1//===- ARMInstrInfo.td - Target Description for ARM Target -*- tablegen -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file describes the ARM instructions in TableGen format.
10//
11//===----------------------------------------------------------------------===//
12
13//===----------------------------------------------------------------------===//
14// ARM specific DAG Nodes.
15//
16
17// Type profiles.
18def SDT_ARMCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32>,
19                                           SDTCisVT<1, i32> ]>;
20def SDT_ARMCallSeqEnd   : SDCallSeqEnd<[ SDTCisVT<0, i32>, SDTCisVT<1, i32> ]>;
21def SDT_ARMStructByVal : SDTypeProfile<0, 4,
22                                       [SDTCisVT<0, i32>, SDTCisVT<1, i32>,
23                                        SDTCisVT<2, i32>, SDTCisVT<3, i32>]>;
24
25def SDT_ARMSaveCallPC : SDTypeProfile<0, 1, []>;
26
27def SDT_ARMcall    : SDTypeProfile<0, -1, [SDTCisPtrTy<0>]>;
28
29def SDT_ARMCMov    : SDTypeProfile<1, 3,
30                                   [SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>,
31                                    SDTCisVT<3, i32>]>;
32
33def SDT_ARMBrcond  : SDTypeProfile<0, 2,
34                                   [SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>]>;
35
36def SDT_ARMBrJT    : SDTypeProfile<0, 2,
37                                  [SDTCisPtrTy<0>, SDTCisVT<1, i32>]>;
38
39def SDT_ARMBr2JT   : SDTypeProfile<0, 3,
40                                  [SDTCisPtrTy<0>, SDTCisVT<1, i32>,
41                                   SDTCisVT<2, i32>]>;
42
43def SDT_ARMBCC_i64 : SDTypeProfile<0, 6,
44                                  [SDTCisVT<0, i32>,
45                                   SDTCisVT<1, i32>, SDTCisVT<2, i32>,
46                                   SDTCisVT<3, i32>, SDTCisVT<4, i32>,
47                                   SDTCisVT<5, OtherVT>]>;
48
49def SDT_ARMAnd     : SDTypeProfile<1, 2,
50                                   [SDTCisVT<0, i32>, SDTCisVT<1, i32>,
51                                    SDTCisVT<2, i32>]>;
52
53def SDT_ARMCmp     : SDTypeProfile<0, 2, [SDTCisSameAs<0, 1>]>;
54
55def SDT_ARMPICAdd  : SDTypeProfile<1, 2, [SDTCisSameAs<0, 1>,
56                                          SDTCisPtrTy<1>, SDTCisVT<2, i32>]>;
57
58def SDT_ARMThreadPointer : SDTypeProfile<1, 0, [SDTCisPtrTy<0>]>;
59def SDT_ARMEH_SJLJ_Setjmp : SDTypeProfile<1, 2, [SDTCisInt<0>, SDTCisPtrTy<1>,
60                                                 SDTCisInt<2>]>;
61def SDT_ARMEH_SJLJ_Longjmp: SDTypeProfile<0, 2, [SDTCisPtrTy<0>, SDTCisInt<1>]>;
62def SDT_ARMEH_SJLJ_SetupDispatch: SDTypeProfile<0, 0, []>;
63
64def SDT_ARMMEMBARRIER     : SDTypeProfile<0, 1, [SDTCisInt<0>]>;
65
66def SDT_ARMPREFETCH : SDTypeProfile<0, 3, [SDTCisPtrTy<0>, SDTCisSameAs<1, 2>,
67                                           SDTCisInt<1>]>;
68
69def SDT_ARMTCRET : SDTypeProfile<0, 2, [SDTCisPtrTy<0>]>;
70
71def SDT_ARMBFI : SDTypeProfile<1, 3, [SDTCisVT<0, i32>, SDTCisVT<1, i32>,
72                                      SDTCisVT<2, i32>, SDTCisVT<3, i32>]>;
73
74def SDT_WIN__DBZCHK : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
75
76def SDT_ARMMEMCPY  : SDTypeProfile<2, 3, [SDTCisVT<0, i32>, SDTCisVT<1, i32>,
77                                          SDTCisVT<2, i32>, SDTCisVT<3, i32>,
78                                          SDTCisVT<4, i32>]>;
79
80def SDTBinaryArithWithFlags : SDTypeProfile<2, 2,
81                                            [SDTCisSameAs<0, 2>,
82                                             SDTCisSameAs<0, 3>,
83                                             SDTCisInt<0>, SDTCisVT<1, i32>]>;
84
85// SDTBinaryArithWithFlagsInOut - RES1, CPSR = op LHS, RHS, CPSR
86def SDTBinaryArithWithFlagsInOut : SDTypeProfile<2, 3,
87                                            [SDTCisSameAs<0, 2>,
88                                             SDTCisSameAs<0, 3>,
89                                             SDTCisInt<0>,
90                                             SDTCisVT<1, i32>,
91                                             SDTCisVT<4, i32>]>;
92
93def SDT_LongMac  : SDTypeProfile<2, 4, [SDTCisVT<0, i32>,
94                                        SDTCisSameAs<0, 1>,
95                                        SDTCisSameAs<0, 2>,
96                                        SDTCisSameAs<0, 3>,
97                                        SDTCisSameAs<0, 4>,
98                                        SDTCisSameAs<0, 5>]>;
99
100// ARMlsll, ARMlsrl, ARMasrl
101def SDT_ARMIntShiftParts : SDTypeProfile<2, 3, [SDTCisSameAs<0, 1>,
102                                              SDTCisSameAs<0, 2>,
103                                              SDTCisSameAs<0, 3>,
104                                              SDTCisInt<0>,
105                                              SDTCisInt<4>]>;
106
107def ARMSmlald        : SDNode<"ARMISD::SMLALD", SDT_LongMac>;
108def ARMSmlaldx       : SDNode<"ARMISD::SMLALDX", SDT_LongMac>;
109def ARMSmlsld        : SDNode<"ARMISD::SMLSLD", SDT_LongMac>;
110def ARMSmlsldx       : SDNode<"ARMISD::SMLSLDX", SDT_LongMac>;
111
112def SDT_ARMCSel      : SDTypeProfile<1, 3,
113                                   [SDTCisSameAs<0, 1>,
114                                    SDTCisSameAs<0, 2>,
115                                    SDTCisInt<3>,
116                                    SDTCisVT<3, i32>]>;
117
118def ARMcsinv         : SDNode<"ARMISD::CSINV", SDT_ARMCSel, [SDNPOptInGlue]>;
119def ARMcsneg         : SDNode<"ARMISD::CSNEG", SDT_ARMCSel, [SDNPOptInGlue]>;
120def ARMcsinc         : SDNode<"ARMISD::CSINC", SDT_ARMCSel, [SDNPOptInGlue]>;
121
122def SDT_MulHSR       : SDTypeProfile<1, 3, [SDTCisVT<0,i32>,
123                                            SDTCisSameAs<0, 1>,
124                                            SDTCisSameAs<0, 2>,
125                                            SDTCisSameAs<0, 3>]>;
126
127def ARMsmmlar      : SDNode<"ARMISD::SMMLAR", SDT_MulHSR>;
128def ARMsmmlsr      : SDNode<"ARMISD::SMMLSR", SDT_MulHSR>;
129
130// Node definitions.
