturation
5346   // At this point, PosVal is guaranteed to be positive
5347   uint64_t K = PosVal;
5348   SDLoc dl(Op);
5349   if (Val1 == ~Val2)
5350     return DAG.getNode(ARMISD::SSAT, dl, VT, V2Tmp,
5351                        DAG.getConstant(llvm::countr_one(K), dl, VT));
5352   if (NegVal == 0)
5353     return DAG.getNode(ARMISD::USAT, dl, VT, V2Tmp,
5354                        DAG.getConstant(llvm::countr_one(K), dl, VT));
5355 
5356   return SDValue();
5357 }
5358 
5359 // Check if a condition of the type x < k ? k : x can be converted into a
5360 // bit operation instead of conditional moves.
5361 // Currently this is allowed given:
5362 // - The conditions and values match up
5363 // - k is 0 or -1 (all ones)
5364 // This function will not check the last condition, thats up to the caller
5365 // It returns true if the transformation can be made, and in such case
5366 // returns x in V, and k in SatK.
5367 static bool isLowerSaturatingConditional(const SDValue &Op, SDValue &V,
5368                                          SDValue &SatK)
5369 {
5370   SDValue LHS = Op.getOperand(0);
5371   SDValue RHS = Op.getOperand(1);
5372   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
5373   SDValue TrueVal = Op.getOperand(2);
5374   SDValue FalseVal = Op.getOperand(3);
5375 
5376   SDValue *K = isa<ConstantSDNode>(LHS) ? &LHS : isa<ConstantSDNode>(RHS)
5377                                                ? &RHS
5378                                                : nullptr;
5379 
5380   // No constant operation in comparison, early out
5381   if (!K)
5382     return false;
5383 
5384   SDValue KTmp = isa<ConstantSDNode>(TrueVal) ? TrueVal : FalseVal;
5385   V = (KTmp == TrueVal) ? FalseVal : TrueVal;
5386   SDValue VTmp = (K && *K == LHS) ? RHS : LHS;
5387 
5388   // If the constant on left and right side, or variable on left and right,
5389   // does not match, early out
5390   if (*K != KTmp || V != VTmp)
5391     return false;
5392 
5393   if (isLowerSaturate(LHS, RHS, TrueVal, FalseVal, CC, *K)) {
5394     SatK = *K;
5395     return true;
5396   }
5397 
5398   return false;
5399 }
5400 
5401 bool ARMTargetLowering::isUnsupportedFloatingType(EVT VT) const {
5402   if (VT == MVT::f32)
5403     return !Subtarget->hasVFP2Base();
5404   if (VT == MVT::f64)
5405     return !Subtarget->hasFP64();
5406   if (VT == MVT::f16)
5407     return !Subtarget->hasFullFP16();
5408   return false;
5409 }
5410 
5411 SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
5412   EVT VT = Op.getValueType();
5413   SDLoc dl(Op);
5414 
5415   // Try to convert two saturating conditional selects into a single SSAT
5416   if ((!Subtarget->isThumb() && Subtarget->hasV6Ops()) || Subtarget->isThumb2())
5417     if (SDValue SatValue = LowerSaturatingConditional(Op, DAG))
5418       return SatValue;
5419 
5420   // Try to convert expressions of the form x < k ? k : x (and similar forms)
5421   // into more efficient bit operations, which is possible when k is 0 or -1
5422   // On ARM and Thumb-2 which have flexible operand 2 this will result in
5423   // single instructions. On Thumb the shift and the bit operation will be two
5424   // instructions.
5425   // Only allow this transformation on full-width (32-bit) operations
5426   SDValue LowerSatConstant;
5427   SDValue SatValue;
5428   if (VT == MVT::i32 &&
5429       isLowerSaturatingConditional(Op, SatValue, LowerSatConstant)) {
5430     SDValue ShiftV = DAG.getNode(ISD::SRA, dl, VT, SatValue,
5431                                  DAG.getConstant(31, dl, VT));
5432     if (isNullConstant(LowerSatConstant)) {
5433       SDValue NotShiftV = DAG.getNode(ISD::XOR, dl, VT, ShiftV,
5434                                       DAG.getAllOnesConstant(dl, VT));
5435       return DAG.getNode(ISD::AND, dl, VT, SatValue, NotShiftV);
5436     } else if (isAllOnesConstant(LowerSatConstant))
5437       return DAG.getNode(ISD::OR, dl, VT, SatValue, ShiftV);
5438   }
5439 
5440   SDValue LHS = Op.getOperand(0);
5441   SDValue RHS = Op.getOperand(1);
5442   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
5443   SDValue TrueVal = Op.getOperand(2);
5444   SDValue FalseVal = Op.getOperand(3);
5445   ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FalseVal);
5446   ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TrueVal);
5447 
5448   if (Subtarget->hasV8_1MMainlineOps() && CFVal && CTVal &&
5449       LHS.getValueType() == MVT::i32 && RHS.getValueType() == MVT::i32) {
5450     unsigned TVal = CTVal->getZExtValue();
5451     unsigned FVal = CFVal->getZExtValue();
5452     unsigned Opcode = 0;
5453 
5454     if (TVal == ~FVal) {
5455       Opcode = ARMISD::CSINV;
5456     } else if (TVal == ~FVal + 1) {
5457       Opcode = ARMISD::CSNEG;
5458     } else if (TVal + 1 == FVal) {
5459       Opcode = ARMISD::CSINC;
5460     } else if (TVal == FVal + 1) {
5461       Opcode = ARMISD::CSINC;
5462       std::swap(TrueVal, FalseVal);
5463       std::swap(TVal, FVal);
5464       CC = ISD::getSetCCInverse(CC, LHS.getValueType());
5465     }
5466 
5467     if (Opcode) {
5468       // If one of the constants is cheaper than another, materialise the
5469       // cheaper one and let the csel generate the other.
5470       if (Opcode != ARMISD::CSINC &&
5471           HasLowerConstantMaterializationCost(FVal, TVal, Subtarget)) {
5472         std::swap(TrueVal, FalseVal);
5473         std::swap(TVal, FVal);
5474         CC = ISD::getSetCCInverse(CC, LHS.getValueType());
5475       }
5476 
5477       // Attempt to use ZR checking TVal is 0, possibly inverting the condition
5478       // to get there. CSINC not is invertable like the other two (~(~a) == a,
5479       // -(-a) == a, but (a+1)+1 != a).
5480       if (FVal == 0 && Opcode != ARMISD::CSINC) {
5481         std::swap(TrueVal, FalseVal);
5482         std::swap(TVal, FVal);
5483         CC = ISD::getSetCCInverse(CC, LHS.getValueType());
5484       }
5485 
5486       // Drops F's value because we can get it by inverting/negating TVal.
5487       FalseVal = TrueVal;
5488 
5489       SDValue ARMcc;
5490       SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
5491       EVT VT = TrueVal.getValueType();
5492       return DAG.getNode(Opcode, dl, VT, TrueVal, FalseVal, ARMcc, Cmp);
5493     }
5494   }
5495 
5496   if (isUnsupportedFloatingType(LHS.getValueType())) {
5497     DAG.getTargetLoweringInfo().softenSetCCOperands(
5498         DAG, LHS.getValueType(), LHS, RHS, CC, dl, LHS, RHS);
5499 
5500     // If softenSetCCOperands only returned one value, we should compare it to
5501     // zero.
5502     if (!RHS.getNode()) {
5503       RHS = DAG.getConstant(0, dl, LHS.getValueType());
5504       CC = ISD::SETNE;
5505     }
5506   }
5507 
5508   if (LHS.getValueType() == MVT::i32) {
5509     // Try to generate VSEL on ARMv8.
5510     // The VSEL instruction can't use all the usual ARM condition
5511     // codes: it only has two bits to select the condition code, so it's
5512     // constrained to use only GE, GT, VS and EQ.
5513     //
5514     // To implement all the various ISD::SETXXX opcodes, we sometimes need to
5515     // swap the operands of the previous compare instruction (effectively
5516     // inverting the compare condition, swapping 'less' and 'greater') and
5517     // sometimes need to swap the operands to the VSEL (which inverts the
5518     // condition in the sense of firing whenever the previous condition didn't)
5519     if (Subtarget->hasFPARMv8Base() && (TrueVal.getValueType() == MVT::f16 ||
5520                                         TrueVal.getValueType() == MVT::f32 ||
5521                                         TrueVal.getValueType() == MVT::f64)) {
5522       ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
5523       if (CondCode == ARMCC::LT || CondCode == ARMCC::LE ||
5524           CondCode == ARMCC::VC || CondCode == ARMCC::NE) {
5525         CC = ISD::getSetCCInverse(CC, LHS.getValueType());
5526         std::swap(TrueVal, FalseVal);
5527       }
5528     }
5529 
5530     SDValue ARMcc;
5531     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5532     SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
5533     // Choose GE over PL, which vsel does now support
5534     if (ARMcc->getAsZExtVal() == ARMCC::PL)
5535       ARMcc = DAG.getConstant(ARMCC::GE, dl, MVT::i32);
5536     return getCMOV(dl, VT, FalseVal, TrueVal, ARMcc, CCR, Cmp, DAG);
5537   }
5538 
5539   ARMCC::CondCodes CondCode, CondCode2;
5540   FPCCToARMCC(CC, CondCode, CondCode2);
5541 
5542   // Normalize the fp compare. If RHS is zero we prefer to keep it there so we
5543   // match CMPFPw0 instead of CMPFP, though we don't do this for f16 because we
5544   // must use VSEL (limited condition codes), due to not having conditional f16
5545   // moves.
5546   if (Subtarget->hasFPARMv8Base() &&
5547       !(isFloatingPointZero(RHS) && TrueVal.getValueType() != MVT::f16) &&
5548       (TrueVal.getValueType() == MVT::f16 ||
5549        TrueVal.getValueType() == MVT::f32 ||
5550        TrueVal.getValueType() == MVT::f64)) {
5551     bool swpCmpOps = false;
5552     bool swpVselOps = false;
5553     checkVSELConstraints(CC, CondCode, swpCmpOps, swpVselOps);
5554 
5555     if (CondCode == ARMCC::GT || CondCode == ARMCC::GE ||
5556         CondCode == ARMCC::VS || CondCode == ARMCC::EQ) {
5557       if (swpCmpOps)
5558         std::swap(LHS, RHS);
5559       if (swpVselOps)
5560         std::swap(TrueVal, FalseVal);
5561     }
5562   }
5563 
5564   SDValue ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
5565   SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
5566   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5567   SDValue Result = getCMOV(dl, VT, FalseVal, TrueVal, ARMcc, CCR, Cmp, DAG);
5568   if (CondCode2 != ARMCC::AL) {
5569     SDValue ARMcc2 = DAG.getConstant(CondCode2, dl, MVT::i32);
5570     // FIXME: Needs another CMP because flag can have but one use.
5571     SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl);
5572     Result = getCMOV(dl, VT, Result, TrueVal, ARMcc2, CCR, Cmp2, DAG);
5573   }
5574   return Result;
5575 }
5576 
5577 /// canChangeToInt - Given the fp compare operand, return true if it is suitable
5578 /// to morph to an integer compare sequence.
5579 static bool canChangeToInt(SDValue Op, bool &SeenZero,
5580                            const ARMSubtarget *Subtarget) {
5581   SDNode *N = Op.getNode();
5582   if (!N->hasOneUse())
5583     // Otherwise it requires moving the value from fp to integer registers.
5584     return false;
5585   if (!N->getNumValues())
5586     return false;
5587   EVT VT = Op.getValueType();
5588   if (VT != MVT::f32 && !Subtarget->isFPBrccSlow())
5589     // f32 case is generally profitable. f64 case only makes sense when vcmpe +
5590     // vmrs are very slow, e.g. cortex-a8.
5591     return false;
5592 
5593   if (isFloatingPointZero(Op)) {
5594     SeenZero = true;
5595     return true;
5596   }
5597   return ISD::isNormalLoad(N);
5598 }
5599 
5600 static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) {
5601   if (isFloatingPointZero(Op))
5602     return DAG.getConstant(0, SDLoc(Op), MVT::i32);
5603 
5604   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op))
5605     return DAG.getLoad(MVT::i32, SDLoc(Op), Ld->getChain(), Ld->getBasePtr(),
5606                        Ld->getPointerInfo(), Ld->getAlign(),
5607                        Ld->getMemOperand()->getFlags());
5608 
5609   llvm_unreachable("Unknown VFP cmp argument!");
5610 }
5611 
5612 static void expandf64Toi32(SDValue Op, SelectionDAG &DAG,
5613                            SDValue &RetVal1, SDValue &RetVal2) {
5614   SDLoc dl(Op);
5615 
5616   if (isFloatingPointZero(Op)) {
5617     RetVal1 = DAG.getConstant(0, dl, MVT::i32);
5618     RetVal2 = DAG.getConstant(0, dl, MVT::i32);
5619     return;
5620   }
5621 
5622   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) {
5623     SDValue Ptr = Ld->getBasePtr();
5624     RetVal1 =
5625         DAG.getLoad(MVT::i32, dl, Ld->getChain(), Ptr, Ld->getPointerInfo(),
5626                     Ld->getAlign(), Ld->getMemOperand()->getFlags());
5627 
5628     EVT PtrType = Ptr.getValueType();
5629     SDValue NewPtr = DAG.getNode(ISD::ADD, dl,
5630                                  PtrType, Ptr, DAG.getConstant(4, dl, PtrType));
5631     RetVal2 = DAG.getLoad(MVT::i32, dl, Ld->getChain(), NewPtr,
5632                           Ld->getPointerInfo().getWithOffset(4),
5633                           commonAlignment(Ld->getAlign(), 4),
5634                           Ld->getMemOperand()->getFlags());
5635     return;
5636   }
5637 
5638   llvm_unreachable("Unknown VFP cmp argument!");
5639 }
5640 
5641 /// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
5642 /// f32 and even f64 comparisons to integer ones.
5643 SDValue
5644 ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const {
5645   SDValue Chain = Op.getOperand(0);
5646   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
5647   SDValue LHS = Op.getOperand(2);
5648   SDValue RHS = Op.getOperand(3);
5649   SDValue Dest = Op.getOperand(4);
5650   SDLoc dl(Op);
5651 
5652   bool LHSSeenZero = false;
5653   bool LHSOk = canChangeToInt(LHS, LHSSeenZero, Subtarget);
5654   bool RHSSeenZero = false;
5655   bool RHSOk = canChangeToInt(RHS, RHSSeenZero, Subtarget);
5656   if (LHSOk && RHSOk && (LHSSeenZero || RHSSeenZero)) {
5657     // If unsafe fp math optimization is enabled and there are no other uses of
5658     // the CMP operands, and the condition code is EQ or NE, we can optimize it
5659     // to an integer comparison.
5660     if (CC == ISD::SETOEQ)
5661       CC = ISD::SETEQ;
5662     else if (CC == ISD::SETUNE)
5663       CC = ISD::SETNE;
5664 
5665     SDValue Mask = DAG.getConstant(0x7fffffff, dl, MVT::i32);
5666     SDValue ARMcc;
5667     if (LHS.getValueType() == MVT::f32) {
5668       LHS = DAG.getNode(ISD::AND, dl, MVT::i32,
5669                         bitcastf32Toi32(LHS, DAG), Mask);
5670       RHS = DAG.getNode(ISD::AND, dl, MVT::i32,
5671                         bitcastf32Toi32(RHS, DAG), Mask);
5672       SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
5673       SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5674       return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
5675                          Chain, Dest, ARMcc, CCR, Cmp);
5676     }
5677 
5678     SDValue LHS1, LHS2;
5679     SDValue RHS1, RHS2;
5680     expandf64Toi32(LHS, DAG, LHS1, LHS2);
5681     expandf64Toi32(RHS, DAG, RHS1, RHS2);
5682     LHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, LHS2, Mask);
5683     RHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, RHS2, Mask);
5684     ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
5685     ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
5686     SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
5687     SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest };
5688     return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops);
5689   }
5690 
5691   return SDValue();
5692 }
5693 
5694 SDValue ARMTargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
5695   SDValue Chain = Op.getOperand(0);
5696   SDValue Cond = Op.getOperand(1);
5697   SDValue Dest = Op.getOperand(2);
5698   SDLoc dl(Op);
5699 
5700   // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
5701   // instruction.
5702   unsigned Opc = Cond.getOpcode();
5703   bool OptimizeMul = (Opc == ISD::SMULO || Opc == ISD::UMULO) &&
5704                       !Subtarget->isThumb1Only();
5705   if (Cond.getResNo() == 1 &&
5706       (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
5707        Opc == ISD::USUBO || OptimizeMul)) {
5708     // Only lower legal XALUO ops.
5709     if (!DAG.getTargetLoweringInfo().isTypeLegal(Cond->getValueType(0)))
5710       return SDValue();
5711 
5712     // The actual operation with overflow check.
5713     SDValue Value, OverflowCmp;
5714     SDValue ARMcc;
5715     std::tie(Value, OverflowCmp) = getARMXALUOOp(Cond, DAG, ARMcc);
5716 
5717     // Reverse the condition code.
5718     ARMCC::CondCodes CondCode =
5719         (ARMCC::CondCodes)cast<const ConstantSDNode>(ARMcc)->getZExtValue();
5720     CondCode = ARMCC::getOppositeCondition(CondCode);
5721     ARMcc = DAG.getConstant(CondCode, SDLoc(ARMcc), MVT::i32);
5722     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5723 
5724     return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other, Chain, Dest, ARMcc, CCR,
5725                        OverflowCmp);
5726   }
5727 
5728   return SDValue();
5729 }
5730 
5731 SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
5732   SDValue Chain = Op.getOperand(0);
5733   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
5734   SDValue LHS = Op.getOperand(2);
5735   SDValue RHS = Op.getOperand(3);
5736   SDValue Dest = Op.getOperand(4);
5737   SDLoc dl(Op);
5738 
5739   if (isUnsupportedFloatingType(LHS.getValueType())) {
5740     DAG.getTargetLoweringInfo().softenSetCCOperands(
5741         DAG, LHS.getValueType(), LHS, RHS, CC, dl, LHS, RHS);
5742 
5743     // If softenSetCCOperands only returned one value, we should compare it to
5744     // zero.
5745     if (!RHS.getNode()) {
5746       RHS = DAG.getConstant(0, dl, LHS.getValueType());
5747       CC = ISD::SETNE;
5748     }
5749   }
5750 
5751   // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
5752   // instruction.
5753   unsigned Opc = LHS.getOpcode();
5754   bool OptimizeMul = (Opc == ISD::SMULO || Opc == ISD::UMULO) &&
5755                       !Subtarget->isThumb1Only();
5756   if (LHS.getResNo() == 1 && (isOneConstant(RHS) || isNullConstant(RHS)) &&
5757       (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
5758        Opc == ISD::USUBO || OptimizeMul) &&
5759       (CC == ISD::SETEQ || CC == ISD::SETNE)) {
5760     // Only lower legal XALUO ops.
5761     if (!DAG.getTargetLoweringInfo().isTypeLegal(LHS->getValueType(0)))
5762       return SDValue();
5763 
5764     // The actual operation with overflow check.
5765     SDValue Value, OverflowCmp;
5766     SDValue ARMcc;
5767     std::tie(Value, OverflowCmp) = getARMXALUOOp(LHS.getValue(0), DAG, ARMcc);
5768 
5769     if ((CC == ISD::SETNE) != isOneConstant(RHS)) {
5770       // Reverse the condition code.
5771       ARMCC::CondCodes CondCode =
5772           (ARMCC::CondCodes)cast<const ConstantSDNode>(ARMcc)->getZExtValue();
5773       CondCode = ARMCC::getOppositeCondition(CondCode);
5774       ARMcc = DAG.getConstant(CondCode, SDLoc(ARMcc), MVT::i32);
5775     }
5776     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5777 
5778     return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other, Chain, Dest, ARMcc, CCR,
5779                        OverflowCmp);
5780   }
5781 
5782   if (LHS.getValueType() == MVT::i32) {
5783     SDValue ARMcc;
5784     SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
5785     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5786     return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
5787                        Chain, Dest, ARMcc, CCR, Cmp);
5788   }
5789 
5790   if (getTargetMachine().Options.UnsafeFPMath &&
5791       (CC == ISD::SETEQ || CC == ISD::SETOEQ ||
5792        CC == ISD::SETNE || CC == ISD::SETUNE)) {
5793     if (SDValue Result = OptimizeVFPBrcond(Op, DAG))
5794       return Result;
5795   }
5796 
5797   ARMCC::CondCodes CondCode, CondCode2;
5798   FPCCToARMCC(CC, CondCode, CondCode2);
5799 
5800   SDValue ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
5801   SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
5802   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5803   SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
5804   SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp };
5805   SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops);
5806   if (CondCode2 != ARMCC::AL) {
5807     ARMcc = DAG.getConstant(CondCode2, dl, MVT::i32);
5808     SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) };
5809     Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops);
5810   }
5811   return Res;
5812 }
5813 
5814 SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
5815   SDValue Chain = Op.getOperand(0);
5816   SDValue Table = Op.getOperand(1);
5817   SDValue Index = Op.getOperand(2);
5818   SDLoc dl(Op);
5819 
5820   EVT PTy = getPointerTy(DAG.getDataLayout());
5821   JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
5822   SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
5823   Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI);
5824   Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, dl, PTy));
5825   SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Table, Index);
5826   if (Subtarget->isThumb2() || (Subtarget->hasV8MBaselineOps() && Subtarget->isThumb())) {
5827     // Thumb2 and ARMv8-M use a two-level jump. That is, it jumps into the jump table
5828     // which does another jump to the destination. This also makes it easier
5829     // to translate it to TBB / TBH later (Thumb2 only).
5830     // FIXME: This might not work if the function is extremely large.
5831     return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
5832                        Addr, Op.getOperand(2), JTI);
5833   }
5834   if (isPositionIndependent() || Subtarget->isROPI()) {
5835     Addr =
5836         DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
5837                     MachinePointerInfo::getJumpTable(DAG.getMachineFunction()));
5838     Chain = Addr.getValue(1);
5839     Addr = DAG.getNode(ISD::ADD, dl, PTy, Table, Addr);
5840     return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI);
5841   } else {
5842     Addr =
5843         DAG.getLoad(PTy, dl, Chain, Addr,
5844                     MachinePointerInfo::getJumpTable(DAG.getMachineFunction()));
5845     Chain = Addr.getValue(1);
5846     return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI);
5847   }
5848 }
5849 
5850 static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
5851   EVT VT = Op.getValueType();
5852   SDLoc dl(Op);
5853 
5854   if (Op.getValueType().getVectorElementType() == MVT::i32) {
5855     if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::f32)
5856       return Op;
5857     return DAG.UnrollVectorOp(Op.getNode());
5858   }
5859 
5860   const bool HasFullFP16 = DAG.getSubtarget<ARMSubtarget>().hasFullFP16();
5861 
5862   EVT NewTy;
5863   const EVT OpTy = Op.getOperand(0).getValueType();
5864   if (OpTy == MVT::v4f32)
5865     NewTy = MVT::v4i32;
5866   else if (OpTy == MVT::v4f16 && HasFullFP16)
5867     NewTy = MVT::v4i16;
5868   else if (OpTy == MVT::v8f16 && HasFullFP16)
5869     NewTy = MVT::v8i16;
5870   else
5871     llvm_unreachable("Invalid type for custom lowering!");
5872 
5873   if (VT != MVT::v4i16 && VT != MVT::v8i16)
5874     return DAG.UnrollVectorOp(Op.getNode());
5875 
5876   Op = DAG.getNode(Op.getOpcode(), dl, NewTy, Op.getOperand(0));
5877   return DAG.getNode(ISD::TRUNCATE, dl, VT, Op);
5878 }
5879 
5880 SDValue ARMTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) const {
5881   EVT VT = Op.getValueType();
5882   if (VT.isVector())
5883     return LowerVectorFP_TO_INT(Op, DAG);
5884 
5885   bool IsStrict = Op->isStrictFPOpcode();
5886   SDValue SrcVal = Op.getOperand(IsStrict ? 1 : 0);
5887 
5888   if (isUnsupportedFloatingType(SrcVal.getValueType())) {
5889     RTLIB::Libcall LC;
5890     if (Op.getOpcode() == ISD::FP_TO_SINT ||
5891         Op.getOpcode() == ISD::STRICT_FP_TO_SINT)
5892       LC = RTLIB::getFPTOSINT(SrcVal.getValueType(),
5893                               Op.getValueType());
5894     else
5895       LC = RTLIB::getFPTOUINT(SrcVal.getValueType(),
5896                               Op.getValueType());
5897     SDLoc Loc(Op);
5898     MakeLibCallOptions CallOptions;
5899     SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue();
5900     SDValue Result;
5901     std::tie(Result, Chain) = makeLibCall(DAG, LC, Op.getValueType(), SrcVal,
5902                                           CallOptions, Loc, Chain);
5903     return IsStrict ? DAG.getMergeValues({Result, Chain}, Loc) : Result;
5904   }
5905 
5906   // FIXME: Remove this when we have strict fp instruction selection patterns
5907   if (IsStrict) {
5908     SDLoc Loc(Op);
5909     SDValue Result =
5910         DAG.getNode(Op.getOpcode() == ISD::STRICT_FP_TO_SINT ? ISD::FP_TO_SINT
5911                                                              : ISD::FP_TO_UINT,
5912                     Loc, Op.getValueType(), SrcVal);
5913     return DAG.getMergeValues({Result, Op.getOperand(0)}, Loc);
5914   }
5915 
5916   return Op;
5917 }
5918 
5919 static SDValue LowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG,
5920                                   const ARMSubtarget *Subtarget) {
5921   EVT VT = Op.getValueType();
5922   EVT ToVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
5923   EVT FromVT = Op.getOperand(0).getValueType();
5924 
5925   if (VT == MVT::i32 && ToVT == MVT::i32 && FromVT == MVT::f32)
5926     return Op;
5927   if (VT == MVT::i32 && ToVT == MVT::i32 && FromVT == MVT::f64 &&
5928       Subtarget->hasFP64())
5929     return Op;
5930   if (VT == MVT::i32 && ToVT == MVT::i32 && FromVT == MVT::f16 &&
5931       Subtarget->hasFullFP16())
5932     return Op;
5933   if (VT == MVT::v4i32 && ToVT == MVT::i32 && FromVT == MVT::v4f32 &&
5934       Subtarget->hasMVEFloatOps())
5935     return Op;
5936   if (VT == MVT::v8i16 && ToVT == MVT::i16 && FromVT == MVT::v8f16 &&
5937       Subtarget->hasMVEFloatOps())
5938     return Op;
5939 
5940   if (FromVT != MVT::v4f32 && FromVT != MVT::v8f16)
5941     return SDValue();
5942 
5943   SDLoc DL(Op);
5944   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT;
5945   unsigned BW = ToVT.getScalarSizeInBits() - IsSigned;
5946   SDValue CVT = DAG.getNode(Op.getOpcode(), DL, VT, Op.getOperand(0),
5947                             DAG.getValueType(VT.getScalarType()));
5948   SDValue Max = DAG.getNode(IsSigned ? ISD::SMIN : ISD::UMIN, DL, VT, CVT,
5949                             DAG.getConstant((1 << BW) - 1, DL, VT));
5950   if (IsSigned)
5951     Max = DAG.getNode(ISD::SMAX, DL, VT, Max,
5952                       DAG.getConstant(-(1 << BW), DL, VT));
5953   return Max;
5954 }
5955 
5956 static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
5957   EVT VT = Op.getValueType();
5958   SDLoc dl(Op);
5959 
5960   if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i32) {
5961     if (VT.getVectorElementType() == MVT::f32)
5962       return Op;
5963     return DAG.UnrollVectorOp(Op.getNode());
5964   }
5965 
5966   assert((Op.getOperand(0).getValueType() == MVT::v4i16 ||
5967           Op.getOperand(0).getValueType() == MVT::v8i16) &&
5968          "Invalid type for custom lowering!");
5969 
5970   const bool HasFullFP16 = DAG.getSubtarget<ARMSubtarget>().hasFullFP16();
5971 
5972   EVT DestVecType;
5973   if (VT == MVT::v4f32)
5974     DestVecType = MVT::v4i32;
5975   else if (VT == MVT::v4f16 && HasFullFP16)
5976     DestVecType = MVT::v4i16;
5977   else if (VT == MVT::v8f16 && HasFullFP16)
5978     DestVecType = MVT::v8i16;
5979   else
5980     return DAG.UnrollVectorOp(Op.getNode());
5981 
5982   unsigned CastOpc;
5983   unsigned Opc;
5984   switch (Op.getOpcode()) {
5985   default: llvm_unreachable("Invalid opcode!");
5986   case ISD::SINT_TO_FP:
5987     CastOpc = ISD::SIGN_EXTEND;
5988     Opc = ISD::SINT_TO_FP;
5989     break;
5990   case ISD::UINT_TO_FP:
5991     CastOpc = ISD::ZERO_EXTEND;
5992     Opc = ISD::UINT_TO_FP;
5993     break;
5994   }
5995 
5996   Op = DAG.getNode(CastOpc, dl, DestVecType, Op.getOperand(0));
5997   return DAG.getNode(Opc, dl, VT, Op);
5998 }
5999 
6000 SDValue ARMTargetLowering::LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const {
6001   EVT VT = Op.getValueType();
6002   if (VT.isVector())
6003     return LowerVectorINT_TO_FP(Op, DAG);
6004   if (isUnsupportedFloatingType(VT)) {
6005     RTLIB::Libcall LC;
6006     if (Op.getOpcode() == ISD::SINT_TO_FP)
6007       LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(),
6008                               Op.getValueType());
6009     else
6010       LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(),
6011                               Op.getValueType());
6012     MakeLibCallOptions CallOptions;
6013     return makeLibCall(DAG, LC, Op.getValueType(), Op.getOperand(0),
6014                        CallOptions, SDLoc(Op)).first;
6015   }
6016 
6017   return Op;
6018 }
6019 
6020 SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
6021   // Implement fcopysign with a fabs and a conditional fneg.
6022   SDValue Tmp0 = Op.getOperand(0);
6023   SDValue Tmp1 = Op.getOperand(1);
6024   SDLoc dl(Op);
6025   EVT VT = Op.getValueType();
6026   EVT SrcVT = Tmp1.getValueType();
6027   bool InGPR = Tmp0.getOpcode() == ISD::BITCAST ||
6028     Tmp0.getOpcode() == ARMISD::VMOVDRR;
6029   bool UseNEON = !InGPR && Subtarget->hasNEON();
6030 
6031   if (UseNEON) {
6032     // Use VBSL to copy the sign bit.
6033     unsigned EncodedVal = ARM_AM::createVMOVModImm(0x6, 0x80);
6034     SDValue Mask = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v2i32,
6035                                DAG.getTargetConstant(EncodedVal, dl, MVT::i32));
6036     EVT OpVT = (VT == MVT::f32) ? MVT::v2i32 : MVT::v1i64;
6037     if (VT == MVT::f64)
6038       Mask = DAG.getNode(ARMISD::VSHLIMM, dl, OpVT,
6039                          DAG.getNode(ISD::BITCAST, dl, OpVT, Mask),
6040                          DAG.getConstant(32, dl, MVT::i32));
6041     else /*if (VT == MVT::f32)*/
6042       Tmp0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp0);
6043     if (SrcVT == MVT::f32) {
6044       Tmp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp1);
6045       if (VT == MVT::f64)
6046         Tmp1 = DAG.getNode(ARMISD::VSHLIMM, dl, OpVT,
6047                            DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1),
6048                            DAG.getConstant(32, dl, MVT::i32));
6049     } else if (VT == MVT::f32)
6050       Tmp1 = DAG.getNode(ARMISD::VSHRuIMM, dl, MVT::v1i64,
6051                          DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, Tmp1),
6052                          DAG.getConstant(32, dl, MVT::i32));
6053     Tmp0 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp0);
6054     Tmp1 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1);
6055 
6056     SDValue AllOnes = DAG.getTargetConstant(ARM_AM::createVMOVModImm(0xe, 0xff),
6057                                             dl, MVT::i32);
6058     AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v8i8, AllOnes);
6059     SDValue MaskNot = DAG.getNode(ISD::XOR, dl, OpVT, Mask,
6060                                   DAG.getNode(ISD::BITCAST, dl, OpVT, AllOnes));
6061 
6062     SDValue Res = DAG.getNode(ISD::OR, dl, OpVT,
6063                               DAG.getNode(ISD::AND, dl, OpVT, Tmp1, Mask),
6064                               DAG.getNode(ISD::AND, dl, OpVT, Tmp0, MaskNot));
6065     if (VT == MVT::f32) {
6066       Res = DAG.getNode(ISD::BITCAST, dl, MVT::v2f32, Res);
6067       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, Res,
6068                         DAG.getConstant(0, dl, MVT::i32));
6069     } else {
6070       Res = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Res);
6071     }
6072 
6073     return Res;
6074   }
6075 
6076   // Bitcast operand 1 to i32.
6077   if (SrcVT == MVT::f64)
6078     Tmp1 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
6079                        Tmp1).getValue(1);
6080   Tmp1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp1);
6081 
6082   // Or in the signbit with integer operations.
6083   SDValue Mask1 = DAG.getConstant(0x80000000, dl, MVT::i32);
6084   SDValue Mask2 = DAG.getConstant(0x7fffffff, dl, MVT::i32);
6085   Tmp1 = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp1, Mask1);
6086   if (VT == MVT::f32) {
6087     Tmp0 = DAG.getNode(ISD::AND, dl, MVT::i32,
6088                        DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp0), Mask2);
6089     return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
6090                        DAG.getNode(ISD::OR, dl, MVT::i32, Tmp0, Tmp1));
6091   }
6092 
6093   // f64: Or the high part with signbit and then combine two parts.
6094   Tmp0 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
6095                      Tmp0);
6096   SDValue Lo = Tmp0.getValue(0);
6097   SDValue Hi = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp0.getValue(1), Mask2);
6098   Hi = DAG.getNode(ISD::OR, dl, MVT::i32, Hi, Tmp1);
6099   return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
6100 }
6101 
6102 SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
6103   MachineFunction &MF = DAG.getMachineFunction();
6104   MachineFrameInfo &MFI = MF.getFrameInfo();
6105   MFI.setReturnAddressIsTaken(true);
6106 
6107   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
6108     return SDValue();
6109 
6110   EVT VT = Op.getValueType();
6111   SDLoc dl(Op);
6112   unsigned Depth = Op.getConstantOperandVal(0);
6113   if (Depth) {
6114     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
6115     SDValue Offset = DAG.getConstant(4, dl, MVT::i32);
6116     return DAG.getLoad(VT, dl, DAG.getEntryNode(),
6117                        DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
6118                        MachinePointerInfo());
6119   }
6120 
6121   // Return LR, which contains the return address. Mark it an implicit live-in.
6122   Register Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
6123   return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
6124 }
6125 
6126 SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
6127   const ARMBaseRegisterInfo &ARI =
6128     *static_cast<const ARMBaseRegisterInfo*>(RegInfo);
6129   MachineFunction &MF = DAG.getMachineFunction();
6130   MachineFrameInfo &MFI = MF.getFrameInfo();
6131   MFI.setFrameAddressIsTaken(true);
6132 
6133   EVT VT = Op.getValueType();
6134   SDLoc dl(Op);  // FIXME probably not meaningful
6135   unsigned Depth = Op.getConstantOperandVal(0);
6136   Register FrameReg = ARI.getFrameRegister(MF);
6137   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
6138   while (Depth--)
6139     FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
6140                             MachinePointerInfo());
6141   return FrameAddr;
6142 }
6143 
6144 // FIXME? Maybe this could be a TableGen attribute on some registers and
6145 // this table could be generated automatically from RegInfo.
6146 Register ARMTargetLowering::getRegisterByName(const char* RegName, LLT VT,
6147                                               const MachineFunction &MF) const {
6148   Register Reg = StringSwitch<unsigned>(RegName)
6149                        .Case("sp", ARM::SP)
6150                        .Default(0);
6151   if (Reg)
6152     return Reg;
6153   report_fatal_error(Twine("Invalid register name \""
6154                               + StringRef(RegName)  + "\"."));
6155 }
6156 
6157 // Result is 64 bit value so split into two 32 bit values and return as a
6158 // pair of values.
6159 static void ExpandREAD_REGISTER(SDNode *N, SmallVectorImpl<SDValue> &Results,
6160                                 SelectionDAG &DAG) {
6161   SDLoc DL(N);
6162 
6163   // This function is only supposed to be called for i64 type destination.
6164   assert(N->getValueType(0) == MVT::i64
6165           && "ExpandREAD_REGISTER called for non-i64 type result.");
6166 
6167   SDValue Read = DAG.getNode(ISD::READ_REGISTER, DL,
6168                              DAG.getVTList(MVT::i32, MVT::i32, MVT::Other),
6169                              N->getOperand(0),
6170                              N->getOperand(1));
6171 
6172   Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Read.getValue(0),
6173                     Read.getValue(1)));
6174   Results.push_back(Read.getOperand(0));
6175 }
6176 
6177 /// \p BC is a bitcast that is about to be turned into a VMOVDRR.
6178 /// When \p DstVT, the destination type of \p BC, is on the vector
6179 /// register bank and the source of bitcast, \p Op, operates on the same bank,
6180 /// it might be possible to combine them, such that everything stays on the
6181 /// vector register bank.
6182 /// \p return The node that would replace \p BT, if the combine
6183 /// is possible.
6184 static SDValue CombineVMOVDRRCandidateWithVecOp(const SDNode *BC,
6185                                                 SelectionDAG &DAG) {
6186   SDValue Op = BC->getOperand(0);
6187   EVT DstVT = BC->getValueType(0);
6188 
6189   // The only vector instruction that can produce a scalar (remember,
6190   // since the bitcast was about to be turned into VMOVDRR, the source
6191   // type is i64) from a vector is EXTRACT_VECTOR_ELT.
6192   // Moreover, we can do this combine only if there is one use.
6193   // Finally, if the destination type is not a vector, there is not
6194   // much point on forcing everything on the vector bank.
6195   if (!DstVT.isVector() || Op.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
6196       !Op.hasOneUse())
6197     return SDValue();
6198 
6199   // If the index is not constant, we will introduce an additional
6200   // multiply that will stick.
6201   // Give up in that case.
6202   ConstantSDNode *Index = dyn_cast<ConstantSDNode>(Op.getOperand(1));
6203   if (!Index)
6204     return SDValue();
6205   unsigned DstNumElt = DstVT.getVectorNumElements();
6206 
6207   // Compute the new index.
6208   const APInt &APIntIndex = Index->getAPIntValue();
6209   APInt NewIndex(APIntIndex.getBitWidth(), DstNumElt);
6210   NewIndex *= APIntIndex;
6211   // Check if the new constant index fits into i32.
6212   if (NewIndex.getBitWidth() > 32)
6213     return SDValue();
6214 
6215   // vMTy bitcast(i64 extractelt vNi64 src, i32 index) ->
6216   // vMTy extractsubvector vNxMTy (bitcast vNi64 src), i32 index*M)
6217   SDLoc dl(Op);
6218   SDValue ExtractSrc = Op.getOperand(0);
6219   EVT VecVT = EVT::getVectorVT(
6220       *DAG.getContext(), DstVT.getScalarType(),
6221       ExtractSrc.getValueType().getVectorNumElements() * DstNumElt);
6222   SDValue BitCast = DAG.getNode(ISD::BITCAST, dl, VecVT, ExtractSrc);
6223   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DstVT, BitCast,
6224                      DAG.getConstant(NewIndex.getZExtValue(), dl, MVT::i32));
6225 }
6226 
6227 /// ExpandBITCAST - If the target supports VFP, this function is called to
6228 /// expand a bit convert where either the source or destination type is i64 to
6229 /// use a VMOVDRR or VMOVRRD node.  This should not be done when the non-i64
6230 /// operand type is illegal (e.g., v2f32 for a target that doesn't support
6231 /// vectors), since the legalizer won't know what to do with that.
6232 SDValue ARMTargetLowering::ExpandBITCAST(SDNode *N, SelectionDAG &DAG,
6233                                          const ARMSubtarget *Subtarget) const {
6234   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6235   SDLoc dl(N);
6236   SDValue Op = N->getOperand(0);
6237 
6238   // This function is only supposed to be called for i16 and i64 types, either
6239   // as the source or destination of the bit convert.
6240   EVT SrcVT = Op.getValueType();
6241   EVT DstVT = N->getValueType(0);
6242 
6243   if ((SrcVT == MVT::i16 || SrcVT == MVT::i32) &&
6244       (DstVT == MVT::f16 || DstVT == MVT::bf16))
6245     return MoveToHPR(SDLoc(N), DAG, MVT::i32, DstVT.getSimpleVT(),
6246                      DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), MVT::i32, Op));
6247 
6248   if ((DstVT == MVT::i16 || DstVT == MVT::i32) &&
6249       (SrcVT == MVT::f16 || SrcVT == MVT::bf16))
6250     return DAG.getNode(
6251         ISD::TRUNCATE, SDLoc(N), DstVT,
6252         MoveFromHPR(SDLoc(N), DAG, MVT::i32, SrcVT.getSimpleVT(), Op));
6253 
6254   if (!(SrcVT == MVT::i64 || DstVT == MVT::i64))
6255     return SDValue();
6256 
6257   // Turn i64->f64 into VMOVDRR.
6258   if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) {
6259     // Do not force values to GPRs (this is what VMOVDRR does for the inputs)
6260     // if we can combine the bitcast with its source.
6261     if (SDValue Val = CombineVMOVDRRCandidateWithVecOp(N, DAG))
6262       return Val;
6263     SDValue Lo, Hi;
6264     std::tie(Lo, Hi) = DAG.SplitScalar(Op, dl, MVT::i32, MVT::i32);
6265     return DAG.getNode(ISD::BITCAST, dl, DstVT,
6266                        DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi));
6267   }
6268 
6269   // Turn f64->i64 into VMOVRRD.
6270   if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) {
6271     SDValue Cvt;
6272     if (DAG.getDataLayout().isBigEndian() && SrcVT.isVector() &&
6273         SrcVT.getVectorNumElements() > 1)
6274       Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
6275                         DAG.getVTList(MVT::i32, MVT::i32),
6276                         DAG.getNode(ARMISD::VREV64, dl, SrcVT, Op));
6277     else
6278       Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
6279                         DAG.getVTList(MVT::i32, MVT::i32), Op);
6280     // Merge the pieces into a single i64 value.
6281     return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
6282   }
6283 
6284   return SDValue();
6285 }
6286 
6287 /// getZeroVector - Returns a vector of specified type with all zero elements.
6288 /// Zero vectors are used to represent vector negation and in those cases
6289 /// will be implemented with the NEON VNEG instruction.  However, VNEG does
6290 /// not support i64 elements, so sometimes the zero vectors will need to be
6291 /// explicitly constructed.  Regardless, use a canonical VMOV to create the
6292 /// zero vector.
6293 static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, const SDLoc &dl) {
6294   assert(VT.isVector() && "Expected a vector type");
6295   // The canonical modified immediate encoding of a zero vector is....0!
6296   SDValue EncodedVal = DAG.getTargetConstant(0, dl, MVT::i32);
6297   EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
6298   SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal);
6299   return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
6300 }
6301 
6302 /// LowerShiftRightParts - Lower SRA_PARTS, which returns two
6303 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
6304 SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op,
6305                                                 SelectionDAG &DAG) const {
6306   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
6307   EVT VT = Op.getValueType();
6308   unsigned VTBits = VT.getSizeInBits();
6309   SDLoc dl(Op);
6310   SDValue ShOpLo = Op.getOperand(0);
6311   SDValue ShOpHi = Op.getOperand(1);
6312   SDValue ShAmt  = Op.getOperand(2);
6313   SDValue ARMcc;
6314   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
6315   unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
6316 
6317   assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
6318 
6319   SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
6320                                  DAG.getConstant(VTBits, dl, MVT::i32), ShAmt);
6321   SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
6322   SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
6323                                    DAG.getConstant(VTBits, dl, MVT::i32));
6324   SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
6325   SDValue LoSmallShift = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
6326   SDValue LoBigShift = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
6327   SDValue CmpLo = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
6328                             ISD::SETGE, ARMcc, DAG, dl);
6329   SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, LoSmallShift, LoBigShift,
6330                            ARMcc, CCR, CmpLo);
6331 
6332   SDValue HiSmallShift = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
6333   SDValue HiBigShift = Opc == ISD::SRA
6334                            ? DAG.getNode(Opc, dl, VT, ShOpHi,
6335                                          DAG.getConstant(VTBits - 1, dl, VT))
6336                            : DAG.getConstant(0, dl, VT);
6337   SDValue CmpHi = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
6338                             ISD::SETGE, ARMcc, DAG, dl);
6339   SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, HiSmallShift, HiBigShift,
6340                            ARMcc, CCR, CmpHi);
6341 
6342   SDValue Ops[2] = { Lo, Hi };
6343   return DAG.getMergeValues(Ops, dl);
6344 }
6345 
6346 /// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
6347 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
6348 SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op,
6349                                                SelectionDAG &DAG) const {
6350   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
6351   EVT VT = Op.getValueType();
6352   unsigned VTBits = VT.getSizeInBits();
6353   SDLoc dl(Op);
6354   SDValue ShOpLo = Op.getOperand(0);
6355   SDValue ShOpHi = Op.getOperand(1);
6356   SDValue ShAmt  = Op.getOperand(2);
6357   SDValue ARMcc;
6358   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
6359 
6360   assert(Op.getOpcode() == ISD::SHL_PARTS);
6361   SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
6362                                  DAG.getConstant(VTBits, dl, MVT::i32), ShAmt);
6363   SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
6364   SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
6365   SDValue HiSmallShift = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
6366 
6367   SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
6368                                    DAG.getConstant(VTBits, dl, MVT::i32));
6369   SDValue HiBigShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
6370   SDValue CmpHi = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
6371                             ISD::SETGE, ARMcc, DAG, dl);
6372   SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, HiSmallShift, HiBigShift,
6373                            ARMcc, CCR, CmpHi);
6374 
6375   SDValue CmpLo = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
6376                           ISD::SETGE, ARMcc, DAG, dl);
6377   SDValue LoSmallShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
6378   SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, LoSmallShift,
6379                            DAG.getConstant(0, dl, VT), ARMcc, CCR, CmpLo);
6380 
6381   SDValue Ops[2] = { Lo, Hi };
6382   return DAG.getMergeValues(Ops, dl);
6383 }
6384 
6385 SDValue ARMTargetLowering::LowerGET_ROUNDING(SDValue Op,
6386                                              SelectionDAG &DAG) const {
6387   // The rounding mode is in bits 23:22 of the FPSCR.
6388   // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
6389   // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
6390   // so that the shift + and get folded into a bitfield extract.
6391   SDLoc dl(Op);
6392   SDValue Chain = Op.getOperand(0);
6393   SDValue Ops[] = {Chain,
6394                    DAG.getConstant(Intrinsic::arm_get_fpscr, dl, MVT::i32)};
6395 
6396   SDValue FPSCR =
6397       DAG.getNode(ISD::INTRINSIC_W_CHAIN, dl, {MVT::i32, MVT::Other}, Ops);
6398   Chain = FPSCR.getValue(1);
6399   SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR,
6400                                   DAG.getConstant(1U << 22, dl, MVT::i32));
6401   SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
6402                               DAG.getConstant(22, dl, MVT::i32));
6403   SDValue And = DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
6404                             DAG.getConstant(3, dl, MVT::i32));
6405   return DAG.getMergeValues({And, Chain}, dl);
6406 }
6407 
6408 SDValue ARMTargetLowering::LowerSET_ROUNDING(SDValue Op,
6409                                              SelectionDAG &DAG) const {
6410   SDLoc DL(Op);
6411   SDValue Chain = Op->getOperand(0);
6412   SDValue RMValue = Op->getOperand(1);
6413 
6414   // The rounding mode is in bits 23:22 of the FPSCR.
6415   // The llvm.set.rounding argument value to ARM rounding mode value mapping
6416   // is 0->3, 1->0, 2->1, 3->2. The formula we use to implement this is
6417   // ((arg - 1) & 3) << 22).
6418   //
6419   // It is expected that the argument of llvm.set.rounding is within the
6420   // segment [0, 3], so NearestTiesToAway (4) is not handled here. It is
6421   // responsibility of the code generated llvm.set.rounding to ensure this
6422   // condition.
6423 
6424   // Calculate new value of FPSCR[23:22].
6425   RMValue = DAG.getNode(ISD::SUB, DL, MVT::i32, RMValue,
6426                         DAG.getConstant(1, DL, MVT::i32));
6427   RMValue = DAG.getNode(ISD::AND, DL, MVT::i32, RMValue,
6428                         DAG.getConstant(0x3, DL, MVT::i32));
6429   RMValue = DAG.getNode(ISD::SHL, DL, MVT::i32, RMValue,
6430                         DAG.getConstant(ARM::RoundingBitsPos, DL, MVT::i32));
6431 
6432   // Get current value of FPSCR.
6433   SDValue Ops[] = {Chain,
6434                    DAG.getConstant(Intrinsic::arm_get_fpscr, DL, MVT::i32)};
6435   SDValue FPSCR =
6436       DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL, {MVT::i32, MVT::Other}, Ops);
6437   Chain = FPSCR.getValue(1);
6438   FPSCR = FPSCR.getValue(0);
6439 
6440   // Put new rounding mode into FPSCR[23:22].
6441   const unsigned RMMask = ~(ARM::Rounding::rmMask << ARM::RoundingBitsPos);
6442   FPSCR = DAG.getNode(ISD::AND, DL, MVT::i32, FPSCR,
6443                       DAG.getConstant(RMMask, DL, MVT::i32));
6444   FPSCR = DAG.getNode(ISD::OR, DL, MVT::i32, FPSCR, RMValue);
6445   SDValue Ops2[] = {
6446       Chain, DAG.getConstant(Intrinsic::arm_set_fpscr, DL, MVT::i32), FPSCR};
6447   return DAG.getNode(ISD::INTRINSIC_VOID, DL, MVT::Other, Ops2);
6448 }
6449 
6450 SDValue ARMTargetLowering::LowerSET_FPMODE(SDValue Op,
6451                                            SelectionDAG &DAG) const {
6452   SDLoc DL(Op);
6453   SDValue Chain = Op->getOperand(0);
6454   SDValue Mode = Op->getOperand(1);
6455 
6456   // Generate nodes to build:
6457   // FPSCR = (FPSCR & FPStatusBits) | (Mode & ~FPStatusBits)
6458   SDValue Ops[] = {Chain,
6459                    DAG.getConstant(Intrinsic::arm_get_fpscr, DL, MVT::i32)};
6460   SDValue FPSCR =
6461       DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL, {MVT::i32, MVT::Other}, Ops);
6462   Chain = FPSCR.getValue(1);
6463   FPSCR = FPSCR.getValue(0);
6464 
6465   SDValue FPSCRMasked =
6466       DAG.getNode(ISD::AND, DL, MVT::i32, FPSCR,
6467                   DAG.getConstant(ARM::FPStatusBits, DL, MVT::i32));
6468   SDValue InputMasked =
6469       DAG.getNode(ISD::AND, DL, MVT::i32, Mode,
6470                   DAG.getConstant(~ARM::FPStatusBits, DL, MVT::i32));
6471   FPSCR = DAG.getNode(ISD::OR, DL, MVT::i32, FPSCRMasked, InputMasked);
6472 
6473   SDValue Ops2[] = {
6474       Chain, DAG.getConstant(Intrinsic::arm_set_fpscr, DL, MVT::i32), FPSCR};
6475   return DAG.getNode(ISD::INTRINSIC_VOID, DL, MVT::Other, Ops2);
6476 }
6477 
6478 SDValue ARMTargetLowering::LowerRESET_FPMODE(SDValue Op,
6479                                              SelectionDAG &DAG) const {
6480   SDLoc DL(Op);
6481   SDValue Chain = Op->getOperand(0);
6482 
6483   // To get the default FP mode all control bits are cleared:
6484   // FPSCR = FPSCR & (FPStatusBits | FPReservedBits)
6485   SDValue Ops[] = {Chain,
6486                    DAG.getConstant(Intrinsic::arm_get_fpscr, DL, MVT::i32)};
6487   SDValue FPSCR =
6488       DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL, {MVT::i32, MVT::Other}, Ops);
6489   Chain = FPSCR.getValue(1);
6490   FPSCR = FPSCR.getValue(0);
6491 
6492   SDValue FPSCRMasked = DAG.getNode(
6493       ISD::AND, DL, MVT::i32, FPSCR,
6494       DAG.getConstant(ARM::FPStatusBits | ARM::FPReservedBits, DL, MVT::i32));
6495   SDValue Ops2[] = {Chain,
6496                     DAG.getConstant(Intrinsic::arm_set_fpscr, DL, MVT::i32),
6497                     FPSCRMasked};
6498   return DAG.getNode(ISD::INTRINSIC_VOID, DL, MVT::Other, Ops2);
6499 }
6500 
6501 static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG,
6502                          const ARMSubtarget *ST) {
6503   SDLoc dl(N);
6504   EVT VT = N->getValueType(0);
6505   if (VT.isVector() && ST->hasNEON()) {
6506 
6507     // Compute the least significant set bit: LSB = X & -X
6508     SDValue X = N->getOperand(0);
6509     SDValue NX = DAG.getNode(ISD::SUB, dl, VT, getZeroVector(VT, DAG, dl), X);
6510     SDValue LSB = DAG.getNode(ISD::AND, dl, VT, X, NX);
6511 
6512     EVT ElemTy = VT.getVectorElementType();
6513 
6514     if (ElemTy == MVT::i8) {
6515       // Compute with: cttz(x) = ctpop(lsb - 1)
6516       SDValue One = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
6517                                 DAG.getTargetConstant(1, dl, ElemTy));
6518       SDValue Bits = DAG.getNode(ISD::SUB, dl, VT, LSB, One);
6519       return DAG.getNode(ISD::CTPOP, dl, VT, Bits);
6520     }
6521 
6522     if ((ElemTy == MVT::i16 || ElemTy == MVT::i32) &&
6523         (N->getOpcode() == ISD::CTTZ_ZERO_UNDEF)) {
6524       // Compute with: cttz(x) = (width - 1) - ctlz(lsb), if x != 0
6525       unsigned NumBits = ElemTy.getSizeInBits();
6526       SDValue WidthMinus1 =
6527           DAG.getNode(ARMISD::VMOVIMM, dl, VT,
6528                       DAG.getTargetConstant(NumBits - 1, dl, ElemTy));
6529       SDValue CTLZ = DAG.getNode(ISD::CTLZ, dl, VT, LSB);
6530       return DAG.getNode(ISD::SUB, dl, VT, WidthMinus1, CTLZ);
6531     }
6532 
6533     // Compute with: cttz(x) = ctpop(lsb - 1)
6534 
6535     // Compute LSB - 1.
6536     SDValue Bits;
6537     if (ElemTy == MVT::i64) {
6538       // Load constant 0xffff'ffff'ffff'ffff to register.
6539       SDValue FF = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
6540                                DAG.getTargetConstant(0x1eff, dl, MVT::i32));
6541       Bits = DAG.getNode(ISD::ADD, dl, VT, LSB, FF);
6542     } else {
6543       SDValue One = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
6544                                 DAG.getTargetConstant(1, dl, ElemTy));
6545       Bits = DAG.getNode(ISD::SUB, dl, VT, LSB, One);
6546     }
6547     return DAG.getNode(ISD::CTPOP, dl, VT, Bits);
6548   }
6549 
6550   if (!ST->hasV6T2Ops())
6551     return SDValue();
6552 
6553   SDValue rbit = DAG.getNode(ISD::BITREVERSE, dl, VT, N->getOperand(0));
6554   return DAG.getNode(ISD::CTLZ, dl, VT, rbit);
6555 }
6556 
6557 static SDValue LowerCTPOP(SDNode *N, SelectionDAG &DAG,
6558                           const ARMSubtarget *ST) {
6559   EVT VT = N->getValueType(0);
6560   SDLoc DL(N);
6561 
6562   assert(ST->hasNEON() && "Custom ctpop lowering requires NEON.");
6563   assert((VT == MVT::v1i64 || VT == MVT::v2i64 || VT == MVT::v2i32 ||
6564           VT == MVT::v4i32 || VT == MVT::v4i16 || VT == MVT::v8i16) &&
6565          "Unexpected type for custom ctpop lowering");
6566 
6567   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6568   EVT VT8Bit = VT.is64BitVector() ? MVT::v8i8 : MVT::v16i8;
6569   SDValue Res = DAG.getBitcast(VT8Bit, N->getOperand(0));
6570   Res = DAG.getNode(ISD::CTPOP, DL, VT8Bit, Res);
6571 
6572   // Widen v8i8/v16i8 CTPOP result to VT by repeatedly widening pairwise adds.
6573   unsigned EltSize = 8;
6574   unsigned NumElts = VT.is64BitVector() ? 8 : 16;
6575   while (EltSize != VT.getScalarSizeInBits()) {
6576     SmallVector<SDValue, 8> Ops;
6577     Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddlu, DL,
6578                                   TLI.getPointerTy(DAG.getDataLayout())));
6579     Ops.push_back(Res);
6580 
6581     EltSize *= 2;
6582     NumElts /= 2;
6583     MVT WidenVT = MVT::getVectorVT(MVT::getIntegerVT(EltSize), NumElts);
6584     Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, WidenVT, Ops);
6585   }
6586 
6587   return Res;
6588 }
6589 
6590 /// Getvshiftimm - Check if this is a valid build_vector for the immediate
6591 /// operand of a vector shift operation, where all the elements of the
6592 /// build_vector must have the same constant integer value.
6593 static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
6594   // Ignore bit_converts.
6595   while (Op.getOpcode() == ISD::BITCAST)
6596     Op = Op.getOperand(0);
6597   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
6598   APInt SplatBits, SplatUndef;
6599   unsigned SplatBitSize;
6600   bool HasAnyUndefs;
6601   if (!BVN ||
6602       !BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
6603                             ElementBits) ||
6604       SplatBitSize > ElementBits)
6605     return false;
6606   Cnt = SplatBits.getSExtValue();
6607   return true;
6608 }
6609 
6610 /// isVShiftLImm - Check if this is a valid build_vector for the immediate
6611 /// operand of a vector shift left operation.  That value must be in the range:
6612 ///   0 <= Value < ElementBits for a left shift; or
6613 ///   0 <= Value <= ElementBits for a long left shift.
6614 static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
6615   assert(VT.isVector() && "vector shift count is not a vector type");
6616   int64_t ElementBits = VT.getScalarSizeInBits();
6617   if (!getVShiftImm(Op, ElementBits, Cnt))
6618     return false;
6619   return (Cnt >= 0 && (isLong ? Cnt - 1 : Cnt) < ElementBits);
6620 }
6621 
6622 /// isVShiftRImm - Check if this is a valid build_vector for the immediate
6623 /// operand of a vector shift right operation.  For a shift opcode, the value
6624 /// is positive, but for an intrinsic the value count must be negative. The
6625 /// absolute value must be in the range:
6626 ///   1 <= |Value| <= ElementBits for a right shift; or
6627 ///   1 <= |Value| <= ElementBits/2 for a narrow right shift.
6628 static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
6629                          int64_t &Cnt) {
6630   assert(VT.isVector() && "vector shift count is not a vector type");
6631   int64_t ElementBits = VT.getScalarSizeInBits();
6632   if (!getVShiftImm(Op, ElementBits, Cnt))
6633     return false;
6634   if (!isIntrinsic)
6635     return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits / 2 : ElementBits));
6636   if (Cnt >= -(isNarrow ? ElementBits / 2 : ElementBits) && Cnt <= -1) {
6637     Cnt = -Cnt;
6638     return true;
6639   }
6640   return false;
6641 }
6642 
6643 static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
6644                           const ARMSubtarget *ST) {
6645   EVT VT = N->getValueType(0);
6646   SDLoc dl(N);
6647   int64_t Cnt;
6648 
6649   if (!VT.isVector())
6650     return SDValue();
6651 
6652   // We essentially have two forms here. Shift by an immediate and shift by a
6653   // vector register (there are also shift by a gpr, but that is just handled
6654   // with a tablegen pattern). We cannot easily match shift by an immediate in
6655   // tablegen so we do that here and generate a VSHLIMM/VSHRsIMM/VSHRuIMM.
6656   // For shifting by a vector, we don't have VSHR, only VSHL (which can be
6657   // signed or unsigned, and a negative shift indicates a shift right).
6658   if (N->getOpcode() == ISD::SHL) {
6659     if (isVShiftLImm(N->getOperand(1), VT, false, Cnt))
6660       return DAG.getNode(ARMISD::VSHLIMM, dl, VT, N->getOperand(0),
6661                          DAG.getConstant(Cnt, dl, MVT::i32));
6662     return DAG.getNode(ARMISD::VSHLu, dl, VT, N->getOperand(0),
6663                        N->getOperand(1));
6664   }
6665 
6666   assert((N->getOpcode() == ISD::SRA || N->getOpcode() == ISD::SRL) &&
6667          "unexpected vector shift opcode");
6668 
6669   if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
6670     unsigned VShiftOpc =
6671         (N->getOpcode() == ISD::SRA ? ARMISD::VSHRsIMM : ARMISD::VSHRuIMM);
6672     return DAG.getNode(VShiftOpc, dl, VT, N->getOperand(0),
6673                        DAG.getConstant(Cnt, dl, MVT::i32));
6674   }
6675 
6676   // Other right shifts we don't have operations for (we use a shift left by a
6677   // negative number).
6678   EVT ShiftVT = N->getOperand(1).getValueType();
6679   SDValue NegatedCount = DAG.getNode(
6680       ISD::SUB, dl, ShiftVT, getZeroVector(ShiftVT, DAG, dl), N->getOperand(1));
6681   unsigned VShiftOpc =
6682       (N->getOpcode() == ISD::SRA ? ARMISD::VSHLs : ARMISD::VSHLu);
6683   return DAG.getNode(VShiftOpc, dl, VT, N->getOperand(0), NegatedCount);
6684 }
6685 
6686 static SDValue Expand64BitShift(SDNode *N, SelectionDAG &DAG,
6687                                 const ARMSubtarget *ST) {
6688   EVT VT = N->getValueType(0);
6689   SDLoc dl(N);
6690 
6691   // We can get here for a node like i32 = ISD::SHL i32, i64
6692   if (VT != MVT::i64)
6693     return SDValue();
6694 
6695   assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA ||
6696           N->getOpcode() == ISD::SHL) &&
6697          "Unknown shift to lower!");
6698 
6699   unsigned ShOpc = N->getOpcode();
6700   if (ST->hasMVEIntegerOps()) {
6701     SDValue ShAmt = N->getOperand(1);
6702     unsigned ShPartsOpc = ARMISD::LSLL;
6703     ConstantSDNode *Con = dyn_cast<ConstantSDNode>(ShAmt);
6704 
6705     // If the shift amount is greater than 32 or has a greater bitwidth than 64
6706     // then do the default optimisation
6707     if (ShAmt->getValueType(0).getSizeInBits() > 64 ||
6708         (Con && (Con->getZExtValue() == 0 || Con->getZExtValue() >= 32)))
6709       return SDValue();
6710 
6711     // Extract the lower 32 bits of the shift amount if it's not an i32
6712     if (ShAmt->getValueType(0) != MVT::i32)
6713       ShAmt = DAG.getZExtOrTrunc(ShAmt, dl, MVT::i32);
6714 
6715     if (ShOpc == ISD::SRL) {
6716       if (!Con)
6717         // There is no t2LSRLr instruction so negate and perform an lsll if the
6718         // shift amount is in a register, emulating a right shift.
6719         ShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
6720                             DAG.getConstant(0, dl, MVT::i32), ShAmt);
6721       else
6722         // Else generate an lsrl on the immediate shift amount
6723         ShPartsOpc = ARMISD::LSRL;
6724     } else if (ShOpc == ISD::SRA)
6725       ShPartsOpc = ARMISD::ASRL;
6726 
6727     // Split Lower/Upper 32 bits of the destination/source
6728     SDValue Lo, Hi;
6729     std::tie(Lo, Hi) =
6730         DAG.SplitScalar(N->getOperand(0), dl, MVT::i32, MVT::i32);
6731     // Generate the shift operation as computed above
6732     Lo = DAG.getNode(ShPartsOpc, dl, DAG.getVTList(MVT::i32, MVT::i32), Lo, Hi,
6733                      ShAmt);
6734     // The upper 32 bits come from the second return value of lsll
6735     Hi = SDValue(Lo.getNode(), 1);
6736     return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
6737   }
6738 
6739   // We only lower SRA, SRL of 1 here, all others use generic lowering.
6740   if (!isOneConstant(N->getOperand(1)) || N->getOpcode() == ISD::SHL)
6741     return SDValue();
6742 
6743   // If we are in thumb mode, we don't have RRX.
6744   if (ST->isThumb1Only())
6745     return SDValue();
6746 
6747   // Okay, we have a 64-bit SRA or SRL of 1.  Lower this to an RRX expr.
6748   SDValue Lo, Hi;
6749   std::tie(Lo, Hi) = DAG.SplitScalar(N->getOperand(0), dl, MVT::i32, MVT::i32);
6750 
6751   // First, build a SRA_GLUE/SRL_GLUE op, which shifts the top part by one and
6752   // captures the result into a carry flag.
6753   unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_GLUE:ARMISD::SRA_GLUE;
6754   Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Glue), Hi);
6755 
6756   // The low part is an ARMISD::RRX operand, which shifts the carry in.
6757   Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
6758 
6759   // Merge the pieces into a single i64 value.
6760  return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
6761 }
6762 
6763 static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG,
6764                            const ARMSubtarget *ST) {
6765   bool Invert = false;
6766   bool Swap = false;
6767   unsigned Opc = ARMCC::AL;
6768 
6769   SDValue Op0 = Op.getOperand(0);
6770   SDValue Op1 = Op.getOperand(1);
6771   SDValue CC = Op.getOperand(2);
6772   EVT VT = Op.getValueType();
6773   ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
6774   SDLoc dl(Op);
6775 
6776   EVT CmpVT;
6777   if (ST->hasNEON())
6778     CmpVT = Op0.getValueType().changeVectorElementTypeToInteger();
6779   else {
6780     assert(ST->hasMVEIntegerOps() &&
6781            "No hardware support for integer vector comparison!");
6782 
6783     if (Op.getValueType().getVectorElementType() != MVT::i1)
6784       return SDValue();
6785 
6786     // Make sure we expand floating point setcc to scalar if we do not have
6787     // mve.fp, so that we can handle them from there.
6788     if (Op0.getValueType().isFloatingPoint() && !ST->hasMVEFloatOps())
6789       return SDValue();
6790 
6791     CmpVT = VT;
6792   }
6793 
6794   if (Op0.getValueType().getVectorElementType() == MVT::i64 &&
6795       (SetCCOpcode == ISD::SETEQ || SetCCOpcode == ISD::SETNE)) {
6796     // Special-case integer 64-bit equality comparisons. They aren't legal,
6797     // but they can be lowered with a few vector instructions.
6798     unsigned CmpElements = CmpVT.getVectorNumElements() * 2;
6799     EVT SplitVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, CmpElements);
6800     SDValue CastOp0 = DAG.getNode(ISD::BITCAST, dl, SplitVT, Op0);
6801     SDValue CastOp1 = DAG.getNode(ISD::BITCAST, dl, SplitVT, Op1);
6802     SDValue Cmp = DAG.getNode(ISD::SETCC, dl, SplitVT, CastOp0, CastOp1,
6803                               DAG.getCondCode(ISD::SETEQ));
6804     SDValue Reversed = DAG.getNode(ARMISD::VREV64, dl, SplitVT, Cmp);
6805     SDValue Merged = DAG.getNode(ISD::AND, dl, SplitVT, Cmp, Reversed);
6806     Merged = DAG.getNode(ISD::BITCAST, dl, CmpVT, Merged);
6807     if (SetCCOpcode == ISD::SETNE)
6808       Merged = DAG.getNOT(dl, Merged, CmpVT);
6809     Merged = DAG.getSExtOrTrunc(Merged, dl, VT);
6810     return Merged;
6811   }
6812 
6813   if (CmpVT.getVectorElementType() == MVT::i64)
6814     // 64-bit comparisons are not legal in general.
6815     return SDValue();
6816 
6817   if (Op1.getValueType().isFloatingPoint()) {
6818     switch (SetCCOpcode) {
6819     default: llvm_unreachable("Illegal FP comparison");
6820     case ISD::SETUNE:
6821     case ISD::SETNE:
6822       if (ST->hasMVEFloatOps()) {
6823         Opc = ARMCC::NE; break;
6824       } else {
6825         Invert = true; [[fallthrough]];
6826       }
6827     case ISD::SETOEQ:
6828     case ISD::SETEQ:  Opc = ARMCC::EQ; break;
6829     case ISD::SETOLT:
6830     case ISD::SETLT: Swap = true; [[fallthrough]];
6831     case ISD::SETOGT:
6832     case ISD::SETGT:  Opc = ARMCC::GT; break;
6833     case ISD::SETOLE:
6834     case ISD::SETLE:  Swap = true; [[fallthrough]];
6835     case ISD::SETOGE:
6836     case ISD::SETGE: Opc = ARMCC::GE; break;
6837     case ISD::SETUGE: Swap = true; [[fallthrough]];
6838     case ISD::SETULE: Invert = true; Opc = ARMCC::GT; break;
6839     case ISD::SETUGT: Swap = true; [[fallthrough]];
6840     case ISD::SETULT: Invert = true; Opc = ARMCC::GE; break;
6841     case ISD::SETUEQ: Invert = true; [[fallthrough]];
6842     case ISD::SETONE: {
6843       // Expand this to (OLT | OGT).
6844       SDValue TmpOp0 = DAG.getNode(ARMISD::VCMP, dl, CmpVT, Op1, Op0,
6845                                    DAG.getConstant(ARMCC::GT, dl, MVT::i32));
6846       SDValue TmpOp1 = DAG.getNode(ARMISD::VCMP, dl, CmpVT, Op0, Op1,
6847                                    DAG.getConstant(ARMCC::GT, dl, MVT::i32));
6848       SDValue Result = DAG.getNode(ISD::OR, dl, CmpVT, TmpOp0, TmpOp1);
6849       if (Invert)
6850         Result = DAG.getNOT(dl, Result, VT);
6851       return Result;
6852     }
6853     case ISD::SETUO: Invert = true; [[fallthrough]];
6854     case ISD::SETO: {
6855       // Expand this to (OLT | OGE).
6856       SDValue TmpOp0 = DAG.getNode(ARMISD::VCMP, dl, CmpVT, Op1, Op0,
6857                                    DAG.getConstant(ARMCC::GT, dl, MVT::i32));
6858       SDValue TmpOp1 = DAG.getNode(ARMISD::VCMP, dl, CmpVT, Op0, Op1,
6859                                    DAG.getConstant(ARMCC::GE, dl, MVT::i32));
6860       SDValue Result = DAG.getNode(ISD::OR, dl, CmpVT, TmpOp0, TmpOp1);
6861       if (Invert)
6862         Result = DAG.getNOT(dl, Result, VT);
6863       return Result;
6864     }
6865     }
6866   } else {
6867     // Integer comparisons.
6868     switch (SetCCOpcode) {
6869     default: llvm_unreachable("Illegal integer comparison");
6870     case ISD::SETNE:
6871       if (ST->hasMVEIntegerOps()) {
6872         Opc = ARMCC::NE; break;
6873       } else {
6874         Invert = true; [[fallthrough]];
6875       }
6876     case ISD::SETEQ:  Opc = ARMCC::EQ; break;
6877     case ISD::SETLT:  Swap = true; [[fallthrough]];
6878     case ISD::SETGT:  Opc = ARMCC::GT; break;
6879     case ISD::SETLE:  Swap = true; [[fallthrough]];
6880     case ISD::SETGE:  Opc = ARMCC::GE; break;
6881     case ISD::SETULT: Swap = true; [[fallthrough]];
6882     case ISD::SETUGT: Opc = ARMCC::HI; break;
6883     case ISD::SETULE: Swap = true; [[fallthrough]];
6884     case ISD::SETUGE: Opc = ARMCC::HS; break;
6885     }
6886 
6887     // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
6888     if (ST->hasNEON() && Opc == ARMCC::EQ) {
6889       SDValue AndOp;
6890       if (ISD::isBuildVectorAllZeros(Op1.getNode()))
6891         AndOp = Op0;
6892       else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
6893         AndOp = Op1;
6894 
6895       // Ignore bitconvert.
6896       if (AndOp.getNode() && AndOp.getOpcode() == ISD::BITCAST)
6897         AndOp = AndOp.getOperand(0);
6898 
6899       if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
6900         Op0 = DAG.getNode(ISD::BITCAST, dl, CmpVT, AndOp.getOperand(0));
6901         Op1 = DAG.getNode(ISD::BITCAST, dl, CmpVT, AndOp.getOperand(1));
6902         SDValue Result = DAG.getNode(ARMISD::VTST, dl, CmpVT, Op0, Op1);
6903         if (!Invert)
6904           Result = DAG.getNOT(dl, Result, VT);
6905         return Result;
6906       }
6907     }
6908   }
6909 
6910   if (Swap)
6911     std::swap(Op0, Op1);
6912 
6913   // If one of the operands is a constant vector zero, attempt to fold the
6914   // comparison to a specialized compare-against-zero form.
6915   if (ISD::isBuildVectorAllZeros(Op0.getNode()) &&
6916       (Opc == ARMCC::GE || Opc == ARMCC::GT || Opc == ARMCC::EQ ||
6917        Opc == ARMCC::NE)) {
6918     if (Opc == ARMCC::GE)
6919       Opc = ARMCC::LE;
6920     else if (Opc == ARMCC::GT)
6921       Opc = ARMCC::LT;
6922     std::swap(Op0, Op1);
6923   }
6924 
6925   SDValue Result;
6926   if (ISD::isBuildVectorAllZeros(Op1.getNode()) &&
6927       (Opc == ARMCC::GE || Opc == ARMCC::GT || Opc == ARMCC::LE ||
6928        Opc == ARMCC::LT || Opc == ARMCC::NE || Opc == ARMCC::EQ))
6929     Result = DAG.getNode(ARMISD::VCMPZ, dl, CmpVT, Op0,
6930                          DAG.getConstant(Opc, dl, MVT::i32));
6931   else
6932     Result = DAG.getNode(ARMISD::VCMP, dl, CmpVT, Op0, Op1,
6933                          DAG.getConstant(Opc, dl, MVT::i32));
6934 
6935   Result = DAG.getSExtOrTrunc(Result, dl, VT);
6936 
6937   if (Invert)
6938     Result = DAG.getNOT(dl, Result, VT);
6939 
6940   return Result;
6941 }
6942 
6943 static SDValue LowerSETCCCARRY(SDValue Op, SelectionDAG &DAG) {
6944   SDValue LHS = Op.getOperand(0);
6945   SDValue RHS = Op.getOperand(1);
6946   SDValue Carry = Op.getOperand(2);
6947   SDValue Cond = Op.getOperand(3);
6948   SDLoc DL(Op);
6949 
6950   assert(LHS.getSimpleValueType().isInteger() && "SETCCCARRY is integer only.");
6951 
6952   // ARMISD::SUBE expects a carry not a borrow like ISD::USUBO_CARRY so we
6953   // have to invert the carry first.
6954   Carry = DAG.getNode(ISD::SUB, DL, MVT::i32,
6955                       DAG.getConstant(1, DL, MVT::i32), Carry);
6956   // This converts the boolean value carry into the carry flag.
6957   Carry = ConvertBooleanCarryToCarryFlag(Carry, DAG);
6958 
6959   SDVTList VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
6960   SDValue Cmp = DAG.getNode(ARMISD::SUBE, DL, VTs, LHS, RHS, Carry);
6961 
6962   SDValue FVal = DAG.getConstant(0, DL, MVT::i32);
6963   SDValue TVal = DAG.getConstant(1, DL, MVT::i32);
6964   SDValue ARMcc = DAG.getConstant(
6965       IntCCToARMCC(cast<CondCodeSDNode>(Cond)->get()), DL, MVT::i32);
6966   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
6967   SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), DL, ARM::CPSR,
6968                                    Cmp.getValue(1), SDValue());
6969   return DAG.getNode(ARMISD::CMOV, DL, Op.getValueType(), FVal, TVal, ARMcc,
6970                      CCR, Chain.getValue(1));
6971 }
6972 
6973 /// isVMOVModifiedImm - Check if the specified splat value corresponds to a
6974 /// valid vector constant for a NEON or MVE instruction with a "modified
6975 /// immediate" operand (e.g., VMOV).  If so, return the encoded value.
6976 static SDValue isVMOVModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
6977                                  unsigned SplatBitSize, SelectionDAG &DAG,
6978                                  const SDLoc &dl, EVT &VT, EVT VectorVT,
6979                                  VMOVModImmType type) {
6980   unsigned OpCmode, Imm;
6981   bool is128Bits = VectorVT.is128BitVector();
6982 
6983   // SplatBitSize is set to the smallest size that splats the vector, so a
6984   // zero vector will always have SplatBitSize == 8.  However, NEON modified
6985   // immediate instructions others than VMOV do not support the 8-bit encoding
6986   // of a zero vector, and the default encoding of zero is supposed to be the
6987   // 32-bit version.
6988   if (SplatBits == 0)
6989     SplatBitSize = 32;
6990 
6991   switch (SplatBitSize) {
6992   case 8:
6993     if (type != VMOVModImm)
6994       return SDValue();
6995     // Any 1-byte value is OK.  Op=0, Cmode=1110.
6996     assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
6997     OpCmode = 0xe;
6998     Imm = SplatBits;
6999     VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
7000     break;
7001 
7002   case 16:
7003     // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
7004     VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
7005     if ((SplatBits & ~0xff) == 0) {
7006       // Value = 0x00nn: Op=x, Cmode=100x.
7007       OpCmode = 0x8;
7008       Imm = SplatBits;
7009       break;
7010     }
7011     if ((SplatBits & ~0xff00) == 0) {
7012       // Value = 0xnn00: Op=x, Cmode=101x.
7013       OpCmode = 0xa;
7014       Imm = SplatBits >> 8;
7015       break;
7016     }
7017     return SDValue();
7018 
7019   case 32:
7020     // NEON's 32-bit VMOV supports splat values where:
7021     // * only one byte is nonzero, or
7022     // * the least significant byte is 0xff and the second byte is nonzero, or
7023     // * the least significant 2 bytes are 0xff and the third is nonzero.
7024     VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
7025     if ((SplatBits & ~0xff) == 0) {
7026       // Value = 0x000000nn: Op=x, Cmode=000x.
7027       OpCmode = 0;
7028       Imm = SplatBits;
7029       break;
7030     }
7031     if ((SplatBits & ~0xff00) == 0) {
7032       // Value = 0x0000nn00: Op=x, Cmode=001x.
7033       OpCmode = 0x2;
7034       Imm = SplatBits >> 8;
7035       break;
7036     }
7037     if ((SplatBits & ~0xff0000) == 0) {
7038       // Value = 0x00nn0000: Op=x, Cmode=010x.
7039       OpCmode = 0x4;
7040       Imm = SplatBits >> 16;
7041       break;
7042     }
7043     if ((SplatBits & ~0xff000000) == 0) {
7044       // Value = 0xnn000000: Op=x, Cmode=011x.
7045       OpCmode = 0x6;
7046       Imm = SplatBits >> 24;
7047       break;
7048     }
7049 
7050     // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC
7051     if (type == OtherModImm) return SDValue();
7052 
7053     if ((SplatBits & ~0xffff) == 0 &&
7054         ((SplatBits | SplatUndef) & 0xff) == 0xff) {
7055       // Value = 0x0000nnff: Op=x, Cmode=1100.
7056       OpCmode = 0xc;
7057       Imm = SplatBits >> 8;
7058       break;
7059     }
7060 
7061     // cmode == 0b1101 is not supported for MVE VMVN
7062     if (type == MVEVMVNModImm)
7063       return SDValue();
7064 
7065     if ((SplatBits & ~0xffffff) == 0 &&
7066         ((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
7067       // Value = 0x00nnffff: Op=x, Cmode=1101.
7068       OpCmode = 0xd;
7069       Imm = SplatBits >> 16;
7070       break;
7071     }
7072 
7073     // Note: there are a few 32-bit splat values (specifically: 00ffff00,
7074     // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
7075     // VMOV.I32.  A (very) minor optimization would be to replicate the value
7076     // and fall through here to test for a valid 64-bit splat.  But, then the
7077     // caller would also need to check and handle the change in size.
7078     return SDValue();
7079 
7080   case 64: {
7081     if (type != VMOVModImm)
7082       return SDValue();
7083     // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
7084     uint64_t BitMask = 0xff;
7085     unsigned ImmMask = 1;
7086     Imm = 0;
7087     for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
7088       if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
7089         Imm |= ImmMask;
7090       } else if ((SplatBits & BitMask) != 0) {
7091         return SDValue();
7092       }
7093       BitMask <<= 8;
7094       ImmMask <<= 1;
7095     }
7096 
7097     if (DAG.getDataLayout().isBigEndian()) {
7098       // Reverse the order of elements within the vector.
7099       unsigned BytesPerElem = VectorVT.getScalarSizeInBits() / 8;
7100       unsigned Mask = (1 << BytesPerElem) - 1;
7101       unsigned NumElems = 8 / BytesPerElem;
7102       unsigned NewImm = 0;
7103       for (unsigned ElemNum = 0; ElemNum < NumElems; ++ElemNum) {
7104         unsigned Elem = ((Imm >> ElemNum * BytesPerElem) & Mask);
7105         NewImm |= Elem << (NumElems - ElemNum - 1) * BytesPerElem;
7106       }
7107       Imm = NewImm;
7108     }
7109 
7110     // Op=1, Cmode=1110.
7111     OpCmode = 0x1e;
7112     VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
7113     break;
7114   }
7115 
7116   default:
7117     llvm_unreachable("unexpected size for isVMOVModifiedImm");
7118   }
7119 
7120   unsigned EncodedVal = ARM_AM::createVMOVModImm(OpCmode, Imm);
7121   return DAG.getTargetConstant(EncodedVal, dl, MVT::i32);
7122 }
7123 
7124 SDValue ARMTargetLowering::LowerConstantFP(SDValue Op, SelectionDAG &DAG,
7125                                            const ARMSubtarget *ST) const {
7126   EVT VT = Op.getValueType();
7127   bool IsDouble = (VT == MVT::f64);
7128   ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Op);
7129   const APFloat &FPVal = CFP->getValueAPF();
7130 
7131   // Prevent floating-point constants from using literal loads
7132   // when execute-only is enabled.
7133   if (ST->genExecuteOnly()) {
7134     // We shouldn't trigger this for v6m execute-only
7135     assert((!ST->isThumb1Only() || ST->hasV8MBaselineOps()) &&
7136            "Unexpected architecture");
7137 
7138     // If we can represent the constant as an immediate, don't lower it
7139     if (isFPImmLegal(FPVal, VT))
7140       return Op;
7141     // Otherwise, construct as integer, and move to float register
7142     APInt INTVal = FPVal.bitcastToAPInt();
7143     SDLoc DL(CFP);
7144     switch (VT.getSimpleVT().SimpleTy) {
7145       default:
7146         llvm_unreachable("Unknown floating point type!");
7147         break;
7148       case MVT::f64: {
7149         SDValue Lo = DAG.getConstant(INTVal.trunc(32), DL, MVT::i32);
7150         SDValue Hi = DAG.getConstant(INTVal.lshr(32).trunc(32), DL, MVT::i32);
7151         return DAG.getNode(ARMISD::VMOVDRR, DL, MVT::f64, Lo, Hi);
7152       }
7153       case MVT::f32:
7154           return DAG.getNode(ARMISD::VMOVSR, DL, VT,
7155               DAG.getConstant(INTVal, DL, MVT::i32));
7156     }
7157   }
7158 
7159   if (!ST->hasVFP3Base())
7160     return SDValue();
7161 
7162   // Use the default (constant pool) lowering for double constants when we have
7163   // an SP-only FPU
7164   if (IsDouble && !Subtarget->hasFP64())
7165     return SDValue();
7166 
7167   // Try splatting with a VMOV.f32...
7168   int ImmVal = IsDouble ? ARM_AM::getFP64Imm(FPVal) : ARM_AM::getFP32Imm(FPVal);
7169 
7170   if (ImmVal != -1) {
7171     if (IsDouble || !ST->useNEONForSinglePrecisionFP()) {
7172       // We have code in place to select a valid ConstantFP already, no need to
7173       // do any mangling.
7174       return Op;
7175     }
7176 
7177     // It's a float and we are trying to use NEON operations where
7178     // possible. Lower it to a splat followed by an extract.
7179     SDLoc DL(Op);
7180     SDValue NewVal = DAG.getTargetConstant(ImmVal, DL, MVT::i32);
7181     SDValue VecConstant = DAG.getNode(ARMISD::VMOVFPIMM, DL, MVT::v2f32,
7182                                       NewVal);
7183     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecConstant,
7184                        DAG.getConstant(0, DL, MVT::i32));
7185   }
7186 
7187   // The rest of our options are NEON only, make sure that's allowed before
7188   // proceeding..
7189   if (!ST->hasNEON() || (!IsDouble && !ST->useNEONForSinglePrecisionFP()))
7190     return SDValue();
7191 
7192   EVT VMovVT;
7193   uint64_t iVal = FPVal.bitcastToAPInt().getZExtValue();
7194 
7195   // It wouldn't really be worth bothering for doubles except for one very
7196   // important value, which does happen to match: 0.0. So make sure we don't do
7197   // anything stupid.
7198   if (IsDouble && (iVal & 0xffffffff) != (iVal >> 32))
7199     return SDValue();
7200 
7201   // Try a VMOV.i32 (FIXME: i8, i16, or i64 could work too).
7202   SDValue NewVal = isVMOVModifiedImm(iVal & 0xffffffffU, 0, 32, DAG, SDLoc(Op),
7203                                      VMovVT, VT, VMOVModImm);
7204   if (NewVal != SDValue()) {
7205     SDLoc DL(Op);
7206     SDValue VecConstant = DAG.getNode(ARMISD::VMOVIMM, DL, VMovVT,
7207                                       NewVal);
7208     if (IsDouble)
7209       return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant);
7210 
7211     // It's a float: cast and extract a vector element.
7212     SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
7213                                        VecConstant);
7214     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
7215                        DAG.getConstant(0, DL, MVT::i32));
7216   }
7217 
7218   // Finally, try a VMVN.i32
7219   NewVal = isVMOVModifiedImm(~iVal & 0xffffffffU, 0, 32, DAG, SDLoc(Op), VMovVT,
7220                              VT, VMVNModImm);
7221   if (NewVal != SDValue()) {
7222     SDLoc DL(Op);
7223     SDValue VecConstant = DAG.getNode(ARMISD::VMVNIMM, DL, VMovVT, NewVal);
7224 
7225     if (IsDouble)
7226       return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant);
7227 
7228     // It's a float: cast and extract a vector element.
7229     SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
7230                                        VecConstant);
7231     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
7232                        DAG.getConstant(0, DL, MVT::i32));
7233   }
7234 
7235   return SDValue();
7236 }
7237 
7238 // check if an VEXT instruction can handle the shuffle mask when the
7239 // vector sources of the shuffle are the same.
7240 static bool isSingletonVEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) {
7241   unsigned NumElts = VT.getVectorNumElements();
7242 
7243   // Assume that the first shuffle index is not UNDEF.  Fail if it is.
7244   if (M[0] < 0)
7245     return false;
7246 
7247   Imm = M[0];
7248 
7249   // If this is a VEXT shuffle, the immediate value is the index of the first
7250   // element.  The other shuffle indices must be the successive elements after
7251   // the first one.
7252   unsigned ExpectedElt = Imm;
7253   for (unsigned i = 1; i < NumElts; ++i) {
7254     // Increment the expected index.  If it wraps around, just follow it
7255     // back to index zero and keep going.
7256     ++ExpectedElt;
7257     if (ExpectedElt == NumElts)
7258       ExpectedElt = 0;
7259 
7260     if (M[i] < 0) continue; // ignore UNDEF indices
7261     if (ExpectedElt != static_cast<unsigned>(M[i]))
7262       return false;
7263   }
7264 
7265   return true;
7266 }
7267 
7268 static bool isVEXTMask(ArrayRef<int> M, EVT VT,
7269                        bool &ReverseVEXT, unsigned &Imm) {
7270   unsigned NumElts = VT.getVectorNumElements();
7271   ReverseVEXT = false;
7272 
7273   // Assume that the first shuffle index is not UNDEF.  Fail if it is.
7274   if (M[0] < 0)
7275     return false;
7276 
7277   Imm = M[0];
7278 
7279   // If this is a VEXT shuffle, the immediate value is the index of the first
7280   // element.  The other shuffle indices must be the successive elements after
7281   // the first one.
7282   unsigned ExpectedElt = Imm;
7283   for (unsigned i = 1; i < NumElts; ++i) {
7284     // Increment the expected index.  If it wraps around, it may still be
7285     // a VEXT but the source vectors must be swapped.
7286     ExpectedElt += 1;
7287     if (ExpectedElt == NumElts * 2) {
7288       ExpectedElt = 0;
7289       ReverseVEXT = true;
7290     }
7291 
7292     if (M[i] < 0) continue; // ignore UNDEF indices
7293     if (ExpectedElt != static_cast<unsigned>(M[i]))
7294       return false;
7295   }
7296 
7297   // Adjust the index value if the source operands will be swapped.
7298   if (ReverseVEXT)
7299     Imm -= NumElts;
7300 
7301   return true;
7302 }
7303 
7304 static bool isVTBLMask(ArrayRef<int> M, EVT VT) {
7305   // We can handle <8 x i8> vector shuffles. If the index in the mask is out of
7306   // range, then 0 is placed into the resulting vector. So pretty much any mask
7307   // of 8 elements can work here.
7308   return VT == MVT::v8i8 && M.size() == 8;
7309 }
7310 
7311 static unsigned SelectPairHalf(unsigned Elements, ArrayRef<int> Mask,
7312                                unsigned Index) {
7313   if (Mask.size() == Elements * 2)
7314     return Index / Elements;
7315   return Mask[Index] == 0 ? 0 : 1;
7316 }
7317 
7318 // Checks whether the shuffle mask represents a vector transpose (VTRN) by
7319 // checking that pairs of elements in the shuffle mask represent the same index
7320 // in each vector, incrementing the expected index by 2 at each step.
7321 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 2, 6]
7322 //  v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,c,g}
7323 //  v2={e,f,g,h}
7324 // WhichResult gives the offset for each element in the mask based on which
7325 // of the two results it belongs to.
7326 //
7327 // The transpose can be represented either as:
7328 // result1 = shufflevector v1, v2, result1_shuffle_mask
7329 // result2 = shufflevector v1, v2, result2_shuffle_mask
7330 // where v1/v2 and the shuffle masks have the same number of elements
7331 // (here WhichResult (see below) indicates which result is being checked)
7332 //
7333 // or as:
7334 // results = shufflevector v1, v2, shuffle_mask
7335 // where both results are returned in one vector and the shuffle mask has twice
7336 // as many elements as v1/v2 (here WhichResult will always be 0 if true) here we
7337 // want to check the low half and high half of the shuffle mask as if it were
7338 // the other case
7339 static bool isVTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
7340   unsigned EltSz = VT.getScalarSizeInBits();
7341   if (EltSz == 64)
7342     return false;
7343 
7344   unsigned NumElts = VT.getVectorNumElements();
7345   if (M.size() != NumElts && M.size() != NumElts*2)
7346     return false;
7347 
7348   // If the mask is twice as long as the input vector then we need to check the
7349   // upper and lower parts of the mask with a matching value for WhichResult
7350   // FIXME: A mask with only even values will be rejected in case the first
7351   // element is undefined, e.g. [-1, 4, 2, 6] will be rejected, because only
7352   // M[0] is used to determine WhichResult
7353   for (unsigned i = 0; i < M.size(); i += NumElts) {
7354     WhichResult = SelectPairHalf(NumElts, M, i);
7355     for (unsigned j = 0; j < NumElts; j += 2) {
7356       if ((M[i+j] >= 0 && (unsigned) M[i+j] != j + WhichResult) ||
7357           (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != j + NumElts + WhichResult))
7358         return false;
7359     }
7360   }
7361 
7362   if (M.size() == NumElts*2)
7363     WhichResult = 0;
7364 
7365   return true;
7366 }
7367 
7368 /// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
7369 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
7370 /// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
7371 static bool isVTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
7372   unsigned EltSz = VT.getScalarSizeInBits();
7373   if (EltSz == 64)
7374     return false;
7375 
7376   unsigned NumElts = VT.getVectorNumElements();
7377   if (M.size() != NumElts && M.size() != NumElts*2)
7378     return false;
7379 
7380   for (unsigned i = 0; i < M.size(); i += NumElts) {
7381     WhichResult = SelectPairHalf(NumElts, M, i);
7382     for (unsigned j = 0; j < NumElts; j += 2) {
7383       if ((M[i+j] >= 0 && (unsigned) M[i+j] != j + WhichResult) ||
7384           (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != j + WhichResult))
7385         return false;
7386     }
7387   }
7388 
7389   if (M.size() == NumElts*2)
7390     WhichResult = 0;
7391 
7392   return true;
7393 }
7394 
7395 // Checks whether the shuffle mask represents a vector unzip (VUZP) by checking
7396 // that the mask elements are either all even and in steps of size 2 or all odd
7397 // and in steps of size 2.
7398 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 2, 4, 6]
7399 //  v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,c,e,g}
7400 //  v2={e,f,g,h}
7401 // Requires similar checks to that of isVTRNMask with
7402 // respect the how results are returned.
7403 static bool isVUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
7404   unsigned EltSz = VT.getScalarSizeInBits();
7405   if (EltSz == 64)
7406     return false;
7407 
7408   unsigned NumElts = VT.getVectorNumElements();
7409   if (M.size() != NumElts && M.size() != NumElts*2)
7410     return false;
7411 
7412   for (unsigned i = 0; i < M.size(); i += NumElts) {
7413     WhichResult = SelectPairHalf(NumElts, M, i);
7414     for (unsigned j = 0; j < NumElts; ++j) {
7415       if (M[i+j] >= 0 && (unsigned) M[i+j] != 2 * j + WhichResult)
7416         return false;
7417     }
7418   }
7419 
7420   if (M.size() == NumElts*2)
7421     WhichResult = 0;
7422 
7423   // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
7424   if (VT.is64BitVector() && EltSz == 32)
7425     return false;
7426 
7427   return true;
7428 }
7429 
7430 /// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
7431 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
7432 /// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
7433 static bool isVUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
7434   unsigned EltSz = VT.getScalarSizeInBits();
7435   if (EltSz == 64)
7436     return false;
7437 
7438   unsigned NumElts = VT.getVectorNumElements();
7439   if (M.size() != NumElts && M.size() != NumElts*2)
7440     return false;
7441 
7442   unsigned Half = NumElts / 2;
7443   for (unsigned i = 0; i < M.size(); i += NumElts) {
7444     WhichResult = SelectPairHalf(NumElts, M, i);
7445     for (unsigned j = 0; j < NumElts; j += Half) {
7446       unsigned Idx = WhichResult;
7447       for (unsigned k = 0; k < Half; ++k) {
7448         int MIdx = M[i + j + k];
7449         if (MIdx >= 0 && (unsigned) MIdx != Idx)
7450           return false;
7451         Idx += 2;
7452       }
7453     }
7454   }
7455 
7456   if (M.size() == NumElts*2)
7457     WhichResult = 0;
7458 
7459   // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
7460   if (VT.is64BitVector() && EltSz == 32)
7461     return false;
7462 
7463   return true;
7464 }
7465 
7466 // Checks whether the shuffle mask represents a vector zip (VZIP) by checking
7467 // that pairs of elements of the shufflemask represent the same index in each
7468 // vector incrementing sequentially through the vectors.
7469 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 1, 5]
7470 //  v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,b,f}
7471 //  v2={e,f,g,h}
7472 // Requires similar checks to that of isVTRNMask with respect the how results
7473 // are returned.
7474 static bool isVZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
7475   unsigned EltSz = VT.getScalarSizeInBits();
7476   if (EltSz == 64)
7477     return false;
7478 
7479   unsigned NumElts = VT.getVectorNumElements();
7480   if (M.size() != NumElts && M.size() != NumElts*2)
7481     return false;
7482 
7483   for (unsigned i = 0; i < M.size(); i += NumElts) {
7484     WhichResult = SelectPairHalf(NumElts, M, i);
7485     unsigned Idx = WhichResult * NumElts / 2;
7486     for (unsigned j = 0; j < NumElts; j += 2) {
7487       if ((M[i+j] >= 0 && (unsigned) M[i+j] != Idx) ||
7488           (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != Idx + NumElts))
7489         return false;
7490       Idx += 1;
7491     }
7492   }
7493 
7494   if (M.size() == NumElts*2)
7495     WhichResult = 0;
7496 
7497   // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
7498   if (VT.is64BitVector() && EltSz == 32)
7499     return false;
7500 
7501   return true;
7502 }
7503 
7504 /// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
7505 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
7506 /// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
7507 static bool isVZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
7508   unsigned EltSz = VT.getScalarSizeInBits();
7509   if (EltSz == 64)
7510     return false;
7511 
7512   unsigned NumElts = VT.getVectorNumElements();
7513   if (M.size() != NumElts && M.size() != NumElts*2)
7514     return false;
7515 
7516   for (unsigned i = 0; i < M.size(); i += NumElts) {
7517     WhichResult = SelectPairHalf(NumElts, M, i);
7518     unsigned Idx = WhichResult * NumElts / 2;
7519     for (unsigned j = 0; j < NumElts; j += 2) {
7520       if ((M[i+j] >= 0 && (unsigned) M[i+j] != Idx) ||
7521           (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != Idx))
7522         return false;
7523       Idx += 1;
7524     }
7525   }
7526 
7527   if (M.size() == NumElts*2)
7528     WhichResult = 0;
7529 
7530   // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
7531   if (VT.is64BitVector() && EltSz == 32)
7532     return false;
7533 
7534   return true;
7535 }
7536 
7537 /// Check if \p ShuffleMask is a NEON two-result shuffle (VZIP, VUZP, VTRN),
7538 /// and return the corresponding ARMISD opcode if it is, or 0 if it isn't.
7539 static unsigned isNEONTwoResultShuffleMask(ArrayRef<int> ShuffleMask, EVT VT,
7540                                            unsigned &WhichResult,
7541                                            bool &isV_UNDEF) {
7542   isV_UNDEF = false;
7543   if (isVTRNMask(ShuffleMask, VT, WhichResult))
7544     return ARMISD::VTRN;
7545   if (isVUZPMask(ShuffleMask, VT, WhichResult))
7546     return ARMISD::VUZP;
7547   if (isVZIPMask(ShuffleMask, VT, WhichResult))
7548     return ARMISD::VZIP;
7549 
7550   isV_UNDEF = true;
7551   if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult))
7552     return ARMISD::VTRN;
7553   if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult))
7554     return ARMISD::VUZP;
7555   if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult))
7556     return ARMISD::VZIP;
7557 
7558   return 0;
7559 }
7560 
7561 /// \return true if this is a reverse operation on an vector.