131def ARMWrapper       : SDNode<"ARMISD::Wrapper",     SDTIntUnaryOp>;
132def ARMWrapperPIC    : SDNode<"ARMISD::WrapperPIC",  SDTIntUnaryOp>;
133def ARMWrapperJT     : SDNode<"ARMISD::WrapperJT",   SDTIntUnaryOp>;
134
135def ARMcallseq_start : SDNode<"ISD::CALLSEQ_START", SDT_ARMCallSeqStart,
136                              [SDNPHasChain, SDNPSideEffect, SDNPOutGlue]>;
137def ARMcallseq_end   : SDNode<"ISD::CALLSEQ_END",   SDT_ARMCallSeqEnd,
138                              [SDNPHasChain, SDNPSideEffect,
139                               SDNPOptInGlue, SDNPOutGlue]>;
140def ARMcopystructbyval : SDNode<"ARMISD::COPY_STRUCT_BYVAL" ,
141                                SDT_ARMStructByVal,
142                                [SDNPHasChain, SDNPInGlue, SDNPOutGlue,
143                                 SDNPMayStore, SDNPMayLoad]>;
144
145def ARMcall          : SDNode<"ARMISD::CALL", SDT_ARMcall,
146                              [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
147                               SDNPVariadic]>;
148def ARMcall_pred    : SDNode<"ARMISD::CALL_PRED", SDT_ARMcall,
149                              [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
150                               SDNPVariadic]>;
151def ARMcall_nolink   : SDNode<"ARMISD::CALL_NOLINK", SDT_ARMcall,
152                              [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
153                               SDNPVariadic]>;
154
155def ARMretflag       : SDNode<"ARMISD::RET_FLAG", SDTNone,
156                              [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
157def ARMseretflag     : SDNode<"ARMISD::SERET_FLAG", SDTNone,
158                              [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
159def ARMintretflag    : SDNode<"ARMISD::INTRET_FLAG", SDT_ARMcall,
160                              [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
161def ARMcmov          : SDNode<"ARMISD::CMOV", SDT_ARMCMov,
162                              [SDNPInGlue]>;
163def ARMsubs          : SDNode<"ARMISD::SUBS", SDTIntBinOp, [SDNPOutGlue]>;
164
165def ARMssat   : SDNode<"ARMISD::SSAT", SDTIntSatNoShOp, []>;
166
167def ARMusat   : SDNode<"ARMISD::USAT", SDTIntSatNoShOp, []>;
168
169def ARMbrcond        : SDNode<"ARMISD::BRCOND", SDT_ARMBrcond,
170                              [SDNPHasChain, SDNPInGlue, SDNPOutGlue]>;
171
172def ARMbrjt          : SDNode<"ARMISD::BR_JT", SDT_ARMBrJT,
173                              [SDNPHasChain]>;
174def ARMbr2jt         : SDNode<"ARMISD::BR2_JT", SDT_ARMBr2JT,
175                              [SDNPHasChain]>;
176
177def ARMBcci64        : SDNode<"ARMISD::BCC_i64", SDT_ARMBCC_i64,
178                              [SDNPHasChain]>;
179
180def ARMcmp           : SDNode<"ARMISD::CMP", SDT_ARMCmp,
181                              [SDNPOutGlue]>;
182
183def ARMcmn           : SDNode<"ARMISD::CMN", SDT_ARMCmp,
184                              [SDNPOutGlue]>;
185
186def ARMcmpZ          : SDNode<"ARMISD::CMPZ", SDT_ARMCmp,
187                              [SDNPOutGlue, SDNPCommutative]>;
188
189def ARMpic_add       : SDNode<"ARMISD::PIC_ADD", SDT_ARMPICAdd>;
190
191def ARMasrl          : SDNode<"ARMISD::ASRL", SDT_ARMIntShiftParts, []>;
192def ARMlsrl          : SDNode<"ARMISD::LSRL", SDT_ARMIntShiftParts, []>;
193def ARMlsll          : SDNode<"ARMISD::LSLL", SDT_ARMIntShiftParts, []>;
194
195def ARMsrl_flag      : SDNode<"ARMISD::SRL_FLAG", SDTIntUnaryOp, [SDNPOutGlue]>;
196def ARMsra_flag      : SDNode<"ARMISD::SRA_FLAG", SDTIntUnaryOp, [SDNPOutGlue]>;
197def ARMrrx           : SDNode<"ARMISD::RRX"     , SDTIntUnaryOp, [SDNPInGlue ]>;
198
199def ARMaddc          : SDNode<"ARMISD::ADDC",  SDTBinaryArithWithFlags,
200                              [SDNPCommutative]>;
201def ARMsubc          : SDNode<"ARMISD::SUBC",  SDTBinaryArithWithFlags>;
202def ARMlsls          : SDNode<"ARMISD::LSLS",  SDTBinaryArithWithFlags>;
203def ARMadde          : SDNode<"ARMISD::ADDE",  SDTBinaryArithWithFlagsInOut>;
204def ARMsube          : SDNode<"ARMISD::SUBE",  SDTBinaryArithWithFlagsInOut>;
205
206def ARMthread_pointer: SDNode<"ARMISD::THREAD_POINTER", SDT_ARMThreadPointer>;
207def ARMeh_sjlj_setjmp: SDNode<"ARMISD::EH_SJLJ_SETJMP",
208                               SDT_ARMEH_SJLJ_Setjmp,
209                               [SDNPHasChain, SDNPSideEffect]>;
210def ARMeh_sjlj_longjmp: SDNode<"ARMISD::EH_SJLJ_LONGJMP",
211                               SDT_ARMEH_SJLJ_Longjmp,
212                               [SDNPHasChain, SDNPSideEffect]>;
213def ARMeh_sjlj_setup_dispatch: SDNode<"ARMISD::EH_SJLJ_SETUP_DISPATCH",
214                                      SDT_ARMEH_SJLJ_SetupDispatch,
215                                      [SDNPHasChain, SDNPSideEffect]>;
216
217def ARMMemBarrierMCR  : SDNode<"ARMISD::MEMBARRIER_MCR", SDT_ARMMEMBARRIER,
218                               [SDNPHasChain, SDNPSideEffect]>;
219def ARMPreload        : SDNode<"ARMISD::PRELOAD", SDT_ARMPREFETCH,
220                               [SDNPHasChain, SDNPMayLoad, SDNPMayStore]>;
221
222def ARMtcret         : SDNode<"ARMISD::TC_RETURN", SDT_ARMTCRET,
223                        [SDNPHasChain,  SDNPOptInGlue, SDNPVariadic]>;
224
225def ARMbfi           : SDNode<"ARMISD::BFI", SDT_ARMBFI>;
226
227def ARMmemcopy : SDNode<"ARMISD::MEMCPY", SDT_ARMMEMCPY,
228                        [SDNPHasChain, SDNPInGlue, SDNPOutGlue,
229                         SDNPMayStore, SDNPMayLoad]>;
230
231def ARMsmulwb       : SDNode<"ARMISD::SMULWB", SDTIntBinOp, []>;
232def ARMsmulwt       : SDNode<"ARMISD::SMULWT", SDTIntBinOp, []>;
233def ARMsmlalbb      : SDNode<"ARMISD::SMLALBB", SDT_LongMac, []>;
234def ARMsmlalbt      : SDNode<"ARMISD::SMLALBT", SDT_LongMac, []>;
235def ARMsmlaltb      : SDNode<"ARMISD::SMLALTB", SDT_LongMac, []>;
236def ARMsmlaltt      : SDNode<"ARMISD::SMLALTT", SDT_LongMac, []>;
237
238def ARMqadd8b       : SDNode<"ARMISD::QADD8b", SDT_ARMAnd, []>;
239def ARMqsub8b       : SDNode<"ARMISD::QSUB8b", SDT_ARMAnd, []>;
240def ARMqadd16b      : SDNode<"ARMISD::QADD16b", SDT_ARMAnd, []>;
241def ARMqsub16b      : SDNode<"ARMISD::QSUB16b", SDT_ARMAnd, []>;
242
243def ARMuqadd8b       : SDNode<"ARMISD::UQADD8b", SDT_ARMAnd, []>;
244def ARMuqsub8b       : SDNode<"ARMISD::UQSUB8b", SDT_ARMAnd, []>;
245def ARMuqadd16b      : SDNode<"ARMISD::UQADD16b", SDT_ARMAnd, []>;
246def ARMuqsub16b      : SDNode<"ARMISD::UQSUB16b", SDT_ARMAnd, []>;
247
248def SDT_ARMldrd     : SDTypeProfile<2, 1, [SDTCisVT<0, i32>, SDTCisSameAs<0, 1>, SDTCisPtrTy<2>]>;
249def ARMldrd         : SDNode<"ARMISD::LDRD", SDT_ARMldrd, [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
250
251def SDT_ARMstrd     : SDTypeProfile<0, 3, [SDTCisVT<0, i32>, SDTCisSameAs<0, 1>, SDTCisPtrTy<2>]>;
252def ARMstrd         : SDNode<"ARMISD::STRD", SDT_ARMstrd, [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
253
254// Vector operations shared between NEON and MVE
255
256def ARMvdup      : SDNode<"ARMISD::VDUP", SDTypeProfile<1, 1, [SDTCisVec<0>]>>;
257
258// VDUPLANE can produce a quad-register result from a double-register source,
259// so the result is not constrained to match the source.
260def ARMvduplane  : SDNode<"ARMISD::VDUPLANE",
261                          SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisVec<1>,
262                                               SDTCisVT<2, i32>]>>;
263
264def SDTARMVIDUP  : SDTypeProfile<2, 2, [SDTCisVec<0>, SDTCisVT<1, i32>,
265                                          SDTCisVT<2, i32>, SDTCisVT<3, i32>]>;
266def ARMvidup    : SDNode<"ARMISD::VIDUP", SDTARMVIDUP>;
267
268def SDTARMVSHUF   : SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisSameAs<0, 1>]>;
269def ARMvrev64    : SDNode<"ARMISD::VREV64", SDTARMVSHUF>;
270def ARMvrev32    : SDNode<"ARMISD::VREV32", SDTARMVSHUF>;
271def ARMvrev16    : SDNode<"ARMISD::VREV16", SDTARMVSHUF>;
272
273def SDTARMVGETLN  : SDTypeProfile<1, 2, [SDTCisVT<0, i32>, SDTCisVec<1>,
274                                         SDTCisVT<2, i32>]>;
275def ARMvgetlaneu : SDNode<"ARMISD::VGETLANEu", SDTARMVGETLN>;
276def ARMvgetlanes : SDNode<"ARMISD::VGETLANEs", SDTARMVGETLN>;
277
278def SDTARMVMOVIMM : SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisVT<1, i32>]>;
279def ARMvmovImm   : SDNode<"ARMISD::VMOVIMM", SDTARMVMOVIMM>;
280def ARMvmvnImm   : SDNode<"ARMISD::VMVNIMM", SDTARMVMOVIMM>;
281def ARMvmovFPImm : SDNode<"ARMISD::VMOVFPIMM", SDTARMVMOVIMM>;
282
283def SDTARMVORRIMM : SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisSameAs<0, 1>,
284                                           SDTCisVT<2, i32>]>;
285def ARMvorrImm   : SDNode<"ARMISD::VORRIMM", SDTARMVORRIMM>;
286def ARMvbicImm   : SDNode<"ARMISD::VBICIMM", SDTARMVORRIMM>;
287
288def SDTARMVSHIMM : SDTypeProfile<1, 2, [SDTCisInt<0>, SDTCisSameAs<0, 1>,
289                                        SDTCisVT<2, i32>]>;
290def SDTARMVSH : SDTypeProfile<1, 2, [SDTCisInt<0>, SDTCisSameAs<0, 1>,
291                                     SDTCisSameAs<0, 2>,]>;
292def ARMvshlImm   : SDNode<"ARMISD::VSHLIMM", SDTARMVSHIMM>;
293def ARMvshrsImm  : SDNode<"ARMISD::VSHRsIMM", SDTARMVSHIMM>;
294def ARMvshruImm  : SDNode<"ARMISD::VSHRuIMM", SDTARMVSHIMM>;
295def ARMvshls     : SDNode<"ARMISD::VSHLs", SDTARMVSH>;
296def ARMvshlu     : SDNode<"ARMISD::VSHLu", SDTARMVSH>;
297
298def SDTARMVMULL   : SDTypeProfile<1, 2, [SDTCisInt<0>, SDTCisInt<1>,
299                                         SDTCisSameAs<1, 2>]>;
300def ARMvmulls    : SDNode<"ARMISD::VMULLs", SDTARMVMULL>;
301def ARMvmullu    : SDNode<"ARMISD::VMULLu", SDTARMVMULL>;
302
303def SDTARMVCMP    : SDTypeProfile<1, 3, [SDTCisInt<0>, SDTCisSameAs<1, 2>,
304                                         SDTCisInt<3>]>;
305def SDTARMVCMPZ   : SDTypeProfile<1, 2, [SDTCisInt<2>]>;
306
307def ARMvcmp      : SDNode<"ARMISD::VCMP", SDTARMVCMP>;
308def ARMvcmpz     : SDNode<"ARMISD::VCMPZ", SDTARMVCMPZ>;
309
310// 'VECTOR_REG_CAST' is an operation that reinterprets the contents of a
311// vector register as a different vector type, without changing the contents of
312// the register. It differs from 'bitconvert' in that bitconvert reinterprets
313// the _memory_ storage format of the vector, whereas VECTOR_REG_CAST
314// reinterprets the _register_ format - and in big-endian, the memory and
315// register formats are different, so they are different operations.
316//
317// For example, 'VECTOR_REG_CAST' between v8i16 and v16i8 will map the LSB of
318// the zeroth i16 lane to the zeroth i8 lane, regardless of system endianness,
319// whereas 'bitconvert' will map it to the high byte in big-endian mode,
320// because that's what (MVE) VSTRH.16 followed by VLDRB.8 would do. So the
321// bitconvert would have to emit a VREV16.8 instruction, whereas the
322// VECTOR_REG_CAST emits no code at all if the vector is already in a register.
323def ARMVectorRegCastImpl : SDNode<"ARMISD::VECTOR_REG_CAST", SDTUnaryOp>;
324
325// In little-endian, VECTOR_REG_CAST is often turned into bitconvert during
326// lowering (because in that situation they're identical). So an isel pattern
327// that needs to match something that's _logically_ a VECTOR_REG_CAST must
328// _physically_ match a different node type depending on endianness.
329//
330// This 'PatFrags' instance is a centralized facility to make that easy. It
331// matches VECTOR_REG_CAST in either endianness, and also bitconvert in the
332// endianness where it's equivalent.
333def ARMVectorRegCast: PatFrags<
334    (ops node:$x), [(ARMVectorRegCastImpl node:$x), (bitconvert node:$x)], [{
335       // Reject a match against bitconvert (aka ISD::BITCAST) if big-endian
336       return !(CurDAG->getDataLayout().isBigEndian() &&
337                N->getOpcode() == ISD::BITCAST);
338    }]>;
339
340//===----------------------------------------------------------------------===//
341// ARM Flag Definitions.
342
343class RegConstraint<string C> {
344  string Constraints = C;
345}
346
347// ARMCC condition codes. See ARMCC::CondCodes
348def ARMCCeq : PatLeaf<(i32 0)>;
349def ARMCCne : PatLeaf<(i32 1)>;
350def ARMCChs : PatLeaf<(i32 2)>;
351def ARMCClo : PatLeaf<(i32 3)>;
352def ARMCCmi : PatLeaf<(i32 4)>;
353def ARMCCpl : PatLeaf<(i32 5)>;
354def ARMCCvs : PatLeaf<(i32 6)>;
355def ARMCCvc : PatLeaf<(i32 7)>;
356def ARMCChi : PatLeaf<(i32 8)>;
357def ARMCCls : PatLeaf<(i32 9)>;
358def ARMCCge : PatLeaf<(i32 10)>;
359def ARMCClt : PatLeaf<(i32 11)>;
360def ARMCCgt : PatLeaf<(i32 12)>;
361def ARMCCle : PatLeaf<(i32 13)>;
362def ARMCCal : PatLeaf<(i32 14)>;
363
364// VCC predicates. See ARMVCC::VPTCodes
365def ARMVCCNone : PatLeaf<(i32 0)>;
366def ARMVCCThen : PatLeaf<(i32 1)>;
367def ARMVCCElse : PatLeaf<(i32 2)>;
368
369//===----------------------------------------------------------------------===//
370//  ARM specific transformation functions and pattern fragments.
371//
372
373// imm_neg_XFORM - Return the negation of an i32 immediate value.
374def imm_neg_XFORM : SDNodeXForm<imm, [{
375  return CurDAG->getTargetConstant(-(int)N->getZExtValue(), SDLoc(N), MVT::i32);
376}]>;
377
378// imm_not_XFORM - Return the complement of a i32 immediate value.
379def imm_not_XFORM : SDNodeXForm<imm, [{
380  return CurDAG->getTargetConstant(~(int)N->getZExtValue(), SDLoc(N), MVT::i32);
381}]>;
382
383// asr_imm_XFORM - Returns a shift immediate with bit {5} set to 1
384def asr_imm_XFORM : SDNodeXForm<imm, [{
385  return CurDAG->getTargetConstant(0x20 | N->getZExtValue(), SDLoc(N), MVT:: i32);
386}]>;
387
388/// imm16_31 predicate - True if the 32-bit immediate is in the range [16,31].
389def imm16_31 : ImmLeaf<i32, [{
390  return (int32_t)Imm >= 16 && (int32_t)Imm < 32;
391}]>;
392
393// sext_16_node predicate - True if the SDNode is sign-extended 16 or more bits.
394def sext_16_node : PatLeaf<(i32 GPR:$a), [{
395  return CurDAG->ComputeNumSignBits(SDValue(N,0)) >= 17;
396}]>;
397
398def sext_bottom_16 : PatFrag<(ops node:$a),
399                             (sext_inreg node:$a, i16)>;
400def sext_top_16 : PatFrag<(ops node:$a),
401                          (i32 (sra node:$a, (i32 16)))>;
402
403def bb_mul : PatFrag<(ops node:$a, node:$b),
404                     (mul (sext_bottom_16 node:$a), (sext_bottom_16 node:$b))>;
405def bt_mul : PatFrag<(ops node:$a, node:$b),
406                     (mul (sext_bottom_16 node:$a), (sra node:$b, (i32 16)))>;
407def tb_mul : PatFrag<(ops node:$a, node:$b),
408                     (mul (sra node:$a, (i32 16)), (sext_bottom_16 node:$b))>;
409def tt_mul : PatFrag<(ops node:$a, node:$b),
410                     (mul (sra node:$a, (i32 16)), (sra node:$b, (i32 16)))>;
411
412/// Split a 32-bit immediate into two 16 bit parts.
413def hi16 : SDNodeXForm<imm, [{
414  return CurDAG->getTargetConstant((uint32_t)N->getZExtValue() >> 16, SDLoc(N),
415                                   MVT::i32);
416}]>;
417
418def lo16AllZero : PatLeaf<(i32 imm), [{
419  // Returns true if all low 16-bits are 0.
420  return (((uint32_t)N->getZExtValue()) & 0xFFFFUL) == 0;
421}], hi16>;
422
423// top16Zero - answer true if the upper 16 bits of $src are 0, false otherwise
424def top16Zero: PatLeaf<(i32 GPR:$src), [{
425  return !SDValue(N,0)->getValueType(0).isVector() &&
426         CurDAG->MaskedValueIsZero(SDValue(N,0), APInt::getHighBitsSet(32, 16));
427  }]>;
428
429class BinOpFrag<dag res> : PatFrag<(ops node:$LHS, node:$RHS), res>;
430class UnOpFrag <dag res> : PatFrag<(ops node:$Src), res>;
431
432// An 'and' node with a single use.
433def and_su : PatFrag<(ops node:$lhs, node:$rhs), (and node:$lhs, node:$rhs), [{
434  return N->hasOneUse();
435}]>;
436
437// An 'xor' node with a single use.
438def xor_su : PatFrag<(ops node:$lhs, node:$rhs), (xor node:$lhs, node:$rhs), [{
439  return N->hasOneUse();
440}]>;
441
442// An 'fmul' node with a single use.