7562 static bool isReverseMask(ArrayRef<int> M, EVT VT) {
7563   unsigned NumElts = VT.getVectorNumElements();
7564   // Make sure the mask has the right size.
7565   if (NumElts != M.size())
7566       return false;
7567 
7568   // Look for <15, ..., 3, -1, 1, 0>.
7569   for (unsigned i = 0; i != NumElts; ++i)
7570     if (M[i] >= 0 && M[i] != (int) (NumElts - 1 - i))
7571       return false;
7572 
7573   return true;
7574 }
7575 
7576 static bool isTruncMask(ArrayRef<int> M, EVT VT, bool Top, bool SingleSource) {
7577   unsigned NumElts = VT.getVectorNumElements();
7578   // Make sure the mask has the right size.
7579   if (NumElts != M.size() || (VT != MVT::v8i16 && VT != MVT::v16i8))
7580     return false;
7581 
7582   // Half-width truncation patterns (e.g. v4i32 -> v8i16):
7583   // !Top &&  SingleSource: <0, 2, 4, 6, 0, 2, 4, 6>
7584   // !Top && !SingleSource: <0, 2, 4, 6, 8, 10, 12, 14>
7585   //  Top &&  SingleSource: <1, 3, 5, 7, 1, 3, 5, 7>
7586   //  Top && !SingleSource: <1, 3, 5, 7, 9, 11, 13, 15>
7587   int Ofs = Top ? 1 : 0;
7588   int Upper = SingleSource ? 0 : NumElts;
7589   for (int i = 0, e = NumElts / 2; i != e; ++i) {
7590     if (M[i] >= 0 && M[i] != (i * 2) + Ofs)
7591       return false;
7592     if (M[i + e] >= 0 && M[i + e] != (i * 2) + Ofs + Upper)
7593       return false;
7594   }
7595   return true;
7596 }
7597 
7598 static bool isVMOVNMask(ArrayRef<int> M, EVT VT, bool Top, bool SingleSource) {
7599   unsigned NumElts = VT.getVectorNumElements();
7600   // Make sure the mask has the right size.
7601   if (NumElts != M.size() || (VT != MVT::v8i16 && VT != MVT::v16i8))
7602     return false;
7603 
7604   // If Top
7605   //   Look for <0, N, 2, N+2, 4, N+4, ..>.
7606   //   This inserts Input2 into Input1
7607   // else if not Top
7608   //   Look for <0, N+1, 2, N+3, 4, N+5, ..>
7609   //   This inserts Input1 into Input2
7610   unsigned Offset = Top ? 0 : 1;
7611   unsigned N = SingleSource ? 0 : NumElts;
7612   for (unsigned i = 0; i < NumElts; i += 2) {
7613     if (M[i] >= 0 && M[i] != (int)i)
7614       return false;
7615     if (M[i + 1] >= 0 && M[i + 1] != (int)(N + i + Offset))
7616       return false;
7617   }
7618 
7619   return true;
7620 }
7621 
7622 static bool isVMOVNTruncMask(ArrayRef<int> M, EVT ToVT, bool rev) {
7623   unsigned NumElts = ToVT.getVectorNumElements();
7624   if (NumElts != M.size())
7625     return false;
7626 
7627   // Test if the Trunc can be convertable to a VMOVN with this shuffle. We are
7628   // looking for patterns of:
7629   // !rev: 0 N/2 1 N/2+1 2 N/2+2 ...
7630   //  rev: N/2 0 N/2+1 1 N/2+2 2 ...
7631 
7632   unsigned Off0 = rev ? NumElts / 2 : 0;
7633   unsigned Off1 = rev ? 0 : NumElts / 2;
7634   for (unsigned i = 0; i < NumElts; i += 2) {
7635     if (M[i] >= 0 && M[i] != (int)(Off0 + i / 2))
7636       return false;
7637     if (M[i + 1] >= 0 && M[i + 1] != (int)(Off1 + i / 2))
7638       return false;
7639   }
7640 
7641   return true;
7642 }
7643 
7644 // Reconstruct an MVE VCVT from a BuildVector of scalar fptrunc, all extracted
7645 // from a pair of inputs. For example:
7646 // BUILDVECTOR(FP_ROUND(EXTRACT_ELT(X, 0),
7647 //             FP_ROUND(EXTRACT_ELT(Y, 0),
7648 //             FP_ROUND(EXTRACT_ELT(X, 1),
7649 //             FP_ROUND(EXTRACT_ELT(Y, 1), ...)
7650 static SDValue LowerBuildVectorOfFPTrunc(SDValue BV, SelectionDAG &DAG,
7651                                          const ARMSubtarget *ST) {
7652   assert(BV.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
7653   if (!ST->hasMVEFloatOps())
7654     return SDValue();
7655 
7656   SDLoc dl(BV);
7657   EVT VT = BV.getValueType();
7658   if (VT != MVT::v8f16)
7659     return SDValue();
7660 
7661   // We are looking for a buildvector of fptrunc elements, where all the
7662   // elements are interleavingly extracted from two sources. Check the first two
7663   // items are valid enough and extract some info from them (they are checked
7664   // properly in the loop below).
7665   if (BV.getOperand(0).getOpcode() != ISD::FP_ROUND ||
7666       BV.getOperand(0).getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
7667       BV.getOperand(0).getOperand(0).getConstantOperandVal(1) != 0)
7668     return SDValue();
7669   if (BV.getOperand(1).getOpcode() != ISD::FP_ROUND ||
7670       BV.getOperand(1).getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
7671       BV.getOperand(1).getOperand(0).getConstantOperandVal(1) != 0)
7672     return SDValue();
7673   SDValue Op0 = BV.getOperand(0).getOperand(0).getOperand(0);
7674   SDValue Op1 = BV.getOperand(1).getOperand(0).getOperand(0);
7675   if (Op0.getValueType() != MVT::v4f32 || Op1.getValueType() != MVT::v4f32)
7676     return SDValue();
7677 
7678   // Check all the values in the BuildVector line up with our expectations.
7679   for (unsigned i = 1; i < 4; i++) {
7680     auto Check = [](SDValue Trunc, SDValue Op, unsigned Idx) {
7681       return Trunc.getOpcode() == ISD::FP_ROUND &&
7682              Trunc.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
7683              Trunc.getOperand(0).getOperand(0) == Op &&
7684              Trunc.getOperand(0).getConstantOperandVal(1) == Idx;
7685     };
7686     if (!Check(BV.getOperand(i * 2 + 0), Op0, i))
7687       return SDValue();
7688     if (!Check(BV.getOperand(i * 2 + 1), Op1, i))
7689       return SDValue();
7690   }
7691 
7692   SDValue N1 = DAG.getNode(ARMISD::VCVTN, dl, VT, DAG.getUNDEF(VT), Op0,
7693                            DAG.getConstant(0, dl, MVT::i32));
7694   return DAG.getNode(ARMISD::VCVTN, dl, VT, N1, Op1,
7695                      DAG.getConstant(1, dl, MVT::i32));
7696 }
7697 
7698 // Reconstruct an MVE VCVT from a BuildVector of scalar fpext, all extracted
7699 // from a single input on alternating lanes. For example:
7700 // BUILDVECTOR(FP_ROUND(EXTRACT_ELT(X, 0),
7701 //             FP_ROUND(EXTRACT_ELT(X, 2),
7702 //             FP_ROUND(EXTRACT_ELT(X, 4), ...)
7703 static SDValue LowerBuildVectorOfFPExt(SDValue BV, SelectionDAG &DAG,
7704                                        const ARMSubtarget *ST) {
7705   assert(BV.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
7706   if (!ST->hasMVEFloatOps())
7707     return SDValue();
7708 
7709   SDLoc dl(BV);
7710   EVT VT = BV.getValueType();
7711   if (VT != MVT::v4f32)
7712     return SDValue();
7713 
7714   // We are looking for a buildvector of fptext elements, where all the
7715   // elements are alternating lanes from a single source. For example <0,2,4,6>
7716   // or <1,3,5,7>. Check the first two items are valid enough and extract some
7717   // info from them (they are checked properly in the loop below).
7718   if (BV.getOperand(0).getOpcode() != ISD::FP_EXTEND ||
7719       BV.getOperand(0).getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT)
7720     return SDValue();
7721   SDValue Op0 = BV.getOperand(0).getOperand(0).getOperand(0);
7722   int Offset = BV.getOperand(0).getOperand(0).getConstantOperandVal(1);
7723   if (Op0.getValueType() != MVT::v8f16 || (Offset != 0 && Offset != 1))
7724     return SDValue();
7725 
7726   // Check all the values in the BuildVector line up with our expectations.
7727   for (unsigned i = 1; i < 4; i++) {
7728     auto Check = [](SDValue Trunc, SDValue Op, unsigned Idx) {
7729       return Trunc.getOpcode() == ISD::FP_EXTEND &&
7730              Trunc.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
7731              Trunc.getOperand(0).getOperand(0) == Op &&
7732              Trunc.getOperand(0).getConstantOperandVal(1) == Idx;
7733     };
7734     if (!Check(BV.getOperand(i), Op0, 2 * i + Offset))
7735       return SDValue();
7736   }
7737 
7738   return DAG.getNode(ARMISD::VCVTL, dl, VT, Op0,
7739                      DAG.getConstant(Offset, dl, MVT::i32));
7740 }
7741 
7742 // If N is an integer constant that can be moved into a register in one
7743 // instruction, return an SDValue of such a constant (will become a MOV
7744 // instruction).  Otherwise return null.
7745 static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG,
7746                                      const ARMSubtarget *ST, const SDLoc &dl) {
7747   uint64_t Val;
7748   if (!isa<ConstantSDNode>(N))
7749     return SDValue();
7750   Val = N->getAsZExtVal();
7751 
7752   if (ST->isThumb1Only()) {
7753     if (Val <= 255 || ~Val <= 255)
7754       return DAG.getConstant(Val, dl, MVT::i32);
7755   } else {
7756     if (ARM_AM::getSOImmVal(Val) != -1 || ARM_AM::getSOImmVal(~Val) != -1)
7757       return DAG.getConstant(Val, dl, MVT::i32);
7758   }
7759   return SDValue();
7760 }
7761 
7762 static SDValue LowerBUILD_VECTOR_i1(SDValue Op, SelectionDAG &DAG,
7763                                     const ARMSubtarget *ST) {
7764   SDLoc dl(Op);
7765   EVT VT = Op.getValueType();
7766 
7767   assert(ST->hasMVEIntegerOps() && "LowerBUILD_VECTOR_i1 called without MVE!");
7768 
7769   unsigned NumElts = VT.getVectorNumElements();
7770   unsigned BoolMask;
7771   unsigned BitsPerBool;
7772   if (NumElts == 2) {
7773     BitsPerBool = 8;
7774     BoolMask = 0xff;
7775   } else if (NumElts == 4) {
7776     BitsPerBool = 4;
7777     BoolMask = 0xf;
7778   } else if (NumElts == 8) {
7779     BitsPerBool = 2;
7780     BoolMask = 0x3;
7781   } else if (NumElts == 16) {
7782     BitsPerBool = 1;
7783     BoolMask = 0x1;
7784   } else
7785     return SDValue();
7786 
7787   // If this is a single value copied into all lanes (a splat), we can just sign
7788   // extend that single value
7789   SDValue FirstOp = Op.getOperand(0);
7790   if (!isa<ConstantSDNode>(FirstOp) &&
7791       llvm::all_of(llvm::drop_begin(Op->ops()), [&FirstOp](const SDUse &U) {
7792         return U.get().isUndef() || U.get() == FirstOp;
7793       })) {
7794     SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::i32, FirstOp,
7795                               DAG.getValueType(MVT::i1));
7796     return DAG.getNode(ARMISD::PREDICATE_CAST, dl, Op.getValueType(), Ext);
7797   }
7798 
7799   // First create base with bits set where known
7800   unsigned Bits32 = 0;
7801   for (unsigned i = 0; i < NumElts; ++i) {
7802     SDValue V = Op.getOperand(i);
7803     if (!isa<ConstantSDNode>(V) && !V.isUndef())
7804       continue;
7805     bool BitSet = V.isUndef() ? false : V->getAsZExtVal();
7806     if (BitSet)
7807       Bits32 |= BoolMask << (i * BitsPerBool);
7808   }
7809 
7810   // Add in unknown nodes
7811   SDValue Base = DAG.getNode(ARMISD::PREDICATE_CAST, dl, VT,
7812                              DAG.getConstant(Bits32, dl, MVT::i32));
7813   for (unsigned i = 0; i < NumElts; ++i) {
7814     SDValue V = Op.getOperand(i);
7815     if (isa<ConstantSDNode>(V) || V.isUndef())
7816       continue;
7817     Base = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Base, V,
7818                        DAG.getConstant(i, dl, MVT::i32));
7819   }
7820 
7821   return Base;
7822 }
7823 
7824 static SDValue LowerBUILD_VECTORToVIDUP(SDValue Op, SelectionDAG &DAG,
7825                                         const ARMSubtarget *ST) {
7826   if (!ST->hasMVEIntegerOps())
7827     return SDValue();
7828 
7829   // We are looking for a buildvector where each element is Op[0] + i*N
7830   EVT VT = Op.getValueType();
7831   SDValue Op0 = Op.getOperand(0);
7832   unsigned NumElts = VT.getVectorNumElements();
7833 
7834   // Get the increment value from operand 1
7835   SDValue Op1 = Op.getOperand(1);
7836   if (Op1.getOpcode() != ISD::ADD || Op1.getOperand(0) != Op0 ||
7837       !isa<ConstantSDNode>(Op1.getOperand(1)))
7838     return SDValue();
7839   unsigned N = Op1.getConstantOperandVal(1);
7840   if (N != 1 && N != 2 && N != 4 && N != 8)
7841     return SDValue();
7842 
7843   // Check that each other operand matches
7844   for (unsigned I = 2; I < NumElts; I++) {
7845     SDValue OpI = Op.getOperand(I);
7846     if (OpI.getOpcode() != ISD::ADD || OpI.getOperand(0) != Op0 ||
7847         !isa<ConstantSDNode>(OpI.getOperand(1)) ||
7848         OpI.getConstantOperandVal(1) != I * N)
7849       return SDValue();
7850   }
7851 
7852   SDLoc DL(Op);
7853   return DAG.getNode(ARMISD::VIDUP, DL, DAG.getVTList(VT, MVT::i32), Op0,
7854                      DAG.getConstant(N, DL, MVT::i32));
7855 }
7856 
7857 // Returns true if the operation N can be treated as qr instruction variant at
7858 // operand Op.
7859 static bool IsQRMVEInstruction(const SDNode *N, const SDNode *Op) {
7860   switch (N->getOpcode()) {
7861   case ISD::ADD:
7862   case ISD::MUL:
7863   case ISD::SADDSAT:
7864   case ISD::UADDSAT:
7865     return true;
7866   case ISD::SUB:
7867   case ISD::SSUBSAT:
7868   case ISD::USUBSAT:
7869     return N->getOperand(1).getNode() == Op;
7870   case ISD::INTRINSIC_WO_CHAIN:
7871     switch (N->getConstantOperandVal(0)) {
7872     case Intrinsic::arm_mve_add_predicated:
7873     case Intrinsic::arm_mve_mul_predicated:
7874     case Intrinsic::arm_mve_qadd_predicated:
7875     case Intrinsic::arm_mve_vhadd:
7876     case Intrinsic::arm_mve_hadd_predicated:
7877     case Intrinsic::arm_mve_vqdmulh:
7878     case Intrinsic::arm_mve_qdmulh_predicated:
7879     case Intrinsic::arm_mve_vqrdmulh:
7880     case Intrinsic::arm_mve_qrdmulh_predicated:
7881     case Intrinsic::arm_mve_vqdmull:
7882     case Intrinsic::arm_mve_vqdmull_predicated:
7883       return true;
7884     case Intrinsic::arm_mve_sub_predicated:
7885     case Intrinsic::arm_mve_qsub_predicated:
7886     case Intrinsic::arm_mve_vhsub:
7887     case Intrinsic::arm_mve_hsub_predicated:
7888       return N->getOperand(2).getNode() == Op;
7889     default:
7890       return false;
7891     }
7892   default:
7893     return false;
7894   }
7895 }
7896 
7897 // If this is a case we can't handle, return null and let the default
7898 // expansion code take care of it.
7899 SDValue ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
7900                                              const ARMSubtarget *ST) const {
7901   BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
7902   SDLoc dl(Op);
7903   EVT VT = Op.getValueType();
7904 
7905   if (ST->hasMVEIntegerOps() && VT.getScalarSizeInBits() == 1)
7906     return LowerBUILD_VECTOR_i1(Op, DAG, ST);
7907 
7908   if (SDValue R = LowerBUILD_VECTORToVIDUP(Op, DAG, ST))
7909     return R;
7910 
7911   APInt SplatBits, SplatUndef;
7912   unsigned SplatBitSize;
7913   bool HasAnyUndefs;
7914   if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
7915     if (SplatUndef.isAllOnes())
7916       return DAG.getUNDEF(VT);
7917 
7918     // If all the users of this constant splat are qr instruction variants,
7919     // generate a vdup of the constant.
7920     if (ST->hasMVEIntegerOps() && VT.getScalarSizeInBits() == SplatBitSize &&
7921         (SplatBitSize == 8 || SplatBitSize == 16 || SplatBitSize == 32) &&
7922         all_of(BVN->uses(),
7923                [BVN](const SDNode *U) { return IsQRMVEInstruction(U, BVN); })) {
7924       EVT DupVT = SplatBitSize == 32   ? MVT::v4i32
7925                   : SplatBitSize == 16 ? MVT::v8i16
7926                                        : MVT::v16i8;
7927       SDValue Const = DAG.getConstant(SplatBits.getZExtValue(), dl, MVT::i32);
7928       SDValue VDup = DAG.getNode(ARMISD::VDUP, dl, DupVT, Const);
7929       return DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, VT, VDup);
7930     }
7931 
7932     if ((ST->hasNEON() && SplatBitSize <= 64) ||
7933         (ST->hasMVEIntegerOps() && SplatBitSize <= 64)) {
7934       // Check if an immediate VMOV works.
7935       EVT VmovVT;
7936       SDValue Val =
7937           isVMOVModifiedImm(SplatBits.getZExtValue(), SplatUndef.getZExtValue(),
7938                             SplatBitSize, DAG, dl, VmovVT, VT, VMOVModImm);
7939 
7940       if (Val.getNode()) {
7941         SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val);
7942         return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
7943       }
7944 
7945       // Try an immediate VMVN.
7946       uint64_t NegatedImm = (~SplatBits).getZExtValue();
7947       Val = isVMOVModifiedImm(
7948           NegatedImm, SplatUndef.getZExtValue(), SplatBitSize, DAG, dl, VmovVT,
7949           VT, ST->hasMVEIntegerOps() ? MVEVMVNModImm : VMVNModImm);
7950       if (Val.getNode()) {
7951         SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val);
7952         return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
7953       }
7954 
7955       // Use vmov.f32 to materialize other v2f32 and v4f32 splats.
7956       if ((VT == MVT::v2f32 || VT == MVT::v4f32) && SplatBitSize == 32) {
7957         int ImmVal = ARM_AM::getFP32Imm(SplatBits);
7958         if (ImmVal != -1) {
7959           SDValue Val = DAG.getTargetConstant(ImmVal, dl, MVT::i32);
7960           return DAG.getNode(ARMISD::VMOVFPIMM, dl, VT, Val);
7961         }
7962       }
7963 
7964       // If we are under MVE, generate a VDUP(constant), bitcast to the original
7965       // type.
7966       if (ST->hasMVEIntegerOps() &&
7967           (SplatBitSize == 8 || SplatBitSize == 16 || SplatBitSize == 32)) {
7968         EVT DupVT = SplatBitSize == 32   ? MVT::v4i32
7969                     : SplatBitSize == 16 ? MVT::v8i16
7970                                          : MVT::v16i8;
7971         SDValue Const = DAG.getConstant(SplatBits.getZExtValue(), dl, MVT::i32);
7972         SDValue VDup = DAG.getNode(ARMISD::VDUP, dl, DupVT, Const);
7973         return DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, VT, VDup);
7974       }
7975     }
7976   }
7977 
7978   // Scan through the operands to see if only one value is used.
7979   //
7980   // As an optimisation, even if more than one value is used it may be more
7981   // profitable to splat with one value then change some lanes.
7982   //
7983   // Heuristically we decide to do this if the vector has a "dominant" value,
7984   // defined as splatted to more than half of the lanes.
7985   unsigned NumElts = VT.getVectorNumElements();
7986   bool isOnlyLowElement = true;
7987   bool usesOnlyOneValue = true;
7988   bool hasDominantValue = false;
7989   bool isConstant = true;
7990 
7991   // Map of the number of times a particular SDValue appears in the
7992   // element list.
7993   DenseMap<SDValue, unsigned> ValueCounts;
7994   SDValue Value;
7995   for (unsigned i = 0; i < NumElts; ++i) {
7996     SDValue V = Op.getOperand(i);
7997     if (V.isUndef())
7998       continue;
7999     if (i > 0)
8000       isOnlyLowElement = false;
8001     if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
8002       isConstant = false;
8003 
8004     ValueCounts.insert(std::make_pair(V, 0));
8005     unsigned &Count = ValueCounts[V];
8006 
8007     // Is this value dominant? (takes up more than half of the lanes)
8008     if (++Count > (NumElts / 2)) {
8009       hasDominantValue = true;
8010       Value = V;
8011     }
8012   }
8013   if (ValueCounts.size() != 1)
8014     usesOnlyOneValue = false;
8015   if (!Value.getNode() && !ValueCounts.empty())
8016     Value = ValueCounts.begin()->first;
8017 
8018   if (ValueCounts.empty())
8019     return DAG.getUNDEF(VT);
8020 
8021   // Loads are better lowered with insert_vector_elt/ARMISD::BUILD_VECTOR.
8022   // Keep going if we are hitting this case.
8023   if (isOnlyLowElement && !ISD::isNormalLoad(Value.getNode()))
8024     return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
8025 
8026   unsigned EltSize = VT.getScalarSizeInBits();
8027 
8028   // Use VDUP for non-constant splats.  For f32 constant splats, reduce to
8029   // i32 and try again.
8030   if (hasDominantValue && EltSize <= 32) {
8031     if (!isConstant) {
8032       SDValue N;
8033 
8034       // If we are VDUPing a value that comes directly from a vector, that will
8035       // cause an unnecessary move to and from a GPR, where instead we could
8036       // just use VDUPLANE. We can only do this if the lane being extracted
8037       // is at a constant index, as the VDUP from lane instructions only have
8038       // constant-index forms.
8039       ConstantSDNode *constIndex;
8040       if (Value->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
8041           (constIndex = dyn_cast<ConstantSDNode>(Value->getOperand(1)))) {
8042         // We need to create a new undef vector to use for the VDUPLANE if the
8043         // size of the vector from which we get the value is different than the
8044         // size of the vector that we need to create. We will insert the element
8045         // such that the register coalescer will remove unnecessary copies.
8046         if (VT != Value->getOperand(0).getValueType()) {
8047           unsigned index = constIndex->getAPIntValue().getLimitedValue() %
8048                              VT.getVectorNumElements();
8049           N =  DAG.getNode(ARMISD::VDUPLANE, dl, VT,
8050                  DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, DAG.getUNDEF(VT),
8051                         Value, DAG.getConstant(index, dl, MVT::i32)),
8052                            DAG.getConstant(index, dl, MVT::i32));
8053         } else
8054           N = DAG.getNode(ARMISD::VDUPLANE, dl, VT,
8055                         Value->getOperand(0), Value->getOperand(1));
8056       } else
8057         N = DAG.getNode(ARMISD::VDUP, dl, VT, Value);
8058 
8059       if (!usesOnlyOneValue) {
8060         // The dominant value was splatted as 'N', but we now have to insert
8061         // all differing elements.
8062         for (unsigned I = 0; I < NumElts; ++I) {
8063           if (Op.getOperand(I) == Value)
8064             continue;
8065           SmallVector<SDValue, 3> Ops;
8066           Ops.push_back(N);
8067           Ops.push_back(Op.getOperand(I));
8068           Ops.push_back(DAG.getConstant(I, dl, MVT::i32));
8069           N = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Ops);
8070         }
8071       }
8072       return N;
8073     }
8074     if (VT.getVectorElementType().isFloatingPoint()) {
8075       SmallVector<SDValue, 8> Ops;
8076       MVT FVT = VT.getVectorElementType().getSimpleVT();
8077       assert(FVT == MVT::f32 || FVT == MVT::f16);
8078       MVT IVT = (FVT == MVT::f32) ? MVT::i32 : MVT::i16;
8079       for (unsigned i = 0; i < NumElts; ++i)
8080         Ops.push_back(DAG.getNode(ISD::BITCAST, dl, IVT,
8081                                   Op.getOperand(i)));
8082       EVT VecVT = EVT::getVectorVT(*DAG.getContext(), IVT, NumElts);
8083       SDValue Val = DAG.getBuildVector(VecVT, dl, Ops);
8084       Val = LowerBUILD_VECTOR(Val, DAG, ST);
8085       if (Val.getNode())
8086         return DAG.getNode(ISD::BITCAST, dl, VT, Val);
8087     }
8088     if (usesOnlyOneValue) {
8089       SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl);
8090       if (isConstant && Val.getNode())
8091         return DAG.getNode(ARMISD::VDUP, dl, VT, Val);
8092     }
8093   }
8094 
8095   // If all elements are constants and the case above didn't get hit, fall back
8096   // to the default expansion, which will generate a load from the constant
8097   // pool.
8098   if (isConstant)
8099     return SDValue();
8100 
8101   // Reconstruct the BUILDVECTOR to one of the legal shuffles (such as vext and
8102   // vmovn). Empirical tests suggest this is rarely worth it for vectors of
8103   // length <= 2.
8104   if (NumElts >= 4)
8105     if (SDValue shuffle = ReconstructShuffle(Op, DAG))
8106       return shuffle;
8107 
8108   // Attempt to turn a buildvector of scalar fptrunc's or fpext's back into
8109   // VCVT's
8110   if (SDValue VCVT = LowerBuildVectorOfFPTrunc(Op, DAG, Subtarget))
8111     return VCVT;
8112   if (SDValue VCVT = LowerBuildVectorOfFPExt(Op, DAG, Subtarget))
8113     return VCVT;
8114 
8115   if (ST->hasNEON() && VT.is128BitVector() && VT != MVT::v2f64 && VT != MVT::v4f32) {
8116     // If we haven't found an efficient lowering, try splitting a 128-bit vector
8117     // into two 64-bit vectors; we might discover a better way to lower it.
8118     SmallVector<SDValue, 64> Ops(Op->op_begin(), Op->op_begin() + NumElts);
8119     EVT ExtVT = VT.getVectorElementType();
8120     EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElts / 2);
8121     SDValue Lower = DAG.getBuildVector(HVT, dl, ArrayRef(&Ops[0], NumElts / 2));
8122     if (Lower.getOpcode() == ISD::BUILD_VECTOR)
8123       Lower = LowerBUILD_VECTOR(Lower, DAG, ST);
8124     SDValue Upper =
8125         DAG.getBuildVector(HVT, dl, ArrayRef(&Ops[NumElts / 2], NumElts / 2));
8126     if (Upper.getOpcode() == ISD::BUILD_VECTOR)
8127       Upper = LowerBUILD_VECTOR(Upper, DAG, ST);
8128     if (Lower && Upper)
8129       return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Lower, Upper);
8130   }
8131 
8132   // Vectors with 32- or 64-bit elements can be built by directly assigning
8133   // the subregisters.  Lower it to an ARMISD::BUILD_VECTOR so the operands
8134   // will be legalized.
8135   if (EltSize >= 32) {
8136     // Do the expansion with floating-point types, since that is what the VFP
8137     // registers are defined to use, and since i64 is not legal.
8138     EVT EltVT = EVT::getFloatingPointVT(EltSize);
8139     EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
8140     SmallVector<SDValue, 8> Ops;
8141     for (unsigned i = 0; i < NumElts; ++i)
8142       Ops.push_back(DAG.getNode(ISD::BITCAST, dl, EltVT, Op.getOperand(i)));
8143     SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, Ops);
8144     return DAG.getNode(ISD::BITCAST, dl, VT, Val);
8145   }
8146 
8147   // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
8148   // know the default expansion would otherwise fall back on something even
8149   // worse. For a vector with one or two non-undef values, that's
8150   // scalar_to_vector for the elements followed by a shuffle (provided the
8151   // shuffle is valid for the target) and materialization element by element
8152   // on the stack followed by a load for everything else.
8153   if (!isConstant && !usesOnlyOneValue) {
8154     SDValue Vec = DAG.getUNDEF(VT);
8155     for (unsigned i = 0 ; i < NumElts; ++i) {
8156       SDValue V = Op.getOperand(i);
8157       if (V.isUndef())
8158         continue;
8159       SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i32);
8160       Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx);
8161     }
8162     return Vec;
8163   }
8164 
8165   return SDValue();
8166 }
8167 
8168 // Gather data to see if the operation can be modelled as a
8169 // shuffle in combination with VEXTs.
8170 SDValue ARMTargetLowering::ReconstructShuffle(SDValue Op,
8171                                               SelectionDAG &DAG) const {
8172   assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
8173   SDLoc dl(Op);
8174   EVT VT = Op.getValueType();
8175   unsigned NumElts = VT.getVectorNumElements();
8176 
8177   struct ShuffleSourceInfo {
8178     SDValue Vec;
8179     unsigned MinElt = std::numeric_limits<unsigned>::max();
8180     unsigned MaxElt = 0;
8181 
8182     // We may insert some combination of BITCASTs and VEXT nodes to force Vec to
8183     // be compatible with the shuffle we intend to construct. As a result
8184     // ShuffleVec will be some sliding window into the original Vec.
8185     SDValue ShuffleVec;
8186 
8187     // Code should guarantee that element i in Vec starts at element "WindowBase
8188     // + i * WindowScale in ShuffleVec".
8189     int WindowBase = 0;
8190     int WindowScale = 1;
8191 
8192     ShuffleSourceInfo(SDValue Vec) : Vec(Vec), ShuffleVec(Vec) {}
8193 
8194     bool operator ==(SDValue OtherVec) { return Vec == OtherVec; }
8195   };
8196 
8197   // First gather all vectors used as an immediate source for this BUILD_VECTOR
8198   // node.
8199   SmallVector<ShuffleSourceInfo, 2> Sources;
8200   for (unsigned i = 0; i < NumElts; ++i) {
8201     SDValue V = Op.getOperand(i);
8202     if (V.isUndef())
8203       continue;
8204     else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
8205       // A shuffle can only come from building a vector from various
8206       // elements of other vectors.
8207       return SDValue();
8208     } else if (!isa<ConstantSDNode>(V.getOperand(1))) {
8209       // Furthermore, shuffles require a constant mask, whereas extractelts
8210       // accept variable indices.
8211       return SDValue();
8212     }
8213 
8214     // Add this element source to the list if it's not already there.
8215     SDValue SourceVec = V.getOperand(0);
8216     auto Source = llvm::find(Sources, SourceVec);
8217     if (Source == Sources.end())
8218       Source = Sources.insert(Sources.end(), ShuffleSourceInfo(SourceVec));
8219 
8220     // Update the minimum and maximum lane number seen.
8221     unsigned EltNo = V.getConstantOperandVal(1);
8222     Source->MinElt = std::min(Source->MinElt, EltNo);
8223     Source->MaxElt = std::max(Source->MaxElt, EltNo);
8224   }
8225 
8226   // Currently only do something sane when at most two source vectors
8227   // are involved.
8228   if (Sources.size() > 2)
8229     return SDValue();
8230 
8231   // Find out the smallest element size among result and two sources, and use
8232   // it as element size to build the shuffle_vector.
8233   EVT SmallestEltTy = VT.getVectorElementType();
8234   for (auto &Source : Sources) {
8235     EVT SrcEltTy = Source.Vec.getValueType().getVectorElementType();
8236     if (SrcEltTy.bitsLT(SmallestEltTy))
8237       SmallestEltTy = SrcEltTy;
8238   }
8239   unsigned ResMultiplier =
8240       VT.getScalarSizeInBits() / SmallestEltTy.getSizeInBits();
8241   NumElts = VT.getSizeInBits() / SmallestEltTy.getSizeInBits();
8242   EVT ShuffleVT = EVT::getVectorVT(*DAG.getContext(), SmallestEltTy, NumElts);
8243 
8244   // If the source vector is too wide or too narrow, we may nevertheless be able
8245   // to construct a compatible shuffle either by concatenating it with UNDEF or
8246   // extracting a suitable range of elements.
8247   for (auto &Src : Sources) {
8248     EVT SrcVT = Src.ShuffleVec.getValueType();
8249 
8250     uint64_t SrcVTSize = SrcVT.getFixedSizeInBits();
8251     uint64_t VTSize = VT.getFixedSizeInBits();
8252     if (SrcVTSize == VTSize)
8253       continue;
8254 
8255     // This stage of the search produces a source with the same element type as
8256     // the original, but with a total width matching the BUILD_VECTOR output.
8257     EVT EltVT = SrcVT.getVectorElementType();
8258     unsigned NumSrcElts = VTSize / EltVT.getFixedSizeInBits();
8259     EVT DestVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumSrcElts);
8260 
8261     if (SrcVTSize < VTSize) {
8262       if (2 * SrcVTSize != VTSize)
8263         return SDValue();
8264       // We can pad out the smaller vector for free, so if it's part of a
8265       // shuffle...
8266       Src.ShuffleVec =
8267           DAG.getNode(ISD::CONCAT_VECTORS, dl, DestVT, Src.ShuffleVec,
8268                       DAG.getUNDEF(Src.ShuffleVec.getValueType()));
8269       continue;
8270     }
8271 
8272     if (SrcVTSize != 2 * VTSize)
8273       return SDValue();
8274 
8275     if (Src.MaxElt - Src.MinElt >= NumSrcElts) {
8276       // Span too large for a VEXT to cope
8277       return SDValue();
8278     }
8279 
8280     if (Src.MinElt >= NumSrcElts) {
8281       // The extraction can just take the second half
8282       Src.ShuffleVec =
8283           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
8284                       DAG.getConstant(NumSrcElts, dl, MVT::i32));
8285       Src.WindowBase = -NumSrcElts;
8286     } else if (Src.MaxElt < NumSrcElts) {
8287       // The extraction can just take the first half
8288       Src.ShuffleVec =
8289           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
8290                       DAG.getConstant(0, dl, MVT::i32));
8291     } else {
8292       // An actual VEXT is needed
8293       SDValue VEXTSrc1 =
8294           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
8295                       DAG.getConstant(0, dl, MVT::i32));
8296       SDValue VEXTSrc2 =
8297           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
8298                       DAG.getConstant(NumSrcElts, dl, MVT::i32));
8299 
8300       Src.ShuffleVec = DAG.getNode(ARMISD::VEXT, dl, DestVT, VEXTSrc1,
8301                                    VEXTSrc2,
8302                                    DAG.getConstant(Src.MinElt, dl, MVT::i32));
8303       Src.WindowBase = -Src.MinElt;
8304     }
8305   }
8306 
8307   // Another possible incompatibility occurs from the vector element types. We
8308   // can fix this by bitcasting the source vectors to the same type we intend
8309   // for the shuffle.
8310   for (auto &Src : Sources) {
8311     EVT SrcEltTy = Src.ShuffleVec.getValueType().getVectorElementType();
8312     if (SrcEltTy == SmallestEltTy)
8313       continue;
8314     assert(ShuffleVT.getVectorElementType() == SmallestEltTy);
8315     Src.ShuffleVec = DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, ShuffleVT, Src.ShuffleVec);
8316     Src.WindowScale = SrcEltTy.getSizeInBits() / SmallestEltTy.getSizeInBits();
8317     Src.WindowBase *= Src.WindowScale;
8318   }
8319 
8320   // Final check before we try to actually produce a shuffle.
8321   LLVM_DEBUG(for (auto Src
8322                   : Sources)
8323                  assert(Src.ShuffleVec.getValueType() == ShuffleVT););
8324 
8325   // The stars all align, our next step is to produce the mask for the shuffle.
8326   SmallVector<int, 8> Mask(ShuffleVT.getVectorNumElements(), -1);
8327   int BitsPerShuffleLane = ShuffleVT.getScalarSizeInBits();
8328   for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
8329     SDValue Entry = Op.getOperand(i);
8330     if (Entry.isUndef())
8331       continue;
8332 
8333     auto Src = llvm::find(Sources, Entry.getOperand(0));
8334     int EltNo = cast<ConstantSDNode>(Entry.getOperand(1))->getSExtValue();
8335 
8336     // EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit
8337     // trunc. So only std::min(SrcBits, DestBits) actually get defined in this
8338     // segment.
8339     EVT OrigEltTy = Entry.getOperand(0).getValueType().getVectorElementType();
8340     int BitsDefined = std::min(OrigEltTy.getScalarSizeInBits(),
8341                                VT.getScalarSizeInBits());
8342     int LanesDefined = BitsDefined / BitsPerShuffleLane;
8343 
8344     // This source is expected to fill ResMultiplier lanes of the final shuffle,
8345     // starting at the appropriate offset.
8346     int *LaneMask = &Mask[i * ResMultiplier];
8347 
8348     int ExtractBase = EltNo * Src->WindowScale + Src->WindowBase;
8349     ExtractBase += NumElts * (Src - Sources.begin());
8350     for (int j = 0; j < LanesDefined; ++j)
8351       LaneMask[j] = ExtractBase + j;
8352   }
8353 
8354 
8355   // We can't handle more than two sources. This should have already
8356   // been checked before this point.
8357   assert(Sources.size() <= 2 && "Too many sources!");
8358 
8359   SDValue ShuffleOps[] = { DAG.getUNDEF(ShuffleVT), DAG.getUNDEF(ShuffleVT) };
8360   for (unsigned i = 0; i < Sources.size(); ++i)
8361     ShuffleOps[i] = Sources[i].ShuffleVec;
8362 
8363   SDValue Shuffle = buildLegalVectorShuffle(ShuffleVT, dl, ShuffleOps[0],
8364                                             ShuffleOps[1], Mask, DAG);
8365   if (!Shuffle)
8366     return SDValue();
8367   return DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, VT, Shuffle);
8368 }
8369 
8370 enum ShuffleOpCodes {
8371   OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
8372   OP_VREV,
8373   OP_VDUP0,
8374   OP_VDUP1,
8375   OP_VDUP2,
8376   OP_VDUP3,
8377   OP_VEXT1,
8378   OP_VEXT2,
8379   OP_VEXT3,
8380   OP_VUZPL, // VUZP, left result
8381   OP_VUZPR, // VUZP, right result
8382   OP_VZIPL, // VZIP, left result
8383   OP_VZIPR, // VZIP, right result
8384   OP_VTRNL, // VTRN, left result
8385   OP_VTRNR  // VTRN, right result
8386 };
8387 
8388 static bool isLegalMVEShuffleOp(unsigned PFEntry) {
8389   unsigned OpNum = (PFEntry >> 26) & 0x0F;
8390   switch (OpNum) {
8391   case OP_COPY:
8392   case OP_VREV:
8393   case OP_VDUP0:
8394   case OP_VDUP1:
8395   case OP_VDUP2:
8396   case OP_VDUP3:
8397     return true;
8398   }
8399   return false;
8400 }
8401 
8402 /// isShuffleMaskLegal - Targets can use this to indicate that they only
8403 /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
8404 /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
8405 /// are assumed to be legal.
8406 bool ARMTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
8407   if (VT.getVectorNumElements() == 4 &&
8408       (VT.is128BitVector() || VT.is64BitVector())) {
8409     unsigned PFIndexes[4];
8410     for (unsigned i = 0; i != 4; ++i) {
8411       if (M[i] < 0)
8412         PFIndexes[i] = 8;
8413       else
8414         PFIndexes[i] = M[i];
8415     }
8416 
8417     // Compute the index in the perfect shuffle table.
8418     unsigned PFTableIndex =
8419       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
8420     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
8421     unsigned Cost = (PFEntry >> 30);
8422 
8423     if (Cost <= 4 && (Subtarget->hasNEON() || isLegalMVEShuffleOp(PFEntry)))
8424       return true;
8425   }
8426 
8427   bool ReverseVEXT, isV_UNDEF;
8428   unsigned Imm, WhichResult;
8429 
8430   unsigned EltSize = VT.getScalarSizeInBits();
8431   if (EltSize >= 32 ||
8432       ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
8433       ShuffleVectorInst::isIdentityMask(M, M.size()) ||
8434       isVREVMask(M, VT, 64) ||
8435       isVREVMask(M, VT, 32) ||
8436       isVREVMask(M, VT, 16))
8437     return true;
8438   else if (Subtarget->hasNEON() &&
8439            (isVEXTMask(M, VT, ReverseVEXT, Imm) ||
8440             isVTBLMask(M, VT) ||
8441             isNEONTwoResultShuffleMask(M, VT, WhichResult, isV_UNDEF)))
8442     return true;
8443   else if ((VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v16i8) &&
8444            isReverseMask(M, VT))
8445     return true;
8446   else if (Subtarget->hasMVEIntegerOps() &&
8447            (isVMOVNMask(M, VT, true, false) ||
8448             isVMOVNMask(M, VT, false, false) || isVMOVNMask(M, VT, true, true)))
8449     return true;
8450   else if (Subtarget->hasMVEIntegerOps() &&
8451            (isTruncMask(M, VT, false, false) ||
8452             isTruncMask(M, VT, false, true) ||
8453             isTruncMask(M, VT, true, false) || isTruncMask(M, VT, true, true)))
8454     return true;
8455   else
8456     return false;
8457 }
8458 
8459 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
8460 /// the specified operations to build the shuffle.
8461 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
8462                                       SDValue RHS, SelectionDAG &DAG,
8463                                       const SDLoc &dl) {
8464   unsigned OpNum = (PFEntry >> 26) & 0x0F;
8465   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
8466   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
8467 
8468   if (OpNum == OP_COPY) {
8469     if (LHSID == (1*9+2)*9+3) return LHS;
8470     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
8471     return RHS;
8472   }
8473 
8474   SDValue OpLHS, OpRHS;
8475   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
8476   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
8477   EVT VT = OpLHS.getValueType();
8478 
8479   switch (OpNum) {
8480   default: llvm_unreachable("Unknown shuffle opcode!");
8481   case OP_VREV:
8482     // VREV divides the vector in half and swaps within the half.
8483     if (VT.getScalarSizeInBits() == 32)
8484       return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
8485     // vrev <4 x i16> -> VREV32
8486     if (VT.getScalarSizeInBits() == 16)
8487       return DAG.getNode(ARMISD::VREV32, dl, VT, OpLHS);
8488     // vrev <4 x i8> -> VREV16
8489     assert(VT.getScalarSizeInBits() == 8);
8490     return DAG.getNode(ARMISD::VREV16, dl, VT, OpLHS);
8491   case OP_VDUP0:
8492   case OP_VDUP1:
8493   case OP_VDUP2:
8494   case OP_VDUP3:
8495     return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
8496                        OpLHS, DAG.getConstant(OpNum-OP_VDUP0, dl, MVT::i32));
8497   case OP_VEXT1:
8498   case OP_VEXT2:
8499   case OP_VEXT3:
8500     return DAG.getNode(ARMISD::VEXT, dl, VT,
8501                        OpLHS, OpRHS,
8502                        DAG.getConstant(OpNum - OP_VEXT1 + 1, dl, MVT::i32));
8503   case OP_VUZPL:
8504   case OP_VUZPR:
8505     return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
8506                        OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
8507   case OP_VZIPL:
8508   case OP_VZIPR:
8509     return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
8510                        OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
8511   case OP_VTRNL:
8512   case OP_VTRNR:
8513     return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
8514                        OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
8515   }
8516 }
8517 
8518 static SDValue LowerVECTOR_SHUFFLEv8i8(SDValue Op,
8519                                        ArrayRef<int> ShuffleMask,
8520                                        SelectionDAG &DAG) {
8521   // Check to see if we can use the VTBL instruction.
8522   SDValue V1 = Op.getOperand(0);
8523   SDValue V2 = Op.getOperand(1);
8524   SDLoc DL(Op);
8525 
8526   SmallVector<SDValue, 8> VTBLMask;
8527   for (int I : ShuffleMask)
8528     VTBLMask.push_back(DAG.getConstant(I, DL, MVT::i32));
8529 
8530   if (V2.getNode()->isUndef())
8531     return DAG.getNode(ARMISD::VTBL1, DL, MVT::v8i8, V1,
8532                        DAG.getBuildVector(MVT::v8i8, DL, VTBLMask));
8533 
8534   return DAG.getNode(ARMISD::VTBL2, DL, MVT::v8i8, V1, V2,
8535                      DAG.getBuildVector(MVT::v8i8, DL, VTBLMask));
8536 }
8537 
8538 static SDValue LowerReverse_VECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
8539   SDLoc DL(Op);
8540   EVT VT = Op.getValueType();
8541 
8542   assert((VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v16i8) &&
8543          "Expect an v8i16/v16i8 type");
8544   SDValue OpLHS = DAG.getNode(ARMISD::VREV64, DL, VT, Op.getOperand(0));
8545   // For a v16i8 type: After the VREV, we have got <7, ..., 0, 15, ..., 8>. Now,
8546   // extract the first 8 bytes into the top double word and the last 8 bytes
8547   // into the bottom double word, through a new vector shuffle that will be
8548   // turned into a VEXT on Neon, or a couple of VMOVDs on MVE.
8549   std::vector<int> NewMask;
8550   for (unsigned i = 0; i < VT.getVectorNumElements() / 2; i++)
8551     NewMask.push_back(VT.getVectorNumElements() / 2 + i);
8552   for (unsigned i = 0; i < VT.getVectorNumElements() / 2; i++)
8553     NewMask.push_back(i);
8554   return DAG.getVectorShuffle(VT, DL, OpLHS, OpLHS, NewMask);
8555 }
8556 
8557 static EVT getVectorTyFromPredicateVector(EVT VT) {
8558   switch (VT.getSimpleVT().SimpleTy) {
8559   case MVT::v2i1:
8560     return MVT::v2f64;
8561   case MVT::v4i1:
8562     return MVT::v4i32;
8563   case MVT::v8i1:
8564     return MVT::v8i16;
8565   case MVT::v16i1:
8566     return MVT::v16i8;
8567   default:
8568     llvm_unreachable("Unexpected vector predicate type");
8569   }
8570 }
8571 
8572 static SDValue PromoteMVEPredVector(SDLoc dl, SDValue Pred, EVT VT,
8573                                     SelectionDAG &DAG) {
8574   // Converting from boolean predicates to integers involves creating a vector
8575   // of all ones or all zeroes and selecting the lanes based upon the real
8576   // predicate.
8577   SDValue AllOnes =
8578       DAG.getTargetConstant(ARM_AM::createVMOVModImm(0xe, 0xff), dl, MVT::i32);
8579   AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v16i8, AllOnes);
8580 
8581   SDValue AllZeroes =
8582       DAG.getTargetConstant(ARM_AM::createVMOVModImm(0xe, 0x0), dl, MVT::i32);
8583   AllZeroes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v16i8, AllZeroes);
8584 
8585   // Get full vector type from predicate type
8586   EVT NewVT = getVectorTyFromPredicateVector(VT);
8587 
8588   SDValue RecastV1;
8589   // If the real predicate is an v8i1 or v4i1 (not v16i1) then we need to recast
8590   // this to a v16i1. This cannot be done with an ordinary bitcast because the
8591   // sizes are not the same. We have to use a MVE specific PREDICATE_CAST node,
8592   // since we know in hardware the sizes are really the same.
8593   if (VT != MVT::v16i1)
8594     RecastV1 = DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::v16i1, Pred);
8595   else
8596     RecastV1 = Pred;
8597 
8598   // Select either all ones or zeroes depending upon the real predicate bits.
8599   SDValue PredAsVector =
8600       DAG.getNode(ISD::VSELECT, dl, MVT::v16i8, RecastV1, AllOnes, AllZeroes);
8601 
8602   // Recast our new predicate-as-integer v16i8 vector into something
8603   // appropriate for the shuffle, i.e. v4i32 for a real v4i1 predicate.
8604   return DAG.getNode(ISD::BITCAST, dl, NewVT, PredAsVector);
8605 }
8606 
8607 static SDValue LowerVECTOR_SHUFFLE_i1(SDValue Op, SelectionDAG &DAG,
8608                                       const ARMSubtarget *ST) {
8609   EVT VT = Op.getValueType();
8610   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
8611   ArrayRef<int> ShuffleMask = SVN->getMask();
8612 
8613   assert(ST->hasMVEIntegerOps() &&
8614          "No support for vector shuffle of boolean predicates");
8615 
8616   SDValue V1 = Op.getOperand(0);
8617   SDValue V2 = Op.getOperand(1);
8618   SDLoc dl(Op);
8619   if (isReverseMask(ShuffleMask, VT)) {
8620     SDValue cast = DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::i32, V1);
8621     SDValue rbit = DAG.getNode(ISD::BITREVERSE, dl, MVT::i32, cast);
8622     SDValue srl = DAG.getNode(ISD::SRL, dl, MVT::i32, rbit,
8623                               DAG.getConstant(16, dl, MVT::i32));
8624     return DAG.getNode(ARMISD::PREDICATE_CAST, dl, VT, srl);
8625   }
8626 
8627   // Until we can come up with optimised cases for every single vector
8628   // shuffle in existence we have chosen the least painful strategy. This is
8629   // to essentially promote the boolean predicate to a 8-bit integer, where
8630   // each predicate represents a byte. Then we fall back on a normal integer
8631   // vector shuffle and convert the result back into a predicate vector. In
8632   // many cases the generated code might be even better than scalar code
8633   // operating on bits. Just imagine trying to shuffle 8 arbitrary 2-bit
8634   // fields in a register into 8 other arbitrary 2-bit fields!
8635   SDValue PredAsVector1 = PromoteMVEPredVector(dl, V1, VT, DAG);
8636   EVT NewVT = PredAsVector1.getValueType();
8637   SDValue PredAsVector2 = V2.isUndef() ? DAG.getUNDEF(NewVT)
8638                                        : PromoteMVEPredVector(dl, V2, VT, DAG);
8639   assert(PredAsVector2.getValueType() == NewVT &&
8640          "Expected identical vector type in expanded i1 shuffle!");
8641 
8642   // Do the shuffle!
8643   SDValue Shuffled = DAG.getVectorShuffle(NewVT, dl, PredAsVector1,
8644                                           PredAsVector2, ShuffleMask);
8645 
8646   // Now return the result of comparing the shuffled vector with zero,
8647   // which will generate a real predicate, i.e. v4i1, v8i1 or v16i1. For a v2i1
8648   // we convert to a v4i1 compare to fill in the two halves of the i64 as i32s.
8649   if (VT == MVT::v2i1) {
8650     SDValue BC = DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, MVT::v4i32, Shuffled);
8651     SDValue Cmp = DAG.getNode(ARMISD::VCMPZ, dl, MVT::v4i1, BC,
8652                               DAG.getConstant(ARMCC::NE, dl, MVT::i32));
8653     return DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::v2i1, Cmp);
8654   }
8655   return DAG.getNode(ARMISD::VCMPZ, dl, VT, Shuffled,
8656                      DAG.getConstant(ARMCC::NE, dl, MVT::i32));
8657 }
8658 
8659 static SDValue LowerVECTOR_SHUFFLEUsingMovs(SDValue Op,
8660                                             ArrayRef<int> ShuffleMask,
8661                                             SelectionDAG &DAG) {
8662   // Attempt to lower the vector shuffle using as many whole register movs as
8663   // possible. This is useful for types smaller than 32bits, which would
8664   // often otherwise become a series for grp movs.
8665   SDLoc dl(Op);
8666   EVT VT = Op.getValueType();
8667   if (VT.getScalarSizeInBits() >= 32)
8668     return SDValue();
8669 
8670   assert((VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v16i8) &&
8671          "Unexpected vector type");
8672   int NumElts = VT.getVectorNumElements();
8673   int QuarterSize = NumElts / 4;
8674   // The four final parts of the vector, as i32's
8675   SDValue Parts[4];
8676 
8677   // Look for full lane vmovs like <0,1,2,3> or <u,5,6,7> etc, (but not
8678   // <u,u,u,u>), returning the vmov lane index
8679   auto getMovIdx = [](ArrayRef<int> ShuffleMask, int Start, int Length) {
8680     // Detect which mov lane this would be from the first non-undef element.
8681     int MovIdx = -1;
8682     for (int i = 0; i < Length; i++) {
8683       if (ShuffleMask[Start + i] >= 0) {
8684         if (ShuffleMask[Start + i] % Length != i)
8685           return -1;
8686         MovIdx = ShuffleMask[Start + i] / Length;
8687         break;
8688       }
8689     }
8690     // If all items are undef, leave this for other combines
8691     if (MovIdx == -1)
8692       return -1;
8693     // Check the remaining values are the correct part of the same mov
8694     for (int i = 1; i < Length; i++) {
8695       if (ShuffleMask[Start + i] >= 0 &&
8696           (ShuffleMask[Start + i] / Length != MovIdx ||
8697            ShuffleMask[Start + i] % Length != i))
8698         return -1;
8699     }
8700     return MovIdx;
8701   };
8702 
8703   for (int Part = 0; Part < 4; ++Part) {
8704     // Does this part look like a mov
8705     int Elt = getMovIdx(ShuffleMask, Part * QuarterSize, QuarterSize);
8706     if (Elt != -1) {
8707       SDValue Input = Op->getOperand(0);
8708       if (Elt >= 4) {
8709         Input = Op->getOperand(1);
8710         Elt -= 4;
8711       }
8712       SDValue BitCast = DAG.getBitcast(MVT::v4f32, Input);
8713       Parts[Part] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, BitCast,
8714                                 DAG.getConstant(Elt, dl, MVT::i32));
8715     }
8716   }
8717 
8718   // Nothing interesting found, just return
8719   if (!Parts[0] && !Parts[1] && !Parts[2] && !Parts[3])
8720     return SDValue();
8721 
8722   // The other parts need to be built with the old shuffle vector, cast to a
8723   // v4i32 and extract_vector_elts
8724   if (!Parts[0] || !Parts[1] || !Parts[2] || !Parts[3]) {
8725     SmallVector<int, 16> NewShuffleMask;
8726     for (int Part = 0; Part < 4; ++Part)
8727       for (int i = 0; i < QuarterSize; i++)
8728         NewShuffleMask.push_back(
8729             Parts[Part] ? -1 : ShuffleMask[Part * QuarterSize + i]);
8730     SDValue NewShuffle = DAG.getVectorShuffle(
8731         VT, dl, Op->getOperand(0), Op->getOperand(1), NewShuffleMask);
8732     SDValue BitCast = DAG.getBitcast(MVT::v4f32, NewShuffle);
8733 
8734     for (int Part = 0; Part < 4; ++Part)
8735       if (!Parts[Part])
8736         Parts[Part] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32,
8737                                   BitCast, DAG.getConstant(Part, dl, MVT::i32));
8738   }
8739   // Build a vector out of the various parts and bitcast it back to the original
8740   // type.
8741   SDValue NewVec = DAG.getNode(ARMISD::BUILD_VECTOR, dl, MVT::v4f32, Parts);
8742   return DAG.getBitcast(VT, NewVec);
8743 }
8744 
8745 static SDValue LowerVECTOR_SHUFFLEUsingOneOff(SDValue Op,
8746                                               ArrayRef<int> ShuffleMask,
8747                                               SelectionDAG &DAG) {
8748   SDValue V1 = Op.getOperand(0);
8749   SDValue V2 = Op.getOperand(1);
8750   EVT VT = Op.getValueType();
8751   unsigned NumElts = VT.getVectorNumElements();
8752 
8753   // An One-Off Identity mask is one that is mostly an identity mask from as
8754   // single source but contains a single element out-of-place, either from a
8755   // different vector or from another position in the same vector. As opposed to
8756   // lowering this via a ARMISD::BUILD_VECTOR we can generate an extract/insert
8757   // pair directly.
8758   auto isOneOffIdentityMask = [](ArrayRef<int> Mask, EVT VT, int BaseOffset,
8759                                  int &OffElement) {
8760     OffElement = -1;
8761     int NonUndef = 0;
8762     for (int i = 0, NumMaskElts = Mask.size(); i < NumMaskElts; ++i) {
8763       if (Mask[i] == -1)
8764         continue;
8765       NonUndef++;
8766       if (Mask[i] != i + BaseOffset) {
8767         if (OffElement == -1)
8768           OffElement = i;
8769         else
8770           return false;
8771       }
8772     }
8773     return NonUndef > 2 && OffElement != -1;
8774   };
8775   int OffElement;
8776   SDValue VInput;
8777   if (isOneOffIdentityMask(ShuffleMask, VT, 0, OffElement))
8778     VInput = V1;
8779   else if (isOneOffIdentityMask(ShuffleMask, VT, NumElts, OffElement))
8780     VInput = V2;
8781   else
8782     return SDValue();
8783 
8784   SDLoc dl(Op);
8785   EVT SVT = VT.getScalarType() == MVT::i8 || VT.getScalarType() == MVT::i16
8786                 ? MVT::i32
8787                 : VT.getScalarType();
8788   SDValue Elt = DAG.getNode(
8789       ISD::EXTRACT_VECTOR_ELT, dl, SVT,
8790       ShuffleMask[OffElement] < (int)NumElts ? V1 : V2,
8791       DAG.getVectorIdxConstant(ShuffleMask[OffElement] % NumElts, dl));
8792   return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, VInput, Elt,
8793                      DAG.getVectorIdxConstant(OffElement % NumElts, dl));
8794 }
8795 
8796 static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG,
8797                                    const ARMSubtarget *ST) {
8798   SDValue V1 = Op.getOperand(0);
8799   SDValue V2 = Op.getOperand(1);
8800   SDLoc dl(Op);
8801   EVT VT = Op.getValueType();
8802   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
8803   unsigned EltSize = VT.getScalarSizeInBits();
8804 
8805   if (ST->hasMVEIntegerOps() && EltSize == 1)
8806     return LowerVECTOR_SHUFFLE_i1(Op, DAG, ST);
8807 
8808   // Convert shuffles that are directly supported on NEON to target-specific
8809   // DAG nodes, instead of keeping them as shuffles and matching them again
8810   // during code selection.  This is more efficient and avoids the possibility
8811   // of inconsistencies between legalization and selection.
8812   // FIXME: floating-point vectors should be canonicalized to integer vectors
8813   // of the same time so that they get CSEd properly.
8814   ArrayRef<int> ShuffleMask = SVN->getMask();
8815 
8816   if (EltSize <= 32) {
8817     if (SVN->isSplat()) {
8818       int Lane = SVN->getSplatIndex();
8819       // If this is undef splat, generate it via "just" vdup, if possible.
8820       if (Lane == -1) Lane = 0;
8821 
8822       // Test if V1 is a SCALAR_TO_VECTOR.
8823       if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
8824         return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
8825       }
8826       // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR
8827       // (and probably will turn into a SCALAR_TO_VECTOR once legalization
8828       // reaches it).
8829       if (Lane == 0 && V1.getOpcode() == ISD::BUILD_VECTOR &&
8830           !isa<ConstantSDNode>(V1.getOperand(0))) {
8831         bool IsScalarToVector = true;
8832         for (unsigned i = 1, e = V1.getNumOperands(); i != e; ++i)
8833           if (!V1.getOperand(i).isUndef()) {
8834             IsScalarToVector = false;
8835             break;
8836           }
8837         if (IsScalarToVector)
8838           return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
8839       }
8840       return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
8841                          DAG.getConstant(Lane, dl, MVT::i32));
8842     }
8843 
8844     bool ReverseVEXT = false;
8845     unsigned Imm = 0;
8846     if (ST->hasNEON() && isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
8847       if (ReverseVEXT)
8848         std::swap(V1, V2);
8849       return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
8850                          DAG.getConstant(Imm, dl, MVT::i32));
8851     }
8852 
8853     if (isVREVMask(ShuffleMask, VT, 64))
8854       return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
8855     if (isVREVMask(ShuffleMask, VT, 32))
8856       return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
8857     if (isVREVMask(ShuffleMask, VT, 16))
8858       return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
8859 
8860     if (ST->hasNEON() && V2->isUndef() && isSingletonVEXTMask(ShuffleMask, VT, Imm)) {
8861       return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V1,
8862                          DAG.getConstant(Imm, dl, MVT::i32));
8863     }
8864 
8865     // Check for Neon shuffles that modify both input vectors in place.
8866     // If both results are used, i.e., if there are two shuffles with the same
8867     // source operands and with masks corresponding to both results of one of
8868     // these operations, DAG memoization will ensure that a single node is
8869     // used for both shuffles.
8870     unsigned WhichResult = 0;
8871     bool isV_UNDEF = false;
8872     if (ST->hasNEON()) {
8873       if (unsigned ShuffleOpc = isNEONTwoResultShuffleMask(
8874               ShuffleMask, VT, WhichResult, isV_UNDEF)) {
8875         if (isV_UNDEF)
8876           V2 = V1;
8877         return DAG.getNode(ShuffleOpc, dl, DAG.getVTList(VT, VT), V1, V2)
8878             .getValue(WhichResult);
8879       }
8880     }
8881     if (ST->hasMVEIntegerOps()) {
8882       if (isVMOVNMask(ShuffleMask, VT, false, false))
8883         return DAG.getNode(ARMISD::VMOVN, dl, VT, V2, V1,
8884                            DAG.getConstant(0, dl, MVT::i32));
8885       if (isVMOVNMask(ShuffleMask, VT, true, false))
8886         return DAG.getNode(ARMISD::VMOVN, dl, VT, V1, V2,
8887                            DAG.getConstant(1, dl, MVT::i32));
8888       if (isVMOVNMask(ShuffleMask, VT, true, true))
8889         return DAG.getNode(ARMISD::VMOVN, dl, VT, V1, V1,
8890                            DAG.getConstant(1, dl, MVT::i32));
8891     }
8892 
8893     // Also check for these shuffles through CONCAT_VECTORS: we canonicalize
8894     // shuffles that produce a result larger than their operands with:
8895     //   shuffle(concat(v1, undef), concat(v2, undef))
8896     // ->
8897     //   shuffle(concat(v1, v2), undef)
8898     // because we can access quad vectors (see PerformVECTOR_SHUFFLECombine).
8899     //
8900     // This is useful in the general case, but there are special cases where
8901     // native shuffles produce larger results: the two-result ops.
8902     //
8903     // Look through the concat when lowering them:
8904     //   shuffle(concat(v1, v2), undef)
8905     // ->
8906     //   concat(VZIP(v1, v2):0, :1)
8907     //
8908     if (ST->hasNEON() && V1->getOpcode() == ISD::CONCAT_VECTORS && V2->isUndef()) {
8909       SDValue SubV1 = V1->getOperand(0);
8910       SDValue SubV2 = V1->getOperand(1);
8911       EVT SubVT = SubV1.getValueType();
8912 
8913       // We expect these to have been canonicalized to -1.
8914       assert(llvm::all_of(ShuffleMask, [&](int i) {
8915         return i < (int)VT.getVectorNumElements();
8916       }) && "Unexpected shuffle index into UNDEF operand!");
8917 
8918       if (unsigned ShuffleOpc = isNEONTwoResultShuffleMask(
8919               ShuffleMask, SubVT, WhichResult, isV_UNDEF)) {
8920         if (isV_UNDEF)
8921           SubV2 = SubV1;
8922         assert((WhichResult == 0) &&
8923                "In-place shuffle of concat can only have one result!");
8924         SDValue Res = DAG.getNode(ShuffleOpc, dl, DAG.getVTList(SubVT, SubVT),
8925                                   SubV1, SubV2);
8926         return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Res.getValue(0),
8927                            Res.getValue(1));
8928       }
8929     }
8930   }
8931 
8932   if (ST->hasMVEIntegerOps() && EltSize <= 32) {
8933     if (SDValue V = LowerVECTOR_SHUFFLEUsingOneOff(Op, ShuffleMask, DAG))
8934       return V;
8935 
8936     for (bool Top : {false, true}) {
8937       for (bool SingleSource : {false, true}) {
8938         if (isTruncMask(ShuffleMask, VT, Top, SingleSource)) {
8939           MVT FromSVT = MVT::getIntegerVT(EltSize * 2);
8940           MVT FromVT = MVT::getVectorVT(FromSVT, ShuffleMask.size() / 2);
8941           SDValue Lo = DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, FromVT, V1);
8942           SDValue Hi = DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, FromVT,
8943                                    SingleSource ? V1 : V2);
8944           if (Top) {
8945             SDValue Amt = DAG.getConstant(EltSize, dl, FromVT);
8946             Lo = DAG.getNode(ISD::SRL, dl, FromVT, Lo, Amt);
8947             Hi = DAG.getNode(ISD::SRL, dl, FromVT, Hi, Amt);
8948           }
8949           return DAG.getNode(ARMISD::MVETRUNC, dl, VT, Lo, Hi);
8950         }
8951       }
8952     }
8953   }
8954 
8955   // If the shuffle is not directly supported and it has 4 elements, use
8956   // the PerfectShuffle-generated table to synthesize it from other shuffles.
8957   unsigned NumElts = VT.getVectorNumElements();
8958   if (NumElts == 4) {
8959     unsigned PFIndexes[4];
8960     for (unsigned i = 0; i != 4; ++i) {
8961       if (ShuffleMask[i] < 0)
8962         PFIndexes[i] = 8;
8963       else
8964         PFIndexes[i] = ShuffleMask[i];
8965     }
8966 
8967     // Compute the index in the perfect shuffle table.
8968     unsigned PFTableIndex =
8969       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
8970     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
8971     unsigned Cost = (PFEntry >> 30);
8972 
8973     if (Cost <= 4) {
8974       if (ST->hasNEON())
8975         return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
8976       else if (isLegalMVEShuffleOp(PFEntry)) {
8977         unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
8978         unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
8979         unsigned PFEntryLHS = PerfectShuffleTable[LHSID];
8980         unsigned PFEntryRHS = PerfectShuffleTable[RHSID];
8981         if (isLegalMVEShuffleOp(PFEntryLHS) && isLegalMVEShuffleOp(PFEntryRHS))
8982           return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
8983       }
8984     }
8985   }
8986 
8987   // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
8988   if (EltSize >= 32) {
8989     // Do the expansion with floating-point types, since that is what the VFP
8990     // registers are defined to use, and since i64 is not legal.
8991     EVT EltVT = EVT::getFloatingPointVT(EltSize);
8992     EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
8993     V1 = DAG.getNode(ISD::BITCAST, dl, VecVT, V1);
8994     V2 = DAG.getNode(ISD::BITCAST, dl, VecVT, V2);
8995     SmallVector<SDValue, 8> Ops;
8996     for (unsigned i = 0; i < NumElts; ++i) {
8997       if (ShuffleMask[i] < 0)
8998         Ops.push_back(DAG.getUNDEF(EltVT));
8999       else
9000         Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
9001                                   ShuffleMask[i] < (int)NumElts ? V1 : V2,
9002                                   DAG.getConstant(ShuffleMask[i] & (NumElts-1),
9003                                                   dl, MVT::i32)));
9004     }
9005     SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, Ops);
9006     return DAG.getNode(ISD::BITCAST, dl, VT, Val);
9007   }
9008 
9009   if ((VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v16i8) &&
9010       isReverseMask(ShuffleMask, VT))
9011     return LowerReverse_VECTOR_SHUFFLE(Op, DAG);
9012 
9013   if (ST->hasNEON() && VT == MVT::v8i8)
9014     if (SDValue NewOp = LowerVECTOR_SHUFFLEv8i8(Op, ShuffleMask, DAG))
9015       return NewOp;
9016 
9017   if (ST->hasMVEIntegerOps())
9018     if (SDValue NewOp = LowerVECTOR_SHUFFLEUsingMovs(Op, ShuffleMask, DAG))
9019       return NewOp;
9020 
9021   return SDValue();
9022 }
9023 
9024 static SDValue LowerINSERT_VECTOR_ELT_i1(SDValue Op, SelectionDAG &DAG,
9025                                          const ARMSubtarget *ST) {
9026   EVT VecVT = Op.getOperand(0).getValueType();
9027   SDLoc dl(Op);
9028 
9029   assert(ST->hasMVEIntegerOps() &&
9030          "LowerINSERT_VECTOR_ELT_i1 called without MVE!");
9031 
9032   SDValue Conv =
9033       DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::i32, Op->getOperand(0));
9034   unsigned Lane = Op.getConstantOperandVal(2);
9035   unsigned LaneWidth =
9036       getVectorTyFromPredicateVector(VecVT).getScalarSizeInBits() / 8;
9037   unsigned Mask = ((1 << LaneWidth) - 1) << Lane * LaneWidth;
9038   SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::i32,
9039                             Op.getOperand(1), DAG.getValueType(MVT::i1));
9040   SDValue BFI = DAG.getNode(ARMISD::BFI, dl, MVT::i32, Conv, Ext,
9041                             DAG.getConstant(~Mask, dl, MVT::i32));
9042   return DAG.getNode(ARMISD::PREDICATE_CAST, dl, Op.getValueType(), BFI);
9043 }
9044 
9045 SDValue ARMTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
9046                                                   SelectionDAG &DAG) const {
9047   // INSERT_VECTOR_ELT is legal only for immediate indexes.
9048   SDValue Lane = Op.getOperand(2);
9049   if (!isa<ConstantSDNode>(Lane))
9050     return SDValue();
9051 
9052   SDValue Elt = Op.getOperand(1);
9053   EVT EltVT = Elt.getValueType();
9054 
9055   if (Subtarget->hasMVEIntegerOps() &&
9056       Op.getValueType().getScalarSizeInBits() == 1)
9057     return LowerINSERT_VECTOR_ELT_i1(Op, DAG, Subtarget);
9058 
9059   if (getTypeAction(*DAG.getContext(), EltVT) ==
9060       TargetLowering::TypePromoteFloat) {
9061     // INSERT_VECTOR_ELT doesn't want f16 operands promoting to f32,
9062     // but the type system will try to do that if we don't intervene.
9063     // Reinterpret any such vector-element insertion as one with the
9064     // corresponding integer types.
9065 
9066     SDLoc dl(Op);
9067 
9068     EVT IEltVT = MVT::getIntegerVT(EltVT.getScalarSizeInBits());
9069     assert(getTypeAction(*DAG.getContext(), IEltVT) !=
9070            TargetLowering::TypePromoteFloat);
9071 
9072     SDValue VecIn = Op.getOperand(0);
9073     EVT VecVT = VecIn.getValueType();
9074     EVT IVecVT = EVT::getVectorVT(*DAG.getContext(), IEltVT,
9075                                   VecVT.getVectorNumElements());
9076 
9077     SDValue IElt = DAG.getNode(ISD::BITCAST, dl, IEltVT, Elt);
9078     SDValue IVecIn = DAG.getNode(ISD::BITCAST, dl, IVecVT, VecIn);
9079     SDValue IVecOut = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, IVecVT,
9080                                   IVecIn, IElt, Lane);
9081     return DAG.getNode(ISD::BITCAST, dl, VecVT, IVecOut);
9082   }
9083 
9084   return Op;
9085 }
9086 
9087 static SDValue LowerEXTRACT_VECTOR_ELT_i1(SDValue Op, SelectionDAG &DAG,
9088                                           const ARMSubtarget *ST) {
9089   EVT VecVT = Op.getOperand(0).getValueType();
9090   SDLoc dl(Op);
9091 
9092   assert(ST->hasMVEIntegerOps() &&
9093          "LowerINSERT_VECTOR_ELT_i1 called without MVE!");
9094 
9095   SDValue Conv =
9096       DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::i32, Op->getOperand(0));
9097   unsigned Lane = Op.getConstantOperandVal(1);
9098   unsigned LaneWidth =
9099       getVectorTyFromPredicateVector(VecVT).getScalarSizeInBits() / 8;
9100   SDValue Shift = DAG.getNode(ISD::SRL, dl, MVT::i32, Conv,
9101                               DAG.getConstant(Lane * LaneWidth, dl, MVT::i32));
9102   return Shift;
9103 }
9104 
9105 static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG,
9106                                        const ARMSubtarget *ST) {
9107   // EXTRACT_VECTOR_ELT is legal only for immediate indexes.
9108   SDValue Lane = Op.getOperand(1);
9109   if (!isa<ConstantSDNode>(Lane))
9110     return SDValue();
9111 
9112   SDValue Vec = Op.getOperand(0);
9113   EVT VT = Vec.getValueType();
9114 
9115   if (ST->hasMVEIntegerOps() && VT.getScalarSizeInBits() == 1)
9116     return LowerEXTRACT_VECTOR_ELT_i1(Op, DAG, ST);
9117 
9118   if (Op.getValueType() == MVT::i32 && Vec.getScalarValueSizeInBits() < 32) {
9119     SDLoc dl(Op);
9120     return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
9121   }
9122 
9123   return Op;
9124 }
9125 
9126 static SDValue LowerCONCAT_VECTORS_i1(SDValue Op, SelectionDAG &DAG,
9127                                       const ARMSubtarget *ST) {
9128   SDLoc dl(Op);
9129   assert(Op.getValueType().getScalarSizeInBits() == 1 &&
9130          "Unexpected custom CONCAT_VECTORS lowering");
9131   assert(isPowerOf2_32(Op.getNumOperands()) &&
9132          "Unexpected custom CONCAT_VECTORS lowering");
9133   assert(ST->hasMVEIntegerOps() &&
9134          "CONCAT_VECTORS lowering only supported for MVE");
9135 
9136   auto ConcatPair = [&](SDValue V1, SDValue V2) {
9137     EVT Op1VT = V1.getValueType();
9138     EVT Op2VT = V2.getValueType();
9139     assert(Op1VT == Op2VT && "Operand types don't match!");
9140     assert((Op1VT == MVT::v2i1 || Op1VT == MVT::v4i1 || Op1VT == MVT::v8i1) &&
9141            "Unexpected i1 concat operations!");
9142     EVT VT = Op1VT.getDoubleNumVectorElementsVT(*DAG.getContext());
9143 
9144     SDValue NewV1 = PromoteMVEPredVector(dl, V1, Op1VT, DAG);
9145     SDValue NewV2 = PromoteMVEPredVector(dl, V2, Op2VT, DAG);
9146 
9147     // We now have Op1 + Op2 promoted to vectors of integers, where v8i1 gets
9148     // promoted to v8i16, etc.
9149     MVT ElType =
9150         getVectorTyFromPredicateVector(VT).getScalarType().getSimpleVT();
9151     unsigned NumElts = 2 * Op1VT.getVectorNumElements();
9152 
9153     EVT ConcatVT = MVT::getVectorVT(ElType, NumElts);
9154     if (Op1VT == MVT::v4i1 || Op1VT == MVT::v8i1) {
9155       // Use MVETRUNC to truncate the combined NewV1::NewV2 into the smaller
9156       // ConcatVT.
9157       SDValue ConVec =
9158           DAG.getNode(ARMISD::MVETRUNC, dl, ConcatVT, NewV1, NewV2);
9159       return DAG.getNode(ARMISD::VCMPZ, dl, VT, ConVec,
9160                          DAG.getConstant(ARMCC::NE, dl, MVT::i32));
9161     }
9162 
9163     // Extract the vector elements from Op1 and Op2 one by one and truncate them
9164     // to be the right size for the destination. For example, if Op1 is v4i1
9165     // then the promoted vector is v4i32. The result of concatenation gives a
9166     // v8i1, which when promoted is v8i16. That means each i32 element from Op1
9167     // needs truncating to i16 and inserting in the result.
9168     auto ExtractInto = [&DAG, &dl](SDValue NewV, SDValue ConVec, unsigned &j) {
9169       EVT NewVT = NewV.getValueType();
9170       EVT ConcatVT = ConVec.getValueType();
9171       unsigned ExtScale = 1;
9172       if (NewVT == MVT::v2f64) {
9173         NewV = DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, MVT::v4i32, NewV);
9174         ExtScale = 2;
9175       }
9176       for (unsigned i = 0, e = NewVT.getVectorNumElements(); i < e; i++, j++) {
9177         SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, NewV,
9178                                   DAG.getIntPtrConstant(i * ExtScale, dl));
9179         ConVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ConcatVT, ConVec, Elt,
9180                              DAG.getConstant(j, dl, MVT::i32));
9181       }
9182       return ConVec;
9183     };
9184     unsigned j = 0;
9185     SDValue ConVec = DAG.getNode(ISD::UNDEF, dl, ConcatVT);
9186     ConVec = ExtractInto(NewV1, ConVec, j);
9187     ConVec = ExtractInto(NewV2, ConVec, j);
9188 
9189     // Now return the result of comparing the subvector with zero, which will
9190     // generate a real predicate, i.e. v4i1, v8i1 or v16i1.
9191     return DAG.getNode(ARMISD::VCMPZ, dl, VT, ConVec,
9192                        DAG.getConstant(ARMCC::NE, dl, MVT::i32));
9193   };
9194 
9195   // Concat each pair of subvectors and pack into the lower half of the array.
9196   SmallVector<SDValue> ConcatOps(Op->op_begin(), Op->op_end());
9197   while (ConcatOps.size() > 1) {
9198     for (unsigned I = 0, E = ConcatOps.size(); I != E; I += 2) {
9199       SDValue V1 = ConcatOps[I];
9200       SDValue V2 = ConcatOps[I + 1];
9201       ConcatOps[I / 2] = ConcatPair(V1, V2);
9202     }
9203     ConcatOps.resize(ConcatOps.size() / 2);
9204   }
9205   return ConcatOps[0];
9206 }
9207 
9208 static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG,
9209                                    const ARMSubtarget *ST) {
9210   EVT VT = Op->getValueType(0);
9211   if (ST->hasMVEIntegerOps() && VT.getScalarSizeInBits() == 1)
9212     return LowerCONCAT_VECTORS_i1(Op, DAG, ST);
9213 
9214   // The only time a CONCAT_VECTORS operation can have legal types is when
9215   // two 64-bit vectors are concatenated to a 128-bit vector.
9216   assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
9217          "unexpected CONCAT_VECTORS");
9218   SDLoc dl(Op);
9219   SDValue Val = DAG.getUNDEF(MVT::v2f64);
9220   SDValue Op0 = Op.getOperand(0);
9221   SDValue Op1 = Op.getOperand(1);
9222   if (!Op0.isUndef())
9223     Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
9224                       DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op0),
9225                       DAG.getIntPtrConstant(0, dl));
9226   if (!Op1.isUndef())
9227     Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
9228                       DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op1),
9229                       DAG.getIntPtrConstant(1, dl));
9230   return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Val);
9231 }
9232 
9233 static SDValue LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG,
9234                                       const ARMSubtarget *ST) {
9235   SDValue V1 = Op.getOperand(0);
9236   SDValue V2 = Op.getOperand(1);
9237   SDLoc dl(Op);
9238   EVT VT = Op.getValueType();
9239   EVT Op1VT = V1.getValueType();
9240   unsigned NumElts = VT.getVectorNumElements();
9241   unsigned Index = V2->getAsZExtVal();
9242 
9243   assert(VT.getScalarSizeInBits() == 1 &&
9244          "Unexpected custom EXTRACT_SUBVECTOR lowering");
9245   assert(ST->hasMVEIntegerOps() &&
9246          "EXTRACT_SUBVECTOR lowering only supported for MVE");
9247 
9248   SDValue NewV1 = PromoteMVEPredVector(dl, V1, Op1VT, DAG);
9249 
9250   // We now have Op1 promoted to a vector of integers, where v8i1 gets
9251   // promoted to v8i16, etc.
9252 
9253   MVT ElType = getVectorTyFromPredicateVector(VT).getScalarType().getSimpleVT();
9254 
9255   if (NumElts == 2) {
9256     EVT SubVT = MVT::v4i32;
9257     SDValue SubVec = DAG.getNode(ISD::UNDEF, dl, SubVT);
9258     for (unsigned i = Index, j = 0; i < (Index + NumElts); i++, j += 2) {
9259       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, NewV1,
9260                                 DAG.getIntPtrConstant(i, dl));
9261       SubVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, SubVT, SubVec, Elt,
9262                            DAG.getConstant(j, dl, MVT::i32));
9263       SubVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, SubVT, SubVec, Elt,
9264                            DAG.getConstant(j + 1, dl, MVT::i32));
9265     }
9266     SDValue Cmp = DAG.getNode(ARMISD::VCMPZ, dl, MVT::v4i1, SubVec,
9267                               DAG.getConstant(ARMCC::NE, dl, MVT::i32));
9268     return DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::v2i1, Cmp);
9269   }
9270 
9271   EVT SubVT = MVT::getVectorVT(ElType, NumElts);
9272   SDValue SubVec = DAG.getNode(ISD::UNDEF, dl, SubVT);
9273   for (unsigned i = Index, j = 0; i < (Index + NumElts); i++, j++) {
9274     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, NewV1,
9275                               DAG.getIntPtrConstant(i, dl));
9276     SubVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, SubVT, SubVec, Elt,
9277                          DAG.getConstant(j, dl, MVT::i32));
9278   }
9279 
9280   // Now return the result of comparing the subvector with zero,
9281   // which will generate a real predicate, i.e. v4i1, v8i1 or v16i1.
9282   return DAG.getNode(ARMISD::VCMPZ, dl, VT, SubVec,
9283                      DAG.getConstant(ARMCC::NE, dl, MVT::i32));
9284 }
9285 
9286 // Turn a truncate into a predicate (an i1 vector) into icmp(and(x, 1), 0).
9287 static SDValue LowerTruncatei1(SDNode *N, SelectionDAG &DAG,
9288                                const ARMSubtarget *ST) {
9289   assert(ST->hasMVEIntegerOps() && "Expected MVE!");
9290   EVT VT = N->getValueType(0);
9291   assert((VT == MVT::v16i1 || VT == MVT::v8i1 || VT == MVT::v4i1) &&
9292          "Expected a vector i1 type!");
9293   SDValue Op = N->getOperand(0);
9294   EVT FromVT = Op.getValueType();
9295   SDLoc DL(N);
9296 
9297   SDValue And =
9298       DAG.getNode(ISD::AND, DL, FromVT, Op, DAG.getConstant(1, DL, FromVT));
9299   return DAG.getNode(ISD::SETCC, DL, VT, And, DAG.getConstant(0, DL, FromVT),
9300                      DAG.getCondCode(ISD::SETNE));
9301 }
9302 
9303 static SDValue LowerTruncate(SDNode *N, SelectionDAG &DAG,
9304                              const ARMSubtarget *Subtarget) {
9305   if (!Subtarget->hasMVEIntegerOps())
9306     return SDValue();
9307 
9308   EVT ToVT = N->getValueType(0);
9309   if (ToVT.getScalarType() == MVT::i1)
9310     return LowerTruncatei1(N, DAG, Subtarget);
9311 
9312   // MVE does not have a single instruction to perform the truncation of a v4i32
9313   // into the lower half of a v8i16, in the same way that a NEON vmovn would.
9314   // Most of the instructions in MVE follow the 'Beats' system, where moving
9315   // values from different lanes is usually something that the instructions
9316   // avoid.
9317   //
9318   // Instead it has top/bottom instructions such as VMOVLT/B and VMOVNT/B,
9319   // which take a the top/bottom half of a larger lane and extend it (or do the
9320   // opposite, truncating into the top/bottom lane from a larger lane). Note
9321   // that because of the way we widen lanes, a v4i16 is really a v4i32 using the
9322   // bottom 16bits from each vector lane. This works really well with T/B
9323   // instructions, but that doesn't extend to v8i32->v8i16 where the lanes need
9324   // to move order.
9325   //
9326   // But truncates and sext/zext are always going to be fairly common from llvm.
9327   // We have several options for how to deal with them:
9328   // - Wherever possible combine them into an instruction that makes them
9329   //   "free". This includes loads/stores, which can perform the trunc as part
9330   //   of the memory operation. Or certain shuffles that can be turned into
9331   //   VMOVN/VMOVL.
9332   // - Lane Interleaving to transform blocks surrounded by ext/trunc. So
9333   //   trunc(mul(sext(a), sext(b))) may become
9334   //   VMOVNT(VMUL(VMOVLB(a), VMOVLB(b)), VMUL(VMOVLT(a), VMOVLT(b))). (Which in
9335   //   this case can use VMULL). This is performed in the
9336   //   MVELaneInterleavingPass.
9337   // - Otherwise we have an option. By default we would expand the
9338   //   zext/sext/trunc into a series of lane extract/inserts going via GPR
9339   //   registers. One for each vector lane in the vector. This can obviously be
9340   //   very expensive.
9341   // - The other option is to use the fact that loads/store can extend/truncate
9342   //   to turn a trunc into two truncating stack stores and a stack reload. This
9343   //   becomes 3 back-to-back memory operations, but at least that is less than
9344   //   all the insert/extracts.
9345   //
9346   // In order to do the last, we convert certain trunc's into MVETRUNC, which
9347   // are either optimized where they can be, or eventually lowered into stack
9348   // stores/loads. This prevents us from splitting a v8i16 trunc into two stores
9349   // two early, where other instructions would be better, and stops us from
9350   // having to reconstruct multiple buildvector shuffles into loads/stores.
9351   if (ToVT != MVT::v8i16 && ToVT != MVT::v16i8)
9352     return SDValue();
9353   EVT FromVT = N->getOperand(0).getValueType();
9354   if (FromVT != MVT::v8i32 && FromVT != MVT::v16i16)
9355     return SDValue();
9356 
9357   SDValue Lo, Hi;
9358   std::tie(Lo, Hi) = DAG.SplitVectorOperand(N, 0);
9359   SDLoc DL(N);
9360   return DAG.getNode(ARMISD::MVETRUNC, DL, ToVT, Lo, Hi);
9361 }
9362 
9363 static SDValue LowerVectorExtend(SDNode *N, SelectionDAG &DAG,
9364                                  const ARMSubtarget *Subtarget) {
9365   if (!Subtarget->hasMVEIntegerOps())
9366     return SDValue();
9367 
9368   // See LowerTruncate above for an explanation of MVEEXT/MVETRUNC.
9369 
9370   EVT ToVT = N->getValueType(0);
9371   if (ToVT != MVT::v16i32 && ToVT != MVT::v8i32 && ToVT != MVT::v16i16)
9372     return SDValue();
9373   SDValue Op = N->getOperand(0);
9374   EVT FromVT = Op.getValueType();
9375   if (FromVT != MVT::v8i16 && FromVT != MVT::v16i8)
9376     return SDValue();
9377 
9378   SDLoc DL(N);
9379   EVT ExtVT = ToVT.getHalfNumVectorElementsVT(*DAG.getContext());
9380   if (ToVT.getScalarType() == MVT::i32 && FromVT.getScalarType() == MVT::i8)
9381     ExtVT = MVT::v8i16;
9382 
9383   unsigned Opcode =
9384       N->getOpcode() == ISD::SIGN_EXTEND ? ARMISD::MVESEXT : ARMISD::MVEZEXT;
9385   SDValue Ext = DAG.getNode(Opcode, DL, DAG.getVTList(ExtVT, ExtVT), Op);
9386   SDValue Ext1 = Ext.getValue(1);
9387 
9388   if (ToVT.getScalarType() == MVT::i32 && FromVT.getScalarType() == MVT::i8) {
9389     Ext = DAG.getNode(N->getOpcode(), DL, MVT::v8i32, Ext);
9390     Ext1 = DAG.getNode(N->getOpcode(), DL, MVT::v8i32, Ext1);
9391   }
9392 
9393   return DAG.getNode(ISD::CONCAT_VECTORS, DL, ToVT, Ext, Ext1);
9394 }
9395 
9396 /// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each
9397 /// element has been zero/sign-extended, depending on the isSigned parameter,
9398 /// from an integer type half its size.
9399 static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
9400                                    bool isSigned) {
9401   // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32.
9402   EVT VT = N->getValueType(0);
9403   if (VT == MVT::v2i64 && N->getOpcode() == ISD::BITCAST) {
9404     SDNode *BVN = N->getOperand(0).getNode();
9405     if (BVN->getValueType(0) != MVT::v4i32 ||
9406         BVN->getOpcode() != ISD::BUILD_VECTOR)
9407       return false;
9408     unsigned LoElt = DAG.getDataLayout().isBigEndian() ? 1 : 0;
9409     unsigned HiElt = 1 - LoElt;
9410     ConstantSDNode *Lo0 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt));
9411     ConstantSDNode *Hi0 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt));
9412     ConstantSDNode *Lo1 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt+2));
9413     ConstantSDNode *Hi1 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt+2));
9414     if (!Lo0 || !Hi0 || !Lo1 || !Hi1)
9415       return false;
9416     if (isSigned) {
9417       if (Hi0->getSExtValue() == Lo0->getSExtValue() >> 32 &&
9418           Hi1->getSExtValue() == Lo1->getSExtValue() >> 32)
9419         return true;
9420     } else {
9421       if (Hi0->isZero() && Hi1->isZero())
9422         return true;
9423     }
9424     return false;
9425   }
9426 
9427   if (N->getOpcode() != ISD::BUILD_VECTOR)
9428     return false;
9429 
9430   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
9431     SDNode *Elt = N->getOperand(i).getNode();
9432     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
9433       unsigned EltSize = VT.getScalarSizeInBits();
9434       unsigned HalfSize = EltSize / 2;
9435       if (isSigned) {
9436         if (!isIntN(HalfSize, C->getSExtValue()))
9437           return false;
9438       } else {
9439         if (!isUIntN(HalfSize, C->getZExtValue()))
9440           return false;
9441       }
9442       continue;
9443     }
9444     return false;
9445   }
9446 
9447   return true;
9448 }
9449 
9450 /// isSignExtended - Check if a node is a vector value that is sign-extended
9451 /// or a constant BUILD_VECTOR with sign-extended elements.
9452 static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
9453   if (N->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N))
9454     return true;
9455   if (isExtendedBUILD_VECTOR(N, DAG, true))
9456     return true;
9457   return false;
9458 }
9459 
9460 /// isZeroExtended - Check if a node is a vector value that is zero-extended (or
9461 /// any-extended) or a constant BUILD_VECTOR with zero-extended elements.
9462 static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
9463   if (N->getOpcode() == ISD::ZERO_EXTEND || N->getOpcode() == ISD::ANY_EXTEND ||
9464       ISD::isZEXTLoad(N))
9465     return true;
9466   if (isExtendedBUILD_VECTOR(N, DAG, false))
9467     return true;
9468   return false;
9469 }
9470 
9471 static EVT getExtensionTo64Bits(const EVT &OrigVT) {
9472   if (OrigVT.getSizeInBits() >= 64)
9473     return OrigVT;
9474 
9475   assert(OrigVT.isSimple() && "Expecting a simple value type");
9476 
9477   MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy;
9478   switch (OrigSimpleTy) {
9479   default: llvm_unreachable("Unexpected Vector Type");
9480   case MVT::v2i8:
9481   case MVT::v2i16:
9482      return MVT::v2i32;
9483   case MVT::v4i8:
9484     return  MVT::v4i16;
9485   }
9486 }
9487 
9488 /// AddRequiredExtensionForVMULL - Add a sign/zero extension to extend the total
9489 /// value size to 64 bits. We need a 64-bit D register as an operand to VMULL.
9490 /// We insert the required extension here to get the vector to fill a D register.
9491 static SDValue AddRequiredExtensionForVMULL(SDValue N, SelectionDAG &DAG,
9492                                             const EVT &OrigTy,
9493                                             const EVT &ExtTy,
9494                                             unsigned ExtOpcode) {
9495   // The vector originally had a size of OrigTy. It was then extended to ExtTy.
9496   // We expect the ExtTy to be 128-bits total. If the OrigTy is less than
9497   // 64-bits we need to insert a new extension so that it will be 64-bits.
9498   assert(ExtTy.is128BitVector() && "Unexpected extension size");
9499   if (OrigTy.getSizeInBits() >= 64)
9500     return N;
9501 
9502   // Must extend size to at least 64 bits to be used as an operand for VMULL.
9503   EVT NewVT = getExtensionTo64Bits(OrigTy);
9504 
9505   return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N);
9506 }
9507 
9508 /// SkipLoadExtensionForVMULL - return a load of the original vector size that
9509 /// does not do any sign/zero extension. If the original vector is less
9510 /// than 64 bits, an appropriate extension will be added after the load to
9511 /// reach a total size of 64 bits. We have to add the extension separately
9512 /// because ARM does not have a sign/zero extending load for vectors.
9513 static SDValue SkipLoadExtensionForVMULL(LoadSDNode *LD, SelectionDAG& DAG) {
9514   EVT ExtendedTy = getExtensionTo64Bits(LD->getMemoryVT());
9515 
9516   // The load already has the right type.
9517   if (ExtendedTy == LD->getMemoryVT())
9518     return DAG.getLoad(LD->getMemoryVT(), SDLoc(LD), LD->getChain(),
9519                        LD->getBasePtr(), LD->getPointerInfo(), LD->getAlign(),
9520                        LD->getMemOperand()->getFlags());
9521 
9522   // We need to create a zextload/sextload. We cannot just create a load
9523   // followed by a zext/zext node because LowerMUL is also run during normal
9524   // operation legalization where we can't create illegal types.
9525   return DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD), ExtendedTy,
9526                         LD->getChain(), LD->getBasePtr(), LD->getPointerInfo(),
9527                         LD->getMemoryVT(), LD->getAlign(),
9528                         LD->getMemOperand()->getFlags());
9529 }
9530 
9531 /// SkipExtensionForVMULL - For a node that is a SIGN_EXTEND, ZERO_EXTEND,
9532 /// ANY_EXTEND, extending load, or BUILD_VECTOR with extended elements, return
9533 /// the unextended value. The unextended vector should be 64 bits so that it can
9534 /// be used as an operand to a VMULL instruction. If the original vector size
9535 /// before extension is less than 64 bits we add a an extension to resize
9536 /// the vector to 64 bits.
9537 static SDValue SkipExtensionForVMULL(SDNode *N, SelectionDAG &DAG) {
9538   if (N->getOpcode() == ISD::SIGN_EXTEND ||
9539       N->getOpcode() == ISD::ZERO_EXTEND || N->getOpcode() == ISD::ANY_EXTEND)
9540     return AddRequiredExtensionForVMULL(N->getOperand(0), DAG,
9541                                         N->getOperand(0)->getValueType(0),
9542                                         N->getValueType(0),
9543                                         N->getOpcode());
9544 
9545   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
9546     assert((ISD::isSEXTLoad(LD) || ISD::isZEXTLoad(LD)) &&
9547            "Expected extending load");
9548 
9549     SDValue newLoad = SkipLoadExtensionForVMULL(LD, DAG);
9550     DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), newLoad.getValue(1));
9551     unsigned Opcode = ISD::isSEXTLoad(LD) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
9552     SDValue extLoad =
9553         DAG.getNode(Opcode, SDLoc(newLoad), LD->getValueType(0), newLoad);
9554     DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 0), extLoad);
9555 
9556     return newLoad;
9557   }
9558 
9559   // Otherwise, the value must be a BUILD_VECTOR.  For v2i64, it will
9560   // have been legalized as a BITCAST from v4i32.
9561   if (N->getOpcode() == ISD::BITCAST) {
9562     SDNode *BVN = N->getOperand(0).getNode();
9563     assert(BVN->getOpcode() == ISD::BUILD_VECTOR &&
9564            BVN->getValueType(0) == MVT::v4i32 && "expected v4i32 BUILD_VECTOR");
9565     unsigned LowElt = DAG.getDataLayout().isBigEndian() ? 1 : 0;
9566     return DAG.getBuildVector(
9567         MVT::v2i32, SDLoc(N),
9568         {BVN->getOperand(LowElt), BVN->getOperand(LowElt + 2)});
9569   }
9570   // Construct a new BUILD_VECTOR with elements truncated to half the size.
9571   assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
9572   EVT VT = N->getValueType(0);
9573   unsigned EltSize = VT.getScalarSizeInBits() / 2;
9574   unsigned NumElts = VT.getVectorNumElements();
9575   MVT TruncVT = MVT::getIntegerVT(EltSize);
9576   SmallVector<SDValue, 8> Ops;
9577   SDLoc dl(N);
9578   for (unsigned i = 0; i != NumElts; ++i) {
9579     const APInt &CInt = N->getConstantOperandAPInt(i);
9580     // Element types smaller than 32 bits are not legal, so use i32 elements.
9581     // The values are implicitly truncated so sext vs. zext doesn't matter.
9582     Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), dl, MVT::i32));
9583   }
9584   return DAG.getBuildVector(MVT::getVectorVT(TruncVT, NumElts), dl, Ops);
9585 }
9586 
9587 static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
9588   unsigned Opcode = N->getOpcode();
9589   if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
9590     SDNode *N0 = N->getOperand(0).getNode();
9591     SDNode *N1 = N->getOperand(1).getNode();
9592     return N0->hasOneUse() && N1->hasOneUse() &&
9593       isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
9594   }
9595   return false;
9596 }
9597 
9598 static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
9599   unsigned Opcode = N->getOpcode();
9600   if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
9601     SDNode *N0 = N->getOperand(0).getNode();
9602     SDNode *N1 = N->getOperand(1).getNode();
9603     return N0->hasOneUse() && N1->hasOneUse() &&
9604       isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
9605   }
9606   return false;
9607 }
9608 
9609 static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
9610   // Multiplications are only custom-lowered for 128-bit vectors so that
9611   // VMULL can be detected.  Otherwise v2i64 multiplications are not legal.
9612   EVT VT = Op.getValueType();
9613   assert(VT.is128BitVector() && VT.isInteger() &&
9614          "unexpected type for custom-lowering ISD::MUL");
9615   SDNode *N0 = Op.getOperand(0).getNode();
9616   SDNode *N1 = Op.getOperand(1).getNode();
9617   unsigned NewOpc = 0;
9618   bool isMLA = false;
9619   bool isN0SExt = isSignExtended(N0, DAG);
9620   bool isN1SExt = isSignExtended(N1, DAG);
9621   if (isN0SExt && isN1SExt)
9622     NewOpc = ARMISD::VMULLs;
9623   else {
9624     bool isN0ZExt = isZeroExtended(N0, DAG);
9625     bool isN1ZExt = isZeroExtended(N1, DAG);
9626     if (isN0ZExt && isN1ZExt)
9627       NewOpc = ARMISD::VMULLu;
9628     else if (isN1SExt || isN1ZExt) {
9629       // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
9630       // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
9631       if (isN1SExt && isAddSubSExt(N0, DAG)) {
9632         NewOpc = ARMISD::VMULLs;
9633         isMLA = true;
9634       } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
9635         NewOpc = ARMISD::VMULLu;
9636         isMLA = true;
9637       } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
9638         std::swap(N0, N1);
9639         NewOpc = ARMISD::VMULLu;
9640         isMLA = true;
9641       }
9642     }
9643 
9644     if (!NewOpc) {
9645       if (VT == MVT::v2i64)
9646         // Fall through to expand this.  It is not legal.