443def fmul_su : PatFrag<(ops node:$lhs, node:$rhs), (fmul node:$lhs, node:$rhs),[{
444  return N->hasOneUse();
445}]>;
446
447// An 'fadd' node which checks for single non-hazardous use.
448def fadd_mlx : PatFrag<(ops node:$lhs, node:$rhs),(fadd node:$lhs, node:$rhs),[{
449  return hasNoVMLxHazardUse(N);
450}]>;
451
452// An 'fsub' node which checks for single non-hazardous use.
453def fsub_mlx : PatFrag<(ops node:$lhs, node:$rhs),(fsub node:$lhs, node:$rhs),[{
454  return hasNoVMLxHazardUse(N);
455}]>;
456
457def imm_even : ImmLeaf<i32, [{ return (Imm & 1) == 0; }]>;
458def imm_odd : ImmLeaf<i32, [{ return (Imm & 1) == 1; }]>;
459
460def asr_imm : ImmLeaf<i32, [{ return Imm > 0 && Imm <= 32; }], asr_imm_XFORM>;
461
462//===----------------------------------------------------------------------===//
463// NEON/MVE pattern fragments
464//
465
466// Extract D sub-registers of Q registers.
467def DSubReg_i8_reg  : SDNodeXForm<imm, [{
468  assert(ARM::dsub_7 == ARM::dsub_0+7 && "Unexpected subreg numbering");
469  return CurDAG->getTargetConstant(ARM::dsub_0 + N->getZExtValue()/8, SDLoc(N),
470                                   MVT::i32);
471}]>;
472def DSubReg_i16_reg : SDNodeXForm<imm, [{
473  assert(ARM::dsub_7 == ARM::dsub_0+7 && "Unexpected subreg numbering");
474  return CurDAG->getTargetConstant(ARM::dsub_0 + N->getZExtValue()/4, SDLoc(N),
475                                   MVT::i32);
476}]>;
477def DSubReg_i32_reg : SDNodeXForm<imm, [{
478  assert(ARM::dsub_7 == ARM::dsub_0+7 && "Unexpected subreg numbering");
479  return CurDAG->getTargetConstant(ARM::dsub_0 + N->getZExtValue()/2, SDLoc(N),
480                                   MVT::i32);
481}]>;
482def DSubReg_f64_reg : SDNodeXForm<imm, [{
483  assert(ARM::dsub_7 == ARM::dsub_0+7 && "Unexpected subreg numbering");
484  return CurDAG->getTargetConstant(ARM::dsub_0 + N->getZExtValue(), SDLoc(N),
485                                   MVT::i32);
486}]>;
487
488// Extract S sub-registers of Q/D registers.
489def SSubReg_f32_reg : SDNodeXForm<imm, [{
490  assert(ARM::ssub_3 == ARM::ssub_0+3 && "Unexpected subreg numbering");
491  return CurDAG->getTargetConstant(ARM::ssub_0 + N->getZExtValue(), SDLoc(N),
492                                   MVT::i32);
493}]>;
494
495// Extract S sub-registers of Q/D registers containing a given f16/bf16 lane.
496def SSubReg_f16_reg : SDNodeXForm<imm, [{
497  assert(ARM::ssub_3 == ARM::ssub_0+3 && "Unexpected subreg numbering");
498  return CurDAG->getTargetConstant(ARM::ssub_0 + N->getZExtValue()/2, SDLoc(N),
499                                   MVT::i32);
500}]>;
501
502// Translate lane numbers from Q registers to D subregs.
503def SubReg_i8_lane  : SDNodeXForm<imm, [{
504  return CurDAG->getTargetConstant(N->getZExtValue() & 7, SDLoc(N), MVT::i32);
505}]>;
506def SubReg_i16_lane : SDNodeXForm<imm, [{
507  return CurDAG->getTargetConstant(N->getZExtValue() & 3, SDLoc(N), MVT::i32);
508}]>;
509def SubReg_i32_lane : SDNodeXForm<imm, [{
510  return CurDAG->getTargetConstant(N->getZExtValue() & 1, SDLoc(N), MVT::i32);
511}]>;
512
513
514def ARMimmAllZerosV: PatLeaf<(bitconvert (v4i32 (ARMvmovImm (i32 0))))>;
515def ARMimmAllZerosD: PatLeaf<(bitconvert (v2i32 (ARMvmovImm (i32 0))))>;
516def ARMimmAllOnesV: PatLeaf<(bitconvert (v16i8 (ARMvmovImm (i32 0xEFF))))>;
517def ARMimmAllOnesD: PatLeaf<(bitconvert (v8i8 (ARMvmovImm (i32 0xEFF))))>;
518
519def ARMimmOneV: PatLeaf<(ARMvmovImm (i32 timm)), [{
520  ConstantSDNode *ConstVal = cast<ConstantSDNode>(N->getOperand(0));
521  unsigned EltBits = 0;
522  uint64_t EltVal = ARM_AM::decodeVMOVModImm(ConstVal->getZExtValue(), EltBits);
523  return (EltBits == N->getValueType(0).getScalarSizeInBits() && EltVal == 0x01);
524}]>;
525
526
527//===----------------------------------------------------------------------===//
528// Operand Definitions.
529//
530
531// Immediate operands with a shared generic asm render method.
532class ImmAsmOperand<int Low, int High> : AsmOperandClass {
533  let RenderMethod = "addImmOperands";
534  let PredicateMethod = "isImmediate<" # Low # "," # High # ">";
535  let DiagnosticString = "operand must be an immediate in the range [" # Low # "," # High # "]";
536}
537
538class ImmAsmOperandMinusOne<int Low, int High> : AsmOperandClass {
539  let PredicateMethod = "isImmediate<" # Low # "," # High # ">";
540  let DiagnosticType = "ImmRange" # Low # "_" # High;
541  let DiagnosticString = "operand must be an immediate in the range [" # Low # "," # High # "]";
542}
543
544// Operands that are part of a memory addressing mode.
545class MemOperand : Operand<i32> { let OperandType = "OPERAND_MEMORY"; }
546
547// Branch target.
548// FIXME: rename brtarget to t2_brtarget
549def brtarget : Operand<OtherVT> {
550  let EncoderMethod = "getBranchTargetOpValue";
551  let OperandType = "OPERAND_PCREL";
552  let DecoderMethod = "DecodeT2BROperand";
553}
554
555// Branches targeting ARM-mode must be divisible by 4 if they're a raw
556// immediate.
557def ARMBranchTarget : AsmOperandClass {
558  let Name = "ARMBranchTarget";
559}
560
561// Branches targeting Thumb-mode must be divisible by 2 if they're a raw
562// immediate.
563def ThumbBranchTarget : AsmOperandClass {
564  let Name = "ThumbBranchTarget";
565}
566
567def arm_br_target : Operand<OtherVT> {
568  let ParserMatchClass = ARMBranchTarget;
569  let EncoderMethod = "getARMBranchTargetOpValue";
570  let OperandType = "OPERAND_PCREL";
571}
572
573// Call target for ARM. Handles conditional/unconditional
574// FIXME: rename bl_target to t2_bltarget?
575def arm_bl_target : Operand<i32> {
576  let ParserMatchClass = ARMBranchTarget;
577  let EncoderMethod = "getARMBLTargetOpValue";
578  let OperandType = "OPERAND_PCREL";
579}
580
581// Target for BLX *from* ARM mode.
582def arm_blx_target : Operand<i32> {
583  let ParserMatchClass = ThumbBranchTarget;
584  let EncoderMethod = "getARMBLXTargetOpValue";
585  let OperandType = "OPERAND_PCREL";
586}
587
588// A list of registers separated by comma. Used by load/store multiple.
589def RegListAsmOperand : AsmOperandClass { let Name = "RegList"; }
590def reglist : Operand<i32> {
591  let EncoderMethod = "getRegisterListOpValue";
592  let ParserMatchClass = RegListAsmOperand;
593  let PrintMethod = "printRegisterList";
594  let DecoderMethod = "DecodeRegListOperand";
595}
596
597// A list of general purpose registers and APSR separated by comma.
598// Used by CLRM
599def RegListWithAPSRAsmOperand : AsmOperandClass { let Name = "RegListWithAPSR"; }
600def reglist_with_apsr : Operand<i32> {
601  let EncoderMethod = "getRegisterListOpValue";
602  let ParserMatchClass = RegListWithAPSRAsmOperand;
603  let PrintMethod = "printRegisterList";
604  let DecoderMethod = "DecodeRegListOperand";
605}
606
607def GPRPairOp : RegisterOperand<GPRPair, "printGPRPairOperand">;
608
609def DPRRegListAsmOperand : AsmOperandClass {
610  let Name = "DPRRegList";
611  let DiagnosticType = "DPR_RegList";
612}
613def dpr_reglist : Operand<i32> {
614  let EncoderMethod = "getRegisterListOpValue";
615  let ParserMatchClass = DPRRegListAsmOperand;
616  let PrintMethod = "printRegisterList";
617  let DecoderMethod = "DecodeDPRRegListOperand";
618}
619
620def SPRRegListAsmOperand : AsmOperandClass {
621  let Name = "SPRRegList";
622  let DiagnosticString = "operand must be a list of registers in range [s0, s31]";
623}
624def spr_reglist : Operand<i32> {
625  let EncoderMethod = "getRegisterListOpValue";
626  let ParserMatchClass = SPRRegListAsmOperand;
627  let PrintMethod = "printRegisterList";
628  let DecoderMethod = "DecodeSPRRegListOperand";
629}
630
631def FPSRegListWithVPRAsmOperand : AsmOperandClass { let Name =
632    "FPSRegListWithVPR"; }
633def fp_sreglist_with_vpr : Operand<i32> {
634  let EncoderMethod = "getRegisterListOpValue";
635  let ParserMatchClass = FPSRegListWithVPRAsmOperand;
636  let PrintMethod = "printRegisterList";
637}
638def FPDRegListWithVPRAsmOperand : AsmOperandClass { let Name =
639    "FPDRegListWithVPR"; }
640def fp_dreglist_with_vpr : Operand<i32> {
641  let EncoderMethod = "getRegisterListOpValue";
642  let ParserMatchClass = FPDRegListWithVPRAsmOperand;
643  let PrintMethod = "printRegisterList";
644}
645
646// An operand for the CONSTPOOL_ENTRY pseudo-instruction.
647def cpinst_operand : Operand<i32> {
648  let PrintMethod = "printCPInstOperand";
649}
650
651// Local PC labels.
652def pclabel : Operand<i32> {
653  let PrintMethod = "printPCLabel";
654}
655
656// ADR instruction labels.
657def AdrLabelAsmOperand : AsmOperandClass { let Name = "AdrLabel"; }
658def adrlabel : Operand<i32> {
659  let EncoderMethod = "getAdrLabelOpValue";
660  let ParserMatchClass = AdrLabelAsmOperand;
661  let PrintMethod = "printAdrLabelOperand<0>";
662}
663
664def neon_vcvt_imm32 : Operand<i32> {
665  let EncoderMethod = "getNEONVcvtImm32OpValue";
666  let DecoderMethod = "DecodeVCVTImmOperand";
667}
668
669// rot_imm: An integer that encodes a rotate amount. Must be 8, 16, or 24.
670def rot_imm_XFORM: SDNodeXForm<imm, [{
671  switch (N->getZExtValue()){
672  default: llvm_unreachable(nullptr);
673  case 0:  return CurDAG->getTargetConstant(0, SDLoc(N), MVT::i32);
674  case 8:  return CurDAG->getTargetConstant(1, SDLoc(N), MVT::i32);
675  case 16: return CurDAG->getTargetConstant(2, SDLoc(N), MVT::i32);
676  case 24: return CurDAG->getTargetConstant(3, SDLoc(N), MVT::i32);
677  }
678}]>;
679def RotImmAsmOperand : AsmOperandClass {
680  let Name = "RotImm";
681  let ParserMethod = "parseRotImm";
682}
683def rot_imm : Operand<i32>, PatLeaf<(i32 imm), [{
684    int32_t v = N->getZExtValue();
685    return v == 8 || v == 16 || v == 24; }],
686    rot_imm_XFORM> {
687  let PrintMethod = "printRotImmOperand";
688  let ParserMatchClass = RotImmAsmOperand;
689}
690
691// Power-of-two operand for MVE VIDUP and friends, which encode
692// {1,2,4,8} as its log to base 2, i.e. as {0,1,2,3} respectively
693def MVE_VIDUP_imm_asmoperand : AsmOperandClass {
694  let Name = "VIDUP_imm";
695  let PredicateMethod = "isPowerTwoInRange<1,8>";
696  let RenderMethod = "addPowerTwoOperands";
697  let DiagnosticString = "vector increment immediate must be 1, 2, 4 or 8";
698}
699def MVE_VIDUP_imm : Operand<i32> {
700  let EncoderMethod = "getPowerTwoOpValue";
701  let DecoderMethod = "DecodePowerTwoOperand<0,3>";
702  let ParserMatchClass = MVE_VIDUP_imm_asmoperand;
703}
704
705// Pair vector indexing
706class MVEPairVectorIndexOperand<string start, string end> : AsmOperandClass {
707  let Name = "MVEPairVectorIndex"#start;
708  let RenderMethod = "addMVEPairVectorIndexOperands";
709  let PredicateMethod = "isMVEPairVectorIndex<"#start#", "#end#">";
710}
711
712class MVEPairVectorIndex<string opval> : Operand<i32> {
713  let PrintMethod = "printVectorIndex";
714  let EncoderMethod = "getMVEPairVectorIndexOpValue<"#opval#">";
715  let DecoderMethod = "DecodeMVEPairVectorIndexOperand<"#opval#">";
716  let MIOperandInfo = (ops i32imm);
717}
718
719def MVEPairVectorIndex0 : MVEPairVectorIndex<"0"> {
720  let ParserMatchClass = MVEPairVectorIndexOperand<"0", "1">;
721}
722
723def MVEPairVectorIndex2 : MVEPairVectorIndex<"2"> {
724  let ParserMatchClass = MVEPairVectorIndexOperand<"2", "3">;
725}
726
727// Vector indexing
728class MVEVectorIndexOperand<int NumLanes> : AsmOperandClass {
729  let Name = "MVEVectorIndex"#NumLanes;
730  let RenderMethod = "addMVEVectorIndexOperands";
731  let PredicateMethod = "isVectorIndexInRange<"#NumLanes#">";
732}
733
734class MVEVectorIndex<int NumLanes> : Operand<i32> {
735  let PrintMethod = "printVectorIndex";
736  let ParserMatchClass = MVEVectorIndexOperand<NumLanes>;
737  let MIOperandInfo = (ops i32imm);
738}
739
740// shift_imm: An integer that encodes a shift amount and the type of shift
741// (asr or lsl). The 6-bit immediate encodes as:
742//    {5}     0 ==> lsl
743//            1     asr
744//    {4-0}   imm5 shift amount.
745//            asr #32 encoded as imm5 == 0.
746def ShifterImmAsmOperand : AsmOperandClass {
747  let Name = "ShifterImm";
748  let ParserMethod = "parseShifterImm";
749}
750def shift_imm : Operand<i32> {
751  let PrintMethod = "printShiftImmOperand";
752  let ParserMatchClass = ShifterImmAsmOperand;
753}
754
755// shifter_operand operands: so_reg_reg, so_reg_imm, and mod_imm.
756def ShiftedRegAsmOperand : AsmOperandClass { let Name = "RegShiftedReg"; }
757def so_reg_reg : Operand<i32>,  // reg reg imm
758                 ComplexPattern<i32, 3, "SelectRegShifterOperand",
759                                [shl, srl, sra, rotr]> {
760  let EncoderMethod = "getSORegRegOpValue";
761  let PrintMethod = "printSORegRegOperand";
762  let DecoderMethod = "DecodeSORegRegOperand";
763  let ParserMatchClass = ShiftedRegAsmOperand;
764  let MIOperandInfo = (ops GPRnopc, GPRnopc, i32imm);
765}
766
767def ShiftedImmAsmOperand : AsmOperandClass { let Name = "RegShiftedImm"; }
768def so_reg_imm : Operand<i32>, // reg imm
769                 ComplexPattern<i32, 2, "SelectImmShifterOperand",
770                                [shl, srl, sra, rotr]> {
771  let EncoderMethod = "getSORegImmOpValue";
772  let PrintMethod = "printSORegImmOperand";
773  let DecoderMethod = "DecodeSORegImmOperand";
774  let ParserMatchClass = ShiftedImmAsmOperand;
775  let MIOperandInfo = (ops GPR, i32imm);
776}
777
778// FIXME: Does this need to be distinct from so_reg?
779def shift_so_reg_reg : Operand<i32>,    // reg reg imm
780                   ComplexPattern<i32, 3, "SelectShiftRegShifterOperand",
781                                  [shl,srl,sra,rotr]> {
782  let EncoderMethod = "getSORegRegOpValue";
783  let PrintMethod = "printSORegRegOperand";
784  let DecoderMethod = "DecodeSORegRegOperand";
785  let ParserMatchClass = ShiftedRegAsmOperand;
786  let MIOperandInfo = (ops GPR, GPR, i32imm);
787}
788
789// FIXME: Does this need to be distinct from so_reg?
790def shift_so_reg_imm : Operand<i32>,    // reg reg imm
791                   ComplexPattern<i32, 2, "SelectShiftImmShifterOperand",
792                                  [shl,srl,sra,rotr]> {
793  let EncoderMethod = "getSORegImmOpValue";
794  let PrintMethod = "printSORegImmOperand";
795  let DecoderMethod = "DecodeSORegImmOperand";
796  let ParserMatchClass = ShiftedImmAsmOperand;
797  let MIOperandInfo = (ops GPR, i32imm);
798}
799
800// mod_imm: match a 32-bit immediate operand, which can be encoded into
801// a 12-bit immediate; an 8-bit integer and a 4-bit rotator (See ARMARM
802// - "Modified Immediate Constants"). Within the MC layer we keep this
803// immediate in its encoded form.