9647         return SDValue();
9648       else
9649         // Other vector multiplications are legal.
9650         return Op;
9651     }
9652   }
9653 
9654   // Legalize to a VMULL instruction.
9655   SDLoc DL(Op);
9656   SDValue Op0;
9657   SDValue Op1 = SkipExtensionForVMULL(N1, DAG);
9658   if (!isMLA) {
9659     Op0 = SkipExtensionForVMULL(N0, DAG);
9660     assert(Op0.getValueType().is64BitVector() &&
9661            Op1.getValueType().is64BitVector() &&
9662            "unexpected types for extended operands to VMULL");
9663     return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
9664   }
9665 
9666   // Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during
9667   // isel lowering to take advantage of no-stall back to back vmul + vmla.
9668   //   vmull q0, d4, d6
9669   //   vmlal q0, d5, d6
9670   // is faster than
9671   //   vaddl q0, d4, d5
9672   //   vmovl q1, d6
9673   //   vmul  q0, q0, q1
9674   SDValue N00 = SkipExtensionForVMULL(N0->getOperand(0).getNode(), DAG);
9675   SDValue N01 = SkipExtensionForVMULL(N0->getOperand(1).getNode(), DAG);
9676   EVT Op1VT = Op1.getValueType();
9677   return DAG.getNode(N0->getOpcode(), DL, VT,
9678                      DAG.getNode(NewOpc, DL, VT,
9679                                DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
9680                      DAG.getNode(NewOpc, DL, VT,
9681                                DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
9682 }
9683 
9684 static SDValue LowerSDIV_v4i8(SDValue X, SDValue Y, const SDLoc &dl,
9685                               SelectionDAG &DAG) {
9686   // TODO: Should this propagate fast-math-flags?
9687 
9688   // Convert to float
9689   // float4 xf = vcvt_f32_s32(vmovl_s16(a.lo));
9690   // float4 yf = vcvt_f32_s32(vmovl_s16(b.lo));
9691   X = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, X);
9692   Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Y);
9693   X = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, X);
9694   Y = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, Y);
9695   // Get reciprocal estimate.
9696   // float4 recip = vrecpeq_f32(yf);
9697   Y = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
9698                    DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
9699                    Y);
9700   // Because char has a smaller range than uchar, we can actually get away
9701   // without any newton steps.  This requires that we use a weird bias
9702   // of 0xb000, however (again, this has been exhaustively tested).
9703   // float4 result = as_float4(as_int4(xf*recip) + 0xb000);
9704   X = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, X, Y);
9705   X = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, X);
9706   Y = DAG.getConstant(0xb000, dl, MVT::v4i32);
9707   X = DAG.getNode(ISD::ADD, dl, MVT::v4i32, X, Y);
9708   X = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, X);
9709   // Convert back to short.
9710   X = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, X);
9711   X = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, X);
9712   return X;
9713 }
9714 
9715 static SDValue LowerSDIV_v4i16(SDValue N0, SDValue N1, const SDLoc &dl,
9716                                SelectionDAG &DAG) {
9717   // TODO: Should this propagate fast-math-flags?
9718 
9719   SDValue N2;
9720   // Convert to float.
9721   // float4 yf = vcvt_f32_s32(vmovl_s16(y));
9722   // float4 xf = vcvt_f32_s32(vmovl_s16(x));
9723   N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N0);
9724   N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N1);
9725   N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
9726   N1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
9727 
9728   // Use reciprocal estimate and one refinement step.
9729   // float4 recip = vrecpeq_f32(yf);
9730   // recip *= vrecpsq_f32(yf, recip);
9731   N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
9732                    DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
9733                    N1);
9734   N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
9735                    DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
9736                    N1, N2);
9737   N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
9738   // Because short has a smaller range than ushort, we can actually get away
9739   // with only a single newton step.  This requires that we use a weird bias
9740   // of 89, however (again, this has been exhaustively tested).
9741   // float4 result = as_float4(as_int4(xf*recip) + 0x89);
9742   N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
9743   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
9744   N1 = DAG.getConstant(0x89, dl, MVT::v4i32);
9745   N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
9746   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
9747   // Convert back to integer and return.
9748   // return vmovn_s32(vcvt_s32_f32(result));
9749   N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
9750   N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
9751   return N0;
9752 }
9753 
9754 static SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG,
9755                          const ARMSubtarget *ST) {
9756   EVT VT = Op.getValueType();
9757   assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
9758          "unexpected type for custom-lowering ISD::SDIV");
9759 
9760   SDLoc dl(Op);
9761   SDValue N0 = Op.getOperand(0);
9762   SDValue N1 = Op.getOperand(1);
9763   SDValue N2, N3;
9764 
9765   if (VT == MVT::v8i8) {
9766     N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N0);
9767     N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N1);
9768 
9769     N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
9770                      DAG.getIntPtrConstant(4, dl));
9771     N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
9772                      DAG.getIntPtrConstant(4, dl));
9773     N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
9774                      DAG.getIntPtrConstant(0, dl));
9775     N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
9776                      DAG.getIntPtrConstant(0, dl));
9777 
9778     N0 = LowerSDIV_v4i8(N0, N1, dl, DAG); // v4i16
9779     N2 = LowerSDIV_v4i8(N2, N3, dl, DAG); // v4i16
9780 
9781     N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
9782     N0 = LowerCONCAT_VECTORS(N0, DAG, ST);
9783 
9784     N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v8i8, N0);
9785     return N0;
9786   }
9787   return LowerSDIV_v4i16(N0, N1, dl, DAG);
9788 }
9789 
9790 static SDValue LowerUDIV(SDValue Op, SelectionDAG &DAG,
9791                          const ARMSubtarget *ST) {
9792   // TODO: Should this propagate fast-math-flags?
9793   EVT VT = Op.getValueType();
9794   assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
9795          "unexpected type for custom-lowering ISD::UDIV");
9796 
9797   SDLoc dl(Op);
9798   SDValue N0 = Op.getOperand(0);
9799   SDValue N1 = Op.getOperand(1);
9800   SDValue N2, N3;
9801 
9802   if (VT == MVT::v8i8) {
9803     N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N0);
9804     N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N1);
9805 
9806     N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
9807                      DAG.getIntPtrConstant(4, dl));
9808     N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
9809                      DAG.getIntPtrConstant(4, dl));
9810     N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
9811                      DAG.getIntPtrConstant(0, dl));
9812     N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
9813                      DAG.getIntPtrConstant(0, dl));
9814 
9815     N0 = LowerSDIV_v4i16(N0, N1, dl, DAG); // v4i16
9816     N2 = LowerSDIV_v4i16(N2, N3, dl, DAG); // v4i16
9817 
9818     N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
9819     N0 = LowerCONCAT_VECTORS(N0, DAG, ST);
9820 
9821     N0 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v8i8,
9822                      DAG.getConstant(Intrinsic::arm_neon_vqmovnsu, dl,
9823                                      MVT::i32),
9824                      N0);
9825     return N0;
9826   }
9827 
9828   // v4i16 sdiv ... Convert to float.
9829   // float4 yf = vcvt_f32_s32(vmovl_u16(y));
9830   // float4 xf = vcvt_f32_s32(vmovl_u16(x));
9831   N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N0);
9832   N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N1);
9833   N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
9834   SDValue BN1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
9835 
9836   // Use reciprocal estimate and two refinement steps.
9837   // float4 recip = vrecpeq_f32(yf);
9838   // recip *= vrecpsq_f32(yf, recip);
9839   // recip *= vrecpsq_f32(yf, recip);
9840   N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
9841                    DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
9842                    BN1);
9843   N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
9844                    DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
9845                    BN1, N2);
9846   N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
9847   N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
9848                    DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
9849                    BN1, N2);
9850   N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
9851   // Simply multiplying by the reciprocal estimate can leave us a few ulps
9852   // too low, so we add 2 ulps (exhaustive testing shows that this is enough,
9853   // and that it will never cause us to return an answer too large).
9854   // float4 result = as_float4(as_int4(xf*recip) + 2);
9855   N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
9856   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
9857   N1 = DAG.getConstant(2, dl, MVT::v4i32);
9858   N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
9859   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
9860   // Convert back to integer and return.
9861   // return vmovn_u32(vcvt_s32_f32(result));
9862   N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
9863   N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
9864   return N0;
9865 }
9866 
9867 static SDValue LowerUADDSUBO_CARRY(SDValue Op, SelectionDAG &DAG) {
9868   SDNode *N = Op.getNode();
9869   EVT VT = N->getValueType(0);
9870   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
9871 
9872   SDValue Carry = Op.getOperand(2);
9873 
9874   SDLoc DL(Op);
9875 
9876   SDValue Result;
9877   if (Op.getOpcode() == ISD::UADDO_CARRY) {
9878     // This converts the boolean value carry into the carry flag.
9879     Carry = ConvertBooleanCarryToCarryFlag(Carry, DAG);
9880 
9881     // Do the addition proper using the carry flag we wanted.
9882     Result = DAG.getNode(ARMISD::ADDE, DL, VTs, Op.getOperand(0),
9883                          Op.getOperand(1), Carry);
9884 
9885     // Now convert the carry flag into a boolean value.
9886     Carry = ConvertCarryFlagToBooleanCarry(Result.getValue(1), VT, DAG);
9887   } else {
9888     // ARMISD::SUBE expects a carry not a borrow like ISD::USUBO_CARRY so we
9889     // have to invert the carry first.
9890     Carry = DAG.getNode(ISD::SUB, DL, MVT::i32,
9891                         DAG.getConstant(1, DL, MVT::i32), Carry);
9892     // This converts the boolean value carry into the carry flag.
9893     Carry = ConvertBooleanCarryToCarryFlag(Carry, DAG);
9894 
9895     // Do the subtraction proper using the carry flag we wanted.
9896     Result = DAG.getNode(ARMISD::SUBE, DL, VTs, Op.getOperand(0),
9897                          Op.getOperand(1), Carry);
9898 
9899     // Now convert the carry flag into a boolean value.
9900     Carry = ConvertCarryFlagToBooleanCarry(Result.getValue(1), VT, DAG);
9901     // But the carry returned by ARMISD::SUBE is not a borrow as expected
9902     // by ISD::USUBO_CARRY, so compute 1 - C.
9903     Carry = DAG.getNode(ISD::SUB, DL, MVT::i32,
9904                         DAG.getConstant(1, DL, MVT::i32), Carry);
9905   }
9906 
9907   // Return both values.
9908   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, Carry);
9909 }
9910 
9911 SDValue ARMTargetLowering::LowerFSINCOS(SDValue Op, SelectionDAG &DAG) const {
9912   assert(Subtarget->isTargetDarwin());
9913 
9914   // For iOS, we want to call an alternative entry point: __sincos_stret,
9915   // return values are passed via sret.
9916   SDLoc dl(Op);
9917   SDValue Arg = Op.getOperand(0);
9918   EVT ArgVT = Arg.getValueType();
9919   Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
9920   auto PtrVT = getPointerTy(DAG.getDataLayout());
9921 
9922   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
9923   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9924 
9925   // Pair of floats / doubles used to pass the result.
9926   Type *RetTy = StructType::get(ArgTy, ArgTy);
9927   auto &DL = DAG.getDataLayout();
9928 
9929   ArgListTy Args;
9930   bool ShouldUseSRet = Subtarget->isAPCS_ABI();
9931   SDValue SRet;
9932   if (ShouldUseSRet) {
9933     // Create stack object for sret.
9934     const uint64_t ByteSize = DL.getTypeAllocSize(RetTy);
9935     const Align StackAlign = DL.getPrefTypeAlign(RetTy);
9936     int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false);
9937     SRet = DAG.getFrameIndex(FrameIdx, TLI.getPointerTy(DL));
9938 
9939     ArgListEntry Entry;
9940     Entry.Node = SRet;
9941     Entry.Ty = PointerType::getUnqual(RetTy->getContext());
9942     Entry.IsSExt = false;
9943     Entry.IsZExt = false;
9944     Entry.IsSRet = true;
9945     Args.push_back(Entry);
9946     RetTy = Type::getVoidTy(*DAG.getContext());
9947   }
9948 
9949   ArgListEntry Entry;
9950   Entry.Node = Arg;
9951   Entry.Ty = ArgTy;
9952   Entry.IsSExt = false;
9953   Entry.IsZExt = false;
9954   Args.push_back(Entry);
9955 
9956   RTLIB::Libcall LC =
9957       (ArgVT == MVT::f64) ? RTLIB::SINCOS_STRET_F64 : RTLIB::SINCOS_STRET_F32;
9958   const char *LibcallName = getLibcallName(LC);
9959   CallingConv::ID CC = getLibcallCallingConv(LC);
9960   SDValue Callee = DAG.getExternalSymbol(LibcallName, getPointerTy(DL));
9961 
9962   TargetLowering::CallLoweringInfo CLI(DAG);
9963   CLI.setDebugLoc(dl)
9964       .setChain(DAG.getEntryNode())
9965       .setCallee(CC, RetTy, Callee, std::move(Args))
9966       .setDiscardResult(ShouldUseSRet);
9967   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
9968 
9969   if (!ShouldUseSRet)
9970     return CallResult.first;
9971 
9972   SDValue LoadSin =
9973       DAG.getLoad(ArgVT, dl, CallResult.second, SRet, MachinePointerInfo());
9974 
9975   // Address of cos field.
9976   SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, SRet,
9977                             DAG.getIntPtrConstant(ArgVT.getStoreSize(), dl));
9978   SDValue LoadCos =
9979       DAG.getLoad(ArgVT, dl, LoadSin.getValue(1), Add, MachinePointerInfo());
9980 
9981   SDVTList Tys = DAG.getVTList(ArgVT, ArgVT);
9982   return DAG.getNode(ISD::MERGE_VALUES, dl, Tys,
9983                      LoadSin.getValue(0), LoadCos.getValue(0));
9984 }
9985 
9986 SDValue ARMTargetLowering::LowerWindowsDIVLibCall(SDValue Op, SelectionDAG &DAG,
9987                                                   bool Signed,
9988                                                   SDValue &Chain) const {
9989   EVT VT = Op.getValueType();
9990   assert((VT == MVT::i32 || VT == MVT::i64) &&
9991          "unexpected type for custom lowering DIV");
9992   SDLoc dl(Op);
9993 
9994   const auto &DL = DAG.getDataLayout();
9995   const auto &TLI = DAG.getTargetLoweringInfo();
9996 
9997   const char *Name = nullptr;
9998   if (Signed)
9999     Name = (VT == MVT::i32) ? "__rt_sdiv" : "__rt_sdiv64";
10000   else
10001     Name = (VT == MVT::i32) ? "__rt_udiv" : "__rt_udiv64";
10002 
10003   SDValue ES = DAG.getExternalSymbol(Name, TLI.getPointerTy(DL));
10004 
10005   ARMTargetLowering::ArgListTy Args;
10006 
10007   for (auto AI : {1, 0}) {
10008     ArgListEntry Arg;
10009     Arg.Node = Op.getOperand(AI);
10010     Arg.Ty = Arg.Node.getValueType().getTypeForEVT(*DAG.getContext());
10011     Args.push_back(Arg);
10012   }
10013 
10014   CallLoweringInfo CLI(DAG);
10015   CLI.setDebugLoc(dl)
10016     .setChain(Chain)
10017     .setCallee(CallingConv::ARM_AAPCS_VFP, VT.getTypeForEVT(*DAG.getContext()),
10018                ES, std::move(Args));
10019 
10020   return LowerCallTo(CLI).first;
10021 }
10022 
10023 // This is a code size optimisation: return the original SDIV node to
10024 // DAGCombiner when we don't want to expand SDIV into a sequence of
10025 // instructions, and an empty node otherwise which will cause the
10026 // SDIV to be expanded in DAGCombine.
10027 SDValue
10028 ARMTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
10029                                  SelectionDAG &DAG,
10030                                  SmallVectorImpl<SDNode *> &Created) const {
10031   // TODO: Support SREM
10032   if (N->getOpcode() != ISD::SDIV)
10033     return SDValue();
10034 
10035   const auto &ST = DAG.getSubtarget<ARMSubtarget>();
10036   const bool MinSize = ST.hasMinSize();
10037   const bool HasDivide = ST.isThumb() ? ST.hasDivideInThumbMode()
10038                                       : ST.hasDivideInARMMode();
10039 
10040   // Don't touch vector types; rewriting this may lead to scalarizing
10041   // the int divs.
10042   if (N->getOperand(0).getValueType().isVector())
10043     return SDValue();
10044 
10045   // Bail if MinSize is not set, and also for both ARM and Thumb mode we need
10046   // hwdiv support for this to be really profitable.
10047   if (!(MinSize && HasDivide))
10048     return SDValue();
10049 
10050   // ARM mode is a bit simpler than Thumb: we can handle large power
10051   // of 2 immediates with 1 mov instruction; no further checks required,
10052   // just return the sdiv node.
10053   if (!ST.isThumb())
10054     return SDValue(N, 0);
10055 
10056   // In Thumb mode, immediates larger than 128 need a wide 4-byte MOV,
10057   // and thus lose the code size benefits of a MOVS that requires only 2.
10058   // TargetTransformInfo and 'getIntImmCodeSizeCost' could be helpful here,
10059   // but as it's doing exactly this, it's not worth the trouble to get TTI.
10060   if (Divisor.sgt(128))
10061     return SDValue();
10062 
10063   return SDValue(N, 0);
10064 }
10065 
10066 SDValue ARMTargetLowering::LowerDIV_Windows(SDValue Op, SelectionDAG &DAG,
10067                                             bool Signed) const {
10068   assert(Op.getValueType() == MVT::i32 &&
10069          "unexpected type for custom lowering DIV");
10070   SDLoc dl(Op);
10071 
10072   SDValue DBZCHK = DAG.getNode(ARMISD::WIN__DBZCHK, dl, MVT::Other,
10073                                DAG.getEntryNode(), Op.getOperand(1));
10074 
10075   return LowerWindowsDIVLibCall(Op, DAG, Signed, DBZCHK);
10076 }
10077 
10078 static SDValue WinDBZCheckDenominator(SelectionDAG &DAG, SDNode *N, SDValue InChain) {
10079   SDLoc DL(N);
10080   SDValue Op = N->getOperand(1);
10081   if (N->getValueType(0) == MVT::i32)
10082     return DAG.getNode(ARMISD::WIN__DBZCHK, DL, MVT::Other, InChain, Op);
10083   SDValue Lo, Hi;
10084   std::tie(Lo, Hi) = DAG.SplitScalar(Op, DL, MVT::i32, MVT::i32);
10085   return DAG.getNode(ARMISD::WIN__DBZCHK, DL, MVT::Other, InChain,
10086                      DAG.getNode(ISD::OR, DL, MVT::i32, Lo, Hi));
10087 }
10088 
10089 void ARMTargetLowering::ExpandDIV_Windows(
10090     SDValue Op, SelectionDAG &DAG, bool Signed,
10091     SmallVectorImpl<SDValue> &Results) const {
10092   const auto &DL = DAG.getDataLayout();
10093   const auto &TLI = DAG.getTargetLoweringInfo();
10094 
10095   assert(Op.getValueType() == MVT::i64 &&
10096          "unexpected type for custom lowering DIV");
10097   SDLoc dl(Op);
10098 
10099   SDValue DBZCHK = WinDBZCheckDenominator(DAG, Op.getNode(), DAG.getEntryNode());
10100 
10101   SDValue Result = LowerWindowsDIVLibCall(Op, DAG, Signed, DBZCHK);
10102 
10103   SDValue Lower = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Result);
10104   SDValue Upper = DAG.getNode(ISD::SRL, dl, MVT::i64, Result,
10105                               DAG.getConstant(32, dl, TLI.getPointerTy(DL)));
10106   Upper = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Upper);
10107 
10108   Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lower, Upper));
10109 }
10110 
10111 static SDValue LowerPredicateLoad(SDValue Op, SelectionDAG &DAG) {
10112   LoadSDNode *LD = cast<LoadSDNode>(Op.getNode());
10113   EVT MemVT = LD->getMemoryVT();
10114   assert((MemVT == MVT::v2i1 || MemVT == MVT::v4i1 || MemVT == MVT::v8i1 ||
10115           MemVT == MVT::v16i1) &&
10116          "Expected a predicate type!");
10117   assert(MemVT == Op.getValueType());
10118   assert(LD->getExtensionType() == ISD::NON_EXTLOAD &&
10119          "Expected a non-extending load");
10120   assert(LD->isUnindexed() && "Expected a unindexed load");
10121 
10122   // The basic MVE VLDR on a v2i1/v4i1/v8i1 actually loads the entire 16bit
10123   // predicate, with the "v4i1" bits spread out over the 16 bits loaded. We
10124   // need to make sure that 8/4/2 bits are actually loaded into the correct
10125   // place, which means loading the value and then shuffling the values into
10126   // the bottom bits of the predicate.
10127   // Equally, VLDR for an v16i1 will actually load 32bits (so will be incorrect
10128   // for BE).
10129   // Speaking of BE, apparently the rest of llvm will assume a reverse order to
10130   // a natural VMSR(load), so needs to be reversed.
10131 
10132   SDLoc dl(Op);
10133   SDValue Load = DAG.getExtLoad(
10134       ISD::EXTLOAD, dl, MVT::i32, LD->getChain(), LD->getBasePtr(),
10135       EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits()),
10136       LD->getMemOperand());
10137   SDValue Val = Load;
10138   if (DAG.getDataLayout().isBigEndian())
10139     Val = DAG.getNode(ISD::SRL, dl, MVT::i32,
10140                       DAG.getNode(ISD::BITREVERSE, dl, MVT::i32, Load),
10141                       DAG.getConstant(32 - MemVT.getSizeInBits(), dl, MVT::i32));
10142   SDValue Pred = DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::v16i1, Val);
10143   if (MemVT != MVT::v16i1)
10144     Pred = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MemVT, Pred,
10145                        DAG.getConstant(0, dl, MVT::i32));
10146   return DAG.getMergeValues({Pred, Load.getValue(1)}, dl);
10147 }
10148 
10149 void ARMTargetLowering::LowerLOAD(SDNode *N, SmallVectorImpl<SDValue> &Results,
10150                                   SelectionDAG &DAG) const {
10151   LoadSDNode *LD = cast<LoadSDNode>(N);
10152   EVT MemVT = LD->getMemoryVT();
10153   assert(LD->isUnindexed() && "Loads should be unindexed at this point.");
10154 
10155   if (MemVT == MVT::i64 && Subtarget->hasV5TEOps() &&
10156       !Subtarget->isThumb1Only() && LD->isVolatile() &&
10157       LD->getAlign() >= Subtarget->getDualLoadStoreAlignment()) {
10158     SDLoc dl(N);
10159     SDValue Result = DAG.getMemIntrinsicNode(
10160         ARMISD::LDRD, dl, DAG.getVTList({MVT::i32, MVT::i32, MVT::Other}),
10161         {LD->getChain(), LD->getBasePtr()}, MemVT, LD->getMemOperand());
10162     SDValue Lo = Result.getValue(DAG.getDataLayout().isLittleEndian() ? 0 : 1);
10163     SDValue Hi = Result.getValue(DAG.getDataLayout().isLittleEndian() ? 1 : 0);
10164     SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
10165     Results.append({Pair, Result.getValue(2)});
10166   }
10167 }
10168 
10169 static SDValue LowerPredicateStore(SDValue Op, SelectionDAG &DAG) {
10170   StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
10171   EVT MemVT = ST->getMemoryVT();
10172   assert((MemVT == MVT::v2i1 || MemVT == MVT::v4i1 || MemVT == MVT::v8i1 ||
10173           MemVT == MVT::v16i1) &&
10174          "Expected a predicate type!");
10175   assert(MemVT == ST->getValue().getValueType());
10176   assert(!ST->isTruncatingStore() && "Expected a non-extending store");
10177   assert(ST->isUnindexed() && "Expected a unindexed store");
10178 
10179   // Only store the v2i1 or v4i1 or v8i1 worth of bits, via a buildvector with
10180   // top bits unset and a scalar store.
10181   SDLoc dl(Op);
10182   SDValue Build = ST->getValue();
10183   if (MemVT != MVT::v16i1) {
10184     SmallVector<SDValue, 16> Ops;
10185     for (unsigned I = 0; I < MemVT.getVectorNumElements(); I++) {
10186       unsigned Elt = DAG.getDataLayout().isBigEndian()
10187                          ? MemVT.getVectorNumElements() - I - 1
10188                          : I;
10189       Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, Build,
10190                                 DAG.getConstant(Elt, dl, MVT::i32)));
10191     }
10192     for (unsigned I = MemVT.getVectorNumElements(); I < 16; I++)
10193       Ops.push_back(DAG.getUNDEF(MVT::i32));
10194     Build = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i1, Ops);
10195   }
10196   SDValue GRP = DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::i32, Build);
10197   if (MemVT == MVT::v16i1 && DAG.getDataLayout().isBigEndian())
10198     GRP = DAG.getNode(ISD::SRL, dl, MVT::i32,
10199                       DAG.getNode(ISD::BITREVERSE, dl, MVT::i32, GRP),
10200                       DAG.getConstant(16, dl, MVT::i32));
10201   return DAG.getTruncStore(
10202       ST->getChain(), dl, GRP, ST->getBasePtr(),
10203       EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits()),
10204       ST->getMemOperand());
10205 }
10206 
10207 static SDValue LowerSTORE(SDValue Op, SelectionDAG &DAG,
10208                           const ARMSubtarget *Subtarget) {
10209   StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
10210   EVT MemVT = ST->getMemoryVT();
10211   assert(ST->isUnindexed() && "Stores should be unindexed at this point.");
10212 
10213   if (MemVT == MVT::i64 && Subtarget->hasV5TEOps() &&
10214       !Subtarget->isThumb1Only() && ST->isVolatile() &&
10215       ST->getAlign() >= Subtarget->getDualLoadStoreAlignment()) {
10216     SDNode *N = Op.getNode();
10217     SDLoc dl(N);
10218 
10219     SDValue Lo = DAG.getNode(
10220         ISD::EXTRACT_ELEMENT, dl, MVT::i32, ST->getValue(),
10221         DAG.getTargetConstant(DAG.getDataLayout().isLittleEndian() ? 0 : 1, dl,
10222                               MVT::i32));
10223     SDValue Hi = DAG.getNode(
10224         ISD::EXTRACT_ELEMENT, dl, MVT::i32, ST->getValue(),
10225         DAG.getTargetConstant(DAG.getDataLayout().isLittleEndian() ? 1 : 0, dl,
10226                               MVT::i32));
10227 
10228     return DAG.getMemIntrinsicNode(ARMISD::STRD, dl, DAG.getVTList(MVT::Other),
10229                                    {ST->getChain(), Lo, Hi, ST->getBasePtr()},
10230                                    MemVT, ST->getMemOperand());
10231   } else if (Subtarget->hasMVEIntegerOps() &&
10232              ((MemVT == MVT::v2i1 || MemVT == MVT::v4i1 || MemVT == MVT::v8i1 ||
10233                MemVT == MVT::v16i1))) {
10234     return LowerPredicateStore(Op, DAG);
10235   }
10236 
10237   return SDValue();
10238 }
10239 
10240 static bool isZeroVector(SDValue N) {
10241   return (ISD::isBuildVectorAllZeros(N.getNode()) ||
10242           (N->getOpcode() == ARMISD::VMOVIMM &&
10243            isNullConstant(N->getOperand(0))));
10244 }
10245 
10246 static SDValue LowerMLOAD(SDValue Op, SelectionDAG &DAG) {
10247   MaskedLoadSDNode *N = cast<MaskedLoadSDNode>(Op.getNode());
10248   MVT VT = Op.getSimpleValueType();
10249   SDValue Mask = N->getMask();
10250   SDValue PassThru = N->getPassThru();
10251   SDLoc dl(Op);
10252 
10253   if (isZeroVector(PassThru))
10254     return Op;
10255 
10256   // MVE Masked loads use zero as the passthru value. Here we convert undef to
10257   // zero too, and other values are lowered to a select.
10258   SDValue ZeroVec = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
10259                                 DAG.getTargetConstant(0, dl, MVT::i32));
10260   SDValue NewLoad = DAG.getMaskedLoad(
10261       VT, dl, N->getChain(), N->getBasePtr(), N->getOffset(), Mask, ZeroVec,
10262       N->getMemoryVT(), N->getMemOperand(), N->getAddressingMode(),
10263       N->getExtensionType(), N->isExpandingLoad());
10264   SDValue Combo = NewLoad;
10265   bool PassThruIsCastZero = (PassThru.getOpcode() == ISD::BITCAST ||
10266                              PassThru.getOpcode() == ARMISD::VECTOR_REG_CAST) &&
10267                             isZeroVector(PassThru->getOperand(0));
10268   if (!PassThru.isUndef() && !PassThruIsCastZero)
10269     Combo = DAG.getNode(ISD::VSELECT, dl, VT, Mask, NewLoad, PassThru);
10270   return DAG.getMergeValues({Combo, NewLoad.getValue(1)}, dl);
10271 }
10272 
10273 static SDValue LowerVecReduce(SDValue Op, SelectionDAG &DAG,
10274                               const ARMSubtarget *ST) {
10275   if (!ST->hasMVEIntegerOps())
10276     return SDValue();
10277 
10278   SDLoc dl(Op);
10279   unsigned BaseOpcode = 0;
10280   switch (Op->getOpcode()) {
10281   default: llvm_unreachable("Expected VECREDUCE opcode");
10282   case ISD::VECREDUCE_FADD: BaseOpcode = ISD::FADD; break;
10283   case ISD::VECREDUCE_FMUL: BaseOpcode = ISD::FMUL; break;
10284   case ISD::VECREDUCE_MUL:  BaseOpcode = ISD::MUL; break;
10285   case ISD::VECREDUCE_AND:  BaseOpcode = ISD::AND; break;
10286   case ISD::VECREDUCE_OR:   BaseOpcode = ISD::OR; break;
10287   case ISD::VECREDUCE_XOR:  BaseOpcode = ISD::XOR; break;
10288   case ISD::VECREDUCE_FMAX: BaseOpcode = ISD::FMAXNUM; break;
10289   case ISD::VECREDUCE_FMIN: BaseOpcode = ISD::FMINNUM; break;
10290   }
10291 
10292   SDValue Op0 = Op->getOperand(0);
10293   EVT VT = Op0.getValueType();
10294   EVT EltVT = VT.getVectorElementType();
10295   unsigned NumElts = VT.getVectorNumElements();
10296   unsigned NumActiveLanes = NumElts;
10297 
10298   assert((NumActiveLanes == 16 || NumActiveLanes == 8 || NumActiveLanes == 4 ||
10299           NumActiveLanes == 2) &&
10300          "Only expected a power 2 vector size");
10301 
10302   // Use Mul(X, Rev(X)) until 4 items remain. Going down to 4 vector elements
10303   // allows us to easily extract vector elements from the lanes.
10304   while (NumActiveLanes > 4) {
10305     unsigned RevOpcode = NumActiveLanes == 16 ? ARMISD::VREV16 : ARMISD::VREV32;
10306     SDValue Rev = DAG.getNode(RevOpcode, dl, VT, Op0);
10307     Op0 = DAG.getNode(BaseOpcode, dl, VT, Op0, Rev);
10308     NumActiveLanes /= 2;
10309   }
10310 
10311   SDValue Res;
10312   if (NumActiveLanes == 4) {
10313     // The remaining 4 elements are summed sequentially
10314     SDValue Ext0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0,
10315                               DAG.getConstant(0 * NumElts / 4, dl, MVT::i32));
10316     SDValue Ext1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0,
10317                               DAG.getConstant(1 * NumElts / 4, dl, MVT::i32));
10318     SDValue Ext2 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0,
10319                               DAG.getConstant(2 * NumElts / 4, dl, MVT::i32));
10320     SDValue Ext3 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0,
10321                               DAG.getConstant(3 * NumElts / 4, dl, MVT::i32));
10322     SDValue Res0 = DAG.getNode(BaseOpcode, dl, EltVT, Ext0, Ext1, Op->getFlags());
10323     SDValue Res1 = DAG.getNode(BaseOpcode, dl, EltVT, Ext2, Ext3, Op->getFlags());
10324     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res0, Res1, Op->getFlags());
10325   } else {
10326     SDValue Ext0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0,
10327                               DAG.getConstant(0, dl, MVT::i32));
10328     SDValue Ext1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0,
10329                               DAG.getConstant(1, dl, MVT::i32));
10330     Res = DAG.getNode(BaseOpcode, dl, EltVT, Ext0, Ext1, Op->getFlags());
10331   }
10332 
10333   // Result type may be wider than element type.
10334   if (EltVT != Op->getValueType(0))
10335     Res = DAG.getNode(ISD::ANY_EXTEND, dl, Op->getValueType(0), Res);
10336   return Res;
10337 }
10338 
10339 static SDValue LowerVecReduceF(SDValue Op, SelectionDAG &DAG,
10340                                const ARMSubtarget *ST) {
10341   if (!ST->hasMVEFloatOps())
10342     return SDValue();
10343   return LowerVecReduce(Op, DAG, ST);
10344 }
10345 
10346 static SDValue LowerVecReduceMinMax(SDValue Op, SelectionDAG &DAG,
10347                                     const ARMSubtarget *ST) {
10348   if (!ST->hasNEON())
10349     return SDValue();
10350 
10351   SDLoc dl(Op);
10352   SDValue Op0 = Op->getOperand(0);
10353   EVT VT = Op0.getValueType();
10354   EVT EltVT = VT.getVectorElementType();
10355 
10356   unsigned PairwiseIntrinsic = 0;
10357   switch (Op->getOpcode()) {
10358   default:
10359     llvm_unreachable("Expected VECREDUCE opcode");
10360   case ISD::VECREDUCE_UMIN:
10361     PairwiseIntrinsic = Intrinsic::arm_neon_vpminu;
10362     break;
10363   case ISD::VECREDUCE_UMAX:
10364     PairwiseIntrinsic = Intrinsic::arm_neon_vpmaxu;
10365     break;
10366   case ISD::VECREDUCE_SMIN:
10367     PairwiseIntrinsic = Intrinsic::arm_neon_vpmins;
10368     break;
10369   case ISD::VECREDUCE_SMAX:
10370     PairwiseIntrinsic = Intrinsic::arm_neon_vpmaxs;
10371     break;
10372   }
10373   SDValue PairwiseOp = DAG.getConstant(PairwiseIntrinsic, dl, MVT::i32);
10374 
10375   unsigned NumElts = VT.getVectorNumElements();
10376   unsigned NumActiveLanes = NumElts;
10377 
10378   assert((NumActiveLanes == 16 || NumActiveLanes == 8 || NumActiveLanes == 4 ||
10379           NumActiveLanes == 2) &&
10380          "Only expected a power 2 vector size");
10381 
10382   // Split 128-bit vectors, since vpmin/max takes 2 64-bit vectors.
10383   if (VT.is128BitVector()) {
10384     SDValue Lo, Hi;
10385     std::tie(Lo, Hi) = DAG.SplitVector(Op0, dl);
10386     VT = Lo.getValueType();
10387     Op0 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, {PairwiseOp, Lo, Hi});
10388     NumActiveLanes /= 2;
10389   }
10390 
10391   // Use pairwise reductions until one lane remains
10392   while (NumActiveLanes > 1) {
10393     Op0 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, {PairwiseOp, Op0, Op0});
10394     NumActiveLanes /= 2;
10395   }
10396 
10397   SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0,
10398                             DAG.getConstant(0, dl, MVT::i32));
10399 
10400   // Result type may be wider than element type.
10401   if (EltVT != Op.getValueType()) {
10402     unsigned Extend = 0;
10403     switch (Op->getOpcode()) {
10404     default:
10405       llvm_unreachable("Expected VECREDUCE opcode");
10406     case ISD::VECREDUCE_UMIN:
10407     case ISD::VECREDUCE_UMAX:
10408       Extend = ISD::ZERO_EXTEND;
10409       break;
10410     case ISD::VECREDUCE_SMIN:
10411     case ISD::VECREDUCE_SMAX:
10412       Extend = ISD::SIGN_EXTEND;
10413       break;
10414     }
10415     Res = DAG.getNode(Extend, dl, Op.getValueType(), Res);
10416   }
10417   return Res;
10418 }
10419 
10420 static SDValue LowerAtomicLoadStore(SDValue Op, SelectionDAG &DAG) {
10421   if (isStrongerThanMonotonic(cast<AtomicSDNode>(Op)->getSuccessOrdering()))
10422     // Acquire/Release load/store is not legal for targets without a dmb or
10423     // equivalent available.
10424     return SDValue();
10425 
10426   // Monotonic load/store is legal for all targets.
10427   return Op;
10428 }
10429 
10430 static void ReplaceREADCYCLECOUNTER(SDNode *N,
10431                                     SmallVectorImpl<SDValue> &Results,
10432                                     SelectionDAG &DAG,
10433                                     const ARMSubtarget *Subtarget) {
10434   SDLoc DL(N);
10435   // Under Power Management extensions, the cycle-count is:
10436   //    mrc p15, #0, <Rt>, c9, c13, #0
10437   SDValue Ops[] = { N->getOperand(0), // Chain
10438                     DAG.getTargetConstant(Intrinsic::arm_mrc, DL, MVT::i32),
10439                     DAG.getTargetConstant(15, DL, MVT::i32),
10440                     DAG.getTargetConstant(0, DL, MVT::i32),
10441                     DAG.getTargetConstant(9, DL, MVT::i32),
10442                     DAG.getTargetConstant(13, DL, MVT::i32),
10443                     DAG.getTargetConstant(0, DL, MVT::i32)
10444   };
10445 
10446   SDValue Cycles32 = DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL,
10447                                  DAG.getVTList(MVT::i32, MVT::Other), Ops);
10448   Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Cycles32,
10449                                 DAG.getConstant(0, DL, MVT::i32)));
10450   Results.push_back(Cycles32.getValue(1));
10451 }
10452 
10453 static SDValue createGPRPairNode(SelectionDAG &DAG, SDValue V) {
10454   SDLoc dl(V.getNode());
10455   auto [VLo, VHi] = DAG.SplitScalar(V, dl, MVT::i32, MVT::i32);
10456   bool isBigEndian = DAG.getDataLayout().isBigEndian();
10457   if (isBigEndian)
10458     std::swap (VLo, VHi);
10459   SDValue RegClass =
10460       DAG.getTargetConstant(ARM::GPRPairRegClassID, dl, MVT::i32);
10461   SDValue SubReg0 = DAG.getTargetConstant(ARM::gsub_0, dl, MVT::i32);
10462   SDValue SubReg1 = DAG.getTargetConstant(ARM::gsub_1, dl, MVT::i32);
10463   const SDValue Ops[] = { RegClass, VLo, SubReg0, VHi, SubReg1 };
10464   return SDValue(
10465       DAG.getMachineNode(TargetOpcode::REG_SEQUENCE, dl, MVT::Untyped, Ops), 0);
10466 }
10467 
10468 static void ReplaceCMP_SWAP_64Results(SDNode *N,
10469                                        SmallVectorImpl<SDValue> & Results,
10470                                        SelectionDAG &DAG) {
10471   assert(N->getValueType(0) == MVT::i64 &&
10472          "AtomicCmpSwap on types less than 64 should be legal");
10473   SDValue Ops[] = {N->getOperand(1),
10474                    createGPRPairNode(DAG, N->getOperand(2)),
10475                    createGPRPairNode(DAG, N->getOperand(3)),
10476                    N->getOperand(0)};
10477   SDNode *CmpSwap = DAG.getMachineNode(
10478       ARM::CMP_SWAP_64, SDLoc(N),
10479       DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other), Ops);
10480 
10481   MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand();
10482   DAG.setNodeMemRefs(cast<MachineSDNode>(CmpSwap), {MemOp});
10483 
10484   bool isBigEndian = DAG.getDataLayout().isBigEndian();
10485 
10486   SDValue Lo =
10487       DAG.getTargetExtractSubreg(isBigEndian ? ARM::gsub_1 : ARM::gsub_0,
10488                                  SDLoc(N), MVT::i32, SDValue(CmpSwap, 0));
10489   SDValue Hi =
10490       DAG.getTargetExtractSubreg(isBigEndian ? ARM::gsub_0 : ARM::gsub_1,
10491                                  SDLoc(N), MVT::i32, SDValue(CmpSwap, 0));
10492   Results.push_back(DAG.getNode(ISD::BUILD_PAIR, SDLoc(N), MVT::i64, Lo, Hi));
10493   Results.push_back(SDValue(CmpSwap, 2));
10494 }
10495 
10496 SDValue ARMTargetLowering::LowerFSETCC(SDValue Op, SelectionDAG &DAG) const {
10497   SDLoc dl(Op);
10498   EVT VT = Op.getValueType();
10499   SDValue Chain = Op.getOperand(0);
10500   SDValue LHS = Op.getOperand(1);
10501   SDValue RHS = Op.getOperand(2);
10502   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(3))->get();
10503   bool IsSignaling = Op.getOpcode() == ISD::STRICT_FSETCCS;
10504 
10505   // If we don't have instructions of this float type then soften to a libcall
10506   // and use SETCC instead.
10507   if (isUnsupportedFloatingType(LHS.getValueType())) {
10508     DAG.getTargetLoweringInfo().softenSetCCOperands(
10509       DAG, LHS.getValueType(), LHS, RHS, CC, dl, LHS, RHS, Chain, IsSignaling);
10510     if (!RHS.getNode()) {
10511       RHS = DAG.getConstant(0, dl, LHS.getValueType());
10512       CC = ISD::SETNE;
10513     }
10514     SDValue Result = DAG.getNode(ISD::SETCC, dl, VT, LHS, RHS,
10515                                  DAG.getCondCode(CC));
10516     return DAG.getMergeValues({Result, Chain}, dl);
10517   }
10518 
10519   ARMCC::CondCodes CondCode, CondCode2;
10520   FPCCToARMCC(CC, CondCode, CondCode2);
10521 
10522   // FIXME: Chain is not handled correctly here. Currently the FPSCR is implicit
10523   // in CMPFP and CMPFPE, but instead it should be made explicit by these
10524   // instructions using a chain instead of glue. This would also fix the problem
10525   // here (and also in LowerSELECT_CC) where we generate two comparisons when
10526   // CondCode2 != AL.
10527   SDValue True = DAG.getConstant(1, dl, VT);
10528   SDValue False =  DAG.getConstant(0, dl, VT);
10529   SDValue ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
10530   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
10531   SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl, IsSignaling);
10532   SDValue Result = getCMOV(dl, VT, False, True, ARMcc, CCR, Cmp, DAG);
10533   if (CondCode2 != ARMCC::AL) {
10534     ARMcc = DAG.getConstant(CondCode2, dl, MVT::i32);
10535     Cmp = getVFPCmp(LHS, RHS, DAG, dl, IsSignaling);
10536     Result = getCMOV(dl, VT, Result, True, ARMcc, CCR, Cmp, DAG);
10537   }
10538   return DAG.getMergeValues({Result, Chain}, dl);
10539 }
10540 
10541 SDValue ARMTargetLowering::LowerSPONENTRY(SDValue Op, SelectionDAG &DAG) const {
10542   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
10543 
10544   EVT VT = getPointerTy(DAG.getDataLayout());
10545   SDLoc DL(Op);
10546   int FI = MFI.CreateFixedObject(4, 0, false);
10547   return DAG.getFrameIndex(FI, VT);
10548 }
10549 
10550 SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10551   LLVM_DEBUG(dbgs() << "Lowering node: "; Op.dump());
10552   switch (Op.getOpcode()) {
10553   default: llvm_unreachable("Don't know how to custom lower this!");
10554   case ISD::WRITE_REGISTER: return LowerWRITE_REGISTER(Op, DAG);
10555   case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
10556   case ISD::BlockAddress:  return LowerBlockAddress(Op, DAG);
10557   case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
10558   case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
10559   case ISD::SELECT:        return LowerSELECT(Op, DAG);
10560   case ISD::SELECT_CC:     return LowerSELECT_CC(Op, DAG);
10561   case ISD::BRCOND:        return LowerBRCOND(Op, DAG);
10562   case ISD::BR_CC:         return LowerBR_CC(Op, DAG);
10563   case ISD::BR_JT:         return LowerBR_JT(Op, DAG);
10564   case ISD::VASTART:       return LowerVASTART(Op, DAG);
10565   case ISD::ATOMIC_FENCE:  return LowerATOMIC_FENCE(Op, DAG, Subtarget);
10566   case ISD::PREFETCH:      return LowerPREFETCH(Op, DAG, Subtarget);
10567   case ISD::SINT_TO_FP:
10568   case ISD::UINT_TO_FP:    return LowerINT_TO_FP(Op, DAG);
10569   case ISD::STRICT_FP_TO_SINT:
10570   case ISD::STRICT_FP_TO_UINT:
10571   case ISD::FP_TO_SINT:
10572   case ISD::FP_TO_UINT:    return LowerFP_TO_INT(Op, DAG);
10573   case ISD::FP_TO_SINT_SAT:
10574   case ISD::FP_TO_UINT_SAT: return LowerFP_TO_INT_SAT(Op, DAG, Subtarget);
10575   case ISD::FCOPYSIGN:     return LowerFCOPYSIGN(Op, DAG);
10576   case ISD::RETURNADDR:    return LowerRETURNADDR(Op, DAG);
10577   case ISD::FRAMEADDR:     return LowerFRAMEADDR(Op, DAG);
10578   case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG);
10579   case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG);
10580   case ISD::EH_SJLJ_SETUP_DISPATCH: return LowerEH_SJLJ_SETUP_DISPATCH(Op, DAG);
10581   case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG, Subtarget);
10582   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG,
10583                                                                Subtarget);
10584   case ISD::BITCAST:       return ExpandBITCAST(Op.getNode(), DAG, Subtarget);
10585   case ISD::SHL:
10586   case ISD::SRL:
10587   case ISD::SRA:           return LowerShift(Op.getNode(), DAG, Subtarget);
10588   case ISD::SREM:          return LowerREM(Op.getNode(), DAG);
10589   case ISD::UREM:          return LowerREM(Op.getNode(), DAG);
10590   case ISD::SHL_PARTS:     return LowerShiftLeftParts(Op, DAG);
10591   case ISD::SRL_PARTS:
10592   case ISD::SRA_PARTS:     return LowerShiftRightParts(Op, DAG);
10593   case ISD::CTTZ:
10594   case ISD::CTTZ_ZERO_UNDEF: return LowerCTTZ(Op.getNode(), DAG, Subtarget);
10595   case ISD::CTPOP:         return LowerCTPOP(Op.getNode(), DAG, Subtarget);
10596   case ISD::SETCC:         return LowerVSETCC(Op, DAG, Subtarget);
10597   case ISD::SETCCCARRY:    return LowerSETCCCARRY(Op, DAG);
10598   case ISD::ConstantFP:    return LowerConstantFP(Op, DAG, Subtarget);
10599   case ISD::BUILD_VECTOR:  return LowerBUILD_VECTOR(Op, DAG, Subtarget);
10600   case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG, Subtarget);
10601   case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG, Subtarget);
10602   case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
10603   case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG, Subtarget);
10604   case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG, Subtarget);
10605   case ISD::TRUNCATE:      return LowerTruncate(Op.getNode(), DAG, Subtarget);
10606   case ISD::SIGN_EXTEND:
10607   case ISD::ZERO_EXTEND:   return LowerVectorExtend(Op.getNode(), DAG, Subtarget);
10608   case ISD::GET_ROUNDING:  return LowerGET_ROUNDING(Op, DAG);
10609   case ISD::SET_ROUNDING:  return LowerSET_ROUNDING(Op, DAG);
10610   case ISD::SET_FPMODE:
10611     return LowerSET_FPMODE(Op, DAG);
10612   case ISD::RESET_FPMODE:
10613     return LowerRESET_FPMODE(Op, DAG);
10614   case ISD::MUL:           return LowerMUL(Op, DAG);
10615   case ISD::SDIV:
10616     if (Subtarget->isTargetWindows() && !Op.getValueType().isVector())
10617       return LowerDIV_Windows(Op, DAG, /* Signed */ true);
10618     return LowerSDIV(Op, DAG, Subtarget);
10619   case ISD::UDIV:
10620     if (Subtarget->isTargetWindows() && !Op.getValueType().isVector())
10621       return LowerDIV_Windows(Op, DAG, /* Signed */ false);
10622     return LowerUDIV(Op, DAG, Subtarget);
10623   case ISD::UADDO_CARRY:
10624   case ISD::USUBO_CARRY:
10625     return LowerUADDSUBO_CARRY(Op, DAG);
10626   case ISD::SADDO:
10627   case ISD::SSUBO:
10628     return LowerSignedALUO(Op, DAG);
10629   case ISD::UADDO:
10630   case ISD::USUBO:
10631     return LowerUnsignedALUO(Op, DAG);
10632   case ISD::SADDSAT:
10633   case ISD::SSUBSAT:
10634   case ISD::UADDSAT:
10635   case ISD::USUBSAT:
10636     return LowerADDSUBSAT(Op, DAG, Subtarget);
10637   case ISD::LOAD:
10638     return LowerPredicateLoad(Op, DAG);
10639   case ISD::STORE:
10640     return LowerSTORE(Op, DAG, Subtarget);
10641   case ISD::MLOAD:
10642     return LowerMLOAD(Op, DAG);
10643   case ISD::VECREDUCE_MUL:
10644   case ISD::VECREDUCE_AND:
10645   case ISD::VECREDUCE_OR:
10646   case ISD::VECREDUCE_XOR:
10647     return LowerVecReduce(Op, DAG, Subtarget);
10648   case ISD::VECREDUCE_FADD:
10649   case ISD::VECREDUCE_FMUL:
10650   case ISD::VECREDUCE_FMIN:
10651   case ISD::VECREDUCE_FMAX:
10652     return LowerVecReduceF(Op, DAG, Subtarget);
10653   case ISD::VECREDUCE_UMIN:
10654   case ISD::VECREDUCE_UMAX:
10655   case ISD::VECREDUCE_SMIN:
10656   case ISD::VECREDUCE_SMAX:
10657     return LowerVecReduceMinMax(Op, DAG, Subtarget);
10658   case ISD::ATOMIC_LOAD:
10659   case ISD::ATOMIC_STORE:  return LowerAtomicLoadStore(Op, DAG);
10660   case ISD::FSINCOS:       return LowerFSINCOS(Op, DAG);
10661   case ISD::SDIVREM:
10662   case ISD::UDIVREM:       return LowerDivRem(Op, DAG);
10663   case ISD::DYNAMIC_STACKALLOC:
10664     if (Subtarget->isTargetWindows())
10665       return LowerDYNAMIC_STACKALLOC(Op, DAG);
10666     llvm_unreachable("Don't know how to custom lower this!");
10667   case ISD::STRICT_FP_ROUND:
10668   case ISD::FP_ROUND: return LowerFP_ROUND(Op, DAG);
10669   case ISD::STRICT_FP_EXTEND:
10670   case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG);
10671   case ISD::STRICT_FSETCC:
10672   case ISD::STRICT_FSETCCS: return LowerFSETCC(Op, DAG);
10673   case ISD::SPONENTRY:
10674     return LowerSPONENTRY(Op, DAG);
10675   case ARMISD::WIN__DBZCHK: return SDValue();
10676   }
10677 }
10678 
10679 static void ReplaceLongIntrinsic(SDNode *N, SmallVectorImpl<SDValue> &Results,
10680                                  SelectionDAG &DAG) {
10681   unsigned IntNo = N->getConstantOperandVal(0);
10682   unsigned Opc = 0;
10683   if (IntNo == Intrinsic::arm_smlald)
10684     Opc = ARMISD::SMLALD;
10685   else if (IntNo == Intrinsic::arm_smlaldx)
10686     Opc = ARMISD::SMLALDX;
10687   else if (IntNo == Intrinsic::arm_smlsld)
10688     Opc = ARMISD::SMLSLD;
10689   else if (IntNo == Intrinsic::arm_smlsldx)
10690     Opc = ARMISD::SMLSLDX;
10691   else
10692     return;
10693 
10694   SDLoc dl(N);
10695   SDValue Lo, Hi;
10696   std::tie(Lo, Hi) = DAG.SplitScalar(N->getOperand(3), dl, MVT::i32, MVT::i32);
10697 
10698   SDValue LongMul = DAG.getNode(Opc, dl,
10699                                 DAG.getVTList(MVT::i32, MVT::i32),
10700                                 N->getOperand(1), N->getOperand(2),
10701                                 Lo, Hi);
10702   Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64,
10703                                 LongMul.getValue(0), LongMul.getValue(1)));
10704 }
10705 
10706 /// ReplaceNodeResults - Replace the results of node with an illegal result
10707 /// type with new values built out of custom code.
10708 void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
10709                                            SmallVectorImpl<SDValue> &Results,
10710                                            SelectionDAG &DAG) const {
10711   SDValue Res;
10712   switch (N->getOpcode()) {
10713   default:
10714     llvm_unreachable("Don't know how to custom expand this!");
10715   case ISD::READ_REGISTER:
10716     ExpandREAD_REGISTER(N, Results, DAG);
10717     break;
10718   case ISD::BITCAST:
10719     Res = ExpandBITCAST(N, DAG, Subtarget);
10720     break;
10721   case ISD::SRL:
10722   case ISD::SRA:
10723   case ISD::SHL:
10724     Res = Expand64BitShift(N, DAG, Subtarget);
10725     break;
10726   case ISD::SREM:
10727   case ISD::UREM:
10728     Res = LowerREM(N, DAG);
10729     break;
10730   case ISD::SDIVREM:
10731   case ISD::UDIVREM:
10732     Res = LowerDivRem(SDValue(N, 0), DAG);
10733     assert(Res.getNumOperands() == 2 && "DivRem needs two values");
10734     Results.push_back(Res.getValue(0));
10735     Results.push_back(Res.getValue(1));
10736     return;
10737   case ISD::SADDSAT:
10738   case ISD::SSUBSAT:
10739   case ISD::UADDSAT:
10740   case ISD::USUBSAT:
10741     Res = LowerADDSUBSAT(SDValue(N, 0), DAG, Subtarget);
10742     break;
10743   case ISD::READCYCLECOUNTER:
10744     ReplaceREADCYCLECOUNTER(N, Results, DAG, Subtarget);
10745     return;
10746   case ISD::UDIV:
10747   case ISD::SDIV:
10748     assert(Subtarget->isTargetWindows() && "can only expand DIV on Windows");
10749     return ExpandDIV_Windows(SDValue(N, 0), DAG, N->getOpcode() == ISD::SDIV,
10750                              Results);
10751   case ISD::ATOMIC_CMP_SWAP:
10752     ReplaceCMP_SWAP_64Results(N, Results, DAG);
10753     return;
10754   case ISD::INTRINSIC_WO_CHAIN:
10755     return ReplaceLongIntrinsic(N, Results, DAG);
10756   case ISD::LOAD:
10757     LowerLOAD(N, Results, DAG);
10758     break;
10759   case ISD::TRUNCATE:
10760     Res = LowerTruncate(N, DAG, Subtarget);
10761     break;
10762   case ISD::SIGN_EXTEND:
10763   case ISD::ZERO_EXTEND:
10764     Res = LowerVectorExtend(N, DAG, Subtarget);
10765     break;
10766   case ISD::FP_TO_SINT_SAT:
10767   case ISD::FP_TO_UINT_SAT:
10768     Res = LowerFP_TO_INT_SAT(SDValue(N, 0), DAG, Subtarget);
10769     break;
10770   }
10771   if (Res.getNode())
10772     Results.push_back(Res);
10773 }
10774 
10775 //===----------------------------------------------------------------------===//
10776 //                           ARM Scheduler Hooks
10777 //===----------------------------------------------------------------------===//
10778 
10779 /// SetupEntryBlockForSjLj - Insert code into the entry block that creates and
10780 /// registers the function context.
10781 void ARMTargetLowering::SetupEntryBlockForSjLj(MachineInstr &MI,
10782                                                MachineBasicBlock *MBB,
10783                                                MachineBasicBlock *DispatchBB,
10784                                                int FI) const {
10785   assert(!Subtarget->isROPI() && !Subtarget->isRWPI() &&
10786          "ROPI/RWPI not currently supported with SjLj");
10787   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
10788   DebugLoc dl = MI.getDebugLoc();
10789   MachineFunction *MF = MBB->getParent();
10790   MachineRegisterInfo *MRI = &MF->getRegInfo();
10791   MachineConstantPool *MCP = MF->getConstantPool();
10792   ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
10793   const Function &F = MF->getFunction();
10794 
10795   bool isThumb = Subtarget->isThumb();
10796   bool isThumb2 = Subtarget->isThumb2();
10797 
10798   unsigned PCLabelId = AFI->createPICLabelUId();
10799   unsigned PCAdj = (isThumb || isThumb2) ? 4 : 8;
10800   ARMConstantPoolValue *CPV =
10801     ARMConstantPoolMBB::Create(F.getContext(), DispatchBB, PCLabelId, PCAdj);
10802   unsigned CPI = MCP->getConstantPoolIndex(CPV, Align(4));
10803 
10804   const TargetRegisterClass *TRC = isThumb ? &ARM::tGPRRegClass
10805                                            : &ARM::GPRRegClass;
10806 
10807   // Grab constant pool and fixed stack memory operands.
10808   MachineMemOperand *CPMMO =
10809       MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF),
10810                                MachineMemOperand::MOLoad, 4, Align(4));
10811 
10812   MachineMemOperand *FIMMOSt =
10813       MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI),
10814                                MachineMemOperand::MOStore, 4, Align(4));
10815 
10816   // Load the address of the dispatch MBB into the jump buffer.
10817   if (isThumb2) {
10818     // Incoming value: jbuf
10819     //   ldr.n  r5, LCPI1_1
10820     //   orr    r5, r5, #1
10821     //   add    r5, pc
10822     //   str    r5, [$jbuf, #+4] ; &jbuf[1]
10823     Register NewVReg1 = MRI->createVirtualRegister(TRC);
10824     BuildMI(*MBB, MI, dl, TII->get(ARM::t2LDRpci), NewVReg1)
10825         .addConstantPoolIndex(CPI)
10826         .addMemOperand(CPMMO)
10827         .add(predOps(ARMCC::AL));
10828     // Set the low bit because of thumb mode.
10829     Register NewVReg2 = MRI->createVirtualRegister(TRC);
10830     BuildMI(*MBB, MI, dl, TII->get(ARM::t2ORRri), NewVReg2)
10831         .addReg(NewVReg1, RegState::Kill)
10832         .addImm(0x01)
10833         .add(predOps(ARMCC::AL))
10834         .add(condCodeOp());
10835     Register NewVReg3 = MRI->createVirtualRegister(TRC);
10836     BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg3)
10837       .addReg(NewVReg2, RegState::Kill)
10838       .addImm(PCLabelId);
10839     BuildMI(*MBB, MI, dl, TII->get(ARM::t2STRi12))
10840         .addReg(NewVReg3, RegState::Kill)
10841         .addFrameIndex(FI)
10842         .addImm(36) // &jbuf[1] :: pc
10843         .addMemOperand(FIMMOSt)
10844         .add(predOps(ARMCC::AL));
10845   } else if (isThumb) {
10846     // Incoming value: jbuf
10847     //   ldr.n  r1, LCPI1_4
10848     //   add    r1, pc
10849     //   mov    r2, #1
10850     //   orrs   r1, r2
10851     //   add    r2, $jbuf, #+4 ; &jbuf[1]
10852     //   str    r1, [r2]
10853     Register NewVReg1 = MRI->createVirtualRegister(TRC);
10854     BuildMI(*MBB, MI, dl, TII->get(ARM::tLDRpci), NewVReg1)
10855         .addConstantPoolIndex(CPI)
10856         .addMemOperand(CPMMO)
10857         .add(predOps(ARMCC::AL));
10858     Register NewVReg2 = MRI->createVirtualRegister(TRC);
10859     BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg2)
10860       .addReg(NewVReg1, RegState::Kill)
10861       .addImm(PCLabelId);
10862     // Set the low bit because of thumb mode.
10863     Register NewVReg3 = MRI->createVirtualRegister(TRC);
10864     BuildMI(*MBB, MI, dl, TII->get(ARM::tMOVi8), NewVReg3)
10865         .addReg(ARM::CPSR, RegState::Define)
10866         .addImm(1)
10867         .add(predOps(ARMCC::AL));
10868     Register NewVReg4 = MRI->createVirtualRegister(TRC);
10869     BuildMI(*MBB, MI, dl, TII->get(ARM::tORR), NewVReg4)
10870         .addReg(ARM::CPSR, RegState::Define)
10871         .addReg(NewVReg2, RegState::Kill)
10872         .addReg(NewVReg3, RegState::Kill)
10873         .add(predOps(ARMCC::AL));
10874     Register NewVReg5 = MRI->createVirtualRegister(TRC);
10875     BuildMI(*MBB, MI, dl, TII->get(ARM::tADDframe), NewVReg5)
10876             .addFrameIndex(FI)
10877             .addImm(36); // &jbuf[1] :: pc
10878     BuildMI(*MBB, MI, dl, TII->get(ARM::tSTRi))
10879         .addReg(NewVReg4, RegState::Kill)
10880         .addReg(NewVReg5, RegState::Kill)
10881         .addImm(0)
10882         .addMemOperand(FIMMOSt)
10883         .add(predOps(ARMCC::AL));
10884   } else {
10885     // Incoming value: jbuf
10886     //   ldr  r1, LCPI1_1
10887     //   add  r1, pc, r1
10888     //   str  r1, [$jbuf, #+4] ; &jbuf[1]
10889     Register NewVReg1 = MRI->createVirtualRegister(TRC);
10890     BuildMI(*MBB, MI, dl, TII->get(ARM::LDRi12), NewVReg1)
10891         .addConstantPoolIndex(CPI)
10892         .addImm(0)
10893         .addMemOperand(CPMMO)
10894         .add(predOps(ARMCC::AL));
10895     Register NewVReg2 = MRI->createVirtualRegister(TRC);
10896     BuildMI(*MBB, MI, dl, TII->get(ARM::PICADD), NewVReg2)
10897         .addReg(NewVReg1, RegState::Kill)
10898         .addImm(PCLabelId)
10899         .add(predOps(ARMCC::AL));
10900     BuildMI(*MBB, MI, dl, TII->get(ARM::STRi12))
10901         .addReg(NewVReg2, RegState::Kill)
10902         .addFrameIndex(FI)
10903         .addImm(36) // &jbuf[1] :: pc
10904         .addMemOperand(FIMMOSt)
10905         .add(predOps(ARMCC::AL));
10906   }
10907 }
10908 
10909 void ARMTargetLowering::EmitSjLjDispatchBlock(MachineInstr &MI,
10910                                               MachineBasicBlock *MBB) const {
10911   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
10912   DebugLoc dl = MI.getDebugLoc();
10913   MachineFunction *MF = MBB->getParent();
10914   MachineRegisterInfo *MRI = &MF->getRegInfo();
10915   MachineFrameInfo &MFI = MF->getFrameInfo();
10916   int FI = MFI.getFunctionContextIndex();
10917 
10918   const TargetRegisterClass *TRC = Subtarget->isThumb() ? &ARM::tGPRRegClass
10919                                                         : &ARM::GPRnopcRegClass;
10920 
10921   // Get a mapping of the call site numbers to all of the landing pads they're
10922   // associated with.
10923   DenseMap<unsigned, SmallVector<MachineBasicBlock*, 2>> CallSiteNumToLPad;
10924   unsigned MaxCSNum = 0;
10925   for (MachineBasicBlock &BB : *MF) {
10926     if (!BB.isEHPad())
10927       continue;
10928 
10929     // FIXME: We should assert that the EH_LABEL is the first MI in the landing
10930     // pad.
10931     for (MachineInstr &II : BB) {
10932       if (!II.isEHLabel())
10933         continue;
10934 
10935       MCSymbol *Sym = II.getOperand(0).getMCSymbol();
10936       if (!MF->hasCallSiteLandingPad(Sym)) continue;
10937 
10938       SmallVectorImpl<unsigned> &CallSiteIdxs = MF->getCallSiteLandingPad(Sym);
10939       for (unsigned Idx : CallSiteIdxs) {
10940         CallSiteNumToLPad[Idx].push_back(&BB);
10941         MaxCSNum = std::max(MaxCSNum, Idx);
10942       }
10943       break;
10944     }
10945   }
10946 
10947   // Get an ordered list of the machine basic blocks for the jump table.
10948   std::vector<MachineBasicBlock*> LPadList;
10949   SmallPtrSet<MachineBasicBlock*, 32> InvokeBBs;
10950   LPadList.reserve(CallSiteNumToLPad.size());
10951   for (unsigned I = 1; I <= MaxCSNum; ++I) {
10952     SmallVectorImpl<MachineBasicBlock*> &MBBList = CallSiteNumToLPad[I];
10953     for (MachineBasicBlock *MBB : MBBList) {
10954       LPadList.push_back(MBB);
10955       InvokeBBs.insert(MBB->pred_begin(), MBB->pred_end());
10956     }
10957   }
10958 
10959   assert(!LPadList.empty() &&
10960          "No landing pad destinations for the dispatch jump table!");
10961 
10962   // Create the jump table and associated information.
10963   MachineJumpTableInfo *JTI =
10964     MF->getOrCreateJumpTableInfo(MachineJumpTableInfo::EK_Inline);
10965   unsigned MJTI = JTI->createJumpTableIndex(LPadList);
10966 
10967   // Create the MBBs for the dispatch code.
10968 
10969   // Shove the dispatch's address into the return slot in the function context.
10970   MachineBasicBlock *DispatchBB = MF->CreateMachineBasicBlock();
10971   DispatchBB->setIsEHPad();
10972 
10973   MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
10974   unsigned trap_opcode;
10975   if (Subtarget->isThumb())
10976     trap_opcode = ARM::tTRAP;
10977   else
10978     trap_opcode = Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP;
10979 
10980   BuildMI(TrapBB, dl, TII->get(trap_opcode));
10981   DispatchBB->addSuccessor(TrapBB);
10982 
10983   MachineBasicBlock *DispContBB = MF->CreateMachineBasicBlock();
10984   DispatchBB->addSuccessor(DispContBB);
10985 
10986   // Insert and MBBs.
10987   MF->insert(MF->end(), DispatchBB);
10988   MF->insert(MF->end(), DispContBB);
10989   MF->insert(MF->end(), TrapBB);
10990 
10991   // Insert code into the entry block that creates and registers the function
10992   // context.
10993   SetupEntryBlockForSjLj(MI, MBB, DispatchBB, FI);
10994 
10995   MachineMemOperand *FIMMOLd = MF->getMachineMemOperand(
10996       MachinePointerInfo::getFixedStack(*MF, FI),
10997       MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile, 4, Align(4));
10998 
10999   MachineInstrBuilder MIB;
11000   MIB = BuildMI(DispatchBB, dl, TII->get(ARM::Int_eh_sjlj_dispatchsetup));
11001 
11002   const ARMBaseInstrInfo *AII = static_cast<const ARMBaseInstrInfo*>(TII);
11003   const ARMBaseRegisterInfo &RI = AII->getRegisterInfo();
11004 
11005   // Add a register mask with no preserved registers.  This results in all
11006   // registers being marked as clobbered. This can't work if the dispatch block
11007   // is in a Thumb1 function and is linked with ARM code which uses the FP
11008   // registers, as there is no way to preserve the FP registers in Thumb1 mode.
11009   MIB.addRegMask(RI.getSjLjDispatchPreservedMask(*MF));
11010 
11011   bool IsPositionIndependent = isPositionIndependent();
11012   unsigned NumLPads = LPadList.size();
11013   if (Subtarget->isThumb2()) {
11014     Register NewVReg1 = MRI->createVirtualRegister(TRC);
11015     BuildMI(DispatchBB, dl, TII->get(ARM::t2LDRi12), NewVReg1)
11016         .addFrameIndex(FI)
11017         .addImm(4)
11018         .addMemOperand(FIMMOLd)
11019         .add(predOps(ARMCC::AL));
11020 
11021     if (NumLPads < 256) {
11022       BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPri))
11023           .addReg(NewVReg1)
11024           .addImm(LPadList.size())
11025           .add(predOps(ARMCC::AL));
11026     } else {
11027       Register VReg1 = MRI->createVirtualRegister(TRC);
11028       BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVi16), VReg1)
11029           .addImm(NumLPads & 0xFFFF)
11030           .add(predOps(ARMCC::AL));
11031 
11032       unsigned VReg2 = VReg1;
11033       if ((NumLPads & 0xFFFF0000) != 0) {
11034         VReg2 = MRI->createVirtualRegister(TRC);
11035         BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVTi16), VReg2)
11036             .addReg(VReg1)
11037             .addImm(NumLPads >> 16)
11038             .add(predOps(ARMCC::AL));
11039       }
11040 
11041       BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPrr))
11042           .addReg(NewVReg1)
11043           .addReg(VReg2)
11044           .add(predOps(ARMCC::AL));
11045     }
11046 
11047     BuildMI(DispatchBB, dl, TII->get(ARM::t2Bcc))
11048       .addMBB(TrapBB)
11049       .addImm(ARMCC::HI)
11050       .addReg(ARM::CPSR);
11051 
11052     Register NewVReg3 = MRI->createVirtualRegister(TRC);
11053     BuildMI(DispContBB, dl, TII->get(ARM::t2LEApcrelJT), NewVReg3)
11054         .addJumpTableIndex(MJTI)
11055         .add(predOps(ARMCC::AL));
11056 
11057     Register NewVReg4 = MRI->createVirtualRegister(TRC);
11058     BuildMI(DispContBB, dl, TII->get(ARM::t2ADDrs), NewVReg4)
11059         .addReg(NewVReg3, RegState::Kill)
11060         .addReg(NewVReg1)
11061         .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))
11062         .add(predOps(ARMCC::AL))
11063         .add(condCodeOp());
11064 
11065     BuildMI(DispContBB, dl, TII->get(ARM::t2BR_JT))
11066       .addReg(NewVReg4, RegState::Kill)
11067       .addReg(NewVReg1)
11068       .addJumpTableIndex(MJTI);
11069   } else if (Subtarget->isThumb()) {
11070     Register NewVReg1 = MRI->createVirtualRegister(TRC);
11071     BuildMI(DispatchBB, dl, TII->get(ARM::tLDRspi), NewVReg1)
11072         .addFrameIndex(FI)
11073         .addImm(1)
11074         .addMemOperand(FIMMOLd)
11075         .add(predOps(ARMCC::AL));
11076 
11077     if (NumLPads < 256) {
11078       BuildMI(DispatchBB, dl, TII->get(ARM::tCMPi8))
11079           .addReg(NewVReg1)
11080           .addImm(NumLPads)
11081           .add(predOps(ARMCC::AL));
11082     } else {
11083       MachineConstantPool *ConstantPool = MF->getConstantPool();
11084       Type *Int32Ty = Type::getInt32Ty(MF->getFunction().getContext());
11085       const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
11086 
11087       // MachineConstantPool wants an explicit alignment.
11088       Align Alignment = MF->getDataLayout().getPrefTypeAlign(Int32Ty);
11089       unsigned Idx = ConstantPool->getConstantPoolIndex(C, Alignment);
11090 
11091       Register VReg1 = MRI->createVirtualRegister(TRC);
11092       BuildMI(DispatchBB, dl, TII->get(ARM::tLDRpci))
11093           .addReg(VReg1, RegState::Define)
11094           .addConstantPoolIndex(Idx)
11095           .add(predOps(ARMCC::AL));
11096       BuildMI(DispatchBB, dl, TII->get(ARM::tCMPr))
11097           .addReg(NewVReg1)
11098           .addReg(VReg1)
11099           .add(predOps(ARMCC::AL));
11100     }
11101 
11102     BuildMI(DispatchBB, dl, TII->get(ARM::tBcc))
11103       .addMBB(TrapBB)
11104       .addImm(ARMCC::HI)
11105       .addReg(ARM::CPSR);
11106 
11107     Register NewVReg2 = MRI->createVirtualRegister(TRC);
11108     BuildMI(DispContBB, dl, TII->get(ARM::tLSLri), NewVReg2)
11109         .addReg(ARM::CPSR, RegState::Define)
11110         .addReg(NewVReg1)
11111         .addImm(2)
11112         .add(predOps(ARMCC::AL));
11113 
11114     Register NewVReg3 = MRI->createVirtualRegister(TRC);
11115     BuildMI(DispContBB, dl, TII->get(ARM::tLEApcrelJT), NewVReg3)
11116         .addJumpTableIndex(MJTI)
11117         .add(predOps(ARMCC::AL));
11118 
11119     Register NewVReg4 = MRI->createVirtualRegister(TRC);
11120     BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg4)
11121         .addReg(ARM::CPSR, RegState::Define)
11122         .addReg(NewVReg2, RegState::Kill)
11123         .addReg(NewVReg3)
11124         .add(predOps(ARMCC::AL));
11125 
11126     MachineMemOperand *JTMMOLd =
11127         MF->getMachineMemOperand(MachinePointerInfo::getJumpTable(*MF),
11128                                  MachineMemOperand::MOLoad, 4, Align(4));
11129 
11130     Register NewVReg5 = MRI->createVirtualRegister(TRC);
11131     BuildMI(DispContBB, dl, TII->get(ARM::tLDRi), NewVReg5)
11132         .addReg(NewVReg4, RegState::Kill)
11133         .addImm(0)
11134         .addMemOperand(JTMMOLd)
11135         .add(predOps(ARMCC::AL));
11136 
11137     unsigned NewVReg6 = NewVReg5;
11138     if (IsPositionIndependent) {
11139       NewVReg6 = MRI->createVirtualRegister(TRC);
11140       BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg6)
11141           .addReg(ARM::CPSR, RegState::Define)
11142           .addReg(NewVReg5, RegState::Kill)
11143           .addReg(NewVReg3)
11144           .add(predOps(ARMCC::AL));
11145     }
11146 
11147     BuildMI(DispContBB, dl, TII->get(ARM::tBR_JTr))
11148       .addReg(NewVReg6, RegState::Kill)
11149       .addJumpTableIndex(MJTI);
11150   } else {
11151     Register NewVReg1 = MRI->createVirtualRegister(TRC);
11152     BuildMI(DispatchBB, dl, TII->get(ARM::LDRi12), NewVReg1)
11153         .addFrameIndex(FI)
11154         .addImm(4)
11155         .addMemOperand(FIMMOLd)
11156         .add(predOps(ARMCC::AL));
11157 
11158     if (NumLPads < 256) {
11159       BuildMI(DispatchBB, dl, TII->get(ARM::CMPri))
11160           .addReg(NewVReg1)
11161           .addImm(NumLPads)
11162           .add(predOps(ARMCC::AL));
11163     } else if (Subtarget->hasV6T2Ops() && isUInt<16>(NumLPads)) {
11164       Register VReg1 = MRI->createVirtualRegister(TRC);
11165       BuildMI(DispatchBB, dl, TII->get(ARM::MOVi16), VReg1)
11166           .addImm(NumLPads & 0xFFFF)
11167           .add(predOps(ARMCC::AL));
11168 
11169       unsigned VReg2 = VReg1;
11170       if ((NumLPads & 0xFFFF0000) != 0) {
11171         VReg2 = MRI->createVirtualRegister(TRC);
11172         BuildMI(DispatchBB, dl, TII->get(ARM::MOVTi16), VReg2)
11173             .addReg(VReg1)
11174             .addImm(NumLPads >> 16)
11175             .add(predOps(ARMCC::AL));
11176       }
11177 
11178       BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
11179           .addReg(NewVReg1)
11180           .addReg(VReg2)
11181           .add(predOps(ARMCC::AL));
11182     } else {
11183       MachineConstantPool *ConstantPool = MF->getConstantPool();
11184       Type *Int32Ty = Type::getInt32Ty(MF->getFunction().getContext());
11185       const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
11186 
11187       // MachineConstantPool wants an explicit alignment.
11188       Align Alignment = MF->getDataLayout().getPrefTypeAlign(Int32Ty);
11189       unsigned Idx = ConstantPool->getConstantPoolIndex(C, Alignment);
11190 
11191       Register VReg1 = MRI->createVirtualRegister(TRC);
11192       BuildMI(DispatchBB, dl, TII->get(ARM::LDRcp))
11193           .addReg(VReg1, RegState::Define)
11194           .addConstantPoolIndex(Idx)
11195           .addImm(0)
11196           .add(predOps(ARMCC::AL));
11197       BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
11198           .addReg(NewVReg1)
11199           .addReg(VReg1, RegState::Kill)
11200           .add(predOps(ARMCC::AL));
11201     }
11202 
11203     BuildMI(DispatchBB, dl, TII->get(ARM::Bcc))
11204       .addMBB(TrapBB)
11205       .addImm(ARMCC::HI)
11206       .addReg(ARM::CPSR);
11207 
11208     Register NewVReg3 = MRI->createVirtualRegister(TRC);
11209     BuildMI(DispContBB, dl, TII->get(ARM::MOVsi), NewVReg3)
11210         .addReg(NewVReg1)
11211         .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))
11212         .add(predOps(ARMCC::AL))
11213         .add(condCodeOp());
11214     Register NewVReg4 = MRI->createVirtualRegister(TRC);
11215     BuildMI(DispContBB, dl, TII->get(ARM::LEApcrelJT), NewVReg4)
11216         .addJumpTableIndex(MJTI)
11217         .add(predOps(ARMCC::AL));
11218 
11219     MachineMemOperand *JTMMOLd =
11220         MF->getMachineMemOperand(MachinePointerInfo::getJumpTable(*MF),
11221                                  MachineMemOperand::MOLoad, 4, Align(4));
11222     Register NewVReg5 = MRI->createVirtualRegister(TRC);
11223     BuildMI(DispContBB, dl, TII->get(ARM::LDRrs), NewVReg5)
11224         .addReg(NewVReg3, RegState::Kill)
11225         .addReg(NewVReg4)
11226         .addImm(0)
11227         .addMemOperand(JTMMOLd)
11228         .add(predOps(ARMCC::AL));
11229 
11230     if (IsPositionIndependent) {
11231       BuildMI(DispContBB, dl, TII->get(ARM::BR_JTadd))
11232         .addReg(NewVReg5, RegState::Kill)
11233         .addReg(NewVReg4)
11234         .addJumpTableIndex(MJTI);
11235     } else {
11236       BuildMI(DispContBB, dl, TII->get(ARM::BR_JTr))
11237         .addReg(NewVReg5, RegState::Kill)
11238         .addJumpTableIndex(MJTI);
11239     }
11240   }
11241 
11242   // Add the jump table entries as successors to the MBB.
11243   SmallPtrSet<MachineBasicBlock*, 8> SeenMBBs;
11244   for (MachineBasicBlock *CurMBB : LPadList) {
11245     if (SeenMBBs.insert(CurMBB).second)
11246       DispContBB->addSuccessor(CurMBB);
11247   }
11248 
11249   // N.B. the order the invoke BBs are processed in doesn't matter here.
11250   const MCPhysReg *SavedRegs = RI.getCalleeSavedRegs(MF);
11251   SmallVector<MachineBasicBlock*, 64> MBBLPads;
11252   for (MachineBasicBlock *BB : InvokeBBs) {
11253 
11254     // Remove the landing pad successor from the invoke block and replace it
11255     // with the new dispatch block.
11256     SmallVector<MachineBasicBlock*, 4> Successors(BB->successors());
11257     while (!Successors.empty()) {
11258       MachineBasicBlock *SMBB = Successors.pop_back_val();
11259       if (SMBB->isEHPad()) {
11260         BB->removeSuccessor(SMBB);
11261         MBBLPads.push_back(SMBB);
11262       }
11263     }
11264 
11265     BB->addSuccessor(DispatchBB, BranchProbability::getZero());
11266     BB->normalizeSuccProbs();
11267 
11268     // Find the invoke call and mark all of the callee-saved registers as
11269     // 'implicit defined' so that they're spilled. This prevents code from
11270     // moving instructions to before the EH block, where they will never be
11271     // executed.
11272     for (MachineBasicBlock::reverse_iterator
11273            II = BB->rbegin(), IE = BB->rend(); II != IE; ++II) {
11274       if (!II->isCall()) continue;
11275 
11276       DenseMap<unsigned, bool> DefRegs;
11277       for (MachineInstr::mop_iterator
11278              OI = II->operands_begin(), OE = II->operands_end();
11279            OI != OE; ++OI) {
11280         if (!OI->isReg()) continue;
11281         DefRegs[OI->getReg()] = true;
11282       }
11283 
11284       MachineInstrBuilder MIB(*MF, &*II);
11285 
11286       for (unsigned i = 0; SavedRegs[i] != 0; ++i) {
11287         unsigned Reg = SavedRegs[i];
11288         if (Subtarget->isThumb2() &&
11289             !ARM::tGPRRegClass.contains(Reg) &&
11290             !ARM::hGPRRegClass.contains(Reg))
11291           continue;
11292         if (Subtarget->isThumb1Only() && !ARM::tGPRRegClass.contains(Reg))
11293           continue;
11294         if (!Subtarget->isThumb() && !ARM::GPRRegClass.contains(Reg))
11295           continue;
11296         if (!DefRegs[Reg])
11297           MIB.addReg(Reg, RegState::ImplicitDefine | RegState::Dead);
11298       }
11299 
11300       break;
11301     }
11302   }
11303 
11304   // Mark all former landing pads as non-landing pads. The dispatch is the only
11305   // landing pad now.
11306   for (MachineBasicBlock *MBBLPad : MBBLPads)
11307     MBBLPad->setIsEHPad(false);
11308 
11309   // The instruction is gone now.
11310   MI.eraseFromParent();
11311 }
11312 
11313 static
11314 MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) {
11315   for (MachineBasicBlock *S : MBB->successors())
11316     if (S != Succ)
11317       return S;
11318   llvm_unreachable("Expecting a BB with two successors!");
11319 }
11320 
11321 /// Return the load opcode for a given load size. If load size >= 8,
11322 /// neon opcode will be returned.
11323 static unsigned getLdOpcode(unsigned LdSize, bool IsThumb1, bool IsThumb2) {
11324   if (LdSize >= 8)
11325     return LdSize == 16 ? ARM::VLD1q32wb_fixed
11326                         : LdSize == 8 ? ARM::VLD1d32wb_fixed : 0;
11327   if (IsThumb1)
11328     return LdSize == 4 ? ARM::tLDRi
11329                        : LdSize == 2 ? ARM::tLDRHi
11330                                      : LdSize == 1 ? ARM::tLDRBi : 0;
11331   if (IsThumb2)
11332     return LdSize == 4 ? ARM::t2LDR_POST
11333                        : LdSize == 2 ? ARM::t2LDRH_POST
11334                                      : LdSize == 1 ? ARM::t2LDRB_POST : 0;
11335   return LdSize == 4 ? ARM::LDR_POST_IMM
11336                      : LdSize == 2 ? ARM::LDRH_POST
11337                                    : LdSize == 1 ? ARM::LDRB_POST_IMM : 0;
11338 }
11339 
11340 /// Return the store opcode for a given store size. If store size >= 8,
11341 /// neon opcode will be returned.
11342 static unsigned getStOpcode(unsigned StSize, bool IsThumb1, bool IsThumb2) {
11343   if (StSize >= 8)
11344     return StSize == 16 ? ARM::VST1q32wb_fixed
11345                         : StSize == 8 ? ARM::VST1d32wb_fixed : 0;
11346   if (IsThumb1)
11347     return StSize == 4 ? ARM::tSTRi
11348                        : StSize == 2 ? ARM::tSTRHi
11349                                      : StSize == 1 ? ARM::tSTRBi : 0;
11350   if (IsThumb2)
11351     return StSize == 4 ? ARM::t2STR_POST
11352                        : StSize == 2 ? ARM::t2STRH_POST
11353                                      : StSize == 1 ? ARM::t2STRB_POST : 0;
11354   return StSize == 4 ? ARM::STR_POST_IMM
11355                      : StSize == 2 ? ARM::STRH_POST
11356                                    : StSize == 1 ? ARM::STRB_POST_IMM : 0;
11357 }
11358 
11359 /// Emit a post-increment load operation with given size. The instructions
11360 /// will be added to BB at Pos.
11361 static void emitPostLd(MachineBasicBlock *BB, MachineBasicBlock::iterator Pos,
11362                        const TargetInstrInfo *TII, const DebugLoc &dl,
11363                        unsigned LdSize, unsigned Data, unsigned AddrIn,
11364                        unsigned AddrOut, bool IsThumb1, bool IsThumb2) {
11365   unsigned LdOpc = getLdOpcode(LdSize, IsThumb1, IsThumb2);
11366   assert(LdOpc != 0 && "Should have a load opcode");
11367   if (LdSize >= 8) {
11368     BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
11369         .addReg(AddrOut, RegState::Define)
11370         .addReg(AddrIn)
11371         .addImm(0)
11372         .add(predOps(ARMCC::AL));
11373   } else if (IsThumb1) {
11374     // load + update AddrIn
11375     BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
11376         .addReg(AddrIn)
11377         .addImm(0)
11378         .add(predOps(ARMCC::AL));
11379     BuildMI(*BB, Pos, dl, TII->get(ARM::tADDi8), AddrOut)
11380         .add(t1CondCodeOp())
11381         .addReg(AddrIn)
11382         .addImm(LdSize)
11383         .add(predOps(ARMCC::AL));
11384   } else if (IsThumb2) {
11385     BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
11386         .addReg(AddrOut, RegState::Define)
11387         .addReg(AddrIn)
11388         .addImm(LdSize)
11389         .add(predOps(ARMCC::AL));
11390   } else { // arm
11391     BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
11392         .addReg(AddrOut, RegState::Define)
11393         .addReg(AddrIn)
11394         .addReg(0)
11395         .addImm(LdSize)
11396         .add(predOps(ARMCC::AL));
11397   }
11398 }
11399 
11400 /// Emit a post-increment store operation with given size. The instructions
11401 /// will be added to BB at Pos.
11402 static void emitPostSt(MachineBasicBlock *BB, MachineBasicBlock::iterator Pos,
11403                        const TargetInstrInfo *TII, const DebugLoc &dl,
11404                        unsigned StSize, unsigned Data, unsigned AddrIn,
11405                        unsigned AddrOut, bool IsThumb1, bool IsThumb2) {
11406   unsigned StOpc = getStOpcode(StSize, IsThumb1, IsThumb2);
11407   assert(StOpc != 0 && "Should have a store opcode");
11408   if (StSize >= 8) {
11409     BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
11410         .addReg(AddrIn)
11411         .addImm(0)
11412         .addReg(Data)
11413         .add(predOps(ARMCC::AL));
11414   } else if (IsThumb1) {
11415     // store + update AddrIn
11416     BuildMI(*BB, Pos, dl, TII->get(StOpc))
11417         .addReg(Data)
11418         .addReg(AddrIn)
11419         .addImm(0)
11420         .add(predOps(ARMCC::AL));
11421     BuildMI(*BB, Pos, dl, TII->get(ARM::tADDi8), AddrOut)
11422         .add(t1CondCodeOp())
11423         .addReg(AddrIn)
11424         .addImm(StSize)
11425         .add(predOps(ARMCC::AL));
11426   } else if (IsThumb2) {
11427     BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
11428         .addReg(Data)
11429         .addReg(AddrIn)
11430         .addImm(StSize)
11431         .add(predOps(ARMCC::AL));
11432   } else { // arm
11433     BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
11434         .addReg(Data)
11435         .addReg(AddrIn)
11436         .addReg(0)
11437         .addImm(StSize)
11438         .add(predOps(ARMCC::AL));
11439   }
11440 }
11441 
11442 MachineBasicBlock *
11443 ARMTargetLowering::EmitStructByval(MachineInstr &MI,
11444                                    MachineBasicBlock *BB) const {
11445   // This pseudo instruction has 3 operands: dst, src, size
11446   // We expand it to a loop if size > Subtarget->getMaxInlineSizeThreshold().
11447   // Otherwise, we will generate unrolled scalar copies.
11448   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
11449   const BasicBlock *LLVM_BB = BB->getBasicBlock();
11450   MachineFunction::iterator It = ++BB->getIterator();
11451 
11452   Register dest = MI.getOperand(0).getReg();
11453   Register src = MI.getOperand(1).getReg();
11454   unsigned SizeVal = MI.getOperand(2).getImm();
11455   unsigned Alignment = MI.getOperand(3).getImm();
11456   DebugLoc dl = MI.getDebugLoc();
11457 
11458   MachineFunction *MF = BB->getParent();
11459   MachineRegisterInfo &MRI = MF->getRegInfo();
11460   unsigned UnitSize = 0;
11461   const TargetRegisterClass *TRC = nullptr;
11462   const TargetRegisterClass *VecTRC = nullptr;
11463 
11464   bool IsThumb1 = Subtarget->isThumb1Only();
11465   bool IsThumb2 = Subtarget->isThumb2();
11466   bool IsThumb = Subtarget->isThumb();
11467 
11468   if (Alignment & 1) {
11469     UnitSize = 1;
11470   } else if (Alignment & 2) {
11471     UnitSize = 2;
11472   } else {
11473     // Check whether we can use NEON instructions.
11474     if (!MF->getFunction().hasFnAttribute(Attribute::NoImplicitFloat) &&
11475         Subtarget->hasNEON()) {
11476       if ((Alignment % 16 == 0) && SizeVal >= 16)
11477         UnitSize = 16;
11478       else if ((Alignment % 8 == 0) && SizeVal >= 8)
11479         UnitSize = 8;
11480     }
11481     // Can't use NEON instructions.
11482     if (UnitSize == 0)
11483       UnitSize = 4;
11484   }
11485 
11486   // Select the correct opcode and register class for unit size load/store
11487   bool IsNeon = UnitSize >= 8;
11488   TRC = IsThumb ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
11489   if (IsNeon)
11490     VecTRC = UnitSize == 16 ? &ARM::DPairRegClass
11491                             : UnitSize == 8 ? &ARM::DPRRegClass
11492                                             : nullptr;
11493 
11494   unsigned BytesLeft = SizeVal % UnitSize;
11495   unsigned LoopSize = SizeVal - BytesLeft;
11496 
11497   if (SizeVal <= Subtarget->getMaxInlineSizeThreshold()) {
11498     // Use LDR and STR to copy.
11499     // [scratch, srcOut] = LDR_POST(srcIn, UnitSize)
11500     // [destOut] = STR_POST(scratch, destIn, UnitSize)
11501     unsigned srcIn = src;
11502     unsigned destIn = dest;
11503     for (unsigned i = 0; i < LoopSize; i+=UnitSize) {
11504       Register srcOut = MRI.createVirtualRegister(TRC);
11505       Register destOut = MRI.createVirtualRegister(TRC);
11506       Register scratch = MRI.createVirtualRegister(IsNeon ? VecTRC : TRC);
11507       emitPostLd(BB, MI, TII, dl, UnitSize, scratch, srcIn, srcOut,
11508                  IsThumb1, IsThumb2);
11509       emitPostSt(BB, MI, TII, dl, UnitSize, scratch, destIn, destOut,
11510                  IsThumb1, IsThumb2);
11511       srcIn = srcOut;
11512       destIn = destOut;
11513     }
11514 
11515     // Handle the leftover bytes with LDRB and STRB.
11516     // [scratch, srcOut] = LDRB_POST(srcIn, 1)
11517     // [destOut] = STRB_POST(scratch, destIn, 1)
11518     for (unsigned i = 0; i < BytesLeft; i++) {
11519       Register srcOut = MRI.createVirtualRegister(TRC);
11520       Register destOut = MRI.createVirtualRegister(TRC);
11521       Register scratch = MRI.createVirtualRegister(TRC);
11522       emitPostLd(BB, MI, TII, dl, 1, scratch, srcIn, srcOut,
11523                  IsThumb1, IsThumb2);
11524       emitPostSt(BB, MI, TII, dl, 1, scratch, destIn, destOut,
11525                  IsThumb1, IsThumb2);
11526       srcIn = srcOut;
11527       destIn = destOut;
11528     }
11529     MI.eraseFromParent(); // The instruction is gone now.
11530     return BB;
11531   }
11532 
11533   // Expand the pseudo op to a loop.
11534   // thisMBB:
11535   //   ...
11536   //   movw varEnd, # --> with thumb2
11537   //   movt varEnd, #
11538   //   ldrcp varEnd, idx --> without thumb2
11539   //   fallthrough --> loopMBB
11540   // loopMBB:
11541   //   PHI varPhi, varEnd, varLoop
11542   //   PHI srcPhi, src, srcLoop
11543   //   PHI destPhi, dst, destLoop
11544   //   [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
11545   //   [destLoop] = STR_POST(scratch, destPhi, UnitSize)
11546   //   subs varLoop, varPhi, #UnitSize
11547   //   bne loopMBB
11548   //   fallthrough --> exitMBB
11549   // exitMBB:
11550   //   epilogue to handle left-over bytes
11551   //   [scratch, srcOut] = LDRB_POST(srcLoop, 1)
11552   //   [destOut] = STRB_POST(scratch, destLoop, 1)
11553   MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11554   MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11555   MF->insert(It, loopMBB);
11556   MF->insert(It, exitMBB);
11557 
11558   // Set the call frame size on entry to the new basic blocks.
11559   unsigned CallFrameSize = TII->getCallFrameSizeAt(MI);
11560   loopMBB->setCallFrameSize(CallFrameSize);
11561   exitMBB->setCallFrameSize(CallFrameSize);
11562 
11563   // Transfer the remainder of BB and its successor edges to exitMBB.
11564   exitMBB->splice(exitMBB->begin(), BB,
11565                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
11566   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
11567 
11568   // Load an immediate to varEnd.
11569   Register varEnd = MRI.createVirtualRegister(TRC);
11570   if (Subtarget->useMovt()) {
11571     BuildMI(BB, dl, TII->get(IsThumb ? ARM::t2MOVi32imm : ARM::MOVi32imm),
11572             varEnd)
11573         .addImm(LoopSize);
11574   } else if (Subtarget->genExecuteOnly()) {
11575     assert(IsThumb && "Non-thumb expected to have used movt");
11576     BuildMI(BB, dl, TII->get(ARM::tMOVi32imm), varEnd).addImm(LoopSize);
11577   } else {
11578     MachineConstantPool *ConstantPool = MF->getConstantPool();
11579     Type *Int32Ty = Type::getInt32Ty(MF->getFunction().getContext());
11580     const Constant *C = ConstantInt::get(Int32Ty, LoopSize);
11581 
11582     // MachineConstantPool wants an explicit alignment.
11583     Align Alignment = MF->getDataLayout().getPrefTypeAlign(Int32Ty);
11584     unsigned Idx = ConstantPool->getConstantPoolIndex(C, Alignment);
11585     MachineMemOperand *CPMMO =
11586         MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF),
11587                                  MachineMemOperand::MOLoad, 4, Align(4));
11588 
11589     if (IsThumb)
11590       BuildMI(*BB, MI, dl, TII->get(ARM::tLDRpci))
11591           .addReg(varEnd, RegState::Define)
11592           .addConstantPoolIndex(Idx)
11593           .add(predOps(ARMCC::AL))
11594           .addMemOperand(CPMMO);
11595     else
11596       BuildMI(*BB, MI, dl, TII->get(ARM::LDRcp))
11597           .addReg(varEnd, RegState::Define)
11598           .addConstantPoolIndex(Idx)
11599           .addImm(0)
11600           .add(predOps(ARMCC::AL))
11601           .addMemOperand(CPMMO);
11602   }
11603   BB->addSuccessor(loopMBB);
11604 
11605   // Generate the loop body:
11606   //   varPhi = PHI(varLoop, varEnd)
11607   //   srcPhi = PHI(srcLoop, src)
11608   //   destPhi = PHI(destLoop, dst)
11609   MachineBasicBlock *entryBB = BB;
11610   BB = loopMBB;
11611   Register varLoop = MRI.createVirtualRegister(TRC);
11612   Register varPhi = MRI.createVirtualRegister(TRC);
11613   Register srcLoop = MRI.createVirtualRegister(TRC);
11614   Register srcPhi = MRI.createVirtualRegister(TRC);
11615   Register destLoop = MRI.createVirtualRegister(TRC);
11616   Register destPhi = MRI.createVirtualRegister(TRC);
11617 
11618   BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), varPhi)
11619     .addReg(varLoop).addMBB(loopMBB)
11620     .addReg(varEnd).addMBB(entryBB);
11621   BuildMI(BB, dl, TII->get(ARM::PHI), srcPhi)
11622     .addReg(srcLoop).addMBB(loopMBB)
11623     .addReg(src).addMBB(entryBB);
11624   BuildMI(BB, dl, TII->get(ARM::PHI), destPhi)
11625     .addReg(destLoop).addMBB(loopMBB)
11626     .addReg(dest).addMBB(entryBB);
11627 
11628   //   [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
11629   //   [destLoop] = STR_POST(scratch, destPhi, UnitSiz)
11630   Register scratch = MRI.createVirtualRegister(IsNeon ? VecTRC : TRC);
11631   emitPostLd(BB, BB->end(), TII, dl, UnitSize, scratch, srcPhi, srcLoop,
11632              IsThumb1, IsThumb2);
11633   emitPostSt(BB, BB->end(), TII, dl, UnitSize, scratch, destPhi, destLoop,
11634              IsThumb1, IsThumb2);
11635 
11636   // Decrement loop variable by UnitSize.
11637   if (IsThumb1) {
11638     BuildMI(*BB, BB->end(), dl, TII->get(ARM::tSUBi8), varLoop)
11639         .add(t1CondCodeOp())
11640         .addReg(varPhi)
11641         .addImm(UnitSize)
11642         .add(predOps(ARMCC::AL));
11643   } else {
11644     MachineInstrBuilder MIB =
11645         BuildMI(*BB, BB->end(), dl,
11646                 TII->get(IsThumb2 ? ARM::t2SUBri : ARM::SUBri), varLoop);
11647     MIB.addReg(varPhi)
11648         .addImm(UnitSize)
11649         .add(predOps(ARMCC::AL))
11650         .add(condCodeOp());
11651     MIB->getOperand(5).setReg(ARM::CPSR);
11652     MIB->getOperand(5).setIsDef(true);
11653   }
11654   BuildMI(*BB, BB->end(), dl,
11655           TII->get(IsThumb1 ? ARM::tBcc : IsThumb2 ? ARM::t2Bcc : ARM::Bcc))
11656       .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
11657 
11658   // loopMBB can loop back to loopMBB or fall through to exitMBB.
11659   BB->addSuccessor(loopMBB);
11660   BB->addSuccessor(exitMBB);
11661 
11662   // Add epilogue to handle BytesLeft.