804def ModImmAsmOperand: AsmOperandClass {
805  let Name = "ModImm";
806  let ParserMethod = "parseModImm";
807}
808def mod_imm : Operand<i32>, ImmLeaf<i32, [{
809    return ARM_AM::getSOImmVal(Imm) != -1;
810  }]> {
811  let EncoderMethod = "getModImmOpValue";
812  let PrintMethod = "printModImmOperand";
813  let ParserMatchClass = ModImmAsmOperand;
814}
815
816// Note: the patterns mod_imm_not and mod_imm_neg do not require an encoder
817// method and such, as they are only used on aliases (Pat<> and InstAlias<>).
818// The actual parsing, encoding, decoding are handled by the destination
819// instructions, which use mod_imm.
820
821def ModImmNotAsmOperand : AsmOperandClass { let Name = "ModImmNot"; }
822def mod_imm_not : Operand<i32>, PatLeaf<(imm), [{
823    return ARM_AM::getSOImmVal(~(uint32_t)N->getZExtValue()) != -1;
824  }], imm_not_XFORM> {
825  let ParserMatchClass = ModImmNotAsmOperand;
826}
827
828def ModImmNegAsmOperand : AsmOperandClass { let Name = "ModImmNeg"; }
829def mod_imm_neg : Operand<i32>, PatLeaf<(imm), [{
830    unsigned Value = -(unsigned)N->getZExtValue();
831    return Value && ARM_AM::getSOImmVal(Value) != -1;
832  }], imm_neg_XFORM> {
833  let ParserMatchClass = ModImmNegAsmOperand;
834}
835
836/// arm_i32imm - True for +V6T2, or when isSOImmTwoParVal()
837def arm_i32imm : IntImmLeaf<i32, [{
838  if (Subtarget->useMovt())
839    return true;
840  if (ARM_AM::isSOImmTwoPartVal(Imm.getZExtValue()))
841    return true;
842  return ARM_AM::isSOImmTwoPartValNeg(Imm.getZExtValue());
843}]>;
844
845/// imm0_1 predicate - Immediate in the range [0,1].
846def Imm0_1AsmOperand: ImmAsmOperand<0,1> { let Name = "Imm0_1"; }
847def imm0_1 : Operand<i32> { let ParserMatchClass = Imm0_1AsmOperand; }
848
849/// imm0_3 predicate - Immediate in the range [0,3].
850def Imm0_3AsmOperand: ImmAsmOperand<0,3> { let Name = "Imm0_3"; }
851def imm0_3 : Operand<i32> { let ParserMatchClass = Imm0_3AsmOperand; }
852
853/// imm0_7 predicate - Immediate in the range [0,7].
854def Imm0_7AsmOperand: ImmAsmOperand<0,7> {
855  let Name = "Imm0_7";
856}
857def imm0_7 : Operand<i32>, ImmLeaf<i32, [{
858  return Imm >= 0 && Imm < 8;
859}]> {
860  let ParserMatchClass = Imm0_7AsmOperand;
861}
862
863/// imm8_255 predicate - Immediate in the range [8,255].
864def Imm8_255AsmOperand: ImmAsmOperand<8,255> { let Name = "Imm8_255"; }
865def imm8_255 : Operand<i32>, ImmLeaf<i32, [{
866  return Imm >= 8 && Imm < 256;
867}]> {
868  let ParserMatchClass = Imm8_255AsmOperand;
869}
870
871/// imm8 predicate - Immediate is exactly 8.
872def Imm8AsmOperand: ImmAsmOperand<8,8> { let Name = "Imm8"; }
873def imm8 : Operand<i32>, ImmLeaf<i32, [{ return Imm == 8; }]> {
874  let ParserMatchClass = Imm8AsmOperand;
875}
876
877/// imm16 predicate - Immediate is exactly 16.
878def Imm16AsmOperand: ImmAsmOperand<16,16> { let Name = "Imm16"; }
879def imm16 : Operand<i32>, ImmLeaf<i32, [{ return Imm == 16; }]> {
880  let ParserMatchClass = Imm16AsmOperand;
881}
882
883/// imm32 predicate - Immediate is exactly 32.
884def Imm32AsmOperand: ImmAsmOperand<32,32> { let Name = "Imm32"; }
885def imm32 : Operand<i32>, ImmLeaf<i32, [{ return Imm == 32; }]> {
886  let ParserMatchClass = Imm32AsmOperand;
887}
888
889def imm8_or_16 : ImmLeaf<i32, [{ return Imm == 8 || Imm == 16;}]>;
890
891/// imm1_7 predicate - Immediate in the range [1,7].
892def Imm1_7AsmOperand: ImmAsmOperand<1,7> { let Name = "Imm1_7"; }
893def imm1_7 : Operand<i32>, ImmLeaf<i32, [{ return Imm > 0 && Imm < 8; }]> {
894  let ParserMatchClass = Imm1_7AsmOperand;
895}
896
897/// imm1_15 predicate - Immediate in the range [1,15].
898def Imm1_15AsmOperand: ImmAsmOperand<1,15> { let Name = "Imm1_15"; }
899def imm1_15 : Operand<i32>, ImmLeaf<i32, [{ return Imm > 0 && Imm < 16; }]> {
900  let ParserMatchClass = Imm1_15AsmOperand;
901}
902
903/// imm1_31 predicate - Immediate in the range [1,31].
904def Imm1_31AsmOperand: ImmAsmOperand<1,31> { let Name = "Imm1_31"; }
905def imm1_31 : Operand<i32>, ImmLeaf<i32, [{ return Imm > 0 && Imm < 32; }]> {
906  let ParserMatchClass = Imm1_31AsmOperand;
907}
908
909/// imm0_15 predicate - Immediate in the range [0,15].
910def Imm0_15AsmOperand: ImmAsmOperand<0,15> {
911  let Name = "Imm0_15";
912}
913def imm0_15 : Operand<i32>, ImmLeaf<i32, [{
914  return Imm >= 0 && Imm < 16;
915}]> {
916  let ParserMatchClass = Imm0_15AsmOperand;
917}
918
919/// imm0_31 predicate - True if the 32-bit immediate is in the range [0,31].
920def Imm0_31AsmOperand: ImmAsmOperand<0,31> { let Name = "Imm0_31"; }
921def imm0_31 : Operand<i32>, ImmLeaf<i32, [{
922  return Imm >= 0 && Imm < 32;
923}]> {
924  let ParserMatchClass = Imm0_31AsmOperand;
925}
926
927/// imm0_32 predicate - True if the 32-bit immediate is in the range [0,32].
928def Imm0_32AsmOperand: ImmAsmOperand<0,32> { let Name = "Imm0_32"; }
929def imm0_32 : Operand<i32>, ImmLeaf<i32, [{
930  return Imm >= 0 && Imm < 33;
931}]> {
932  let ParserMatchClass = Imm0_32AsmOperand;
933}
934
935/// imm0_63 predicate - True if the 32-bit immediate is in the range [0,63].
936def Imm0_63AsmOperand: ImmAsmOperand<0,63> { let Name = "Imm0_63"; }
937def imm0_63 : Operand<i32>, ImmLeaf<i32, [{
938  return Imm >= 0 && Imm < 64;
939}]> {
940  let ParserMatchClass = Imm0_63AsmOperand;
941}
942
943/// imm0_239 predicate - Immediate in the range [0,239].
944def Imm0_239AsmOperand : ImmAsmOperand<0,239> {
945  let Name = "Imm0_239";
946}
947def imm0_239 : Operand<i32>, ImmLeaf<i32, [{ return Imm >= 0 && Imm < 240; }]> {
948  let ParserMatchClass = Imm0_239AsmOperand;
949}
950
951/// imm0_255 predicate - Immediate in the range [0,255].
952def Imm0_255AsmOperand : ImmAsmOperand<0,255> { let Name = "Imm0_255"; }
953def imm0_255 : Operand<i32>, ImmLeaf<i32, [{ return Imm >= 0 && Imm < 256; }]> {
954  let ParserMatchClass = Imm0_255AsmOperand;
955}
956
957/// imm0_65535 - An immediate is in the range [0,65535].
958def Imm0_65535AsmOperand: ImmAsmOperand<0,65535> { let Name = "Imm0_65535"; }
959def imm0_65535 : Operand<i32>, ImmLeaf<i32, [{
960  return Imm >= 0 && Imm < 65536;
961}]> {
962  let ParserMatchClass = Imm0_65535AsmOperand;
963}
964
965// imm0_65535_neg - An immediate whose negative value is in the range [0.65535].
966def imm0_65535_neg : Operand<i32>, ImmLeaf<i32, [{
967  return -Imm >= 0 && -Imm < 65536;
968}]>;
969
970// imm0_65535_expr - For movt/movw - 16-bit immediate that can also reference
971// a relocatable expression.
972//
973// FIXME: This really needs a Thumb version separate from the ARM version.
974// While the range is the same, and can thus use the same match class,
975// the encoding is different so it should have a different encoder method.
976def Imm0_65535ExprAsmOperand: AsmOperandClass {
977  let Name = "Imm0_65535Expr";
978  let RenderMethod = "addImmOperands";
979  let DiagnosticString = "operand must be an immediate in the range [0,0xffff] or a relocatable expression";
980}
981
982def imm0_65535_expr : Operand<i32> {
983  let EncoderMethod = "getHiLo16ImmOpValue";
984  let ParserMatchClass = Imm0_65535ExprAsmOperand;
985}
986
987def Imm256_65535ExprAsmOperand: ImmAsmOperand<256,65535> { let Name = "Imm256_65535Expr"; }
988def imm256_65535_expr : Operand<i32> {
989  let ParserMatchClass = Imm256_65535ExprAsmOperand;
990}
991
992/// imm24b - True if the 32-bit immediate is encodable in 24 bits.
993def Imm24bitAsmOperand: ImmAsmOperand<0,0xffffff> {
994  let Name = "Imm24bit";
995  let DiagnosticString = "operand must be an immediate in the range [0,0xffffff]";
996}
997def imm24b : Operand<i32>, ImmLeaf<i32, [{
998  return Imm >= 0 && Imm <= 0xffffff;
999}]> {
1000  let ParserMatchClass = Imm24bitAsmOperand;
1001}
1002
1003
1004/// bf_inv_mask_imm predicate - An AND mask to clear an arbitrary width bitfield
1005/// e.g., 0xf000ffff
1006def BitfieldAsmOperand : AsmOperandClass {
1007  let Name = "Bitfield";
1008  let ParserMethod = "parseBitfield";
1009}
1010
1011def bf_inv_mask_imm : Operand<i32>,
1012                      PatLeaf<(imm), [{
1013  return ARM::isBitFieldInvertedMask(N->getZExtValue());
1014}] > {
1015  let EncoderMethod = "getBitfieldInvertedMaskOpValue";
1016  let PrintMethod = "printBitfieldInvMaskImmOperand";
1017  let DecoderMethod = "DecodeBitfieldMaskOperand";
1018  let ParserMatchClass = BitfieldAsmOperand;
1019  let GISelPredicateCode = [{
1020    // There's better methods of implementing this check. IntImmLeaf<> would be
1021    // equivalent and have less boilerplate but we need a test for C++
1022    // predicates and this one causes new rules to be imported into GlobalISel
1023    // without requiring additional features first.
1024    const auto &MO = MI.getOperand(1);
1025    if (!MO.isCImm())
1026      return false;
1027    return ARM::isBitFieldInvertedMask(MO.getCImm()->getZExtValue());
1028  }];
1029}
1030
1031def imm1_32_XFORM: SDNodeXForm<imm, [{
1032  return CurDAG->getTargetConstant((int)N->getZExtValue() - 1, SDLoc(N),
1033                                   MVT::i32);
1034}]>;
1035def Imm1_32AsmOperand: ImmAsmOperandMinusOne<1,32> {
1036  let Name = "Imm1_32";
1037}
1038def imm1_32 : Operand<i32>, PatLeaf<(imm), [{
1039   uint64_t Imm = N->getZExtValue();
1040   return Imm > 0 && Imm <= 32;
1041 }],
1042    imm1_32_XFORM> {
1043  let PrintMethod = "printImmPlusOneOperand";
1044  let ParserMatchClass = Imm1_32AsmOperand;
1045}
1046
1047def imm1_16_XFORM: SDNodeXForm<imm, [{
1048  return CurDAG->getTargetConstant((int)N->getZExtValue() - 1, SDLoc(N),
1049                                   MVT::i32);
1050}]>;
1051def Imm1_16AsmOperand: ImmAsmOperandMinusOne<1,16> { let Name = "Imm1_16"; }
1052def imm1_16 : Operand<i32>, ImmLeaf<i32, [{
1053    return Imm > 0 && Imm <= 16;
1054  }],
1055    imm1_16_XFORM> {
1056  let PrintMethod = "printImmPlusOneOperand";
1057  let ParserMatchClass = Imm1_16AsmOperand;
1058}
1059
1060def MVEShiftImm1_7AsmOperand: ImmAsmOperand<1,7> {
1061  let Name = "MVEShiftImm1_7";
1062  // Reason we're doing this is because instruction vshll.s8 t1 encoding
1063  // accepts 1,7 but the t2 encoding accepts 8.  By doing this we can get a
1064  // better diagnostic message if someone uses bigger immediate than the t1/t2
1065  // encodings allow.
1066  let DiagnosticString = "operand must be an immediate in the range [1,8]";
1067}
1068def mve_shift_imm1_7 : Operand<i32>,
1069    // SelectImmediateInRange / isScaledConstantInRange uses a
1070    // half-open interval, so the parameters <1,8> mean 1-7 inclusive
1071    ComplexPattern<i32, 1, "SelectImmediateInRange<1,8>", [], []> {
1072  let ParserMatchClass = MVEShiftImm1_7AsmOperand;
1073  let EncoderMethod = "getMVEShiftImmOpValue";
1074}
1075
1076def MVEShiftImm1_15AsmOperand: ImmAsmOperand<1,15> {
1077  let Name = "MVEShiftImm1_15";
1078  // Reason we're doing this is because instruction vshll.s16 t1 encoding
1079  // accepts 1,15 but the t2 encoding accepts 16.  By doing this we can get a
1080  // better diagnostic message if someone uses bigger immediate than the t1/t2
1081  // encodings allow.
1082  let DiagnosticString = "operand must be an immediate in the range [1,16]";
1083}
1084def mve_shift_imm1_15 : Operand<i32>,
1085    // SelectImmediateInRange / isScaledConstantInRange uses a
1086    // half-open interval, so the parameters <1,16> mean 1-15 inclusive
1087    ComplexPattern<i32, 1, "SelectImmediateInRange<1,16>", [], []> {
1088  let ParserMatchClass = MVEShiftImm1_15AsmOperand;
1089  let EncoderMethod = "getMVEShiftImmOpValue";
1090}
1091
1092// Define ARM specific addressing modes.
1093// addrmode_imm12 := reg +/- imm12
1094//
1095def MemImm12OffsetAsmOperand : AsmOperandClass { let Name = "MemImm12Offset"; }
1096class AddrMode_Imm12 : MemOperand,
1097                     ComplexPattern<i32, 2, "SelectAddrModeImm12", []> {
1098  // 12-bit immediate operand. Note that instructions using this encode
1099  // #0 and #-0 differently. We flag #-0 as the magic value INT32_MIN. All other
1100  // immediate values are as normal.
1101
1102  let EncoderMethod = "getAddrModeImm12OpValue";
1103  let DecoderMethod = "DecodeAddrModeImm12Operand";
1104  let ParserMatchClass = MemImm12OffsetAsmOperand;
1105  let MIOperandInfo = (ops GPR:$base, i32imm:$offsimm);
1106}
1107
1108def addrmode_imm12 : AddrMode_Imm12 {
1109  let PrintMethod = "printAddrModeImm12Operand<false>";
1110}
1111
1112def addrmode_imm12_pre : AddrMode_Imm12 {
1113  let PrintMethod = "printAddrModeImm12Operand<true>";
1114}
1115
1116// ldst_so_reg := reg +/- reg shop imm
1117//
1118def MemRegOffsetAsmOperand : AsmOperandClass { let Name = "MemRegOffset"; }
1119def ldst_so_reg : MemOperand,
1120                  ComplexPattern<i32, 3, "SelectLdStSOReg", []> {
1121  let EncoderMethod = "getLdStSORegOpValue";
1122  // FIXME: Simplify the printer
1123  let PrintMethod = "printAddrMode2Operand";
1124  let DecoderMethod = "DecodeSORegMemOperand";
1125  let ParserMatchClass = MemRegOffsetAsmOperand;
1126  let MIOperandInfo = (ops GPR:$base, GPRnopc:$offsreg, i32imm:$shift);
1127}
1128
1129// postidx_imm8 := +/- [0,255]
1130//
1131// 9 bit value:
1132//  {8}       1 is imm8 is non-negative. 0 otherwise.
1133//  {7-0}     [0,255] imm8 value.
1134def PostIdxImm8AsmOperand : AsmOperandClass { let Name = "PostIdxImm8"; }
1135def postidx_imm8 : MemOperand {
1136  let PrintMethod = "printPostIdxImm8Operand";
1137  let ParserMatchClass = PostIdxImm8AsmOperand;
1138  let MIOperandInfo = (ops i32imm);
1139}
1140
1141// postidx_imm8s4 := +/- [0,1020]
1142//
1143// 9 bit value:
1144//  {8}       1 is imm8 is non-negative. 0 otherwise.
1145//  {7-0}     [0,255] imm8 value, scaled by 4.
1146def PostIdxImm8s4AsmOperand : AsmOperandClass { let Name = "PostIdxImm8s4"; }
1147def postidx_imm8s4 : MemOperand {
1148  let PrintMethod = "printPostIdxImm8s4Operand";
1149  let ParserMatchClass = PostIdxImm8s4AsmOperand;
1150  let MIOperandInfo = (ops i32imm);
1151}
1152
1153
1154// postidx_reg := +/- reg
1155//
1156def PostIdxRegAsmOperand : AsmOperandClass {
1157  let Name = "PostIdxReg";
1158  let ParserMethod = "parsePostIdxReg";
1159}
1160def postidx_reg : MemOperand {
1161  let EncoderMethod = "getPostIdxRegOpValue";
1162  let DecoderMethod = "DecodePostIdxReg";
1163  let PrintMethod = "printPostIdxRegOperand";
1164  let ParserMatchClass = PostIdxRegAsmOperand;
1165  let MIOperandInfo = (ops GPRnopc, i32imm);
1166}
1167
1168def PostIdxRegShiftedAsmOperand : AsmOperandClass {
1169  let Name = "PostIdxRegShifted";
1170  let ParserMethod = "parsePostIdxReg";
1171}
1172def am2offset_reg : MemOperand,
1173                ComplexPattern<i32, 2, "SelectAddrMode2OffsetReg",
1174                [], [SDNPWantRoot]> {
1175  let EncoderMethod = "getAddrMode2OffsetOpValue";
1176  let PrintMethod = "printAddrMode2OffsetOperand";
1177  // When using this for assembly, it's always as a post-index offset.