11663   BB = exitMBB;
11664   auto StartOfExit = exitMBB->begin();
11665 
11666   //   [scratch, srcOut] = LDRB_POST(srcLoop, 1)
11667   //   [destOut] = STRB_POST(scratch, destLoop, 1)
11668   unsigned srcIn = srcLoop;
11669   unsigned destIn = destLoop;
11670   for (unsigned i = 0; i < BytesLeft; i++) {
11671     Register srcOut = MRI.createVirtualRegister(TRC);
11672     Register destOut = MRI.createVirtualRegister(TRC);
11673     Register scratch = MRI.createVirtualRegister(TRC);
11674     emitPostLd(BB, StartOfExit, TII, dl, 1, scratch, srcIn, srcOut,
11675                IsThumb1, IsThumb2);
11676     emitPostSt(BB, StartOfExit, TII, dl, 1, scratch, destIn, destOut,
11677                IsThumb1, IsThumb2);
11678     srcIn = srcOut;
11679     destIn = destOut;
11680   }
11681 
11682   MI.eraseFromParent(); // The instruction is gone now.
11683   return BB;
11684 }
11685 
11686 MachineBasicBlock *
11687 ARMTargetLowering::EmitLowered__chkstk(MachineInstr &MI,
11688                                        MachineBasicBlock *MBB) const {
11689   const TargetMachine &TM = getTargetMachine();
11690   const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
11691   DebugLoc DL = MI.getDebugLoc();
11692 
11693   assert(Subtarget->isTargetWindows() &&
11694          "__chkstk is only supported on Windows");
11695   assert(Subtarget->isThumb2() && "Windows on ARM requires Thumb-2 mode");
11696 
11697   // __chkstk takes the number of words to allocate on the stack in R4, and
11698   // returns the stack adjustment in number of bytes in R4.  This will not
11699   // clober any other registers (other than the obvious lr).
11700   //
11701   // Although, technically, IP should be considered a register which may be
11702   // clobbered, the call itself will not touch it.  Windows on ARM is a pure
11703   // thumb-2 environment, so there is no interworking required.  As a result, we
11704   // do not expect a veneer to be emitted by the linker, clobbering IP.
11705   //
11706   // Each module receives its own copy of __chkstk, so no import thunk is
11707   // required, again, ensuring that IP is not clobbered.
11708   //
11709   // Finally, although some linkers may theoretically provide a trampoline for
11710   // out of range calls (which is quite common due to a 32M range limitation of
11711   // branches for Thumb), we can generate the long-call version via
11712   // -mcmodel=large, alleviating the need for the trampoline which may clobber
11713   // IP.
11714 
11715   switch (TM.getCodeModel()) {
11716   case CodeModel::Tiny:
11717     llvm_unreachable("Tiny code model not available on ARM.");
11718   case CodeModel::Small:
11719   case CodeModel::Medium:
11720   case CodeModel::Kernel:
11721     BuildMI(*MBB, MI, DL, TII.get(ARM::tBL))
11722         .add(predOps(ARMCC::AL))
11723         .addExternalSymbol("__chkstk")
11724         .addReg(ARM::R4, RegState::Implicit | RegState::Kill)
11725         .addReg(ARM::R4, RegState::Implicit | RegState::Define)
11726         .addReg(ARM::R12,
11727                 RegState::Implicit | RegState::Define | RegState::Dead)
11728         .addReg(ARM::CPSR,
11729                 RegState::Implicit | RegState::Define | RegState::Dead);
11730     break;
11731   case CodeModel::Large: {
11732     MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
11733     Register Reg = MRI.createVirtualRegister(&ARM::rGPRRegClass);
11734 
11735     BuildMI(*MBB, MI, DL, TII.get(ARM::t2MOVi32imm), Reg)
11736       .addExternalSymbol("__chkstk");
11737     BuildMI(*MBB, MI, DL, TII.get(gettBLXrOpcode(*MBB->getParent())))
11738         .add(predOps(ARMCC::AL))
11739         .addReg(Reg, RegState::Kill)
11740         .addReg(ARM::R4, RegState::Implicit | RegState::Kill)
11741         .addReg(ARM::R4, RegState::Implicit | RegState::Define)
11742         .addReg(ARM::R12,
11743                 RegState::Implicit | RegState::Define | RegState::Dead)
11744         .addReg(ARM::CPSR,
11745                 RegState::Implicit | RegState::Define | RegState::Dead);
11746     break;
11747   }
11748   }
11749 
11750   BuildMI(*MBB, MI, DL, TII.get(ARM::t2SUBrr), ARM::SP)
11751       .addReg(ARM::SP, RegState::Kill)
11752       .addReg(ARM::R4, RegState::Kill)
11753       .setMIFlags(MachineInstr::FrameSetup)
11754       .add(predOps(ARMCC::AL))
11755       .add(condCodeOp());
11756 
11757   MI.eraseFromParent();
11758   return MBB;
11759 }
11760 
11761 MachineBasicBlock *
11762 ARMTargetLowering::EmitLowered__dbzchk(MachineInstr &MI,
11763                                        MachineBasicBlock *MBB) const {
11764   DebugLoc DL = MI.getDebugLoc();
11765   MachineFunction *MF = MBB->getParent();
11766   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
11767 
11768   MachineBasicBlock *ContBB = MF->CreateMachineBasicBlock();
11769   MF->insert(++MBB->getIterator(), ContBB);
11770   ContBB->splice(ContBB->begin(), MBB,
11771                  std::next(MachineBasicBlock::iterator(MI)), MBB->end());
11772   ContBB->transferSuccessorsAndUpdatePHIs(MBB);
11773   MBB->addSuccessor(ContBB);
11774 
11775   MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
11776   BuildMI(TrapBB, DL, TII->get(ARM::t__brkdiv0));
11777   MF->push_back(TrapBB);
11778   MBB->addSuccessor(TrapBB);
11779 
11780   BuildMI(*MBB, MI, DL, TII->get(ARM::tCMPi8))
11781       .addReg(MI.getOperand(0).getReg())
11782       .addImm(0)
11783       .add(predOps(ARMCC::AL));
11784   BuildMI(*MBB, MI, DL, TII->get(ARM::t2Bcc))
11785       .addMBB(TrapBB)
11786       .addImm(ARMCC::EQ)
11787       .addReg(ARM::CPSR);
11788 
11789   MI.eraseFromParent();
11790   return ContBB;
11791 }
11792 
11793 // The CPSR operand of SelectItr might be missing a kill marker
11794 // because there were multiple uses of CPSR, and ISel didn't know
11795 // which to mark. Figure out whether SelectItr should have had a
11796 // kill marker, and set it if it should. Returns the correct kill
11797 // marker value.
11798 static bool checkAndUpdateCPSRKill(MachineBasicBlock::iterator SelectItr,
11799                                    MachineBasicBlock* BB,
11800                                    const TargetRegisterInfo* TRI) {
11801   // Scan forward through BB for a use/def of CPSR.
11802   MachineBasicBlock::iterator miI(std::next(SelectItr));
11803   for (MachineBasicBlock::iterator miE = BB->end(); miI != miE; ++miI) {
11804     const MachineInstr& mi = *miI;
11805     if (mi.readsRegister(ARM::CPSR))
11806       return false;
11807     if (mi.definesRegister(ARM::CPSR))
11808       break; // Should have kill-flag - update below.
11809   }
11810 
11811   // If we hit the end of the block, check whether CPSR is live into a
11812   // successor.
11813   if (miI == BB->end()) {
11814     for (MachineBasicBlock *Succ : BB->successors())
11815       if (Succ->isLiveIn(ARM::CPSR))
11816         return false;
11817   }
11818 
11819   // We found a def, or hit the end of the basic block and CPSR wasn't live
11820   // out. SelectMI should have a kill flag on CPSR.
11821   SelectItr->addRegisterKilled(ARM::CPSR, TRI);
11822   return true;
11823 }
11824 
11825 /// Adds logic in loop entry MBB to calculate loop iteration count and adds
11826 /// t2WhileLoopSetup and t2WhileLoopStart to generate WLS loop
11827 static Register genTPEntry(MachineBasicBlock *TpEntry,
11828                            MachineBasicBlock *TpLoopBody,
11829                            MachineBasicBlock *TpExit, Register OpSizeReg,
11830                            const TargetInstrInfo *TII, DebugLoc Dl,
11831                            MachineRegisterInfo &MRI) {
11832   // Calculates loop iteration count = ceil(n/16) = (n + 15) >> 4.
11833   Register AddDestReg = MRI.createVirtualRegister(&ARM::rGPRRegClass);
11834   BuildMI(TpEntry, Dl, TII->get(ARM::t2ADDri), AddDestReg)
11835       .addUse(OpSizeReg)
11836       .addImm(15)
11837       .add(predOps(ARMCC::AL))
11838       .addReg(0);
11839 
11840   Register LsrDestReg = MRI.createVirtualRegister(&ARM::rGPRRegClass);
11841   BuildMI(TpEntry, Dl, TII->get(ARM::t2LSRri), LsrDestReg)
11842       .addUse(AddDestReg, RegState::Kill)
11843       .addImm(4)
11844       .add(predOps(ARMCC::AL))
11845       .addReg(0);
11846 
11847   Register TotalIterationsReg = MRI.createVirtualRegister(&ARM::GPRlrRegClass);
11848   BuildMI(TpEntry, Dl, TII->get(ARM::t2WhileLoopSetup), TotalIterationsReg)
11849       .addUse(LsrDestReg, RegState::Kill);
11850 
11851   BuildMI(TpEntry, Dl, TII->get(ARM::t2WhileLoopStart))
11852       .addUse(TotalIterationsReg)
11853       .addMBB(TpExit);
11854 
11855   BuildMI(TpEntry, Dl, TII->get(ARM::t2B))
11856       .addMBB(TpLoopBody)
11857       .add(predOps(ARMCC::AL));
11858 
11859   return TotalIterationsReg;
11860 }
11861 
11862 /// Adds logic in the loopBody MBB to generate MVE_VCTP, t2DoLoopDec and
11863 /// t2DoLoopEnd. These are used by later passes to generate tail predicated
11864 /// loops.
11865 static void genTPLoopBody(MachineBasicBlock *TpLoopBody,
11866                           MachineBasicBlock *TpEntry, MachineBasicBlock *TpExit,
11867                           const TargetInstrInfo *TII, DebugLoc Dl,
11868                           MachineRegisterInfo &MRI, Register OpSrcReg,
11869                           Register OpDestReg, Register ElementCountReg,
11870                           Register TotalIterationsReg, bool IsMemcpy) {
11871   // First insert 4 PHI nodes for: Current pointer to Src (if memcpy), Dest
11872   // array, loop iteration counter, predication counter.
11873 
11874   Register SrcPhiReg, CurrSrcReg;
11875   if (IsMemcpy) {
11876     //  Current position in the src array
11877     SrcPhiReg = MRI.createVirtualRegister(&ARM::rGPRRegClass);
11878     CurrSrcReg = MRI.createVirtualRegister(&ARM::rGPRRegClass);
11879     BuildMI(TpLoopBody, Dl, TII->get(ARM::PHI), SrcPhiReg)
11880         .addUse(OpSrcReg)
11881         .addMBB(TpEntry)
11882         .addUse(CurrSrcReg)
11883         .addMBB(TpLoopBody);
11884   }
11885 
11886   // Current position in the dest array
11887   Register DestPhiReg = MRI.createVirtualRegister(&ARM::rGPRRegClass);
11888   Register CurrDestReg = MRI.createVirtualRegister(&ARM::rGPRRegClass);
11889   BuildMI(TpLoopBody, Dl, TII->get(ARM::PHI), DestPhiReg)
11890       .addUse(OpDestReg)
11891       .addMBB(TpEntry)
11892       .addUse(CurrDestReg)
11893       .addMBB(TpLoopBody);
11894 
11895   // Current loop counter
11896   Register LoopCounterPhiReg = MRI.createVirtualRegister(&ARM::GPRlrRegClass);
11897   Register RemainingLoopIterationsReg =
11898       MRI.createVirtualRegister(&ARM::GPRlrRegClass);
11899   BuildMI(TpLoopBody, Dl, TII->get(ARM::PHI), LoopCounterPhiReg)
11900       .addUse(TotalIterationsReg)
11901       .addMBB(TpEntry)
11902       .addUse(RemainingLoopIterationsReg)
11903       .addMBB(TpLoopBody);
11904 
11905   // Predication counter
11906   Register PredCounterPhiReg = MRI.createVirtualRegister(&ARM::rGPRRegClass);
11907   Register RemainingElementsReg = MRI.createVirtualRegister(&ARM::rGPRRegClass);
11908   BuildMI(TpLoopBody, Dl, TII->get(ARM::PHI), PredCounterPhiReg)
11909       .addUse(ElementCountReg)
11910       .addMBB(TpEntry)
11911       .addUse(RemainingElementsReg)
11912       .addMBB(TpLoopBody);
11913 
11914   // Pass predication counter to VCTP
11915   Register VccrReg = MRI.createVirtualRegister(&ARM::VCCRRegClass);
11916   BuildMI(TpLoopBody, Dl, TII->get(ARM::MVE_VCTP8), VccrReg)
11917       .addUse(PredCounterPhiReg)
11918       .addImm(ARMVCC::None)
11919       .addReg(0)
11920       .addReg(0);
11921 
11922   BuildMI(TpLoopBody, Dl, TII->get(ARM::t2SUBri), RemainingElementsReg)
11923       .addUse(PredCounterPhiReg)
11924       .addImm(16)
11925       .add(predOps(ARMCC::AL))
11926       .addReg(0);
11927 
11928   // VLDRB (only if memcpy) and VSTRB instructions, predicated using VPR
11929   Register SrcValueReg;
11930   if (IsMemcpy) {
11931     SrcValueReg = MRI.createVirtualRegister(&ARM::MQPRRegClass);
11932     BuildMI(TpLoopBody, Dl, TII->get(ARM::MVE_VLDRBU8_post))
11933         .addDef(CurrSrcReg)
11934         .addDef(SrcValueReg)
11935         .addReg(SrcPhiReg)
11936         .addImm(16)
11937         .addImm(ARMVCC::Then)
11938         .addUse(VccrReg)
11939         .addReg(0);
11940   } else
11941     SrcValueReg = OpSrcReg;
11942 
11943   BuildMI(TpLoopBody, Dl, TII->get(ARM::MVE_VSTRBU8_post))
11944       .addDef(CurrDestReg)
11945       .addUse(SrcValueReg)
11946       .addReg(DestPhiReg)
11947       .addImm(16)
11948       .addImm(ARMVCC::Then)
11949       .addUse(VccrReg)
11950       .addReg(0);
11951 
11952   // Add the pseudoInstrs for decrementing the loop counter and marking the
11953   // end:t2DoLoopDec and t2DoLoopEnd
11954   BuildMI(TpLoopBody, Dl, TII->get(ARM::t2LoopDec), RemainingLoopIterationsReg)
11955       .addUse(LoopCounterPhiReg)
11956       .addImm(1);
11957 
11958   BuildMI(TpLoopBody, Dl, TII->get(ARM::t2LoopEnd))
11959       .addUse(RemainingLoopIterationsReg)
11960       .addMBB(TpLoopBody);
11961 
11962   BuildMI(TpLoopBody, Dl, TII->get(ARM::t2B))
11963       .addMBB(TpExit)
11964       .add(predOps(ARMCC::AL));
11965 }
11966 
11967 MachineBasicBlock *
11968 ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
11969                                                MachineBasicBlock *BB) const {
11970   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
11971   DebugLoc dl = MI.getDebugLoc();
11972   bool isThumb2 = Subtarget->isThumb2();
11973   switch (MI.getOpcode()) {
11974   default: {
11975     MI.print(errs());
11976     llvm_unreachable("Unexpected instr type to insert");
11977   }
11978 
11979   // Thumb1 post-indexed loads are really just single-register LDMs.
11980   case ARM::tLDR_postidx: {
11981     MachineOperand Def(MI.getOperand(1));
11982     BuildMI(*BB, MI, dl, TII->get(ARM::tLDMIA_UPD))
11983         .add(Def)  // Rn_wb
11984         .add(MI.getOperand(2))  // Rn
11985         .add(MI.getOperand(3))  // PredImm
11986         .add(MI.getOperand(4))  // PredReg
11987         .add(MI.getOperand(0))  // Rt
11988         .cloneMemRefs(MI);
11989     MI.eraseFromParent();
11990     return BB;
11991   }
11992 
11993   case ARM::MVE_MEMCPYLOOPINST:
11994   case ARM::MVE_MEMSETLOOPINST: {
11995 
11996     // Transformation below expands MVE_MEMCPYLOOPINST/MVE_MEMSETLOOPINST Pseudo
11997     // into a Tail Predicated (TP) Loop. It adds the instructions to calculate
11998     // the iteration count =ceil(size_in_bytes/16)) in the TP entry block and
11999     // adds the relevant instructions in the TP loop Body for generation of a
12000     // WLSTP loop.
12001 
12002     // Below is relevant portion of the CFG after the transformation.
12003     // The Machine Basic Blocks are shown along with branch conditions (in
12004     // brackets). Note that TP entry/exit MBBs depict the entry/exit of this
12005     // portion of the CFG and may not necessarily be the entry/exit of the
12006     // function.
12007 
12008     //             (Relevant) CFG after transformation:
12009     //               TP entry MBB
12010     //                   |
12011     //          |-----------------|
12012     //       (n <= 0)          (n > 0)
12013     //          |                 |
12014     //          |         TP loop Body MBB<--|
12015     //          |                |           |
12016     //           \               |___________|
12017     //            \             /
12018     //              TP exit MBB
12019 
12020     MachineFunction *MF = BB->getParent();
12021     MachineFunctionProperties &Properties = MF->getProperties();
12022     MachineRegisterInfo &MRI = MF->getRegInfo();
12023 
12024     Register OpDestReg = MI.getOperand(0).getReg();
12025     Register OpSrcReg = MI.getOperand(1).getReg();
12026     Register OpSizeReg = MI.getOperand(2).getReg();
12027 
12028     // Allocate the required MBBs and add to parent function.
12029     MachineBasicBlock *TpEntry = BB;
12030     MachineBasicBlock *TpLoopBody = MF->CreateMachineBasicBlock();
12031     MachineBasicBlock *TpExit;
12032 
12033     MF->push_back(TpLoopBody);
12034 
12035     // If any instructions are present in the current block after
12036     // MVE_MEMCPYLOOPINST or MVE_MEMSETLOOPINST, split the current block and
12037     // move the instructions into the newly created exit block. If there are no
12038     // instructions add an explicit branch to the FallThrough block and then
12039     // split.
12040     //
12041     // The split is required for two reasons:
12042     // 1) A terminator(t2WhileLoopStart) will be placed at that site.
12043     // 2) Since a TPLoopBody will be added later, any phis in successive blocks
12044     //    need to be updated. splitAt() already handles this.
12045     TpExit = BB->splitAt(MI, false);
12046     if (TpExit == BB) {
12047       assert(BB->canFallThrough() && "Exit Block must be Fallthrough of the "
12048                                      "block containing memcpy/memset Pseudo");
12049       TpExit = BB->getFallThrough();
12050       BuildMI(BB, dl, TII->get(ARM::t2B))
12051           .addMBB(TpExit)
12052           .add(predOps(ARMCC::AL));
12053       TpExit = BB->splitAt(MI, false);
12054     }
12055 
12056     // Add logic for iteration count
12057     Register TotalIterationsReg =
12058         genTPEntry(TpEntry, TpLoopBody, TpExit, OpSizeReg, TII, dl, MRI);
12059 
12060     // Add the vectorized (and predicated) loads/store instructions
12061     bool IsMemcpy = MI.getOpcode() == ARM::MVE_MEMCPYLOOPINST;
12062     genTPLoopBody(TpLoopBody, TpEntry, TpExit, TII, dl, MRI, OpSrcReg,
12063                   OpDestReg, OpSizeReg, TotalIterationsReg, IsMemcpy);
12064 
12065     // Required to avoid conflict with the MachineVerifier during testing.
12066     Properties.reset(MachineFunctionProperties::Property::NoPHIs);
12067 
12068     // Connect the blocks
12069     TpEntry->addSuccessor(TpLoopBody);
12070     TpLoopBody->addSuccessor(TpLoopBody);
12071     TpLoopBody->addSuccessor(TpExit);
12072 
12073     // Reorder for a more natural layout
12074     TpLoopBody->moveAfter(TpEntry);
12075     TpExit->moveAfter(TpLoopBody);
12076 
12077     // Finally, remove the memcpy Pseudo Instruction
12078     MI.eraseFromParent();
12079 
12080     // Return the exit block as it may contain other instructions requiring a
12081     // custom inserter
12082     return TpExit;
12083   }
12084 
12085   // The Thumb2 pre-indexed stores have the same MI operands, they just
12086   // define them differently in the .td files from the isel patterns, so
12087   // they need pseudos.
12088   case ARM::t2STR_preidx:
12089     MI.setDesc(TII->get(ARM::t2STR_PRE));
12090     return BB;
12091   case ARM::t2STRB_preidx:
12092     MI.setDesc(TII->get(ARM::t2STRB_PRE));
12093     return BB;
12094   case ARM::t2STRH_preidx:
12095     MI.setDesc(TII->get(ARM::t2STRH_PRE));
12096     return BB;
12097 
12098   case ARM::STRi_preidx:
12099   case ARM::STRBi_preidx: {
12100     unsigned NewOpc = MI.getOpcode() == ARM::STRi_preidx ? ARM::STR_PRE_IMM
12101                                                          : ARM::STRB_PRE_IMM;
12102     // Decode the offset.
12103     unsigned Offset = MI.getOperand(4).getImm();
12104     bool isSub = ARM_AM::getAM2Op(Offset) == ARM_AM::sub;
12105     Offset = ARM_AM::getAM2Offset(Offset);
12106     if (isSub)
12107       Offset = -Offset;
12108 
12109     MachineMemOperand *MMO = *MI.memoperands_begin();
12110     BuildMI(*BB, MI, dl, TII->get(NewOpc))
12111         .add(MI.getOperand(0)) // Rn_wb
12112         .add(MI.getOperand(1)) // Rt
12113         .add(MI.getOperand(2)) // Rn
12114         .addImm(Offset)        // offset (skip GPR==zero_reg)
12115         .add(MI.getOperand(5)) // pred
12116         .add(MI.getOperand(6))
12117         .addMemOperand(MMO);
12118     MI.eraseFromParent();
12119     return BB;
12120   }
12121   case ARM::STRr_preidx:
12122   case ARM::STRBr_preidx:
12123   case ARM::STRH_preidx: {
12124     unsigned NewOpc;
12125     switch (MI.getOpcode()) {
12126     default: llvm_unreachable("unexpected opcode!");
12127     case ARM::STRr_preidx: NewOpc = ARM::STR_PRE_REG; break;
12128     case ARM::STRBr_preidx: NewOpc = ARM::STRB_PRE_REG; break;
12129     case ARM::STRH_preidx: NewOpc = ARM::STRH_PRE; break;
12130     }
12131     MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(NewOpc));
12132     for (const MachineOperand &MO : MI.operands())
12133       MIB.add(MO);
12134     MI.eraseFromParent();
12135     return BB;
12136   }
12137 
12138   case ARM::tMOVCCr_pseudo: {
12139     // To "insert" a SELECT_CC instruction, we actually have to insert the
12140     // diamond control-flow pattern.  The incoming instruction knows the
12141     // destination vreg to set, the condition code register to branch on, the
12142     // true/false values to select between, and a branch opcode to use.
12143     const BasicBlock *LLVM_BB = BB->getBasicBlock();
12144     MachineFunction::iterator It = ++BB->getIterator();
12145 
12146     //  thisMBB:
12147     //  ...
12148     //   TrueVal = ...
12149     //   cmpTY ccX, r1, r2
12150     //   bCC copy1MBB
12151     //   fallthrough --> copy0MBB
12152     MachineBasicBlock *thisMBB  = BB;
12153     MachineFunction *F = BB->getParent();
12154     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
12155     MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
12156     F->insert(It, copy0MBB);
12157     F->insert(It, sinkMBB);
12158 
12159     // Set the call frame size on entry to the new basic blocks.
12160     unsigned CallFrameSize = TII->getCallFrameSizeAt(MI);
12161     copy0MBB->setCallFrameSize(CallFrameSize);
12162     sinkMBB->setCallFrameSize(CallFrameSize);
12163 
12164     // Check whether CPSR is live past the tMOVCCr_pseudo.
12165     const TargetRegisterInfo *TRI = Subtarget->getRegisterInfo();
12166     if (!MI.killsRegister(ARM::CPSR) &&
12167         !checkAndUpdateCPSRKill(MI, thisMBB, TRI)) {
12168       copy0MBB->addLiveIn(ARM::CPSR);
12169       sinkMBB->addLiveIn(ARM::CPSR);
12170     }
12171 
12172     // Transfer the remainder of BB and its successor edges to sinkMBB.
12173     sinkMBB->splice(sinkMBB->begin(), BB,
12174                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
12175     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
12176 
12177     BB->addSuccessor(copy0MBB);
12178     BB->addSuccessor(sinkMBB);
12179 
12180     BuildMI(BB, dl, TII->get(ARM::tBcc))
12181         .addMBB(sinkMBB)
12182         .addImm(MI.getOperand(3).getImm())
12183         .addReg(MI.getOperand(4).getReg());
12184 
12185     //  copy0MBB:
12186     //   %FalseValue = ...
12187     //   # fallthrough to sinkMBB
12188     BB = copy0MBB;
12189 
12190     // Update machine-CFG edges
12191     BB->addSuccessor(sinkMBB);
12192 
12193     //  sinkMBB:
12194     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
12195     //  ...
12196     BB = sinkMBB;
12197     BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), MI.getOperand(0).getReg())
12198         .addReg(MI.getOperand(1).getReg())
12199         .addMBB(copy0MBB)
12200         .addReg(MI.getOperand(2).getReg())
12201         .addMBB(thisMBB);
12202 
12203     MI.eraseFromParent(); // The pseudo instruction is gone now.
12204     return BB;
12205   }
12206 
12207   case ARM::BCCi64:
12208   case ARM::BCCZi64: {
12209     // If there is an unconditional branch to the other successor, remove it.
12210     BB->erase(std::next(MachineBasicBlock::iterator(MI)), BB->end());
12211 
12212     // Compare both parts that make up the double comparison separately for
12213     // equality.
12214     bool RHSisZero = MI.getOpcode() == ARM::BCCZi64;
12215 
12216     Register LHS1 = MI.getOperand(1).getReg();
12217     Register LHS2 = MI.getOperand(2).getReg();
12218     if (RHSisZero) {
12219       BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
12220           .addReg(LHS1)
12221           .addImm(0)
12222           .add(predOps(ARMCC::AL));
12223       BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
12224         .addReg(LHS2).addImm(0)
12225         .addImm(ARMCC::EQ).addReg(ARM::CPSR);
12226     } else {
12227       Register RHS1 = MI.getOperand(3).getReg();
12228       Register RHS2 = MI.getOperand(4).getReg();
12229       BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
12230           .addReg(LHS1)
12231           .addReg(RHS1)
12232           .add(predOps(ARMCC::AL));
12233       BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
12234         .addReg(LHS2).addReg(RHS2)
12235         .addImm(ARMCC::EQ).addReg(ARM::CPSR);
12236     }
12237 
12238     MachineBasicBlock *destMBB = MI.getOperand(RHSisZero ? 3 : 5).getMBB();
12239     MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB);
12240     if (MI.getOperand(0).getImm() == ARMCC::NE)
12241       std::swap(destMBB, exitMBB);
12242 
12243     BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
12244       .addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR);
12245     if (isThumb2)
12246       BuildMI(BB, dl, TII->get(ARM::t2B))
12247           .addMBB(exitMBB)
12248           .add(predOps(ARMCC::AL));
12249     else
12250       BuildMI(BB, dl, TII->get(ARM::B)) .addMBB(exitMBB);
12251 
12252     MI.eraseFromParent(); // The pseudo instruction is gone now.
12253     return BB;
12254   }
12255 
12256   case ARM::Int_eh_sjlj_setjmp:
12257   case ARM::Int_eh_sjlj_setjmp_nofp:
12258   case ARM::tInt_eh_sjlj_setjmp:
12259   case ARM::t2Int_eh_sjlj_setjmp:
12260   case ARM::t2Int_eh_sjlj_setjmp_nofp:
12261     return BB;
12262 
12263   case ARM::Int_eh_sjlj_setup_dispatch:
12264     EmitSjLjDispatchBlock(MI, BB);
12265     return BB;
12266 
12267   case ARM::ABS:
12268   case ARM::t2ABS: {
12269     // To insert an ABS instruction, we have to insert the
12270     // diamond control-flow pattern.  The incoming instruction knows the
12271     // source vreg to test against 0, the destination vreg to set,
12272     // the condition code register to branch on, the
12273     // true/false values to select between, and a branch opcode to use.
12274     // It transforms
12275     //     V1 = ABS V0
12276     // into
12277     //     V2 = MOVS V0
12278     //     BCC                      (branch to SinkBB if V0 >= 0)
12279     //     RSBBB: V3 = RSBri V2, 0  (compute ABS if V2 < 0)
12280     //     SinkBB: V1 = PHI(V2, V3)
12281     const BasicBlock *LLVM_BB = BB->getBasicBlock();
12282     MachineFunction::iterator BBI = ++BB->getIterator();
12283     MachineFunction *Fn = BB->getParent();
12284     MachineBasicBlock *RSBBB = Fn->CreateMachineBasicBlock(LLVM_BB);
12285     MachineBasicBlock *SinkBB  = Fn->CreateMachineBasicBlock(LLVM_BB);
12286     Fn->insert(BBI, RSBBB);
12287     Fn->insert(BBI, SinkBB);
12288 
12289     Register ABSSrcReg = MI.getOperand(1).getReg();
12290     Register ABSDstReg = MI.getOperand(0).getReg();
12291     bool ABSSrcKIll = MI.getOperand(1).isKill();
12292     bool isThumb2 = Subtarget->isThumb2();
12293     MachineRegisterInfo &MRI = Fn->getRegInfo();
12294     // In Thumb mode S must not be specified if source register is the SP or
12295     // PC and if destination register is the SP, so restrict register class
12296     Register NewRsbDstReg = MRI.createVirtualRegister(
12297         isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass);
12298 
12299     // Transfer the remainder of BB and its successor edges to sinkMBB.
12300     SinkBB->splice(SinkBB->begin(), BB,
12301                    std::next(MachineBasicBlock::iterator(MI)), BB->end());
12302     SinkBB->transferSuccessorsAndUpdatePHIs(BB);
12303 
12304     BB->addSuccessor(RSBBB);
12305     BB->addSuccessor(SinkBB);
12306 
12307     // fall through to SinkMBB
12308     RSBBB->addSuccessor(SinkBB);
12309 
12310     // insert a cmp at the end of BB
12311     BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
12312         .addReg(ABSSrcReg)
12313         .addImm(0)
12314         .add(predOps(ARMCC::AL));
12315 
12316     // insert a bcc with opposite CC to ARMCC::MI at the end of BB
12317     BuildMI(BB, dl,
12318       TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)).addMBB(SinkBB)
12319       .addImm(ARMCC::getOppositeCondition(ARMCC::MI)).addReg(ARM::CPSR);
12320 
12321     // insert rsbri in RSBBB
12322     // Note: BCC and rsbri will be converted into predicated rsbmi
12323     // by if-conversion pass
12324     BuildMI(*RSBBB, RSBBB->begin(), dl,
12325             TII->get(isThumb2 ? ARM::t2RSBri : ARM::RSBri), NewRsbDstReg)
12326         .addReg(ABSSrcReg, ABSSrcKIll ? RegState::Kill : 0)
12327         .addImm(0)
12328         .add(predOps(ARMCC::AL))
12329         .add(condCodeOp());
12330 
12331     // insert PHI in SinkBB,
12332     // reuse ABSDstReg to not change uses of ABS instruction
12333     BuildMI(*SinkBB, SinkBB->begin(), dl,
12334       TII->get(ARM::PHI), ABSDstReg)
12335       .addReg(NewRsbDstReg).addMBB(RSBBB)
12336       .addReg(ABSSrcReg).addMBB(BB);
12337 
12338     // remove ABS instruction
12339     MI.eraseFromParent();
12340 
12341     // return last added BB
12342     return SinkBB;
12343   }
12344   case ARM::COPY_STRUCT_BYVAL_I32:
12345     ++NumLoopByVals;
12346     return EmitStructByval(MI, BB);
12347   case ARM::WIN__CHKSTK:
12348     return EmitLowered__chkstk(MI, BB);
12349   case ARM::WIN__DBZCHK:
12350     return EmitLowered__dbzchk(MI, BB);
12351   }
12352 }
12353 
12354 /// Attaches vregs to MEMCPY that it will use as scratch registers
12355 /// when it is expanded into LDM/STM. This is done as a post-isel lowering
12356 /// instead of as a custom inserter because we need the use list from the SDNode.
12357 static void attachMEMCPYScratchRegs(const ARMSubtarget *Subtarget,
12358                                     MachineInstr &MI, const SDNode *Node) {
12359   bool isThumb1 = Subtarget->isThumb1Only();
12360 
12361   DebugLoc DL = MI.getDebugLoc();
12362   MachineFunction *MF = MI.getParent()->getParent();
12363   MachineRegisterInfo &MRI = MF->getRegInfo();
12364   MachineInstrBuilder MIB(*MF, MI);
12365 
12366   // If the new dst/src is unused mark it as dead.
12367   if (!Node->hasAnyUseOfValue(0)) {
12368     MI.getOperand(0).setIsDead(true);
12369   }
12370   if (!Node->hasAnyUseOfValue(1)) {
12371     MI.getOperand(1).setIsDead(true);
12372   }
12373 
12374   // The MEMCPY both defines and kills the scratch registers.
12375   for (unsigned I = 0; I != MI.getOperand(4).getImm(); ++I) {
12376     Register TmpReg = MRI.createVirtualRegister(isThumb1 ? &ARM::tGPRRegClass
12377                                                          : &ARM::GPRRegClass);
12378     MIB.addReg(TmpReg, RegState::Define|RegState::Dead);
12379   }
12380 }
12381 
12382 void ARMTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
12383                                                       SDNode *Node) const {
12384   if (MI.getOpcode() == ARM::MEMCPY) {
12385     attachMEMCPYScratchRegs(Subtarget, MI, Node);
12386     return;
12387   }
12388 
12389   const MCInstrDesc *MCID = &MI.getDesc();
12390   // Adjust potentially 's' setting instructions after isel, i.e. ADC, SBC, RSB,
12391   // RSC. Coming out of isel, they have an implicit CPSR def, but the optional
12392   // operand is still set to noreg. If needed, set the optional operand's
12393   // register to CPSR, and remove the redundant implicit def.
12394   //
12395   // e.g. ADCS (..., implicit-def CPSR) -> ADC (... opt:def CPSR).
12396 
12397   // Rename pseudo opcodes.
12398   unsigned NewOpc = convertAddSubFlagsOpcode(MI.getOpcode());
12399   unsigned ccOutIdx;
12400   if (NewOpc) {
12401     const ARMBaseInstrInfo *TII = Subtarget->getInstrInfo();
12402     MCID = &TII->get(NewOpc);
12403 
12404     assert(MCID->getNumOperands() ==
12405            MI.getDesc().getNumOperands() + 5 - MI.getDesc().getSize()
12406         && "converted opcode should be the same except for cc_out"
12407            " (and, on Thumb1, pred)");
12408 
12409     MI.setDesc(*MCID);
12410 
12411     // Add the optional cc_out operand
12412     MI.addOperand(MachineOperand::CreateReg(0, /*isDef=*/true));
12413 
12414     // On Thumb1, move all input operands to the end, then add the predicate
12415     if (Subtarget->isThumb1Only()) {
12416       for (unsigned c = MCID->getNumOperands() - 4; c--;) {
12417         MI.addOperand(MI.getOperand(1));
12418         MI.removeOperand(1);
12419       }
12420 
12421       // Restore the ties
12422       for (unsigned i = MI.getNumOperands(); i--;) {
12423         const MachineOperand& op = MI.getOperand(i);
12424         if (op.isReg() && op.isUse()) {
12425           int DefIdx = MCID->getOperandConstraint(i, MCOI::TIED_TO);
12426           if (DefIdx != -1)
12427             MI.tieOperands(DefIdx, i);
12428         }
12429       }
12430 
12431       MI.addOperand(MachineOperand::CreateImm(ARMCC::AL));
12432       MI.addOperand(MachineOperand::CreateReg(0, /*isDef=*/false));
12433       ccOutIdx = 1;
12434     } else
12435       ccOutIdx = MCID->getNumOperands() - 1;
12436   } else
12437     ccOutIdx = MCID->getNumOperands() - 1;
12438 
12439   // Any ARM instruction that sets the 's' bit should specify an optional
12440   // "cc_out" operand in the last operand position.
12441   if (!MI.hasOptionalDef() || !MCID->operands()[ccOutIdx].isOptionalDef()) {
12442     assert(!NewOpc && "Optional cc_out operand required");
12443     return;
12444   }
12445   // Look for an implicit def of CPSR added by MachineInstr ctor. Remove it
12446   // since we already have an optional CPSR def.
12447   bool definesCPSR = false;
12448   bool deadCPSR = false;
12449   for (unsigned i = MCID->getNumOperands(), e = MI.getNumOperands(); i != e;
12450        ++i) {
12451     const MachineOperand &MO = MI.getOperand(i);
12452     if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR) {
12453       definesCPSR = true;
12454       if (MO.isDead())
12455         deadCPSR = true;
12456       MI.removeOperand(i);
12457       break;
12458     }
12459   }
12460   if (!definesCPSR) {
12461     assert(!NewOpc && "Optional cc_out operand required");
12462     return;
12463   }
12464   assert(deadCPSR == !Node->hasAnyUseOfValue(1) && "inconsistent dead flag");
12465   if (deadCPSR) {
12466     assert(!MI.getOperand(ccOutIdx).getReg() &&
12467            "expect uninitialized optional cc_out operand");
12468     // Thumb1 instructions must have the S bit even if the CPSR is dead.
12469     if (!Subtarget->isThumb1Only())
12470       return;
12471   }
12472 
12473   // If this instruction was defined with an optional CPSR def and its dag node
12474   // had a live implicit CPSR def, then activate the optional CPSR def.
12475   MachineOperand &MO = MI.getOperand(ccOutIdx);
12476   MO.setReg(ARM::CPSR);
12477   MO.setIsDef(true);
12478 }
12479 
12480 //===----------------------------------------------------------------------===//
12481 //                           ARM Optimization Hooks
12482 //===----------------------------------------------------------------------===//
12483 
12484 // Helper function that checks if N is a null or all ones constant.
12485 static inline bool isZeroOrAllOnes(SDValue N, bool AllOnes) {
12486   return AllOnes ? isAllOnesConstant(N) : isNullConstant(N);
12487 }
12488 
12489 // Return true if N is conditionally 0 or all ones.
12490 // Detects these expressions where cc is an i1 value:
12491 //
12492 //   (select cc 0, y)   [AllOnes=0]
12493 //   (select cc y, 0)   [AllOnes=0]
12494 //   (zext cc)          [AllOnes=0]
12495 //   (sext cc)          [AllOnes=0/1]
12496 //   (select cc -1, y)  [AllOnes=1]
12497 //   (select cc y, -1)  [AllOnes=1]
12498 //
12499 // Invert is set when N is the null/all ones constant when CC is false.
12500 // OtherOp is set to the alternative value of N.
12501 static bool isConditionalZeroOrAllOnes(SDNode *N, bool AllOnes,
12502                                        SDValue &CC, bool &Invert,
12503                                        SDValue &OtherOp,
12504                                        SelectionDAG &DAG) {
12505   switch (N->getOpcode()) {
12506   default: return false;
12507   case ISD::SELECT: {
12508     CC = N->getOperand(0);
12509     SDValue N1 = N->getOperand(1);
12510     SDValue N2 = N->getOperand(2);
12511     if (isZeroOrAllOnes(N1, AllOnes)) {
12512       Invert = false;
12513       OtherOp = N2;
12514       return true;
12515     }
12516     if (isZeroOrAllOnes(N2, AllOnes)) {
12517       Invert = true;
12518       OtherOp = N1;
12519       return true;
12520     }
12521     return false;
12522   }
12523   case ISD::ZERO_EXTEND:
12524     // (zext cc) can never be the all ones value.
12525     if (AllOnes)
12526       return false;
12527     [[fallthrough]];
12528   case ISD::SIGN_EXTEND: {
12529     SDLoc dl(N);
12530     EVT VT = N->getValueType(0);
12531     CC = N->getOperand(0);
12532     if (CC.getValueType() != MVT::i1 || CC.getOpcode() != ISD::SETCC)
12533       return false;
12534     Invert = !AllOnes;
12535     if (AllOnes)
12536       // When looking for an AllOnes constant, N is an sext, and the 'other'
12537       // value is 0.
12538       OtherOp = DAG.getConstant(0, dl, VT);
12539     else if (N->getOpcode() == ISD::ZERO_EXTEND)
12540       // When looking for a 0 constant, N can be zext or sext.
12541       OtherOp = DAG.getConstant(1, dl, VT);
12542     else
12543       OtherOp = DAG.getAllOnesConstant(dl, VT);
12544     return true;
12545   }
12546   }
12547 }
12548 
12549 // Combine a constant select operand into its use:
12550 //
12551 //   (add (select cc, 0, c), x)  -> (select cc, x, (add, x, c))
12552 //   (sub x, (select cc, 0, c))  -> (select cc, x, (sub, x, c))
12553 //   (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))  [AllOnes=1]
12554 //   (or  (select cc, 0, c), x)  -> (select cc, x, (or, x, c))
12555 //   (xor (select cc, 0, c), x)  -> (select cc, x, (xor, x, c))
12556 //
12557 // The transform is rejected if the select doesn't have a constant operand that
12558 // is null, or all ones when AllOnes is set.
12559 //
12560 // Also recognize sext/zext from i1:
12561 //
12562 //   (add (zext cc), x) -> (select cc (add x, 1), x)
12563 //   (add (sext cc), x) -> (select cc (add x, -1), x)
12564 //
12565 // These transformations eventually create predicated instructions.
12566 //
12567 // @param N       The node to transform.
12568 // @param Slct    The N operand that is a select.
12569 // @param OtherOp The other N operand (x above).
12570 // @param DCI     Context.
12571 // @param AllOnes Require the select constant to be all ones instead of null.
12572 // @returns The new node, or SDValue() on failure.
12573 static
12574 SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
12575                             TargetLowering::DAGCombinerInfo &DCI,
12576                             bool AllOnes = false) {
12577   SelectionDAG &DAG = DCI.DAG;
12578   EVT VT = N->getValueType(0);
12579   SDValue NonConstantVal;
12580   SDValue CCOp;
12581   bool SwapSelectOps;
12582   if (!isConditionalZeroOrAllOnes(Slct.getNode(), AllOnes, CCOp, SwapSelectOps,
12583                                   NonConstantVal, DAG))
12584     return SDValue();
12585 
12586   // Slct is now know to be the desired identity constant when CC is true.
12587   SDValue TrueVal = OtherOp;
12588   SDValue FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT,
12589                                  OtherOp, NonConstantVal);
12590   // Unless SwapSelectOps says CC should be false.
12591   if (SwapSelectOps)
12592     std::swap(TrueVal, FalseVal);
12593 
12594   return DAG.getNode(ISD::SELECT, SDLoc(N), VT,
12595                      CCOp, TrueVal, FalseVal);
12596 }
12597 
12598 // Attempt combineSelectAndUse on each operand of a commutative operator N.
12599 static
12600 SDValue combineSelectAndUseCommutative(SDNode *N, bool AllOnes,
12601                                        TargetLowering::DAGCombinerInfo &DCI) {
12602   SDValue N0 = N->getOperand(0);
12603   SDValue N1 = N->getOperand(1);
12604   if (N0.getNode()->hasOneUse())
12605     if (SDValue Result = combineSelectAndUse(N, N0, N1, DCI, AllOnes))
12606       return Result;
12607   if (N1.getNode()->hasOneUse())
12608     if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI, AllOnes))
12609       return Result;
12610   return SDValue();
12611 }
12612 
12613 static bool IsVUZPShuffleNode(SDNode *N) {
12614   // VUZP shuffle node.
12615   if (N->getOpcode() == ARMISD::VUZP)
12616     return true;
12617 
12618   // "VUZP" on i32 is an alias for VTRN.
12619   if (N->getOpcode() == ARMISD::VTRN && N->getValueType(0) == MVT::v2i32)
12620     return true;
12621 
12622   return false;
12623 }
12624 
12625 static SDValue AddCombineToVPADD(SDNode *N, SDValue N0, SDValue N1,
12626                                  TargetLowering::DAGCombinerInfo &DCI,
12627                                  const ARMSubtarget *Subtarget) {
12628   // Look for ADD(VUZP.0, VUZP.1).
12629   if (!IsVUZPShuffleNode(N0.getNode()) || N0.getNode() != N1.getNode() ||
12630       N0 == N1)
12631    return SDValue();
12632 
12633   // Make sure the ADD is a 64-bit add; there is no 128-bit VPADD.
12634   if (!N->getValueType(0).is64BitVector())
12635     return SDValue();
12636 
12637   // Generate vpadd.
12638   SelectionDAG &DAG = DCI.DAG;
12639   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12640   SDLoc dl(N);
12641   SDNode *Unzip = N0.getNode();
12642   EVT VT = N->getValueType(0);
12643 
12644   SmallVector<SDValue, 8> Ops;
12645   Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpadd, dl,
12646                                 TLI.getPointerTy(DAG.getDataLayout())));
12647   Ops.push_back(Unzip->getOperand(0));
12648   Ops.push_back(Unzip->getOperand(1));
12649 
12650   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, Ops);
12651 }
12652 
12653 static SDValue AddCombineVUZPToVPADDL(SDNode *N, SDValue N0, SDValue N1,
12654                                       TargetLowering::DAGCombinerInfo &DCI,
12655                                       const ARMSubtarget *Subtarget) {
12656   // Check for two extended operands.
12657   if (!(N0.getOpcode() == ISD::SIGN_EXTEND &&
12658         N1.getOpcode() == ISD::SIGN_EXTEND) &&
12659       !(N0.getOpcode() == ISD::ZERO_EXTEND &&
12660         N1.getOpcode() == ISD::ZERO_EXTEND))
12661     return SDValue();
12662 
12663   SDValue N00 = N0.getOperand(0);
12664   SDValue N10 = N1.getOperand(0);
12665 
12666   // Look for ADD(SEXT(VUZP.0), SEXT(VUZP.1))
12667   if (!IsVUZPShuffleNode(N00.getNode()) || N00.getNode() != N10.getNode() ||
12668       N00 == N10)
12669     return SDValue();
12670 
12671   // We only recognize Q register paddl here; this can't be reached until
12672   // after type legalization.
12673   if (!N00.getValueType().is64BitVector() ||
12674       !N0.getValueType().is128BitVector())
12675     return SDValue();
12676 
12677   // Generate vpaddl.
12678   SelectionDAG &DAG = DCI.DAG;
12679   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12680   SDLoc dl(N);
12681   EVT VT = N->getValueType(0);
12682 
12683   SmallVector<SDValue, 8> Ops;
12684   // Form vpaddl.sN or vpaddl.uN depending on the kind of extension.
12685   unsigned Opcode;
12686   if (N0.getOpcode() == ISD::SIGN_EXTEND)
12687     Opcode = Intrinsic::arm_neon_vpaddls;
12688   else
12689     Opcode = Intrinsic::arm_neon_vpaddlu;
12690   Ops.push_back(DAG.getConstant(Opcode, dl,
12691                                 TLI.getPointerTy(DAG.getDataLayout())));
12692   EVT ElemTy = N00.getValueType().getVectorElementType();
12693   unsigned NumElts = VT.getVectorNumElements();
12694   EVT ConcatVT = EVT::getVectorVT(*DAG.getContext(), ElemTy, NumElts * 2);
12695   SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), ConcatVT,
12696                                N00.getOperand(0), N00.getOperand(1));
12697   Ops.push_back(Concat);
12698 
12699   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, Ops);
12700 }
12701 
12702 // FIXME: This function shouldn't be necessary; if we lower BUILD_VECTOR in
12703 // an appropriate manner, we end up with ADD(VUZP(ZEXT(N))), which is
12704 // much easier to match.
12705 static SDValue
12706 AddCombineBUILD_VECTORToVPADDL(SDNode *N, SDValue N0, SDValue N1,
12707                                TargetLowering::DAGCombinerInfo &DCI,
12708                                const ARMSubtarget *Subtarget) {
12709   // Only perform optimization if after legalize, and if NEON is available. We
12710   // also expected both operands to be BUILD_VECTORs.
12711   if (DCI.isBeforeLegalize() || !Subtarget->hasNEON()
12712       || N0.getOpcode() != ISD::BUILD_VECTOR
12713       || N1.getOpcode() != ISD::BUILD_VECTOR)
12714     return SDValue();
12715 
12716   // Check output type since VPADDL operand elements can only be 8, 16, or 32.
12717   EVT VT = N->getValueType(0);
12718   if (!VT.isInteger() || VT.getVectorElementType() == MVT::i64)
12719     return SDValue();
12720 
12721   // Check that the vector operands are of the right form.
12722   // N0 and N1 are BUILD_VECTOR nodes with N number of EXTRACT_VECTOR
12723   // operands, where N is the size of the formed vector.
12724   // Each EXTRACT_VECTOR should have the same input vector and odd or even
12725   // index such that we have a pair wise add pattern.
12726 
12727   // Grab the vector that all EXTRACT_VECTOR nodes should be referencing.
12728   if (N0->getOperand(0)->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
12729     return SDValue();
12730   SDValue Vec = N0->getOperand(0)->getOperand(0);
12731   SDNode *V = Vec.getNode();
12732   unsigned nextIndex = 0;
12733 
12734   // For each operands to the ADD which are BUILD_VECTORs,
12735   // check to see if each of their operands are an EXTRACT_VECTOR with
12736   // the same vector and appropriate index.
12737   for (unsigned i = 0, e = N0->getNumOperands(); i != e; ++i) {
12738     if (N0->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT
12739         && N1->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
12740 
12741       SDValue ExtVec0 = N0->getOperand(i);
12742       SDValue ExtVec1 = N1->getOperand(i);
12743 
12744       // First operand is the vector, verify its the same.
12745       if (V != ExtVec0->getOperand(0).getNode() ||
12746           V != ExtVec1->getOperand(0).getNode())
12747         return SDValue();
12748 
12749       // Second is the constant, verify its correct.
12750       ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(ExtVec0->getOperand(1));
12751       ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(ExtVec1->getOperand(1));
12752 
12753       // For the constant, we want to see all the even or all the odd.
12754       if (!C0 || !C1 || C0->getZExtValue() != nextIndex
12755           || C1->getZExtValue() != nextIndex+1)
12756         return SDValue();
12757 
12758       // Increment index.
12759       nextIndex+=2;
12760     } else
12761       return SDValue();
12762   }
12763 
12764   // Don't generate vpaddl+vmovn; we'll match it to vpadd later. Also make sure
12765   // we're using the entire input vector, otherwise there's a size/legality
12766   // mismatch somewhere.
12767   if (nextIndex != Vec.getValueType().getVectorNumElements() ||
12768       Vec.getValueType().getVectorElementType() == VT.getVectorElementType())
12769     return SDValue();
12770 
12771   // Create VPADDL node.
12772   SelectionDAG &DAG = DCI.DAG;
12773   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12774 
12775   SDLoc dl(N);
12776 
12777   // Build operand list.
12778   SmallVector<SDValue, 8> Ops;
12779   Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddls, dl,
12780                                 TLI.getPointerTy(DAG.getDataLayout())));
12781 
12782   // Input is the vector.
12783   Ops.push_back(Vec);
12784 
12785   // Get widened type and narrowed type.
12786   MVT widenType;
12787   unsigned numElem = VT.getVectorNumElements();
12788 
12789   EVT inputLaneType = Vec.getValueType().getVectorElementType();
12790   switch (inputLaneType.getSimpleVT().SimpleTy) {
12791     case MVT::i8: widenType = MVT::getVectorVT(MVT::i16, numElem); break;
12792     case MVT::i16: widenType = MVT::getVectorVT(MVT::i32, numElem); break;
12793     case MVT::i32: widenType = MVT::getVectorVT(MVT::i64, numElem); break;
12794     default:
12795       llvm_unreachable("Invalid vector element type for padd optimization.");
12796   }
12797 
12798   SDValue tmp = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, widenType, Ops);
12799   unsigned ExtOp = VT.bitsGT(tmp.getValueType()) ? ISD::ANY_EXTEND : ISD::TRUNCATE;
12800   return DAG.getNode(ExtOp, dl, VT, tmp);
12801 }
12802 
12803 static SDValue findMUL_LOHI(SDValue V) {
12804   if (V->getOpcode() == ISD::UMUL_LOHI ||
12805       V->getOpcode() == ISD::SMUL_LOHI)
12806     return V;
12807   return SDValue();
12808 }
12809 
12810 static SDValue AddCombineTo64BitSMLAL16(SDNode *AddcNode, SDNode *AddeNode,
12811                                         TargetLowering::DAGCombinerInfo &DCI,
12812                                         const ARMSubtarget *Subtarget) {
12813   if (!Subtarget->hasBaseDSP())
12814     return SDValue();
12815 
12816   // SMLALBB, SMLALBT, SMLALTB, SMLALTT multiply two 16-bit values and
12817   // accumulates the product into a 64-bit value. The 16-bit values will
12818   // be sign extended somehow or SRA'd into 32-bit values
12819   // (addc (adde (mul 16bit, 16bit), lo), hi)
12820   SDValue Mul = AddcNode->getOperand(0);
12821   SDValue Lo = AddcNode->getOperand(1);
12822   if (Mul.getOpcode() != ISD::MUL) {
12823     Lo = AddcNode->getOperand(0);
12824     Mul = AddcNode->getOperand(1);
12825     if (Mul.getOpcode() != ISD::MUL)
12826       return SDValue();
12827   }
12828 
12829   SDValue SRA = AddeNode->getOperand(0);
12830   SDValue Hi = AddeNode->getOperand(1);
12831   if (SRA.getOpcode() != ISD::SRA) {
12832     SRA = AddeNode->getOperand(1);
12833     Hi = AddeNode->getOperand(0);
12834     if (SRA.getOpcode() != ISD::SRA)
12835       return SDValue();
12836   }
12837   if (auto Const = dyn_cast<ConstantSDNode>(SRA.getOperand(1))) {
12838     if (Const->getZExtValue() != 31)
12839       return SDValue();
12840   } else
12841     return SDValue();
12842 
12843   if (SRA.getOperand(0) != Mul)
12844     return SDValue();
12845 
12846   SelectionDAG &DAG = DCI.DAG;
12847   SDLoc dl(AddcNode);
12848   unsigned Opcode = 0;
12849   SDValue Op0;
12850   SDValue Op1;
12851 
12852   if (isS16(Mul.getOperand(0), DAG) && isS16(Mul.getOperand(1), DAG)) {
12853     Opcode = ARMISD::SMLALBB;
12854     Op0 = Mul.getOperand(0);
12855     Op1 = Mul.getOperand(1);
12856   } else if (isS16(Mul.getOperand(0), DAG) && isSRA16(Mul.getOperand(1))) {
12857     Opcode = ARMISD::SMLALBT;
12858     Op0 = Mul.getOperand(0);
12859     Op1 = Mul.getOperand(1).getOperand(0);
12860   } else if (isSRA16(Mul.getOperand(0)) && isS16(Mul.getOperand(1), DAG)) {
12861     Opcode = ARMISD::SMLALTB;
12862     Op0 = Mul.getOperand(0).getOperand(0);
12863     Op1 = Mul.getOperand(1);
12864   } else if (isSRA16(Mul.getOperand(0)) && isSRA16(Mul.getOperand(1))) {
12865     Opcode = ARMISD::SMLALTT;
12866     Op0 = Mul->getOperand(0).getOperand(0);
12867     Op1 = Mul->getOperand(1).getOperand(0);
12868   }
12869 
12870   if (!Op0 || !Op1)
12871     return SDValue();
12872 
12873   SDValue SMLAL = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32),
12874                               Op0, Op1, Lo, Hi);
12875   // Replace the ADDs' nodes uses by the MLA node's values.
12876   SDValue HiMLALResult(SMLAL.getNode(), 1);
12877   SDValue LoMLALResult(SMLAL.getNode(), 0);
12878 
12879   DAG.ReplaceAllUsesOfValueWith(SDValue(AddcNode, 0), LoMLALResult);
12880   DAG.ReplaceAllUsesOfValueWith(SDValue(AddeNode, 0), HiMLALResult);
12881 
12882   // Return original node to notify the driver to stop replacing.
12883   SDValue resNode(AddcNode, 0);
12884   return resNode;
12885 }
12886 
12887 static SDValue AddCombineTo64bitMLAL(SDNode *AddeSubeNode,
12888                                      TargetLowering::DAGCombinerInfo &DCI,
12889                                      const ARMSubtarget *Subtarget) {
12890   // Look for multiply add opportunities.
12891   // The pattern is a ISD::UMUL_LOHI followed by two add nodes, where
12892   // each add nodes consumes a value from ISD::UMUL_LOHI and there is
12893   // a glue link from the first add to the second add.
12894   // If we find this pattern, we can replace the U/SMUL_LOHI, ADDC, and ADDE by
12895   // a S/UMLAL instruction.
12896   //                  UMUL_LOHI
12897   //                 / :lo    \ :hi
12898   //                V          \          [no multiline comment]
12899   //    loAdd ->  ADDC         |
12900   //                 \ :carry /
12901   //                  V      V
12902   //                    ADDE   <- hiAdd
12903   //
12904   // In the special case where only the higher part of a signed result is used
12905   // and the add to the low part of the result of ISD::UMUL_LOHI adds or subtracts
12906   // a constant with the exact value of 0x80000000, we recognize we are dealing
12907   // with a "rounded multiply and add" (or subtract) and transform it into
12908   // either a ARMISD::SMMLAR or ARMISD::SMMLSR respectively.
12909 
12910   assert((AddeSubeNode->getOpcode() == ARMISD::ADDE ||
12911           AddeSubeNode->getOpcode() == ARMISD::SUBE) &&
12912          "Expect an ADDE or SUBE");
12913 
12914   assert(AddeSubeNode->getNumOperands() == 3 &&
12915          AddeSubeNode->getOperand(2).getValueType() == MVT::i32 &&
12916          "ADDE node has the wrong inputs");
12917 
12918   // Check that we are chained to the right ADDC or SUBC node.
12919   SDNode *AddcSubcNode = AddeSubeNode->getOperand(2).getNode();
12920   if ((AddeSubeNode->getOpcode() == ARMISD::ADDE &&
12921        AddcSubcNode->getOpcode() != ARMISD::ADDC) ||
12922       (AddeSubeNode->getOpcode() == ARMISD::SUBE &&
12923        AddcSubcNode->getOpcode() != ARMISD::SUBC))
12924     return SDValue();
12925 
12926   SDValue AddcSubcOp0 = AddcSubcNode->getOperand(0);
12927   SDValue AddcSubcOp1 = AddcSubcNode->getOperand(1);
12928 
12929   // Check if the two operands are from the same mul_lohi node.
12930   if (AddcSubcOp0.getNode() == AddcSubcOp1.getNode())
12931     return SDValue();
12932 
12933   assert(AddcSubcNode->getNumValues() == 2 &&
12934          AddcSubcNode->getValueType(0) == MVT::i32 &&
12935          "Expect ADDC with two result values. First: i32");
12936 
12937   // Check that the ADDC adds the low result of the S/UMUL_LOHI. If not, it
12938   // maybe a SMLAL which multiplies two 16-bit values.
12939   if (AddeSubeNode->getOpcode() == ARMISD::ADDE &&
12940       AddcSubcOp0->getOpcode() != ISD::UMUL_LOHI &&
12941       AddcSubcOp0->getOpcode() != ISD::SMUL_LOHI &&
12942       AddcSubcOp1->getOpcode() != ISD::UMUL_LOHI &&
12943       AddcSubcOp1->getOpcode() != ISD::SMUL_LOHI)
12944     return AddCombineTo64BitSMLAL16(AddcSubcNode, AddeSubeNode, DCI, Subtarget);
12945 
12946   // Check for the triangle shape.
12947   SDValue AddeSubeOp0 = AddeSubeNode->getOperand(0);
12948   SDValue AddeSubeOp1 = AddeSubeNode->getOperand(1);
12949 
12950   // Make sure that the ADDE/SUBE operands are not coming from the same node.
12951   if (AddeSubeOp0.getNode() == AddeSubeOp1.getNode())
12952     return SDValue();
12953 
12954   // Find the MUL_LOHI node walking up ADDE/SUBE's operands.
12955   bool IsLeftOperandMUL = false;
12956   SDValue MULOp = findMUL_LOHI(AddeSubeOp0);
12957   if (MULOp == SDValue())
12958     MULOp = findMUL_LOHI(AddeSubeOp1);
12959   else
12960     IsLeftOperandMUL = true;
12961   if (MULOp == SDValue())
12962     return SDValue();
12963 
12964   // Figure out the right opcode.
12965   unsigned Opc = MULOp->getOpcode();
12966   unsigned FinalOpc = (Opc == ISD::SMUL_LOHI) ? ARMISD::SMLAL : ARMISD::UMLAL;
12967 
12968   // Figure out the high and low input values to the MLAL node.
12969   SDValue *HiAddSub = nullptr;
12970   SDValue *LoMul = nullptr;
12971   SDValue *LowAddSub = nullptr;
12972 
12973   // Ensure that ADDE/SUBE is from high result of ISD::xMUL_LOHI.
12974   if ((AddeSubeOp0 != MULOp.getValue(1)) && (AddeSubeOp1 != MULOp.getValue(1)))
12975     return SDValue();
12976 
12977   if (IsLeftOperandMUL)
12978     HiAddSub = &AddeSubeOp1;
12979   else
12980     HiAddSub = &AddeSubeOp0;
12981 
12982   // Ensure that LoMul and LowAddSub are taken from correct ISD::SMUL_LOHI node
12983   // whose low result is fed to the ADDC/SUBC we are checking.
12984 
12985   if (AddcSubcOp0 == MULOp.getValue(0)) {
12986     LoMul = &AddcSubcOp0;
12987     LowAddSub = &AddcSubcOp1;
12988   }
12989   if (AddcSubcOp1 == MULOp.getValue(0)) {
12990     LoMul = &AddcSubcOp1;
12991     LowAddSub = &AddcSubcOp0;
12992   }
12993 
12994   if (!LoMul)
12995     return SDValue();
12996 
12997   // If HiAddSub is the same node as ADDC/SUBC or is a predecessor of ADDC/SUBC
12998   // the replacement below will create a cycle.
12999   if (AddcSubcNode == HiAddSub->getNode() ||
13000       AddcSubcNode->isPredecessorOf(HiAddSub->getNode()))
13001     return SDValue();
13002 
13003   // Create the merged node.
13004   SelectionDAG &DAG = DCI.DAG;
13005 
13006   // Start building operand list.
13007   SmallVector<SDValue, 8> Ops;
13008   Ops.push_back(LoMul->getOperand(0));
13009   Ops.push_back(LoMul->getOperand(1));
13010 
13011   // Check whether we can use SMMLAR, SMMLSR or SMMULR instead.  For this to be
13012   // the case, we must be doing signed multiplication and only use the higher
13013   // part of the result of the MLAL, furthermore the LowAddSub must be a constant
13014   // addition or subtraction with the value of 0x800000.
13015   if (Subtarget->hasV6Ops() && Subtarget->hasDSP() && Subtarget->useMulOps() &&
13016       FinalOpc == ARMISD::SMLAL && !AddeSubeNode->hasAnyUseOfValue(1) &&
13017       LowAddSub->getNode()->getOpcode() == ISD::Constant &&
13018       static_cast<ConstantSDNode *>(LowAddSub->getNode())->getZExtValue() ==
13019           0x80000000) {
13020     Ops.push_back(*HiAddSub);
13021     if (AddcSubcNode->getOpcode() == ARMISD::SUBC) {
13022       FinalOpc = ARMISD::SMMLSR;
13023     } else {
13024       FinalOpc = ARMISD::SMMLAR;
13025     }
13026     SDValue NewNode = DAG.getNode(FinalOpc, SDLoc(AddcSubcNode), MVT::i32, Ops);
13027     DAG.ReplaceAllUsesOfValueWith(SDValue(AddeSubeNode, 0), NewNode);
13028 
13029     return SDValue(AddeSubeNode, 0);
13030   } else if (AddcSubcNode->getOpcode() == ARMISD::SUBC)
13031     // SMMLS is generated during instruction selection and the rest of this
13032     // function can not handle the case where AddcSubcNode is a SUBC.
13033     return SDValue();
13034 
13035   // Finish building the operand list for {U/S}MLAL
13036   Ops.push_back(*LowAddSub);
13037   Ops.push_back(*HiAddSub);
13038 
13039   SDValue MLALNode = DAG.getNode(FinalOpc, SDLoc(AddcSubcNode),
13040                                  DAG.getVTList(MVT::i32, MVT::i32), Ops);
13041 
13042   // Replace the ADDs' nodes uses by the MLA node's values.
13043   SDValue HiMLALResult(MLALNode.getNode(), 1);
13044   DAG.ReplaceAllUsesOfValueWith(SDValue(AddeSubeNode, 0), HiMLALResult);
13045 
13046   SDValue LoMLALResult(MLALNode.getNode(), 0);
13047   DAG.ReplaceAllUsesOfValueWith(SDValue(AddcSubcNode, 0), LoMLALResult);
13048 
13049   // Return original node to notify the driver to stop replacing.
13050   return SDValue(AddeSubeNode, 0);
13051 }
13052 
13053 static SDValue AddCombineTo64bitUMAAL(SDNode *AddeNode,
13054                                       TargetLowering::DAGCombinerInfo &DCI,
13055                                       const ARMSubtarget *Subtarget) {
13056   // UMAAL is similar to UMLAL except that it adds two unsigned values.
13057   // While trying to combine for the other MLAL nodes, first search for the
13058   // chance to use UMAAL. Check if Addc uses a node which has already
13059   // been combined into a UMLAL. The other pattern is UMLAL using Addc/Adde
13060   // as the addend, and it's handled in PerformUMLALCombine.
13061 
13062   if (!Subtarget->hasV6Ops() || !Subtarget->hasDSP())
13063     return AddCombineTo64bitMLAL(AddeNode, DCI, Subtarget);
13064 
13065   // Check that we have a glued ADDC node.
13066   SDNode* AddcNode = AddeNode->getOperand(2).getNode();
13067   if (AddcNode->getOpcode() != ARMISD::ADDC)
13068     return SDValue();
13069 
13070   // Find the converted UMAAL or quit if it doesn't exist.
13071   SDNode *UmlalNode = nullptr;
13072   SDValue AddHi;
13073   if (AddcNode->getOperand(0).getOpcode() == ARMISD::UMLAL) {
13074     UmlalNode = AddcNode->getOperand(0).getNode();
13075     AddHi = AddcNode->getOperand(1);
13076   } else if (AddcNode->getOperand(1).getOpcode() == ARMISD::UMLAL) {
13077     UmlalNode = AddcNode->getOperand(1).getNode();
13078     AddHi = AddcNode->getOperand(0);
13079   } else {
13080     return AddCombineTo64bitMLAL(AddeNode, DCI, Subtarget);
13081   }
13082 
13083   // The ADDC should be glued to an ADDE node, which uses the same UMLAL as
13084   // the ADDC as well as Zero.
13085   if (!isNullConstant(UmlalNode->getOperand(3)))
13086     return SDValue();
13087 
13088   if ((isNullConstant(AddeNode->getOperand(0)) &&
13089        AddeNode->getOperand(1).getNode() == UmlalNode) ||
13090       (AddeNode->getOperand(0).getNode() == UmlalNode &&
13091        isNullConstant(AddeNode->getOperand(1)))) {
13092     SelectionDAG &DAG = DCI.DAG;
13093     SDValue Ops[] = { UmlalNode->getOperand(0), UmlalNode->getOperand(1),
13094                       UmlalNode->getOperand(2), AddHi };
13095     SDValue UMAAL =  DAG.getNode(ARMISD::UMAAL, SDLoc(AddcNode),
13096                                  DAG.getVTList(MVT::i32, MVT::i32), Ops);
13097 
13098     // Replace the ADDs' nodes uses by the UMAAL node's values.
13099     DAG.ReplaceAllUsesOfValueWith(SDValue(AddeNode, 0), SDValue(UMAAL.getNode(), 1));
13100     DAG.ReplaceAllUsesOfValueWith(SDValue(AddcNode, 0), SDValue(UMAAL.getNode(), 0));
13101 
13102     // Return original node to notify the driver to stop replacing.
13103     return SDValue(AddeNode, 0);
13104   }
13105   return SDValue();
13106 }
13107 
13108 static SDValue PerformUMLALCombine(SDNode *N, SelectionDAG &DAG,
13109                                    const ARMSubtarget *Subtarget) {
13110   if (!Subtarget->hasV6Ops() || !Subtarget->hasDSP())
13111     return SDValue();
13112 
13113   // Check that we have a pair of ADDC and ADDE as operands.
13114   // Both addends of the ADDE must be zero.
13115   SDNode* AddcNode = N->getOperand(2).getNode();
13116   SDNode* AddeNode = N->getOperand(3).getNode();
13117   if ((AddcNode->getOpcode() == ARMISD::ADDC) &&
13118       (AddeNode->getOpcode() == ARMISD::ADDE) &&
13119       isNullConstant(AddeNode->getOperand(0)) &&
13120       isNullConstant(AddeNode->getOperand(1)) &&
13121       (AddeNode->getOperand(2).getNode() == AddcNode))
13122     return DAG.getNode(ARMISD::UMAAL, SDLoc(N),
13123                        DAG.getVTList(MVT::i32, MVT::i32),
13124                        {N->getOperand(0), N->getOperand(1),
13125                         AddcNode->getOperand(0), AddcNode->getOperand(1)});
13126   else
13127     return SDValue();
13128 }
13129 
13130 static SDValue PerformAddcSubcCombine(SDNode *N,
13131                                       TargetLowering::DAGCombinerInfo &DCI,
13132                                       const ARMSubtarget *Subtarget) {
13133   SelectionDAG &DAG(DCI.DAG);
13134 
13135   if (N->getOpcode() == ARMISD::SUBC && N->hasAnyUseOfValue(1)) {
13136     // (SUBC (ADDE 0, 0, C), 1) -> C
13137     SDValue LHS = N->getOperand(0);
13138     SDValue RHS = N->getOperand(1);
13139     if (LHS->getOpcode() == ARMISD::ADDE &&
13140         isNullConstant(LHS->getOperand(0)) &&
13141         isNullConstant(LHS->getOperand(1)) && isOneConstant(RHS)) {
13142       return DCI.CombineTo(N, SDValue(N, 0), LHS->getOperand(2));
13143     }
13144   }
13145 
13146   if (Subtarget->isThumb1Only()) {
13147     SDValue RHS = N->getOperand(1);
13148     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
13149       int32_t imm = C->getSExtValue();
13150       if (imm < 0 && imm > std::numeric_limits<int>::min()) {
13151         SDLoc DL(N);
13152         RHS = DAG.getConstant(-imm, DL, MVT::i32);
13153         unsigned Opcode = (N->getOpcode() == ARMISD::ADDC) ? ARMISD::SUBC
13154                                                            : ARMISD::ADDC;
13155         return DAG.getNode(Opcode, DL, N->getVTList(), N->getOperand(0), RHS);
13156       }
13157     }
13158   }
13159 
13160   return SDValue();
13161 }
13162 
13163 static SDValue PerformAddeSubeCombine(SDNode *N,
13164                                       TargetLowering::DAGCombinerInfo &DCI,
13165                                       const ARMSubtarget *Subtarget) {
13166   if (Subtarget->isThumb1Only()) {
13167     SelectionDAG &DAG = DCI.DAG;
13168     SDValue RHS = N->getOperand(1);
13169     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
13170       int64_t imm = C->getSExtValue();
13171       if (imm < 0) {
13172         SDLoc DL(N);
13173 
13174         // The with-carry-in form matches bitwise not instead of the negation.
13175         // Effectively, the inverse interpretation of the carry flag already
13176         // accounts for part of the negation.
13177         RHS = DAG.getConstant(~imm, DL, MVT::i32);
13178 
13179         unsigned Opcode = (N->getOpcode() == ARMISD::ADDE) ? ARMISD::SUBE
13180                                                            : ARMISD::ADDE;
13181         return DAG.getNode(Opcode, DL, N->getVTList(),
13182                            N->getOperand(0), RHS, N->getOperand(2));
13183       }
13184     }
13185   } else if (N->getOperand(1)->getOpcode() == ISD::SMUL_LOHI) {
13186     return AddCombineTo64bitMLAL(N, DCI, Subtarget);
13187   }
13188   return SDValue();
13189 }
13190 
13191 static SDValue PerformSELECTCombine(SDNode *N,
13192                                     TargetLowering::DAGCombinerInfo &DCI,
13193                                     const ARMSubtarget *Subtarget) {
13194   if (!Subtarget->hasMVEIntegerOps())
13195     return SDValue();
13196 
13197   SDLoc dl(N);
13198   SDValue SetCC;
13199   SDValue LHS;
13200   SDValue RHS;
13201   ISD::CondCode CC;
13202   SDValue TrueVal;
13203   SDValue FalseVal;
13204 
13205   if (N->getOpcode() == ISD::SELECT &&
13206       N->getOperand(0)->getOpcode() == ISD::SETCC) {
13207     SetCC = N->getOperand(0);
13208     LHS = SetCC->getOperand(0);
13209     RHS = SetCC->getOperand(1);
13210     CC = cast<CondCodeSDNode>(SetCC->getOperand(2))->get();
13211     TrueVal = N->getOperand(1);
13212     FalseVal = N->getOperand(2);
13213   } else if (N->getOpcode() == ISD::SELECT_CC) {
13214     LHS = N->getOperand(0);
13215     RHS = N->getOperand(1);
13216     CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
13217     TrueVal = N->getOperand(2);
13218     FalseVal = N->getOperand(3);
13219   } else {
13220     return SDValue();
13221   }
13222 
13223   unsigned int Opcode = 0;
13224   if ((TrueVal->getOpcode() == ISD::VECREDUCE_UMIN ||
13225        FalseVal->getOpcode() == ISD::VECREDUCE_UMIN) &&
13226       (CC == ISD::SETULT || CC == ISD::SETUGT)) {
13227     Opcode = ARMISD::VMINVu;
13228     if (CC == ISD::SETUGT)
13229       std::swap(TrueVal, FalseVal);
13230   } else if ((TrueVal->getOpcode() == ISD::VECREDUCE_SMIN ||
13231               FalseVal->getOpcode() == ISD::VECREDUCE_SMIN) &&
13232              (CC == ISD::SETLT || CC == ISD::SETGT)) {
13233     Opcode = ARMISD::VMINVs;
13234     if (CC == ISD::SETGT)
13235       std::swap(TrueVal, FalseVal);
13236   } else if ((TrueVal->getOpcode() == ISD::VECREDUCE_UMAX ||
13237               FalseVal->getOpcode() == ISD::VECREDUCE_UMAX) &&
13238              (CC == ISD::SETUGT || CC == ISD::SETULT)) {
13239     Opcode = ARMISD::VMAXVu;
13240     if (CC == ISD::SETULT)
13241       std::swap(TrueVal, FalseVal);
13242   } else if ((TrueVal->getOpcode() == ISD::VECREDUCE_SMAX ||
13243               FalseVal->getOpcode() == ISD::VECREDUCE_SMAX) &&
13244              (CC == ISD::SETGT || CC == ISD::SETLT)) {
13245     Opcode = ARMISD::VMAXVs;
13246     if (CC == ISD::SETLT)
13247       std::swap(TrueVal, FalseVal);
13248   } else
13249     return SDValue();
13250 
13251   // Normalise to the right hand side being the vector reduction
13252   switch (TrueVal->getOpcode()) {
13253   case ISD::VECREDUCE_UMIN:
13254   case ISD::VECREDUCE_SMIN:
13255   case ISD::VECREDUCE_UMAX:
13256   case ISD::VECREDUCE_SMAX:
13257     std::swap(LHS, RHS);
13258     std::swap(TrueVal, FalseVal);
13259     break;
13260   }
13261 
13262   EVT VectorType = FalseVal->getOperand(0).getValueType();
13263 
13264   if (VectorType != MVT::v16i8 && VectorType != MVT::v8i16 &&
13265       VectorType != MVT::v4i32)
13266     return SDValue();
13267 
13268   EVT VectorScalarType = VectorType.getVectorElementType();
13269 
13270   // The values being selected must also be the ones being compared
13271   if (TrueVal != LHS || FalseVal != RHS)
13272     return SDValue();
13273 
13274   EVT LeftType = LHS->getValueType(0);
13275   EVT RightType = RHS->getValueType(0);
13276 
13277   // The types must match the reduced type too
13278   if (LeftType != VectorScalarType || RightType != VectorScalarType)
13279     return SDValue();
13280 
13281   // Legalise the scalar to an i32
13282   if (VectorScalarType != MVT::i32)
13283     LHS = DCI.DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
13284 
13285   // Generate the reduction as an i32 for legalisation purposes
13286   auto Reduction =
13287       DCI.DAG.getNode(Opcode, dl, MVT::i32, LHS, RHS->getOperand(0));
13288 
13289   // The result isn't actually an i32 so truncate it back to its original type
13290   if (VectorScalarType != MVT::i32)
13291     Reduction = DCI.DAG.getNode(ISD::TRUNCATE, dl, VectorScalarType, Reduction);
13292 
13293   return Reduction;
13294 }
13295 
13296 // A special combine for the vqdmulh family of instructions. This is one of the
13297 // potential set of patterns that could patch this instruction. The base pattern
13298 // you would expect to be min(max(ashr(mul(mul(sext(x), 2), sext(y)), 16))).
13299 // This matches the different min(max(ashr(mul(mul(sext(x), sext(y)), 2), 16))),
13300 // which llvm will have optimized to min(ashr(mul(sext(x), sext(y)), 15))) as
13301 // the max is unnecessary.
13302 static SDValue PerformVQDMULHCombine(SDNode *N, SelectionDAG &DAG) {
13303   EVT VT = N->getValueType(0);
13304   SDValue Shft;
13305   ConstantSDNode *Clamp;
13306 
13307   if (!VT.isVector() || VT.getScalarSizeInBits() > 64)
13308     return SDValue();
13309 
13310   if (N->getOpcode() == ISD::SMIN) {
13311     Shft = N->getOperand(0);
13312     Clamp = isConstOrConstSplat(N->getOperand(1));
13313   } else if (N->getOpcode() == ISD::VSELECT) {
13314     // Detect a SMIN, which for an i64 node will be a vselect/setcc, not a smin.
13315     SDValue Cmp = N->getOperand(0);
13316     if (Cmp.getOpcode() != ISD::SETCC ||
13317         cast<CondCodeSDNode>(Cmp.getOperand(2))->get() != ISD::SETLT ||
13318         Cmp.getOperand(0) != N->getOperand(1) ||
13319         Cmp.getOperand(1) != N->getOperand(2))
13320       return SDValue();
13321     Shft = N->getOperand(1);
13322     Clamp = isConstOrConstSplat(N->getOperand(2));
13323   } else
13324     return SDValue();
13325 
13326   if (!Clamp)
13327     return SDValue();
13328 
13329   MVT ScalarType;
13330   int ShftAmt = 0;
13331   switch (Clamp->getSExtValue()) {
13332   case (1 << 7) - 1:
13333     ScalarType = MVT::i8;
13334     ShftAmt = 7;
13335     break;
13336   case (1 << 15) - 1:
13337     ScalarType = MVT::i16;
13338     ShftAmt = 15;
13339     break;
13340   case (1ULL << 31) - 1:
13341     ScalarType = MVT::i32;
13342     ShftAmt = 31;
13343     break;
13344   default:
13345     return SDValue();
13346   }
13347 
13348   if (Shft.getOpcode() != ISD::SRA)
13349     return SDValue();
13350   ConstantSDNode *N1 = isConstOrConstSplat(Shft.getOperand(1));
13351   if (!N1 || N1->getSExtValue() != ShftAmt)
13352     return SDValue();
13353 
13354   SDValue Mul = Shft.getOperand(0);
13355   if (Mul.getOpcode() != ISD::MUL)
13356     return SDValue();
13357 
13358   SDValue Ext0 = Mul.getOperand(0);
13359   SDValue Ext1 = Mul.getOperand(1);
13360   if (Ext0.getOpcode() != ISD::SIGN_EXTEND ||
13361       Ext1.getOpcode() != ISD::SIGN_EXTEND)
13362     return SDValue();
13363   EVT VecVT = Ext0.getOperand(0).getValueType();
13364   if (!VecVT.isPow2VectorType() || VecVT.getVectorNumElements() == 1)
13365     return SDValue();
13366   if (Ext1.getOperand(0).getValueType() != VecVT ||
13367       VecVT.getScalarType() != ScalarType ||
13368       VT.getScalarSizeInBits() < ScalarType.getScalarSizeInBits() * 2)
13369     return SDValue();
13370 
13371   SDLoc DL(Mul);
13372   unsigned LegalLanes = 128 / (ShftAmt + 1);
13373   EVT LegalVecVT = MVT::getVectorVT(ScalarType, LegalLanes);
13374   // For types smaller than legal vectors extend to be legal and only use needed
13375   // lanes.
13376   if (VecVT.getSizeInBits() < 128) {
13377     EVT ExtVecVT =
13378         MVT::getVectorVT(MVT::getIntegerVT(128 / VecVT.getVectorNumElements()),
13379                          VecVT.getVectorNumElements());
13380     SDValue Inp0 =
13381         DAG.getNode(ISD::ANY_EXTEND, DL, ExtVecVT, Ext0.getOperand(0));
13382     SDValue Inp1 =
13383         DAG.getNode(ISD::ANY_EXTEND, DL, ExtVecVT, Ext1.getOperand(0));
13384     Inp0 = DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, LegalVecVT, Inp0);
13385     Inp1 = DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, LegalVecVT, Inp1);
13386     SDValue VQDMULH = DAG.getNode(ARMISD::VQDMULH, DL, LegalVecVT, Inp0, Inp1);
13387     SDValue Trunc = DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, ExtVecVT, VQDMULH);
13388     Trunc = DAG.getNode(ISD::TRUNCATE, DL, VecVT, Trunc);
13389     return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Trunc);
13390   }
13391 
13392   // For larger types, split into legal sized chunks.
13393   assert(VecVT.getSizeInBits() % 128 == 0 && "Expected a power2 type");
13394   unsigned NumParts = VecVT.getSizeInBits() / 128;
13395   SmallVector<SDValue> Parts;
13396   for (unsigned I = 0; I < NumParts; ++I) {
13397     SDValue Inp0 =
13398         DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, LegalVecVT, Ext0.getOperand(0),
13399                     DAG.getVectorIdxConstant(I * LegalLanes, DL));
13400     SDValue Inp1 =
13401         DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, LegalVecVT, Ext1.getOperand(0),
13402                     DAG.getVectorIdxConstant(I * LegalLanes, DL));
13403     SDValue VQDMULH = DAG.getNode(ARMISD::VQDMULH, DL, LegalVecVT, Inp0, Inp1);
13404     Parts.push_back(VQDMULH);
13405   }
13406   return DAG.getNode(ISD::SIGN_EXTEND, DL, VT,
13407                      DAG.getNode(ISD::CONCAT_VECTORS, DL, VecVT, Parts));
13408 }
13409 
13410 static SDValue PerformVSELECTCombine(SDNode *N,
13411                                      TargetLowering::DAGCombinerInfo &DCI,
13412                                      const ARMSubtarget *Subtarget) {
13413   if (!Subtarget->hasMVEIntegerOps())
13414     return SDValue();
13415 
13416   if (SDValue V = PerformVQDMULHCombine(N, DCI.DAG))
13417     return V;
13418 
13419   // Transforms vselect(not(cond), lhs, rhs) into vselect(cond, rhs, lhs).
13420   //
13421   // We need to re-implement this optimization here as the implementation in the
13422   // Target-Independent DAGCombiner does not handle the kind of constant we make
13423   // (it calls isConstOrConstSplat with AllowTruncation set to false - and for
13424   // good reason, allowing truncation there would break other targets).
13425   //
13426   // Currently, this is only done for MVE, as it's the only target that benefits
13427   // from this transformation (e.g. VPNOT+VPSEL becomes a single VPSEL).
13428   if (N->getOperand(0).getOpcode() != ISD::XOR)
13429     return SDValue();
13430   SDValue XOR = N->getOperand(0);
13431 
13432   // Check if the XOR's RHS is either a 1, or a BUILD_VECTOR of 1s.
13433   // It is important to check with truncation allowed as the BUILD_VECTORs we
13434   // generate in those situations will truncate their operands.
13435   ConstantSDNode *Const =
13436       isConstOrConstSplat(XOR->getOperand(1), /*AllowUndefs*/ false,
13437                           /*AllowTruncation*/ true);
13438   if (!Const || !Const->isOne())
13439     return SDValue();
13440 
13441   // Rewrite into vselect(cond, rhs, lhs).
13442   SDValue Cond = XOR->getOperand(0);
13443   SDValue LHS = N->getOperand(1);
13444   SDValue RHS = N->getOperand(2);
13445   EVT Type = N->getValueType(0);
13446   return DCI.DAG.getNode(ISD::VSELECT, SDLoc(N), Type, Cond, RHS, LHS);
13447 }
13448 
13449 // Convert vsetcc([0,1,2,..], splat(n), ult) -> vctp n
13450 static SDValue PerformVSetCCToVCTPCombine(SDNode *N,
13451                                           TargetLowering::DAGCombinerInfo &DCI,
13452                                           const ARMSubtarget *Subtarget) {
13453   SDValue Op0 = N->getOperand(0);
13454   SDValue Op1 = N->getOperand(1);
13455   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
13456   EVT VT = N->getValueType(0);
13457 
13458   if (!Subtarget->hasMVEIntegerOps() ||
13459       !DCI.DAG.getTargetLoweringInfo().isTypeLegal(VT))
13460     return SDValue();
13461 
13462   if (CC == ISD::SETUGE) {
13463     std::swap(Op0, Op1);
13464     CC = ISD::SETULT;
13465   }
13466 
13467   if (CC != ISD::SETULT || VT.getScalarSizeInBits() != 1 ||
13468       Op0.getOpcode() != ISD::BUILD_VECTOR)
13469     return SDValue();
13470 
13471   // Check first operand is BuildVector of 0,1,2,...
13472   for (unsigned I = 0; I < VT.getVectorNumElements(); I++) {
13473     if (!Op0.getOperand(I).isUndef() &&
13474         !(isa<ConstantSDNode>(Op0.getOperand(I)) &&
13475           Op0.getConstantOperandVal(I) == I))
13476       return SDValue();
13477   }
13478 
13479   // The second is a Splat of Op1S
13480   SDValue Op1S = DCI.DAG.getSplatValue(Op1);
13481   if (!Op1S)
13482     return SDValue();
13483 
13484   unsigned Opc;
13485   switch (VT.getVectorNumElements()) {
13486   case 2:
13487     Opc = Intrinsic::arm_mve_vctp64;
13488     break;
13489   case 4:
13490     Opc = Intrinsic::arm_mve_vctp32;
13491     break;
13492   case 8:
13493     Opc = Intrinsic::arm_mve_vctp16;
13494     break;
13495   case 16:
13496     Opc = Intrinsic::arm_mve_vctp8;
13497     break;
13498   default:
13499     return SDValue();
13500   }
13501 
13502   SDLoc DL(N);
13503   return DCI.DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13504                          DCI.DAG.getConstant(Opc, DL, MVT::i32),
13505                          DCI.DAG.getZExtOrTrunc(Op1S, DL, MVT::i32));
13506 }
13507 
13508 static SDValue PerformABSCombine(SDNode *N,
13509                                  TargetLowering::DAGCombinerInfo &DCI,
13510                                  const ARMSubtarget *Subtarget) {
13511   SelectionDAG &DAG = DCI.DAG;
13512   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13513 
13514   if (TLI.isOperationLegal(N->getOpcode(), N->getValueType(0)))
13515     return SDValue();
13516 
13517   return TLI.expandABS(N, DAG);
13518 }
13519 
13520 /// PerformADDECombine - Target-specific dag combine transform from
13521 /// ARMISD::ADDC, ARMISD::ADDE, and ISD::MUL_LOHI to MLAL or
13522 /// ARMISD::ADDC, ARMISD::ADDE and ARMISD::UMLAL to ARMISD::UMAAL
13523 static SDValue PerformADDECombine(SDNode *N,
13524                                   TargetLowering::DAGCombinerInfo &DCI,
13525                                   const ARMSubtarget *Subtarget) {
13526   // Only ARM and Thumb2 support UMLAL/SMLAL.
13527   if (Subtarget->isThumb1Only())
13528     return PerformAddeSubeCombine(N, DCI, Subtarget);
13529 
13530   // Only perform the checks after legalize when the pattern is available.
13531   if (DCI.isBeforeLegalize()) return SDValue();
13532 
13533   return AddCombineTo64bitUMAAL(N, DCI, Subtarget);
13534 }
13535 
13536 /// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
13537 /// operands N0 and N1.  This is a helper for PerformADDCombine that is
13538 /// called with the default operands, and if that fails, with commuted
13539 /// operands.
13540 static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
13541                                           TargetLowering::DAGCombinerInfo &DCI,
13542                                           const ARMSubtarget *Subtarget){
13543   // Attempt to create vpadd for this add.
13544   if (SDValue Result = AddCombineToVPADD(N, N0, N1, DCI, Subtarget))
13545     return Result;
13546 
13547   // Attempt to create vpaddl for this add.
13548   if (SDValue Result = AddCombineVUZPToVPADDL(N, N0, N1, DCI, Subtarget))
13549     return Result;
13550   if (SDValue Result = AddCombineBUILD_VECTORToVPADDL(N, N0, N1, DCI,
13551                                                       Subtarget))
13552     return Result;
13553 
13554   // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
13555   if (N0.getNode()->hasOneUse())
13556     if (SDValue Result = combineSelectAndUse(N, N0, N1, DCI))
13557       return Result;
13558   return SDValue();
13559 }
13560 
13561 static SDValue TryDistrubutionADDVecReduce(SDNode *N, SelectionDAG &DAG) {
13562   EVT VT = N->getValueType(0);
13563   SDValue N0 = N->getOperand(0);
13564   SDValue N1 = N->getOperand(1);
13565   SDLoc dl(N);
13566 
13567   auto IsVecReduce = [](SDValue Op) {
13568     switch (Op.getOpcode()) {
13569     case ISD::VECREDUCE_ADD:
13570     case ARMISD::VADDVs:
13571     case ARMISD::VADDVu:
13572     case ARMISD::VMLAVs:
13573     case ARMISD::VMLAVu:
13574       return true;
13575     }
13576     return false;
13577   };
13578 
13579   auto DistrubuteAddAddVecReduce = [&](SDValue N0, SDValue N1) {
13580     // Distribute add(X, add(vecreduce(Y), vecreduce(Z))) ->
13581     //   add(add(X, vecreduce(Y)), vecreduce(Z))
13582     // to make better use of vaddva style instructions.
13583     if (VT == MVT::i32 && N1.getOpcode() == ISD::ADD && !IsVecReduce(N0) &&
13584         IsVecReduce(N1.getOperand(0)) && IsVecReduce(N1.getOperand(1)) &&
13585         !isa<ConstantSDNode>(N0) && N1->hasOneUse()) {
13586       SDValue Add0 = DAG.getNode(ISD::ADD, dl, VT, N0, N1.getOperand(0));
13587       return DAG.getNode(ISD::ADD, dl, VT, Add0, N1.getOperand(1));
13588     }
13589     // And turn add(add(A, reduce(B)), add(C, reduce(D))) ->
13590     //   add(add(add(A, C), reduce(B)), reduce(D))
13591     if (VT == MVT::i32 && N0.getOpcode() == ISD::ADD &&
13592         N1.getOpcode() == ISD::ADD && N0->hasOneUse() && N1->hasOneUse()) {
13593       unsigned N0RedOp = 0;
13594       if (!IsVecReduce(N0.getOperand(N0RedOp))) {
13595         N0RedOp = 1;
13596         if (!IsVecReduce(N0.getOperand(N0RedOp)))
13597           return SDValue();
13598       }
13599 
13600       unsigned N1RedOp = 0;
13601       if (!IsVecReduce(N1.getOperand(N1RedOp)))
13602         N1RedOp = 1;
13603       if (!IsVecReduce(N1.getOperand(N1RedOp)))
13604         return SDValue();
13605 
13606       SDValue Add0 = DAG.getNode(ISD::ADD, dl, VT, N0.getOperand(1 - N0RedOp),
13607                                  N1.getOperand(1 - N1RedOp));
13608       SDValue Add1 =
13609           DAG.getNode(ISD::ADD, dl, VT, Add0, N0.getOperand(N0RedOp));
13610       return DAG.getNode(ISD::ADD, dl, VT, Add1, N1.getOperand(N1RedOp));
13611     }
13612     return SDValue();
13613   };
13614   if (SDValue R = DistrubuteAddAddVecReduce(N0, N1))
13615     return R;
13616   if (SDValue R = DistrubuteAddAddVecReduce(N1, N0))
13617     return R;
13618 
13619   // Distribute add(vecreduce(load(Y)), vecreduce(load(Z)))
13620   // Or add(add(X, vecreduce(load(Y))), vecreduce(load(Z)))
13621   // by ascending load offsets. This can help cores prefetch if the order of
13622   // loads is more predictable.
13623   auto DistrubuteVecReduceLoad = [&](SDValue N0, SDValue N1, bool IsForward) {
13624     // Check if two reductions are known to load data where one is before/after
13625     // another. Return negative if N0 loads data before N1, positive if N1 is
13626     // before N0 and 0 otherwise if nothing is known.
13627     auto IsKnownOrderedLoad = [&](SDValue N0, SDValue N1) {
13628       // Look through to the first operand of a MUL, for the VMLA case.
13629       // Currently only looks at the first operand, in the hope they are equal.
13630       if (N0.getOpcode() == ISD::MUL)
13631         N0 = N0.getOperand(0);
13632       if (N1.getOpcode() == ISD::MUL)
13633         N1 = N1.getOperand(0);
13634 
13635       // Return true if the two operands are loads to the same object and the
13636       // offset of the first is known to be less than the offset of the second.
13637       LoadSDNode *Load0 = dyn_cast<LoadSDNode>(N0);
13638       LoadSDNode *Load1 = dyn_cast<LoadSDNode>(N1);
13639       if (!Load0 || !Load1 || Load0->getChain() != Load1->getChain() ||
13640           !Load0->isSimple() || !Load1->isSimple() || Load0->isIndexed() ||
13641           Load1->isIndexed())
13642         return 0;
13643 
13644       auto BaseLocDecomp0 = BaseIndexOffset::match(Load0, DAG);
13645       auto BaseLocDecomp1 = BaseIndexOffset::match(Load1, DAG);
13646 
13647       if (!BaseLocDecomp0.getBase() ||
13648           BaseLocDecomp0.getBase() != BaseLocDecomp1.getBase() ||
13649           !BaseLocDecomp0.hasValidOffset() || !BaseLocDecomp1.hasValidOffset())
13650         return 0;
13651       if (BaseLocDecomp0.getOffset() < BaseLocDecomp1.getOffset())
13652         return -1;
13653       if (BaseLocDecomp0.getOffset() > BaseLocDecomp1.getOffset())
13654         return 1;
13655       return 0;
13656     };
13657 
13658     SDValue X;
13659     if (N0.getOpcode() == ISD::ADD && N0->hasOneUse()) {
13660       if (IsVecReduce(N0.getOperand(0)) && IsVecReduce(N0.getOperand(1))) {
13661         int IsBefore = IsKnownOrderedLoad(N0.getOperand(0).getOperand(0),
13662                                          N0.getOperand(1).getOperand(0));
13663         if (IsBefore < 0) {
13664           X = N0.getOperand(0);
13665           N0 = N0.getOperand(1);
13666         } else if (IsBefore > 0) {
13667           X = N0.getOperand(1);
13668           N0 = N0.getOperand(0);
13669         } else
13670           return SDValue();
13671       } else if (IsVecReduce(N0.getOperand(0))) {
13672         X = N0.getOperand(1);
13673         N0 = N0.getOperand(0);
13674       } else if (IsVecReduce(N0.getOperand(1))) {
13675         X = N0.getOperand(0);
13676         N0 = N0.getOperand(1);
13677       } else
13678         return SDValue();
13679     } else if (IsForward && IsVecReduce(N0) && IsVecReduce(N1) &&
13680                IsKnownOrderedLoad(N0.getOperand(0), N1.getOperand(0)) < 0) {
13681       // Note this is backward to how you would expect. We create
13682       // add(reduce(load + 16), reduce(load + 0)) so that the
13683       // add(reduce(load+16), X) is combined into VADDVA(X, load+16)), leaving
13684       // the X as VADDV(load + 0)
13685       return DAG.getNode(ISD::ADD, dl, VT, N1, N0);
13686     } else
13687       return SDValue();
13688 
13689     if (!IsVecReduce(N0) || !IsVecReduce(N1))
13690       return SDValue();
13691 
13692     if (IsKnownOrderedLoad(N1.getOperand(0), N0.getOperand(0)) >= 0)
13693       return SDValue();
13694 
13695     // Switch from add(add(X, N0), N1) to add(add(X, N1), N0)
13696     SDValue Add0 = DAG.getNode(ISD::ADD, dl, VT, X, N1);
13697     return DAG.getNode(ISD::ADD, dl, VT, Add0, N0);
13698   };
13699   if (SDValue R = DistrubuteVecReduceLoad(N0, N1, true))
13700     return R;
13701   if (SDValue R = DistrubuteVecReduceLoad(N1, N0, false))
13702     return R;
13703   return SDValue();
13704 }
13705 
13706 static SDValue PerformADDVecReduce(SDNode *N, SelectionDAG &DAG,
13707                                    const ARMSubtarget *Subtarget) {
13708   if (!Subtarget->hasMVEIntegerOps())
13709     return SDValue();
13710 
13711   if (SDValue R = TryDistrubutionADDVecReduce(N, DAG))
13712     return R;
13713 
13714   EVT VT = N->getValueType(0);
13715   SDValue N0 = N->getOperand(0);
13716   SDValue N1 = N->getOperand(1);
13717   SDLoc dl(N);
13718 
13719   if (VT != MVT::i64)
13720     return SDValue();
13721 
13722   // We are looking for a i64 add of a VADDLVx. Due to these being i64's, this
13723   // will look like:
13724   //   t1: i32,i32 = ARMISD::VADDLVs x
13725   //   t2: i64 = build_pair t1, t1:1
13726   //   t3: i64 = add t2, y
13727   // Otherwise we try to push the add up above VADDLVAx, to potentially allow
13728   // the add to be simplified seperately.
13729   // We also need to check for sext / zext and commutitive adds.
13730   auto MakeVecReduce = [&](unsigned Opcode, unsigned OpcodeA, SDValue NA,
13731                            SDValue NB) {
13732     if (NB->getOpcode() != ISD::BUILD_PAIR)
13733       return SDValue();
13734     SDValue VecRed = NB->getOperand(0);
13735     if ((VecRed->getOpcode() != Opcode && VecRed->getOpcode() != OpcodeA) ||
13736         VecRed.getResNo() != 0 ||
13737         NB->getOperand(1) != SDValue(VecRed.getNode(), 1))
13738       return SDValue();
13739 
13740     if (VecRed->getOpcode() == OpcodeA) {
13741       // add(NA, VADDLVA(Inp), Y) -> VADDLVA(add(NA, Inp), Y)
13742       SDValue Inp = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64,
13743                                 VecRed.getOperand(0), VecRed.getOperand(1));
13744       NA = DAG.getNode(ISD::ADD, dl, MVT::i64, Inp, NA);
13745     }
13746 
13747     SmallVector<SDValue, 4> Ops(2);
13748     std::tie(Ops[0], Ops[1]) = DAG.SplitScalar(NA, dl, MVT::i32, MVT::i32);
13749 
13750     unsigned S = VecRed->getOpcode() == OpcodeA ? 2 : 0;
13751     for (unsigned I = S, E = VecRed.getNumOperands(); I < E; I++)
13752       Ops.push_back(VecRed->getOperand(I));
13753     SDValue Red =
13754         DAG.getNode(OpcodeA, dl, DAG.getVTList({MVT::i32, MVT::i32}), Ops);
13755     return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Red,
13756                        SDValue(Red.getNode(), 1));
13757   };
13758 
13759   if (SDValue M = MakeVecReduce(ARMISD::VADDLVs, ARMISD::VADDLVAs, N0, N1))
13760     return M;
13761   if (SDValue M = MakeVecReduce(ARMISD::VADDLVu, ARMISD::VADDLVAu, N0, N1))
13762     return M;
13763   if (SDValue M = MakeVecReduce(ARMISD::VADDLVs, ARMISD::VADDLVAs, N1, N0))
13764     return M;
13765   if (SDValue M = MakeVecReduce(ARMISD::VADDLVu, ARMISD::VADDLVAu, N1, N0))
13766     return M;
13767   if (SDValue M = MakeVecReduce(ARMISD::VADDLVps, ARMISD::VADDLVAps, N0, N1))
13768     return M;
13769   if (SDValue M = MakeVecReduce(ARMISD::VADDLVpu, ARMISD::VADDLVApu, N0, N1))
13770     return M;
13771   if (SDValue M = MakeVecReduce(ARMISD::VADDLVps, ARMISD::VADDLVAps, N1, N0))
13772     return M;
13773   if (SDValue M = MakeVecReduce(ARMISD::VADDLVpu, ARMISD::VADDLVApu, N1, N0))
13774     return M;
13775   if (SDValue M = MakeVecReduce(ARMISD::VMLALVs, ARMISD::VMLALVAs, N0, N1))
13776     return M;
13777   if (SDValue M = MakeVecReduce(ARMISD::VMLALVu, ARMISD::VMLALVAu, N0, N1))
13778     return M;
13779   if (SDValue M = MakeVecReduce(ARMISD::VMLALVs, ARMISD::VMLALVAs, N1, N0))
13780     return M;
13781   if (SDValue M = MakeVecReduce(ARMISD::VMLALVu, ARMISD::VMLALVAu, N1, N0))
13782     return M;
13783   if (SDValue M = MakeVecReduce(ARMISD::VMLALVps, ARMISD::VMLALVAps, N0, N1))
13784     return M;
13785   if (SDValue M = MakeVecReduce(ARMISD::VMLALVpu, ARMISD::VMLALVApu, N0, N1))
13786     return M;
13787   if (SDValue M = MakeVecReduce(ARMISD::VMLALVps, ARMISD::VMLALVAps, N1, N0))
13788     return M;
13789   if (SDValue M = MakeVecReduce(ARMISD::VMLALVpu, ARMISD::VMLALVApu, N1, N0))
13790     return M;
13791   return SDValue();
13792 }
13793 
13794 bool
13795 ARMTargetLowering::isDesirableToCommuteWithShift(const SDNode *N,
13796                                                  CombineLevel Level) const {
13797   assert((N->getOpcode() == ISD::SHL || N->getOpcode() == ISD::SRA ||
13798           N->getOpcode() == ISD::SRL) &&
13799          "Expected shift op");
13800 
13801   if (Level == BeforeLegalizeTypes)
13802     return true;
13803 
13804   if (N->getOpcode() != ISD::SHL)
13805     return true;
13806 
13807   if (Subtarget->isThumb1Only()) {
13808     // Avoid making expensive immediates by commuting shifts. (This logic
13809     // only applies to Thumb1 because ARM and Thumb2 immediates can be shifted
13810     // for free.)
13811     if (N->getOpcode() != ISD::SHL)
13812       return true;
13813     SDValue N1 = N->getOperand(0);
13814     if (N1->getOpcode() != ISD::ADD && N1->getOpcode() != ISD::AND &&
13815         N1->getOpcode() != ISD::OR && N1->getOpcode() != ISD::XOR)
13816       return true;
13817     if (auto *Const = dyn_cast<ConstantSDNode>(N1->getOperand(1))) {
13818       if (Const->getAPIntValue().ult(256))
13819         return false;
13820       if (N1->getOpcode() == ISD::ADD && Const->getAPIntValue().slt(0) &&
13821           Const->getAPIntValue().sgt(-256))
13822         return false;
13823     }
13824     return true;
13825   }
13826 
13827   // Turn off commute-with-shift transform after legalization, so it doesn't
13828   // conflict with PerformSHLSimplify.  (We could try to detect when
13829   // PerformSHLSimplify would trigger more precisely, but it isn't
13830   // really necessary.)
13831   return false;
13832 }
13833 
13834 bool ARMTargetLowering::isDesirableToCommuteXorWithShift(
13835     const SDNode *N) const {
13836   assert(N->getOpcode() == ISD::XOR &&
13837          (N->getOperand(0).getOpcode() == ISD::SHL ||
13838           N->getOperand(0).getOpcode() == ISD::SRL) &&
13839          "Expected XOR(SHIFT) pattern");
13840 
13841   // Only commute if the entire NOT mask is a hidden shifted mask.
13842   auto *XorC = dyn_cast<ConstantSDNode>(N->getOperand(1));
13843   auto *ShiftC = dyn_cast<ConstantSDNode>(N->getOperand(0).getOperand(1));
13844   if (XorC && ShiftC) {
13845     unsigned MaskIdx, MaskLen;
13846     if (XorC->getAPIntValue().isShiftedMask(MaskIdx, MaskLen)) {
13847       unsigned ShiftAmt = ShiftC->getZExtValue();
13848       unsigned BitWidth = N->getValueType(0).getScalarSizeInBits();
13849       if (N->getOperand(0).getOpcode() == ISD::SHL)
13850         return MaskIdx == ShiftAmt && MaskLen == (BitWidth - ShiftAmt);
13851       return MaskIdx == 0 && MaskLen == (BitWidth - ShiftAmt);
13852     }
13853   }
13854 
13855   return false;
13856 }
13857 
13858 bool ARMTargetLowering::shouldFoldConstantShiftPairToMask(
13859     const SDNode *N, CombineLevel Level) const {
13860   assert(((N->getOpcode() == ISD::SHL &&
13861            N->getOperand(0).getOpcode() == ISD::SRL) ||
13862           (N->getOpcode() == ISD::SRL &&
13863            N->getOperand(0).getOpcode() == ISD::SHL)) &&
13864          "Expected shift-shift mask");
13865 
13866   if (!Subtarget->isThumb1Only())
13867     return true;
13868 
13869   if (Level == BeforeLegalizeTypes)
13870     return true;
13871 
13872   return false;
13873 }
13874 
13875 bool ARMTargetLowering::shouldFoldSelectWithIdentityConstant(unsigned BinOpcode,
13876                                                              EVT VT) const {
13877   return Subtarget->hasMVEIntegerOps() && isTypeLegal(VT);
13878 }
13879 
13880 bool ARMTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const {
13881   if (!Subtarget->hasNEON()) {
13882     if (Subtarget->isThumb1Only())
13883       return VT.getScalarSizeInBits() <= 32;
13884     return true;
13885   }
13886   return VT.isScalarInteger();
13887 }
13888 
13889 bool ARMTargetLowering::shouldConvertFpToSat(unsigned Op, EVT FPVT,
13890                                              EVT VT) const {
13891   if (!isOperationLegalOrCustom(Op, VT) || !FPVT.isSimple())
13892     return false;
13893 
13894   switch (FPVT.getSimpleVT().SimpleTy) {
13895   case MVT::f16:
13896     return Subtarget->hasVFP2Base();
13897   case MVT::f32:
13898     return Subtarget->hasVFP2Base();
13899   case MVT::f64:
13900     return Subtarget->hasFP64();
13901   case MVT::v4f32:
13902   case MVT::v8f16:
13903     return Subtarget->hasMVEFloatOps();
13904   default:
13905     return false;
13906   }
13907 }
13908 
13909 static SDValue PerformSHLSimplify(SDNode *N,
13910                                 TargetLowering::DAGCombinerInfo &DCI,
13911                                 const ARMSubtarget *ST) {
13912   // Allow the generic combiner to identify potential bswaps.
13913   if (DCI.isBeforeLegalize())
13914     return SDValue();
13915 
13916   // DAG combiner will fold:
13917   // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
13918   // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2
13919   // Other code patterns that can be also be modified have the following form:
13920   // b + ((a << 1) | 510)
13921   // b + ((a << 1) & 510)
13922   // b + ((a << 1) ^ 510)
13923   // b + ((a << 1) + 510)
13924 
13925   // Many instructions can  perform the shift for free, but it requires both
13926   // the operands to be registers. If c1 << c2 is too large, a mov immediate
13927   // instruction will needed. So, unfold back to the original pattern if:
13928   // - if c1 and c2 are small enough that they don't require mov imms.
13929   // - the user(s) of the node can perform an shl
13930 
13931   // No shifted operands for 16-bit instructions.
13932   if (ST->isThumb() && ST->isThumb1Only())
13933     return SDValue();
13934 
13935   // Check that all the users could perform the shl themselves.
13936   for (auto *U : N->uses()) {
13937     switch(U->getOpcode()) {
13938     default:
13939       return SDValue();
13940     case ISD::SUB:
13941     case ISD::ADD:
13942     case ISD::AND:
13943     case ISD::OR:
13944     case ISD::XOR:
13945     case ISD::SETCC:
13946     case ARMISD::CMP:
13947       // Check that the user isn't already using a constant because there
13948       // aren't any instructions that support an immediate operand and a
13949       // shifted operand.
13950       if (isa<ConstantSDNode>(U->getOperand(0)) ||
13951           isa<ConstantSDNode>(U->getOperand(1)))
13952         return SDValue();
13953 
13954       // Check that it's not already using a shift.
13955       if (U->getOperand(0).getOpcode() == ISD::SHL ||
13956           U->getOperand(1).getOpcode() == ISD::SHL)
13957         return SDValue();
13958       break;
13959     }
13960   }
13961 
13962   if (N->getOpcode() != ISD::ADD && N->getOpcode() != ISD::OR &&
13963       N->getOpcode() != ISD::XOR && N->getOpcode() != ISD::AND)
13964     return SDValue();
13965 
13966   if (N->getOperand(0).getOpcode() != ISD::SHL)
13967     return SDValue();
13968 
13969   SDValue SHL = N->getOperand(0);
13970 
13971   auto *C1ShlC2 = dyn_cast<ConstantSDNode>(N->getOperand(1));
13972   auto *C2 = dyn_cast<ConstantSDNode>(SHL.getOperand(1));
13973   if (!C1ShlC2 || !C2)
13974     return SDValue();
13975 
13976   APInt C2Int = C2->getAPIntValue();
13977   APInt C1Int = C1ShlC2->getAPIntValue();
13978   unsigned C2Width = C2Int.getBitWidth();
13979   if (C2Int.uge(C2Width))
13980     return SDValue();
13981   uint64_t C2Value = C2Int.getZExtValue();
13982 
13983   // Check that performing a lshr will not lose any information.
13984   APInt Mask = APInt::getHighBitsSet(C2Width, C2Width - C2Value);
13985   if ((C1Int & Mask) != C1Int)
13986     return SDValue();
13987 
13988   // Shift the first constant.
13989   C1Int.lshrInPlace(C2Int);
13990 
13991   // The immediates are encoded as an 8-bit value that can be rotated.
13992   auto LargeImm = [](const APInt &Imm) {
13993     unsigned Zeros = Imm.countl_zero() + Imm.countr_zero();
13994     return Imm.getBitWidth() - Zeros > 8;
13995   };
13996 
13997   if (LargeImm(C1Int) || LargeImm(C2Int))
13998     return SDValue();
13999 
14000   SelectionDAG &DAG = DCI.DAG;
14001   SDLoc dl(N);
14002   SDValue X = SHL.getOperand(0);
14003   SDValue BinOp = DAG.getNode(N->getOpcode(), dl, MVT::i32, X,
14004                               DAG.getConstant(C1Int, dl, MVT::i32));
14005   // Shift left to compensate for the lshr of C1Int.
14006   SDValue Res = DAG.getNode(ISD::SHL, dl, MVT::i32, BinOp, SHL.getOperand(1));
14007 
14008   LLVM_DEBUG(dbgs() << "Simplify shl use:\n"; SHL.getOperand(0).dump();
14009              SHL.dump(); N->dump());
14010   LLVM_DEBUG(dbgs() << "Into:\n"; X.dump(); BinOp.dump(); Res.dump());
14011   return Res;
14012 }
14013 
14014 
14015 /// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
14016 ///
14017 static SDValue PerformADDCombine(SDNode *N,
14018                                  TargetLowering::DAGCombinerInfo &DCI,
14019                                  const ARMSubtarget *Subtarget) {
14020   SDValue N0 = N->getOperand(0);
14021   SDValue N1 = N->getOperand(1);
14022 
14023   // Only works one way, because it needs an immediate operand.
14024   if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
14025     return Result;
14026 
14027   if (SDValue Result = PerformADDVecReduce(N, DCI.DAG, Subtarget))
14028     return Result;
14029 
14030   // First try with the default operand order.
14031   if (SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget))
14032     return Result;
14033 
14034   // If that didn't work, try again with the operands commuted.
14035   return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget);
14036 }
14037 
14038 // Combine (sub 0, (csinc X, Y, CC)) -> (csinv -X, Y, CC)
14039 //   providing -X is as cheap as X (currently, just a constant).
14040 static SDValue PerformSubCSINCCombine(SDNode *N, SelectionDAG &DAG) {
14041   if (N->getValueType(0) != MVT::i32 || !isNullConstant(N->getOperand(0)))
14042     return SDValue();
14043   SDValue CSINC = N->getOperand(1);
14044   if (CSINC.getOpcode() != ARMISD::CSINC || !CSINC.hasOneUse())
14045     return SDValue();
14046 
14047   ConstantSDNode *X = dyn_cast<ConstantSDNode>(CSINC.getOperand(0));
14048   if (!X)
14049     return SDValue();
14050 
14051   return DAG.getNode(ARMISD::CSINV, SDLoc(N), MVT::i32,
14052                      DAG.getNode(ISD::SUB, SDLoc(N), MVT::i32, N->getOperand(0),
14053                                  CSINC.getOperand(0)),
14054                      CSINC.getOperand(1), CSINC.getOperand(2),
14055                      CSINC.getOperand(3));
14056 }
14057 
14058 /// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
14059 ///
14060 static SDValue PerformSUBCombine(SDNode *N,
14061                                  TargetLowering::DAGCombinerInfo &DCI,
14062                                  const ARMSubtarget *Subtarget) {
14063   SDValue N0 = N->getOperand(0);
14064   SDValue N1 = N->getOperand(1);
14065 
14066   // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
14067   if (N1.getNode()->hasOneUse())
14068     if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI))
14069       return Result;
14070 
14071   if (SDValue R = PerformSubCSINCCombine(N, DCI.DAG))
14072     return R;
14073 
14074   if (!Subtarget->hasMVEIntegerOps() || !N->getValueType(0).isVector())
14075     return SDValue();
14076 
14077   // Fold (sub (ARMvmovImm 0), (ARMvdup x)) -> (ARMvdup (sub 0, x))
14078   // so that we can readily pattern match more mve instructions which can use
14079   // a scalar operand.
14080   SDValue VDup = N->getOperand(1);
14081   if (VDup->getOpcode() != ARMISD::VDUP)
14082     return SDValue();
14083 
14084   SDValue VMov = N->getOperand(0);
14085   if (VMov->getOpcode() == ISD::BITCAST)
14086     VMov = VMov->getOperand(0);
14087 
14088   if (VMov->getOpcode() != ARMISD::VMOVIMM || !isZeroVector(VMov))
14089     return SDValue();
14090 
14091   SDLoc dl(N);
14092   SDValue Negate = DCI.DAG.getNode(ISD::SUB, dl, MVT::i32,
14093                                    DCI.DAG.getConstant(0, dl, MVT::i32),
14094                                    VDup->getOperand(0));
14095   return DCI.DAG.getNode(ARMISD::VDUP, dl, N->getValueType(0), Negate);
14096 }
14097 
14098 /// PerformVMULCombine
14099 /// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the
14100 /// special multiplier accumulator forwarding.
14101 ///   vmul d3, d0, d2
14102 ///   vmla d3, d1, d2
14103 /// is faster than
14104 ///   vadd d3, d0, d1
14105 ///   vmul d3, d3, d2
14106 //  However, for (A + B) * (A + B),
14107 //    vadd d2, d0, d1
14108 //    vmul d3, d0, d2
14109 //    vmla d3, d1, d2
14110 //  is slower than
14111 //    vadd d2, d0, d1
14112 //    vmul d3, d2, d2
14113 static SDValue PerformVMULCombine(SDNode *N,
14114                                   TargetLowering::DAGCombinerInfo &DCI,
14115                                   const ARMSubtarget *Subtarget) {
14116   if (!Subtarget->hasVMLxForwarding())
14117     return SDValue();
14118 
14119   SelectionDAG &DAG = DCI.DAG;
14120   SDValue N0 = N->getOperand(0);
14121   SDValue N1 = N->getOperand(1);
14122   unsigned Opcode = N0.getOpcode();
14123   if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
14124       Opcode != ISD::FADD && Opcode != ISD::FSUB) {
14125     Opcode = N1.getOpcode();
14126     if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
14127         Opcode != ISD::FADD && Opcode != ISD::FSUB)
14128       return SDValue();
14129     std::swap(N0, N1);
14130   }
14131 
14132   if (N0 == N1)
14133     return SDValue();
14134 
14135   EVT VT = N->getValueType(0);
14136   SDLoc DL(N);
14137   SDValue N00 = N0->getOperand(0);
14138   SDValue N01 = N0->getOperand(1);
14139   return DAG.getNode(Opcode, DL, VT,
14140                      DAG.getNode(ISD::MUL, DL, VT, N00, N1),
14141                      DAG.getNode(ISD::MUL, DL, VT, N01, N1));
14142 }
14143 
14144 static SDValue PerformMVEVMULLCombine(SDNode *N, SelectionDAG &DAG,
14145                                       const ARMSubtarget *Subtarget) {
14146   EVT VT = N->getValueType(0);
14147   if (VT != MVT::v2i64)
14148     return SDValue();
14149 
14150   SDValue N0 = N->getOperand(0);
14151   SDValue N1 = N->getOperand(1);
14152 
14153   auto IsSignExt = [&](SDValue Op) {
14154     if (Op->getOpcode() != ISD::SIGN_EXTEND_INREG)
14155       return SDValue();
14156     EVT VT = cast<VTSDNode>(Op->getOperand(1))->getVT();
14157     if (VT.getScalarSizeInBits() == 32)
14158       return Op->getOperand(0);
14159     return SDValue();
14160   };
14161   auto IsZeroExt = [&](SDValue Op) {
14162     // Zero extends are a little more awkward. At the point we are matching
14163     // this, we are looking for an AND with a (-1, 0, -1, 0) buildvector mask.
14164     // That might be before of after a bitcast depending on how the and is
14165     // placed. Because this has to look through bitcasts, it is currently only
14166     // supported on LE.
14167     if (!Subtarget->isLittle())
14168       return SDValue();
14169 
14170     SDValue And = Op;
14171     if (And->getOpcode() == ISD::BITCAST)
14172       And = And->getOperand(0);
14173     if (And->getOpcode() != ISD::AND)
14174       return SDValue();
14175     SDValue Mask = And->getOperand(1);
14176     if (Mask->getOpcode() == ISD::BITCAST)
14177       Mask = Mask->getOperand(0);
14178 
14179     if (Mask->getOpcode() != ISD::BUILD_VECTOR ||
14180         Mask.getValueType() != MVT::v4i32)
14181       return SDValue();
14182     if (isAllOnesConstant(Mask->getOperand(0)) &&
14183         isNullConstant(Mask->getOperand(1)) &&
14184         isAllOnesConstant(Mask->getOperand(2)) &&
14185         isNullConstant(Mask->getOperand(3)))
14186       return And->getOperand(0);
14187     return SDValue();
14188   };
14189 
14190   SDLoc dl(N);
14191   if (SDValue Op0 = IsSignExt(N0)) {
14192     if (SDValue Op1 = IsSignExt(N1)) {
14193       SDValue New0a = DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, MVT::v4i32, Op0);
14194       SDValue New1a = DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, MVT::v4i32, Op1);
14195       return DAG.getNode(ARMISD::VMULLs, dl, VT, New0a, New1a);
14196     }
14197   }
14198   if (SDValue Op0 = IsZeroExt(N0)) {
14199     if (SDValue Op1 = IsZeroExt(N1)) {
14200       SDValue New0a = DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, MVT::v4i32, Op0);
14201       SDValue New1a = DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, MVT::v4i32, Op1);
14202       return DAG.getNode(ARMISD::VMULLu, dl, VT, New0a, New1a);
14203     }
14204   }
14205 
14206   return SDValue();
14207 }
14208 
14209 static SDValue PerformMULCombine(SDNode *N,
14210                                  TargetLowering::DAGCombinerInfo &DCI,
14211                                  const ARMSubtarget *Subtarget) {
14212   SelectionDAG &DAG = DCI.DAG;
14213 
14214   EVT VT = N->getValueType(0);
14215   if (Subtarget->hasMVEIntegerOps() && VT == MVT::v2i64)
14216     return PerformMVEVMULLCombine(N, DAG, Subtarget);
14217 
14218   if (Subtarget->isThumb1Only())
14219     return SDValue();
14220 
14221   if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
14222     return SDValue();
14223 
14224   if (VT.is64BitVector() || VT.is128BitVector())
14225     return PerformVMULCombine(N, DCI, Subtarget);
14226   if (VT != MVT::i32)
14227     return SDValue();
14228 
14229   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
14230   if (!C)
14231     return SDValue();
14232 
14233   int64_t MulAmt = C->getSExtValue();
14234   unsigned ShiftAmt = llvm::countr_zero<uint64_t>(MulAmt);
14235 
14236   ShiftAmt = ShiftAmt & (32 - 1);
14237   SDValue V = N->getOperand(0);
14238   SDLoc DL(N);
14239 
14240   SDValue Res;
14241   MulAmt >>= ShiftAmt;
14242 
14243   if (MulAmt >= 0) {
14244     if (llvm::has_single_bit<uint32_t>(MulAmt - 1)) {
14245       // (mul x, 2^N + 1) => (add (shl x, N), x)
14246       Res = DAG.getNode(ISD::ADD, DL, VT,
14247                         V,
14248                         DAG.getNode(ISD::SHL, DL, VT,
14249                                     V,
14250                                     DAG.getConstant(Log2_32(MulAmt - 1), DL,
14251                                                     MVT::i32)));
14252     } else if (llvm::has_single_bit<uint32_t>(MulAmt + 1)) {
14253       // (mul x, 2^N - 1) => (sub (shl x, N), x)
14254       Res = DAG.getNode(ISD::SUB, DL, VT,
14255                         DAG.getNode(ISD::SHL, DL, VT,
14256                                     V,
14257                                     DAG.getConstant(Log2_32(MulAmt + 1), DL,
14258                                                     MVT::i32)),
14259                         V);
14260     } else
14261       return SDValue();
14262   } else {
14263     uint64_t MulAmtAbs = -MulAmt;
14264     if (llvm::has_single_bit<uint32_t>(MulAmtAbs + 1)) {
14265       // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
14266       Res = DAG.getNode(ISD::SUB, DL, VT,
14267                         V,
14268                         DAG.getNode(ISD::SHL, DL, VT,
14269                                     V,
14270                                     DAG.getConstant(Log2_32(MulAmtAbs + 1), DL,
14271                                                     MVT::i32)));
14272     } else if (llvm::has_single_bit<uint32_t>(MulAmtAbs - 1)) {
14273       // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
14274       Res = DAG.getNode(ISD::ADD, DL, VT,
14275                         V,
14276                         DAG.getNode(ISD::SHL, DL, VT,
14277                                     V,
14278                                     DAG.getConstant(Log2_32(MulAmtAbs - 1), DL,
14279                                                     MVT::i32)));
14280       Res = DAG.getNode(ISD::SUB, DL, VT,
14281                         DAG.getConstant(0, DL, MVT::i32), Res);
14282     } else
14283       return SDValue();
14284   }
14285 
14286   if (ShiftAmt != 0)
14287     Res = DAG.getNode(ISD::SHL, DL, VT,
14288                       Res, DAG.getConstant(ShiftAmt, DL, MVT::i32));
14289 
14290   // Do not add new nodes to DAG combiner worklist.
14291   DCI.CombineTo(N, Res, false);
14292   return SDValue();
14293 }
14294 
14295 static SDValue CombineANDShift(SDNode *N,
14296                                TargetLowering::DAGCombinerInfo &DCI,
14297                                const ARMSubtarget *Subtarget) {
14298   // Allow DAGCombine to pattern-match before we touch the canonical form.
14299   if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
14300     return SDValue();
14301 
14302   if (N->getValueType(0) != MVT::i32)
14303     return SDValue();
14304 
14305   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1));
14306   if (!N1C)
14307     return SDValue();
14308 
14309   uint32_t C1 = (uint32_t)N1C->getZExtValue();
14310   // Don't transform uxtb/uxth.
14311   if (C1 == 255 || C1 == 65535)
14312     return SDValue();
14313 
14314   SDNode *N0 = N->getOperand(0).getNode();
14315   if (!N0->hasOneUse())
14316     return SDValue();
14317 
14318   if (N0->getOpcode() != ISD::SHL && N0->getOpcode() != ISD::SRL)
14319     return SDValue();
14320 
14321   bool LeftShift = N0->getOpcode() == ISD::SHL;
14322 
14323   ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
14324   if (!N01C)
14325     return SDValue();
14326 
14327   uint32_t C2 = (uint32_t)N01C->getZExtValue();
14328   if (!C2 || C2 >= 32)
14329     return SDValue();
14330 
14331   // Clear irrelevant bits in the mask.
14332   if (LeftShift)
14333     C1 &= (-1U << C2);
14334   else
14335     C1 &= (-1U >> C2);
14336 
14337   SelectionDAG &DAG = DCI.DAG;
14338   SDLoc DL(N);
14339 
14340   // We have a pattern of the form "(and (shl x, c2) c1)" or
14341   // "(and (srl x, c2) c1)", where c1 is a shifted mask. Try to
14342   // transform to a pair of shifts, to save materializing c1.
14343 
14344   // First pattern: right shift, then mask off leading bits.
14345   // FIXME: Use demanded bits?
14346   if (!LeftShift && isMask_32(C1)) {
14347     uint32_t C3 = llvm::countl_zero(C1);
14348     if (C2 < C3) {
14349       SDValue SHL = DAG.getNode(ISD::SHL, DL, MVT::i32, N0->getOperand(0),
14350                                 DAG.getConstant(C3 - C2, DL, MVT::i32));
14351       return DAG.getNode(ISD::SRL, DL, MVT::i32, SHL,
14352                          DAG.getConstant(C3, DL, MVT::i32));
14353     }
14354   }
14355 
14356   // First pattern, reversed: left shift, then mask off trailing bits.
14357   if (LeftShift && isMask_32(~C1)) {
14358     uint32_t C3 = llvm::countr_zero(C1);
14359     if (C2 < C3) {
14360       SDValue SHL = DAG.getNode(ISD::SRL, DL, MVT::i32, N0->getOperand(0),
14361                                 DAG.getConstant(C3 - C2, DL, MVT::i32));
14362       return DAG.getNode(ISD::SHL, DL, MVT::i32, SHL,
14363                          DAG.getConstant(C3, DL, MVT::i32));
14364     }
14365   }
14366 
14367   // Second pattern: left shift, then mask off leading bits.
14368   // FIXME: Use demanded bits?
14369   if (LeftShift && isShiftedMask_32(C1)) {
14370     uint32_t Trailing = llvm::countr_zero(C1);
14371     uint32_t C3 = llvm::countl_zero(C1);
14372     if (Trailing == C2 && C2 + C3 < 32) {
14373       SDValue SHL = DAG.getNode(ISD::SHL, DL, MVT::i32, N0->getOperand(0),
14374                                 DAG.getConstant(C2 + C3, DL, MVT::i32));
14375       return DAG.getNode(ISD::SRL, DL, MVT::i32, SHL,
14376                         DAG.getConstant(C3, DL, MVT::i32));
14377     }
14378   }
14379 
14380   // Second pattern, reversed: right shift, then mask off trailing bits.
14381   // FIXME: Handle other patterns of known/demanded bits.
14382   if (!LeftShift && isShiftedMask_32(C1)) {
14383     uint32_t Leading = llvm::countl_zero(C1);
14384     uint32_t C3 = llvm::countr_zero(C1);
14385     if (Leading == C2 && C2 + C3 < 32) {
14386       SDValue SHL = DAG.getNode(ISD::SRL, DL, MVT::i32, N0->getOperand(0),
14387                                 DAG.getConstant(C2 + C3, DL, MVT::i32));
14388       return DAG.getNode(ISD::SHL, DL, MVT::i32, SHL,
14389                          DAG.getConstant(C3, DL, MVT::i32));
14390     }
14391   }
14392 
14393   // FIXME: Transform "(and (shl x, c2) c1)" ->
14394   // "(shl (and x, c1>>c2), c2)" if "c1 >> c2" is a cheaper immediate than
14395   // c1.
14396   return SDValue();
14397 }
14398 
14399 static SDValue PerformANDCombine(SDNode *N,
14400                                  TargetLowering::DAGCombinerInfo &DCI,
14401                                  const ARMSubtarget *Subtarget) {
14402   // Attempt to use immediate-form VBIC
14403   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
14404   SDLoc dl(N);
14405   EVT VT = N->getValueType(0);
14406   SelectionDAG &DAG = DCI.DAG;
14407 
14408   if (!DAG.getTargetLoweringInfo().isTypeLegal(VT) || VT == MVT::v2i1 ||
14409       VT == MVT::v4i1 || VT == MVT::v8i1 || VT == MVT::v16i1)
14410     return SDValue();
14411 
14412   APInt SplatBits, SplatUndef;
14413   unsigned SplatBitSize;
14414   bool HasAnyUndefs;
14415   if (BVN && (Subtarget->hasNEON() || Subtarget->hasMVEIntegerOps()) &&
14416       BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
14417     if (SplatBitSize == 8 || SplatBitSize == 16 || SplatBitSize == 32 ||
14418         SplatBitSize == 64) {
14419       EVT VbicVT;
14420       SDValue Val = isVMOVModifiedImm((~SplatBits).getZExtValue(),
14421                                       SplatUndef.getZExtValue(), SplatBitSize,
14422                                       DAG, dl, VbicVT, VT, OtherModImm);
14423       if (Val.getNode()) {
14424         SDValue Input =
14425           DAG.getNode(ISD::BITCAST, dl, VbicVT, N->getOperand(0));
14426         SDValue Vbic = DAG.getNode(ARMISD::VBICIMM, dl, VbicVT, Input, Val);
14427         return DAG.getNode(ISD::BITCAST, dl, VT, Vbic);
14428       }
14429     }
14430   }
14431 
14432   if (!Subtarget->isThumb1Only()) {
14433     // fold (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))
14434     if (SDValue Result = combineSelectAndUseCommutative(N, true, DCI))
14435       return Result;
14436 
14437     if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
14438       return Result;
14439   }
14440 
14441   if (Subtarget->isThumb1Only())
14442     if (SDValue Result = CombineANDShift(N, DCI, Subtarget))
14443       return Result;
14444 
14445   return SDValue();
14446 }
14447 
14448 // Try combining OR nodes to SMULWB, SMULWT.
14449 static SDValue PerformORCombineToSMULWBT(SDNode *OR,
14450                                          TargetLowering::DAGCombinerInfo &DCI,
14451                                          const ARMSubtarget *Subtarget) {
14452   if (!Subtarget->hasV6Ops() ||
14453       (Subtarget->isThumb() &&
14454        (!Subtarget->hasThumb2() || !Subtarget->hasDSP())))
14455     return SDValue();
14456 
14457   SDValue SRL = OR->getOperand(0);
14458   SDValue SHL = OR->getOperand(1);
14459 
14460   if (SRL.getOpcode() != ISD::SRL || SHL.getOpcode() != ISD::SHL) {
14461     SRL = OR->getOperand(1);
14462     SHL = OR->getOperand(0);
14463   }
14464   if (!isSRL16(SRL) || !isSHL16(SHL))
14465     return SDValue();
14466 
14467   // The first operands to the shifts need to be the two results from the
14468   // same smul_lohi node.
14469   if ((SRL.getOperand(0).getNode() != SHL.getOperand(0).getNode()) ||
14470        SRL.getOperand(0).getOpcode() != ISD::SMUL_LOHI)
14471     return SDValue();
14472 
14473   SDNode *SMULLOHI = SRL.getOperand(0).getNode();
14474   if (SRL.getOperand(0) != SDValue(SMULLOHI, 0) ||
14475       SHL.getOperand(0) != SDValue(SMULLOHI, 1))
14476     return SDValue();
14477 
14478   // Now we have:
14479   // (or (srl (smul_lohi ?, ?), 16), (shl (smul_lohi ?, ?), 16)))
14480   // For SMUL[B|T] smul_lohi will take a 32-bit and a 16-bit arguments.
14481   // For SMUWB the 16-bit value will signed extended somehow.
14482   // For SMULWT only the SRA is required.
14483   // Check both sides of SMUL_LOHI
14484   SDValue OpS16 = SMULLOHI->getOperand(0);
14485   SDValue OpS32 = SMULLOHI->getOperand(1);
14486 
14487   SelectionDAG &DAG = DCI.DAG;
14488   if (!isS16(OpS16, DAG) && !isSRA16(OpS16)) {
14489     OpS16 = OpS32;
14490     OpS32 = SMULLOHI->getOperand(0);
14491   }
14492 
14493   SDLoc dl(OR);
14494   unsigned Opcode = 0;
14495   if (isS16(OpS16, DAG))
14496     Opcode = ARMISD::SMULWB;
14497   else if (isSRA16(OpS16)) {
14498     Opcode = ARMISD::SMULWT;
14499     OpS16 = OpS16->getOperand(0);
14500   }
14501   else
14502     return SDValue();
14503 
14504   SDValue Res = DAG.getNode(Opcode, dl, MVT::i32, OpS32, OpS16);
14505   DAG.ReplaceAllUsesOfValueWith(SDValue(OR, 0), Res);
14506   return SDValue(OR, 0);
14507 }
14508 
14509 static SDValue PerformORCombineToBFI(SDNode *N,
14510                                      TargetLowering::DAGCombinerInfo &DCI,
14511                                      const ARMSubtarget *Subtarget) {
14512   // BFI is only available on V6T2+
14513   if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops())
14514     return SDValue();
14515 
14516   EVT VT = N->getValueType(0);
14517   SDValue N0 = N->getOperand(0);
14518   SDValue N1 = N->getOperand(1);
14519   SelectionDAG &DAG = DCI.DAG;
14520   SDLoc DL(N);
14521   // 1) or (and A, mask), val => ARMbfi A, val, mask
14522   //      iff (val & mask) == val
14523   //
14524   // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
14525   //  2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
14526   //          && mask == ~mask2
14527   //  2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
14528   //          && ~mask == mask2
14529   //  (i.e., copy a bitfield value into another bitfield of the same width)
14530 
14531   if (VT != MVT::i32)
14532     return SDValue();
14533 
14534   SDValue N00 = N0.getOperand(0);
14535 
14536   // The value and the mask need to be constants so we can verify this is
14537   // actually a bitfield set. If the mask is 0xffff, we can do better
14538   // via a movt instruction, so don't use BFI in that case.
14539   SDValue MaskOp = N0.getOperand(1);
14540   ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(MaskOp);
14541   if (!MaskC)
14542     return SDValue();
14543   unsigned Mask = MaskC->getZExtValue();
14544   if (Mask == 0xffff)
14545     return SDValue();
14546   SDValue Res;
14547   // Case (1): or (and A, mask), val => ARMbfi A, val, mask
14548   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
14549   if (N1C) {
14550     unsigned Val = N1C->getZExtValue();
14551     if ((Val & ~Mask) != Val)
14552       return SDValue();
14553 
14554     if (ARM::isBitFieldInvertedMask(Mask)) {
14555       Val >>= llvm::countr_zero(~Mask);
14556 
14557       Res = DAG.getNode(ARMISD::BFI, DL, VT, N00,
14558                         DAG.getConstant(Val, DL, MVT::i32),
14559                         DAG.getConstant(Mask, DL, MVT::i32));
14560 
14561       DCI.CombineTo(N, Res, false);
14562       // Return value from the original node to inform the combiner than N is
14563       // now dead.
14564       return SDValue(N, 0);
14565     }
14566   } else if (N1.getOpcode() == ISD::AND) {
14567     // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
14568     ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
14569     if (!N11C)
14570       return SDValue();
14571     unsigned Mask2 = N11C->getZExtValue();
14572 
14573     // Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern
14574     // as is to match.
14575     if (ARM::isBitFieldInvertedMask(Mask) &&
14576         (Mask == ~Mask2)) {
14577       // The pack halfword instruction works better for masks that fit it,
14578       // so use that when it's available.
14579       if (Subtarget->hasDSP() &&
14580           (Mask == 0xffff || Mask == 0xffff0000))
14581         return SDValue();
14582       // 2a
14583       unsigned amt = llvm::countr_zero(Mask2);
14584       Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0),
14585                         DAG.getConstant(amt, DL, MVT::i32));
14586       Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, Res,
14587                         DAG.getConstant(Mask, DL, MVT::i32));
14588       DCI.CombineTo(N, Res, false);
14589       // Return value from the original node to inform the combiner than N is
14590       // now dead.
14591       return SDValue(N, 0);
14592     } else if (ARM::isBitFieldInvertedMask(~Mask) &&
14593                (~Mask == Mask2)) {
14594       // The pack halfword instruction works better for masks that fit it,
14595       // so use that when it's available.
14596       if (Subtarget->hasDSP() &&
14597           (Mask2 == 0xffff || Mask2 == 0xffff0000))
14598         return SDValue();
14599       // 2b
14600       unsigned lsb = llvm::countr_zero(Mask);
14601       Res = DAG.getNode(ISD::SRL, DL, VT, N00,
14602                         DAG.getConstant(lsb, DL, MVT::i32));
14603       Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res,
14604                         DAG.getConstant(Mask2, DL, MVT::i32));
14605       DCI.CombineTo(N, Res, false);
14606       // Return value from the original node to inform the combiner than N is
14607       // now dead.
14608       return SDValue(N, 0);
14609     }
14610   }
14611 
14612   if (DAG.MaskedValueIsZero(N1, MaskC->getAPIntValue()) &&
14613       N00.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N00.getOperand(1)) &&
14614       ARM::isBitFieldInvertedMask(~Mask)) {
14615     // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask
14616     // where lsb(mask) == #shamt and masked bits of B are known zero.
14617     SDValue ShAmt = N00.getOperand(1);
14618     unsigned ShAmtC = ShAmt->getAsZExtVal();
14619     unsigned LSB = llvm::countr_zero(Mask);
14620     if (ShAmtC != LSB)
14621       return SDValue();
14622 
14623     Res = DAG.getNode(ARMISD::BFI, DL, VT, N1, N00.getOperand(0),
14624                       DAG.getConstant(~Mask, DL, MVT::i32));
14625 
14626     DCI.CombineTo(N, Res, false);
14627     // Return value from the original node to inform the combiner than N is
14628     // now dead.
14629     return SDValue(N, 0);
14630   }
14631 
14632   return SDValue();
14633 }
14634 
14635 static bool isValidMVECond(unsigned CC, bool IsFloat) {
14636   switch (CC) {
14637   case ARMCC::EQ:
14638   case ARMCC::NE:
14639   case ARMCC::LE:
14640   case ARMCC::GT:
14641   case ARMCC::GE:
14642   case ARMCC::LT:
14643     return true;
14644   case ARMCC::HS:
14645   case ARMCC::HI:
14646     return !IsFloat;
14647   default:
14648     return false;
14649   };
14650 }
14651 
14652 static ARMCC::CondCodes getVCMPCondCode(SDValue N) {
14653   if (N->getOpcode() == ARMISD::VCMP)
14654     return (ARMCC::CondCodes)N->getConstantOperandVal(2);
14655   else if (N->getOpcode() == ARMISD::VCMPZ)
14656     return (ARMCC::CondCodes)N->getConstantOperandVal(1);
14657   else
14658     llvm_unreachable("Not a VCMP/VCMPZ!");
14659 }
14660 
14661 static bool CanInvertMVEVCMP(SDValue N) {
14662   ARMCC::CondCodes CC = ARMCC::getOppositeCondition(getVCMPCondCode(N));
14663   return isValidMVECond(CC, N->getOperand(0).getValueType().isFloatingPoint());
14664 }
14665 
14666 static SDValue PerformORCombine_i1(SDNode *N, SelectionDAG &DAG,
14667                                    const ARMSubtarget *Subtarget) {
14668   // Try to invert "or A, B" -> "and ~A, ~B", as the "and" is easier to chain
14669   // together with predicates
14670   EVT VT = N->getValueType(0);
14671   SDLoc DL(N);
14672   SDValue N0 = N->getOperand(0);
14673   SDValue N1 = N->getOperand(1);
14674 
14675   auto IsFreelyInvertable = [&](SDValue V) {
14676     if (V->getOpcode() == ARMISD::VCMP || V->getOpcode() == ARMISD::VCMPZ)
14677       return CanInvertMVEVCMP(V);
14678     return false;
14679   };
14680 
14681   // At least one operand must be freely invertable.
14682   if (!(IsFreelyInvertable(N0) || IsFreelyInvertable(N1)))
14683     return SDValue();
14684 
14685   SDValue NewN0 = DAG.getLogicalNOT(DL, N0, VT);
14686   SDValue NewN1 = DAG.getLogicalNOT(DL, N1, VT);
14687   SDValue And = DAG.getNode(ISD::AND, DL, VT, NewN0, NewN1);
14688   return DAG.getLogicalNOT(DL, And, VT);
14689 }
14690 
14691 /// PerformORCombine - Target-specific dag combine xforms for ISD::OR
14692 static SDValue PerformORCombine(SDNode *N,
14693                                 TargetLowering::DAGCombinerInfo &DCI,
14694                                 const ARMSubtarget *Subtarget) {
14695   // Attempt to use immediate-form VORR
14696   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
14697   SDLoc dl(N);
14698   EVT VT = N->getValueType(0);
14699   SelectionDAG &DAG = DCI.DAG;
14700 
14701   if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
14702     return SDValue();
14703 
14704   if (Subtarget->hasMVEIntegerOps() && (VT == MVT::v2i1 || VT == MVT::v4i1 ||
14705                                         VT == MVT::v8i1 || VT == MVT::v16i1))
14706     return PerformORCombine_i1(N, DAG, Subtarget);
14707 
14708   APInt SplatBits, SplatUndef;
14709   unsigned SplatBitSize;
14710   bool HasAnyUndefs;
14711   if (BVN && (Subtarget->hasNEON() || Subtarget->hasMVEIntegerOps()) &&
14712       BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
14713     if (SplatBitSize == 8 || SplatBitSize == 16 || SplatBitSize == 32 ||
14714         SplatBitSize == 64) {
14715       EVT VorrVT;
14716       SDValue Val =
14717           isVMOVModifiedImm(SplatBits.getZExtValue(), SplatUndef.getZExtValue(),
14718                             SplatBitSize, DAG, dl, VorrVT, VT, OtherModImm);
14719       if (Val.getNode()) {
14720         SDValue Input =
14721           DAG.getNode(ISD::BITCAST, dl, VorrVT, N->getOperand(0));
14722         SDValue Vorr = DAG.getNode(ARMISD::VORRIMM, dl, VorrVT, Input, Val);
14723         return DAG.getNode(ISD::BITCAST, dl, VT, Vorr);
14724       }
14725     }
14726   }
14727 
14728   if (!Subtarget->isThumb1Only()) {
14729     // fold (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
14730     if (SDValue Result = combineSelectAndUseCommutative(N, false, DCI))
14731       return Result;
14732     if (SDValue Result = PerformORCombineToSMULWBT(N, DCI, Subtarget))
14733       return Result;
14734   }
14735 
14736   SDValue N0 = N->getOperand(0);
14737   SDValue N1 = N->getOperand(1);
14738 
14739   // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
14740   if (Subtarget->hasNEON() && N1.getOpcode() == ISD::AND && VT.isVector() &&
14741       DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
14742 
14743     // The code below optimizes (or (and X, Y), Z).
14744     // The AND operand needs to have a single user to make these optimizations
14745     // profitable.
14746     if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
14747       return SDValue();
14748 
14749     APInt SplatUndef;
14750     unsigned SplatBitSize;
14751     bool HasAnyUndefs;
14752 
14753     APInt SplatBits0, SplatBits1;
14754     BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(1));
14755     BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(1));
14756     // Ensure that the second operand of both ands are constants
14757     if (BVN0 && BVN0->isConstantSplat(SplatBits0, SplatUndef, SplatBitSize,
14758                                       HasAnyUndefs) && !HasAnyUndefs) {
14759         if (BVN1 && BVN1->isConstantSplat(SplatBits1, SplatUndef, SplatBitSize,
14760                                           HasAnyUndefs) && !HasAnyUndefs) {
14761             // Ensure that the bit width of the constants are the same and that
14762             // the splat arguments are logical inverses as per the pattern we
14763             // are trying to simplify.
14764             if (SplatBits0.getBitWidth() == SplatBits1.getBitWidth() &&
14765                 SplatBits0 == ~SplatBits1) {
14766                 // Canonicalize the vector type to make instruction selection
14767                 // simpler.
14768                 EVT CanonicalVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
14769                 SDValue Result = DAG.getNode(ARMISD::VBSP, dl, CanonicalVT,
14770                                              N0->getOperand(1),
14771                                              N0->getOperand(0),
14772                                              N1->getOperand(0));
14773                 return DAG.getNode(ISD::BITCAST, dl, VT, Result);
14774             }
14775         }
14776     }
14777   }
14778 
14779   // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
14780   // reasonable.
14781   if (N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
14782     if (SDValue Res = PerformORCombineToBFI(N, DCI, Subtarget))
14783       return Res;
14784   }
14785 
14786   if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
14787     return Result;
14788 
14789   return SDValue();
14790 }
14791 
14792 static SDValue PerformXORCombine(SDNode *N,
14793                                  TargetLowering::DAGCombinerInfo &DCI,
14794                                  const ARMSubtarget *Subtarget) {
14795   EVT VT = N->getValueType(0);
14796   SelectionDAG &DAG = DCI.DAG;
14797 
14798   if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
14799     return SDValue();
14800 
14801   if (!Subtarget->isThumb1Only()) {
14802     // fold (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
14803     if (SDValue Result = combineSelectAndUseCommutative(N, false, DCI))
14804       return Result;
14805 
14806     if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
14807       return Result;
14808   }
14809 
14810   if (Subtarget->hasMVEIntegerOps()) {
14811     // fold (xor(vcmp/z, 1)) into a vcmp with the opposite condition.
14812     SDValue N0 = N->getOperand(0);
14813     SDValue N1 = N->getOperand(1);
14814     const TargetLowering *TLI = Subtarget->getTargetLowering();
14815     if (TLI->isConstTrueVal(N1) &&
14816         (N0->getOpcode() == ARMISD::VCMP || N0->getOpcode() == ARMISD::VCMPZ)) {
14817       if (CanInvertMVEVCMP(N0)) {
14818         SDLoc DL(N0);
14819         ARMCC::CondCodes CC = ARMCC::getOppositeCondition(getVCMPCondCode(N0));
14820 
14821         SmallVector<SDValue, 4> Ops;
14822         Ops.push_back(N0->getOperand(0));
14823         if (N0->getOpcode() == ARMISD::VCMP)
14824           Ops.push_back(N0->getOperand(1));
14825         Ops.push_back(DAG.getConstant(CC, DL, MVT::i32));
14826         return DAG.getNode(N0->getOpcode(), DL, N0->getValueType(0), Ops);
14827       }
14828     }
14829   }
14830 
14831   return SDValue();
14832 }
14833 
14834 // ParseBFI - given a BFI instruction in N, extract the "from" value (Rn) and return it,
14835 // and fill in FromMask and ToMask with (consecutive) bits in "from" to be extracted and
14836 // their position in "to" (Rd).
14837 static SDValue ParseBFI(SDNode *N, APInt &ToMask, APInt &FromMask) {
14838   assert(N->getOpcode() == ARMISD::BFI);
14839 
14840   SDValue From = N->getOperand(1);
14841   ToMask = ~N->getConstantOperandAPInt(2);
14842   FromMask = APInt::getLowBitsSet(ToMask.getBitWidth(), ToMask.popcount());
14843 
14844   // If the Base came from a SHR #C, we can deduce that it is really testing bit
14845   // #C in the base of the SHR.
14846   if (From->getOpcode() == ISD::SRL &&
14847       isa<ConstantSDNode>(From->getOperand(1))) {
14848     APInt Shift = From->getConstantOperandAPInt(1);
14849     assert(Shift.getLimitedValue() < 32 && "Shift too large!");
14850     FromMask <<= Shift.getLimitedValue(31);
14851     From = From->getOperand(0);
14852   }
14853 
14854   return From;
14855 }
14856 
14857 // If A and B contain one contiguous set of bits, does A | B == A . B?
14858 //
14859 // Neither A nor B must be zero.
14860 static bool BitsProperlyConcatenate(const APInt &A, const APInt &B) {
14861   unsigned LastActiveBitInA = A.countr_zero();
14862   unsigned FirstActiveBitInB = B.getBitWidth() - B.countl_zero() - 1;
14863   return LastActiveBitInA - 1 == FirstActiveBitInB;
14864 }
14865 
14866 static SDValue FindBFIToCombineWith(SDNode *N) {
14867   // We have a BFI in N. Find a BFI it can combine with, if one exists.
14868   APInt ToMask, FromMask;
14869   SDValue From = ParseBFI(N, ToMask, FromMask);
14870   SDValue To = N->getOperand(0);
14871 
14872   SDValue V = To;
14873   if (V.getOpcode() != ARMISD::BFI)
14874     return SDValue();
14875 
14876   APInt NewToMask, NewFromMask;
14877   SDValue NewFrom = ParseBFI(V.getNode(), NewToMask, NewFromMask);
14878   if (NewFrom != From)
14879     return SDValue();
14880 
14881   // Do the written bits conflict with any we've seen so far?
14882   if ((NewToMask & ToMask).getBoolValue())
14883     // Conflicting bits.
14884     return SDValue();
14885 
14886   // Are the new bits contiguous when combined with the old bits?
14887   if (BitsProperlyConcatenate(ToMask, NewToMask) &&
14888       BitsProperlyConcatenate(FromMask, NewFromMask))
14889     return V;
14890   if (BitsProperlyConcatenate(NewToMask, ToMask) &&
14891       BitsProperlyConcatenate(NewFromMask, FromMask))
14892     return V;
14893 
14894   return SDValue();
14895 }
14896 
14897 static SDValue PerformBFICombine(SDNode *N, SelectionDAG &DAG) {
14898   SDValue N0 = N->getOperand(0);
14899   SDValue N1 = N->getOperand(1);
14900 
14901   if (N1.getOpcode() == ISD::AND) {
14902     // (bfi A, (and B, Mask1), Mask2) -> (bfi A, B, Mask2) iff
14903     // the bits being cleared by the AND are not demanded by the BFI.
14904     ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
14905     if (!N11C)
14906       return SDValue();
14907     unsigned InvMask = N->getConstantOperandVal(2);
14908     unsigned LSB = llvm::countr_zero(~InvMask);
14909     unsigned Width = llvm::bit_width<unsigned>(~InvMask) - LSB;
14910     assert(Width <
14911                static_cast<unsigned>(std::numeric_limits<unsigned>::digits) &&
14912            "undefined behavior");
14913     unsigned Mask = (1u << Width) - 1;
14914     unsigned Mask2 = N11C->getZExtValue();
14915     if ((Mask & (~Mask2)) == 0)
14916       return DAG.getNode(ARMISD::BFI, SDLoc(N), N->getValueType(0),
14917                          N->getOperand(0), N1.getOperand(0), N->getOperand(2));
14918     return SDValue();
14919   }
14920 
14921   // Look for another BFI to combine with.
14922   if (SDValue CombineBFI = FindBFIToCombineWith(N)) {
14923     // We've found a BFI.
14924     APInt ToMask1, FromMask1;
14925     SDValue From1 = ParseBFI(N, ToMask1, FromMask1);
14926 
14927     APInt ToMask2, FromMask2;
14928     SDValue From2 = ParseBFI(CombineBFI.getNode(), ToMask2, FromMask2);
14929     assert(From1 == From2);
14930     (void)From2;
14931 
14932     // Create a new BFI, combining the two together.
14933     APInt NewFromMask = FromMask1 | FromMask2;
14934     APInt NewToMask = ToMask1 | ToMask2;
14935 
14936     EVT VT = N->getValueType(0);
14937     SDLoc dl(N);
14938 
14939     if (NewFromMask[0] == 0)
14940       From1 = DAG.getNode(ISD::SRL, dl, VT, From1,
14941                           DAG.getConstant(NewFromMask.countr_zero(), dl, VT));
14942     return DAG.getNode(ARMISD::BFI, dl, VT, CombineBFI.getOperand(0), From1,
14943                        DAG.getConstant(~NewToMask, dl, VT));
14944   }
14945 
14946   // Reassociate BFI(BFI (A, B, M1), C, M2) to BFI(BFI (A, C, M2), B, M1) so
14947   // that lower bit insertions are performed first, providing that M1 and M2
14948   // do no overlap. This can allow multiple BFI instructions to be combined
14949   // together by the other folds above.
14950   if (N->getOperand(0).getOpcode() == ARMISD::BFI) {
14951     APInt ToMask1 = ~N->getConstantOperandAPInt(2);
14952     APInt ToMask2 = ~N0.getConstantOperandAPInt(2);
14953 
14954     if (!N0.hasOneUse() || (ToMask1 & ToMask2) != 0 ||
14955         ToMask1.countl_zero() < ToMask2.countl_zero())
14956       return SDValue();
14957 
14958     EVT VT = N->getValueType(0);
14959     SDLoc dl(N);
14960     SDValue BFI1 = DAG.getNode(ARMISD::BFI, dl, VT, N0.getOperand(0),
14961                                N->getOperand(1), N->getOperand(2));
14962     return DAG.getNode(ARMISD::BFI, dl, VT, BFI1, N0.getOperand(1),
14963                        N0.getOperand(2));
14964   }
14965 
14966   return SDValue();
14967 }
14968 
14969 // Check that N is CMPZ(CSINC(0, 0, CC, X)),
14970 //              or CMPZ(CMOV(1, 0, CC, $cpsr, X))
14971 // return X if valid.
14972 static SDValue IsCMPZCSINC(SDNode *Cmp, ARMCC::CondCodes &CC) {
14973   if (Cmp->getOpcode() != ARMISD::CMPZ || !isNullConstant(Cmp->getOperand(1)))
14974     return SDValue();
14975   SDValue CSInc = Cmp->getOperand(0);
14976 
14977   // Ignore any `And 1` nodes that may not yet have been removed. We are
14978   // looking for a value that produces 1/0, so these have no effect on the
14979   // code.
14980   while (CSInc.getOpcode() == ISD::AND &&
14981          isa<ConstantSDNode>(CSInc.getOperand(1)) &&
14982          CSInc.getConstantOperandVal(1) == 1 && CSInc->hasOneUse())
14983     CSInc = CSInc.getOperand(0);
14984 
14985   if (CSInc.getOpcode() == ARMISD::CSINC &&
14986       isNullConstant(CSInc.getOperand(0)) &&
14987       isNullConstant(CSInc.getOperand(1)) && CSInc->hasOneUse()) {
14988     CC = (ARMCC::CondCodes)CSInc.getConstantOperandVal(2);
14989     return CSInc.getOperand(3);
14990   }
14991   if (CSInc.getOpcode() == ARMISD::CMOV && isOneConstant(CSInc.getOperand(0)) &&
14992       isNullConstant(CSInc.getOperand(1)) && CSInc->hasOneUse()) {
14993     CC = (ARMCC::CondCodes)CSInc.getConstantOperandVal(2);
14994     return CSInc.getOperand(4);
14995   }
14996   if (CSInc.getOpcode() == ARMISD::CMOV && isOneConstant(CSInc.getOperand(1)) &&
14997       isNullConstant(CSInc.getOperand(0)) && CSInc->hasOneUse()) {
14998     CC = ARMCC::getOppositeCondition(
14999         (ARMCC::CondCodes)CSInc.getConstantOperandVal(2));
15000     return CSInc.getOperand(4);
15001   }
15002   return SDValue();
15003 }
15004 
15005 static SDValue PerformCMPZCombine(SDNode *N, SelectionDAG &DAG) {
15006   // Given CMPZ(CSINC(C, 0, 0, EQ), 0), we can just use C directly. As in
15007   //       t92: glue = ARMISD::CMPZ t74, 0
15008   //     t93: i32 = ARMISD::CSINC 0, 0, 1, t92
15009   //   t96: glue = ARMISD::CMPZ t93, 0
15010   // t114: i32 = ARMISD::CSINV 0, 0, 0, t96
15011   ARMCC::CondCodes Cond;
15012   if (SDValue C = IsCMPZCSINC(N, Cond))
15013     if (Cond == ARMCC::EQ)
15014       return C;
15015   return SDValue();
15016 }
15017 
15018 static SDValue PerformCSETCombine(SDNode *N, SelectionDAG &DAG) {
15019   // Fold away an unneccessary CMPZ/CSINC
15020   // CSXYZ A, B, C1 (CMPZ (CSINC 0, 0, C2, D), 0) ->
15021   // if C1==EQ -> CSXYZ A, B, C2, D
15022   // if C1==NE -> CSXYZ A, B, NOT(C2), D
15023   ARMCC::CondCodes Cond;
15024   if (SDValue C = IsCMPZCSINC(N->getOperand(3).getNode(), Cond)) {
15025     if (N->getConstantOperandVal(2) == ARMCC::EQ)
15026       return DAG.getNode(N->getOpcode(), SDLoc(N), MVT::i32, N->getOperand(0),
15027                          N->getOperand(1),
15028                          DAG.getConstant(Cond, SDLoc(N), MVT::i32), C);
15029     if (N->getConstantOperandVal(2) == ARMCC::NE)
15030       return DAG.getNode(
15031           N->getOpcode(), SDLoc(N), MVT::i32, N->getOperand(0),
15032           N->getOperand(1),
15033           DAG.getConstant(ARMCC::getOppositeCondition(Cond), SDLoc(N), MVT::i32), C);
15034   }
15035   return SDValue();
15036 }
15037 
15038 /// PerformVMOVRRDCombine - Target-specific dag combine xforms for
15039 /// ARMISD::VMOVRRD.
15040 static SDValue PerformVMOVRRDCombine(SDNode *N,
15041                                      TargetLowering::DAGCombinerInfo &DCI,
15042                                      const ARMSubtarget *Subtarget) {
15043   // vmovrrd(vmovdrr x, y) -> x,y
15044   SDValue InDouble = N->getOperand(0);
15045   if (InDouble.getOpcode() == ARMISD::VMOVDRR && Subtarget->hasFP64())
15046     return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
15047 
15048   // vmovrrd(load f64) -> (load i32), (load i32)
15049   SDNode *InNode = InDouble.getNode();
15050   if (ISD::isNormalLoad(InNode) && InNode->hasOneUse() &&
15051       InNode->getValueType(0) == MVT::f64 &&
15052       InNode->getOperand(1).getOpcode() == ISD::FrameIndex &&
15053       !cast<LoadSDNode>(InNode)->isVolatile()) {
15054     // TODO: Should this be done for non-FrameIndex operands?
15055     LoadSDNode *LD = cast<LoadSDNode>(InNode);
15056 
15057     SelectionDAG &DAG = DCI.DAG;
15058     SDLoc DL(LD);
15059     SDValue BasePtr = LD->getBasePtr();
15060     SDValue NewLD1 =
15061         DAG.getLoad(MVT::i32, DL, LD->getChain(), BasePtr, LD->getPointerInfo(),
15062                     LD->getAlign(), LD->getMemOperand()->getFlags());
15063 
15064     SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
15065                                     DAG.getConstant(4, DL, MVT::i32));
15066 
15067     SDValue NewLD2 = DAG.getLoad(MVT::i32, DL, LD->getChain(), OffsetPtr,
15068                                  LD->getPointerInfo().getWithOffset(4),
15069                                  commonAlignment(LD->getAlign(), 4),
15070                                  LD->getMemOperand()->getFlags());
15071 
15072     DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewLD2.getValue(1));
15073     if (DCI.DAG.getDataLayout().isBigEndian())
15074       std::swap (NewLD1, NewLD2);
15075     SDValue Result = DCI.CombineTo(N, NewLD1, NewLD2);
15076     return Result;
15077   }
15078 
15079   // VMOVRRD(extract(..(build_vector(a, b, c, d)))) -> a,b or c,d
15080   // VMOVRRD(extract(insert_vector(insert_vector(.., a, l1), b, l2))) -> a,b
15081   if (InDouble.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
15082       isa<ConstantSDNode>(InDouble.getOperand(1))) {
15083     SDValue BV = InDouble.getOperand(0);
15084     // Look up through any nop bitcasts and vector_reg_casts. bitcasts may
15085     // change lane order under big endian.
15086     bool BVSwap = BV.getOpcode() == ISD::BITCAST;
15087     while (
15088         (BV.getOpcode() == ISD::BITCAST ||
15089          BV.getOpcode() == ARMISD::VECTOR_REG_CAST) &&
15090         (BV.getValueType() == MVT::v2f64 || BV.getValueType() == MVT::v2i64)) {
15091       BVSwap = BV.getOpcode() == ISD::BITCAST;
15092       BV = BV.getOperand(0);
15093     }
15094     if (BV.getValueType() != MVT::v4i32)
15095       return SDValue();
15096 
15097     // Handle buildvectors, pulling out the correct lane depending on
15098     // endianness.
15099     unsigned Offset = InDouble.getConstantOperandVal(1) == 1 ? 2 : 0;
15100     if (BV.getOpcode() == ISD::BUILD_VECTOR) {
15101       SDValue Op0 = BV.getOperand(Offset);
15102       SDValue Op1 = BV.getOperand(Offset + 1);
15103       if (!Subtarget->isLittle() && BVSwap)
15104         std::swap(Op0, Op1);
15105 
15106       return DCI.DAG.getMergeValues({Op0, Op1}, SDLoc(N));
15107     }
15108 
15109     // A chain of insert_vectors, grabbing the correct value of the chain of
15110     // inserts.
15111     SDValue Op0, Op1;
15112     while (BV.getOpcode() == ISD::INSERT_VECTOR_ELT) {
15113       if (isa<ConstantSDNode>(BV.getOperand(2))) {
15114         if (BV.getConstantOperandVal(2) == Offset)
15115           Op0 = BV.getOperand(1);
15116         if (BV.getConstantOperandVal(2) == Offset + 1)
15117           Op1 = BV.getOperand(1);
15118       }
15119       BV = BV.getOperand(0);
15120     }
15121     if (!Subtarget->isLittle() && BVSwap)
15122       std::swap(Op0, Op1);
15123     if (Op0 && Op1)
15124       return DCI.DAG.getMergeValues({Op0, Op1}, SDLoc(N));
15125   }
15126 
15127   return SDValue();
15128 }
15129 
15130 /// PerformVMOVDRRCombine - Target-specific dag combine xforms for
15131 /// ARMISD::VMOVDRR.  This is also used for BUILD_VECTORs with 2 operands.
15132 static SDValue PerformVMOVDRRCombine(SDNode *N, SelectionDAG &DAG) {
15133   // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
15134   SDValue Op0 = N->getOperand(0);
15135   SDValue Op1 = N->getOperand(1);
15136   if (Op0.getOpcode() == ISD::BITCAST)
15137     Op0 = Op0.getOperand(0);
15138   if (Op1.getOpcode() == ISD::BITCAST)
15139     Op1 = Op1.getOperand(0);
15140   if (Op0.getOpcode() == ARMISD::VMOVRRD &&
15141       Op0.getNode() == Op1.getNode() &&
15142       Op0.getResNo() == 0 && Op1.getResNo() == 1)
15143     return DAG.getNode(ISD::BITCAST, SDLoc(N),
15144                        N->getValueType(0), Op0.getOperand(0));
15145   return SDValue();
15146 }
15147 
15148 static SDValue PerformVMOVhrCombine(SDNode *N,
15149                                     TargetLowering::DAGCombinerInfo &DCI) {
15150   SDValue Op0 = N->getOperand(0);
15151 
15152   // VMOVhr (VMOVrh (X)) -> X
15153   if (Op0->getOpcode() == ARMISD::VMOVrh)
15154     return Op0->getOperand(0);
15155 
15156   // FullFP16: half values are passed in S-registers, and we don't
15157   // need any of the bitcast and moves:
15158   //
15159   //     t2: f32,ch1,gl1? = CopyFromReg ch, Register:f32 %0, gl?
15160   //   t5: i32 = bitcast t2
15161   // t18: f16 = ARMISD::VMOVhr t5
15162   // =>
15163   // tN: f16,ch2,gl2? = CopyFromReg ch, Register::f32 %0, gl?
15164   if (Op0->getOpcode() == ISD::BITCAST) {
15165     SDValue Copy = Op0->getOperand(0);
15166     if (Copy.getValueType() == MVT::f32 &&
15167         Copy->getOpcode() == ISD::CopyFromReg) {
15168       bool HasGlue = Copy->getNumOperands() == 3;
15169       SDValue Ops[] = {Copy->getOperand(0), Copy->getOperand(1),
15170                        HasGlue ? Copy->getOperand(2) : SDValue()};
15171       EVT OutTys[] = {N->getValueType(0), MVT::Other, MVT::Glue};
15172       SDValue NewCopy =
15173           DCI.DAG.getNode(ISD::CopyFromReg, SDLoc(N),
15174                           DCI.DAG.getVTList(ArrayRef(OutTys, HasGlue ? 3 : 2)),
15175                           ArrayRef(Ops, HasGlue ? 3 : 2));
15176 
15177       // Update Users, Chains, and Potential Glue.
15178       DCI.DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), NewCopy.getValue(0));
15179       DCI.DAG.ReplaceAllUsesOfValueWith(Copy.getValue(1), NewCopy.getValue(1));
15180       if (HasGlue)
15181         DCI.DAG.ReplaceAllUsesOfValueWith(Copy.getValue(2),
15182                                           NewCopy.getValue(2));
15183 
15184       return NewCopy;
15185     }
15186   }
15187 
15188   // fold (VMOVhr (load x)) -> (load (f16*)x)
15189   if (LoadSDNode *LN0 = dyn_cast<LoadSDNode>(Op0)) {
15190     if (LN0->hasOneUse() && LN0->isUnindexed() &&
15191         LN0->getMemoryVT() == MVT::i16) {
15192       SDValue Load =
15193           DCI.DAG.getLoad(N->getValueType(0), SDLoc(N), LN0->getChain(),
15194                           LN0->getBasePtr(), LN0->getMemOperand());
15195       DCI.DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Load.getValue(0));
15196       DCI.DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), Load.getValue(1));
15197       return Load;
15198     }
15199   }
15200 
15201   // Only the bottom 16 bits of the source register are used.
15202   APInt DemandedMask = APInt::getLowBitsSet(32, 16);
15203   const TargetLowering &TLI = DCI.DAG.getTargetLoweringInfo();
15204   if (TLI.SimplifyDemandedBits(Op0, DemandedMask, DCI))
15205     return SDValue(N, 0);
15206 
15207   return SDValue();
15208 }
15209 
15210 static SDValue PerformVMOVrhCombine(SDNode *N, SelectionDAG &DAG) {
15211   SDValue N0 = N->getOperand(0);
15212   EVT VT = N->getValueType(0);
15213 
15214   // fold (VMOVrh (fpconst x)) -> const x
15215   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N0)) {
15216     APFloat V = C->getValueAPF();
15217     return DAG.getConstant(V.bitcastToAPInt().getZExtValue(), SDLoc(N), VT);
15218   }
15219 
15220   // fold (VMOVrh (load x)) -> (zextload (i16*)x)
15221   if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse()) {
15222     LoadSDNode *LN0 = cast<LoadSDNode>(N0);
15223 
15224     SDValue Load =
15225         DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N), VT, LN0->getChain(),
15226                        LN0->getBasePtr(), MVT::i16, LN0->getMemOperand());
15227     DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Load.getValue(0));
15228     DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1));
15229     return Load;
15230   }
15231 
15232   // Fold VMOVrh(extract(x, n)) -> vgetlaneu(x, n)
15233   if (N0->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
15234       isa<ConstantSDNode>(N0->getOperand(1)))
15235     return DAG.getNode(ARMISD::VGETLANEu, SDLoc(N), VT, N0->getOperand(0),
15236                        N0->getOperand(1));
15237 
15238   return SDValue();
15239 }
15240 
15241 /// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node
15242 /// are normal, non-volatile loads.  If so, it is profitable to bitcast an
15243 /// i64 vector to have f64 elements, since the value can then be loaded
15244 /// directly into a VFP register.
15245 static bool hasNormalLoadOperand(SDNode *N) {
15246   unsigned NumElts = N->getValueType(0).getVectorNumElements();
15247   for (unsigned i = 0; i < NumElts; ++i) {
15248     SDNode *Elt = N->getOperand(i).getNode();
15249     if (ISD::isNormalLoad(Elt) && !cast<LoadSDNode>(Elt)->isVolatile())
15250       return true;
15251   }
15252   return false;
15253 }
15254 
15255 /// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
15256 /// ISD::BUILD_VECTOR.
15257 static SDValue PerformBUILD_VECTORCombine(SDNode *N,
15258                                           TargetLowering::DAGCombinerInfo &DCI,
15259                                           const ARMSubtarget *Subtarget) {
15260   // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
15261   // VMOVRRD is introduced when legalizing i64 types.  It forces the i64 value
15262   // into a pair of GPRs, which is fine when the value is used as a scalar,
15263   // but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
15264   SelectionDAG &DAG = DCI.DAG;
15265   if (N->getNumOperands() == 2)
15266     if (SDValue RV = PerformVMOVDRRCombine(N, DAG))
15267       return RV;
15268 
15269   // Load i64 elements as f64 values so that type legalization does not split
15270   // them up into i32 values.
15271   EVT VT = N->getValueType(0);
15272   if (VT.getVectorElementType() != MVT::i64 || !hasNormalLoadOperand(N))
15273     return SDValue();
15274   SDLoc dl(N);
15275   SmallVector<SDValue, 8> Ops;
15276   unsigned NumElts = VT.getVectorNumElements();
15277   for (unsigned i = 0; i < NumElts; ++i) {
15278     SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(i));
15279     Ops.push_back(V);
15280     // Make the DAGCombiner fold the bitcast.
15281     DCI.AddToWorklist(V.getNode());
15282   }
15283   EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, NumElts);
15284   SDValue BV = DAG.getBuildVector(FloatVT, dl, Ops);
15285   return DAG.getNode(ISD::BITCAST, dl, VT, BV);
15286 }
15287 
15288 /// Target-specific dag combine xforms for ARMISD::BUILD_VECTOR.
15289 static SDValue
15290 PerformARMBUILD_VECTORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
15291   // ARMISD::BUILD_VECTOR is introduced when legalizing ISD::BUILD_VECTOR.
15292   // At that time, we may have inserted bitcasts from integer to float.
15293   // If these bitcasts have survived DAGCombine, change the lowering of this
15294   // BUILD_VECTOR in something more vector friendly, i.e., that does not
15295   // force to use floating point types.
15296 
15297   // Make sure we can change the type of the vector.
15298   // This is possible iff:
15299   // 1. The vector is only used in a bitcast to a integer type. I.e.,
15300   //    1.1. Vector is used only once.
15301   //    1.2. Use is a bit convert to an integer type.
15302   // 2. The size of its operands are 32-bits (64-bits are not legal).
15303   EVT VT = N->getValueType(0);
15304   EVT EltVT = VT.getVectorElementType();
15305 
15306   // Check 1.1. and 2.
15307   if (EltVT.getSizeInBits() != 32 || !N->hasOneUse())
15308     return SDValue();
15309 
15310   // By construction, the input type must be float.
15311   assert(EltVT == MVT::f32 && "Unexpected type!");
15312 
15313   // Check 1.2.
15314   SDNode *Use = *N->use_begin();
15315   if (Use->getOpcode() != ISD::BITCAST ||
15316       Use->getValueType(0).isFloatingPoint())
15317     return SDValue();
15318 
15319   // Check profitability.
15320   // Model is, if more than half of the relevant operands are bitcast from
15321   // i32, turn the build_vector into a sequence of insert_vector_elt.
15322   // Relevant operands are everything that is not statically
15323   // (i.e., at compile time) bitcasted.
15324   unsigned NumOfBitCastedElts = 0;
15325   unsigned NumElts = VT.getVectorNumElements();
15326   unsigned NumOfRelevantElts = NumElts;
15327   for (unsigned Idx = 0; Idx < NumElts; ++Idx) {
15328     SDValue Elt = N->getOperand(Idx);
15329     if (Elt->getOpcode() == ISD::BITCAST) {
15330       // Assume only bit cast to i32 will go away.
15331       if (Elt->getOperand(0).getValueType() == MVT::i32)
15332         ++NumOfBitCastedElts;
15333     } else if (Elt.isUndef() || isa<ConstantSDNode>(Elt))
15334       // Constants are statically casted, thus do not count them as
15335       // relevant operands.
15336       --NumOfRelevantElts;
15337   }
15338 
15339   // Check if more than half of the elements require a non-free bitcast.
15340   if (NumOfBitCastedElts <= NumOfRelevantElts / 2)
15341     return SDValue();
15342 
15343   SelectionDAG &DAG = DCI.DAG;
15344   // Create the new vector type.
15345   EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
15346   // Check if the type is legal.
15347   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
15348   if (!TLI.isTypeLegal(VecVT))
15349     return SDValue();
15350 
15351   // Combine:
15352   // ARMISD::BUILD_VECTOR E1, E2, ..., EN.
15353   // => BITCAST INSERT_VECTOR_ELT
15354   //                      (INSERT_VECTOR_ELT (...), (BITCAST EN-1), N-1),
15355   //                      (BITCAST EN), N.
15356   SDValue Vec = DAG.getUNDEF(VecVT);
15357   SDLoc dl(N);
15358   for (unsigned Idx = 0 ; Idx < NumElts; ++Idx) {
15359     SDValue V = N->getOperand(Idx);
15360     if (V.isUndef())
15361       continue;
15362     if (V.getOpcode() == ISD::BITCAST &&
15363         V->getOperand(0).getValueType() == MVT::i32)
15364       // Fold obvious case.
15365       V = V.getOperand(0);
15366     else {
15367       V = DAG.getNode(ISD::BITCAST, SDLoc(V), MVT::i32, V);
15368       // Make the DAGCombiner fold the bitcasts.
15369       DCI.AddToWorklist(V.getNode());
15370     }
15371     SDValue LaneIdx = DAG.getConstant(Idx, dl, MVT::i32);
15372     Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VecVT, Vec, V, LaneIdx);
15373   }
15374   Vec = DAG.getNode(ISD::BITCAST, dl, VT, Vec);
15375   // Make the DAGCombiner fold the bitcasts.
15376   DCI.AddToWorklist(Vec.getNode());
15377   return Vec;
15378 }
15379 
15380 static SDValue
15381 PerformPREDICATE_CASTCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
15382   EVT VT = N->getValueType(0);
15383   SDValue Op = N->getOperand(0);
15384   SDLoc dl(N);
15385 
15386   // PREDICATE_CAST(PREDICATE_CAST(x)) == PREDICATE_CAST(x)
15387   if (Op->getOpcode() == ARMISD::PREDICATE_CAST) {
15388     // If the valuetypes are the same, we can remove the cast entirely.
15389     if (Op->getOperand(0).getValueType() == VT)
15390       return Op->getOperand(0);
15391     return DCI.DAG.getNode(ARMISD::PREDICATE_CAST, dl, VT, Op->getOperand(0));
15392   }
15393 
15394   // Turn pred_cast(xor x, -1) into xor(pred_cast x, -1), in order to produce
15395   // more VPNOT which might get folded as else predicates.
15396   if (Op.getValueType() == MVT::i32 && isBitwiseNot(Op)) {
15397     SDValue X =
15398         DCI.DAG.getNode(ARMISD::PREDICATE_CAST, dl, VT, Op->getOperand(0));
15399     SDValue C = DCI.DAG.getNode(ARMISD::PREDICATE_CAST, dl, VT,
15400                                 DCI.DAG.getConstant(65535, dl, MVT::i32));
15401     return DCI.DAG.getNode(ISD::XOR, dl, VT, X, C);
15402   }
15403 
15404   // Only the bottom 16 bits of the source register are used.
15405   if (Op.getValueType() == MVT::i32) {
15406     APInt DemandedMask = APInt::getLowBitsSet(32, 16);
15407     const TargetLowering &TLI = DCI.DAG.getTargetLoweringInfo();
15408     if (TLI.SimplifyDemandedBits(Op, DemandedMask, DCI))
15409       return SDValue(N, 0);
15410   }
15411   return SDValue();
15412 }
15413 
15414 static SDValue PerformVECTOR_REG_CASTCombine(SDNode *N, SelectionDAG &DAG,
15415                                              const ARMSubtarget *ST) {
15416   EVT VT = N->getValueType(0);
15417   SDValue Op = N->getOperand(0);
15418   SDLoc dl(N);
15419 
15420   // Under Little endian, a VECTOR_REG_CAST is equivalent to a BITCAST
15421   if (ST->isLittle())
15422     return DAG.getNode(ISD::BITCAST, dl, VT, Op);
15423 
15424   // VECTOR_REG_CAST undef -> undef
15425   if (Op.isUndef())
15426     return DAG.getUNDEF(VT);
15427 
15428   // VECTOR_REG_CAST(VECTOR_REG_CAST(x)) == VECTOR_REG_CAST(x)
15429   if (Op->getOpcode() == ARMISD::VECTOR_REG_CAST) {
15430     // If the valuetypes are the same, we can remove the cast entirely.
15431     if (Op->getOperand(0).getValueType() == VT)
15432       return Op->getOperand(0);
15433     return DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, VT, Op->getOperand(0));
15434   }
15435 
15436   return SDValue();
15437 }
15438 
15439 static SDValue PerformVCMPCombine(SDNode *N, SelectionDAG &DAG,
15440                                   const ARMSubtarget *Subtarget) {
15441   if (!Subtarget->hasMVEIntegerOps())
15442     return SDValue();
15443 
15444   EVT VT = N->getValueType(0);
15445   SDValue Op0 = N->getOperand(0);
15446   SDValue Op1 = N->getOperand(1);
15447   ARMCC::CondCodes Cond = (ARMCC::CondCodes)N->getConstantOperandVal(2);
15448   SDLoc dl(N);
15449 
15450   // vcmp X, 0, cc -> vcmpz X, cc
15451   if (isZeroVector(Op1))
15452     return DAG.getNode(ARMISD::VCMPZ, dl, VT, Op0, N->getOperand(2));
15453 
15454   unsigned SwappedCond = getSwappedCondition(Cond);
15455   if (isValidMVECond(SwappedCond, VT.isFloatingPoint())) {
15456     // vcmp 0, X, cc -> vcmpz X, reversed(cc)
15457     if (isZeroVector(Op0))
15458       return DAG.getNode(ARMISD::VCMPZ, dl, VT, Op1,
15459                          DAG.getConstant(SwappedCond, dl, MVT::i32));
15460     // vcmp vdup(Y), X, cc -> vcmp X, vdup(Y), reversed(cc)
15461     if (Op0->getOpcode() == ARMISD::VDUP && Op1->getOpcode() != ARMISD::VDUP)
15462       return DAG.getNode(ARMISD::VCMP, dl, VT, Op1, Op0,
15463                          DAG.getConstant(SwappedCond, dl, MVT::i32));
15464   }
15465 
15466   return SDValue();
15467 }
15468 
15469 /// PerformInsertEltCombine - Target-specific dag combine xforms for
15470 /// ISD::INSERT_VECTOR_ELT.
15471 static SDValue PerformInsertEltCombine(SDNode *N,
15472                                        TargetLowering::DAGCombinerInfo &DCI) {
15473   // Bitcast an i64 load inserted into a vector to f64.
15474   // Otherwise, the i64 value will be legalized to a pair of i32 values.
15475   EVT VT = N->getValueType(0);
15476   SDNode *Elt = N->getOperand(1).getNode();
15477   if (VT.getVectorElementType() != MVT::i64 ||
15478       !ISD::isNormalLoad(Elt) || cast<LoadSDNode>(Elt)->isVolatile())
15479     return SDValue();
15480 
15481   SelectionDAG &DAG = DCI.DAG;
15482   SDLoc dl(N);
15483   EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
15484                                  VT.getVectorNumElements());
15485   SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, N->getOperand(0));
15486   SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(1));
15487   // Make the DAGCombiner fold the bitcasts.
15488   DCI.AddToWorklist(Vec.getNode());
15489   DCI.AddToWorklist(V.getNode());
15490   SDValue InsElt = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, FloatVT,
15491                                Vec, V, N->getOperand(2));
15492   return DAG.getNode(ISD::BITCAST, dl, VT, InsElt);
15493 }
15494 
15495 // Convert a pair of extracts from the same base vector to a VMOVRRD. Either
15496 // directly or bitcast to an integer if the original is a float vector.
15497 // extract(x, n); extract(x, n+1)  ->  VMOVRRD(extract v2f64 x, n/2)
15498 // bitcast(extract(x, n)); bitcast(extract(x, n+1))  ->  VMOVRRD(extract x, n/2)
15499 static SDValue
15500 PerformExtractEltToVMOVRRD(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
15501   EVT VT = N->getValueType(0);
15502   SDLoc dl(N);
15503 
15504   if (!DCI.isAfterLegalizeDAG() || VT != MVT::i32 ||
15505       !DCI.DAG.getTargetLoweringInfo().isTypeLegal(MVT::f64))
15506     return SDValue();
15507 
15508   SDValue Ext = SDValue(N, 0);
15509   if (Ext.getOpcode() == ISD::BITCAST &&
15510       Ext.getOperand(0).getValueType() == MVT::f32)
15511     Ext = Ext.getOperand(0);
15512   if (Ext.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
15513       !isa<ConstantSDNode>(Ext.getOperand(1)) ||
15514       Ext.getConstantOperandVal(1) % 2 != 0)
15515     return SDValue();
15516   if (Ext->use_size() == 1 &&
15517       (Ext->use_begin()->getOpcode() == ISD::SINT_TO_FP ||
15518        Ext->use_begin()->getOpcode() == ISD::UINT_TO_FP))
15519     return SDValue();
15520 
15521   SDValue Op0 = Ext.getOperand(0);
15522   EVT VecVT = Op0.getValueType();
15523   unsigned ResNo = Op0.getResNo();
15524   unsigned Lane = Ext.getConstantOperandVal(1);
15525   if (VecVT.getVectorNumElements() != 4)
15526     return SDValue();
15527 
15528   // Find another extract, of Lane + 1
15529   auto OtherIt = find_if(Op0->uses(), [&](SDNode *V) {
15530     return V->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
15531            isa<ConstantSDNode>(V->getOperand(1)) &&
15532            V->getConstantOperandVal(1) == Lane + 1 &&
15533            V->getOperand(0).getResNo() == ResNo;
15534   });
15535   if (OtherIt == Op0->uses().end())
15536     return SDValue();
15537 
15538   // For float extracts, we need to be converting to a i32 for both vector
15539   // lanes.
15540   SDValue OtherExt(*OtherIt, 0);
15541   if (OtherExt.getValueType() != MVT::i32) {
15542     if (OtherExt->use_size() != 1 ||
15543         OtherExt->use_begin()->getOpcode() != ISD::BITCAST ||
15544         OtherExt->use_begin()->getValueType(0) != MVT::i32)
15545       return SDValue();
15546     OtherExt = SDValue(*OtherExt->use_begin(), 0);
15547   }
15548 
15549   // Convert the type to a f64 and extract with a VMOVRRD.
15550   SDValue F64 = DCI.DAG.getNode(
15551       ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
15552       DCI.DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, MVT::v2f64, Op0),
15553       DCI.DAG.getConstant(Ext.getConstantOperandVal(1) / 2, dl, MVT::i32));
15554   SDValue VMOVRRD =
15555       DCI.DAG.getNode(ARMISD::VMOVRRD, dl, {MVT::i32, MVT::i32}, F64);
15556 
15557   DCI.CombineTo(OtherExt.getNode(), SDValue(VMOVRRD.getNode(), 1));
15558   return VMOVRRD;
15559 }
15560 
15561 static SDValue PerformExtractEltCombine(SDNode *N,
15562                                         TargetLowering::DAGCombinerInfo &DCI,
15563                                         const ARMSubtarget *ST) {
15564   SDValue Op0 = N->getOperand(0);
15565   EVT VT = N->getValueType(0);
15566   SDLoc dl(N);
15567 
15568   // extract (vdup x) -> x
15569   if (Op0->getOpcode() == ARMISD::VDUP) {
15570     SDValue X = Op0->getOperand(0);
15571     if (VT == MVT::f16 && X.getValueType() == MVT::i32)
15572       return DCI.DAG.getNode(ARMISD::VMOVhr, dl, VT, X);
15573     if (VT == MVT::i32 && X.getValueType() == MVT::f16)
15574       return DCI.DAG.getNode(ARMISD::VMOVrh, dl, VT, X);
15575     if (VT == MVT::f32 && X.getValueType() == MVT::i32)
15576       return DCI.DAG.getNode(ISD::BITCAST, dl, VT, X);
15577 
15578     while (X.getValueType() != VT && X->getOpcode() == ISD::BITCAST)
15579       X = X->getOperand(0);
15580     if (X.getValueType() == VT)
15581       return X;
15582   }
15583 
15584   // extract ARM_BUILD_VECTOR -> x
15585   if (Op0->getOpcode() == ARMISD::BUILD_VECTOR &&
15586       isa<ConstantSDNode>(N->getOperand(1)) &&
15587       N->getConstantOperandVal(1) < Op0.getNumOperands()) {
15588     return Op0.getOperand(N->getConstantOperandVal(1));
15589   }
15590 
15591   // extract(bitcast(BUILD_VECTOR(VMOVDRR(a, b), ..))) -> a or b
15592   if (Op0.getValueType() == MVT::v4i32 &&
15593       isa<ConstantSDNode>(N->getOperand(1)) &&
15594       Op0.getOpcode() == ISD::BITCAST &&
15595       Op0.getOperand(0).getOpcode() == ISD::BUILD_VECTOR &&
15596       Op0.getOperand(0).getValueType() == MVT::v2f64) {
15597     SDValue BV = Op0.getOperand(0);
15598     unsigned Offset = N->getConstantOperandVal(1);
15599     SDValue MOV = BV.getOperand(Offset < 2 ? 0 : 1);
15600     if (MOV.getOpcode() == ARMISD::VMOVDRR)
15601       return MOV.getOperand(ST->isLittle() ? Offset % 2 : 1 - Offset % 2);
15602   }
15603 
15604   // extract x, n; extract x, n+1  ->  VMOVRRD x
15605   if (SDValue R = PerformExtractEltToVMOVRRD(N, DCI))
15606     return R;
15607 
15608   // extract (MVETrunc(x)) -> extract x
15609   if (Op0->getOpcode() == ARMISD::MVETRUNC) {
15610     unsigned Idx = N->getConstantOperandVal(1);
15611     unsigned Vec =
15612         Idx / Op0->getOperand(0).getValueType().getVectorNumElements();
15613     unsigned SubIdx =
15614         Idx % Op0->getOperand(0).getValueType().getVectorNumElements();
15615     return DCI.DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Op0.getOperand(Vec),
15616                            DCI.DAG.getConstant(SubIdx, dl, MVT::i32));
15617   }
15618 
15619   return SDValue();
15620 }
15621 
15622 static SDValue PerformSignExtendInregCombine(SDNode *N, SelectionDAG &DAG) {
15623   SDValue Op = N->getOperand(0);
15624   EVT VT = N->getValueType(0);
15625 
15626   // sext_inreg(VGETLANEu) -> VGETLANEs
15627   if (Op.getOpcode() == ARMISD::VGETLANEu &&
15628       cast<VTSDNode>(N->getOperand(1))->getVT() ==
15629           Op.getOperand(0).getValueType().getScalarType())
15630     return DAG.getNode(ARMISD::VGETLANEs, SDLoc(N), VT, Op.getOperand(0),
15631                        Op.getOperand(1));
15632 
15633   return SDValue();
15634 }
15635 
15636 static SDValue
15637 PerformInsertSubvectorCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
15638   SDValue Vec = N->getOperand(0);
15639   SDValue SubVec = N->getOperand(1);
15640   uint64_t IdxVal = N->getConstantOperandVal(2);
15641   EVT VecVT = Vec.getValueType();
15642   EVT SubVT = SubVec.getValueType();
15643 
15644   // Only do this for legal fixed vector types.
15645   if (!VecVT.isFixedLengthVector() ||
15646       !DCI.DAG.getTargetLoweringInfo().isTypeLegal(VecVT) ||
15647       !DCI.DAG.getTargetLoweringInfo().isTypeLegal(SubVT))
15648     return SDValue();
15649 
15650   // Ignore widening patterns.
15651   if (IdxVal == 0 && Vec.isUndef())
15652     return SDValue();
15653 
15654   // Subvector must be half the width and an "aligned" insertion.
15655   unsigned NumSubElts = SubVT.getVectorNumElements();
15656   if ((SubVT.getSizeInBits() * 2) != VecVT.getSizeInBits() ||
15657       (IdxVal != 0 && IdxVal != NumSubElts))
15658     return SDValue();
15659 
15660   // Fold insert_subvector -> concat_vectors
15661   // insert_subvector(Vec,Sub,lo) -> concat_vectors(Sub,extract(Vec,hi))
15662   // insert_subvector(Vec,Sub,hi) -> concat_vectors(extract(Vec,lo),Sub)
15663   SDLoc DL(N);
15664   SDValue Lo, Hi;
15665   if (IdxVal == 0) {
15666     Lo = SubVec;
15667     Hi = DCI.DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVT, Vec,
15668                          DCI.DAG.getVectorIdxConstant(NumSubElts, DL));
15669   } else {
15670     Lo = DCI.DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVT, Vec,
15671                          DCI.DAG.getVectorIdxConstant(0, DL));
15672     Hi = SubVec;
15673   }
15674   return DCI.DAG.getNode(ISD::CONCAT_VECTORS, DL, VecVT, Lo, Hi);
15675 }
15676 
15677 // shuffle(MVETrunc(x, y)) -> VMOVN(x, y)
15678 static SDValue PerformShuffleVMOVNCombine(ShuffleVectorSDNode *N,
15679                                           SelectionDAG &DAG) {
15680   SDValue Trunc = N->getOperand(0);
15681   EVT VT = Trunc.getValueType();
15682   if (Trunc.getOpcode() != ARMISD::MVETRUNC || !N->getOperand(1).isUndef())
15683     return SDValue();
15684 
15685   SDLoc DL(Trunc);
15686   if (isVMOVNTruncMask(N->getMask(), VT, false))
15687     return DAG.getNode(
15688         ARMISD::VMOVN, DL, VT,
15689         DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, VT, Trunc.getOperand(0)),
15690         DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, VT, Trunc.getOperand(1)),
15691         DAG.getConstant(1, DL, MVT::i32));
15692   else if (isVMOVNTruncMask(N->getMask(), VT, true))
15693     return DAG.getNode(
15694         ARMISD::VMOVN, DL, VT,
15695         DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, VT, Trunc.getOperand(1)),
15696         DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, VT, Trunc.getOperand(0)),
15697         DAG.getConstant(1, DL, MVT::i32));
15698   return SDValue();
15699 }
15700 
15701 /// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for
15702 /// ISD::VECTOR_SHUFFLE.
15703 static SDValue PerformVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG) {
15704   if (SDValue R = PerformShuffleVMOVNCombine(cast<ShuffleVectorSDNode>(N), DAG))
15705     return R;
15706 
15707   // The LLVM shufflevector instruction does not require the shuffle mask
15708   // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does
15709   // have that requirement.  When translating to ISD::VECTOR_SHUFFLE, if the
15710   // operands do not match the mask length, they are extended by concatenating
15711   // them with undef vectors.  That is probably the right thing for other
15712   // targets, but for NEON it is better to concatenate two double-register
15713   // size vector operands into a single quad-register size vector.  Do that
15714   // transformation here:
15715   //   shuffle(concat(v1, undef), concat(v2, undef)) ->
15716   //   shuffle(concat(v1, v2), undef)
15717   SDValue Op0 = N->getOperand(0);
15718   SDValue Op1 = N->getOperand(1);
15719   if (Op0.getOpcode() != ISD::CONCAT_VECTORS ||
15720       Op1.getOpcode() != ISD::CONCAT_VECTORS ||
15721       Op0.getNumOperands() != 2 ||
15722       Op1.getNumOperands() != 2)
15723     return SDValue();
15724   SDValue Concat0Op1 = Op0.getOperand(1);
15725   SDValue Concat1Op1 = Op1.getOperand(1);
15726   if (!Concat0Op1.isUndef() || !Concat1Op1.isUndef())
15727     return SDValue();
15728   // Skip the transformation if any of the types are illegal.
15729   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
15730   EVT VT = N->getValueType(0);
15731   if (!TLI.isTypeLegal(VT) ||
15732       !TLI.isTypeLegal(Concat0Op1.getValueType()) ||
15733       !TLI.isTypeLegal(Concat1Op1.getValueType()))
15734     return SDValue();
15735 
15736   SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT,
15737                                   Op0.getOperand(0), Op1.getOperand(0));
15738   // Translate the shuffle mask.
15739   SmallVector<int, 16> NewMask;
15740   unsigned NumElts = VT.getVectorNumElements();
15741   unsigned HalfElts = NumElts/2;
15742   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
15743   for (unsigned n = 0; n < NumElts; ++n) {
15744     int MaskElt = SVN->getMaskElt(n);
15745     int NewElt = -1;
15746     if (MaskElt < (int)HalfElts)
15747       NewElt = MaskElt;
15748     else if (MaskElt >= (int)NumElts && MaskElt < (int)(NumElts + HalfElts))
15749       NewElt = HalfElts + MaskElt - NumElts;
15750     NewMask.push_back(NewElt);
15751   }
15752   return DAG.getVectorShuffle(VT, SDLoc(N), NewConcat,
15753                               DAG.getUNDEF(VT), NewMask);
15754 }
15755 
15756 /// Load/store instruction that can be merged with a base address
15757 /// update
15758 struct BaseUpdateTarget {
15759   SDNode *N;
15760   bool isIntrinsic;
15761   bool isStore;
15762   unsigned AddrOpIdx;
15763 };
15764 
15765 struct BaseUpdateUser {
15766   /// Instruction that updates a pointer
15767   SDNode *N;
15768   /// Pointer increment operand
15769   SDValue Inc;
15770   /// Pointer increment value if it is a constant, or 0 otherwise
15771   unsigned ConstInc;
15772 };
15773 
15774 static bool TryCombineBaseUpdate(struct BaseUpdateTarget &Target,
15775                                  struct BaseUpdateUser &User,
15776                                  bool SimpleConstIncOnly,
15777                                  TargetLowering::DAGCombinerInfo &DCI) {
15778   SelectionDAG &DAG = DCI.DAG;
15779   SDNode *N = Target.N;
15780   MemSDNode *MemN = cast<MemSDNode>(N);
15781   SDLoc dl(N);
15782 
15783   // Find the new opcode for the updating load/store.
15784   bool isLoadOp = true;
15785   bool isLaneOp = false;
15786   // Workaround for vst1x and vld1x intrinsics which do not have alignment
15787   // as an operand.
15788   bool hasAlignment = true;
15789   unsigned NewOpc = 0;
15790   unsigned NumVecs = 0;
15791   if (Target.isIntrinsic) {
15792     unsigned IntNo = N->getConstantOperandVal(1);
15793     switch (IntNo) {
15794     default:
15795       llvm_unreachable("unexpected intrinsic for Neon base update");
15796     case Intrinsic::arm_neon_vld1:
15797       NewOpc = ARMISD::VLD1_UPD;
15798       NumVecs = 1;
15799       break;
15800     case Intrinsic::arm_neon_vld2:
15801       NewOpc = ARMISD::VLD2_UPD;
15802       NumVecs = 2;
15803       break;
15804     case Intrinsic::arm_neon_vld3:
15805       NewOpc = ARMISD::VLD3_UPD;
15806       NumVecs = 3;
15807       break;
15808     case Intrinsic::arm_neon_vld4:
15809       NewOpc = ARMISD::VLD4_UPD;
15810       NumVecs = 4;
15811       break;
15812     case Intrinsic::arm_neon_vld1x2:
15813       NewOpc = ARMISD::VLD1x2_UPD;
15814       NumVecs = 2;
15815       hasAlignment = false;
15816       break;
15817     case Intrinsic::arm_neon_vld1x3:
15818       NewOpc = ARMISD::VLD1x3_UPD;
15819       NumVecs = 3;
15820       hasAlignment = false;
15821       break;
15822     case Intrinsic::arm_neon_vld1x4:
15823       NewOpc = ARMISD::VLD1x4_UPD;
15824       NumVecs = 4;
15825       hasAlignment = false;
15826       break;
15827     case Intrinsic::arm_neon_vld2dup:
15828       NewOpc = ARMISD::VLD2DUP_UPD;
15829       NumVecs = 2;
15830       break;
15831     case Intrinsic::arm_neon_vld3dup:
15832       NewOpc = ARMISD::VLD3DUP_UPD;
15833       NumVecs = 3;
15834       break;
15835     case Intrinsic::arm_neon_vld4dup:
15836       NewOpc = ARMISD::VLD4DUP_UPD;
15837       NumVecs = 4;
15838       break;
15839     case Intrinsic::arm_neon_vld2lane:
15840       NewOpc = ARMISD::VLD2LN_UPD;
15841       NumVecs = 2;
15842       isLaneOp = true;
15843       break;
15844     case Intrinsic::arm_neon_vld3lane:
15845       NewOpc = ARMISD::VLD3LN_UPD;
15846       NumVecs = 3;
15847       isLaneOp = true;
15848       break;
15849     case Intrinsic::arm_neon_vld4lane:
15850       NewOpc = ARMISD::VLD4LN_UPD;
15851       NumVecs = 4;
15852       isLaneOp = true;
15853       break;
15854     case Intrinsic::arm_neon_vst1:
15855       NewOpc = ARMISD::VST1_UPD;
15856       NumVecs = 1;
15857       isLoadOp = false;
15858       break;
15859     case Intrinsic::arm_neon_vst2:
15860       NewOpc = ARMISD::VST2_UPD;
15861       NumVecs = 2;
15862       isLoadOp = false;
15863       break;
15864     case Intrinsic::arm_neon_vst3:
15865       NewOpc = ARMISD::VST3_UPD;
15866       NumVecs = 3;
15867       isLoadOp = false;
15868       break;
15869     case Intrinsic::arm_neon_vst4:
15870       NewOpc = ARMISD::VST4_UPD;
15871       NumVecs = 4;
15872       isLoadOp = false;
15873       break;
15874     case Intrinsic::arm_neon_vst2lane:
15875       NewOpc = ARMISD::VST2LN_UPD;
15876       NumVecs = 2;
15877       isLoadOp = false;
15878       isLaneOp = true;
15879       break;
15880     case Intrinsic::arm_neon_vst3lane:
15881       NewOpc = ARMISD::VST3LN_UPD;
15882       NumVecs = 3;
15883       isLoadOp = false;
15884       isLaneOp = true;
15885       break;
15886     case Intrinsic::arm_neon_vst4lane:
15887       NewOpc = ARMISD::VST4LN_UPD;
15888       NumVecs = 4;
15889       isLoadOp = false;
15890       isLaneOp = true;
15891       break;
15892     case Intrinsic::arm_neon_vst1x2:
15893       NewOpc = ARMISD::VST1x2_UPD;
15894       NumVecs = 2;
15895       isLoadOp = false;
15896       hasAlignment = false;
15897       break;
15898     case Intrinsic::arm_neon_vst1x3:
15899       NewOpc = ARMISD::VST1x3_UPD;
15900       NumVecs = 3;
15901       isLoadOp = false;
15902       hasAlignment = false;
15903       break;
15904     case Intrinsic::arm_neon_vst1x4:
15905       NewOpc = ARMISD::VST1x4_UPD;
15906       NumVecs = 4;
15907       isLoadOp = false;
15908       hasAlignment = false;
15909       break;
15910     }
15911   } else {
15912     isLaneOp = true;
15913     switch (N->getOpcode()) {
15914     default:
15915       llvm_unreachable("unexpected opcode for Neon base update");
15916     case ARMISD::VLD1DUP:
15917       NewOpc = ARMISD::VLD1DUP_UPD;
15918       NumVecs = 1;
15919       break;
15920     case ARMISD::VLD2DUP:
15921       NewOpc = ARMISD::VLD2DUP_UPD;
15922       NumVecs = 2;
15923       break;
15924     case ARMISD::VLD3DUP:
15925       NewOpc = ARMISD::VLD3DUP_UPD;
15926       NumVecs = 3;
15927       break;
15928     case ARMISD::VLD4DUP:
15929       NewOpc = ARMISD::VLD4DUP_UPD;
15930       NumVecs = 4;
15931       break;
15932     case ISD::LOAD:
15933       NewOpc = ARMISD::VLD1_UPD;
15934       NumVecs = 1;
15935       isLaneOp = false;
15936       break;
15937     case ISD::STORE:
15938       NewOpc = ARMISD::VST1_UPD;
15939       NumVecs = 1;
15940       isLaneOp = false;
15941       isLoadOp = false;
15942       break;
15943     }
15944   }
15945 
15946   // Find the size of memory referenced by the load/store.
15947   EVT VecTy;
15948   if (isLoadOp) {
15949     VecTy = N->getValueType(0);
15950   } else if (Target.isIntrinsic) {
15951     VecTy = N->getOperand(Target.AddrOpIdx + 1).getValueType();
15952   } else {
15953     assert(Target.isStore &&
15954            "Node has to be a load, a store, or an intrinsic!");
15955     VecTy = N->getOperand(1).getValueType();
15956   }
15957 
15958   bool isVLDDUPOp =
15959       NewOpc == ARMISD::VLD1DUP_UPD || NewOpc == ARMISD::VLD2DUP_UPD ||
15960       NewOpc == ARMISD::VLD3DUP_UPD || NewOpc == ARMISD::VLD4DUP_UPD;
15961 
15962   unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
15963   if (isLaneOp || isVLDDUPOp)
15964     NumBytes /= VecTy.getVectorNumElements();
15965 
15966   if (NumBytes >= 3 * 16 && User.ConstInc != NumBytes) {
15967     // VLD3/4 and VST3/4 for 128-bit vectors are implemented with two
15968     // separate instructions that make it harder to use a non-constant update.
15969     return false;
15970   }
15971 
15972   if (SimpleConstIncOnly && User.ConstInc != NumBytes)
15973     return false;
15974 
15975   // OK, we found an ADD we can fold into the base update.
15976   // Now, create a _UPD node, taking care of not breaking alignment.
15977 
15978   EVT AlignedVecTy = VecTy;
15979   Align Alignment = MemN->getAlign();
15980 
15981   // If this is a less-than-standard-aligned load/store, change the type to
15982   // match the standard alignment.
15983   // The alignment is overlooked when selecting _UPD variants; and it's
15984   // easier to introduce bitcasts here than fix that.
15985   // There are 3 ways to get to this base-update combine:
15986   // - intrinsics: they are assumed to be properly aligned (to the standard
15987   //   alignment of the memory type), so we don't need to do anything.
15988   // - ARMISD::VLDx nodes: they are only generated from the aforementioned
15989   //   intrinsics, so, likewise, there's nothing to do.
15990   // - generic load/store instructions: the alignment is specified as an
15991   //   explicit operand, rather than implicitly as the standard alignment
15992   //   of the memory type (like the intrisics).  We need to change the
15993   //   memory type to match the explicit alignment.  That way, we don't
15994   //   generate non-standard-aligned ARMISD::VLDx nodes.
15995   if (isa<LSBaseSDNode>(N)) {
15996     if (Alignment.value() < VecTy.getScalarSizeInBits() / 8) {
15997       MVT EltTy = MVT::getIntegerVT(Alignment.value() * 8);
15998       assert(NumVecs == 1 && "Unexpected multi-element generic load/store.");
15999       assert(!isLaneOp && "Unexpected generic load/store lane.");
16000       unsigned NumElts = NumBytes / (EltTy.getSizeInBits() / 8);
16001       AlignedVecTy = MVT::getVectorVT(EltTy, NumElts);
16002     }
16003     // Don't set an explicit alignment on regular load/stores that we want
16004     // to transform to VLD/VST 1_UPD nodes.
16005     // This matches the behavior of regular load/stores, which only get an
16006     // explicit alignment if the MMO alignment is larger than the standard
16007     // alignment of the memory type.
16008     // Intrinsics, however, always get an explicit alignment, set to the
16009     // alignment of the MMO.
16010     Alignment = Align(1);
16011   }
16012 
16013   // Create the new updating load/store node.
16014   // First, create an SDVTList for the new updating node's results.
16015   EVT Tys[6];
16016   unsigned NumResultVecs = (isLoadOp ? NumVecs : 0);
16017   unsigned n;
16018   for (n = 0; n < NumResultVecs; ++n)
16019     Tys[n] = AlignedVecTy;
16020   Tys[n++] = MVT::i32;
16021   Tys[n] = MVT::Other;
16022   SDVTList SDTys = DAG.getVTList(ArrayRef(Tys, NumResultVecs + 2));
16023 
16024   // Then, gather the new node's operands.
16025   SmallVector<SDValue, 8> Ops;
16026   Ops.push_back(N->getOperand(0)); // incoming chain
16027   Ops.push_back(N->getOperand(Target.AddrOpIdx));
16028   Ops.push_back(User.Inc);
16029 
16030   if (StoreSDNode *StN = dyn_cast<StoreSDNode>(N)) {
16031     // Try to match the intrinsic's signature
16032     Ops.push_back(StN->getValue());
16033   } else {
16034     // Loads (and of course intrinsics) match the intrinsics' signature,
16035     // so just add all but the alignment operand.
16036     unsigned LastOperand =
16037         hasAlignment ? N->getNumOperands() - 1 : N->getNumOperands();
16038     for (unsigned i = Target.AddrOpIdx + 1; i < LastOperand; ++i)
16039       Ops.push_back(N->getOperand(i));
16040   }
16041 
16042   // For all node types, the alignment operand is always the last one.
16043   Ops.push_back(DAG.getConstant(Alignment.value(), dl, MVT::i32));
16044 
16045   // If this is a non-standard-aligned STORE, the penultimate operand is the
16046   // stored value.  Bitcast it to the aligned type.
16047   if (AlignedVecTy != VecTy && N->getOpcode() == ISD::STORE) {
16048     SDValue &StVal = Ops[Ops.size() - 2];
16049     StVal = DAG.getNode(ISD::BITCAST, dl, AlignedVecTy, StVal);
16050   }
16051 
16052   EVT LoadVT = isLaneOp ? VecTy.getVectorElementType() : AlignedVecTy;
16053   SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, dl, SDTys, Ops, LoadVT,
16054                                          MemN->getMemOperand());
16055 
16056   // Update the uses.
16057   SmallVector<SDValue, 5> NewResults;
16058   for (unsigned i = 0; i < NumResultVecs; ++i)
16059     NewResults.push_back(SDValue(UpdN.getNode(), i));
16060 
16061   // If this is an non-standard-aligned LOAD, the first result is the loaded
16062   // value.  Bitcast it to the expected result type.
16063   if (AlignedVecTy != VecTy && N->getOpcode() == ISD::LOAD) {
16064     SDValue &LdVal = NewResults[0];
16065     LdVal = DAG.getNode(ISD::BITCAST, dl, VecTy, LdVal);
16066   }
16067 
16068   NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs + 1)); // chain
16069   DCI.CombineTo(N, NewResults);
16070   DCI.CombineTo(User.N, SDValue(UpdN.getNode(), NumResultVecs));
16071 
16072   return true;
16073 }
16074 
16075 // If (opcode ptr inc) is and ADD-like instruction, return the
16076 // increment value. Otherwise return 0.
16077 static unsigned getPointerConstIncrement(unsigned Opcode, SDValue Ptr,
16078                                          SDValue Inc, const SelectionDAG &DAG) {
16079   ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode());
16080   if (!CInc)
16081     return 0;
16082 
16083   switch (Opcode) {
16084   case ARMISD::VLD1_UPD:
16085   case ISD::ADD:
16086     return CInc->getZExtValue();
16087   case ISD::OR: {
16088     if (DAG.haveNoCommonBitsSet(Ptr, Inc)) {
16089       // (OR ptr inc) is the same as (ADD ptr inc)
16090       return CInc->getZExtValue();
16091     }
16092     return 0;
16093   }
16094   default:
16095     return 0;
16096   }
16097 }
16098 
16099 static bool findPointerConstIncrement(SDNode *N, SDValue *Ptr, SDValue *CInc) {
16100   switch (N->getOpcode()) {
16101   case ISD::ADD:
16102   case ISD::OR: {
16103     if (isa<ConstantSDNode>(N->getOperand(1))) {
16104       *Ptr = N->getOperand(0);
16105       *CInc = N->getOperand(1);
16106       return true;
16107     }
16108     return false;
16109   }
16110   case ARMISD::VLD1_UPD: {
16111     if (isa<ConstantSDNode>(N->getOperand(2))) {
16112       *Ptr = N->getOperand(1);
16113       *CInc = N->getOperand(2);
16114       return true;
16115     }
16116     return false;
16117   }
16118   default:
16119     return false;
16120   }
16121 }
16122 
16123 static bool isValidBaseUpdate(SDNode *N, SDNode *User) {
16124   // Check that the add is independent of the load/store.
16125   // Otherwise, folding it would create a cycle. Search through Addr
16126   // as well, since the User may not be a direct user of Addr and
16127   // only share a base pointer.
16128   SmallPtrSet<const SDNode *, 32> Visited;
16129   SmallVector<const SDNode *, 16> Worklist;
16130   Worklist.push_back(N);
16131   Worklist.push_back(User);
16132   if (SDNode::hasPredecessorHelper(N, Visited, Worklist) ||
16133       SDNode::hasPredecessorHelper(User, Visited, Worklist))
16134     return false;
16135   return true;
16136 }
16137 
16138 /// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP,
16139 /// NEON load/store intrinsics, and generic vector load/stores, to merge
16140 /// base address updates.
16141 /// For generic load/stores, the memory type is assumed to be a vector.
16142 /// The caller is assumed to have checked legality.
16143 static SDValue CombineBaseUpdate(SDNode *N,
16144                                  TargetLowering::DAGCombinerInfo &DCI) {
16145   const bool isIntrinsic = (N->getOpcode() == ISD::INTRINSIC_VOID ||
16146                             N->getOpcode() == ISD::INTRINSIC_W_CHAIN);
16147   const bool isStore = N->getOpcode() == ISD::STORE;
16148   const unsigned AddrOpIdx = ((isIntrinsic || isStore) ? 2 : 1);
16149   BaseUpdateTarget Target = {N, isIntrinsic, isStore, AddrOpIdx};
16150 
16151   SDValue Addr = N->getOperand(AddrOpIdx);
16152 
16153   SmallVector<BaseUpdateUser, 8> BaseUpdates;
16154 
16155   // Search for a use of the address operand that is an increment.
16156   for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
16157          UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
16158     SDNode *User = *UI;
16159     if (UI.getUse().getResNo() != Addr.getResNo() ||
16160         User->getNumOperands() != 2)
16161       continue;
16162 
16163     SDValue Inc = User->getOperand(UI.getOperandNo() == 1 ? 0 : 1);
16164     unsigned ConstInc =
16165         getPointerConstIncrement(User->getOpcode(), Addr, Inc, DCI.DAG);
16166 
16167     if (ConstInc || User->getOpcode() == ISD::ADD)
16168       BaseUpdates.push_back({User, Inc, ConstInc});
16169   }
16170 
16171   // If the address is a constant pointer increment itself, find
16172   // another constant increment that has the same base operand
16173   SDValue Base;
16174   SDValue CInc;
16175   if (findPointerConstIncrement(Addr.getNode(), &Base, &CInc)) {
16176     unsigned Offset =
16177         getPointerConstIncrement(Addr->getOpcode(), Base, CInc, DCI.DAG);
16178     for (SDNode::use_iterator UI = Base->use_begin(), UE = Base->use_end();
16179          UI != UE; ++UI) {
16180 
16181       SDNode *User = *UI;
16182       if (UI.getUse().getResNo() != Base.getResNo() || User == Addr.getNode() ||
16183           User->getNumOperands() != 2)
16184         continue;
16185 
16186       SDValue UserInc = User->getOperand(UI.getOperandNo() == 0 ? 1 : 0);
16187       unsigned UserOffset =
16188           getPointerConstIncrement(User->getOpcode(), Base, UserInc, DCI.DAG);
16189 
16190       if (!UserOffset || UserOffset <= Offset)
16191         continue;
16192 
16193       unsigned NewConstInc = UserOffset - Offset;
16194       SDValue NewInc = DCI.DAG.getConstant(NewConstInc, SDLoc(N), MVT::i32);
16195       BaseUpdates.push_back({User, NewInc, NewConstInc});
16196     }
16197   }
16198 
16199   // Try to fold the load/store with an update that matches memory
16200   // access size. This should work well for sequential loads.
16201   //
16202   // Filter out invalid updates as well.
16203   unsigned NumValidUpd = BaseUpdates.size();
16204   for (unsigned I = 0; I < NumValidUpd;) {
16205     BaseUpdateUser &User = BaseUpdates[I];
16206     if (!isValidBaseUpdate(N, User.N)) {
16207       --NumValidUpd;
16208       std::swap(BaseUpdates[I], BaseUpdates[NumValidUpd]);
16209       continue;
16210     }
16211 
16212     if (TryCombineBaseUpdate(Target, User, /*SimpleConstIncOnly=*/true, DCI))
16213       return SDValue();
16214     ++I;
16215   }
16216   BaseUpdates.resize(NumValidUpd);
16217 
16218   // Try to fold with other users. Non-constant updates are considered
16219   // first, and constant updates are sorted to not break a sequence of
16220   // strided accesses (if there is any).
16221   std::stable_sort(BaseUpdates.begin(), BaseUpdates.end(),
16222                    [](const BaseUpdateUser &LHS, const BaseUpdateUser &RHS) {
16223                      return LHS.ConstInc < RHS.ConstInc;
16224                    });
16225   for (BaseUpdateUser &User : BaseUpdates) {
16226     if (TryCombineBaseUpdate(Target, User, /*SimpleConstIncOnly=*/false, DCI))
16227       return SDValue();
16228   }
16229   return SDValue();
16230 }
16231 
16232 static SDValue PerformVLDCombine(SDNode *N,
16233                                  TargetLowering::DAGCombinerInfo &DCI) {
16234   if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
16235     return SDValue();
16236 
16237   return CombineBaseUpdate(N, DCI);
16238 }
16239 
16240 static SDValue PerformMVEVLDCombine(SDNode *N,
16241                                     TargetLowering::DAGCombinerInfo &DCI) {
16242   if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
16243     return SDValue();
16244 
16245   SelectionDAG &DAG = DCI.DAG;
16246   SDValue Addr = N->getOperand(2);
16247   MemSDNode *MemN = cast<MemSDNode>(N);
16248   SDLoc dl(N);
16249 
16250   // For the stores, where there are multiple intrinsics we only actually want
16251   // to post-inc the last of the them.
16252   unsigned IntNo = N->getConstantOperandVal(1);
16253   if (IntNo == Intrinsic::arm_mve_vst2q && N->getConstantOperandVal(5) != 1)
16254     return SDValue();
16255   if (IntNo == Intrinsic::arm_mve_vst4q && N->getConstantOperandVal(7) != 3)
16256     return SDValue();
16257 
16258   // Search for a use of the address operand that is an increment.
16259   for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
16260                             UE = Addr.getNode()->use_end();
16261        UI != UE; ++UI) {
16262     SDNode *User = *UI;
16263     if (User->getOpcode() != ISD::ADD ||
16264         UI.getUse().getResNo() != Addr.getResNo())
16265       continue;
16266 
16267     // Check that the add is independent of the load/store.  Otherwise, folding
16268     // it would create a cycle. We can avoid searching through Addr as it's a
16269     // predecessor to both.
16270     SmallPtrSet<const SDNode *, 32> Visited;
16271     SmallVector<const SDNode *, 16> Worklist;
16272     Visited.insert(Addr.getNode());
16273     Worklist.push_back(N);
16274     Worklist.push_back(User);
16275     if (SDNode::hasPredecessorHelper(N, Visited, Worklist) ||
16276         SDNode::hasPredecessorHelper(User, Visited, Worklist))
16277       continue;
16278 
16279     // Find the new opcode for the updating load/store.
16280     bool isLoadOp = true;
16281     unsigned NewOpc = 0;
16282     unsigned NumVecs = 0;
16283     switch (IntNo) {
16284     default:
16285       llvm_unreachable("unexpected intrinsic for MVE VLDn combine");
16286     case Intrinsic::arm_mve_vld2q:
16287       NewOpc = ARMISD::VLD2_UPD;
16288       NumVecs = 2;
16289       break;
16290     case Intrinsic::arm_mve_vld4q:
16291       NewOpc = ARMISD::VLD4_UPD;
16292       NumVecs = 4;
16293       break;
16294     case Intrinsic::arm_mve_vst2q:
16295       NewOpc = ARMISD::VST2_UPD;
16296       NumVecs = 2;
16297       isLoadOp = false;
16298       break;
16299     case Intrinsic::arm_mve_vst4q:
16300       NewOpc = ARMISD::VST4_UPD;
16301       NumVecs = 4;
16302       isLoadOp = false;
16303       break;
16304     }
16305 
16306     // Find the size of memory referenced by the load/store.
16307     EVT VecTy;
16308     if (isLoadOp) {
16309       VecTy = N->getValueType(0);
16310     } else {
16311       VecTy = N->getOperand(3).getValueType();
16312     }
16313 
16314     unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
16315 
16316     // If the increment is a constant, it must match the memory ref size.
16317     SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
16318     ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode());
16319     if (!CInc || CInc->getZExtValue() != NumBytes)
16320       continue;
16321 
16322     // Create the new updating load/store node.
16323     // First, create an SDVTList for the new updating node's results.
16324     EVT Tys[6];
16325     unsigned NumResultVecs = (isLoadOp ? NumVecs : 0);
16326     unsigned n;
16327     for (n = 0; n < NumResultVecs; ++n)
16328       Tys[n] = VecTy;
16329     Tys[n++] = MVT::i32;
16330     Tys[n] = MVT::Other;
16331     SDVTList SDTys = DAG.getVTList(ArrayRef(Tys, NumResultVecs + 2));
16332 
16333     // Then, gather the new node's operands.
16334     SmallVector<SDValue, 8> Ops;
16335     Ops.push_back(N->getOperand(0)); // incoming chain
16336     Ops.push_back(N->getOperand(2)); // ptr
16337     Ops.push_back(Inc);
16338 
16339     for (unsigned i = 3; i < N->getNumOperands(); ++i)
16340       Ops.push_back(N->getOperand(i));
16341 
16342     SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, dl, SDTys, Ops, VecTy,
16343                                            MemN->getMemOperand());
16344 
16345     // Update the uses.
16346     SmallVector<SDValue, 5> NewResults;
16347     for (unsigned i = 0; i < NumResultVecs; ++i)
16348       NewResults.push_back(SDValue(UpdN.getNode(), i));
16349 
16350     NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs + 1)); // chain
16351     DCI.CombineTo(N, NewResults);
16352     DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
16353 
16354     break;
16355   }
16356 
16357   return SDValue();
16358 }
16359 
16360 /// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a
16361 /// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic
16362 /// are also VDUPLANEs.  If so, combine them to a vldN-dup operation and
16363 /// return true.
16364 static bool CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
16365   SelectionDAG &DAG = DCI.DAG;
16366   EVT VT = N->getValueType(0);
16367   // vldN-dup instructions only support 64-bit vectors for N > 1.
16368   if (!VT.is64BitVector())
16369     return false;
16370 
16371   // Check if the VDUPLANE operand is a vldN-dup intrinsic.
16372   SDNode *VLD = N->getOperand(0).getNode();
16373   if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN)
16374     return false;
16375   unsigned NumVecs = 0;
16376   unsigned NewOpc = 0;
16377   unsigned IntNo = VLD->getConstantOperandVal(1);
16378   if (IntNo == Intrinsic::arm_neon_vld2lane) {
16379     NumVecs = 2;
16380     NewOpc = ARMISD::VLD2DUP;
16381   } else if (IntNo == Intrinsic::arm_neon_vld3lane) {
16382     NumVecs = 3;
16383     NewOpc = ARMISD::VLD3DUP;
16384   } else if (IntNo == Intrinsic::arm_neon_vld4lane) {
16385     NumVecs = 4;
16386     NewOpc = ARMISD::VLD4DUP;
16387   } else {
16388     return false;
16389   }
16390 
16391   // First check that all the vldN-lane uses are VDUPLANEs and that the lane
16392   // numbers match the load.
16393   unsigned VLDLaneNo = VLD->getConstantOperandVal(NumVecs + 3);
16394   for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
16395        UI != UE; ++UI) {
16396     // Ignore uses of the chain result.
16397     if (UI.getUse().getResNo() == NumVecs)
16398       continue;
16399     SDNode *User = *UI;
16400     if (User->getOpcode() != ARMISD::VDUPLANE ||
16401         VLDLaneNo != User->getConstantOperandVal(1))
16402       return false;
16403   }
16404 
16405   // Create the vldN-dup node.
16406   EVT Tys[5];
16407   unsigned n;
16408   for (n = 0; n < NumVecs; ++n)
16409     Tys[n] = VT;
16410   Tys[n] = MVT::Other;
16411   SDVTList SDTys = DAG.getVTList(ArrayRef(Tys, NumVecs + 1));
16412   SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) };
16413   MemIntrinsicSDNode *VLDMemInt = cast<MemIntrinsicSDNode>(VLD);
16414   SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, SDLoc(VLD), SDTys,
16415                                            Ops, VLDMemInt->getMemoryVT(),
16416                                            VLDMemInt->getMemOperand());
16417 
16418   // Update the uses.
16419   for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
16420        UI != UE; ++UI) {
16421     unsigned ResNo = UI.getUse().getResNo();
16422     // Ignore uses of the chain result.
16423     if (ResNo == NumVecs)
16424       continue;
16425     SDNode *User = *UI;
16426     DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo));
16427   }
16428 
16429   // Now the vldN-lane intrinsic is dead except for its chain result.
16430   // Update uses of the chain.
16431   std::vector<SDValue> VLDDupResults;
16432   for (unsigned n = 0; n < NumVecs; ++n)
16433     VLDDupResults.push_back(SDValue(VLDDup.getNode(), n));
16434   VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs));
16435   DCI.CombineTo(VLD, VLDDupResults);
16436 
16437   return true;
16438 }
16439 
16440 /// PerformVDUPLANECombine - Target-specific dag combine xforms for
16441 /// ARMISD::VDUPLANE.
16442 static SDValue PerformVDUPLANECombine(SDNode *N,
16443                                       TargetLowering::DAGCombinerInfo &DCI,
16444                                       const ARMSubtarget *Subtarget) {
16445   SDValue Op = N->getOperand(0);
16446   EVT VT = N->getValueType(0);
16447 
16448   // On MVE, we just convert the VDUPLANE to a VDUP with an extract.
16449   if (Subtarget->hasMVEIntegerOps()) {
16450     EVT ExtractVT = VT.getVectorElementType();
16451     // We need to ensure we are creating a legal type.
16452     if (!DCI.DAG.getTargetLoweringInfo().isTypeLegal(ExtractVT))
16453       ExtractVT = MVT::i32;
16454     SDValue Extract = DCI.DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), ExtractVT,
16455                               N->getOperand(0), N->getOperand(1));
16456     return DCI.DAG.getNode(ARMISD::VDUP, SDLoc(N), VT, Extract);
16457   }
16458 
16459   // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses
16460   // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation.
16461   if (CombineVLDDUP(N, DCI))
16462     return SDValue(N, 0);
16463 
16464   // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
16465   // redundant.  Ignore bit_converts for now; element sizes are checked below.
16466   while (Op.getOpcode() == ISD::BITCAST)
16467     Op = Op.getOperand(0);
16468   if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM)
16469     return SDValue();
16470 
16471   // Make sure the VMOV element size is not bigger than the VDUPLANE elements.
16472   unsigned EltSize = Op.getScalarValueSizeInBits();
16473   // The canonical VMOV for a zero vector uses a 32-bit element size.
16474   unsigned Imm = Op.getConstantOperandVal(0);
16475   unsigned EltBits;
16476   if (ARM_AM::decodeVMOVModImm(Imm, EltBits) == 0)
16477     EltSize = 8;
16478   if (EltSize > VT.getScalarSizeInBits())
16479     return SDValue();
16480 
16481   return DCI.DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
16482 }
16483 
16484 /// PerformVDUPCombine - Target-specific dag combine xforms for ARMISD::VDUP.
16485 static SDValue PerformVDUPCombine(SDNode *N, SelectionDAG &DAG,
16486                                   const ARMSubtarget *Subtarget) {
16487   SDValue Op = N->getOperand(0);
16488   SDLoc dl(N);
16489 
16490   if (Subtarget->hasMVEIntegerOps()) {
16491     // Convert VDUP f32 -> VDUP BITCAST i32 under MVE, as we know the value will
16492     // need to come from a GPR.
16493     if (Op.getValueType() == MVT::f32)
16494       return DAG.getNode(ARMISD::VDUP, dl, N->getValueType(0),
16495                          DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op));
16496     else if (Op.getValueType() == MVT::f16)
16497       return DAG.getNode(ARMISD::VDUP, dl, N->getValueType(0),
16498                          DAG.getNode(ARMISD::VMOVrh, dl, MVT::i32, Op));
16499   }
16500 
16501   if (!Subtarget->hasNEON())
16502     return SDValue();
16503 
16504   // Match VDUP(LOAD) -> VLD1DUP.
16505   // We match this pattern here rather than waiting for isel because the
16506   // transform is only legal for unindexed loads.
16507   LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode());
16508   if (LD && Op.hasOneUse() && LD->isUnindexed() &&
16509       LD->getMemoryVT() == N->getValueType(0).getVectorElementType()) {
16510     SDValue Ops[] = {LD->getOperand(0), LD->getOperand(1),
16511                      DAG.getConstant(LD->getAlign().value(), SDLoc(N), MVT::i32)};
16512     SDVTList SDTys = DAG.getVTList(N->getValueType(0), MVT::Other);
16513     SDValue VLDDup =
16514         DAG.getMemIntrinsicNode(ARMISD::VLD1DUP, SDLoc(N), SDTys, Ops,
16515                                 LD->getMemoryVT(), LD->getMemOperand());
16516     DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), VLDDup.getValue(1));
16517     return VLDDup;
16518   }
16519 
16520   return SDValue();
16521 }
16522 
16523 static SDValue PerformLOADCombine(SDNode *N,
16524                                   TargetLowering::DAGCombinerInfo &DCI,
16525                                   const ARMSubtarget *Subtarget) {
16526   EVT VT = N->getValueType(0);
16527 
16528   // If this is a legal vector load, try to combine it into a VLD1_UPD.
16529   if (Subtarget->hasNEON() && ISD::isNormalLoad(N) && VT.isVector() &&
16530       DCI.DAG.getTargetLoweringInfo().isTypeLegal(VT))
16531     return CombineBaseUpdate(N, DCI);
16532 
16533   return SDValue();
16534 }
16535 
16536 // Optimize trunc store (of multiple scalars) to shuffle and store.  First,
16537 // pack all of the elements in one place.  Next, store to memory in fewer
16538 // chunks.
16539 static SDValue PerformTruncatingStoreCombine(StoreSDNode *St,
16540                                              SelectionDAG &DAG) {
16541   SDValue StVal = St->getValue();
16542   EVT VT = StVal.getValueType();
16543   if (!St->isTruncatingStore() || !VT.isVector())
16544     return SDValue();
16545   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
16546   EVT StVT = St->getMemoryVT();
16547   unsigned NumElems = VT.getVectorNumElements();
16548   assert(StVT != VT && "Cannot truncate to the same type");
16549   unsigned FromEltSz = VT.getScalarSizeInBits();
16550   unsigned ToEltSz = StVT.getScalarSizeInBits();
16551 
16552   // From, To sizes and ElemCount must be pow of two
16553   if (!isPowerOf2_32(NumElems * FromEltSz * ToEltSz))
16554     return SDValue();
16555 
16556   // We are going to use the original vector elt for storing.
16557   // Accumulated smaller vector elements must be a multiple of the store size.
16558   if (0 != (NumElems * FromEltSz) % ToEltSz)
16559     return SDValue();
16560 
16561   unsigned SizeRatio = FromEltSz / ToEltSz;
16562   assert(SizeRatio * NumElems * ToEltSz == VT.getSizeInBits());
16563 
16564   // Create a type on which we perform the shuffle.
16565   EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), StVT.getScalarType(),
16566                                    NumElems * SizeRatio);
16567   assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
16568 
16569   SDLoc DL(St);
16570   SDValue WideVec = DAG.getNode(ISD::BITCAST, DL, WideVecVT, StVal);
16571   SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
16572   for (unsigned i = 0; i < NumElems; ++i)
16573     ShuffleVec[i] = DAG.getDataLayout().isBigEndian() ? (i + 1) * SizeRatio - 1
16574                                                       : i * SizeRatio;
16575 
16576   // Can't shuffle using an illegal type.
16577   if (!TLI.isTypeLegal(WideVecVT))
16578     return SDValue();
16579 
16580   SDValue Shuff = DAG.getVectorShuffle(
16581       WideVecVT, DL, WideVec, DAG.getUNDEF(WideVec.getValueType()), ShuffleVec);
16582   // At this point all of the data is stored at the bottom of the
16583   // register. We now need to save it to mem.
16584 
16585   // Find the largest store unit
16586   MVT StoreType = MVT::i8;
16587   for (MVT Tp : MVT::integer_valuetypes()) {
16588     if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToEltSz)
16589       StoreType = Tp;
16590   }
16591   // Didn't find a legal store type.
16592   if (!TLI.isTypeLegal(StoreType))
16593     return SDValue();
16594 
16595   // Bitcast the original vector into a vector of store-size units
16596   EVT StoreVecVT =
16597       EVT::getVectorVT(*DAG.getContext(), StoreType,
16598                        VT.getSizeInBits() / EVT(StoreType).getSizeInBits());
16599   assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
16600   SDValue ShuffWide = DAG.getNode(ISD::BITCAST, DL, StoreVecVT, Shuff);
16601   SmallVector<SDValue, 8> Chains;
16602   SDValue Increment = DAG.getConstant(StoreType.getSizeInBits() / 8, DL,
16603                                       TLI.getPointerTy(DAG.getDataLayout()));
16604   SDValue BasePtr = St->getBasePtr();
16605 
16606   // Perform one or more big stores into memory.
16607   unsigned E = (ToEltSz * NumElems) / StoreType.getSizeInBits();
16608   for (unsigned I = 0; I < E; I++) {
16609     SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, StoreType,
16610                                  ShuffWide, DAG.getIntPtrConstant(I, DL));
16611     SDValue Ch =
16612         DAG.getStore(St->getChain(), DL, SubVec, BasePtr, St->getPointerInfo(),
16613                      St->getAlign(), St->getMemOperand()->getFlags());
16614     BasePtr =
16615         DAG.getNode(ISD::ADD, DL, BasePtr.getValueType(), BasePtr, Increment);
16616     Chains.push_back(Ch);
16617   }
16618   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
16619 }
16620 
16621 // Try taking a single vector store from an fpround (which would otherwise turn
16622 // into an expensive buildvector) and splitting it into a series of narrowing
16623 // stores.
16624 static SDValue PerformSplittingToNarrowingStores(StoreSDNode *St,
16625                                                  SelectionDAG &DAG) {
16626   if (!St->isSimple() || St->isTruncatingStore() || !St->isUnindexed())
16627     return SDValue();
16628   SDValue Trunc = St->getValue();
16629   if (Trunc->getOpcode() != ISD::FP_ROUND)
16630     return SDValue();
16631   EVT FromVT = Trunc->getOperand(0).getValueType();
16632   EVT ToVT = Trunc.getValueType();
16633   if (!ToVT.isVector())
16634     return SDValue();
16635   assert(FromVT.getVectorNumElements() == ToVT.getVectorNumElements());
16636   EVT ToEltVT = ToVT.getVectorElementType();
16637   EVT FromEltVT = FromVT.getVectorElementType();
16638 
16639   if (FromEltVT != MVT::f32 || ToEltVT != MVT::f16)
16640     return SDValue();
16641 
16642   unsigned NumElements = 4;
16643   if (FromVT.getVectorNumElements() % NumElements != 0)
16644     return SDValue();
16645 
16646   // Test if the Trunc will be convertable to a VMOVN with a shuffle, and if so
16647   // use the VMOVN over splitting the store. We are looking for patterns of:
16648   // !rev: 0 N 1 N+1 2 N+2 ...
16649   //  rev: N 0 N+1 1 N+2 2 ...
16650   // The shuffle may either be a single source (in which case N = NumElts/2) or
16651   // two inputs extended with concat to the same size (in which case N =
16652   // NumElts).
16653   auto isVMOVNShuffle = [&](ShuffleVectorSDNode *SVN, bool Rev) {
16654     ArrayRef<int> M = SVN->getMask();
16655     unsigned NumElts = ToVT.getVectorNumElements();
16656     if (SVN->getOperand(1).isUndef())
16657       NumElts /= 2;
16658 
16659     unsigned Off0 = Rev ? NumElts : 0;
16660     unsigned Off1 = Rev ? 0 : NumElts;
16661 
16662     for (unsigned I = 0; I < NumElts; I += 2) {
16663       if (M[I] >= 0 && M[I] != (int)(Off0 + I / 2))
16664         return false;
16665       if (M[I + 1] >= 0 && M[I + 1] != (int)(Off1 + I / 2))
16666         return false;
16667     }
16668 
16669     return true;
16670   };
16671 
16672   if (auto *Shuffle = dyn_cast<ShuffleVectorSDNode>(Trunc.getOperand(0)))
16673     if (isVMOVNShuffle(Shuffle, false) || isVMOVNShuffle(Shuffle, true))
16674       return SDValue();
16675 
16676   LLVMContext &C = *DAG.getContext();
16677   SDLoc DL(St);
16678   // Details about the old store
16679   SDValue Ch = St->getChain();
16680   SDValue BasePtr = St->getBasePtr();
16681   Align Alignment = St->getOriginalAlign();
16682   MachineMemOperand::Flags MMOFlags = St->getMemOperand()->getFlags();
16683   AAMDNodes AAInfo = St->getAAInfo();
16684 
16685   // We split the store into slices of NumElements. fp16 trunc stores are vcvt
16686   // and then stored as truncating integer stores.
16687   EVT NewFromVT = EVT::getVectorVT(C, FromEltVT, NumElements);
16688   EVT NewToVT = EVT::getVectorVT(
16689       C, EVT::getIntegerVT(C, ToEltVT.getSizeInBits()), NumElements);
16690 
16691   SmallVector<SDValue, 4> Stores;
16692   for (unsigned i = 0; i < FromVT.getVectorNumElements() / NumElements; i++) {
16693     unsigned NewOffset = i * NumElements * ToEltVT.getSizeInBits() / 8;
16694     SDValue NewPtr =
16695         DAG.getObjectPtrOffset(DL, BasePtr, TypeSize::getFixed(NewOffset));
16696 
16697     SDValue Extract =
16698         DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NewFromVT, Trunc.getOperand(0),
16699                     DAG.getConstant(i * NumElements, DL, MVT::i32));
16700 
16701     SDValue FPTrunc =
16702         DAG.getNode(ARMISD::VCVTN, DL, MVT::v8f16, DAG.getUNDEF(MVT::v8f16),
16703                     Extract, DAG.getConstant(0, DL, MVT::i32));
16704     Extract = DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, MVT::v4i32, FPTrunc);
16705 
16706     SDValue Store = DAG.getTruncStore(
16707         Ch, DL, Extract, NewPtr, St->getPointerInfo().getWithOffset(NewOffset),
16708         NewToVT, Alignment, MMOFlags, AAInfo);
16709     Stores.push_back(Store);
16710   }
16711   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Stores);
16712 }
16713 
16714 // Try taking a single vector store from an MVETRUNC (which would otherwise turn
16715 // into an expensive buildvector) and splitting it into a series of narrowing
16716 // stores.
16717 static SDValue PerformSplittingMVETruncToNarrowingStores(StoreSDNode *St,
16718                                                          SelectionDAG &DAG) {
16719   if (!St->isSimple() || St->isTruncatingStore() || !St->isUnindexed())
16720     return SDValue();
16721   SDValue Trunc = St->getValue();
16722   if (Trunc->getOpcode() != ARMISD::MVETRUNC)
16723     return SDValue();
16724   EVT FromVT = Trunc->getOperand(0).getValueType();
16725   EVT ToVT = Trunc.getValueType();
16726 
16727   LLVMContext &C = *DAG.getContext();
16728   SDLoc DL(St);
16729   // Details about the old store
16730   SDValue Ch = St->getChain();
16731   SDValue BasePtr = St->getBasePtr();
16732   Align Alignment = St->getOriginalAlign();
16733   MachineMemOperand::Flags MMOFlags = St->getMemOperand()->getFlags();
16734   AAMDNodes AAInfo = St->getAAInfo();
16735 
16736   EVT NewToVT = EVT::getVectorVT(C, ToVT.getVectorElementType(),
16737                                  FromVT.getVectorNumElements());
16738 
16739   SmallVector<SDValue, 4> Stores;
16740   for (unsigned i = 0; i < Trunc.getNumOperands(); i++) {
16741     unsigned NewOffset =
16742         i * FromVT.getVectorNumElements() * ToVT.getScalarSizeInBits() / 8;
16743     SDValue NewPtr =
16744         DAG.getObjectPtrOffset(DL, BasePtr, TypeSize::getFixed(NewOffset));
16745 
16746     SDValue Extract = Trunc.getOperand(i);
16747     SDValue Store = DAG.getTruncStore(
16748         Ch, DL, Extract, NewPtr, St->getPointerInfo().getWithOffset(NewOffset),
16749         NewToVT, Alignment, MMOFlags, AAInfo);
16750     Stores.push_back(Store);
16751   }
16752   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Stores);
16753 }
16754 
16755 // Given a floating point store from an extracted vector, with an integer
16756 // VGETLANE that already exists, store the existing VGETLANEu directly. This can
16757 // help reduce fp register pressure, doesn't require the fp extract and allows
16758 // use of more integer post-inc stores not available with vstr.
16759 static SDValue PerformExtractFpToIntStores(StoreSDNode *St, SelectionDAG &DAG) {
16760   if (!St->isSimple() || St->isTruncatingStore() || !St->isUnindexed())
16761     return SDValue();
16762   SDValue Extract = St->getValue();
16763   EVT VT = Extract.getValueType();
16764   // For now only uses f16. This may be useful for f32 too, but that will
16765   // be bitcast(extract), not the VGETLANEu we currently check here.
16766   if (VT != MVT::f16 || Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
16767     return SDValue();
16768 
16769   SDNode *GetLane =
16770       DAG.getNodeIfExists(ARMISD::VGETLANEu, DAG.getVTList(MVT::i32),
16771                           {Extract.getOperand(0), Extract.getOperand(1)});
16772   if (!GetLane)
16773     return SDValue();
16774 
16775   LLVMContext &C = *DAG.getContext();
16776   SDLoc DL(St);
16777   // Create a new integer store to replace the existing floating point version.
16778   SDValue Ch = St->getChain();
16779   SDValue BasePtr = St->getBasePtr();
16780   Align Alignment = St->getOriginalAlign();
16781   MachineMemOperand::Flags MMOFlags = St->getMemOperand()->getFlags();
16782   AAMDNodes AAInfo = St->getAAInfo();
16783   EVT NewToVT = EVT::getIntegerVT(C, VT.getSizeInBits());
16784   SDValue Store = DAG.getTruncStore(Ch, DL, SDValue(GetLane, 0), BasePtr,
16785                                     St->getPointerInfo(), NewToVT, Alignment,
16786                                     MMOFlags, AAInfo);
16787 
16788   return Store;
16789 }
16790 
16791 /// PerformSTORECombine - Target-specific dag combine xforms for
16792 /// ISD::STORE.
16793 static SDValue PerformSTORECombine(SDNode *N,
16794                                    TargetLowering::DAGCombinerInfo &DCI,
16795                                    const ARMSubtarget *Subtarget) {
16796   StoreSDNode *St = cast<StoreSDNode>(N);
16797   if (St->isVolatile())
16798     return SDValue();
16799   SDValue StVal = St->getValue();
16800   EVT VT = StVal.getValueType();
16801 
16802   if (Subtarget->hasNEON())
16803     if (SDValue Store = PerformTruncatingStoreCombine(St, DCI.DAG))
16804       return Store;
16805 
16806   if (Subtarget->hasMVEIntegerOps()) {
16807     if (SDValue NewToken = PerformSplittingToNarrowingStores(St, DCI.DAG))
16808       return NewToken;
16809     if (SDValue NewChain = PerformExtractFpToIntStores(St, DCI.DAG))
16810       return NewChain;
16811     if (SDValue NewToken =
16812             PerformSplittingMVETruncToNarrowingStores(St, DCI.DAG))
16813       return NewToken;
16814   }
16815 
16816   if (!ISD::isNormalStore(St))
16817     return SDValue();
16818 
16819   // Split a store of a VMOVDRR into two integer stores to avoid mixing NEON and
16820   // ARM stores of arguments in the same cache line.
16821   if (StVal.getNode()->getOpcode() == ARMISD::VMOVDRR &&
16822       StVal.getNode()->hasOneUse()) {
16823     SelectionDAG  &DAG = DCI.DAG;
16824     bool isBigEndian = DAG.getDataLayout().isBigEndian();
16825     SDLoc DL(St);
16826     SDValue BasePtr = St->getBasePtr();
16827     SDValue NewST1 = DAG.getStore(
16828         St->getChain(), DL, StVal.getNode()->getOperand(isBigEndian ? 1 : 0),
16829         BasePtr, St->getPointerInfo(), St->getOriginalAlign(),
16830         St->getMemOperand()->getFlags());
16831 
16832     SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
16833                                     DAG.getConstant(4, DL, MVT::i32));
16834     return DAG.getStore(NewST1.getValue(0), DL,
16835                         StVal.getNode()->getOperand(isBigEndian ? 0 : 1),
16836                         OffsetPtr, St->getPointerInfo().getWithOffset(4),
16837                         St->getOriginalAlign(),
16838                         St->getMemOperand()->getFlags());
16839   }
16840 
16841   if (StVal.getValueType() == MVT::i64 &&
16842       StVal.getNode()->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
16843 
16844     // Bitcast an i64 store extracted from a vector to f64.
16845     // Otherwise, the i64 value will be legalized to a pair of i32 values.
16846     SelectionDAG &DAG = DCI.DAG;
16847     SDLoc dl(StVal);
16848     SDValue IntVec = StVal.getOperand(0);
16849     EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
16850                                    IntVec.getValueType().getVectorNumElements());
16851     SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, IntVec);
16852     SDValue ExtElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
16853                                  Vec, StVal.getOperand(1));
16854     dl = SDLoc(N);
16855     SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ExtElt);
16856     // Make the DAGCombiner fold the bitcasts.
16857     DCI.AddToWorklist(Vec.getNode());
16858     DCI.AddToWorklist(ExtElt.getNode());
16859     DCI.AddToWorklist(V.getNode());
16860     return DAG.getStore(St->getChain(), dl, V, St->getBasePtr(),
16861                         St->getPointerInfo(), St->getAlign(),
16862                         St->getMemOperand()->getFlags(), St->getAAInfo());
16863   }
16864 
16865   // If this is a legal vector store, try to combine it into a VST1_UPD.
16866   if (Subtarget->hasNEON() && ISD::isNormalStore(N) && VT.isVector() &&
16867       DCI.DAG.getTargetLoweringInfo().isTypeLegal(VT))
16868     return CombineBaseUpdate(N, DCI);
16869 
16870   return SDValue();
16871 }
16872 
16873 /// PerformVCVTCombine - VCVT (floating-point to fixed-point, Advanced SIMD)
16874 /// can replace combinations of VMUL and VCVT (floating-point to integer)
16875 /// when the VMUL has a constant operand that is a power of 2.
16876 ///
16877 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
16878 ///  vmul.f32        d16, d17, d16
16879 ///  vcvt.s32.f32    d16, d16
16880 /// becomes:
16881 ///  vcvt.s32.f32    d16, d16, #3
16882 static SDValue PerformVCVTCombine(SDNode *N, SelectionDAG &DAG,
16883                                   const ARMSubtarget *Subtarget) {
16884   if (!Subtarget->hasNEON())
16885     return SDValue();
16886 
16887   SDValue Op = N->getOperand(0);
16888   if (!Op.getValueType().isVector() || !Op.getValueType().isSimple() ||
16889       Op.getOpcode() != ISD::FMUL)
16890     return SDValue();
16891 
16892   SDValue ConstVec = Op->getOperand(1);
16893   if (!isa<BuildVectorSDNode>(ConstVec))
16894     return SDValue();
16895 
16896   MVT FloatTy = Op.getSimpleValueType().getVectorElementType();
16897   uint32_t FloatBits = FloatTy.getSizeInBits();
16898   MVT IntTy = N->getSimpleValueType(0).getVectorElementType();
16899   uint32_t IntBits = IntTy.getSizeInBits();
16900   unsigned NumLanes = Op.getValueType().getVectorNumElements();
16901   if (FloatBits != 32 || IntBits > 32 || (NumLanes != 4 && NumLanes != 2)) {
16902     // These instructions only exist converting from f32 to i32. We can handle
16903     // smaller integers by generating an extra truncate, but larger ones would
16904     // be lossy. We also can't handle anything other than 2 or 4 lanes, since
16905     // these intructions only support v2i32/v4i32 types.
16906     return SDValue();
16907   }
16908 
16909   BitVector UndefElements;
16910   BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
16911   int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, 33);
16912   if (C == -1 || C == 0 || C > 32)
16913     return SDValue();
16914 
16915   SDLoc dl(N);
16916   bool isSigned = N->getOpcode() == ISD::FP_TO_SINT;
16917   unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfp2fxs :
16918     Intrinsic::arm_neon_vcvtfp2fxu;
16919   SDValue FixConv = DAG.getNode(
16920       ISD::INTRINSIC_WO_CHAIN, dl, NumLanes == 2 ? MVT::v2i32 : MVT::v4i32,
16921       DAG.getConstant(IntrinsicOpcode, dl, MVT::i32), Op->getOperand(0),
16922       DAG.getConstant(C, dl, MVT::i32));
16923 
16924   if (IntBits < FloatBits)
16925     FixConv = DAG.getNode(ISD::TRUNCATE, dl, N->getValueType(0), FixConv);
16926 
16927   return FixConv;
16928 }
16929 
16930 static SDValue PerformFAddVSelectCombine(SDNode *N, SelectionDAG &DAG,
16931                                          const ARMSubtarget *Subtarget) {
16932   if (!Subtarget->hasMVEFloatOps())
16933     return SDValue();
16934 
16935   // Turn (fadd x, (vselect c, y, -0.0)) into (vselect c, (fadd x, y), x)
16936   // The second form can be more easily turned into a predicated vadd, and
16937   // possibly combined into a fma to become a predicated vfma.
16938   SDValue Op0 = N->getOperand(0);
16939   SDValue Op1 = N->getOperand(1);
16940   EVT VT = N->getValueType(0);
16941   SDLoc DL(N);
16942 
16943   // The identity element for a fadd is -0.0 or +0.0 when the nsz flag is set,
16944   // which these VMOV's represent.
16945   auto isIdentitySplat = [&](SDValue Op, bool NSZ) {
16946     if (Op.getOpcode() != ISD::BITCAST ||
16947         Op.getOperand(0).getOpcode() != ARMISD::VMOVIMM)
16948       return false;
16949     uint64_t ImmVal = Op.getOperand(0).getConstantOperandVal(0);
16950     if (VT == MVT::v4f32 && (ImmVal == 1664 || (ImmVal == 0 && NSZ)))
16951       return true;
16952     if (VT == MVT::v8f16 && (ImmVal == 2688 || (ImmVal == 0 && NSZ)))
16953       return true;
16954     return false;
16955   };
16956 
16957   if (Op0.getOpcode() == ISD::VSELECT && Op1.getOpcode() != ISD::VSELECT)
16958     std::swap(Op0, Op1);
16959 
16960   if (Op1.getOpcode() != ISD::VSELECT)
16961     return SDValue();
16962 
16963   SDNodeFlags FaddFlags = N->getFlags();
16964   bool NSZ = FaddFlags.hasNoSignedZeros();
16965   if (!isIdentitySplat(Op1.getOperand(2), NSZ))
16966     return SDValue();
16967 
16968   SDValue FAdd =
16969       DAG.getNode(ISD::FADD, DL, VT, Op0, Op1.getOperand(1), FaddFlags);
16970   return DAG.getNode(ISD::VSELECT, DL, VT, Op1.getOperand(0), FAdd, Op0, FaddFlags);
16971 }
16972 
16973 static SDValue PerformFADDVCMLACombine(SDNode *N, SelectionDAG &DAG) {
16974   SDValue LHS = N->getOperand(0);
16975   SDValue RHS = N->getOperand(1);
16976   EVT VT = N->getValueType(0);
16977   SDLoc DL(N);
16978 
16979   if (!N->getFlags().hasAllowReassociation())
16980     return SDValue();
16981 
16982   // Combine fadd(a, vcmla(b, c, d)) -> vcmla(fadd(a, b), b, c)
16983   auto ReassocComplex = [&](SDValue A, SDValue B) {
16984     if (A.getOpcode() != ISD::INTRINSIC_WO_CHAIN)
16985       return SDValue();
16986     unsigned Opc = A.getConstantOperandVal(0);
16987     if (Opc != Intrinsic::arm_mve_vcmlaq)
16988       return SDValue();
16989     SDValue VCMLA = DAG.getNode(
16990         ISD::INTRINSIC_WO_CHAIN, DL, VT, A.getOperand(0), A.getOperand(1),
16991         DAG.getNode(ISD::FADD, DL, VT, A.getOperand(2), B, N->getFlags()),
16992         A.getOperand(3), A.getOperand(4));
16993     VCMLA->setFlags(A->getFlags());
16994     return VCMLA;
16995   };
16996   if (SDValue R = ReassocComplex(LHS, RHS))
16997     return R;
16998   if (SDValue R = ReassocComplex(RHS, LHS))
16999     return R;
17000 
17001   return SDValue();
17002 }
17003 
17004 static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG,
17005                                   const ARMSubtarget *Subtarget) {
17006   if (SDValue S = PerformFAddVSelectCombine(N, DAG, Subtarget))
17007     return S;
17008   if (SDValue S = PerformFADDVCMLACombine(N, DAG))
17009     return S;
17010   return SDValue();
17011 }
17012 
17013 /// PerformVDIVCombine - VCVT (fixed-point to floating-point, Advanced SIMD)
17014 /// can replace combinations of VCVT (integer to floating-point) and VDIV
17015 /// when the VDIV has a constant operand that is a power of 2.
17016 ///
17017 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
17018 ///  vcvt.f32.s32    d16, d16
17019 ///  vdiv.f32        d16, d17, d16
17020 /// becomes:
17021 ///  vcvt.f32.s32    d16, d16, #3
17022 static SDValue PerformVDIVCombine(SDNode *N, SelectionDAG &DAG,
17023                                   const ARMSubtarget *Subtarget) {
17024   if (!Subtarget->hasNEON())
17025     return SDValue();
17026 
17027   SDValue Op = N->getOperand(0);
17028   unsigned OpOpcode = Op.getNode()->getOpcode();
17029   if (!N->getValueType(0).isVector() || !N->getValueType(0).isSimple() ||
17030       (OpOpcode != ISD::SINT_TO_FP && OpOpcode != ISD::UINT_TO_FP))
17031     return SDValue();
17032 
17033   SDValue ConstVec = N->getOperand(1);
17034   if (!isa<BuildVectorSDNode>(ConstVec))
17035     return SDValue();
17036 
17037   MVT FloatTy = N->getSimpleValueType(0).getVectorElementType();
17038   uint32_t FloatBits = FloatTy.getSizeInBits();
17039   MVT IntTy = Op.getOperand(0).getSimpleValueType().getVectorElementType();
17040   uint32_t IntBits = IntTy.getSizeInBits();
17041   unsigned NumLanes = Op.getValueType().getVectorNumElements();
17042   if (FloatBits != 32 || IntBits > 32 || (NumLanes != 4 && NumLanes != 2)) {
17043     // These instructions only exist converting from i32 to f32. We can handle
17044     // smaller integers by generating an extra extend, but larger ones would
17045     // be lossy. We also can't handle anything other than 2 or 4 lanes, since
17046     // these intructions only support v2i32/v4i32 types.
17047     return SDValue();
17048   }
17049 
17050   BitVector UndefElements;
17051   BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
17052   int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, 33);
17053   if (C == -1 || C == 0 || C > 32)
17054     return SDValue();
17055 
17056   SDLoc dl(N);
17057   bool isSigned = OpOpcode == ISD::SINT_TO_FP;
17058   SDValue ConvInput = Op.getOperand(0);
17059   if (IntBits < FloatBits)
17060     ConvInput = DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
17061                             dl, NumLanes == 2 ? MVT::v2i32 : MVT::v4i32,
17062                             ConvInput);
17063 
17064   unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfxs2fp :
17065     Intrinsic::arm_neon_vcvtfxu2fp;
17066   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl,
17067                      Op.getValueType(),
17068                      DAG.getConstant(IntrinsicOpcode, dl, MVT::i32),
17069                      ConvInput, DAG.getConstant(C, dl, MVT::i32));
17070 }
17071 
17072 static SDValue PerformVECREDUCE_ADDCombine(SDNode *N, SelectionDAG &DAG,
17073                                            const ARMSubtarget *ST) {
17074   if (!ST->hasMVEIntegerOps())
17075     return SDValue();
17076 
17077   assert(N->getOpcode() == ISD::VECREDUCE_ADD);
17078   EVT ResVT = N->getValueType(0);
17079   SDValue N0 = N->getOperand(0);
17080   SDLoc dl(N);
17081 
17082   // Try to turn vecreduce_add(add(x, y)) into vecreduce(x) + vecreduce(y)
17083   if (ResVT == MVT::i32 && N0.getOpcode() == ISD::ADD &&
17084       (N0.getValueType() == MVT::v4i32 || N0.getValueType() == MVT::v8i16 ||
17085        N0.getValueType() == MVT::v16i8)) {
17086     SDValue Red0 = DAG.getNode(ISD::VECREDUCE_ADD, dl, ResVT, N0.getOperand(0));
17087     SDValue Red1 = DAG.getNode(ISD::VECREDUCE_ADD, dl, ResVT, N0.getOperand(1));
17088     return DAG.getNode(ISD::ADD, dl, ResVT, Red0, Red1);
17089   }
17090 
17091   // We are looking for something that will have illegal types if left alone,
17092   // but that we can convert to a single instruction under MVE. For example
17093   // vecreduce_add(sext(A, v8i32)) => VADDV.s16 A
17094   // or
17095   // vecreduce_add(mul(zext(A, v16i32), zext(B, v16i32))) => VMLADAV.u8 A, B
17096 
17097   // The legal cases are:
17098   //   VADDV u/s 8/16/32
17099   //   VMLAV u/s 8/16/32
17100   //   VADDLV u/s 32
17101   //   VMLALV u/s 16/32
17102 
17103   // If the input vector is smaller than legal (v4i8/v4i16 for example) we can
17104   // extend it and use v4i32 instead.
17105   auto ExtTypeMatches = [](SDValue A, ArrayRef<MVT> ExtTypes) {
17106     EVT AVT = A.getValueType();
17107     return any_of(ExtTypes, [&](MVT Ty) {
17108       return AVT.getVectorNumElements() == Ty.getVectorNumElements() &&
17109              AVT.bitsLE(Ty);
17110     });
17111   };
17112   auto ExtendIfNeeded = [&](SDValue A, unsigned ExtendCode) {
17113     EVT AVT = A.getValueType();
17114     if (!AVT.is128BitVector())
17115       A = DAG.getNode(ExtendCode, dl,
17116                       AVT.changeVectorElementType(MVT::getIntegerVT(
17117                           128 / AVT.getVectorMinNumElements())),
17118                       A);
17119     return A;
17120   };
17121   auto IsVADDV = [&](MVT RetTy, unsigned ExtendCode, ArrayRef<MVT> ExtTypes) {
17122     if (ResVT != RetTy || N0->getOpcode() != ExtendCode)
17123       return SDValue();
17124     SDValue A = N0->getOperand(0);
17125     if (ExtTypeMatches(A, ExtTypes))
17126       return ExtendIfNeeded(A, ExtendCode);
17127     return SDValue();
17128   };
17129   auto IsPredVADDV = [&](MVT RetTy, unsigned ExtendCode,
17130                          ArrayRef<MVT> ExtTypes, SDValue &Mask) {
17131     if (ResVT != RetTy || N0->getOpcode() != ISD::VSELECT ||
17132         !ISD::isBuildVectorAllZeros(N0->getOperand(2).getNode()))
17133       return SDValue();
17134     Mask = N0->getOperand(0);
17135     SDValue Ext = N0->getOperand(1);
17136     if (Ext->getOpcode() != ExtendCode)
17137       return SDValue();
17138     SDValue A = Ext->getOperand(0);
17139     if (ExtTypeMatches(A, ExtTypes))
17140       return ExtendIfNeeded(A, ExtendCode);
17141     return SDValue();
17142   };
17143   auto IsVMLAV = [&](MVT RetTy, unsigned ExtendCode, ArrayRef<MVT> ExtTypes,
17144                      SDValue &A, SDValue &B) {
17145     // For a vmla we are trying to match a larger pattern:
17146     // ExtA = sext/zext A
17147     // ExtB = sext/zext B
17148     // Mul = mul ExtA, ExtB
17149     // vecreduce.add Mul
17150     // There might also be en extra extend between the mul and the addreduce, so
17151     // long as the bitwidth is high enough to make them equivalent (for example
17152     // original v8i16 might be mul at v8i32 and the reduce happens at v8i64).
17153     if (ResVT != RetTy)
17154       return false;
17155     SDValue Mul = N0;
17156     if (Mul->getOpcode() == ExtendCode &&
17157         Mul->getOperand(0).getScalarValueSizeInBits() * 2 >=
17158             ResVT.getScalarSizeInBits())
17159       Mul = Mul->getOperand(0);
17160     if (Mul->getOpcode() != ISD::MUL)
17161       return false;
17162     SDValue ExtA = Mul->getOperand(0);
17163     SDValue ExtB = Mul->getOperand(1);
17164     if (ExtA->getOpcode() != ExtendCode || ExtB->getOpcode() != ExtendCode)
17165       return false;
17166     A = ExtA->getOperand(0);
17167     B = ExtB->getOperand(0);
17168     if (ExtTypeMatches(A, ExtTypes) && ExtTypeMatches(B, ExtTypes)) {
17169       A = ExtendIfNeeded(A, ExtendCode);
17170       B = ExtendIfNeeded(B, ExtendCode);
17171       return true;
17172     }
17173     return false;
17174   };
17175   auto IsPredVMLAV = [&](MVT RetTy, unsigned ExtendCode, ArrayRef<MVT> ExtTypes,
17176                      SDValue &A, SDValue &B, SDValue &Mask) {
17177     // Same as the pattern above with a select for the zero predicated lanes
17178     // ExtA = sext/zext A
17179     // ExtB = sext/zext B
17180     // Mul = mul ExtA, ExtB
17181     // N0 = select Mask, Mul, 0
17182     // vecreduce.add N0
17183     if (ResVT != RetTy || N0->getOpcode() != ISD::VSELECT ||
17184         !ISD::isBuildVectorAllZeros(N0->getOperand(2).getNode()))
17185       return false;
17186     Mask = N0->getOperand(0);
17187     SDValue Mul = N0->getOperand(1);
17188     if (Mul->getOpcode() == ExtendCode &&
17189         Mul->getOperand(0).getScalarValueSizeInBits() * 2 >=
17190             ResVT.getScalarSizeInBits())
17191       Mul = Mul->getOperand(0);
17192     if (Mul->getOpcode() != ISD::MUL)
17193       return false;
17194     SDValue ExtA = Mul->getOperand(0);
17195     SDValue ExtB = Mul->getOperand(1);
17196     if (ExtA->getOpcode() != ExtendCode || ExtB->getOpcode() != ExtendCode)
17197       return false;
17198     A = ExtA->getOperand(0);
17199     B = ExtB->getOperand(0);
17200     if (ExtTypeMatches(A, ExtTypes) && ExtTypeMatches(B, ExtTypes)) {
17201       A = ExtendIfNeeded(A, ExtendCode);
17202       B = ExtendIfNeeded(B, ExtendCode);
17203       return true;
17204     }
17205     return false;
17206   };
17207   auto Create64bitNode = [&](unsigned Opcode, ArrayRef<SDValue> Ops) {
17208     // Split illegal MVT::v16i8->i64 vector reductions into two legal v8i16->i64
17209     // reductions. The operands are extended with MVEEXT, but as they are
17210     // reductions the lane orders do not matter. MVEEXT may be combined with
17211     // loads to produce two extending loads, or else they will be expanded to
17212     // VREV/VMOVL.
17213     EVT VT = Ops[0].getValueType();
17214     if (VT == MVT::v16i8) {
17215       assert((Opcode == ARMISD::VMLALVs || Opcode == ARMISD::VMLALVu) &&
17216              "Unexpected illegal long reduction opcode");
17217       bool IsUnsigned = Opcode == ARMISD::VMLALVu;
17218 
17219       SDValue Ext0 =
17220           DAG.getNode(IsUnsigned ? ARMISD::MVEZEXT : ARMISD::MVESEXT, dl,
17221                       DAG.getVTList(MVT::v8i16, MVT::v8i16), Ops[0]);
17222       SDValue Ext1 =
17223           DAG.getNode(IsUnsigned ? ARMISD::MVEZEXT : ARMISD::MVESEXT, dl,
17224                       DAG.getVTList(MVT::v8i16, MVT::v8i16), Ops[1]);
17225 
17226       SDValue MLA0 = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32),
17227                                  Ext0, Ext1);
17228       SDValue MLA1 =
17229           DAG.getNode(IsUnsigned ? ARMISD::VMLALVAu : ARMISD::VMLALVAs, dl,
17230                       DAG.getVTList(MVT::i32, MVT::i32), MLA0, MLA0.getValue(1),
17231                       Ext0.getValue(1), Ext1.getValue(1));
17232       return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, MLA1, MLA1.getValue(1));
17233     }
17234     SDValue Node = DAG.getNode(Opcode, dl, {MVT::i32, MVT::i32}, Ops);
17235     return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Node,
17236                        SDValue(Node.getNode(), 1));
17237   };
17238 
17239   SDValue A, B;
17240   SDValue Mask;
17241   if (IsVMLAV(MVT::i32, ISD::SIGN_EXTEND, {MVT::v8i16, MVT::v16i8}, A, B))
17242     return DAG.getNode(ARMISD::VMLAVs, dl, ResVT, A, B);
17243   if (IsVMLAV(MVT::i32, ISD::ZERO_EXTEND, {MVT::v8i16, MVT::v16i8}, A, B))
17244     return DAG.getNode(ARMISD::VMLAVu, dl, ResVT, A, B);
17245   if (IsVMLAV(MVT::i64, ISD::SIGN_EXTEND, {MVT::v16i8, MVT::v8i16, MVT::v4i32},
17246               A, B))
17247     return Create64bitNode(ARMISD::VMLALVs, {A, B});
17248   if (IsVMLAV(MVT::i64, ISD::ZERO_EXTEND, {MVT::v16i8, MVT::v8i16, MVT::v4i32},
17249               A, B))
17250     return Create64bitNode(ARMISD::VMLALVu, {A, B});
17251   if (IsVMLAV(MVT::i16, ISD::SIGN_EXTEND, {MVT::v16i8}, A, B))
17252     return DAG.getNode(ISD::TRUNCATE, dl, ResVT,
17253                        DAG.getNode(ARMISD::VMLAVs, dl, MVT::i32, A, B));
17254   if (IsVMLAV(MVT::i16, ISD::ZERO_EXTEND, {MVT::v16i8}, A, B))
17255     return DAG.getNode(ISD::TRUNCATE, dl, ResVT,
17256                        DAG.getNode(ARMISD::VMLAVu, dl, MVT::i32, A, B));
17257 
17258   if (IsPredVMLAV(MVT::i32, ISD::SIGN_EXTEND, {MVT::v8i16, MVT::v16i8}, A, B,
17259                   Mask))
17260     return DAG.getNode(ARMISD::VMLAVps, dl, ResVT, A, B, Mask);
17261   if (IsPredVMLAV(MVT::i32, ISD::ZERO_EXTEND, {MVT::v8i16, MVT::v16i8}, A, B,
17262                   Mask))
17263     return DAG.getNode(ARMISD::VMLAVpu, dl, ResVT, A, B, Mask);
17264   if (IsPredVMLAV(MVT::i64, ISD::SIGN_EXTEND, {MVT::v8i16, MVT::v4i32}, A, B,
17265                   Mask))
17266     return Create64bitNode(ARMISD::VMLALVps, {A, B, Mask});
17267   if (IsPredVMLAV(MVT::i64, ISD::ZERO_EXTEND, {MVT::v8i16, MVT::v4i32}, A, B,
17268                   Mask))
17269     return Create64bitNode(ARMISD::VMLALVpu, {A, B, Mask});
17270   if (IsPredVMLAV(MVT::i16, ISD::SIGN_EXTEND, {MVT::v16i8}, A, B, Mask))
17271     return DAG.getNode(ISD::TRUNCATE, dl, ResVT,
17272                        DAG.getNode(ARMISD::VMLAVps, dl, MVT::i32, A, B, Mask));
17273   if (IsPredVMLAV(MVT::i16, ISD::ZERO_EXTEND, {MVT::v16i8}, A, B, Mask))
17274     return DAG.getNode(ISD::TRUNCATE, dl, ResVT,
17275                        DAG.getNode(ARMISD::VMLAVpu, dl, MVT::i32, A, B, Mask));
17276 
17277   if (SDValue A = IsVADDV(MVT::i32, ISD::SIGN_EXTEND, {MVT::v8i16, MVT::v16i8}))
17278     return DAG.getNode(ARMISD::VADDVs, dl, ResVT, A);
17279   if (SDValue A = IsVADDV(MVT::i32, ISD::ZERO_EXTEND, {MVT::v8i16, MVT::v16i8}))
17280     return DAG.getNode(ARMISD::VADDVu, dl, ResVT, A);
17281   if (SDValue A = IsVADDV(MVT::i64, ISD::SIGN_EXTEND, {MVT::v4i32}))
17282     return Create64bitNode(ARMISD::VADDLVs, {A});
17283   if (SDValue A = IsVADDV(MVT::i64, ISD::ZERO_EXTEND, {MVT::v4i32}))
17284     return Create64bitNode(ARMISD::VADDLVu, {A});
17285   if (SDValue A = IsVADDV(MVT::i16, ISD::SIGN_EXTEND, {MVT::v16i8}))
17286     return DAG.getNode(ISD::TRUNCATE, dl, ResVT,
17287                        DAG.getNode(ARMISD::VADDVs, dl, MVT::i32, A));
17288   if (SDValue A = IsVADDV(MVT::i16, ISD::ZERO_EXTEND, {MVT::v16i8}))
17289     return DAG.getNode(ISD::TRUNCATE, dl, ResVT,
17290                        DAG.getNode(ARMISD::VADDVu, dl, MVT::i32, A));
17291 
17292   if (SDValue A = IsPredVADDV(MVT::i32, ISD::SIGN_EXTEND, {MVT::v8i16, MVT::v16i8}, Mask))
17293     return DAG.getNode(ARMISD::VADDVps, dl, ResVT, A, Mask);
17294   if (SDValue A = IsPredVADDV(MVT::i32, ISD::ZERO_EXTEND, {MVT::v8i16, MVT::v16i8}, Mask))
17295     return DAG.getNode(ARMISD::VADDVpu, dl, ResVT, A, Mask);
17296   if (SDValue A = IsPredVADDV(MVT::i64, ISD::SIGN_EXTEND, {MVT::v4i32}, Mask))
17297     return Create64bitNode(ARMISD::VADDLVps, {A, Mask});
17298   if (SDValue A = IsPredVADDV(MVT::i64, ISD::ZERO_EXTEND, {MVT::v4i32}, Mask))
17299     return Create64bitNode(ARMISD::VADDLVpu, {A, Mask});
17300   if (SDValue A = IsPredVADDV(MVT::i16, ISD::SIGN_EXTEND, {MVT::v16i8}, Mask))
17301     return DAG.getNode(ISD::TRUNCATE, dl, ResVT,
17302                        DAG.getNode(ARMISD::VADDVps, dl, MVT::i32, A, Mask));
17303   if (SDValue A = IsPredVADDV(MVT::i16, ISD::ZERO_EXTEND, {MVT::v16i8}, Mask))
17304     return DAG.getNode(ISD::TRUNCATE, dl, ResVT,
17305                        DAG.getNode(ARMISD::VADDVpu, dl, MVT::i32, A, Mask));
17306 
17307   // Some complications. We can get a case where the two inputs of the mul are
17308   // the same, then the output sext will have been helpfully converted to a
17309   // zext. Turn it back.
17310   SDValue Op = N0;
17311   if (Op->getOpcode() == ISD::VSELECT)
17312     Op = Op->getOperand(1);
17313   if (Op->getOpcode() == ISD::ZERO_EXTEND &&
17314       Op->getOperand(0)->getOpcode() == ISD::MUL) {
17315     SDValue Mul = Op->getOperand(0);
17316     if (Mul->getOperand(0) == Mul->getOperand(1) &&
17317         Mul->getOperand(0)->getOpcode() == ISD::SIGN_EXTEND) {
17318       SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, dl, N0->getValueType(0), Mul);
17319       if (Op != N0)
17320         Ext = DAG.getNode(ISD::VSELECT, dl, N0->getValueType(0),
17321                           N0->getOperand(0), Ext, N0->getOperand(2));
17322       return DAG.getNode(ISD::VECREDUCE_ADD, dl, ResVT, Ext);
17323     }
17324   }
17325 
17326   return SDValue();
17327 }
17328 
17329 // Looks for vaddv(shuffle) or vmlav(shuffle, shuffle), with a shuffle where all
17330 // the lanes are used. Due to the reduction being commutative the shuffle can be
17331 // removed.
17332 static SDValue PerformReduceShuffleCombine(SDNode *N, SelectionDAG &DAG) {
17333   unsigned VecOp = N->getOperand(0).getValueType().isVector() ? 0 : 2;
17334   auto *Shuf = dyn_cast<ShuffleVectorSDNode>(N->getOperand(VecOp));
17335   if (!Shuf || !Shuf->getOperand(1).isUndef())
17336     return SDValue();
17337 
17338   // Check all elements are used once in the mask.
17339   ArrayRef<int> Mask = Shuf->getMask();
17340   APInt SetElts(Mask.size(), 0);
17341   for (int E : Mask) {
17342     if (E < 0 || E >= (int)Mask.size())
17343       return SDValue();
17344     SetElts.setBit(E);
17345   }
17346   if (!SetElts.isAllOnes())
17347     return SDValue();
17348 
17349   if (N->getNumOperands() != VecOp + 1) {
17350     auto *Shuf2 = dyn_cast<ShuffleVectorSDNode>(N->getOperand(VecOp + 1));
17351     if (!Shuf2 || !Shuf2->getOperand(1).isUndef() || Shuf2->getMask() != Mask)
17352       return SDValue();
17353   }
17354 
17355   SmallVector<SDValue> Ops;
17356   for (SDValue Op : N->ops()) {
17357     if (Op.getValueType().isVector())
17358       Ops.push_back(Op.getOperand(0));
17359     else
17360       Ops.push_back(Op);
17361   }
17362   return DAG.getNode(N->getOpcode(), SDLoc(N), N->getVTList(), Ops);
17363 }
17364 
17365 static SDValue PerformVMOVNCombine(SDNode *N,
17366                                    TargetLowering::DAGCombinerInfo &DCI) {
17367   SDValue Op0 = N->getOperand(0);
17368   SDValue Op1 = N->getOperand(1);
17369   unsigned IsTop = N->getConstantOperandVal(2);
17370 
17371   // VMOVNT a undef -> a
17372   // VMOVNB a undef -> a
17373   // VMOVNB undef a -> a
17374   if (Op1->isUndef())
17375     return Op0;
17376   if (Op0->isUndef() && !IsTop)
17377     return Op1;
17378 
17379   // VMOVNt(c, VQMOVNb(a, b)) => VQMOVNt(c, b)
17380   // VMOVNb(c, VQMOVNb(a, b)) => VQMOVNb(c, b)
17381   if ((Op1->getOpcode() == ARMISD::VQMOVNs ||
17382        Op1->getOpcode() == ARMISD::VQMOVNu) &&
17383       Op1->getConstantOperandVal(2) == 0)
17384     return DCI.DAG.getNode(Op1->getOpcode(), SDLoc(Op1), N->getValueType(0),
17385                            Op0, Op1->getOperand(1), N->getOperand(2));
17386 
17387   // Only the bottom lanes from Qm (Op1) and either the top or bottom lanes from
17388   // Qd (Op0) are demanded from a VMOVN, depending on whether we are inserting
17389   // into the top or bottom lanes.
17390   unsigned NumElts = N->getValueType(0).getVectorNumElements();
17391   APInt Op1DemandedElts = APInt::getSplat(NumElts, APInt::getLowBitsSet(2, 1));
17392   APInt Op0DemandedElts =
17393       IsTop ? Op1DemandedElts
17394             : APInt::getSplat(NumElts, APInt::getHighBitsSet(2, 1));
17395 
17396   const TargetLowering &TLI = DCI.DAG.getTargetLoweringInfo();
17397   if (TLI.SimplifyDemandedVectorElts(Op0, Op0DemandedElts, DCI))
17398     return SDValue(N, 0);
17399   if (TLI.SimplifyDemandedVectorElts(Op1, Op1DemandedElts, DCI))
17400     return SDValue(N, 0);
17401 
17402   return SDValue();
17403 }
17404 
17405 static SDValue PerformVQMOVNCombine(SDNode *N,
17406                                     TargetLowering::DAGCombinerInfo &DCI) {
17407   SDValue Op0 = N->getOperand(0);
17408   unsigned IsTop = N->getConstantOperandVal(2);
17409 
17410   unsigned NumElts = N->getValueType(0).getVectorNumElements();
17411   APInt Op0DemandedElts =
17412       APInt::getSplat(NumElts, IsTop ? APInt::getLowBitsSet(2, 1)
17413                                      : APInt::getHighBitsSet(2, 1));
17414 
17415   const TargetLowering &TLI = DCI.DAG.getTargetLoweringInfo();
17416   if (TLI.SimplifyDemandedVectorElts(Op0, Op0DemandedElts, DCI))
17417     return SDValue(N, 0);
17418   return SDValue();
17419 }
17420 
17421 static SDValue PerformVQDMULHCombine(SDNode *N,
17422                                      TargetLowering::DAGCombinerInfo &DCI) {
17423   EVT VT = N->getValueType(0);
17424   SDValue LHS = N->getOperand(0);
17425   SDValue RHS = N->getOperand(1);
17426 
17427   auto *Shuf0 = dyn_cast<ShuffleVectorSDNode>(LHS);
17428   auto *Shuf1 = dyn_cast<ShuffleVectorSDNode>(RHS);
17429   // Turn VQDMULH(shuffle, shuffle) -> shuffle(VQDMULH)
17430   if (Shuf0 && Shuf1 && Shuf0->getMask().equals(Shuf1->getMask()) &&
17431       LHS.getOperand(1).isUndef() && RHS.getOperand(1).isUndef() &&
17432       (LHS.hasOneUse() || RHS.hasOneUse() || LHS == RHS)) {
17433     SDLoc DL(N);
17434     SDValue NewBinOp = DCI.DAG.getNode(N->getOpcode(), DL, VT,
17435                                        LHS.getOperand(0), RHS.getOperand(0));
17436     SDValue UndefV = LHS.getOperand(1);
17437     return DCI.DAG.getVectorShuffle(VT, DL, NewBinOp, UndefV, Shuf0->getMask());
17438   }
17439   return SDValue();
17440 }
17441 
17442 static SDValue PerformLongShiftCombine(SDNode *N, SelectionDAG &DAG) {
17443   SDLoc DL(N);
17444   SDValue Op0 = N->getOperand(0);
17445   SDValue Op1 = N->getOperand(1);
17446 
17447   // Turn X << -C -> X >> C and viceversa. The negative shifts can come up from
17448   // uses of the intrinsics.
17449   if (auto C = dyn_cast<ConstantSDNode>(N->getOperand(2))) {
17450     int ShiftAmt = C->getSExtValue();
17451     if (ShiftAmt == 0) {
17452       SDValue Merge = DAG.getMergeValues({Op0, Op1}, DL);
17453       DAG.ReplaceAllUsesWith(N, Merge.getNode());
17454       return SDValue();
17455     }
17456 
17457     if (ShiftAmt >= -32 && ShiftAmt < 0) {
17458       unsigned NewOpcode =
17459           N->getOpcode() == ARMISD::LSLL ? ARMISD::LSRL : ARMISD::LSLL;
17460       SDValue NewShift = DAG.getNode(NewOpcode, DL, N->getVTList(), Op0, Op1,
17461                                      DAG.getConstant(-ShiftAmt, DL, MVT::i32));
17462       DAG.ReplaceAllUsesWith(N, NewShift.getNode());
17463       return NewShift;
17464     }
17465   }
17466 
17467   return SDValue();
17468 }
17469 
17470 /// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
17471 SDValue ARMTargetLowering::PerformIntrinsicCombine(SDNode *N,
17472                                                    DAGCombinerInfo &DCI) const {
17473   SelectionDAG &DAG = DCI.DAG;
17474   unsigned IntNo = N->getConstantOperandVal(0);
17475   switch (IntNo) {
17476   default:
17477     // Don't do anything for most intrinsics.
17478     break;
17479 
17480   // Vector shifts: check for immediate versions and lower them.
17481   // Note: This is done during DAG combining instead of DAG legalizing because
17482   // the build_vectors for 64-bit vector element shift counts are generally
17483   // not legal, and it is hard to see their values after they get legalized to
17484   // loads from a constant pool.
17485   case Intrinsic::arm_neon_vshifts:
17486   case Intrinsic::arm_neon_vshiftu:
17487   case Intrinsic::arm_neon_vrshifts:
17488   case Intrinsic::arm_neon_vrshiftu:
17489   case Intrinsic::arm_neon_vrshiftn:
17490   case Intrinsic::arm_neon_vqshifts:
17491   case Intrinsic::arm_neon_vqshiftu:
17492   case Intrinsic::arm_neon_vqshiftsu:
17493   case Intrinsic::arm_neon_vqshiftns:
17494   case Intrinsic::arm_neon_vqshiftnu:
17495   case Intrinsic::arm_neon_vqshiftnsu:
17496   case Intrinsic::arm_neon_vqrshiftns:
17497   case Intrinsic::arm_neon_vqrshiftnu:
17498   case Intrinsic::arm_neon_vqrshiftnsu: {
17499     EVT VT = N->getOperand(1).getValueType();
17500     int64_t Cnt;
17501     unsigned VShiftOpc = 0;
17502 
17503     switch (IntNo) {
17504     case Intrinsic::arm_neon_vshifts:
17505     case Intrinsic::arm_neon_vshiftu:
17506       if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
17507         VShiftOpc = ARMISD::VSHLIMM;
17508         break;
17509       }
17510       if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
17511         VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ? ARMISD::VSHRsIMM
17512                                                           : ARMISD::VSHRuIMM);
17513         break;
17514       }
17515       return SDValue();
17516 
17517     case Intrinsic::arm_neon_vrshifts:
17518     case Intrinsic::arm_neon_vrshiftu:
17519       if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
17520         break;
17521       return SDValue();
17522 
17523     case Intrinsic::arm_neon_vqshifts:
17524     case Intrinsic::arm_neon_vqshiftu:
17525       if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
17526         break;
17527       return SDValue();
17528 
17529     case Intrinsic::arm_neon_vqshiftsu:
17530       if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
17531         break;
17532       llvm_unreachable("invalid shift count for vqshlu intrinsic");
17533 
17534     case Intrinsic::arm_neon_vrshiftn:
17535     case Intrinsic::arm_neon_vqshiftns:
17536     case Intrinsic::arm_neon_vqshiftnu:
17537     case Intrinsic::arm_neon_vqshiftnsu:
17538     case Intrinsic::arm_neon_vqrshiftns:
17539     case Intrinsic::arm_neon_vqrshiftnu:
17540     case Intrinsic::arm_neon_vqrshiftnsu:
17541       // Narrowing shifts require an immediate right shift.
17542       if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
17543         break;
17544       llvm_unreachable("invalid shift count for narrowing vector shift "
17545                        "intrinsic");
17546 
17547     default:
17548       llvm_unreachable("unhandled vector shift");
17549     }
17550 
17551     switch (IntNo) {
17552     case Intrinsic::arm_neon_vshifts:
17553     case Intrinsic::arm_neon_vshiftu:
17554       // Opcode already set above.
17555       break;
17556     case Intrinsic::arm_neon_vrshifts:
17557       VShiftOpc = ARMISD::VRSHRsIMM;
17558       break;
17559     case Intrinsic::arm_neon_vrshiftu:
17560       VShiftOpc = ARMISD::VRSHRuIMM;
17561       break;
17562     case Intrinsic::arm_neon_vrshiftn:
17563       VShiftOpc = ARMISD::VRSHRNIMM;
17564       break;
17565     case Intrinsic::arm_neon_vqshifts:
17566       VShiftOpc = ARMISD::VQSHLsIMM;
17567       break;
17568     case Intrinsic::arm_neon_vqshiftu:
17569       VShiftOpc = ARMISD::VQSHLuIMM;
17570       break;
17571     case Intrinsic::arm_neon_vqshiftsu:
17572       VShiftOpc = ARMISD::VQSHLsuIMM;
17573       break;
17574     case Intrinsic::arm_neon_vqshiftns:
17575       VShiftOpc = ARMISD::VQSHRNsIMM;
17576       break;
17577     case Intrinsic::arm_neon_vqshiftnu:
17578       VShiftOpc = ARMISD::VQSHRNuIMM;
17579       break;
17580     case Intrinsic::arm_neon_vqshiftnsu:
17581       VShiftOpc = ARMISD::VQSHRNsuIMM;
17582       break;
17583     case Intrinsic::arm_neon_vqrshiftns:
17584       VShiftOpc = ARMISD::VQRSHRNsIMM;
17585       break;
17586     case Intrinsic::arm_neon_vqrshiftnu:
17587       VShiftOpc = ARMISD::VQRSHRNuIMM;
17588       break;
17589     case Intrinsic::arm_neon_vqrshiftnsu:
17590       VShiftOpc = ARMISD::VQRSHRNsuIMM;
17591       break;
17592     }
17593 
17594     SDLoc dl(N);
17595     return DAG.getNode(VShiftOpc, dl, N->getValueType(0),
17596                        N->getOperand(1), DAG.getConstant(Cnt, dl, MVT::i32));
17597   }
17598 
17599   case Intrinsic::arm_neon_vshiftins: {
17600     EVT VT = N->getOperand(1).getValueType();
17601     int64_t Cnt;
17602     unsigned VShiftOpc = 0;
17603 
17604     if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
17605       VShiftOpc = ARMISD::VSLIIMM;
17606     else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
17607       VShiftOpc = ARMISD::VSRIIMM;
17608     else {
17609       llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
17610     }
17611 
17612     SDLoc dl(N);
17613     return DAG.getNode(VShiftOpc, dl, N->getValueType(0),
17614                        N->getOperand(1), N->getOperand(2),
17615                        DAG.getConstant(Cnt, dl, MVT::i32));
17616   }
17617 
17618   case Intrinsic::arm_neon_vqrshifts:
17619   case Intrinsic::arm_neon_vqrshiftu:
17620     // No immediate versions of these to check for.
17621     break;
17622 
17623   case Intrinsic::arm_mve_vqdmlah:
17624   case Intrinsic::arm_mve_vqdmlash:
17625   case Intrinsic::arm_mve_vqrdmlah:
17626   case Intrinsic::arm_mve_vqrdmlash:
17627   case Intrinsic::arm_mve_vmla_n_predicated:
17628   case Intrinsic::arm_mve_vmlas_n_predicated:
17629   case Intrinsic::arm_mve_vqdmlah_predicated:
17630   case Intrinsic::arm_mve_vqdmlash_predicated:
17631   case Intrinsic::arm_mve_vqrdmlah_predicated:
17632   case Intrinsic::arm_mve_vqrdmlash_predicated: {
17633     // These intrinsics all take an i32 scalar operand which is narrowed to the
17634     // size of a single lane of the vector type they return. So we don't need
17635     // any bits of that operand above that point, which allows us to eliminate
17636     // uxth/sxth.
17637     unsigned BitWidth = N->getValueType(0).getScalarSizeInBits();
17638     APInt DemandedMask = APInt::getLowBitsSet(32, BitWidth);
17639     if (SimplifyDemandedBits(N->getOperand(3), DemandedMask, DCI))
17640       return SDValue();
17641     break;
17642   }
17643 
17644   case Intrinsic::arm_mve_minv:
17645   case Intrinsic::arm_mve_maxv:
17646   case Intrinsic::arm_mve_minav:
17647   case Intrinsic::arm_mve_maxav:
17648   case Intrinsic::arm_mve_minv_predicated:
17649   case Intrinsic::arm_mve_maxv_predicated:
17650   case Intrinsic::arm_mve_minav_predicated:
17651   case Intrinsic::arm_mve_maxav_predicated: {
17652     // These intrinsics all take an i32 scalar operand which is narrowed to the
17653     // size of a single lane of the vector type they take as the other input.
17654     unsigned BitWidth = N->getOperand(2)->getValueType(0).getScalarSizeInBits();
17655     APInt DemandedMask = APInt::getLowBitsSet(32, BitWidth);
17656     if (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI))
17657       return SDValue();
17658     break;
17659   }
17660 
17661   case Intrinsic::arm_mve_addv: {
17662     // Turn this intrinsic straight into the appropriate ARMISD::VADDV node,
17663     // which allow PerformADDVecReduce to turn it into VADDLV when possible.
17664     bool Unsigned = N->getConstantOperandVal(2);
17665     unsigned Opc = Unsigned ? ARMISD::VADDVu : ARMISD::VADDVs;
17666     return DAG.getNode(Opc, SDLoc(N), N->getVTList(), N->getOperand(1));
17667   }
17668 
17669   case Intrinsic::arm_mve_addlv:
17670   case Intrinsic::arm_mve_addlv_predicated: {
17671     // Same for these, but ARMISD::VADDLV has to be followed by a BUILD_PAIR
17672     // which recombines the two outputs into an i64
17673     bool Unsigned = N->getConstantOperandVal(2);
17674     unsigned Opc = IntNo == Intrinsic::arm_mve_addlv ?
17675                     (Unsigned ? ARMISD::VADDLVu : ARMISD::VADDLVs) :
17676                     (Unsigned ? ARMISD::VADDLVpu : ARMISD::VADDLVps);
17677 
17678     SmallVector<SDValue, 4> Ops;
17679     for (unsigned i = 1, e = N->getNumOperands(); i < e; i++)
17680       if (i != 2)                      // skip the unsigned flag
17681         Ops.push_back(N->getOperand(i));
17682 
17683     SDLoc dl(N);
17684     SDValue val = DAG.getNode(Opc, dl, {MVT::i32, MVT::i32}, Ops);
17685     return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, val.getValue(0),
17686                        val.getValue(1));
17687   }
17688   }
17689 
17690   return SDValue();
17691 }
17692 
17693 /// PerformShiftCombine - Checks for immediate versions of vector shifts and
17694 /// lowers them.  As with the vector shift intrinsics, this is done during DAG
17695 /// combining instead of DAG legalizing because the build_vectors for 64-bit
17696 /// vector element shift counts are generally not legal, and it is hard to see
17697 /// their values after they get legalized to loads from a constant pool.
17698 static SDValue PerformShiftCombine(SDNode *N,
17699                                    TargetLowering::DAGCombinerInfo &DCI,
17700                                    const ARMSubtarget *ST) {
17701   SelectionDAG &DAG = DCI.DAG;
17702   EVT VT = N->getValueType(0);
17703 
17704   if (ST->isThumb1Only() && N->getOpcode() == ISD::SHL && VT == MVT::i32 &&
17705       N->getOperand(0)->getOpcode() == ISD::AND &&
17706       N->getOperand(0)->hasOneUse()) {
17707     if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
17708       return SDValue();
17709     // Look for the pattern (shl (and x, AndMask), ShiftAmt). This doesn't
17710     // usually show up because instcombine prefers to canonicalize it to
17711     // (and (shl x, ShiftAmt) (shl AndMask, ShiftAmt)), but the shift can come
17712     // out of GEP lowering in some cases.
17713     SDValue N0 = N->getOperand(0);
17714     ConstantSDNode *ShiftAmtNode = dyn_cast<ConstantSDNode>(N->getOperand(1));
17715     if (!ShiftAmtNode)
17716       return SDValue();
17717     uint32_t ShiftAmt = static_cast<uint32_t>(ShiftAmtNode->getZExtValue());
17718     ConstantSDNode *AndMaskNode = dyn_cast<ConstantSDNode>(N0->getOperand(1));
17719     if (!AndMaskNode)
17720       return SDValue();
17721     uint32_t AndMask = static_cast<uint32_t>(AndMaskNode->getZExtValue());
17722     // Don't transform uxtb/uxth.
17723     if (AndMask == 255 || AndMask == 65535)
17724       return SDValue();
17725     if (isMask_32(AndMask)) {
17726       uint32_t MaskedBits = llvm::countl_zero(AndMask);
17727       if (MaskedBits > ShiftAmt) {
17728         SDLoc DL(N);
17729         SDValue SHL = DAG.getNode(ISD::SHL, DL, MVT::i32, N0->getOperand(0),
17730                                   DAG.getConstant(MaskedBits, DL, MVT::i32));
17731         return DAG.getNode(
17732             ISD::SRL, DL, MVT::i32, SHL,
17733             DAG.getConstant(MaskedBits - ShiftAmt, DL, MVT::i32));
17734       }
17735     }
17736   }
17737 
17738   // Nothing to be done for scalar shifts.
17739   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
17740   if (!VT.isVector() || !TLI.isTypeLegal(VT))
17741     return SDValue();
17742   if (ST->hasMVEIntegerOps())
17743     return SDValue();
17744 
17745   int64_t Cnt;
17746 
17747   switch (N->getOpcode()) {
17748   default: llvm_unreachable("unexpected shift opcode");
17749 
17750   case ISD::SHL:
17751     if (isVShiftLImm(N->getOperand(1), VT, false, Cnt)) {
17752       SDLoc dl(N);
17753       return DAG.getNode(ARMISD::VSHLIMM, dl, VT, N->getOperand(0),
17754                          DAG.getConstant(Cnt, dl, MVT::i32));
17755     }
17756     break;
17757 
17758   case ISD::SRA:
17759   case ISD::SRL:
17760     if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
17761       unsigned VShiftOpc =
17762           (N->getOpcode() == ISD::SRA ? ARMISD::VSHRsIMM : ARMISD::VSHRuIMM);
17763       SDLoc dl(N);
17764       return DAG.getNode(VShiftOpc, dl, VT, N->getOperand(0),
17765                          DAG.getConstant(Cnt, dl, MVT::i32));
17766     }
17767   }
17768   return SDValue();
17769 }
17770 
17771 // Look for a sign/zero/fpextend extend of a larger than legal load. This can be
17772 // split into multiple extending loads, which are simpler to deal with than an
17773 // arbitrary extend. For fp extends we use an integer extending load and a VCVTL
17774 // to convert the type to an f32.
17775 static SDValue PerformSplittingToWideningLoad(SDNode *N, SelectionDAG &DAG) {
17776   SDValue N0 = N->getOperand(0);
17777   if (N0.getOpcode() != ISD::LOAD)
17778     return SDValue();
17779   LoadSDNode *LD = cast<LoadSDNode>(N0.getNode());
17780   if (!LD->isSimple() || !N0.hasOneUse() || LD->isIndexed() ||
17781       LD->getExtensionType() != ISD::NON_EXTLOAD)
17782     return SDValue();
17783   EVT FromVT = LD->getValueType(0);
17784   EVT ToVT = N->getValueType(0);
17785   if (!ToVT.isVector())
17786     return SDValue();
17787   assert(FromVT.getVectorNumElements() == ToVT.getVectorNumElements());
17788   EVT ToEltVT = ToVT.getVectorElementType();
17789   EVT FromEltVT = FromVT.getVectorElementType();
17790 
17791   unsigned NumElements = 0;
17792   if (ToEltVT == MVT::i32 && FromEltVT == MVT::i8)
17793     NumElements = 4;
17794   if (ToEltVT == MVT::f32 && FromEltVT == MVT::f16)
17795     NumElements = 4;
17796   if (NumElements == 0 ||
17797       (FromEltVT != MVT::f16 && FromVT.getVectorNumElements() == NumElements) ||
17798       FromVT.getVectorNumElements() % NumElements != 0 ||
17799       !isPowerOf2_32(NumElements))
17800     return SDValue();
17801 
17802   LLVMContext &C = *DAG.getContext();
17803   SDLoc DL(LD);
17804   // Details about the old load
17805   SDValue Ch = LD->getChain();
17806   SDValue BasePtr = LD->getBasePtr();
17807   Align Alignment = LD->getOriginalAlign();
17808   MachineMemOperand::Flags MMOFlags = LD->getMemOperand()->getFlags();
17809   AAMDNodes AAInfo = LD->getAAInfo();
17810 
17811   ISD::LoadExtType NewExtType =
17812       N->getOpcode() == ISD::SIGN_EXTEND ? ISD::SEXTLOAD : ISD::ZEXTLOAD;
17813   SDValue Offset = DAG.getUNDEF(BasePtr.getValueType());
17814   EVT NewFromVT = EVT::getVectorVT(
17815       C, EVT::getIntegerVT(C, FromEltVT.getScalarSizeInBits()), NumElements);
17816   EVT NewToVT = EVT::getVectorVT(
17817       C, EVT::getIntegerVT(C, ToEltVT.getScalarSizeInBits()), NumElements);
17818 
17819   SmallVector<SDValue, 4> Loads;
17820   SmallVector<SDValue, 4> Chains;
17821   for (unsigned i = 0; i < FromVT.getVectorNumElements() / NumElements; i++) {
17822     unsigned NewOffset = (i * NewFromVT.getSizeInBits()) / 8;
17823     SDValue NewPtr =
17824         DAG.getObjectPtrOffset(DL, BasePtr, TypeSize::getFixed(NewOffset));
17825 
17826     SDValue NewLoad =
17827         DAG.getLoad(ISD::UNINDEXED, NewExtType, NewToVT, DL, Ch, NewPtr, Offset,
17828                     LD->getPointerInfo().getWithOffset(NewOffset), NewFromVT,
17829                     Alignment, MMOFlags, AAInfo);
17830     Loads.push_back(NewLoad);
17831     Chains.push_back(SDValue(NewLoad.getNode(), 1));
17832   }
17833 
17834   // Float truncs need to extended with VCVTB's into their floating point types.
17835   if (FromEltVT == MVT::f16) {
17836     SmallVector<SDValue, 4> Extends;
17837 
17838     for (unsigned i = 0; i < Loads.size(); i++) {
17839       SDValue LoadBC =
17840           DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, MVT::v8f16, Loads[i]);
17841       SDValue FPExt = DAG.getNode(ARMISD::VCVTL, DL, MVT::v4f32, LoadBC,
17842                                   DAG.getConstant(0, DL, MVT::i32));
17843       Extends.push_back(FPExt);
17844     }
17845 
17846     Loads = Extends;
17847   }
17848 
17849   SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
17850   DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewChain);
17851   return DAG.getNode(ISD::CONCAT_VECTORS, DL, ToVT, Loads);
17852 }
17853 
17854 /// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
17855 /// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
17856 static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
17857                                     const ARMSubtarget *ST) {
17858   SDValue N0 = N->getOperand(0);
17859 
17860   // Check for sign- and zero-extensions of vector extract operations of 8- and
17861   // 16-bit vector elements. NEON and MVE support these directly. They are
17862   // handled during DAG combining because type legalization will promote them
17863   // to 32-bit types and it is messy to recognize the operations after that.
17864   if ((ST->hasNEON() || ST->hasMVEIntegerOps()) &&
17865       N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
17866     SDValue Vec = N0.getOperand(0);
17867     SDValue Lane = N0.getOperand(1);
17868     EVT VT = N->getValueType(0);
17869     EVT EltVT = N0.getValueType();
17870     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
17871 
17872     if (VT == MVT::i32 &&
17873         (EltVT == MVT::i8 || EltVT == MVT::i16) &&
17874         TLI.isTypeLegal(Vec.getValueType()) &&
17875         isa<ConstantSDNode>(Lane)) {
17876 
17877       unsigned Opc = 0;
17878       switch (N->getOpcode()) {
17879       default: llvm_unreachable("unexpected opcode");
17880       case ISD::SIGN_EXTEND:
17881         Opc = ARMISD::VGETLANEs;
17882         break;
17883       case ISD::ZERO_EXTEND:
17884       case ISD::ANY_EXTEND:
17885         Opc = ARMISD::VGETLANEu;
17886         break;
17887       }
17888       return DAG.getNode(Opc, SDLoc(N), VT, Vec, Lane);
17889     }
17890   }
17891 
17892   if (ST->hasMVEIntegerOps())
17893     if (SDValue NewLoad = PerformSplittingToWideningLoad(N, DAG))
17894       return NewLoad;
17895 
17896   return SDValue();
17897 }
17898 
17899 static SDValue PerformFPExtendCombine(SDNode *N, SelectionDAG &DAG,
17900                                       const ARMSubtarget *ST) {
17901   if (ST->hasMVEFloatOps())
17902     if (SDValue NewLoad = PerformSplittingToWideningLoad(N, DAG))
17903       return NewLoad;
17904 
17905   return SDValue();
17906 }
17907 
17908 // Lower smin(smax(x, C1), C2) to ssat or usat, if they have saturating
17909 // constant bounds.
17910 static SDValue PerformMinMaxToSatCombine(SDValue Op, SelectionDAG &DAG,
17911                                          const ARMSubtarget *Subtarget) {
17912   if ((Subtarget->isThumb() || !Subtarget->hasV6Ops()) &&
17913       !Subtarget->isThumb2())
17914     return SDValue();
17915 
17916   EVT VT = Op.getValueType();
17917   SDValue Op0 = Op.getOperand(0);
17918 
17919   if (VT != MVT::i32 ||
17920       (Op0.getOpcode() != ISD::SMIN && Op0.getOpcode() != ISD::SMAX) ||
17921       !isa<ConstantSDNode>(Op.getOperand(1)) ||
17922       !isa<ConstantSDNode>(Op0.getOperand(1)))
17923     return SDValue();
17924 
17925   SDValue Min = Op;
17926   SDValue Max = Op0;
17927   SDValue Input = Op0.getOperand(0);
17928   if (Min.getOpcode() == ISD::SMAX)
17929     std::swap(Min, Max);
17930 
17931   APInt MinC = Min.getConstantOperandAPInt(1);
17932   APInt MaxC = Max.getConstantOperandAPInt(1);
17933 
17934   if (Min.getOpcode() != ISD::SMIN || Max.getOpcode() != ISD::SMAX ||
17935       !(MinC + 1).isPowerOf2())
17936     return SDValue();
17937 
17938   SDLoc DL(Op);
17939   if (MinC == ~MaxC)
17940     return DAG.getNode(ARMISD::SSAT, DL, VT, Input,
17941                        DAG.getConstant(MinC.countr_one(), DL, VT));
17942   if (MaxC == 0)
17943     return DAG.getNode(ARMISD::USAT, DL, VT, Input,
17944                        DAG.getConstant(MinC.countr_one(), DL, VT));
17945 
17946   return SDValue();
17947 }
17948 
17949 /// PerformMinMaxCombine - Target-specific DAG combining for creating truncating
17950 /// saturates.
17951 static SDValue PerformMinMaxCombine(SDNode *N, SelectionDAG &DAG,
17952                                     const ARMSubtarget *ST) {
17953   EVT VT = N->getValueType(0);
17954   SDValue N0 = N->getOperand(0);
17955 
17956   if (VT == MVT::i32)
17957     return PerformMinMaxToSatCombine(SDValue(N, 0), DAG, ST);
17958 
17959   if (!ST->hasMVEIntegerOps())
17960     return SDValue();
17961 
17962   if (SDValue V = PerformVQDMULHCombine(N, DAG))
17963     return V;
17964 
17965   if (VT != MVT::v4i32 && VT != MVT::v8i16)
17966     return SDValue();
17967 
17968   auto IsSignedSaturate = [&](SDNode *Min, SDNode *Max) {
17969     // Check one is a smin and the other is a smax
17970     if (Min->getOpcode() != ISD::SMIN)
17971       std::swap(Min, Max);
17972     if (Min->getOpcode() != ISD::SMIN || Max->getOpcode() != ISD::SMAX)
17973       return false;
17974 
17975     APInt SaturateC;
17976     if (VT == MVT::v4i32)
17977       SaturateC = APInt(32, (1 << 15) - 1, true);
17978     else //if (VT == MVT::v8i16)
17979       SaturateC = APInt(16, (1 << 7) - 1, true);
17980 
17981     APInt MinC, MaxC;
17982     if (!ISD::isConstantSplatVector(Min->getOperand(1).getNode(), MinC) ||
17983         MinC != SaturateC)
17984       return false;
17985     if (!ISD::isConstantSplatVector(Max->getOperand(1).getNode(), MaxC) ||
17986         MaxC != ~SaturateC)
17987       return false;
17988     return true;
17989   };
17990 
17991   if (IsSignedSaturate(N, N0.getNode())) {
17992     SDLoc DL(N);
17993     MVT ExtVT, HalfVT;
17994     if (VT == MVT::v4i32) {
17995       HalfVT = MVT::v8i16;
17996       ExtVT = MVT::v4i16;
17997     } else { // if (VT == MVT::v8i16)
17998       HalfVT = MVT::v16i8;
17999       ExtVT = MVT::v8i8;
18000     }
18001 
18002     // Create a VQMOVNB with undef top lanes, then signed extended into the top
18003     // half. That extend will hopefully be removed if only the bottom bits are
18004     // demanded (though a truncating store, for example).
18005     SDValue VQMOVN =
18006         DAG.getNode(ARMISD::VQMOVNs, DL, HalfVT, DAG.getUNDEF(HalfVT),
18007                     N0->getOperand(0), DAG.getConstant(0, DL, MVT::i32));
18008     SDValue Bitcast = DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, VT, VQMOVN);
18009     return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Bitcast,
18010                        DAG.getValueType(ExtVT));
18011   }
18012 
18013   auto IsUnsignedSaturate = [&](SDNode *Min) {
18014     // For unsigned, we just need to check for <= 0xffff
18015     if (Min->getOpcode() != ISD::UMIN)
18016       return false;
18017 
18018     APInt SaturateC;
18019     if (VT == MVT::v4i32)
18020       SaturateC = APInt(32, (1 << 16) - 1, true);
18021     else //if (VT == MVT::v8i16)
18022       SaturateC = APInt(16, (1 << 8) - 1, true);
18023 
18024     APInt MinC;
18025     if (!ISD::isConstantSplatVector(Min->getOperand(1).getNode(), MinC) ||
18026         MinC != SaturateC)
18027       return false;
18028     return true;
18029   };
18030 
18031   if (IsUnsignedSaturate(N)) {
18032     SDLoc DL(N);
18033     MVT HalfVT;
18034     unsigned ExtConst;
18035     if (VT == MVT::v4i32) {
18036       HalfVT = MVT::v8i16;
18037       ExtConst = 0x0000FFFF;
18038     } else { //if (VT == MVT::v8i16)
18039       HalfVT = MVT::v16i8;
18040       ExtConst = 0x00FF;
18041     }
18042 
18043     // Create a VQMOVNB with undef top lanes, then ZExt into the top half with
18044     // an AND. That extend will hopefully be removed if only the bottom bits are
18045     // demanded (though a truncating store, for example).
18046     SDValue VQMOVN =
18047         DAG.getNode(ARMISD::VQMOVNu, DL, HalfVT, DAG.getUNDEF(HalfVT), N0,
18048                     DAG.getConstant(0, DL, MVT::i32));
18049     SDValue Bitcast = DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, VT, VQMOVN);
18050     return DAG.getNode(ISD::AND, DL, VT, Bitcast,
18051                        DAG.getConstant(ExtConst, DL, VT));
18052   }
18053 
18054   return SDValue();
18055 }
18056 
18057 static const APInt *isPowerOf2Constant(SDValue V) {
18058   ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
18059   if (!C)
18060     return nullptr;
18061   const APInt *CV = &C->getAPIntValue();
18062   return CV->isPowerOf2() ? CV : nullptr;
18063 }
18064 
18065 SDValue ARMTargetLowering::PerformCMOVToBFICombine(SDNode *CMOV, SelectionDAG &DAG) const {
18066   // If we have a CMOV, OR and AND combination such as:
18067   //   if (x & CN)
18068   //     y |= CM;
18069   //
18070   // And:
18071   //   * CN is a single bit;
18072   //   * All bits covered by CM are known zero in y
18073   //
18074   // Then we can convert this into a sequence of BFI instructions. This will
18075   // always be a win if CM is a single bit, will always be no worse than the
18076   // TST&OR sequence if CM is two bits, and for thumb will be no worse if CM is
18077   // three bits (due to the extra IT instruction).
18078 
18079   SDValue Op0 = CMOV->getOperand(0);
18080   SDValue Op1 = CMOV->getOperand(1);
18081   auto CC = CMOV->getConstantOperandAPInt(2).getLimitedValue();
18082   SDValue CmpZ = CMOV->getOperand(4);
18083 
18084   // The compare must be against zero.
18085   if (!isNullConstant(CmpZ->getOperand(1)))
18086     return SDValue();
18087 
18088   assert(CmpZ->getOpcode() == ARMISD::CMPZ);
18089   SDValue And = CmpZ->getOperand(0);
18090   if (And->getOpcode() != ISD::AND)
18091     return SDValue();
18092   const APInt *AndC = isPowerOf2Constant(And->getOperand(1));
18093   if (!AndC)
18094     return SDValue();
18095   SDValue X = And->getOperand(0);
18096 
18097   if (CC == ARMCC::EQ) {
18098     // We're performing an "equal to zero" compare. Swap the operands so we
18099     // canonicalize on a "not equal to zero" compare.
18100     std::swap(Op0, Op1);
18101   } else {
18102     assert(CC == ARMCC::NE && "How can a CMPZ node not be EQ or NE?");
18103   }
18104 
18105   if (Op1->getOpcode() != ISD::OR)
18106     return SDValue();
18107 
18108   ConstantSDNode *OrC = dyn_cast<ConstantSDNode>(Op1->getOperand(1));
18109   if (!OrC)
18110     return SDValue();
18111   SDValue Y = Op1->getOperand(0);
18112 
18113   if (Op0 != Y)
18114     return SDValue();
18115 
18116   // Now, is it profitable to continue?
18117   APInt OrCI = OrC->getAPIntValue();
18118   unsigned Heuristic = Subtarget->isThumb() ? 3 : 2;
18119   if (OrCI.popcount() > Heuristic)
18120     return SDValue();
18121 
18122   // Lastly, can we determine that the bits defined by OrCI
18123   // are zero in Y?
18124   KnownBits Known = DAG.computeKnownBits(Y);
18125   if ((OrCI & Known.Zero) != OrCI)
18126     return SDValue();
18127 
18128   // OK, we can do the combine.
18129   SDValue V = Y;
18130   SDLoc dl(X);
18131   EVT VT = X.getValueType();
18132   unsigned BitInX = AndC->logBase2();
18133 
18134   if (BitInX != 0) {
18135     // We must shift X first.
18136     X = DAG.getNode(ISD::SRL, dl, VT, X,
18137                     DAG.getConstant(BitInX, dl, VT));
18138   }
18139 
18140   for (unsigned BitInY = 0, NumActiveBits = OrCI.getActiveBits();
18141        BitInY < NumActiveBits; ++BitInY) {
18142     if (OrCI[BitInY] == 0)
18143       continue;
18144     APInt Mask(VT.getSizeInBits(), 0);
18145     Mask.setBit(BitInY);
18146     V = DAG.getNode(ARMISD::BFI, dl, VT, V, X,
18147                     // Confusingly, the operand is an *inverted* mask.
18148                     DAG.getConstant(~Mask, dl, VT));
18149   }
18150 
18151   return V;
18152 }
18153 
18154 // Given N, the value controlling the conditional branch, search for the loop
18155 // intrinsic, returning it, along with how the value is used. We need to handle
18156 // patterns such as the following:
18157 // (brcond (xor (setcc (loop.decrement), 0, ne), 1), exit)
18158 // (brcond (setcc (loop.decrement), 0, eq), exit)
18159 // (brcond (setcc (loop.decrement), 0, ne), header)
18160 static SDValue SearchLoopIntrinsic(SDValue N, ISD::CondCode &CC, int &Imm,
18161                                    bool &Negate) {
18162   switch (N->getOpcode()) {
18163   default:
18164     break;
18165   case ISD::XOR: {
18166     if (!isa<ConstantSDNode>(N.getOperand(1)))
18167       return SDValue();
18168     if (!cast<ConstantSDNode>(N.getOperand(1))->isOne())
18169       return SDValue();
18170     Negate = !Negate;
18171     return SearchLoopIntrinsic(N.getOperand(0), CC, Imm, Negate);
18172   }
18173   case ISD::SETCC: {
18174     auto *Const = dyn_cast<ConstantSDNode>(N.getOperand(1));
18175     if (!Const)
18176       return SDValue();
18177     if (Const->isZero())
18178       Imm = 0;
18179     else if (Const->isOne())
18180       Imm = 1;
18181     else
18182       return SDValue();
18183     CC = cast<CondCodeSDNode>(N.getOperand(2))->get();
18184     return SearchLoopIntrinsic(N->getOperand(0), CC, Imm, Negate);
18185   }
18186   case ISD::INTRINSIC_W_CHAIN: {
18187     unsigned IntOp = N.getConstantOperandVal(1);
18188     if (IntOp != Intrinsic::test_start_loop_iterations &&
18189         IntOp != Intrinsic::loop_decrement_reg)
18190       return SDValue();
18191     return N;
18192   }
18193   }
18194   return SDValue();
18195 }
18196 
18197 static SDValue PerformHWLoopCombine(SDNode *N,
18198                                     TargetLowering::DAGCombinerInfo &DCI,
18199                                     const ARMSubtarget *ST) {
18200 
18201   // The hwloop intrinsics that we're interested are used for control-flow,
18202   // either for entering or exiting the loop:
18203   // - test.start.loop.iterations will test whether its operand is zero. If it
18204   //   is zero, the proceeding branch should not enter the loop.
18205   // - loop.decrement.reg also tests whether its operand is zero. If it is
18206   //   zero, the proceeding branch should not branch back to the beginning of
18207   //   the loop.
18208   // So here, we need to check that how the brcond is using the result of each
18209   // of the intrinsics to ensure that we're branching to the right place at the
18210   // right time.
18211 
18212   ISD::CondCode CC;
18213   SDValue Cond;
18214   int Imm = 1;
18215   bool Negate = false;
18216   SDValue Chain = N->getOperand(0);
18217   SDValue Dest;
18218 
18219   if (N->getOpcode() == ISD::BRCOND) {
18220     CC = ISD::SETEQ;
18221     Cond = N->getOperand(1);
18222     Dest = N->getOperand(2);
18223   } else {
18224     assert(N->getOpcode() == ISD::BR_CC && "Expected BRCOND or BR_CC!");
18225     CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
18226     Cond = N->getOperand(2);
18227     Dest = N->getOperand(4);
18228     if (auto *Const = dyn_cast<ConstantSDNode>(N->getOperand(3))) {
18229       if (!Const->isOne() && !Const->isZero())
18230         return SDValue();
18231       Imm = Const->getZExtValue();
18232     } else
18233       return SDValue();
18234   }
18235 
18236   SDValue Int = SearchLoopIntrinsic(Cond, CC, Imm, Negate);
18237   if (!Int)
18238     return SDValue();
18239 
18240   if (Negate)
18241     CC = ISD::getSetCCInverse(CC, /* Integer inverse */ MVT::i32);
18242 
18243   auto IsTrueIfZero = [](ISD::CondCode CC, int Imm) {
18244     return (CC == ISD::SETEQ && Imm == 0) ||
18245            (CC == ISD::SETNE && Imm == 1) ||
18246            (CC == ISD::SETLT && Imm == 1) ||
18247            (CC == ISD::SETULT && Imm == 1);
18248   };
18249 
18250   auto IsFalseIfZero = [](ISD::CondCode CC, int Imm) {
18251     return (CC == ISD::SETEQ && Imm == 1) ||
18252            (CC == ISD::SETNE && Imm == 0) ||
18253            (CC == ISD::SETGT && Imm == 0) ||
18254            (CC == ISD::SETUGT && Imm == 0) ||
18255            (CC == ISD::SETGE && Imm == 1) ||
18256            (CC == ISD::SETUGE && Imm == 1);
18257   };
18258 
18259   assert((IsTrueIfZero(CC, Imm) || IsFalseIfZero(CC, Imm)) &&
18260          "unsupported condition");
18261 
18262   SDLoc dl(Int);
18263   SelectionDAG &DAG = DCI.DAG;
18264   SDValue Elements = Int.getOperand(2);
18265   unsigned IntOp = Int->getConstantOperandVal(1);
18266   assert((N->hasOneUse() && N->use_begin()->getOpcode() == ISD::BR)
18267           && "expected single br user");
18268   SDNode *Br = *N->use_begin();
18269   SDValue OtherTarget = Br->getOperand(1);
18270 
18271   // Update the unconditional branch to branch to the given Dest.
18272   auto UpdateUncondBr = [](SDNode *Br, SDValue Dest, SelectionDAG &DAG) {
18273     SDValue NewBrOps[] = { Br->getOperand(0), Dest };
18274     SDValue NewBr = DAG.getNode(ISD::BR, SDLoc(Br), MVT::Other, NewBrOps);
18275     DAG.ReplaceAllUsesOfValueWith(SDValue(Br, 0), NewBr);
18276   };
18277 
18278   if (IntOp == Intrinsic::test_start_loop_iterations) {
18279     SDValue Res;
18280     SDValue Setup = DAG.getNode(ARMISD::WLSSETUP, dl, MVT::i32, Elements);
18281     // We expect this 'instruction' to branch when the counter is zero.
18282     if (IsTrueIfZero(CC, Imm)) {
18283       SDValue Ops[] = {Chain, Setup, Dest};
18284       Res = DAG.getNode(ARMISD::WLS, dl, MVT::Other, Ops);
18285     } else {
18286       // The logic is the reverse of what we need for WLS, so find the other
18287       // basic block target: the target of the proceeding br.
18288       UpdateUncondBr(Br, Dest, DAG);
18289 
18290       SDValue Ops[] = {Chain, Setup, OtherTarget};
18291       Res = DAG.getNode(ARMISD::WLS, dl, MVT::Other, Ops);
18292     }
18293     // Update LR count to the new value
18294     DAG.ReplaceAllUsesOfValueWith(Int.getValue(0), Setup);
18295     // Update chain
18296     DAG.ReplaceAllUsesOfValueWith(Int.getValue(2), Int.getOperand(0));
18297     return Res;
18298   } else {
18299     SDValue Size =
18300         DAG.getTargetConstant(Int.getConstantOperandVal(3), dl, MVT::i32);
18301     SDValue Args[] = { Int.getOperand(0), Elements, Size, };
18302     SDValue LoopDec = DAG.getNode(ARMISD::LOOP_DEC, dl,
18303                                   DAG.getVTList(MVT::i32, MVT::Other), Args);
18304     DAG.ReplaceAllUsesWith(Int.getNode(), LoopDec.getNode());
18305 
18306     // We expect this instruction to branch when the count is not zero.
18307     SDValue Target = IsFalseIfZero(CC, Imm) ? Dest : OtherTarget;
18308 
18309     // Update the unconditional branch to target the loop preheader if we've
18310     // found the condition has been reversed.
18311     if (Target == OtherTarget)
18312       UpdateUncondBr(Br, Dest, DAG);
18313 
18314     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
18315                         SDValue(LoopDec.getNode(), 1), Chain);
18316 
18317     SDValue EndArgs[] = { Chain, SDValue(LoopDec.getNode(), 0), Target };
18318     return DAG.getNode(ARMISD::LE, dl, MVT::Other, EndArgs);
18319   }
18320   return SDValue();
18321 }
18322 
18323 /// PerformBRCONDCombine - Target-specific DAG combining for ARMISD::BRCOND.
18324 SDValue
18325 ARMTargetLowering::PerformBRCONDCombine(SDNode *N, SelectionDAG &DAG) const {
18326   SDValue Cmp = N->getOperand(4);
18327   if (Cmp.getOpcode() != ARMISD::CMPZ)
18328     // Only looking at NE cases.
18329     return SDValue();
18330 
18331   EVT VT = N->getValueType(0);
18332   SDLoc dl(N);
18333   SDValue LHS = Cmp.getOperand(0);
18334   SDValue RHS = Cmp.getOperand(1);
18335   SDValue Chain = N->getOperand(0);
18336   SDValue BB = N->getOperand(1);
18337   SDValue ARMcc = N->getOperand(2);
18338   ARMCC::CondCodes CC = (ARMCC::CondCodes)ARMcc->getAsZExtVal();
18339 
18340   // (brcond Chain BB ne CPSR (cmpz (and (cmov 0 1 CC CPSR Cmp) 1) 0))
18341   // -> (brcond Chain BB CC CPSR Cmp)
18342   if (CC == ARMCC::NE && LHS.getOpcode() == ISD::AND && LHS->hasOneUse() &&
18343       LHS->getOperand(0)->getOpcode() == ARMISD::CMOV &&
18344       LHS->getOperand(0)->hasOneUse() &&
18345       isNullConstant(LHS->getOperand(0)->getOperand(0)) &&
18346       isOneConstant(LHS->getOperand(0)->getOperand(1)) &&
18347       isOneConstant(LHS->getOperand(1)) && isNullConstant(RHS)) {
18348     return DAG.getNode(
18349         ARMISD::BRCOND, dl, VT, Chain, BB, LHS->getOperand(0)->getOperand(2),
18350         LHS->getOperand(0)->getOperand(3), LHS->getOperand(0)->getOperand(4));
18351   }
18352 
18353   return SDValue();
18354 }
18355 
18356 /// PerformCMOVCombine - Target-specific DAG combining for ARMISD::CMOV.
18357 SDValue
18358 ARMTargetLowering::PerformCMOVCombine(SDNode *N, SelectionDAG &DAG) const {
18359   SDValue Cmp = N->getOperand(4);
18360   if (Cmp.getOpcode() != ARMISD::CMPZ)
18361     // Only looking at EQ and NE cases.
18362     return SDValue();
18363 
18364   EVT VT = N->getValueType(0);
18365   SDLoc dl(N);
18366   SDValue LHS = Cmp.getOperand(0);
18367   SDValue RHS = Cmp.getOperand(1);
18368   SDValue FalseVal = N->getOperand(0);
18369   SDValue TrueVal = N->getOperand(1);
18370   SDValue ARMcc = N->getOperand(2);
18371   ARMCC::CondCodes CC = (ARMCC::CondCodes)ARMcc->getAsZExtVal();
18372 
18373   // BFI is only available on V6T2+.
18374   if (!Subtarget->isThumb1Only() && Subtarget->hasV6T2Ops()) {
18375     SDValue R = PerformCMOVToBFICombine(N, DAG);
18376     if (R)
18377       return R;
18378   }
18379 
18380   // Simplify
18381   //   mov     r1, r0
18382   //   cmp     r1, x
18383   //   mov     r0, y
18384   //   moveq   r0, x
18385   // to
18386   //   cmp     r0, x
18387   //   movne   r0, y
18388   //
18389   //   mov     r1, r0
18390   //   cmp     r1, x
18391   //   mov     r0, x
18392   //   movne   r0, y
18393   // to
18394   //   cmp     r0, x
18395   //   movne   r0, y
18396   /// FIXME: Turn this into a target neutral optimization?
18397   SDValue Res;
18398   if (CC == ARMCC::NE && FalseVal == RHS && FalseVal != LHS) {
18399     Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, TrueVal, ARMcc,
18400                       N->getOperand(3), Cmp);
18401   } else if (CC == ARMCC::EQ && TrueVal == RHS) {
18402     SDValue ARMcc;
18403     SDValue NewCmp = getARMCmp(LHS, RHS, ISD::SETNE, ARMcc, DAG, dl);
18404     Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, FalseVal, ARMcc,
18405                       N->getOperand(3), NewCmp);
18406   }
18407 
18408   // (cmov F T ne CPSR (cmpz (cmov 0 1 CC CPSR Cmp) 0))
18409   // -> (cmov F T CC CPSR Cmp)
18410   if (CC == ARMCC::NE && LHS.getOpcode() == ARMISD::CMOV && LHS->hasOneUse() &&
18411       isNullConstant(LHS->getOperand(0)) && isOneConstant(LHS->getOperand(1)) &&
18412       isNullConstant(RHS)) {
18413     return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
18414                        LHS->getOperand(2), LHS->getOperand(3),
18415                        LHS->getOperand(4));
18416   }
18417 
18418   if (!VT.isInteger())
18419       return SDValue();
18420 
18421   // Fold away an unneccessary CMPZ/CMOV
18422   // CMOV A, B, C1, $cpsr, (CMPZ (CMOV 1, 0, C2, D), 0) ->
18423   // if C1==EQ -> CMOV A, B, C2, $cpsr, D
18424   // if C1==NE -> CMOV A, B, NOT(C2), $cpsr, D
18425   if (N->getConstantOperandVal(2) == ARMCC::EQ ||
18426       N->getConstantOperandVal(2) == ARMCC::NE) {
18427     ARMCC::CondCodes Cond;
18428     if (SDValue C = IsCMPZCSINC(N->getOperand(4).getNode(), Cond)) {
18429       if (N->getConstantOperandVal(2) == ARMCC::NE)
18430         Cond = ARMCC::getOppositeCondition(Cond);
18431       return DAG.getNode(N->getOpcode(), SDLoc(N), MVT::i32, N->getOperand(0),
18432                          N->getOperand(1),
18433                          DAG.getTargetConstant(Cond, SDLoc(N), MVT::i32),
18434                          N->getOperand(3), C);
18435     }
18436   }
18437 
18438   // Materialize a boolean comparison for integers so we can avoid branching.
18439   if (isNullConstant(FalseVal)) {
18440     if (CC == ARMCC::EQ && isOneConstant(TrueVal)) {
18441       if (!Subtarget->isThumb1Only() && Subtarget->hasV5TOps()) {
18442         // If x == y then x - y == 0 and ARM's CLZ will return 32, shifting it
18443         // right 5 bits will make that 32 be 1, otherwise it will be 0.
18444         // CMOV 0, 1, ==, (CMPZ x, y) -> SRL (CTLZ (SUB x, y)), 5
18445         SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, LHS, RHS);
18446         Res = DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::CTLZ, dl, VT, Sub),
18447                           DAG.getConstant(5, dl, MVT::i32));
18448       } else {
18449         // CMOV 0, 1, ==, (CMPZ x, y) ->
18450         //     (UADDO_CARRY (SUB x, y), t:0, t:1)
18451         // where t = (USUBO_CARRY 0, (SUB x, y), 0)
18452         //
18453         // The USUBO_CARRY computes 0 - (x - y) and this will give a borrow when
18454         // x != y. In other words, a carry C == 1 when x == y, C == 0
18455         // otherwise.
18456         // The final UADDO_CARRY computes
18457         //     x - y + (0 - (x - y)) + C == C
18458         SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, LHS, RHS);
18459         SDVTList VTs = DAG.getVTList(VT, MVT::i32);
18460         SDValue Neg = DAG.getNode(ISD::USUBO, dl, VTs, FalseVal, Sub);
18461         // ISD::USUBO_CARRY returns a borrow but we want the carry here
18462         // actually.
18463         SDValue Carry =
18464             DAG.getNode(ISD::SUB, dl, MVT::i32,
18465                         DAG.getConstant(1, dl, MVT::i32), Neg.getValue(1));
18466         Res = DAG.getNode(ISD::UADDO_CARRY, dl, VTs, Sub, Neg, Carry);
18467       }
18468     } else if (CC == ARMCC::NE && !isNullConstant(RHS) &&
18469                (!Subtarget->isThumb1Only() || isPowerOf2Constant(TrueVal))) {
18470       // This seems pointless but will allow us to combine it further below.
18471       // CMOV 0, z, !=, (CMPZ x, y) -> CMOV (SUBS x, y), z, !=, (SUBS x, y):1
18472       SDValue Sub =
18473           DAG.getNode(ARMISD::SUBS, dl, DAG.getVTList(VT, MVT::i32), LHS, RHS);
18474       SDValue CPSRGlue = DAG.getCopyToReg(DAG.getEntryNode(), dl, ARM::CPSR,
18475                                           Sub.getValue(1), SDValue());
18476       Res = DAG.getNode(ARMISD::CMOV, dl, VT, Sub, TrueVal, ARMcc,
18477                         N->getOperand(3), CPSRGlue.getValue(1));
18478       FalseVal = Sub;
18479     }
18480   } else if (isNullConstant(TrueVal)) {
18481     if (CC == ARMCC::EQ && !isNullConstant(RHS) &&
18482         (!Subtarget->isThumb1Only() || isPowerOf2Constant(FalseVal))) {
18483       // This seems pointless but will allow us to combine it further below
18484       // Note that we change == for != as this is the dual for the case above.
18485       // CMOV z, 0, ==, (CMPZ x, y) -> CMOV (SUBS x, y), z, !=, (SUBS x, y):1
18486       SDValue Sub =
18487           DAG.getNode(ARMISD::SUBS, dl, DAG.getVTList(VT, MVT::i32), LHS, RHS);
18488       SDValue CPSRGlue = DAG.getCopyToReg(DAG.getEntryNode(), dl, ARM::CPSR,
18489                                           Sub.getValue(1), SDValue());
18490       Res = DAG.getNode(ARMISD::CMOV, dl, VT, Sub, FalseVal,
18491                         DAG.getConstant(ARMCC::NE, dl, MVT::i32),
18492                         N->getOperand(3), CPSRGlue.getValue(1));
18493       FalseVal = Sub;
18494     }
18495   }
18496 
18497   // On Thumb1, the DAG above may be further combined if z is a power of 2
18498   // (z == 2 ^ K).
18499   // CMOV (SUBS x, y), z, !=, (SUBS x, y):1 ->
18500   // t1 = (USUBO (SUB x, y), 1)
18501   // t2 = (USUBO_CARRY (SUB x, y), t1:0, t1:1)
18502   // Result = if K != 0 then (SHL t2:0, K) else t2:0
18503   //
18504   // This also handles the special case of comparing against zero; it's
18505   // essentially, the same pattern, except there's no SUBS:
18506   // CMOV x, z, !=, (CMPZ x, 0) ->
18507   // t1 = (USUBO x, 1)
18508   // t2 = (USUBO_CARRY x, t1:0, t1:1)
18509   // Result = if K != 0 then (SHL t2:0, K) else t2:0
18510   const APInt *TrueConst;
18511   if (Subtarget->isThumb1Only() && CC == ARMCC::NE &&
18512       ((FalseVal.getOpcode() == ARMISD::SUBS &&
18513         FalseVal.getOperand(0) == LHS && FalseVal.getOperand(1) == RHS) ||
18514        (FalseVal == LHS && isNullConstant(RHS))) &&
18515       (TrueConst = isPowerOf2Constant(TrueVal))) {
18516     SDVTList VTs = DAG.getVTList(VT, MVT::i32);
18517     unsigned ShiftAmount = TrueConst->logBase2();
18518     if (ShiftAmount)
18519       TrueVal = DAG.getConstant(1, dl, VT);
18520     SDValue Subc = DAG.getNode(ISD::USUBO, dl, VTs, FalseVal, TrueVal);
18521     Res = DAG.getNode(ISD::USUBO_CARRY, dl, VTs, FalseVal, Subc,
18522                       Subc.getValue(1));
18523 
18524     if (ShiftAmount)
18525       Res = DAG.getNode(ISD::SHL, dl, VT, Res,
18526                         DAG.getConstant(ShiftAmount, dl, MVT::i32));
18527   }
18528 
18529   if (Res.getNode()) {
18530     KnownBits Known = DAG.computeKnownBits(SDValue(N,0));
18531     // Capture demanded bits information that would be otherwise lost.
18532     if (Known.Zero == 0xfffffffe)
18533       Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
18534                         DAG.getValueType(MVT::i1));
18535     else if (Known.Zero == 0xffffff00)
18536       Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
18537                         DAG.getValueType(MVT::i8));
18538     else if (Known.Zero == 0xffff0000)
18539       Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
18540                         DAG.getValueType(MVT::i16));
18541   }
18542 
18543   return Res;
18544 }
18545 
18546 static SDValue PerformBITCASTCombine(SDNode *N,
18547                                      TargetLowering::DAGCombinerInfo &DCI,
18548                                      const ARMSubtarget *ST) {
18549   SelectionDAG &DAG = DCI.DAG;
18550   SDValue Src = N->getOperand(0);
18551   EVT DstVT = N->getValueType(0);
18552 
18553   // Convert v4f32 bitcast (v4i32 vdup (i32)) -> v4f32 vdup (i32) under MVE.
18554   if (ST->hasMVEIntegerOps() && Src.getOpcode() == ARMISD::VDUP) {
18555     EVT SrcVT = Src.getValueType();
18556     if (SrcVT.getScalarSizeInBits() == DstVT.getScalarSizeInBits())
18557       return DAG.getNode(ARMISD::VDUP, SDLoc(N), DstVT, Src.getOperand(0));
18558   }
18559 
18560   // We may have a bitcast of something that has already had this bitcast
18561   // combine performed on it, so skip past any VECTOR_REG_CASTs.
18562   while (Src.getOpcode() == ARMISD::VECTOR_REG_CAST)
18563     Src = Src.getOperand(0);
18564 
18565   // Bitcast from element-wise VMOV or VMVN doesn't need VREV if the VREV that
18566   // would be generated is at least the width of the element type.
18567   EVT SrcVT = Src.getValueType();
18568   if ((Src.getOpcode() == ARMISD::VMOVIMM ||
18569        Src.getOpcode() == ARMISD::VMVNIMM ||
18570        Src.getOpcode() == ARMISD::VMOVFPIMM) &&
18571       SrcVT.getScalarSizeInBits() <= DstVT.getScalarSizeInBits() &&
18572       DAG.getDataLayout().isBigEndian())
18573     return DAG.getNode(ARMISD::VECTOR_REG_CAST, SDLoc(N), DstVT, Src);
18574 
18575   // bitcast(extract(x, n)); bitcast(extract(x, n+1))  ->  VMOVRRD x
18576   if (SDValue R = PerformExtractEltToVMOVRRD(N, DCI))
18577     return R;
18578 
18579   return SDValue();
18580 }
18581 
18582 // Some combines for the MVETrunc truncations legalizer helper. Also lowers the
18583 // node into stack operations after legalizeOps.
18584 SDValue ARMTargetLowering::PerformMVETruncCombine(
18585     SDNode *N, TargetLowering::DAGCombinerInfo &DCI) const {
18586   SelectionDAG &DAG = DCI.DAG;
18587   EVT VT = N->getValueType(0);
18588   SDLoc DL(N);
18589 
18590   // MVETrunc(Undef, Undef) -> Undef
18591   if (all_of(N->ops(), [](SDValue Op) { return Op.isUndef(); }))
18592     return DAG.getUNDEF(VT);
18593 
18594   // MVETrunc(MVETrunc a b, MVETrunc c, d) -> MVETrunc
18595   if (N->getNumOperands() == 2 &&
18596       N->getOperand(0).getOpcode() == ARMISD::MVETRUNC &&
18597       N->getOperand(1).getOpcode() == ARMISD::MVETRUNC)
18598     return DAG.getNode(ARMISD::MVETRUNC, DL, VT, N->getOperand(0).getOperand(0),
18599                        N->getOperand(0).getOperand(1),
18600                        N->getOperand(1).getOperand(0),
18601                        N->getOperand(1).getOperand(1));
18602 
18603   // MVETrunc(shuffle, shuffle) -> VMOVN
18604   if (N->getNumOperands() == 2 &&
18605       N->getOperand(0).getOpcode() == ISD::VECTOR_SHUFFLE &&
18606       N->getOperand(1).getOpcode() == ISD::VECTOR_SHUFFLE) {
18607     auto *S0 = cast<ShuffleVectorSDNode>(N->getOperand(0).getNode());
18608     auto *S1 = cast<ShuffleVectorSDNode>(N->getOperand(1).getNode());
18609 
18610     if (S0->getOperand(0) == S1->getOperand(0) &&
18611         S0->getOperand(1) == S1->getOperand(1)) {
18612       // Construct complete shuffle mask
18613       SmallVector<int, 8> Mask(S0->getMask());
18614       Mask.append(S1->getMask().begin(), S1->getMask().end());
18615 
18616       if (isVMOVNTruncMask(Mask, VT, false))
18617         return DAG.getNode(
18618             ARMISD::VMOVN, DL, VT,
18619             DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, VT, S0->getOperand(0)),
18620             DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, VT, S0->getOperand(1)),
18621             DAG.getConstant(1, DL, MVT::i32));
18622       if (isVMOVNTruncMask(Mask, VT, true))
18623         return DAG.getNode(
18624             ARMISD::VMOVN, DL, VT,
18625             DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, VT, S0->getOperand(1)),
18626             DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, VT, S0->getOperand(0)),
18627             DAG.getConstant(1, DL, MVT::i32));
18628     }
18629   }
18630 
18631   // For MVETrunc of a buildvector or shuffle, it can be beneficial to lower the
18632   // truncate to a buildvector to allow the generic optimisations to kick in.
18633   if (all_of(N->ops(), [](SDValue Op) {
18634         return Op.getOpcode() == ISD::BUILD_VECTOR ||
18635                Op.getOpcode() == ISD::VECTOR_SHUFFLE ||
18636                (Op.getOpcode() == ISD::BITCAST &&
18637                 Op.getOperand(0).getOpcode() == ISD::BUILD_VECTOR);
18638       })) {
18639     SmallVector<SDValue, 8> Extracts;
18640     for (unsigned Op = 0; Op < N->getNumOperands(); Op++) {
18641       SDValue O = N->getOperand(Op);
18642       for (unsigned i = 0; i < O.getValueType().getVectorNumElements(); i++) {
18643         SDValue Ext = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, O,
18644                                   DAG.getConstant(i, DL, MVT::i32));
18645         Extracts.push_back(Ext);
18646       }
18647     }
18648     return DAG.getBuildVector(VT, DL, Extracts);
18649   }
18650 
18651   // If we are late in the legalization process and nothing has optimised
18652   // the trunc to anything better, lower it to a stack store and reload,
18653   // performing the truncation whilst keeping the lanes in the correct order:
18654   //   VSTRH.32 a, stack; VSTRH.32 b, stack+8; VLDRW.32 stack;
18655   if (!DCI.isAfterLegalizeDAG())
18656     return SDValue();
18657 
18658   SDValue StackPtr = DAG.CreateStackTemporary(TypeSize::getFixed(16), Align(4));
18659   int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
18660   int NumIns = N->getNumOperands();
18661   assert((NumIns == 2 || NumIns == 4) &&
18662          "Expected 2 or 4 inputs to an MVETrunc");
18663   EVT StoreVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
18664   if (N->getNumOperands() == 4)
18665     StoreVT = StoreVT.getHalfNumVectorElementsVT(*DAG.getContext());
18666 
18667   SmallVector<SDValue> Chains;
18668   for (int I = 0; I < NumIns; I++) {
18669     SDValue Ptr = DAG.getNode(
18670         ISD::ADD, DL, StackPtr.getValueType(), StackPtr,
18671         DAG.getConstant(I * 16 / NumIns, DL, StackPtr.getValueType()));
18672     MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(
18673         DAG.getMachineFunction(), SPFI, I * 16 / NumIns);
18674     SDValue Ch = DAG.getTruncStore(DAG.getEntryNode(), DL, N->getOperand(I),
18675                                    Ptr, MPI, StoreVT, Align(4));
18676     Chains.push_back(Ch);
18677   }
18678 
18679   SDValue Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
18680   MachinePointerInfo MPI =
18681       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI, 0);
18682   return DAG.getLoad(VT, DL, Chain, StackPtr, MPI, Align(4));
18683 }
18684 
18685 // Take a MVEEXT(load x) and split that into (extload x, extload x+8)
18686 static SDValue PerformSplittingMVEEXTToWideningLoad(SDNode *N,
18687                                                     SelectionDAG &DAG) {
18688   SDValue N0 = N->getOperand(0);
18689   LoadSDNode *LD = dyn_cast<LoadSDNode>(N0.getNode());
18690   if (!LD || !LD->isSimple() || !N0.hasOneUse() || LD->isIndexed())
18691     return SDValue();
18692 
18693   EVT FromVT = LD->getMemoryVT();
18694   EVT ToVT = N->getValueType(0);
18695   if (!ToVT.isVector())
18696     return SDValue();
18697   assert(FromVT.getVectorNumElements() == ToVT.getVectorNumElements() * 2);
18698   EVT ToEltVT = ToVT.getVectorElementType();
18699   EVT FromEltVT = FromVT.getVectorElementType();
18700 
18701   unsigned NumElements = 0;
18702   if (ToEltVT == MVT::i32 && (FromEltVT == MVT::i16 || FromEltVT == MVT::i8))
18703     NumElements = 4;
18704   if (ToEltVT == MVT::i16 && FromEltVT == MVT::i8)
18705     NumElements = 8;
18706   assert(NumElements != 0);
18707 
18708   ISD::LoadExtType NewExtType =
18709       N->getOpcode() == ARMISD::MVESEXT ? ISD::SEXTLOAD : ISD::ZEXTLOAD;
18710   if (LD->getExtensionType() != ISD::NON_EXTLOAD &&
18711       LD->getExtensionType() != ISD::EXTLOAD &&
18712       LD->getExtensionType() != NewExtType)
18713     return SDValue();
18714 
18715   LLVMContext &C = *DAG.getContext();
18716   SDLoc DL(LD);
18717   // Details about the old load
18718   SDValue Ch = LD->getChain();
18719   SDValue BasePtr = LD->getBasePtr();
18720   Align Alignment = LD->getOriginalAlign();
18721   MachineMemOperand::Flags MMOFlags = LD->getMemOperand()->getFlags();
18722   AAMDNodes AAInfo = LD->getAAInfo();
18723 
18724   SDValue Offset = DAG.getUNDEF(BasePtr.getValueType());
18725   EVT NewFromVT = EVT::getVectorVT(
18726       C, EVT::getIntegerVT(C, FromEltVT.getScalarSizeInBits()), NumElements);
18727   EVT NewToVT = EVT::getVectorVT(
18728       C, EVT::getIntegerVT(C, ToEltVT.getScalarSizeInBits()), NumElements);
18729 
18730   SmallVector<SDValue, 4> Loads;
18731   SmallVector<SDValue, 4> Chains;
18732   for (unsigned i = 0; i < FromVT.getVectorNumElements() / NumElements; i++) {
18733     unsigned NewOffset = (i * NewFromVT.getSizeInBits()) / 8;
18734     SDValue NewPtr =
18735         DAG.getObjectPtrOffset(DL, BasePtr, TypeSize::getFixed(NewOffset));
18736 
18737     SDValue NewLoad =
18738         DAG.getLoad(ISD::UNINDEXED, NewExtType, NewToVT, DL, Ch, NewPtr, Offset,
18739                     LD->getPointerInfo().getWithOffset(NewOffset), NewFromVT,
18740                     Alignment, MMOFlags, AAInfo);
18741     Loads.push_back(NewLoad);
18742     Chains.push_back(SDValue(NewLoad.getNode(), 1));
18743   }
18744 
18745   SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
18746   DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewChain);
18747   return DAG.getMergeValues(Loads, DL);
18748 }
18749 
18750 // Perform combines for MVEEXT. If it has not be optimized to anything better
18751 // before lowering, it gets converted to stack store and extloads performing the
18752 // extend whilst still keeping the same lane ordering.
18753 SDValue ARMTargetLowering::PerformMVEExtCombine(
18754     SDNode *N, TargetLowering::DAGCombinerInfo &DCI) const {
18755   SelectionDAG &DAG = DCI.DAG;
18756   EVT VT = N->getValueType(0);
18757   SDLoc DL(N);
18758   assert(N->getNumValues() == 2 && "Expected MVEEXT with 2 elements");
18759   assert((VT == MVT::v4i32 || VT == MVT::v8i16) && "Unexpected MVEEXT type");
18760 
18761   EVT ExtVT = N->getOperand(0).getValueType().getHalfNumVectorElementsVT(
18762       *DAG.getContext());
18763   auto Extend = [&](SDValue V) {
18764     SDValue VVT = DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, VT, V);
18765     return N->getOpcode() == ARMISD::MVESEXT
18766                ? DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, VVT,
18767                              DAG.getValueType(ExtVT))
18768                : DAG.getZeroExtendInReg(VVT, DL, ExtVT);
18769   };
18770 
18771   // MVEEXT(VDUP) -> SIGN_EXTEND_INREG(VDUP)
18772   if (N->getOperand(0).getOpcode() == ARMISD::VDUP) {
18773     SDValue Ext = Extend(N->getOperand(0));
18774     return DAG.getMergeValues({Ext, Ext}, DL);
18775   }
18776 
18777   // MVEEXT(shuffle) -> SIGN_EXTEND_INREG/ZERO_EXTEND_INREG
18778   if (auto *SVN = dyn_cast<ShuffleVectorSDNode>(N->getOperand(0))) {
18779     ArrayRef<int> Mask = SVN->getMask();
18780     assert(Mask.size() == 2 * VT.getVectorNumElements());
18781     assert(Mask.size() == SVN->getValueType(0).getVectorNumElements());
18782     unsigned Rev = VT == MVT::v4i32 ? ARMISD::VREV32 : ARMISD::VREV16;
18783     SDValue Op0 = SVN->getOperand(0);
18784     SDValue Op1 = SVN->getOperand(1);
18785 
18786     auto CheckInregMask = [&](int Start, int Offset) {
18787       for (int Idx = 0, E = VT.getVectorNumElements(); Idx < E; ++Idx)
18788         if (Mask[Start + Idx] >= 0 && Mask[Start + Idx] != Idx * 2 + Offset)
18789           return false;
18790       return true;
18791     };
18792     SDValue V0 = SDValue(N, 0);
18793     SDValue V1 = SDValue(N, 1);
18794     if (CheckInregMask(0, 0))
18795       V0 = Extend(Op0);
18796     else if (CheckInregMask(0, 1))
18797       V0 = Extend(DAG.getNode(Rev, DL, SVN->getValueType(0), Op0));
18798     else if (CheckInregMask(0, Mask.size()))
18799       V0 = Extend(Op1);
18800     else if (CheckInregMask(0, Mask.size() + 1))
18801       V0 = Extend(DAG.getNode(Rev, DL, SVN->getValueType(0), Op1));
18802 
18803     if (CheckInregMask(VT.getVectorNumElements(), Mask.size()))
18804       V1 = Extend(Op1);
18805     else if (CheckInregMask(VT.getVectorNumElements(), Mask.size() + 1))
18806       V1 = Extend(DAG.getNode(Rev, DL, SVN->getValueType(0), Op1));
18807     else if (CheckInregMask(VT.getVectorNumElements(), 0))
18808       V1 = Extend(Op0);
18809     else if (CheckInregMask(VT.getVectorNumElements(), 1))
18810       V1 = Extend(DAG.getNode(Rev, DL, SVN->getValueType(0), Op0));
18811 
18812     if (V0.getNode() != N || V1.getNode() != N)
18813       return DAG.getMergeValues({V0, V1}, DL);
18814   }
18815 
18816   // MVEEXT(load) -> extload, extload
18817   if (N->getOperand(0)->getOpcode() == ISD::LOAD)
18818     if (SDValue L = PerformSplittingMVEEXTToWideningLoad(N, DAG))
18819       return L;
18820 
18821   if (!DCI.isAfterLegalizeDAG())
18822     return SDValue();
18823 
18824   // Lower to a stack store and reload:
18825   //  VSTRW.32 a, stack; VLDRH.32 stack; VLDRH.32 stack+8;
18826   SDValue StackPtr = DAG.CreateStackTemporary(TypeSize::getFixed(16), Align(4));
18827   int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
18828   int NumOuts = N->getNumValues();
18829   assert((NumOuts == 2 || NumOuts == 4) &&
18830          "Expected 2 or 4 outputs to an MVEEXT");
18831   EVT LoadVT = N->getOperand(0).getValueType().getHalfNumVectorElementsVT(
18832       *DAG.getContext());
18833   if (N->getNumOperands() == 4)
18834     LoadVT = LoadVT.getHalfNumVectorElementsVT(*DAG.getContext());
18835 
18836   MachinePointerInfo MPI =
18837       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI, 0);
18838   SDValue Chain = DAG.getStore(DAG.getEntryNode(), DL, N->getOperand(0),
18839                                StackPtr, MPI, Align(4));
18840 
18841   SmallVector<SDValue> Loads;
18842   for (int I = 0; I < NumOuts; I++) {
18843     SDValue Ptr = DAG.getNode(
18844         ISD::ADD, DL, StackPtr.getValueType(), StackPtr,
18845         DAG.getConstant(I * 16 / NumOuts, DL, StackPtr.getValueType()));
18846     MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(
18847         DAG.getMachineFunction(), SPFI, I * 16 / NumOuts);
18848     SDValue Load = DAG.getExtLoad(
18849         N->getOpcode() == ARMISD::MVESEXT ? ISD::SEXTLOAD : ISD::ZEXTLOAD, DL,
18850         VT, Chain, Ptr, MPI, LoadVT, Align(4));
18851     Loads.push_back(Load);
18852   }
18853 
18854   return DAG.getMergeValues(Loads, DL);
18855 }
18856 
18857 SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
18858                                              DAGCombinerInfo &DCI) const {
18859   switch (N->getOpcode()) {
18860   default: break;
18861   case ISD::SELECT_CC:
18862   case ISD::SELECT:     return PerformSELECTCombine(N, DCI, Subtarget);
18863   case ISD::VSELECT:    return PerformVSELECTCombine(N, DCI, Subtarget);
18864   case ISD::SETCC:      return PerformVSetCCToVCTPCombine(N, DCI, Subtarget);
18865   case ISD::ABS:        return PerformABSCombine(N, DCI, Subtarget);
18866   case ARMISD::ADDE:    return PerformADDECombine(N, DCI, Subtarget);
18867   case ARMISD::UMLAL:   return PerformUMLALCombine(N, DCI.DAG, Subtarget);
18868   case ISD::ADD:        return PerformADDCombine(N, DCI, Subtarget);
18869   case ISD::SUB:        return PerformSUBCombine(N, DCI, Subtarget);
18870   case ISD::MUL:        return PerformMULCombine(N, DCI, Subtarget);
18871   case ISD::OR:         return PerformORCombine(N, DCI, Subtarget);
18872   case ISD::XOR:        return PerformXORCombine(N, DCI, Subtarget);
18873   case ISD::AND:        return PerformANDCombine(N, DCI, Subtarget);
18874   case ISD::BRCOND:
18875   case ISD::BR_CC:      return PerformHWLoopCombine(N, DCI, Subtarget);
18876   case ARMISD::ADDC:
18877   case ARMISD::SUBC:    return PerformAddcSubcCombine(N, DCI, Subtarget);
18878   case ARMISD::SUBE:    return PerformAddeSubeCombine(N, DCI, Subtarget);
18879   case ARMISD::BFI:     return PerformBFICombine(N, DCI.DAG);
18880   case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI, Subtarget);
18881   case ARMISD::VMOVDRR: return PerformVMOVDRRCombine(N, DCI.DAG);
18882   case ARMISD::VMOVhr:  return PerformVMOVhrCombine(N, DCI);
18883   case ARMISD::VMOVrh:  return PerformVMOVrhCombine(N, DCI.DAG);
18884   case ISD::STORE:      return PerformSTORECombine(N, DCI, Subtarget);
18885   case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DCI, Subtarget);
18886   case ISD::INSERT_VECTOR_ELT: return PerformInsertEltCombine(N, DCI);
18887   case ISD::EXTRACT_VECTOR_ELT:
18888     return PerformExtractEltCombine(N, DCI, Subtarget);
18889   case ISD::SIGN_EXTEND_INREG: return PerformSignExtendInregCombine(N, DCI.DAG);
18890   case ISD::INSERT_SUBVECTOR: return PerformInsertSubvectorCombine(N, DCI);
18891   case ISD::VECTOR_SHUFFLE: return PerformVECTOR_SHUFFLECombine(N, DCI.DAG);
18892   case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI, Subtarget);
18893   case ARMISD::VDUP: return PerformVDUPCombine(N, DCI.DAG, Subtarget);
18894   case ISD::FP_TO_SINT:
18895   case ISD::FP_TO_UINT:
18896     return PerformVCVTCombine(N, DCI.DAG, Subtarget);
18897   case ISD::FADD:
18898     return PerformFADDCombine(N, DCI.DAG, Subtarget);
18899   case ISD::FDIV:
18900     return PerformVDIVCombine(N, DCI.DAG, Subtarget);
18901   case ISD::INTRINSIC_WO_CHAIN:
18902     return PerformIntrinsicCombine(N, DCI);
18903   case ISD::SHL:
18904   case ISD::SRA:
18905   case ISD::SRL:
18906     return PerformShiftCombine(N, DCI, Subtarget);
18907   case ISD::SIGN_EXTEND:
18908   case ISD::ZERO_EXTEND:
18909   case ISD::ANY_EXTEND:
18910     return PerformExtendCombine(N, DCI.DAG, Subtarget);
18911   case ISD::FP_EXTEND:
18912     return PerformFPExtendCombine(N, DCI.DAG, Subtarget);
18913   case ISD::SMIN:
18914   case ISD::UMIN:
18915   case ISD::SMAX:
18916   case ISD::UMAX:
18917     return PerformMinMaxCombine(N, DCI.DAG, Subtarget);
18918   case ARMISD::CMOV:
18919     return PerformCMOVCombine(N, DCI.DAG);
18920   case ARMISD::BRCOND:
18921     return PerformBRCONDCombine(N, DCI.DAG);
18922   case ARMISD::CMPZ:
18923     return PerformCMPZCombine(N, DCI.DAG);
18924   case ARMISD::CSINC:
18925   case ARMISD::CSINV:
18926   case ARMISD::CSNEG:
18927     return PerformCSETCombine(N, DCI.DAG);
18928   case ISD::LOAD:
18929     return PerformLOADCombine(N, DCI, Subtarget);
18930   case ARMISD::VLD1DUP:
18931   case ARMISD::VLD2DUP:
18932   case ARMISD::VLD3DUP:
18933   case ARMISD::VLD4DUP:
18934     return PerformVLDCombine(N, DCI);
18935   case ARMISD::BUILD_VECTOR:
18936     return PerformARMBUILD_VECTORCombine(N, DCI);
18937   case ISD::BITCAST:
18938     return PerformBITCASTCombine(N, DCI, Subtarget);
18939   case ARMISD::PREDICATE_CAST:
18940     return PerformPREDICATE_CASTCombine(N, DCI);
18941   case ARMISD::VECTOR_REG_CAST:
18942     return PerformVECTOR_REG_CASTCombine(N, DCI.DAG, Subtarget);
18943   case ARMISD::MVETRUNC:
18944     return PerformMVETruncCombine(N, DCI);
18945   case ARMISD::MVESEXT:
18946   case ARMISD::MVEZEXT:
18947     return PerformMVEExtCombine(N, DCI);
18948   case ARMISD::VCMP:
18949     return PerformVCMPCombine(N, DCI.DAG, Subtarget);
18950   case ISD::VECREDUCE_ADD:
18951     return PerformVECREDUCE_ADDCombine(N, DCI.DAG, Subtarget);
18952   case ARMISD::VADDVs:
18953   case ARMISD::VADDVu:
18954   case ARMISD::VADDLVs:
18955   case ARMISD::VADDLVu:
18956   case ARMISD::VADDLVAs:
18957   case ARMISD::VADDLVAu:
18958   case ARMISD::VMLAVs:
18959   case ARMISD::VMLAVu:
18960   case ARMISD::VMLALVs:
18961   case ARMISD::VMLALVu:
18962   case ARMISD::VMLALVAs:
18963   case ARMISD::VMLALVAu:
18964     return PerformReduceShuffleCombine(N, DCI.DAG);
18965   case ARMISD::VMOVN:
18966     return PerformVMOVNCombine(N, DCI);
18967   case ARMISD::VQMOVNs:
18968   case ARMISD::VQMOVNu:
18969     return PerformVQMOVNCombine(N, DCI);
18970   case ARMISD::VQDMULH:
18971     return PerformVQDMULHCombine(N, DCI);
18972   case ARMISD::ASRL:
18973   case ARMISD::LSRL:
18974   case ARMISD::LSLL:
18975     return PerformLongShiftCombine(N, DCI.DAG);
18976   case ARMISD::SMULWB: {
18977     unsigned BitWidth = N->getValueType(0).getSizeInBits();
18978     APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 16);
18979     if (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI))
18980       return SDValue();
18981     break;
18982   }
18983   case ARMISD::SMULWT: {
18984     unsigned BitWidth = N->getValueType(0).getSizeInBits();
18985     APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 16);
18986     if (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI))
18987       return SDValue();
18988     break;
18989   }
18990   case ARMISD::SMLALBB:
18991   case ARMISD::QADD16b:
18992   case ARMISD::QSUB16b:
18993   case ARMISD::UQADD16b:
18994   case ARMISD::UQSUB16b: {
18995     unsigned BitWidth = N->getValueType(0).getSizeInBits();
18996     APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 16);
18997     if ((SimplifyDemandedBits(N->getOperand(0), DemandedMask, DCI)) ||
18998         (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI)))
18999       return SDValue();
19000     break;
19001   }
19002   case ARMISD::SMLALBT: {
19003     unsigned LowWidth = N->getOperand(0).getValueType().getSizeInBits();
19004     APInt LowMask = APInt::getLowBitsSet(LowWidth, 16);
19005     unsigned HighWidth = N->getOperand(1).getValueType().getSizeInBits();
19006     APInt HighMask = APInt::getHighBitsSet(HighWidth, 16);
19007     if ((SimplifyDemandedBits(N->getOperand(0), LowMask, DCI)) ||
19008         (SimplifyDemandedBits(N->getOperand(1), HighMask, DCI)))
19009       return SDValue();
19010     break;
19011   }
19012   case ARMISD::SMLALTB: {
19013     unsigned HighWidth = N->getOperand(0).getValueType().getSizeInBits();
19014     APInt HighMask = APInt::getHighBitsSet(HighWidth, 16);
19015     unsigned LowWidth = N->getOperand(1).getValueType().getSizeInBits();
19016     APInt LowMask = APInt::getLowBitsSet(LowWidth, 16);
19017     if ((SimplifyDemandedBits(N->getOperand(0), HighMask, DCI)) ||
19018         (SimplifyDemandedBits(N->getOperand(1), LowMask, DCI)))
19019       return SDValue();
19020     break;
19021   }
19022   case ARMISD::SMLALTT: {
19023     unsigned BitWidth = N->getValueType(0).getSizeInBits();
19024     APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 16);
19025     if ((SimplifyDemandedBits(N->getOperand(0), DemandedMask, DCI)) ||
19026         (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI)))
19027       return SDValue();
19028     break;
19029   }
19030   case ARMISD::QADD8b:
19031   case ARMISD::QSUB8b:
19032   case ARMISD::UQADD8b:
19033   case ARMISD::UQSUB8b: {
19034     unsigned BitWidth = N->getValueType(0).getSizeInBits();
19035     APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 8);
19036     if ((SimplifyDemandedBits(N->getOperand(0), DemandedMask, DCI)) ||
19037         (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI)))
19038       return SDValue();
19039     break;
19040   }
19041   case ISD::INTRINSIC_VOID:
19042   case ISD::INTRINSIC_W_CHAIN:
19043     switch (N->getConstantOperandVal(1)) {
19044     case Intrinsic::arm_neon_vld1:
19045     case Intrinsic::arm_neon_vld1x2:
19046     case Intrinsic::arm_neon_vld1x3:
19047     case Intrinsic::arm_neon_vld1x4:
19048     case Intrinsic::arm_neon_vld2:
19049     case Intrinsic::arm_neon_vld3:
19050     case Intrinsic::arm_neon_vld4:
19051     case Intrinsic::arm_neon_vld2lane:
19052     case Intrinsic::arm_neon_vld3lane:
19053     case Intrinsic::arm_neon_vld4lane:
19054     case Intrinsic::arm_neon_vld2dup:
19055     case Intrinsic::arm_neon_vld3dup:
19056     case Intrinsic::arm_neon_vld4dup:
19057     case Intrinsic::arm_neon_vst1:
19058     case Intrinsic::arm_neon_vst1x2:
19059     case Intrinsic::arm_neon_vst1x3:
19060     case Intrinsic::arm_neon_vst1x4:
19061     case Intrinsic::arm_neon_vst2:
19062     case Intrinsic::arm_neon_vst3:
19063     case Intrinsic::arm_neon_vst4:
19064     case Intrinsic::arm_neon_vst2lane:
19065     case Intrinsic::arm_neon_vst3lane:
19066     case Intrinsic::arm_neon_vst4lane:
19067       return PerformVLDCombine(N, DCI);
19068     case Intrinsic::arm_mve_vld2q:
19069     case Intrinsic::arm_mve_vld4q:
19070     case Intrinsic::arm_mve_vst2q:
19071     case Intrinsic::arm_mve_vst4q:
19072       return PerformMVEVLDCombine(N, DCI);
19073     default: break;
19074     }
19075     break;
19076   }
19077   return SDValue();
19078 }
19079 
19080 bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc,
19081                                                           EVT VT) const {
19082   return (VT == MVT::f32) && (Opc == ISD::LOAD || Opc == ISD::STORE);
19083 }
19084 
19085 bool ARMTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, unsigned,
19086                                                        Align Alignment,
19087                                                        MachineMemOperand::Flags,
19088                                                        unsigned *Fast) const {
19089   // Depends what it gets converted into if the type is weird.
19090   if (!VT.isSimple())
19091     return false;
19092 
19093   // The AllowsUnaligned flag models the SCTLR.A setting in ARM cpus
19094   bool AllowsUnaligned = Subtarget->allowsUnalignedMem();
19095   auto Ty = VT.getSimpleVT().SimpleTy;
19096 
19097   if (Ty == MVT::i8 || Ty == MVT::i16 || Ty == MVT::i32) {
19098     // Unaligned access can use (for example) LRDB, LRDH, LDR
19099     if (AllowsUnaligned) {
19100       if (Fast)
19101         *Fast = Subtarget->hasV7Ops();
19102       return true;
19103     }
19104   }
19105 
19106   if (Ty == MVT::f64 || Ty == MVT::v2f64) {
19107     // For any little-endian targets with neon, we can support unaligned ld/st
19108     // of D and Q (e.g. {D0,D1}) registers by using vld1.i8/vst1.i8.
19109     // A big-endian target may also explicitly support unaligned accesses
19110     if (Subtarget->hasNEON() && (AllowsUnaligned || Subtarget->isLittle())) {
19111       if (Fast)
19112         *Fast = 1;
19113       return true;
19114     }
19115   }
19116 
19117   if (!Subtarget->hasMVEIntegerOps())
19118     return false;
19119 
19120   // These are for predicates
19121   if ((Ty == MVT::v16i1 || Ty == MVT::v8i1 || Ty == MVT::v4i1 ||
19122        Ty == MVT::v2i1)) {
19123     if (Fast)
19124       *Fast = 1;
19125     return true;
19126   }
19127 
19128   // These are for truncated stores/narrowing loads. They are fine so long as
19129   // the alignment is at least the size of the item being loaded
19130   if ((Ty == MVT::v4i8 || Ty == MVT::v8i8 || Ty == MVT::v4i16) &&
19131       Alignment >= VT.getScalarSizeInBits() / 8) {
19132     if (Fast)
19133       *Fast = true;
19134     return true;
19135   }
19136 
19137   // In little-endian MVE, the store instructions VSTRB.U8, VSTRH.U16 and
19138   // VSTRW.U32 all store the vector register in exactly the same format, and
19139   // differ only in the range of their immediate offset field and the required
19140   // alignment. So there is always a store that can be used, regardless of
19141   // actual type.
19142   //
19143   // For big endian, that is not the case. But can still emit a (VSTRB.U8;
19144   // VREV64.8) pair and get the same effect. This will likely be better than
19145   // aligning the vector through the stack.
19146   if (Ty == MVT::v16i8 || Ty == MVT::v8i16 || Ty == MVT::v8f16 ||
19147       Ty == MVT::v4i32 || Ty == MVT::v4f32 || Ty == MVT::v2i64 ||
19148       Ty == MVT::v2f64) {
19149     if (Fast)
19150       *Fast = 1;
19151     return true;
19152   }
19153 
19154   return false;
19155 }
19156 
19157 
19158 EVT ARMTargetLowering::getOptimalMemOpType(
19159     const MemOp &Op, const AttributeList &FuncAttributes) const {
19160   // See if we can use NEON instructions for this...
19161   if ((Op.isMemcpy() || Op.isZeroMemset()) && Subtarget->hasNEON() &&
19162       !FuncAttributes.hasFnAttr(Attribute::NoImplicitFloat)) {
19163     unsigned Fast;
19164     if (Op.size() >= 16 &&
19165         (Op.isAligned(Align(16)) ||
19166          (allowsMisalignedMemoryAccesses(MVT::v2f64, 0, Align(1),
19167                                          MachineMemOperand::MONone, &Fast) &&
19168           Fast))) {
19169       return MVT::v2f64;
19170     } else if (Op.size() >= 8 &&
19171                (Op.isAligned(Align(8)) ||
19172                 (allowsMisalignedMemoryAccesses(
19173                      MVT::f64, 0, Align(1), MachineMemOperand::MONone, &Fast) &&
19174                  Fast))) {
19175       return MVT::f64;
19176     }
19177   }
19178 
19179   // Let the target-independent logic figure it out.
19180   return MVT::Other;
19181 }
19182 
19183 // 64-bit integers are split into their high and low parts and held in two
19184 // different registers, so the trunc is free since the low register can just
19185 // be used.
19186 bool ARMTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
19187   if (!SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
19188     return false;
19189   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
19190   unsigned DestBits = DstTy->getPrimitiveSizeInBits();
19191   return (SrcBits == 64 && DestBits == 32);
19192 }
19193 
19194 bool ARMTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
19195   if (SrcVT.isVector() || DstVT.isVector() || !SrcVT.isInteger() ||
19196       !DstVT.isInteger())
19197     return false;
19198   unsigned SrcBits = SrcVT.getSizeInBits();
19199   unsigned DestBits = DstVT.getSizeInBits();
19200   return (SrcBits == 64 && DestBits == 32);
19201 }
19202 
19203 bool ARMTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
19204   if (Val.getOpcode() != ISD::LOAD)
19205     return false;
19206 
19207   EVT VT1 = Val.getValueType();
19208   if (!VT1.isSimple() || !VT1.isInteger() ||
19209       !VT2.isSimple() || !VT2.isInteger())
19210     return false;
19211 
19212   switch (VT1.getSimpleVT().SimpleTy) {
19213   default: break;
19214   case MVT::i1:
19215   case MVT::i8:
19216   case MVT::i16:
19217     // 8-bit and 16-bit loads implicitly zero-extend to 32-bits.
19218     return true;
19219   }
19220 
19221   return false;
19222 }
19223 
19224 bool ARMTargetLowering::isFNegFree(EVT VT) const {
19225   if (!VT.isSimple())
19226     return false;
19227 
19228   // There are quite a few FP16 instructions (e.g. VNMLA, VNMLS, etc.) that
19229   // negate values directly (fneg is free). So, we don't want to let the DAG
19230   // combiner rewrite fneg into xors and some other instructions.  For f16 and
19231   // FullFP16 argument passing, some bitcast nodes may be introduced,
19232   // triggering this DAG combine rewrite, so we are avoiding that with this.
19233   switch (VT.getSimpleVT().SimpleTy) {
19234   default: break;
19235   case MVT::f16:
19236     return Subtarget->hasFullFP16();
19237   }
19238 
19239   return false;
19240 }
19241 
19242 /// Check if Ext1 and Ext2 are extends of the same type, doubling the bitwidth
19243 /// of the vector elements.
19244 static bool areExtractExts(Value *Ext1, Value *Ext2) {
19245   auto areExtDoubled = [](Instruction *Ext) {
19246     return Ext->getType()->getScalarSizeInBits() ==
19247            2 * Ext->getOperand(0)->getType()->getScalarSizeInBits();
19248   };
19249 
19250   if (!match(Ext1, m_ZExtOrSExt(m_Value())) ||
19251       !match(Ext2, m_ZExtOrSExt(m_Value())) ||
19252       !areExtDoubled(cast<Instruction>(Ext1)) ||
19253       !areExtDoubled(cast<Instruction>(Ext2)))
19254     return false;
19255 
19256   return true;
19257 }
19258 
19259 /// Check if sinking \p I's operands to I's basic block is profitable, because
19260 /// the operands can be folded into a target instruction, e.g.
19261 /// sext/zext can be folded into vsubl.
19262 bool ARMTargetLowering::shouldSinkOperands(Instruction *I,
19263                                            SmallVectorImpl<Use *> &Ops) const {
19264   if (!I->getType()->isVectorTy())
19265     return false;
19266 
19267   if (Subtarget->hasNEON()) {
19268     switch (I->getOpcode()) {
19269     case Instruction::Sub:
19270     case Instruction::Add: {
19271       if (!areExtractExts(I->getOperand(0), I->getOperand(1)))
19272         return false;
19273       Ops.push_back(&I->getOperandUse(0));
19274       Ops.push_back(&I->getOperandUse(1));
19275       return true;
19276     }
19277     default:
19278       return false;
19279     }
19280   }
19281 
19282   if (!Subtarget->hasMVEIntegerOps())
19283     return false;
19284 
19285   auto IsFMSMul = [&](Instruction *I) {
19286     if (!I->hasOneUse())
19287       return false;
19288     auto *Sub = cast<Instruction>(*I->users().begin());
19289     return Sub->getOpcode() == Instruction::FSub && Sub->getOperand(1) == I;
19290   };
19291   auto IsFMS = [&](Instruction *I) {
19292     if (match(I->getOperand(0), m_FNeg(m_Value())) ||
19293         match(I->getOperand(1), m_FNeg(m_Value())))
19294       return true;
19295     return false;
19296   };
19297 
19298   auto IsSinker = [&](Instruction *I, int Operand) {
19299     switch (I->getOpcode()) {
19300     case Instruction::Add:
19301     case Instruction::Mul:
19302     case Instruction::FAdd:
19303     case Instruction::ICmp:
19304     case Instruction::FCmp:
19305       return true;
19306     case Instruction::FMul:
19307       return !IsFMSMul(I);
19308     case Instruction::Sub:
19309     case Instruction::FSub:
19310     case Instruction::Shl:
19311     case Instruction::LShr:
19312     case Instruction::AShr:
19313       return Operand == 1;
19314     case Instruction::Call:
19315       if (auto *II = dyn_cast<IntrinsicInst>(I)) {
19316         switch (II->getIntrinsicID()) {
19317         case Intrinsic::fma:
19318           return !IsFMS(I);
19319         case Intrinsic::sadd_sat:
19320         case Intrinsic::uadd_sat:
19321         case Intrinsic::arm_mve_add_predicated:
19322         case Intrinsic::arm_mve_mul_predicated:
19323         case Intrinsic::arm_mve_qadd_predicated:
19324         case Intrinsic::arm_mve_vhadd:
19325         case Intrinsic::arm_mve_hadd_predicated:
19326         case Intrinsic::arm_mve_vqdmull:
19327         case Intrinsic::arm_mve_vqdmull_predicated:
19328         case Intrinsic::arm_mve_vqdmulh:
19329         case Intrinsic::arm_mve_qdmulh_predicated:
19330         case Intrinsic::arm_mve_vqrdmulh:
19331         case Intrinsic::arm_mve_qrdmulh_predicated:
19332         case Intrinsic::arm_mve_fma_predicated:
19333           return true;
19334         case Intrinsic::ssub_sat:
19335         case Intrinsic::usub_sat:
19336         case Intrinsic::arm_mve_sub_predicated:
19337         case Intrinsic::arm_mve_qsub_predicated:
19338         case Intrinsic::arm_mve_hsub_predicated:
19339         case Intrinsic::arm_mve_vhsub:
19340           return Operand == 1;
19341         default:
19342           return false;
19343         }
19344       }
19345       return false;
19346     default:
19347       return false;
19348     }
19349   };
19350 
19351   for (auto OpIdx : enumerate(I->operands())) {
19352     Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get());
19353     // Make sure we are not already sinking this operand
19354     if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; }))
19355       continue;
19356 
19357     Instruction *Shuffle = Op;
19358     if (Shuffle->getOpcode() == Instruction::BitCast)
19359       Shuffle = dyn_cast<Instruction>(Shuffle->getOperand(0));
19360     // We are looking for a splat that can be sunk.
19361     if (!Shuffle ||
19362         !match(Shuffle, m_Shuffle(
19363                             m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()),
19364                             m_Undef(), m_ZeroMask())))
19365       continue;
19366     if (!IsSinker(I, OpIdx.index()))
19367       continue;
19368 
19369     // All uses of the shuffle should be sunk to avoid duplicating it across gpr
19370     // and vector registers
19371     for (Use &U : Op->uses()) {
19372       Instruction *Insn = cast<Instruction>(U.getUser());
19373       if (!IsSinker(Insn, U.getOperandNo()))
19374         return false;
19375     }
19376 
19377     Ops.push_back(&Shuffle->getOperandUse(0));
19378     if (Shuffle != Op)
19379       Ops.push_back(&Op->getOperandUse(0));
19380     Ops.push_back(&OpIdx.value());
19381   }
19382   return true;
19383 }
19384 
19385 Type *ARMTargetLowering::shouldConvertSplatType(ShuffleVectorInst *SVI) const {
19386   if (!Subtarget->hasMVEIntegerOps())
19387     return nullptr;
19388   Type *SVIType = SVI->getType();
19389   Type *ScalarType = SVIType->getScalarType();
19390 
19391   if (ScalarType->isFloatTy())
19392     return Type::getInt32Ty(SVIType->getContext());
19393   if (ScalarType->isHalfTy())
19394     return Type::getInt16Ty(SVIType->getContext());
19395   return nullptr;
19396 }
19397 
19398 bool ARMTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const {
19399   EVT VT = ExtVal.getValueType();
19400 
19401   if (!isTypeLegal(VT))
19402     return false;
19403 
19404   if (auto *Ld = dyn_cast<MaskedLoadSDNode>(ExtVal.getOperand(0))) {
19405     if (Ld->isExpandingLoad())
19406       return false;
19407   }
19408 
19409   if (Subtarget->hasMVEIntegerOps())
19410     return true;
19411 
19412   // Don't create a loadext if we can fold the extension into a wide/long
19413   // instruction.
19414   // If there's more than one user instruction, the loadext is desirable no
19415   // matter what.  There can be two uses by the same instruction.
19416   if (ExtVal->use_empty() ||
19417       !ExtVal->use_begin()->isOnlyUserOf(ExtVal.getNode()))
19418     return true;
19419 
19420   SDNode *U = *ExtVal->use_begin();
19421   if ((U->getOpcode() == ISD::ADD || U->getOpcode() == ISD::SUB ||
19422        U->getOpcode() == ISD::SHL || U->getOpcode() == ARMISD::VSHLIMM))
19423     return false;
19424 
19425   return true;
19426 }
19427 
19428 bool ARMTargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const {
19429   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
19430     return false;
19431 
19432   if (!isTypeLegal(EVT::getEVT(Ty1)))
19433     return false;
19434 
19435   assert(Ty1->getPrimitiveSizeInBits() <= 64 && "i128 is probably not a noop");
19436 
19437   // Assuming the caller doesn't have a zeroext or signext return parameter,
19438   // truncation all the way down to i1 is valid.
19439   return true;
19440 }
19441 
19442 /// isFMAFasterThanFMulAndFAdd - Return true if an FMA operation is faster
19443 /// than a pair of fmul and fadd instructions. fmuladd intrinsics will be
19444 /// expanded to FMAs when this method returns true, otherwise fmuladd is
19445 /// expanded to fmul + fadd.
19446 ///
19447 /// ARM supports both fused and unfused multiply-add operations; we already
19448 /// lower a pair of fmul and fadd to the latter so it's not clear that there
19449 /// would be a gain or that the gain would be worthwhile enough to risk
19450 /// correctness bugs.
19451 ///
19452 /// For MVE, we set this to true as it helps simplify the need for some
19453 /// patterns (and we don't have the non-fused floating point instruction).
19454 bool ARMTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
19455                                                    EVT VT) const {
19456   if (!VT.isSimple())
19457     return false;
19458 
19459   switch (VT.getSimpleVT().SimpleTy) {
19460   case MVT::v4f32:
19461   case MVT::v8f16:
19462     return Subtarget->hasMVEFloatOps();
19463   case MVT::f16:
19464     return Subtarget->useFPVFMx16();
19465   case MVT::f32:
19466     return Subtarget->useFPVFMx();
19467   case MVT::f64:
19468     return Subtarget->useFPVFMx64();
19469   default:
19470     break;
19471   }
19472 
19473   return false;
19474 }
19475 
19476 static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
19477   if (V < 0)
19478     return false;
19479 
19480   unsigned Scale = 1;
19481   switch (VT.getSimpleVT().SimpleTy) {
19482   case MVT::i1:
19483   case MVT::i8:
19484     // Scale == 1;
19485     break;
19486   case MVT::i16:
19487     // Scale == 2;
19488     Scale = 2;
19489     break;
19490   default:
19491     // On thumb1 we load most things (i32, i64, floats, etc) with a LDR
19492     // Scale == 4;
19493     Scale = 4;
19494     break;
19495   }
19496 
19497   if ((V & (Scale - 1)) != 0)
19498     return false;
19499   return isUInt<5>(V / Scale);
19500 }
19501 
19502 static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
19503                                       const ARMSubtarget *Subtarget) {
19504   if (!VT.isInteger() && !VT.isFloatingPoint())
19505     return false;
19506   if (VT.isVector() && Subtarget->hasNEON())
19507     return false;
19508   if (VT.isVector() && VT.isFloatingPoint() && Subtarget->hasMVEIntegerOps() &&
19509       !Subtarget->hasMVEFloatOps())
19510     return false;
19511 
19512   bool IsNeg = false;
19513   if (V < 0) {
19514     IsNeg = true;
19515     V = -V;
19516   }
19517 
19518   unsigned NumBytes = std::max((unsigned)VT.getSizeInBits() / 8, 1U);
19519 
19520   // MVE: size * imm7
19521   if (VT.isVector() && Subtarget->hasMVEIntegerOps()) {
19522     switch (VT.getSimpleVT().getVectorElementType().SimpleTy) {
19523     case MVT::i32:
19524     case MVT::f32:
19525       return isShiftedUInt<7,2>(V);
19526     case MVT::i16:
19527     case MVT::f16:
19528       return isShiftedUInt<7,1>(V);
19529     case MVT::i8:
19530       return isUInt<7>(V);
19531     default:
19532       return false;
19533     }
19534   }
19535 
19536   // half VLDR: 2 * imm8
19537   if (VT.isFloatingPoint() && NumBytes == 2 && Subtarget->hasFPRegs16())
19538     return isShiftedUInt<8, 1>(V);
19539   // VLDR and LDRD: 4 * imm8
19540   if ((VT.isFloatingPoint() && Subtarget->hasVFP2Base()) || NumBytes == 8)
19541     return isShiftedUInt<8, 2>(V);
19542 
19543   if (NumBytes == 1 || NumBytes == 2 || NumBytes == 4) {
19544     // + imm12 or - imm8
19545     if (IsNeg)
19546       return isUInt<8>(V);
19547     return isUInt<12>(V);
19548   }
19549 
19550   return false;
19551 }
19552 
19553 /// isLegalAddressImmediate - Return true if the integer value can be used
19554 /// as the offset of the target addressing mode for load / store of the
19555 /// given type.
19556 static bool isLegalAddressImmediate(int64_t V, EVT VT,
19557                                     const ARMSubtarget *Subtarget) {
19558   if (V == 0)
19559     return true;
19560 
19561   if (!VT.isSimple())
19562     return false;
19563 
19564   if (Subtarget->isThumb1Only())
19565     return isLegalT1AddressImmediate(V, VT);
19566   else if (Subtarget->isThumb2())
19567     return isLegalT2AddressImmediate(V, VT, Subtarget);
19568 
19569   // ARM mode.
19570   if (V < 0)
19571     V = - V;
19572   switch (VT.getSimpleVT().SimpleTy) {
19573   default: return false;
19574   case MVT::i1:
19575   case MVT::i8:
19576   case MVT::i32:
19577     // +- imm12
19578     return isUInt<12>(V);
19579   case MVT::i16:
19580     // +- imm8
19581     return isUInt<8>(V);
19582   case MVT::f32:
19583   case MVT::f64:
19584     if (!Subtarget->hasVFP2Base()) // FIXME: NEON?
19585       return false;
19586     return isShiftedUInt<8, 2>(V);
19587   }
19588 }
19589 
19590 bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
19591                                                       EVT VT) const {
19592   int Scale = AM.Scale;
19593   if (Scale < 0)
19594     return false;
19595 
19596   switch (VT.getSimpleVT().SimpleTy) {
19597   default: return false;
19598   case MVT::i1:
19599   case MVT::i8:
19600   case MVT::i16:
19601   case MVT::i32:
19602     if (Scale == 1)
19603       return true;
19604     // r + r << imm
19605     Scale = Scale & ~1;
19606     return Scale == 2 || Scale == 4 || Scale == 8;
19607   case MVT::i64:
19608     // FIXME: What are we trying to model here? ldrd doesn't have an r + r
19609     // version in Thumb mode.
19610     // r + r
19611     if (Scale == 1)
19612       return true;
19613     // r * 2 (this can be lowered to r + r).
19614     if (!AM.HasBaseReg && Scale == 2)
19615       return true;
19616     return false;
19617   case MVT::isVoid:
19618     // Note, we allow "void" uses (basically, uses that aren't loads or
19619     // stores), because arm allows folding a scale into many arithmetic
19620     // operations.  This should be made more precise and revisited later.
19621 
19622     // Allow r << imm, but the imm has to be a multiple of two.
19623     if (Scale & 1) return false;
19624     return isPowerOf2_32(Scale);
19625   }
19626 }
19627 
19628 bool ARMTargetLowering::isLegalT1ScaledAddressingMode(const AddrMode &AM,
19629                                                       EVT VT) const {
19630   const int Scale = AM.Scale;
19631 
19632   // Negative scales are not supported in Thumb1.
19633   if (Scale < 0)
19634     return false;
19635 
19636   // Thumb1 addressing modes do not support register scaling excepting the
19637   // following cases:
19638   // 1. Scale == 1 means no scaling.
19639   // 2. Scale == 2 this can be lowered to r + r if there is no base register.
19640   return (Scale == 1) || (!AM.HasBaseReg && Scale == 2);
19641 }
19642 
19643 /// isLegalAddressingMode - Return true if the addressing mode represented
19644 /// by AM is legal for this target, for a load/store of the specified type.
19645 bool ARMTargetLowering::isLegalAddressingMode(const DataLayout &DL,
19646                                               const AddrMode &AM, Type *Ty,
19647                                               unsigned AS, Instruction *I) const {
19648   EVT VT = getValueType(DL, Ty, true);
19649   if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
19650     return false;
19651 
19652   // Can never fold addr of global into load/store.
19653   if (AM.BaseGV)
19654     return false;
19655 
19656   switch (AM.Scale) {
19657   case 0:  // no scale reg, must be "r+i" or "r", or "i".
19658     break;
19659   default:
19660     // ARM doesn't support any R+R*scale+imm addr modes.
19661     if (AM.BaseOffs)
19662       return false;
19663 
19664     if (!VT.isSimple())
19665       return false;
19666 
19667     if (Subtarget->isThumb1Only())
19668       return isLegalT1ScaledAddressingMode(AM, VT);
19669 
19670     if (Subtarget->isThumb2())
19671       return isLegalT2ScaledAddressingMode(AM, VT);
19672 
19673     int Scale = AM.Scale;
19674     switch (VT.getSimpleVT().SimpleTy) {
19675     default: return false;
19676     case MVT::i1:
19677     case MVT::i8:
19678     case MVT::i32:
19679       if (Scale < 0) Scale = -Scale;
19680       if (Scale == 1)
19681         return true;
19682       // r + r << imm
19683       return isPowerOf2_32(Scale & ~1);
19684     case MVT::i16:
19685     case MVT::i64:
19686       // r +/- r
19687       if (Scale == 1 || (AM.HasBaseReg && Scale == -1))
19688         return true;
19689       // r * 2 (this can be lowered to r + r).
19690       if (!AM.HasBaseReg && Scale == 2)
19691         return true;
19692       return false;
19693 
19694     case MVT::isVoid:
19695       // Note, we allow "void" uses (basically, uses that aren't loads or
19696       // stores), because arm allows folding a scale into many arithmetic
19697       // operations.  This should be made more precise and revisited later.
19698 
19699       // Allow r << imm, but the imm has to be a multiple of two.
19700       if (Scale & 1) return false;
19701       return isPowerOf2_32(Scale);
19702     }
19703   }
19704   return true;
19705 }
19706 
19707 /// isLegalICmpImmediate - Return true if the specified immediate is legal
19708 /// icmp immediate, that is the target has icmp instructions which can compare
19709 /// a register against the immediate without having to materialize the
19710 /// immediate into a register.
19711 bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
19712   // Thumb2 and ARM modes can use cmn for negative immediates.
19713   if (!Subtarget->isThumb())
19714     return ARM_AM::getSOImmVal((uint32_t)Imm) != -1 ||
19715            ARM_AM::getSOImmVal(-(uint32_t)Imm) != -1;
19716   if (Subtarget->isThumb2())
19717     return ARM_AM::getT2SOImmVal((uint32_t)Imm) != -1 ||
19718            ARM_AM::getT2SOImmVal(-(uint32_t)Imm) != -1;
19719   // Thumb1 doesn't have cmn, and only 8-bit immediates.
19720   return Imm >= 0 && Imm <= 255;
19721 }
19722 
19723 /// isLegalAddImmediate - Return true if the specified immediate is a legal add
19724 /// *or sub* immediate, that is the target has add or sub instructions which can
19725 /// add a register with the immediate without having to materialize the
19726 /// immediate into a register.
19727 bool ARMTargetLowering::isLegalAddImmediate(int64_t Imm) const {
19728   // Same encoding for add/sub, just flip the sign.
19729   int64_t AbsImm = std::abs(Imm);
19730   if (!Subtarget->isThumb())
19731     return ARM_AM::getSOImmVal(AbsImm) != -1;
19732   if (Subtarget->isThumb2())
19733     return ARM_AM::getT2SOImmVal(AbsImm) != -1;
19734   // Thumb1 only has 8-bit unsigned immediate.
19735   return AbsImm >= 0 && AbsImm <= 255;
19736 }
19737 
19738 // Return false to prevent folding
19739 // (mul (add r, c0), c1) -> (add (mul r, c1), c0*c1) in DAGCombine,
19740 // if the folding leads to worse code.
19741 bool ARMTargetLowering::isMulAddWithConstProfitable(SDValue AddNode,
19742                                                     SDValue ConstNode) const {
19743   // Let the DAGCombiner decide for vector types and large types.
19744   const EVT VT = AddNode.getValueType();
19745   if (VT.isVector() || VT.getScalarSizeInBits() > 32)
19746     return true;
19747 
19748   // It is worse if c0 is legal add immediate, while c1*c0 is not
19749   // and has to be composed by at least two instructions.
19750   const ConstantSDNode *C0Node = cast<ConstantSDNode>(AddNode.getOperand(1));
19751   const ConstantSDNode *C1Node = cast<ConstantSDNode>(ConstNode);
19752   const int64_t C0 = C0Node->getSExtValue();
19753   APInt CA = C0Node->getAPIntValue() * C1Node->getAPIntValue();
19754   if (!isLegalAddImmediate(C0) || isLegalAddImmediate(CA.getSExtValue()))
19755     return true;
19756   if (ConstantMaterializationCost((unsigned)CA.getZExtValue(), Subtarget) > 1)
19757     return false;
19758 
19759   // Default to true and let the DAGCombiner decide.
19760   return true;
19761 }
19762 
19763 static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
19764                                       bool isSEXTLoad, SDValue &Base,
19765                                       SDValue &Offset, bool &isInc,
19766                                       SelectionDAG &DAG) {
19767   if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
19768     return false;
19769 
19770   if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
19771     // AddressingMode 3
19772     Base = Ptr->getOperand(0);
19773     if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
19774       int RHSC = (int)RHS->getZExtValue();
19775       if (RHSC < 0 && RHSC > -256) {
19776         assert(Ptr->getOpcode() == ISD::ADD);
19777         isInc = false;
19778         Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
19779         return true;
19780       }
19781     }
19782     isInc = (Ptr->getOpcode() == ISD::ADD);
19783     Offset = Ptr->getOperand(1);
19784     return true;
19785   } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
19786     // AddressingMode 2
19787     if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
19788       int RHSC = (int)RHS->getZExtValue();
19789       if (RHSC < 0 && RHSC > -0x1000) {
19790         assert(Ptr->getOpcode() == ISD::ADD);
19791         isInc = false;
19792         Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
19793         Base = Ptr->getOperand(0);
19794         return true;
19795       }
19796     }
19797 
19798     if (Ptr->getOpcode() == ISD::ADD) {
19799       isInc = true;
19800       ARM_AM::ShiftOpc ShOpcVal=
19801         ARM_AM::getShiftOpcForNode(Ptr->getOperand(0).getOpcode());
19802       if (ShOpcVal != ARM_AM::no_shift) {
19803         Base = Ptr->getOperand(1);
19804         Offset = Ptr->getOperand(0);
19805       } else {
19806         Base = Ptr->getOperand(0);
19807         Offset = Ptr->getOperand(1);
19808       }
19809       return true;
19810     }
19811 
19812     isInc = (Ptr->getOpcode() == ISD::ADD);
19813     Base = Ptr->getOperand(0);
19814     Offset = Ptr->getOperand(1);
19815     return true;
19816   }
19817 
19818   // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
19819   return false;
19820 }
19821 
19822 static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
19823                                      bool isSEXTLoad, SDValue &Base,
19824                                      SDValue &Offset, bool &isInc,
19825                                      SelectionDAG &DAG) {
19826   if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
19827     return false;
19828 
19829   Base = Ptr->getOperand(0);
19830   if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
19831     int RHSC = (int)RHS->getZExtValue();
19832     if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
19833       assert(Ptr->getOpcode() == ISD::ADD);
19834       isInc = false;
19835       Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
19836       return true;
19837     } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
19838       isInc = Ptr->getOpcode() == ISD::ADD;
19839       Offset = DAG.getConstant(RHSC, SDLoc(Ptr), RHS->getValueType(0));
19840       return true;
19841     }
19842   }
19843 
19844   return false;
19845 }
19846 
19847 static bool getMVEIndexedAddressParts(SDNode *Ptr, EVT VT, Align Alignment,
19848                                       bool isSEXTLoad, bool IsMasked, bool isLE,
19849                                       SDValue &Base, SDValue &Offset,
19850                                       bool &isInc, SelectionDAG &DAG) {
19851   if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
19852     return false;
19853   if (!isa<ConstantSDNode>(Ptr->getOperand(1)))
19854     return false;
19855 
19856   // We allow LE non-masked loads to change the type (for example use a vldrb.8
19857   // as opposed to a vldrw.32). This can allow extra addressing modes or
19858   // alignments for what is otherwise an equivalent instruction.
19859   bool CanChangeType = isLE && !IsMasked;
19860 
19861   ConstantSDNode *RHS = cast<ConstantSDNode>(Ptr->getOperand(1));
19862   int RHSC = (int)RHS->getZExtValue();
19863 
19864   auto IsInRange = [&](int RHSC, int Limit, int Scale) {
19865     if (RHSC < 0 && RHSC > -Limit * Scale && RHSC % Scale == 0) {
19866       assert(Ptr->getOpcode() == ISD::ADD);
19867       isInc = false;
19868       Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
19869       return true;
19870     } else if (RHSC > 0 && RHSC < Limit * Scale && RHSC % Scale == 0) {
19871       isInc = Ptr->getOpcode() == ISD::ADD;
19872       Offset = DAG.getConstant(RHSC, SDLoc(Ptr), RHS->getValueType(0));
19873       return true;
19874     }
19875     return false;
19876   };
19877 
19878   // Try to find a matching instruction based on s/zext, Alignment, Offset and
19879   // (in BE/masked) type.
19880   Base = Ptr->getOperand(0);
19881   if (VT == MVT::v4i16) {
19882     if (Alignment >= 2 && IsInRange(RHSC, 0x80, 2))
19883       return true;
19884   } else if (VT == MVT::v4i8 || VT == MVT::v8i8) {
19885     if (IsInRange(RHSC, 0x80, 1))
19886       return true;
19887   } else if (Alignment >= 4 &&
19888              (CanChangeType || VT == MVT::v4i32 || VT == MVT::v4f32) &&
19889              IsInRange(RHSC, 0x80, 4))
19890     return true;
19891   else if (Alignment >= 2 &&
19892            (CanChangeType || VT == MVT::v8i16 || VT == MVT::v8f16) &&
19893            IsInRange(RHSC, 0x80, 2))
19894     return true;
19895   else if ((CanChangeType || VT == MVT::v16i8) && IsInRange(RHSC, 0x80, 1))
19896     return true;
19897   return false;
19898 }
19899 
19900 /// getPreIndexedAddressParts - returns true by value, base pointer and
19901 /// offset pointer and addressing mode by reference if the node's address
19902 /// can be legally represented as pre-indexed load / store address.
19903 bool
19904 ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
19905                                              SDValue &Offset,
19906                                              ISD::MemIndexedMode &AM,
19907                                              SelectionDAG &DAG) const {
19908   if (Subtarget->isThumb1Only())
19909     return false;
19910 
19911   EVT VT;
19912   SDValue Ptr;
19913   Align Alignment;
19914   bool isSEXTLoad = false;
19915   bool IsMasked = false;
19916   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
19917     Ptr = LD->getBasePtr();
19918     VT = LD->getMemoryVT();
19919     Alignment = LD->getAlign();
19920     isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
19921   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
19922     Ptr = ST->getBasePtr();
19923     VT = ST->getMemoryVT();
19924     Alignment = ST->getAlign();
19925   } else if (MaskedLoadSDNode *LD = dyn_cast<MaskedLoadSDNode>(N)) {
19926     Ptr = LD->getBasePtr();
19927     VT = LD->getMemoryVT();
19928     Alignment = LD->getAlign();
19929     isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
19930     IsMasked = true;
19931   } else if (MaskedStoreSDNode *ST = dyn_cast<MaskedStoreSDNode>(N)) {
19932     Ptr = ST->getBasePtr();
19933     VT = ST->getMemoryVT();
19934     Alignment = ST->getAlign();
19935     IsMasked = true;
19936   } else
19937     return false;
19938 
19939   bool isInc;
19940   bool isLegal = false;
19941   if (VT.isVector())
19942     isLegal = Subtarget->hasMVEIntegerOps() &&
19943               getMVEIndexedAddressParts(
19944                   Ptr.getNode(), VT, Alignment, isSEXTLoad, IsMasked,
19945                   Subtarget->isLittle(), Base, Offset, isInc, DAG);
19946   else {
19947     if (Subtarget->isThumb2())
19948       isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
19949                                          Offset, isInc, DAG);
19950     else
19951       isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
19952                                           Offset, isInc, DAG);
19953   }
19954   if (!isLegal)
19955     return false;
19956 
19957   AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
19958   return true;
19959 }
19960 
19961 /// getPostIndexedAddressParts - returns true by value, base pointer and
19962 /// offset pointer and addressing mode by reference if this node can be
19963 /// combined with a load / store to form a post-indexed load / store.
19964 bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
19965                                                    SDValue &Base,
19966                                                    SDValue &Offset,
19967                                                    ISD::MemIndexedMode &AM,
19968                                                    SelectionDAG &DAG) const {
19969   EVT VT;
19970   SDValue Ptr;
19971   Align Alignment;
19972   bool isSEXTLoad = false, isNonExt;
19973   bool IsMasked = false;
19974   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
19975     VT = LD->getMemoryVT();
19976     Ptr = LD->getBasePtr();
19977     Alignment = LD->getAlign();
19978     isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
19979     isNonExt = LD->getExtensionType() == ISD::NON_EXTLOAD;
19980   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
19981     VT = ST->getMemoryVT();
19982     Ptr = ST->getBasePtr();
19983     Alignment = ST->getAlign();
19984     isNonExt = !ST->isTruncatingStore();
19985   } else if (MaskedLoadSDNode *LD = dyn_cast<MaskedLoadSDNode>(N)) {
19986     VT = LD->getMemoryVT();
19987     Ptr = LD->getBasePtr();
19988     Alignment = LD->getAlign();
19989     isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
19990     isNonExt = LD->getExtensionType() == ISD::NON_EXTLOAD;
19991     IsMasked = true;
19992   } else if (MaskedStoreSDNode *ST = dyn_cast<MaskedStoreSDNode>(N)) {
19993     VT = ST->getMemoryVT();
19994     Ptr = ST->getBasePtr();
19995     Alignment = ST->getAlign();
19996     isNonExt = !ST->isTruncatingStore();
19997     IsMasked = true;
19998   } else
19999     return false;
20000 
20001   if (Subtarget->isThumb1Only()) {
20002     // Thumb-1 can do a limited post-inc load or store as an updating LDM. It
20003     // must be non-extending/truncating, i32, with an offset of 4.
20004     assert(Op->getValueType(0) == MVT::i32 && "Non-i32 post-inc op?!");
20005     if (Op->getOpcode() != ISD::ADD || !isNonExt)
20006       return false;
20007     auto *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1));
20008     if (!RHS || RHS->getZExtValue() != 4)
20009       return false;
20010     if (Alignment < Align(4))
20011       return false;
20012 
20013     Offset = Op->getOperand(1);
20014     Base = Op->getOperand(0);
20015     AM = ISD::POST_INC;
20016     return true;
20017   }
20018 
20019   bool isInc;
20020   bool isLegal = false;
20021   if (VT.isVector())
20022     isLegal = Subtarget->hasMVEIntegerOps() &&
20023               getMVEIndexedAddressParts(Op, VT, Alignment, isSEXTLoad, IsMasked,
20024                                         Subtarget->isLittle(), Base, Offset,
20025                                         isInc, DAG);
20026   else {
20027     if (Subtarget->isThumb2())
20028       isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
20029                                          isInc, DAG);
20030     else
20031       isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
20032                                           isInc, DAG);
20033   }
20034   if (!isLegal)
20035     return false;
20036 
20037   if (Ptr != Base) {
20038     // Swap base ptr and offset to catch more post-index load / store when
20039     // it's legal. In Thumb2 mode, offset must be an immediate.
20040     if (Ptr == Offset && Op->getOpcode() == ISD::ADD &&
20041         !Subtarget->isThumb2())
20042       std::swap(Base, Offset);
20043 
20044     // Post-indexed load / store update the base pointer.
20045     if (Ptr != Base)
20046       return false;
20047   }
20048 
20049   AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
20050   return true;
20051 }
20052 
20053 void ARMTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
20054                                                       KnownBits &Known,
20055                                                       const APInt &DemandedElts,
20056                                                       const SelectionDAG &DAG,
20057                                                       unsigned Depth) const {
20058   unsigned BitWidth = Known.getBitWidth();
20059   Known.resetAll();
20060   switch (Op.getOpcode()) {
20061   default: break;
20062   case ARMISD::ADDC:
20063   case ARMISD::ADDE:
20064   case ARMISD::SUBC:
20065   case ARMISD::SUBE:
20066     // Special cases when we convert a carry to a boolean.
20067     if (Op.getResNo() == 0) {
20068       SDValue LHS = Op.getOperand(0);
20069       SDValue RHS = Op.getOperand(1);
20070       // (ADDE 0, 0, C) will give us a single bit.
20071       if (Op->getOpcode() == ARMISD::ADDE && isNullConstant(LHS) &&
20072           isNullConstant(RHS)) {
20073         Known.Zero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
20074         return;
20075       }
20076     }
20077     break;
20078   case ARMISD::CMOV: {
20079     // Bits are known zero/one if known on the LHS and RHS.
20080     Known = DAG.computeKnownBits(Op.getOperand(0), Depth+1);
20081     if (Known.isUnknown())
20082       return;
20083 
20084     KnownBits KnownRHS = DAG.computeKnownBits(Op.getOperand(1), Depth+1);
20085     Known = Known.intersectWith(KnownRHS);
20086     return;
20087   }
20088   case ISD::INTRINSIC_W_CHAIN: {
20089     Intrinsic::ID IntID =
20090         static_cast<Intrinsic::ID>(Op->getConstantOperandVal(1));
20091     switch (IntID) {
20092     default: return;
20093     case Intrinsic::arm_ldaex:
20094     case Intrinsic::arm_ldrex: {
20095       EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT();
20096       unsigned MemBits = VT.getScalarSizeInBits();
20097       Known.Zero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
20098       return;
20099     }
20100     }
20101   }
20102   case ARMISD::BFI: {
20103     // Conservatively, we can recurse down the first operand
20104     // and just mask out all affected bits.
20105     Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
20106 
20107     // The operand to BFI is already a mask suitable for removing the bits it
20108     // sets.
20109     const APInt &Mask = Op.getConstantOperandAPInt(2);
20110     Known.Zero &= Mask;
20111     Known.One &= Mask;
20112     return;
20113   }
20114   case ARMISD::VGETLANEs:
20115   case ARMISD::VGETLANEu: {
20116     const SDValue &SrcSV = Op.getOperand(0);
20117     EVT VecVT = SrcSV.getValueType();
20118     assert(VecVT.isVector() && "VGETLANE expected a vector type");
20119     const unsigned NumSrcElts = VecVT.getVectorNumElements();
20120     ConstantSDNode *Pos = cast<ConstantSDNode>(Op.getOperand(1).getNode());
20121     assert(Pos->getAPIntValue().ult(NumSrcElts) &&
20122            "VGETLANE index out of bounds");
20123     unsigned Idx = Pos->getZExtValue();
20124     APInt DemandedElt = APInt::getOneBitSet(NumSrcElts, Idx);
20125     Known = DAG.computeKnownBits(SrcSV, DemandedElt, Depth + 1);
20126 
20127     EVT VT = Op.getValueType();
20128     const unsigned DstSz = VT.getScalarSizeInBits();
20129     const unsigned SrcSz = VecVT.getVectorElementType().getSizeInBits();
20130     (void)SrcSz;
20131     assert(SrcSz == Known.getBitWidth());
20132     assert(DstSz > SrcSz);
20133     if (Op.getOpcode() == ARMISD::VGETLANEs)
20134       Known = Known.sext(DstSz);
20135     else {
20136       Known = Known.zext(DstSz);
20137     }
20138     assert(DstSz == Known.getBitWidth());
20139     break;
20140   }
20141   case ARMISD::VMOVrh: {
20142     KnownBits KnownOp = DAG.computeKnownBits(Op->getOperand(0), Depth + 1);
20143     assert(KnownOp.getBitWidth() == 16);
20144     Known = KnownOp.zext(32);
20145     break;
20146   }
20147   case ARMISD::CSINC:
20148   case ARMISD::CSINV:
20149   case ARMISD::CSNEG: {
20150     KnownBits KnownOp0 = DAG.computeKnownBits(Op->getOperand(0), Depth + 1);
20151     KnownBits KnownOp1 = DAG.computeKnownBits(Op->getOperand(1), Depth + 1);
20152 
20153     // The result is either:
20154     // CSINC: KnownOp0 or KnownOp1 + 1
20155     // CSINV: KnownOp0 or ~KnownOp1
20156     // CSNEG: KnownOp0 or KnownOp1 * -1
20157     if (Op.getOpcode() == ARMISD::CSINC)
20158       KnownOp1 = KnownBits::computeForAddSub(
20159           true, false, KnownOp1, KnownBits::makeConstant(APInt(32, 1)));
20160     else if (Op.getOpcode() == ARMISD::CSINV)
20161       std::swap(KnownOp1.Zero, KnownOp1.One);
20162     else if (Op.getOpcode() == ARMISD::CSNEG)
20163       KnownOp1 = KnownBits::mul(
20164           KnownOp1, KnownBits::makeConstant(APInt(32, -1)));
20165 
20166     Known = KnownOp0.intersectWith(KnownOp1);
20167     break;
20168   }
20169   }
20170 }
20171 
20172 bool ARMTargetLowering::targetShrinkDemandedConstant(
20173     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
20174     TargetLoweringOpt &TLO) const {
20175   // Delay optimization, so we don't have to deal with illegal types, or block
20176   // optimizations.
20177   if (!TLO.LegalOps)
20178     return false;
20179 
20180   // Only optimize AND for now.
20181   if (Op.getOpcode() != ISD::AND)
20182     return false;
20183 
20184   EVT VT = Op.getValueType();
20185 
20186   // Ignore vectors.
20187   if (VT.isVector())
20188     return false;
20189 
20190   assert(VT == MVT::i32 && "Unexpected integer type");
20191 
20192   // Make sure the RHS really is a constant.
20193   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
20194   if (!C)
20195     return false;
20196 
20197   unsigned Mask = C->getZExtValue();
20198 
20199   unsigned Demanded = DemandedBits.getZExtValue();
20200   unsigned ShrunkMask = Mask & Demanded;
20201   unsigned ExpandedMask = Mask | ~Demanded;
20202 
20203   // If the mask is all zeros, let the target-independent code replace the
20204   // result with zero.
20205   if (ShrunkMask == 0)
20206     return false;
20207 
20208   // If the mask is all ones, erase the AND. (Currently, the target-independent
20209   // code won't do this, so we have to do it explicitly to avoid an infinite
20210   // loop in obscure cases.)
20211   if (ExpandedMask == ~0U)
20212     return TLO.CombineTo(Op, Op.getOperand(0));
20213 
20214   auto IsLegalMask = [ShrunkMask, ExpandedMask](unsigned Mask) -> bool {
20215     return (ShrunkMask & Mask) == ShrunkMask && (~ExpandedMask & Mask) == 0;
20216   };
20217   auto UseMask = [Mask, Op, VT, &TLO](unsigned NewMask) -> bool {
20218     if (NewMask == Mask)
20219       return true;
20220     SDLoc DL(Op);
20221     SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT);
20222     SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC);
20223     return TLO.CombineTo(Op, NewOp);
20224   };
20225 
20226   // Prefer uxtb mask.
20227   if (IsLegalMask(0xFF))
20228     return UseMask(0xFF);
20229 
20230   // Prefer uxth mask.
20231   if (IsLegalMask(0xFFFF))
20232     return UseMask(0xFFFF);
20233 
20234   // [1, 255] is Thumb1 movs+ands, legal immediate for ARM/Thumb2.
20235   // FIXME: Prefer a contiguous sequence of bits for other optimizations.
20236   if (ShrunkMask < 256)
20237     return UseMask(ShrunkMask);
20238 
20239   // [-256, -2] is Thumb1 movs+bics, legal immediate for ARM/Thumb2.
20240   // FIXME: Prefer a contiguous sequence of bits for other optimizations.
20241   if ((int)ExpandedMask <= -2 && (int)ExpandedMask >= -256)
20242     return UseMask(ExpandedMask);
20243 
20244   // Potential improvements:
20245   //
20246   // We could try to recognize lsls+lsrs or lsrs+lsls pairs here.
20247   // We could try to prefer Thumb1 immediates which can be lowered to a
20248   // two-instruction sequence.
20249   // We could try to recognize more legal ARM/Thumb2 immediates here.
20250 
20251   return false;
20252 }
20253 
20254 bool ARMTargetLowering::SimplifyDemandedBitsForTargetNode(
20255     SDValue Op, const APInt &OriginalDemandedBits,
20256     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
20257     unsigned Depth) const {
20258   unsigned Opc = Op.getOpcode();
20259 
20260   switch (Opc) {
20261   case ARMISD::ASRL:
20262   case ARMISD::LSRL: {
20263     // If this is result 0 and the other result is unused, see if the demand
20264     // bits allow us to shrink this long shift into a standard small shift in
20265     // the opposite direction.
20266     if (Op.getResNo() == 0 && !Op->hasAnyUseOfValue(1) &&
20267         isa<ConstantSDNode>(Op->getOperand(2))) {
20268       unsigned ShAmt = Op->getConstantOperandVal(2);
20269       if (ShAmt < 32 && OriginalDemandedBits.isSubsetOf(APInt::getAllOnes(32)
20270                                                         << (32 - ShAmt)))
20271         return TLO.CombineTo(
20272             Op, TLO.DAG.getNode(
20273                     ISD::SHL, SDLoc(Op), MVT::i32, Op.getOperand(1),
20274                     TLO.DAG.getConstant(32 - ShAmt, SDLoc(Op), MVT::i32)));
20275     }
20276     break;
20277   }
20278   case ARMISD::VBICIMM: {
20279     SDValue Op0 = Op.getOperand(0);
20280     unsigned ModImm = Op.getConstantOperandVal(1);
20281     unsigned EltBits = 0;
20282     uint64_t Mask = ARM_AM::decodeVMOVModImm(ModImm, EltBits);
20283     if ((OriginalDemandedBits & Mask) == 0)
20284       return TLO.CombineTo(Op, Op0);
20285   }
20286   }
20287 
20288   return TargetLowering::SimplifyDemandedBitsForTargetNode(
20289       Op, OriginalDemandedBits, OriginalDemandedElts, Known, TLO, Depth);
20290 }
20291 
20292 //===----------------------------------------------------------------------===//
20293 //                           ARM Inline Assembly Support
20294 //===----------------------------------------------------------------------===//
20295 
20296 bool ARMTargetLowering::ExpandInlineAsm(CallInst *CI) const {
20297   // Looking for "rev" which is V6+.
20298   if (!Subtarget->hasV6Ops())
20299     return false;
20300 
20301   InlineAsm *IA = cast<InlineAsm>(CI->getCalledOperand());
20302   StringRef AsmStr = IA->getAsmString();
20303   SmallVector<StringRef, 4> AsmPieces;
20304   SplitString(AsmStr, AsmPieces, ";\n");
20305 
20306   switch (AsmPieces.size()) {
20307   default: return false;
20308   case 1:
20309     AsmStr = AsmPieces[0];
20310     AsmPieces.clear();
20311     SplitString(AsmStr, AsmPieces, " \t,");
20312 
20313     // rev $0, $1
20314     if (AsmPieces.size() == 3 &&
20315         AsmPieces[0] == "rev" && AsmPieces[1] == "$0" && AsmPieces[2] == "$1" &&
20316         IA->getConstraintString().compare(0, 4, "=l,l") == 0) {
20317       IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
20318       if (Ty && Ty->getBitWidth() == 32)
20319         return IntrinsicLowering::LowerToByteSwap(CI);
20320     }
20321     break;
20322   }
20323 
20324   return false;
20325 }
20326 
20327 const char *ARMTargetLowering::LowerXConstraint(EVT ConstraintVT) const {
20328   // At this point, we have to lower this constraint to something else, so we
20329   // lower it to an "r" or "w". However, by doing this we will force the result
20330   // to be in register, while the X constraint is much more permissive.
20331   //
20332   // Although we are correct (we are free to emit anything, without
20333   // constraints), we might break use cases that would expect us to be more
20334   // efficient and emit something else.
20335   if (!Subtarget->hasVFP2Base())
20336     return "r";
20337   if (ConstraintVT.isFloatingPoint())
20338     return "w";
20339   if (ConstraintVT.isVector() && Subtarget->hasNEON() &&
20340      (ConstraintVT.getSizeInBits() == 64 ||
20341       ConstraintVT.getSizeInBits() == 128))
20342     return "w";
20343 
20344   return "r";
20345 }
20346 
20347 /// getConstraintType - Given a constraint letter, return the type of
20348 /// constraint it is for this target.
20349 ARMTargetLowering::ConstraintType
20350 ARMTargetLowering::getConstraintType(StringRef Constraint) const {
20351   unsigned S = Constraint.size();
20352   if (S == 1) {
20353     switch (Constraint[0]) {
20354     default:  break;
20355     case 'l': return C_RegisterClass;
20356     case 'w': return C_RegisterClass;
20357     case 'h': return C_RegisterClass;
20358     case 'x': return C_RegisterClass;
20359     case 't': return C_RegisterClass;
20360     case 'j': return C_Immediate; // Constant for movw.
20361     // An address with a single base register. Due to the way we
20362     // currently handle addresses it is the same as an 'r' memory constraint.
20363     case 'Q': return C_Memory;
20364     }
20365   } else if (S == 2) {
20366     switch (Constraint[0]) {
20367     default: break;
20368     case 'T': return C_RegisterClass;
20369     // All 'U+' constraints are addresses.
20370     case 'U': return C_Memory;
20371     }
20372   }
20373   return TargetLowering::getConstraintType(Constraint);
20374 }
20375 
20376 /// Examine constraint type and operand type and determine a weight value.
20377 /// This object must already have been set up with the operand type
20378 /// and the current alternative constraint selected.
20379 TargetLowering::ConstraintWeight
20380 ARMTargetLowering::getSingleConstraintMatchWeight(
20381     AsmOperandInfo &info, const char *constraint) const {
20382   ConstraintWeight weight = CW_Invalid;
20383   Value *CallOperandVal = info.CallOperandVal;
20384     // If we don't have a value, we can't do a match,
20385     // but allow it at the lowest weight.
20386   if (!CallOperandVal)
20387     return CW_Default;
20388   Type *type = CallOperandVal->getType();
20389   // Look at the constraint type.
20390   switch (*constraint) {
20391   default:
20392     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
20393     break;
20394   case 'l':
20395     if (type->isIntegerTy()) {
20396       if (Subtarget->isThumb())
20397         weight = CW_SpecificReg;
20398       else
20399         weight = CW_Register;
20400     }
20401     break;
20402   case 'w':
20403     if (type->isFloatingPointTy())
20404       weight = CW_Register;
20405     break;
20406   }
20407   return weight;
20408 }
20409 
20410 using RCPair = std::pair<unsigned, const TargetRegisterClass *>;
20411 
20412 RCPair ARMTargetLowering::getRegForInlineAsmConstraint(
20413     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
20414   switch (Constraint.size()) {
20415   case 1:
20416     // GCC ARM Constraint Letters
20417     switch (Constraint[0]) {
20418     case 'l': // Low regs or general regs.
20419       if (Subtarget->isThumb())
20420         return RCPair(0U, &ARM::tGPRRegClass);
20421       return RCPair(0U, &ARM::GPRRegClass);
20422     case 'h': // High regs or no regs.
20423       if (Subtarget->isThumb())
20424         return RCPair(0U, &ARM::hGPRRegClass);
20425       break;
20426     case 'r':
20427       if (Subtarget->isThumb1Only())
20428         return RCPair(0U, &ARM::tGPRRegClass);
20429       return RCPair(0U, &ARM::GPRRegClass);
20430     case 'w':
20431       if (VT == MVT::Other)
20432         break;
20433       if (VT == MVT::f32 || VT == MVT::f16 || VT == MVT::bf16)
20434         return RCPair(0U, &ARM::SPRRegClass);
20435       if (VT.getSizeInBits() == 64)
20436         return RCPair(0U, &ARM::DPRRegClass);
20437       if (VT.getSizeInBits() == 128)
20438         return RCPair(0U, &ARM::QPRRegClass);
20439       break;
20440     case 'x':
20441       if (VT == MVT::Other)
20442         break;
20443       if (VT == MVT::f32 || VT == MVT::f16 || VT == MVT::bf16)
20444         return RCPair(0U, &ARM::SPR_8RegClass);
20445       if (VT.getSizeInBits() == 64)
20446         return RCPair(0U, &ARM::DPR_8RegClass);
20447       if (VT.getSizeInBits() == 128)
20448         return RCPair(0U, &ARM::QPR_8RegClass);
20449       break;
20450     case 't':
20451       if (VT == MVT::Other)
20452         break;
20453       if (VT == MVT::f32 || VT == MVT::i32 || VT == MVT::f16 || VT == MVT::bf16)
20454         return RCPair(0U, &ARM::SPRRegClass);
20455       if (VT.getSizeInBits() == 64)
20456         return RCPair(0U, &ARM::DPR_VFP2RegClass);
20457       if (VT.getSizeInBits() == 128)
20458         return RCPair(0U, &ARM::QPR_VFP2RegClass);
20459       break;
20460     }
20461     break;
20462 
20463   case 2:
20464     if (Constraint[0] == 'T') {
20465       switch (Constraint[1]) {
20466       default:
20467         break;
20468       case 'e':
20469         return RCPair(0U, &ARM::tGPREvenRegClass);
20470       case 'o':
20471         return RCPair(0U, &ARM::tGPROddRegClass);
20472       }
20473     }
20474     break;
20475 
20476   default:
20477     break;
20478   }
20479 
20480   if (StringRef("{cc}").equals_insensitive(Constraint))
20481     return std::make_pair(unsigned(ARM::CPSR), &ARM::CCRRegClass);
20482 
20483   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
20484 }
20485 
20486 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
20487 /// vector.  If it is invalid, don't add anything to Ops.
20488 void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
20489                                                      StringRef Constraint,
20490                                                      std::vector<SDValue> &Ops,
20491                                                      SelectionDAG &DAG) const {
20492   SDValue Result;
20493 
20494   // Currently only support length 1 constraints.
20495   if (Constraint.size() != 1)
20496     return;
20497 
20498   char ConstraintLetter = Constraint[0];
20499   switch (ConstraintLetter) {
20500   default: break;
20501   case 'j':
20502   case 'I': case 'J': case 'K': case 'L':
20503   case 'M': case 'N': case 'O':
20504     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
20505     if (!C)
20506       return;
20507 
20508     int64_t CVal64 = C->getSExtValue();
20509     int CVal = (int) CVal64;
20510     // None of these constraints allow values larger than 32 bits.  Check
20511     // that the value fits in an int.
20512     if (CVal != CVal64)
20513       return;
20514 
20515     switch (ConstraintLetter) {
20516       case 'j':
20517         // Constant suitable for movw, must be between 0 and
20518         // 65535.
20519         if (Subtarget->hasV6T2Ops() || (Subtarget->hasV8MBaselineOps()))
20520           if (CVal >= 0 && CVal <= 65535)
20521             break;
20522         return;
20523       case 'I':
20524         if (Subtarget->isThumb1Only()) {
20525           // This must be a constant between 0 and 255, for ADD
20526           // immediates.
20527           if (CVal >= 0 && CVal <= 255)
20528             break;
20529         } else if (Subtarget->isThumb2()) {
20530           // A constant that can be used as an immediate value in a
20531           // data-processing instruction.
20532           if (ARM_AM::getT2SOImmVal(CVal) != -1)
20533             break;
20534         } else {
20535           // A constant that can be used as an immediate value in a
20536           // data-processing instruction.
20537           if (ARM_AM::getSOImmVal(CVal) != -1)
20538             break;
20539         }
20540         return;
20541 
20542       case 'J':
20543         if (Subtarget->isThumb1Only()) {
20544           // This must be a constant between -255 and -1, for negated ADD
20545           // immediates. This can be used in GCC with an "n" modifier that
20546           // prints the negated value, for use with SUB instructions. It is
20547           // not useful otherwise but is implemented for compatibility.
20548           if (CVal >= -255 && CVal <= -1)
20549             break;
20550         } else {
20551           // This must be a constant between -4095 and 4095. It is not clear
20552           // what this constraint is intended for. Implemented for
20553           // compatibility with GCC.
20554           if (CVal >= -4095 && CVal <= 4095)
20555             break;
20556         }
20557         return;
20558 
20559       case 'K':
20560         if (Subtarget->isThumb1Only()) {
20561           // A 32-bit value where only one byte has a nonzero value. Exclude
20562           // zero to match GCC. This constraint is used by GCC internally for
20563           // constants that can be loaded with a move/shift combination.
20564           // It is not useful otherwise but is implemented for compatibility.
20565           if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
20566             break;
20567         } else if (Subtarget->isThumb2()) {
20568           // A constant whose bitwise inverse can be used as an immediate
20569           // value in a data-processing instruction. This can be used in GCC
20570           // with a "B" modifier that prints the inverted value, for use with
20571           // BIC and MVN instructions. It is not useful otherwise but is
20572           // implemented for compatibility.
20573           if (ARM_AM::getT2SOImmVal(~CVal) != -1)
20574             break;
20575         } else {
20576           // A constant whose bitwise inverse can be used as an immediate
20577           // value in a data-processing instruction. This can be used in GCC
20578           // with a "B" modifier that prints the inverted value, for use with
20579           // BIC and MVN instructions. It is not useful otherwise but is
20580           // implemented for compatibility.
20581           if (ARM_AM::getSOImmVal(~CVal) != -1)
20582             break;
20583         }
20584         return;
20585 
20586       case 'L':
20587         if (Subtarget->isThumb1Only()) {
20588           // This must be a constant between -7 and 7,
20589           // for 3-operand ADD/SUB immediate instructions.
20590           if (CVal >= -7 && CVal < 7)
20591             break;
20592         } else if (Subtarget->isThumb2()) {
20593           // A constant whose negation can be used as an immediate value in a
20594           // data-processing instruction. This can be used in GCC with an "n"
20595           // modifier that prints the negated value, for use with SUB
20596           // instructions. It is not useful otherwise but is implemented for
20597           // compatibility.
20598           if (ARM_AM::getT2SOImmVal(-CVal) != -1)
20599             break;
20600         } else {
20601           // A constant whose negation can be used as an immediate value in a
20602           // data-processing instruction. This can be used in GCC with an "n"
20603           // modifier that prints the negated value, for use with SUB
20604           // instructions. It is not useful otherwise but is implemented for
20605           // compatibility.
20606           if (ARM_AM::getSOImmVal(-CVal) != -1)
20607             break;
20608         }
20609         return;
20610 
20611       case 'M':
20612         if (Subtarget->isThumb1Only()) {
20613           // This must be a multiple of 4 between 0 and 1020, for
20614           // ADD sp + immediate.
20615           if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
20616             break;
20617         } else {
20618           // A power of two or a constant between 0 and 32.  This is used in
20619           // GCC for the shift amount on shifted register operands, but it is
20620           // useful in general for any shift amounts.
20621           if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
20622             break;
20623         }
20624         return;
20625 
20626       case 'N':
20627         if (Subtarget->isThumb1Only()) {
20628           // This must be a constant between 0 and 31, for shift amounts.
20629           if (CVal >= 0 && CVal <= 31)
20630             break;
20631         }
20632         return;
20633 
20634       case 'O':
20635         if (Subtarget->isThumb1Only()) {
20636           // This must be a multiple of 4 between -508 and 508, for
20637           // ADD/SUB sp = sp + immediate.
20638           if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
20639             break;
20640         }
20641         return;
20642     }
20643     Result = DAG.getTargetConstant(CVal, SDLoc(Op), Op.getValueType());
20644     break;
20645   }
20646 
20647   if (Result.getNode()) {
20648     Ops.push_back(Result);
20649     return;
20650   }
20651   return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
20652 }
20653 
20654 static RTLIB::Libcall getDivRemLibcall(
20655     const SDNode *N, MVT::SimpleValueType SVT) {
20656   assert((N->getOpcode() == ISD::SDIVREM || N->getOpcode() == ISD::UDIVREM ||
20657           N->getOpcode() == ISD::SREM    || N->getOpcode() == ISD::UREM) &&
20658          "Unhandled Opcode in getDivRemLibcall");
20659   bool isSigned = N->getOpcode() == ISD::SDIVREM ||
20660                   N->getOpcode() == ISD::SREM;
20661   RTLIB::Libcall LC;
20662   switch (SVT) {
20663   default: llvm_unreachable("Unexpected request for libcall!");
20664   case MVT::i8:  LC = isSigned ? RTLIB::SDIVREM_I8  : RTLIB::UDIVREM_I8;  break;
20665   case MVT::i16: LC = isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
20666   case MVT::i32: LC = isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
20667   case MVT::i64: LC = isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
20668   }
20669   return LC;
20670 }
20671 
20672 static TargetLowering::ArgListTy getDivRemArgList(
20673     const SDNode *N, LLVMContext *Context, const ARMSubtarget *Subtarget) {
20674   assert((N->getOpcode() == ISD::SDIVREM || N->getOpcode() == ISD::UDIVREM ||
20675           N->getOpcode() == ISD::SREM    || N->getOpcode() == ISD::UREM) &&
20676          "Unhandled Opcode in getDivRemArgList");
20677   bool isSigned = N->getOpcode() == ISD::SDIVREM ||
20678                   N->getOpcode() == ISD::SREM;
20679   TargetLowering::ArgListTy Args;
20680   TargetLowering::ArgListEntry Entry;
20681   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
20682     EVT ArgVT = N->getOperand(i).getValueType();
20683     Type *ArgTy = ArgVT.getTypeForEVT(*Context);
20684     Entry.Node = N->getOperand(i);
20685     Entry.Ty = ArgTy;
20686     Entry.IsSExt = isSigned;
20687     Entry.IsZExt = !isSigned;
20688     Args.push_back(Entry);
20689   }
20690   if (Subtarget->isTargetWindows() && Args.size() >= 2)
20691     std::swap(Args[0], Args[1]);
20692   return Args;
20693 }
20694 
20695 SDValue ARMTargetLowering::LowerDivRem(SDValue Op, SelectionDAG &DAG) const {
20696   assert((Subtarget->isTargetAEABI() || Subtarget->isTargetAndroid() ||
20697           Subtarget->isTargetGNUAEABI() || Subtarget->isTargetMuslAEABI() ||
20698           Subtarget->isTargetWindows()) &&
20699          "Register-based DivRem lowering only");
20700   unsigned Opcode = Op->getOpcode();
20701   assert((Opcode == ISD::SDIVREM || Opcode == ISD::UDIVREM) &&
20702          "Invalid opcode for Div/Rem lowering");
20703   bool isSigned = (Opcode == ISD::SDIVREM);
20704   EVT VT = Op->getValueType(0);
20705   SDLoc dl(Op);
20706 
20707   if (VT == MVT::i64 && isa<ConstantSDNode>(Op.getOperand(1))) {
20708     SmallVector<SDValue> Result;
20709     if (expandDIVREMByConstant(Op.getNode(), Result, MVT::i32, DAG)) {
20710         SDValue Res0 =
20711             DAG.getNode(ISD::BUILD_PAIR, dl, VT, Result[0], Result[1]);
20712         SDValue Res1 =
20713             DAG.getNode(ISD::BUILD_PAIR, dl, VT, Result[2], Result[3]);
20714         return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(),
20715                            {Res0, Res1});
20716     }
20717   }
20718 
20719   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
20720 
20721   // If the target has hardware divide, use divide + multiply + subtract:
20722   //     div = a / b
20723   //     rem = a - b * div
20724   //     return {div, rem}
20725   // This should be lowered into UDIV/SDIV + MLS later on.
20726   bool hasDivide = Subtarget->isThumb() ? Subtarget->hasDivideInThumbMode()
20727                                         : Subtarget->hasDivideInARMMode();
20728   if (hasDivide && Op->getValueType(0).isSimple() &&
20729       Op->getSimpleValueType(0) == MVT::i32) {
20730     unsigned DivOpcode = isSigned ? ISD::SDIV : ISD::UDIV;
20731     const SDValue Dividend = Op->getOperand(0);
20732     const SDValue Divisor = Op->getOperand(1);
20733     SDValue Div = DAG.getNode(DivOpcode, dl, VT, Dividend, Divisor);
20734     SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Div, Divisor);
20735     SDValue Rem = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul);
20736 
20737     SDValue Values[2] = {Div, Rem};
20738     return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VT, VT), Values);
20739   }
20740 
20741   RTLIB::Libcall LC = getDivRemLibcall(Op.getNode(),
20742                                        VT.getSimpleVT().SimpleTy);
20743   SDValue InChain = DAG.getEntryNode();
20744 
20745   TargetLowering::ArgListTy Args = getDivRemArgList(Op.getNode(),
20746                                                     DAG.getContext(),
20747                                                     Subtarget);
20748 
20749   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
20750                                          getPointerTy(DAG.getDataLayout()));
20751 
20752   Type *RetTy = StructType::get(Ty, Ty);
20753 
20754   if (Subtarget->isTargetWindows())
20755     InChain = WinDBZCheckDenominator(DAG, Op.getNode(), InChain);
20756 
20757   TargetLowering::CallLoweringInfo CLI(DAG);
20758   CLI.setDebugLoc(dl).setChain(InChain)
20759     .setCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
20760     .setInRegister().setSExtResult(isSigned).setZExtResult(!isSigned);
20761 
20762   std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
20763   return CallInfo.first;
20764 }
20765 
20766 // Lowers REM using divmod helpers
20767 // see RTABI section 4.2/4.3
20768 SDValue ARMTargetLowering::LowerREM(SDNode *N, SelectionDAG &DAG) const {
20769   EVT VT = N->getValueType(0);
20770 
20771   if (VT == MVT::i64 && isa<ConstantSDNode>(N->getOperand(1))) {
20772     SmallVector<SDValue> Result;
20773     if (expandDIVREMByConstant(N, Result, MVT::i32, DAG))
20774         return DAG.getNode(ISD::BUILD_PAIR, SDLoc(N), N->getValueType(0),
20775                            Result[0], Result[1]);
20776   }
20777 
20778   // Build return types (div and rem)
20779   std::vector<Type*> RetTyParams;
20780   Type *RetTyElement;
20781 
20782   switch (VT.getSimpleVT().SimpleTy) {
20783   default: llvm_unreachable("Unexpected request for libcall!");
20784   case MVT::i8:   RetTyElement = Type::getInt8Ty(*DAG.getContext());  break;
20785   case MVT::i16:  RetTyElement = Type::getInt16Ty(*DAG.getContext()); break;
20786   case MVT::i32:  RetTyElement = Type::getInt32Ty(*DAG.getContext()); break;
20787   case MVT::i64:  RetTyElement = Type::getInt64Ty(*DAG.getContext()); break;
20788   }
20789 
20790   RetTyParams.push_back(RetTyElement);
20791   RetTyParams.push_back(RetTyElement);
20792   ArrayRef<Type*> ret = ArrayRef<Type*>(RetTyParams);
20793   Type *RetTy = StructType::get(*DAG.getContext(), ret);
20794 
20795   RTLIB::Libcall LC = getDivRemLibcall(N, N->getValueType(0).getSimpleVT().
20796                                                              SimpleTy);
20797   SDValue InChain = DAG.getEntryNode();
20798   TargetLowering::ArgListTy Args = getDivRemArgList(N, DAG.getContext(),
20799                                                     Subtarget);
20800   bool isSigned = N->getOpcode() == ISD::SREM;
20801   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
20802                                          getPointerTy(DAG.getDataLayout()));
20803 
20804   if (Subtarget->isTargetWindows())
20805     InChain = WinDBZCheckDenominator(DAG, N, InChain);
20806 
20807   // Lower call
20808   CallLoweringInfo CLI(DAG);
20809   CLI.setChain(InChain)
20810      .setCallee(CallingConv::ARM_AAPCS, RetTy, Callee, std::move(Args))
20811      .setSExtResult(isSigned).setZExtResult(!isSigned).setDebugLoc(SDLoc(N));
20812   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
20813 
20814   // Return second (rem) result operand (first contains div)
20815   SDNode *ResNode = CallResult.first.getNode();
20816   assert(ResNode->getNumOperands() == 2 && "divmod should return two operands");
20817   return ResNode->getOperand(1);
20818 }
20819 
20820 SDValue
20821 ARMTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
20822   assert(Subtarget->isTargetWindows() && "unsupported target platform");
20823   SDLoc DL(Op);
20824 
20825   // Get the inputs.
20826   SDValue Chain = Op.getOperand(0);
20827   SDValue Size  = Op.getOperand(1);
20828 
20829   if (DAG.getMachineFunction().getFunction().hasFnAttribute(
20830           "no-stack-arg-probe")) {
20831     MaybeAlign Align =
20832         cast<ConstantSDNode>(Op.getOperand(2))->getMaybeAlignValue();
20833     SDValue SP = DAG.getCopyFromReg(Chain, DL, ARM::SP, MVT::i32);
20834     Chain = SP.getValue(1);
20835     SP = DAG.getNode(ISD::SUB, DL, MVT::i32, SP, Size);
20836     if (Align)
20837       SP =
20838           DAG.getNode(ISD::AND, DL, MVT::i32, SP.getValue(0),
20839                       DAG.getConstant(-(uint64_t)Align->value(), DL, MVT::i32));
20840     Chain = DAG.getCopyToReg(Chain, DL, ARM::SP, SP);
20841     SDValue Ops[2] = { SP, Chain };
20842     return DAG.getMergeValues(Ops, DL);
20843   }
20844 
20845   SDValue Words = DAG.getNode(ISD::SRL, DL, MVT::i32, Size,
20846                               DAG.getConstant(2, DL, MVT::i32));
20847 
20848   SDValue Glue;
20849   Chain = DAG.getCopyToReg(Chain, DL, ARM::R4, Words, Glue);
20850   Glue = Chain.getValue(1);
20851 
20852   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
20853   Chain = DAG.getNode(ARMISD::WIN__CHKSTK, DL, NodeTys, Chain, Glue);
20854 
20855   SDValue NewSP = DAG.getCopyFromReg(Chain, DL, ARM::SP, MVT::i32);
20856   Chain = NewSP.getValue(1);
20857 
20858   SDValue Ops[2] = { NewSP, Chain };
20859   return DAG.getMergeValues(Ops, DL);
20860 }
20861 
20862 SDValue ARMTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
20863   bool IsStrict = Op->isStrictFPOpcode();
20864   SDValue SrcVal = Op.getOperand(IsStrict ? 1 : 0);
20865   const unsigned DstSz = Op.getValueType().getSizeInBits();
20866   const unsigned SrcSz = SrcVal.getValueType().getSizeInBits();
20867   assert(DstSz > SrcSz && DstSz <= 64 && SrcSz >= 16 &&
20868          "Unexpected type for custom-lowering FP_EXTEND");
20869 
20870   assert((!Subtarget->hasFP64() || !Subtarget->hasFPARMv8Base()) &&
20871          "With both FP DP and 16, any FP conversion is legal!");
20872 
20873   assert(!(DstSz == 32 && Subtarget->hasFP16()) &&
20874          "With FP16, 16 to 32 conversion is legal!");
20875 
20876   // Converting from 32 -> 64 is valid if we have FP64.
20877   if (SrcSz == 32 && DstSz == 64 && Subtarget->hasFP64()) {
20878     // FIXME: Remove this when we have strict fp instruction selection patterns
20879     if (IsStrict) {
20880       SDLoc Loc(Op);
20881       SDValue Result = DAG.getNode(ISD::FP_EXTEND,
20882                                    Loc, Op.getValueType(), SrcVal);
20883       return DAG.getMergeValues({Result, Op.getOperand(0)}, Loc);
20884     }
20885     return Op;
20886   }
20887 
20888   // Either we are converting from 16 -> 64, without FP16 and/or
20889   // FP.double-precision or without Armv8-fp. So we must do it in two
20890   // steps.
20891   // Or we are converting from 32 -> 64 without fp.double-precision or 16 -> 32
20892   // without FP16. So we must do a function call.
20893   SDLoc Loc(Op);
20894   RTLIB::Libcall LC;
20895   MakeLibCallOptions CallOptions;
20896   SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue();
20897   for (unsigned Sz = SrcSz; Sz <= 32 && Sz < DstSz; Sz *= 2) {
20898     bool Supported = (Sz == 16 ? Subtarget->hasFP16() : Subtarget->hasFP64());
20899     MVT SrcVT = (Sz == 16 ? MVT::f16 : MVT::f32);
20900     MVT DstVT = (Sz == 16 ? MVT::f32 : MVT::f64);
20901     if (Supported) {
20902       if (IsStrict) {
20903         SrcVal = DAG.getNode(ISD::STRICT_FP_EXTEND, Loc,
20904                              {DstVT, MVT::Other}, {Chain, SrcVal});
20905         Chain = SrcVal.getValue(1);
20906       } else {
20907         SrcVal = DAG.getNode(ISD::FP_EXTEND, Loc, DstVT, SrcVal);
20908       }
20909     } else {
20910       LC = RTLIB::getFPEXT(SrcVT, DstVT);
20911       assert(LC != RTLIB::UNKNOWN_LIBCALL &&
20912              "Unexpected type for custom-lowering FP_EXTEND");
20913       std::tie(SrcVal, Chain) = makeLibCall(DAG, LC, DstVT, SrcVal, CallOptions,
20914                                             Loc, Chain);
20915     }
20916   }
20917 
20918   return IsStrict ? DAG.getMergeValues({SrcVal, Chain}, Loc) : SrcVal;
20919 }
20920 
20921 SDValue ARMTargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
20922   bool IsStrict = Op->isStrictFPOpcode();
20923 
20924   SDValue SrcVal = Op.getOperand(IsStrict ? 1 : 0);
20925   EVT SrcVT = SrcVal.getValueType();
20926   EVT DstVT = Op.getValueType();
20927   const unsigned DstSz = Op.getValueType().getSizeInBits();
20928   const unsigned SrcSz = SrcVT.getSizeInBits();
20929   (void)DstSz;
20930   assert(DstSz < SrcSz && SrcSz <= 64 && DstSz >= 16 &&
20931          "Unexpected type for custom-lowering FP_ROUND");
20932 
20933   assert((!Subtarget->hasFP64() || !Subtarget->hasFPARMv8Base()) &&
20934          "With both FP DP and 16, any FP conversion is legal!");
20935 
20936   SDLoc Loc(Op);
20937 
20938   // Instruction from 32 -> 16 if hasFP16 is valid
20939   if (SrcSz == 32 && Subtarget->hasFP16())
20940     return Op;
20941 
20942   // Lib call from 32 -> 16 / 64 -> [32, 16]
20943   RTLIB::Libcall LC = RTLIB::getFPROUND(SrcVT, DstVT);
20944   assert(LC != RTLIB::UNKNOWN_LIBCALL &&
20945          "Unexpected type for custom-lowering FP_ROUND");
20946   MakeLibCallOptions CallOptions;
20947   SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue();
20948   SDValue Result;
20949   std::tie(Result, Chain) = makeLibCall(DAG, LC, DstVT, SrcVal, CallOptions,
20950                                         Loc, Chain);
20951   return IsStrict ? DAG.getMergeValues({Result, Chain}, Loc) : Result;
20952 }
20953 
20954 bool
20955 ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
20956   // The ARM target isn't yet aware of offsets.
20957   return false;
20958 }
20959 
20960 bool ARM::isBitFieldInvertedMask(unsigned v) {
20961   if (v == 0xffffffff)
20962     return false;
20963 
20964   // there can be 1's on either or both "outsides", all the "inside"
20965   // bits must be 0's
20966   return isShiftedMask_32(~v);
20967 }
20968 
20969 /// isFPImmLegal - Returns true if the target can instruction select the
20970 /// specified FP immediate natively. If false, the legalizer will
20971 /// materialize the FP immediate as a load from a constant pool.
20972 bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
20973                                      bool ForCodeSize) const {
20974   if (!Subtarget->hasVFP3Base())
20975     return false;
20976   if (VT == MVT::f16 && Subtarget->hasFullFP16())
20977     return ARM_AM::getFP16Imm(Imm) != -1;
20978   if (VT == MVT::f32 && Subtarget->hasFullFP16() &&
20979       ARM_AM::getFP32FP16Imm(Imm) != -1)
20980     return true;
20981   if (VT == MVT::f32)
20982     return ARM_AM::getFP32Imm(Imm) != -1;
20983   if (VT == MVT::f64 && Subtarget->hasFP64())
20984     return ARM_AM::getFP64Imm(Imm) != -1;
20985   return false;
20986 }
20987 
20988 /// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
20989 /// MemIntrinsicNodes.  The associated MachineMemOperands record the alignment
20990 /// specified in the intrinsic calls.
20991 bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
20992                                            const CallInst &I,
20993                                            MachineFunction &MF,
20994                                            unsigned Intrinsic) const {
20995   switch (Intrinsic) {
20996   case Intrinsic::arm_neon_vld1:
20997   case Intrinsic::arm_neon_vld2:
20998   case Intrinsic::arm_neon_vld3:
20999   case Intrinsic::arm_neon_vld4:
21000   case Intrinsic::arm_neon_vld2lane:
21001   case Intrinsic::arm_neon_vld3lane:
21002   case Intrinsic::arm_neon_vld4lane:
21003   case Intrinsic::arm_neon_vld2dup:
21004   case Intrinsic::arm_neon_vld3dup:
21005   case Intrinsic::arm_neon_vld4dup: {
21006     Info.opc = ISD::INTRINSIC_W_CHAIN;
21007     // Conservatively set memVT to the entire set of vectors loaded.
21008     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
21009     uint64_t NumElts = DL.getTypeSizeInBits(I.getType()) / 64;
21010     Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
21011     Info.ptrVal = I.getArgOperand(0);
21012     Info.offset = 0;
21013     Value *AlignArg = I.getArgOperand(I.arg_size() - 1);
21014     Info.align = cast<ConstantInt>(AlignArg)->getMaybeAlignValue();
21015     // volatile loads with NEON intrinsics not supported
21016     Info.flags = MachineMemOperand::MOLoad;
21017     return true;
21018   }
21019   case Intrinsic::arm_neon_vld1x2:
21020   case Intrinsic::arm_neon_vld1x3:
21021   case Intrinsic::arm_neon_vld1x4: {
21022     Info.opc = ISD::INTRINSIC_W_CHAIN;
21023     // Conservatively set memVT to the entire set of vectors loaded.
21024     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
21025     uint64_t NumElts = DL.getTypeSizeInBits(I.getType()) / 64;
21026     Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
21027     Info.ptrVal = I.getArgOperand(I.arg_size() - 1);
21028     Info.offset = 0;
21029     Info.align.reset();
21030     // volatile loads with NEON intrinsics not supported
21031     Info.flags = MachineMemOperand::MOLoad;
21032     return true;
21033   }
21034   case Intrinsic::arm_neon_vst1:
21035   case Intrinsic::arm_neon_vst2:
21036   case Intrinsic::arm_neon_vst3:
21037   case Intrinsic::arm_neon_vst4:
21038   case Intrinsic::arm_neon_vst2lane:
21039   case Intrinsic::arm_neon_vst3lane:
21040   case Intrinsic::arm_neon_vst4lane: {
21041     Info.opc = ISD::INTRINSIC_VOID;
21042     // Conservatively set memVT to the entire set of vectors stored.
21043     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
21044     unsigned NumElts = 0;
21045     for (unsigned ArgI = 1, ArgE = I.arg_size(); ArgI < ArgE; ++ArgI) {
21046       Type *ArgTy = I.getArgOperand(ArgI)->getType();
21047       if (!ArgTy->isVectorTy())
21048         break;
21049       NumElts += DL.getTypeSizeInBits(ArgTy) / 64;
21050     }
21051     Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
21052     Info.ptrVal = I.getArgOperand(0);
21053     Info.offset = 0;
21054     Value *AlignArg = I.getArgOperand(I.arg_size() - 1);
21055     Info.align = cast<ConstantInt>(AlignArg)->getMaybeAlignValue();
21056     // volatile stores with NEON intrinsics not supported
21057     Info.flags = MachineMemOperand::MOStore;
21058     return true;
21059   }
21060   case Intrinsic::arm_neon_vst1x2:
21061   case Intrinsic::arm_neon_vst1x3:
21062   case Intrinsic::arm_neon_vst1x4: {
21063     Info.opc = ISD::INTRINSIC_VOID;
21064     // Conservatively set memVT to the entire set of vectors stored.
21065     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
21066     unsigned NumElts = 0;
21067     for (unsigned ArgI = 1, ArgE = I.arg_size(); ArgI < ArgE; ++ArgI) {
21068       Type *ArgTy = I.getArgOperand(ArgI)->getType();
21069       if (!ArgTy->isVectorTy())
21070         break;
21071       NumElts += DL.getTypeSizeInBits(ArgTy) / 64;
21072     }
21073     Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
21074     Info.ptrVal = I.getArgOperand(0);
21075     Info.offset = 0;
21076     Info.align.reset();
21077     // volatile stores with NEON intrinsics not supported
21078     Info.flags = MachineMemOperand::MOStore;
21079     return true;
21080   }
21081   case Intrinsic::arm_mve_vld2q:
21082   case Intrinsic::arm_mve_vld4q: {
21083     Info.opc = ISD::INTRINSIC_W_CHAIN;
21084     // Conservatively set memVT to the entire set of vectors loaded.
21085     Type *VecTy = cast<StructType>(I.getType())->getElementType(1);
21086     unsigned Factor = Intrinsic == Intrinsic::arm_mve_vld2q ? 2 : 4;
21087     Info.memVT = EVT::getVectorVT(VecTy->getContext(), MVT::i64, Factor * 2);
21088     Info.ptrVal = I.getArgOperand(0);
21089     Info.offset = 0;
21090     Info.align = Align(VecTy->getScalarSizeInBits() / 8);
21091     // volatile loads with MVE intrinsics not supported
21092     Info.flags = MachineMemOperand::MOLoad;
21093     return true;
21094   }
21095   case Intrinsic::arm_mve_vst2q:
21096   case Intrinsic::arm_mve_vst4q: {
21097     Info.opc = ISD::INTRINSIC_VOID;
21098     // Conservatively set memVT to the entire set of vectors stored.
21099     Type *VecTy = I.getArgOperand(1)->getType();
21100     unsigned Factor = Intrinsic == Intrinsic::arm_mve_vst2q ? 2 : 4;
21101     Info.memVT = EVT::getVectorVT(VecTy->getContext(), MVT::i64, Factor * 2);
21102     Info.ptrVal = I.getArgOperand(0);
21103     Info.offset = 0;
21104     Info.align = Align(VecTy->getScalarSizeInBits() / 8);
21105     // volatile stores with MVE intrinsics not supported
21106     Info.flags = MachineMemOperand::MOStore;
21107     return true;
21108   }
21109   case Intrinsic::arm_mve_vldr_gather_base:
21110   case Intrinsic::arm_mve_vldr_gather_base_predicated: {
21111     Info.opc = ISD::INTRINSIC_W_CHAIN;
21112     Info.ptrVal = nullptr;
21113     Info.memVT = MVT::getVT(I.getType());
21114     Info.align = Align(1);
21115     Info.flags |= MachineMemOperand::MOLoad;
21116     return true;
21117   }
21118   case Intrinsic::arm_mve_vldr_gather_base_wb:
21119   case Intrinsic::arm_mve_vldr_gather_base_wb_predicated: {
21120     Info.opc = ISD::INTRINSIC_W_CHAIN;
21121     Info.ptrVal = nullptr;
21122     Info.memVT = MVT::getVT(I.getType()->getContainedType(0));
21123     Info.align = Align(1);
21124     Info.flags |= MachineMemOperand::MOLoad;
21125     return true;
21126   }
21127   case Intrinsic::arm_mve_vldr_gather_offset:
21128   case Intrinsic::arm_mve_vldr_gather_offset_predicated: {
21129     Info.opc = ISD::INTRINSIC_W_CHAIN;
21130     Info.ptrVal = nullptr;
21131     MVT DataVT = MVT::getVT(I.getType());
21132     unsigned MemSize = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
21133     Info.memVT = MVT::getVectorVT(MVT::getIntegerVT(MemSize),
21134                                   DataVT.getVectorNumElements());
21135     Info.align = Align(1);
21136     Info.flags |= MachineMemOperand::MOLoad;
21137     return true;
21138   }
21139   case Intrinsic::arm_mve_vstr_scatter_base:
21140   case Intrinsic::arm_mve_vstr_scatter_base_predicated: {
21141     Info.opc = ISD::INTRINSIC_VOID;
21142     Info.ptrVal = nullptr;
21143     Info.memVT = MVT::getVT(I.getArgOperand(2)->getType());
21144     Info.align = Align(1);
21145     Info.flags |= MachineMemOperand::MOStore;
21146     return true;
21147   }
21148   case Intrinsic::arm_mve_vstr_scatter_base_wb:
21149   case Intrinsic::arm_mve_vstr_scatter_base_wb_predicated: {
21150     Info.opc = ISD::INTRINSIC_W_CHAIN;
21151     Info.ptrVal = nullptr;
21152     Info.memVT = MVT::getVT(I.getArgOperand(2)->getType());
21153     Info.align = Align(1);
21154     Info.flags |= MachineMemOperand::MOStore;
21155     return true;
21156   }
21157   case Intrinsic::arm_mve_vstr_scatter_offset:
21158   case Intrinsic::arm_mve_vstr_scatter_offset_predicated: {
21159     Info.opc = ISD::INTRINSIC_VOID;
21160     Info.ptrVal = nullptr;
21161     MVT DataVT = MVT::getVT(I.getArgOperand(2)->getType());
21162     unsigned MemSize = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
21163     Info.memVT = MVT::getVectorVT(MVT::getIntegerVT(MemSize),
21164                                   DataVT.getVectorNumElements());
21165     Info.align = Align(1);
21166     Info.flags |= MachineMemOperand::MOStore;
21167     return true;
21168   }
21169   case Intrinsic::arm_ldaex:
21170   case Intrinsic::arm_ldrex: {
21171     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
21172     Type *ValTy = I.getParamElementType(0);
21173     Info.opc = ISD::INTRINSIC_W_CHAIN;
21174     Info.memVT = MVT::getVT(ValTy);
21175     Info.ptrVal = I.getArgOperand(0);
21176     Info.offset = 0;
21177     Info.align = DL.getABITypeAlign(ValTy);
21178     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
21179     return true;
21180   }
21181   case Intrinsic::arm_stlex:
21182   case Intrinsic::arm_strex: {
21183     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
21184     Type *ValTy = I.getParamElementType(1);
21185     Info.opc = ISD::INTRINSIC_W_CHAIN;
21186     Info.memVT = MVT::getVT(ValTy);
21187     Info.ptrVal = I.getArgOperand(1);
21188     Info.offset = 0;
21189     Info.align = DL.getABITypeAlign(ValTy);
21190     Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile;
21191     return true;
21192   }
21193   case Intrinsic::arm_stlexd:
21194   case Intrinsic::arm_strexd:
21195     Info.opc = ISD::INTRINSIC_W_CHAIN;
21196     Info.memVT = MVT::i64;
21197     Info.ptrVal = I.getArgOperand(2);
21198     Info.offset = 0;
21199     Info.align = Align(8);
21200     Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile;
21201     return true;
21202 
21203   case Intrinsic::arm_ldaexd:
21204   case Intrinsic::arm_ldrexd:
21205     Info.opc = ISD::INTRINSIC_W_CHAIN;
21206     Info.memVT = MVT::i64;
21207     Info.ptrVal = I.getArgOperand(0);
21208     Info.offset = 0;
21209     Info.align = Align(8);
21210     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
21211     return true;
21212 
21213   default:
21214     break;
21215   }
21216 
21217   return false;
21218 }
21219 
21220 /// Returns true if it is beneficial to convert a load of a constant
21221 /// to just the constant itself.
21222 bool ARMTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
21223                                                           Type *Ty) const {
21224   assert(Ty->isIntegerTy());
21225 
21226   unsigned Bits = Ty->getPrimitiveSizeInBits();
21227   if (Bits == 0 || Bits > 32)
21228     return false;
21229   return true;
21230 }
21231 
21232 bool ARMTargetLowering::isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
21233                                                 unsigned Index) const {
21234   if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, ResVT))
21235     return false;
21236 
21237   return (Index == 0 || Index == ResVT.getVectorNumElements());
21238 }
21239 
21240 Instruction *ARMTargetLowering::makeDMB(IRBuilderBase &Builder,
21241                                         ARM_MB::MemBOpt Domain) const {
21242   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
21243 
21244   // First, if the target has no DMB, see what fallback we can use.
21245   if (!Subtarget->hasDataBarrier()) {
21246     // Some ARMv6 cpus can support data barriers with an mcr instruction.
21247     // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
21248     // here.
21249     if (Subtarget->hasV6Ops() && !Subtarget->isThumb()) {
21250       Function *MCR = Intrinsic::getDeclaration(M, Intrinsic::arm_mcr);
21251       Value* args[6] = {Builder.getInt32(15), Builder.getInt32(0),
21252                         Builder.getInt32(0), Builder.getInt32(7),
21253                         Builder.getInt32(10), Builder.getInt32(5)};
21254       return Builder.CreateCall(MCR, args);
21255     } else {
21256       // Instead of using barriers, atomic accesses on these subtargets use
21257       // libcalls.
21258       llvm_unreachable("makeDMB on a target so old that it has no barriers");
21259     }
21260   } else {
21261     Function *DMB = Intrinsic::getDeclaration(M, Intrinsic::arm_dmb);
21262     // Only a full system barrier exists in the M-class architectures.
21263     Domain = Subtarget->isMClass() ? ARM_MB::SY : Domain;
21264     Constant *CDomain = Builder.getInt32(Domain);
21265     return Builder.CreateCall(DMB, CDomain);
21266   }
21267 }
21268 
21269 // Based on http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
21270 Instruction *ARMTargetLowering::emitLeadingFence(IRBuilderBase &Builder,
21271                                                  Instruction *Inst,
21272                                                  AtomicOrdering Ord) const {
21273   switch (Ord) {
21274   case AtomicOrdering::NotAtomic:
21275   case AtomicOrdering::Unordered:
21276     llvm_unreachable("Invalid fence: unordered/non-atomic");
21277   case AtomicOrdering::Monotonic:
21278   case AtomicOrdering::Acquire:
21279     return nullptr; // Nothing to do
21280   case AtomicOrdering::SequentiallyConsistent:
21281     if (!Inst->hasAtomicStore())
21282       return nullptr; // Nothing to do
21283     [[fallthrough]];
21284   case AtomicOrdering::Release:
21285   case AtomicOrdering::AcquireRelease:
21286     if (Subtarget->preferISHSTBarriers())
21287       return makeDMB(Builder, ARM_MB::ISHST);
21288     // FIXME: add a comment with a link to documentation justifying this.
21289     else
21290       return makeDMB(Builder, ARM_MB::ISH);
21291   }
21292   llvm_unreachable("Unknown fence ordering in emitLeadingFence");
21293 }
21294 
21295 Instruction *ARMTargetLowering::emitTrailingFence(IRBuilderBase &Builder,
21296                                                   Instruction *Inst,
21297                                                   AtomicOrdering Ord) const {
21298   switch (Ord) {
21299   case AtomicOrdering::NotAtomic:
21300   case AtomicOrdering::Unordered:
21301     llvm_unreachable("Invalid fence: unordered/not-atomic");
21302   case AtomicOrdering::Monotonic:
21303   case AtomicOrdering::Release:
21304     return nullptr; // Nothing to do
21305   case AtomicOrdering::Acquire:
21306   case AtomicOrdering::AcquireRelease:
21307   case AtomicOrdering::SequentiallyConsistent:
21308     return makeDMB(Builder, ARM_MB::ISH);
21309   }
21310   llvm_unreachable("Unknown fence ordering in emitTrailingFence");
21311 }
21312 
21313 // Loads and stores less than 64-bits are already atomic; ones above that
21314 // are doomed anyway, so defer to the default libcall and blame the OS when
21315 // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
21316 // anything for those.
21317 TargetLoweringBase::AtomicExpansionKind
21318 ARMTargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
21319   bool has64BitAtomicStore;
21320   if (Subtarget->isMClass())
21321     has64BitAtomicStore = false;
21322   else if (Subtarget->isThumb())
21323     has64BitAtomicStore = Subtarget->hasV7Ops();
21324   else
21325     has64BitAtomicStore = Subtarget->hasV6Ops();
21326 
21327   unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits();
21328   return Size == 64 && has64BitAtomicStore ? AtomicExpansionKind::Expand
21329                                            : AtomicExpansionKind::None;
21330 }
21331 
21332 // Loads and stores less than 64-bits are already atomic; ones above that
21333 // are doomed anyway, so defer to the default libcall and blame the OS when
21334 // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
21335 // anything for those.
21336 // FIXME: ldrd and strd are atomic if the CPU has LPAE (e.g. A15 has that
21337 // guarantee, see DDI0406C ARM architecture reference manual,
21338 // sections A8.8.72-74 LDRD)
21339 TargetLowering::AtomicExpansionKind
21340 ARMTargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
21341   bool has64BitAtomicLoad;
21342   if (Subtarget->isMClass())
21343     has64BitAtomicLoad = false;
21344   else if (Subtarget->isThumb())
21345     has64BitAtomicLoad = Subtarget->hasV7Ops();
21346   else
21347     has64BitAtomicLoad = Subtarget->hasV6Ops();
21348 
21349   unsigned Size = LI->getType()->getPrimitiveSizeInBits();
21350   return (Size == 64 && has64BitAtomicLoad) ? AtomicExpansionKind::LLOnly
21351                                             : AtomicExpansionKind::None;
21352 }
21353 
21354 // For the real atomic operations, we have ldrex/strex up to 32 bits,
21355 // and up to 64 bits on the non-M profiles
21356 TargetLowering::AtomicExpansionKind
21357 ARMTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
21358   if (AI->isFloatingPointOperation())
21359     return AtomicExpansionKind::CmpXChg;
21360 
21361   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
21362   bool hasAtomicRMW;
21363   if (Subtarget->isMClass())
21364     hasAtomicRMW = Subtarget->hasV8MBaselineOps();
21365   else if (Subtarget->isThumb())
21366     hasAtomicRMW = Subtarget->hasV7Ops();
21367   else
21368     hasAtomicRMW = Subtarget->hasV6Ops();
21369   if (Size <= (Subtarget->isMClass() ? 32U : 64U) && hasAtomicRMW) {
21370     // At -O0, fast-regalloc cannot cope with the live vregs necessary to
21371     // implement atomicrmw without spilling. If the target address is also on
21372     // the stack and close enough to the spill slot, this can lead to a
21373     // situation where the monitor always gets cleared and the atomic operation
21374     // can never succeed. So at -O0 lower this operation to a CAS loop.
21375     if (getTargetMachine().getOptLevel() == CodeGenOptLevel::None)
21376       return AtomicExpansionKind::CmpXChg;
21377     return AtomicExpansionKind::LLSC;
21378   }
21379   return AtomicExpansionKind::None;
21380 }
21381 
21382 // Similar to shouldExpandAtomicRMWInIR, ldrex/strex can be used  up to 32
21383 // bits, and up to 64 bits on the non-M profiles.
21384 TargetLowering::AtomicExpansionKind
21385 ARMTargetLowering::shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const {
21386   // At -O0, fast-regalloc cannot cope with the live vregs necessary to
21387   // implement cmpxchg without spilling. If the address being exchanged is also
21388   // on the stack and close enough to the spill slot, this can lead to a
21389   // situation where the monitor always gets cleared and the atomic operation
21390   // can never succeed. So at -O0 we need a late-expanded pseudo-inst instead.
21391   unsigned Size = AI->getOperand(1)->getType()->getPrimitiveSizeInBits();
21392   bool HasAtomicCmpXchg;
21393   if (Subtarget->isMClass())
21394     HasAtomicCmpXchg = Subtarget->hasV8MBaselineOps();
21395   else if (Subtarget->isThumb())
21396     HasAtomicCmpXchg = Subtarget->hasV7Ops();
21397   else
21398     HasAtomicCmpXchg = Subtarget->hasV6Ops();
21399   if (getTargetMachine().getOptLevel() != CodeGenOptLevel::None &&
21400       HasAtomicCmpXchg && Size <= (Subtarget->isMClass() ? 32U : 64U))
21401     return AtomicExpansionKind::LLSC;
21402   return AtomicExpansionKind::None;
21403 }
21404 
21405 bool ARMTargetLowering::shouldInsertFencesForAtomic(
21406     const Instruction *I) const {
21407   return InsertFencesForAtomic;
21408 }
21409 
21410 bool ARMTargetLowering::useLoadStackGuardNode() const {
21411   // ROPI/RWPI are not supported currently.
21412   return !Subtarget->isROPI() && !Subtarget->isRWPI();
21413 }
21414 
21415 void ARMTargetLowering::insertSSPDeclarations(Module &M) const {
21416   if (!Subtarget->getTargetTriple().isWindowsMSVCEnvironment())
21417     return TargetLowering::insertSSPDeclarations(M);
21418 
21419   // MSVC CRT has a global variable holding security cookie.
21420   M.getOrInsertGlobal("__security_cookie",
21421                       PointerType::getUnqual(M.getContext()));
21422 
21423   // MSVC CRT has a function to validate security cookie.
21424   FunctionCallee SecurityCheckCookie = M.getOrInsertFunction(
21425       "__security_check_cookie", Type::getVoidTy(M.getContext()),
21426       PointerType::getUnqual(M.getContext()));
21427   if (Function *F = dyn_cast<Function>(SecurityCheckCookie.getCallee()))
21428     F->addParamAttr(0, Attribute::AttrKind::InReg);
21429 }
21430 
21431 Value *ARMTargetLowering::getSDagStackGuard(const Module &M) const {
21432   // MSVC CRT has a global variable holding security cookie.
21433   if (Subtarget->getTargetTriple().isWindowsMSVCEnvironment())
21434     return M.getGlobalVariable("__security_cookie");
21435   return TargetLowering::getSDagStackGuard(M);
21436 }
21437 
21438 Function *ARMTargetLowering::getSSPStackGuardCheck(const Module &M) const {
21439   // MSVC CRT has a function to validate security cookie.
21440   if (Subtarget->getTargetTriple().isWindowsMSVCEnvironment())
21441     return M.getFunction("__security_check_cookie");
21442   return TargetLowering::getSSPStackGuardCheck(M);
21443 }
21444 
21445 bool ARMTargetLowering::canCombineStoreAndExtract(Type *VectorTy, Value *Idx,
21446                                                   unsigned &Cost) const {
21447   // If we do not have NEON, vector types are not natively supported.
21448   if (!Subtarget->hasNEON())
21449     return false;
21450 
21451   // Floating point values and vector values map to the same register file.
21452   // Therefore, although we could do a store extract of a vector type, this is
21453   // better to leave at float as we have more freedom in the addressing mode for
21454   // those.
21455   if (VectorTy->isFPOrFPVectorTy())
21456     return false;
21457 
21458   // If the index is unknown at compile time, this is very expensive to lower
21459   // and it is not possible to combine the store with the extract.
21460   if (!isa<ConstantInt>(Idx))
21461     return false;
21462 
21463   assert(VectorTy->isVectorTy() && "VectorTy is not a vector type");
21464   unsigned BitWidth = VectorTy->getPrimitiveSizeInBits().getFixedValue();
21465   // We can do a store + vector extract on any vector that fits perfectly in a D
21466   // or Q register.
21467   if (BitWidth == 64 || BitWidth == 128) {
21468     Cost = 0;
21469     return true;
21470   }
21471   return false;
21472 }
21473 
21474 bool ARMTargetLowering::isCheapToSpeculateCttz(Type *Ty) const {
21475   return Subtarget->hasV6T2Ops();
21476 }
21477 
21478 bool ARMTargetLowering::isCheapToSpeculateCtlz(Type *Ty) const {
21479   return Subtarget->hasV6T2Ops();
21480 }
21481 
21482 bool ARMTargetLowering::isMaskAndCmp0FoldingBeneficial(
21483     const Instruction &AndI) const {
21484   if (!Subtarget->hasV7Ops())
21485     return false;
21486 
21487   // Sink the `and` instruction only if the mask would fit into a modified
21488   // immediate operand.
21489   ConstantInt *Mask = dyn_cast<ConstantInt>(AndI.getOperand(1));
21490   if (!Mask || Mask->getValue().getBitWidth() > 32u)
21491     return false;
21492   auto MaskVal = unsigned(Mask->getValue().getZExtValue());
21493   return (Subtarget->isThumb2() ? ARM_AM::getT2SOImmVal(MaskVal)
21494                                 : ARM_AM::getSOImmVal(MaskVal)) != -1;
21495 }
21496 
21497 TargetLowering::ShiftLegalizationStrategy
21498 ARMTargetLowering::preferredShiftLegalizationStrategy(
21499     SelectionDAG &DAG, SDNode *N, unsigned ExpansionFactor) const {
21500   if (Subtarget->hasMinSize() && !Subtarget->isTargetWindows())
21501     return ShiftLegalizationStrategy::LowerToLibcall;
21502   return TargetLowering::preferredShiftLegalizationStrategy(DAG, N,
21503                                                             ExpansionFactor);
21504 }
21505 
21506 Value *ARMTargetLowering::emitLoadLinked(IRBuilderBase &Builder, Type *ValueTy,
21507                                          Value *Addr,
21508                                          AtomicOrdering Ord) const {
21509   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
21510   bool IsAcquire = isAcquireOrStronger(Ord);
21511 
21512   // Since i64 isn't legal and intrinsics don't get type-lowered, the ldrexd
21513   // intrinsic must return {i32, i32} and we have to recombine them into a
21514   // single i64 here.
21515   if (ValueTy->getPrimitiveSizeInBits() == 64) {
21516     Intrinsic::ID Int =
21517         IsAcquire ? Intrinsic::arm_ldaexd : Intrinsic::arm_ldrexd;
21518     Function *Ldrex = Intrinsic::getDeclaration(M, Int);
21519 
21520     Value *LoHi = Builder.CreateCall(Ldrex, Addr, "lohi");
21521 
21522     Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
21523     Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
21524     if (!Subtarget->isLittle())
21525       std::swap (Lo, Hi);
21526     Lo = Builder.CreateZExt(Lo, ValueTy, "lo64");
21527     Hi = Builder.CreateZExt(Hi, ValueTy, "hi64");
21528     return Builder.CreateOr(
21529         Lo, Builder.CreateShl(Hi, ConstantInt::get(ValueTy, 32)), "val64");
21530   }
21531 
21532   Type *Tys[] = { Addr->getType() };
21533   Intrinsic::ID Int = IsAcquire ? Intrinsic::arm_ldaex : Intrinsic::arm_ldrex;
21534   Function *Ldrex = Intrinsic::getDeclaration(M, Int, Tys);
21535   CallInst *CI = Builder.CreateCall(Ldrex, Addr);
21536 
21537   CI->addParamAttr(
21538       0, Attribute::get(M->getContext(), Attribute::ElementType, ValueTy));
21539   return Builder.CreateTruncOrBitCast(CI, ValueTy);
21540 }
21541 
21542 void ARMTargetLowering::emitAtomicCmpXchgNoStoreLLBalance(
21543     IRBuilderBase &Builder) const {
21544   if (!Subtarget->hasV7Ops())
21545     return;
21546   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
21547   Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::arm_clrex));
21548 }
21549 
21550 Value *ARMTargetLowering::emitStoreConditional(IRBuilderBase &Builder,
21551                                                Value *Val, Value *Addr,
21552                                                AtomicOrdering Ord) const {
21553   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
21554   bool IsRelease = isReleaseOrStronger(Ord);
21555 
21556   // Since the intrinsics must have legal type, the i64 intrinsics take two
21557   // parameters: "i32, i32". We must marshal Val into the appropriate form
21558   // before the call.
21559   if (Val->getType()->getPrimitiveSizeInBits() == 64) {
21560     Intrinsic::ID Int =
21561         IsRelease ? Intrinsic::arm_stlexd : Intrinsic::arm_strexd;
21562     Function *Strex = Intrinsic::getDeclaration(M, Int);
21563     Type *Int32Ty = Type::getInt32Ty(M->getContext());
21564 
21565     Value *Lo = Builder.CreateTrunc(Val, Int32Ty, "lo");
21566     Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 32), Int32Ty, "hi");
21567     if (!Subtarget->isLittle())
21568       std::swap(Lo, Hi);
21569     return Builder.CreateCall(Strex, {Lo, Hi, Addr});
21570   }
21571 
21572   Intrinsic::ID Int = IsRelease ? Intrinsic::arm_stlex : Intrinsic::arm_strex;
21573   Type *Tys[] = { Addr->getType() };
21574   Function *Strex = Intrinsic::getDeclaration(M, Int, Tys);
21575 
21576   CallInst *CI = Builder.CreateCall(
21577       Strex, {Builder.CreateZExtOrBitCast(
21578                   Val, Strex->getFunctionType()->getParamType(0)),
21579               Addr});
21580   CI->addParamAttr(1, Attribute::get(M->getContext(), Attribute::ElementType,
21581                                      Val->getType()));
21582   return CI;
21583 }
21584 
21585 
21586 bool ARMTargetLowering::alignLoopsWithOptSize() const {
21587   return Subtarget->isMClass();
21588 }
21589 
21590 /// A helper function for determining the number of interleaved accesses we
21591 /// will generate when lowering accesses of the given type.
21592 unsigned
21593 ARMTargetLowering::getNumInterleavedAccesses(VectorType *VecTy,
21594                                              const DataLayout &DL) const {
21595   return (DL.getTypeSizeInBits(VecTy) + 127) / 128;
21596 }
21597 
21598 bool ARMTargetLowering::isLegalInterleavedAccessType(
21599     unsigned Factor, FixedVectorType *VecTy, Align Alignment,
21600     const DataLayout &DL) const {
21601 
21602   unsigned VecSize = DL.getTypeSizeInBits(VecTy);
21603   unsigned ElSize = DL.getTypeSizeInBits(VecTy->getElementType());
21604 
21605   if (!Subtarget->hasNEON() && !Subtarget->hasMVEIntegerOps())
21606     return false;
21607 
21608   // Ensure the vector doesn't have f16 elements. Even though we could do an
21609   // i16 vldN, we can't hold the f16 vectors and will end up converting via
21610   // f32.
21611   if (Subtarget->hasNEON() && VecTy->getElementType()->isHalfTy())
21612     return false;
21613   if (Subtarget->hasMVEIntegerOps() && Factor == 3)
21614     return false;
21615 
21616   // Ensure the number of vector elements is greater than 1.
21617   if (VecTy->getNumElements() < 2)
21618     return false;
21619 
21620   // Ensure the element type is legal.
21621   if (ElSize != 8 && ElSize != 16 && ElSize != 32)
21622     return false;
21623   // And the alignment if high enough under MVE.
21624   if (Subtarget->hasMVEIntegerOps() && Alignment < ElSize / 8)
21625     return false;
21626 
21627   // Ensure the total vector size is 64 or a multiple of 128. Types larger than
21628   // 128 will be split into multiple interleaved accesses.
21629   if (Subtarget->hasNEON() && VecSize == 64)
21630     return true;
21631   return VecSize % 128 == 0;
21632 }
21633 
21634 unsigned ARMTargetLowering::getMaxSupportedInterleaveFactor() const {
21635   if (Subtarget->hasNEON())
21636     return 4;
21637   if (Subtarget->hasMVEIntegerOps())
21638     return MVEMaxSupportedInterleaveFactor;
21639   return TargetLoweringBase::getMaxSupportedInterleaveFactor();
21640 }
21641 
21642 /// Lower an interleaved load into a vldN intrinsic.
21643 ///
21644 /// E.g. Lower an interleaved load (Factor = 2):
21645 ///        %wide.vec = load <8 x i32>, <8 x i32>* %ptr, align 4
21646 ///        %v0 = shuffle %wide.vec, undef, <0, 2, 4, 6>  ; Extract even elements
21647 ///        %v1 = shuffle %wide.vec, undef, <1, 3, 5, 7>  ; Extract odd elements
21648 ///
21649 ///      Into:
21650 ///        %vld2 = { <4 x i32>, <4 x i32> } call llvm.arm.neon.vld2(%ptr, 4)
21651 ///        %vec0 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 0
21652 ///        %vec1 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 1
21653 bool ARMTargetLowering::lowerInterleavedLoad(
21654     LoadInst *LI, ArrayRef<ShuffleVectorInst *> Shuffles,
21655     ArrayRef<unsigned> Indices, unsigned Factor) const {
21656   assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
21657          "Invalid interleave factor");
21658   assert(!Shuffles.empty() && "Empty shufflevector input");
21659   assert(Shuffles.size() == Indices.size() &&
21660          "Unmatched number of shufflevectors and indices");
21661 
21662   auto *VecTy = cast<FixedVectorType>(Shuffles[0]->getType());
21663   Type *EltTy = VecTy->getElementType();
21664 
21665   const DataLayout &DL = LI->getModule()->getDataLayout();
21666   Align Alignment = LI->getAlign();
21667 
21668   // Skip if we do not have NEON and skip illegal vector types. We can
21669   // "legalize" wide vector types into multiple interleaved accesses as long as
21670   // the vector types are divisible by 128.
21671   if (!isLegalInterleavedAccessType(Factor, VecTy, Alignment, DL))
21672     return false;
21673 
21674   unsigned NumLoads = getNumInterleavedAccesses(VecTy, DL);
21675 
21676   // A pointer vector can not be the return type of the ldN intrinsics. Need to
21677   // load integer vectors first and then convert to pointer vectors.
21678   if (EltTy->isPointerTy())
21679     VecTy = FixedVectorType::get(DL.getIntPtrType(EltTy), VecTy);
21680 
21681   IRBuilder<> Builder(LI);
21682 
21683   // The base address of the load.
21684   Value *BaseAddr = LI->getPointerOperand();
21685 
21686   if (NumLoads > 1) {
21687     // If we're going to generate more than one load, reset the sub-vector type
21688     // to something legal.
21689     VecTy = FixedVectorType::get(VecTy->getElementType(),
21690                                  VecTy->getNumElements() / NumLoads);
21691   }
21692 
21693   assert(isTypeLegal(EVT::getEVT(VecTy)) && "Illegal vldN vector type!");
21694 
21695   auto createLoadIntrinsic = [&](Value *BaseAddr) {
21696     if (Subtarget->hasNEON()) {
21697       Type *PtrTy = Builder.getPtrTy(LI->getPointerAddressSpace());
21698       Type *Tys[] = {VecTy, PtrTy};
21699       static const Intrinsic::ID LoadInts[3] = {Intrinsic::arm_neon_vld2,
21700                                                 Intrinsic::arm_neon_vld3,
21701                                                 Intrinsic::arm_neon_vld4};
21702       Function *VldnFunc =
21703           Intrinsic::getDeclaration(LI->getModule(), LoadInts[Factor - 2], Tys);
21704 
21705       SmallVector<Value *, 2> Ops;
21706       Ops.push_back(BaseAddr);
21707       Ops.push_back(Builder.getInt32(LI->getAlign().value()));
21708 
21709       return Builder.CreateCall(VldnFunc, Ops, "vldN");
21710     } else {
21711       assert((Factor == 2 || Factor == 4) &&
21712              "expected interleave factor of 2 or 4 for MVE");
21713       Intrinsic::ID LoadInts =
21714           Factor == 2 ? Intrinsic::arm_mve_vld2q : Intrinsic::arm_mve_vld4q;
21715       Type *PtrTy = Builder.getPtrTy(LI->getPointerAddressSpace());
21716       Type *Tys[] = {VecTy, PtrTy};
21717       Function *VldnFunc =
21718           Intrinsic::getDeclaration(LI->getModule(), LoadInts, Tys);
21719 
21720       SmallVector<Value *, 2> Ops;
21721       Ops.push_back(BaseAddr);
21722       return Builder.CreateCall(VldnFunc, Ops, "vldN");
21723     }
21724   };
21725 
21726   // Holds sub-vectors extracted from the load intrinsic return values. The
21727   // sub-vectors are associated with the shufflevector instructions they will
21728   // replace.
21729   DenseMap<ShuffleVectorInst *, SmallVector<Value *, 4>> SubVecs;
21730 
21731   for (unsigned LoadCount = 0; LoadCount < NumLoads; ++LoadCount) {
21732     // If we're generating more than one load, compute the base address of
21733     // subsequent loads as an offset from the previous.
21734     if (LoadCount > 0)
21735       BaseAddr = Builder.CreateConstGEP1_32(VecTy->getElementType(), BaseAddr,
21736                                             VecTy->getNumElements() * Factor);
21737 
21738     CallInst *VldN = createLoadIntrinsic(BaseAddr);
21739 
21740     // Replace uses of each shufflevector with the corresponding vector loaded
21741     // by ldN.
21742     for (unsigned i = 0; i < Shuffles.size(); i++) {
21743       ShuffleVectorInst *SV = Shuffles[i];
21744       unsigned Index = Indices[i];
21745 
21746       Value *SubVec = Builder.CreateExtractValue(VldN, Index);
21747 
21748       // Convert the integer vector to pointer vector if the element is pointer.
21749       if (EltTy->isPointerTy())
21750         SubVec = Builder.CreateIntToPtr(
21751             SubVec,
21752             FixedVectorType::get(SV->getType()->getElementType(), VecTy));
21753 
21754       SubVecs[SV].push_back(SubVec);
21755     }
21756   }
21757 
21758   // Replace uses of the shufflevector instructions with the sub-vectors
21759   // returned by the load intrinsic. If a shufflevector instruction is
21760   // associated with more than one sub-vector, those sub-vectors will be
21761   // concatenated into a single wide vector.
21762   for (ShuffleVectorInst *SVI : Shuffles) {
21763     auto &SubVec = SubVecs[SVI];
21764     auto *WideVec =
21765         SubVec.size() > 1 ? concatenateVectors(Builder, SubVec) : SubVec[0];
21766     SVI->replaceAllUsesWith(WideVec);
21767   }
21768 
21769   return true;
21770 }
21771 
21772 /// Lower an interleaved store into a vstN intrinsic.
21773 ///
21774 /// E.g. Lower an interleaved store (Factor = 3):
21775 ///        %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
21776 ///                                  <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
21777 ///        store <12 x i32> %i.vec, <12 x i32>* %ptr, align 4
21778 ///
21779 ///      Into:
21780 ///        %sub.v0 = shuffle <8 x i32> %v0, <8 x i32> v1, <0, 1, 2, 3>
21781 ///        %sub.v1 = shuffle <8 x i32> %v0, <8 x i32> v1, <4, 5, 6, 7>
21782 ///        %sub.v2 = shuffle <8 x i32> %v0, <8 x i32> v1, <8, 9, 10, 11>
21783 ///        call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4)
21784 ///
21785 /// Note that the new shufflevectors will be removed and we'll only generate one
21786 /// vst3 instruction in CodeGen.
21787 ///
21788 /// Example for a more general valid mask (Factor 3). Lower:
21789 ///        %i.vec = shuffle <32 x i32> %v0, <32 x i32> %v1,
21790 ///                 <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19>
21791 ///        store <12 x i32> %i.vec, <12 x i32>* %ptr
21792 ///
21793 ///      Into:
21794 ///        %sub.v0 = shuffle <32 x i32> %v0, <32 x i32> v1, <4, 5, 6, 7>
21795 ///        %sub.v1 = shuffle <32 x i32> %v0, <32 x i32> v1, <32, 33, 34, 35>
21796 ///        %sub.v2 = shuffle <32 x i32> %v0, <32 x i32> v1, <16, 17, 18, 19>
21797 ///        call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4)
21798 bool ARMTargetLowering::lowerInterleavedStore(StoreInst *SI,
21799                                               ShuffleVectorInst *SVI,
21800                                               unsigned Factor) const {
21801   assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
21802          "Invalid interleave factor");
21803 
21804   auto *VecTy = cast<FixedVectorType>(SVI->getType());
21805   assert(VecTy->getNumElements() % Factor == 0 && "Invalid interleaved store");
21806 
21807   unsigned LaneLen = VecTy->getNumElements() / Factor;
21808   Type *EltTy = VecTy->getElementType();
21809   auto *SubVecTy = FixedVectorType::get(EltTy, LaneLen);
21810 
21811   const DataLayout &DL = SI->getModule()->getDataLayout();
21812   Align Alignment = SI->getAlign();
21813 
21814   // Skip if we do not have NEON and skip illegal vector types. We can
21815   // "legalize" wide vector types into multiple interleaved accesses as long as
21816   // the vector types are divisible by 128.
21817   if (!isLegalInterleavedAccessType(Factor, SubVecTy, Alignment, DL))
21818     return false;
21819 
21820   unsigned NumStores = getNumInterleavedAccesses(SubVecTy, DL);
21821 
21822   Value *Op0 = SVI->getOperand(0);
21823   Value *Op1 = SVI->getOperand(1);
21824   IRBuilder<> Builder(SI);
21825 
21826   // StN intrinsics don't support pointer vectors as arguments. Convert pointer
21827   // vectors to integer vectors.
21828   if (EltTy->isPointerTy()) {
21829     Type *IntTy = DL.getIntPtrType(EltTy);
21830 
21831     // Convert to the corresponding integer vector.
21832     auto *IntVecTy =
21833         FixedVectorType::get(IntTy, cast<FixedVectorType>(Op0->getType()));
21834     Op0 = Builder.CreatePtrToInt(Op0, IntVecTy);
21835     Op1 = Builder.CreatePtrToInt(Op1, IntVecTy);
21836 
21837     SubVecTy = FixedVectorType::get(IntTy, LaneLen);
21838   }
21839 
21840   // The base address of the store.
21841   Value *BaseAddr = SI->getPointerOperand();
21842 
21843   if (NumStores > 1) {
21844     // If we're going to generate more than one store, reset the lane length
21845     // and sub-vector type to something legal.
21846     LaneLen /= NumStores;
21847     SubVecTy = FixedVectorType::get(SubVecTy->getElementType(), LaneLen);
21848   }
21849 
21850   assert(isTypeLegal(EVT::getEVT(SubVecTy)) && "Illegal vstN vector type!");
21851 
21852   auto Mask = SVI->getShuffleMask();
21853 
21854   auto createStoreIntrinsic = [&](Value *BaseAddr,
21855                                   SmallVectorImpl<Value *> &Shuffles) {
21856     if (Subtarget->hasNEON()) {
21857       static const Intrinsic::ID StoreInts[3] = {Intrinsic::arm_neon_vst2,
21858                                                  Intrinsic::arm_neon_vst3,
21859                                                  Intrinsic::arm_neon_vst4};
21860       Type *PtrTy = Builder.getPtrTy(SI->getPointerAddressSpace());
21861       Type *Tys[] = {PtrTy, SubVecTy};
21862 
21863       Function *VstNFunc = Intrinsic::getDeclaration(
21864           SI->getModule(), StoreInts[Factor - 2], Tys);
21865 
21866       SmallVector<Value *, 6> Ops;
21867       Ops.push_back(BaseAddr);
21868       append_range(Ops, Shuffles);
21869       Ops.push_back(Builder.getInt32(SI->getAlign().value()));
21870       Builder.CreateCall(VstNFunc, Ops);
21871     } else {
21872       assert((Factor == 2 || Factor == 4) &&
21873              "expected interleave factor of 2 or 4 for MVE");
21874       Intrinsic::ID StoreInts =
21875           Factor == 2 ? Intrinsic::arm_mve_vst2q : Intrinsic::arm_mve_vst4q;
21876       Type *PtrTy = Builder.getPtrTy(SI->getPointerAddressSpace());
21877       Type *Tys[] = {PtrTy, SubVecTy};
21878       Function *VstNFunc =
21879           Intrinsic::getDeclaration(SI->getModule(), StoreInts, Tys);
21880 
21881       SmallVector<Value *, 6> Ops;
21882       Ops.push_back(BaseAddr);
21883       append_range(Ops, Shuffles);
21884       for (unsigned F = 0; F < Factor; F++) {
21885         Ops.push_back(Builder.getInt32(F));
21886         Builder.CreateCall(VstNFunc, Ops);
21887         Ops.pop_back();
21888       }
21889     }
21890   };
21891 
21892   for (unsigned StoreCount = 0; StoreCount < NumStores; ++StoreCount) {
21893     // If we generating more than one store, we compute the base address of
21894     // subsequent stores as an offset from the previous.
21895     if (StoreCount > 0)
21896       BaseAddr = Builder.CreateConstGEP1_32(SubVecTy->getElementType(),
21897                                             BaseAddr, LaneLen * Factor);
21898 
21899     SmallVector<Value *, 4> Shuffles;
21900 
21901     // Split the shufflevector operands into sub vectors for the new vstN call.
21902     for (unsigned i = 0; i < Factor; i++) {
21903       unsigned IdxI = StoreCount * LaneLen * Factor + i;
21904       if (Mask[IdxI] >= 0) {
21905         Shuffles.push_back(Builder.CreateShuffleVector(
21906             Op0, Op1, createSequentialMask(Mask[IdxI], LaneLen, 0)));
21907       } else {
21908         unsigned StartMask = 0;
21909         for (unsigned j = 1; j < LaneLen; j++) {
21910           unsigned IdxJ = StoreCount * LaneLen * Factor + j;
21911           if (Mask[IdxJ * Factor + IdxI] >= 0) {
21912             StartMask = Mask[IdxJ * Factor + IdxI] - IdxJ;
21913             break;
21914           }
21915         }
21916         // Note: If all elements in a chunk are undefs, StartMask=0!
21917         // Note: Filling undef gaps with random elements is ok, since
21918         // those elements were being written anyway (with undefs).
21919         // In the case of all undefs we're defaulting to using elems from 0
21920         // Note: StartMask cannot be negative, it's checked in
21921         // isReInterleaveMask
21922         Shuffles.push_back(Builder.CreateShuffleVector(
21923             Op0, Op1, createSequentialMask(StartMask, LaneLen, 0)));
21924       }
21925     }
21926 
21927     createStoreIntrinsic(BaseAddr, Shuffles);
21928   }
21929   return true;
21930 }
21931 
21932 enum HABaseType {
21933   HA_UNKNOWN = 0,
21934   HA_FLOAT,
21935   HA_DOUBLE,
21936   HA_VECT64,
21937   HA_VECT128
21938 };
21939 
21940 static bool isHomogeneousAggregate(Type *Ty, HABaseType &Base,
21941                                    uint64_t &Members) {
21942   if (auto *ST = dyn_cast<StructType>(Ty)) {
21943     for (unsigned i = 0; i < ST->getNumElements(); ++i) {
21944       uint64_t SubMembers = 0;
21945       if (!isHomogeneousAggregate(ST->getElementType(i), Base, SubMembers))
21946         return false;
21947       Members += SubMembers;
21948     }
21949   } else if (auto *AT = dyn_cast<ArrayType>(Ty)) {
21950     uint64_t SubMembers = 0;
21951     if (!isHomogeneousAggregate(AT->getElementType(), Base, SubMembers))
21952       return false;
21953     Members += SubMembers * AT->getNumElements();
21954   } else if (Ty->isFloatTy()) {
21955     if (Base != HA_UNKNOWN && Base != HA_FLOAT)
21956       return false;
21957     Members = 1;
21958     Base = HA_FLOAT;
21959   } else if (Ty->isDoubleTy()) {
21960     if (Base != HA_UNKNOWN && Base != HA_DOUBLE)
21961       return false;
21962     Members = 1;
21963     Base = HA_DOUBLE;
21964   } else if (auto *VT = dyn_cast<VectorType>(Ty)) {
21965     Members = 1;
21966     switch (Base) {
21967     case HA_FLOAT:
21968     case HA_DOUBLE:
21969       return false;
21970     case HA_VECT64:
21971       return VT->getPrimitiveSizeInBits().getFixedValue() == 64;
21972     case HA_VECT128:
21973       return VT->getPrimitiveSizeInBits().getFixedValue() == 128;
21974     case HA_UNKNOWN:
21975       switch (VT->getPrimitiveSizeInBits().getFixedValue()) {
21976       case 64:
21977         Base = HA_VECT64;
21978         return true;
21979       case 128:
21980         Base = HA_VECT128;
21981         return true;
21982       default:
21983         return false;
21984       }
21985     }
21986   }
21987 
21988   return (Members > 0 && Members <= 4);
21989 }
21990 
21991 /// Return the correct alignment for the current calling convention.
21992 Align ARMTargetLowering::getABIAlignmentForCallingConv(
21993     Type *ArgTy, const DataLayout &DL) const {
21994   const Align ABITypeAlign = DL.getABITypeAlign(ArgTy);
21995   if (!ArgTy->isVectorTy())
21996     return ABITypeAlign;
21997 
21998   // Avoid over-aligning vector parameters. It would require realigning the
21999   // stack and waste space for no real benefit.
22000   return std::min(ABITypeAlign, DL.getStackAlignment());
22001 }
22002 
22003 /// Return true if a type is an AAPCS-VFP homogeneous aggregate or one of
22004 /// [N x i32] or [N x i64]. This allows front-ends to skip emitting padding when
22005 /// passing according to AAPCS rules.
22006 bool ARMTargetLowering::functionArgumentNeedsConsecutiveRegisters(
22007     Type *Ty, CallingConv::ID CallConv, bool isVarArg,
22008     const DataLayout &DL) const {
22009   if (getEffectiveCallingConv(CallConv, isVarArg) !=
22010       CallingConv::ARM_AAPCS_VFP)
22011     return false;
22012 
22013   HABaseType Base = HA_UNKNOWN;
22014   uint64_t Members = 0;
22015   bool IsHA = isHomogeneousAggregate(Ty, Base, Members);
22016   LLVM_DEBUG(dbgs() << "isHA: " << IsHA << " "; Ty->dump());
22017 
22018   bool IsIntArray = Ty->isArrayTy() && Ty->getArrayElementType()->isIntegerTy();
22019   return IsHA || IsIntArray;
22020 }
22021 
22022 Register ARMTargetLowering::getExceptionPointerRegister(
22023     const Constant *PersonalityFn) const {
22024   // Platforms which do not use SjLj EH may return values in these registers
22025   // via the personality function.
22026   return Subtarget->useSjLjEH() ? Register() : ARM::R0;
22027 }
22028 
22029 Register ARMTargetLowering::getExceptionSelectorRegister(
22030     const Constant *PersonalityFn) const {
22031   // Platforms which do not use SjLj EH may return values in these registers
22032   // via the personality function.
22033   return Subtarget->useSjLjEH() ? Register() : ARM::R1;
22034 }
22035 
22036 void ARMTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
22037   // Update IsSplitCSR in ARMFunctionInfo.
22038   ARMFunctionInfo *AFI = Entry->getParent()->getInfo<ARMFunctionInfo>();
22039   AFI->setIsSplitCSR(true);
22040 }
22041 
22042 void ARMTargetLowering::insertCopiesSplitCSR(
22043     MachineBasicBlock *Entry,
22044     const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
22045   const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
22046   const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
22047   if (!IStart)
22048     return;
22049 
22050   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
22051   MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
22052   MachineBasicBlock::iterator MBBI = Entry->begin();
22053   for (const MCPhysReg *I = IStart; *I; ++I) {
22054     const TargetRegisterClass *RC = nullptr;
22055     if (ARM::GPRRegClass.contains(*I))
22056       RC = &ARM::GPRRegClass;
22057     else if (ARM::DPRRegClass.contains(*I))
22058       RC = &ARM::DPRRegClass;
22059     else
22060       llvm_unreachable("Unexpected register class in CSRsViaCopy!");
22061 
22062     Register NewVR = MRI->createVirtualRegister(RC);
22063     // Create copy from CSR to a virtual register.
22064     // FIXME: this currently does not emit CFI pseudo-instructions, it works
22065     // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
22066     // nounwind. If we want to generalize this later, we may need to emit
22067     // CFI pseudo-instructions.
22068     assert(Entry->getParent()->getFunction().hasFnAttribute(
22069                Attribute::NoUnwind) &&
22070            "Function should be nounwind in insertCopiesSplitCSR!");
22071     Entry->addLiveIn(*I);
22072     BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
22073         .addReg(*I);
22074 
22075     // Insert the copy-back instructions right before the terminator.
22076     for (auto *Exit : Exits)
22077       BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
22078               TII->get(TargetOpcode::COPY), *I)
22079           .addReg(NewVR);
22080   }
22081 }
22082 
22083 void ARMTargetLowering::finalizeLowering(MachineFunction &MF) const {
22084   MF.getFrameInfo().computeMaxCallFrameSize(MF);
22085   TargetLoweringBase::finalizeLowering(MF);
22086 }
22087 
22088 bool ARMTargetLowering::isComplexDeinterleavingSupported() const {
22089   return Subtarget->hasMVEIntegerOps();
22090 }
22091 
22092 bool ARMTargetLowering::isComplexDeinterleavingOperationSupported(
22093     ComplexDeinterleavingOperation Operation, Type *Ty) const {
22094   auto *VTy = dyn_cast<FixedVectorType>(Ty);
22095   if (!VTy)
22096     return false;
22097 
22098   auto *ScalarTy = VTy->getScalarType();
22099   unsigned NumElements = VTy->getNumElements();
22100 
22101   unsigned VTyWidth = VTy->getScalarSizeInBits() * NumElements;
22102   if (VTyWidth < 128 || !llvm::isPowerOf2_32(VTyWidth))
22103     return false;
22104 
22105   // Both VCADD and VCMUL/VCMLA support the same types, F16 and F32
22106   if (ScalarTy->isHalfTy() || ScalarTy->isFloatTy())
22107     return Subtarget->hasMVEFloatOps();
22108 
22109   if (Operation != ComplexDeinterleavingOperation::CAdd)
22110     return false;
22111 
22112   return Subtarget->hasMVEIntegerOps() &&
22113          (ScalarTy->isIntegerTy(8) || ScalarTy->isIntegerTy(16) ||
22114           ScalarTy->isIntegerTy(32));
22115 }
22116 
22117 Value *ARMTargetLowering::createComplexDeinterleavingIR(
22118     IRBuilderBase &B, ComplexDeinterleavingOperation OperationType,
22119     ComplexDeinterleavingRotation Rotation, Value *InputA, Value *InputB,
22120     Value *Accumulator) const {
22121 
22122   FixedVectorType *Ty = cast<FixedVectorType>(InputA->getType());
22123 
22124   unsigned TyWidth = Ty->getScalarSizeInBits() * Ty->getNumElements();
22125 
22126   assert(TyWidth >= 128 && "Width of vector type must be at least 128 bits");
22127 
22128   if (TyWidth > 128) {
22129     int Stride = Ty->getNumElements() / 2;
22130     auto SplitSeq = llvm::seq<int>(0, Ty->getNumElements());
22131     auto SplitSeqVec = llvm::to_vector(SplitSeq);
22132     ArrayRef<int> LowerSplitMask(&SplitSeqVec[0], Stride);
22133     ArrayRef<int> UpperSplitMask(&SplitSeqVec[Stride], Stride);
22134 
22135     auto *LowerSplitA = B.CreateShuffleVector(InputA, LowerSplitMask);
22136     auto *LowerSplitB = B.CreateShuffleVector(InputB, LowerSplitMask);
22137     auto *UpperSplitA = B.CreateShuffleVector(InputA, UpperSplitMask);
22138     auto *UpperSplitB = B.CreateShuffleVector(InputB, UpperSplitMask);
22139     Value *LowerSplitAcc = nullptr;
22140     Value *UpperSplitAcc = nullptr;
22141 
22142     if (Accumulator) {
22143       LowerSplitAcc = B.CreateShuffleVector(Accumulator, LowerSplitMask);
22144       UpperSplitAcc = B.CreateShuffleVector(Accumulator, UpperSplitMask);
22145     }
22146 
22147     auto *LowerSplitInt = createComplexDeinterleavingIR(
22148         B, OperationType, Rotation, LowerSplitA, LowerSplitB, LowerSplitAcc);
22149     auto *UpperSplitInt = createComplexDeinterleavingIR(
22150         B, OperationType, Rotation, UpperSplitA, UpperSplitB, UpperSplitAcc);
22151 
22152     ArrayRef<int> JoinMask(&SplitSeqVec[0], Ty->getNumElements());
22153     return B.CreateShuffleVector(LowerSplitInt, UpperSplitInt, JoinMask);
22154   }
22155 
22156   auto *IntTy = Type::getInt32Ty(B.getContext());
22157 
22158   ConstantInt *ConstRotation = nullptr;
22159   if (OperationType == ComplexDeinterleavingOperation::CMulPartial) {
22160     ConstRotation = ConstantInt::get(IntTy, (int)Rotation);
22161 
22162     if (Accumulator)
22163       return B.CreateIntrinsic(Intrinsic::arm_mve_vcmlaq, Ty,
22164                                {ConstRotation, Accumulator, InputB, InputA});
22165     return B.CreateIntrinsic(Intrinsic::arm_mve_vcmulq, Ty,
22166                              {ConstRotation, InputB, InputA});
22167   }
22168 
22169   if (OperationType == ComplexDeinterleavingOperation::CAdd) {
22170     // 1 means the value is not halved.
22171     auto *ConstHalving = ConstantInt::get(IntTy, 1);
22172 
22173     if (Rotation == ComplexDeinterleavingRotation::Rotation_90)
22174       ConstRotation = ConstantInt::get(IntTy, 0);
22175     else if (Rotation == ComplexDeinterleavingRotation::Rotation_270)
22176       ConstRotation = ConstantInt::get(IntTy, 1);
22177 
22178     if (!ConstRotation)
22179       return nullptr; // Invalid rotation for arm_mve_vcaddq
22180 
22181     return B.CreateIntrinsic(Intrinsic::arm_mve_vcaddq, Ty,
22182                              {ConstHalving, ConstRotation, InputA, InputB});
22183   }
22184 
22185   return nullptr;
22186 }
22187