1178  let ParserMatchClass = PostIdxRegShiftedAsmOperand;
1179  let MIOperandInfo = (ops GPRnopc, i32imm);
1180}
1181
1182// FIXME: am2offset_imm should only need the immediate, not the GPR. Having
1183// the GPR is purely vestigal at this point.
1184def AM2OffsetImmAsmOperand : AsmOperandClass { let Name = "AM2OffsetImm"; }
1185def am2offset_imm : MemOperand,
1186                ComplexPattern<i32, 2, "SelectAddrMode2OffsetImm",
1187                [], [SDNPWantRoot]> {
1188  let EncoderMethod = "getAddrMode2OffsetOpValue";
1189  let PrintMethod = "printAddrMode2OffsetOperand";
1190  let ParserMatchClass = AM2OffsetImmAsmOperand;
1191  let MIOperandInfo = (ops GPRnopc, i32imm);
1192}
1193
1194
1195// addrmode3 := reg +/- reg
1196// addrmode3 := reg +/- imm8
1197//
1198// FIXME: split into imm vs. reg versions.
1199def AddrMode3AsmOperand : AsmOperandClass { let Name = "AddrMode3"; }
1200class AddrMode3 : MemOperand,
1201                  ComplexPattern<i32, 3, "SelectAddrMode3", []> {
1202  let EncoderMethod = "getAddrMode3OpValue";
1203  let ParserMatchClass = AddrMode3AsmOperand;
1204  let MIOperandInfo = (ops GPR:$base, GPR:$offsreg, i32imm:$offsimm);
1205}
1206
1207def addrmode3 : AddrMode3
1208{
1209  let PrintMethod = "printAddrMode3Operand<false>";
1210}
1211
1212def addrmode3_pre : AddrMode3
1213{
1214  let PrintMethod = "printAddrMode3Operand<true>";
1215}
1216
1217// FIXME: split into imm vs. reg versions.
1218// FIXME: parser method to handle +/- register.
1219def AM3OffsetAsmOperand : AsmOperandClass {
1220  let Name = "AM3Offset";
1221  let ParserMethod = "parseAM3Offset";
1222}
1223def am3offset : MemOperand,
1224                ComplexPattern<i32, 2, "SelectAddrMode3Offset",
1225                               [], [SDNPWantRoot]> {
1226  let EncoderMethod = "getAddrMode3OffsetOpValue";
1227  let PrintMethod = "printAddrMode3OffsetOperand";
1228  let ParserMatchClass = AM3OffsetAsmOperand;
1229  let MIOperandInfo = (ops GPR, i32imm);
1230}
1231
1232// ldstm_mode := {ia, ib, da, db}
1233//
1234def ldstm_mode : OptionalDefOperand<OtherVT, (ops i32), (ops (i32 1))> {
1235  let EncoderMethod = "getLdStmModeOpValue";
1236  let PrintMethod = "printLdStmModeOperand";
1237}
1238
1239// addrmode5 := reg +/- imm8*4
1240//
1241def AddrMode5AsmOperand : AsmOperandClass { let Name = "AddrMode5"; }
1242class AddrMode5 : MemOperand,
1243                  ComplexPattern<i32, 2, "SelectAddrMode5", []> {
1244  let EncoderMethod = "getAddrMode5OpValue";
1245  let DecoderMethod = "DecodeAddrMode5Operand";
1246  let ParserMatchClass = AddrMode5AsmOperand;
1247  let MIOperandInfo = (ops GPR:$base, i32imm);
1248}
1249
1250def addrmode5 : AddrMode5 {
1251   let PrintMethod = "printAddrMode5Operand<false>";
1252}
1253
1254def addrmode5_pre : AddrMode5 {
1255   let PrintMethod = "printAddrMode5Operand<true>";
1256}
1257
1258// addrmode5fp16 := reg +/- imm8*2
1259//
1260def AddrMode5FP16AsmOperand : AsmOperandClass { let Name = "AddrMode5FP16"; }
1261class AddrMode5FP16 : MemOperand,
1262                      ComplexPattern<i32, 2, "SelectAddrMode5FP16", []> {
1263  let EncoderMethod = "getAddrMode5FP16OpValue";
1264  let DecoderMethod = "DecodeAddrMode5FP16Operand";
1265  let ParserMatchClass = AddrMode5FP16AsmOperand;
1266  let MIOperandInfo = (ops GPR:$base, i32imm);
1267}
1268
1269def addrmode5fp16 : AddrMode5FP16 {
1270   let PrintMethod = "printAddrMode5FP16Operand<false>";
1271}
1272
1273// addrmode6 := reg with optional alignment
1274//
1275def AddrMode6AsmOperand : AsmOperandClass { let Name = "AlignedMemory"; }
1276def addrmode6 : MemOperand,
1277                ComplexPattern<i32, 2, "SelectAddrMode6", [], [SDNPWantParent]>{
1278  let PrintMethod = "printAddrMode6Operand";
1279  let MIOperandInfo = (ops GPR:$addr, i32imm:$align);
1280  let EncoderMethod = "getAddrMode6AddressOpValue";
1281  let DecoderMethod = "DecodeAddrMode6Operand";
1282  let ParserMatchClass = AddrMode6AsmOperand;
1283}
1284
1285def am6offset : MemOperand,
1286                ComplexPattern<i32, 1, "SelectAddrMode6Offset",
1287                               [], [SDNPWantRoot]> {
1288  let PrintMethod = "printAddrMode6OffsetOperand";
1289  let MIOperandInfo = (ops GPR);
1290  let EncoderMethod = "getAddrMode6OffsetOpValue";
1291  let DecoderMethod = "DecodeGPRRegisterClass";
1292}
1293
1294// Special version of addrmode6 to handle alignment encoding for VST1/VLD1
1295// (single element from one lane) for size 32.
1296def addrmode6oneL32 : MemOperand,
1297                ComplexPattern<i32, 2, "SelectAddrMode6", [], [SDNPWantParent]>{
1298  let PrintMethod = "printAddrMode6Operand";
1299  let MIOperandInfo = (ops GPR:$addr, i32imm);
1300  let EncoderMethod = "getAddrMode6OneLane32AddressOpValue";
1301}
1302
1303// Base class for addrmode6 with specific alignment restrictions.
1304class AddrMode6Align : MemOperand,
1305                ComplexPattern<i32, 2, "SelectAddrMode6", [], [SDNPWantParent]>{
1306  let PrintMethod = "printAddrMode6Operand";
1307  let MIOperandInfo = (ops GPR:$addr, i32imm:$align);
1308  let EncoderMethod = "getAddrMode6AddressOpValue";
1309  let DecoderMethod = "DecodeAddrMode6Operand";
1310}
1311
1312// Special version of addrmode6 to handle no allowed alignment encoding for
1313// VLD/VST instructions and checking the alignment is not specified.
1314def AddrMode6AlignNoneAsmOperand : AsmOperandClass {
1315  let Name = "AlignedMemoryNone";
1316  let DiagnosticString = "alignment must be omitted";
1317}
1318def addrmode6alignNone : AddrMode6Align {
1319  // The alignment specifier can only be omitted.
1320  let ParserMatchClass = AddrMode6AlignNoneAsmOperand;
1321}
1322
1323// Special version of addrmode6 to handle 16-bit alignment encoding for
1324// VLD/VST instructions and checking the alignment value.
1325def AddrMode6Align16AsmOperand : AsmOperandClass {
1326  let Name = "AlignedMemory16";
1327  let DiagnosticString = "alignment must be 16 or omitted";
1328}
1329def addrmode6align16 : AddrMode6Align {
1330  // The alignment specifier can only be 16 or omitted.
1331  let ParserMatchClass = AddrMode6Align16AsmOperand;
1332}
1333
1334// Special version of addrmode6 to handle 32-bit alignment encoding for
1335// VLD/VST instructions and checking the alignment value.
1336def AddrMode6Align32AsmOperand : AsmOperandClass {
1337  let Name = "AlignedMemory32";
1338  let DiagnosticString = "alignment must be 32 or omitted";
1339}
1340def addrmode6align32 : AddrMode6Align {
1341  // The alignment specifier can only be 32 or omitted.
1342  let ParserMatchClass = AddrMode6Align32AsmOperand;
1343}
1344
1345// Special version of addrmode6 to handle 64-bit alignment encoding for
1346// VLD/VST instructions and checking the alignment value.
1347def AddrMode6Align64AsmOperand : AsmOperandClass {
1348  let Name = "AlignedMemory64";
1349  let DiagnosticString = "alignment must be 64 or omitted";
1350}
1351def addrmode6align64 : AddrMode6Align {
1352  // The alignment specifier can only be 64 or omitted.
1353  let ParserMatchClass = AddrMode6Align64AsmOperand;
1354}
1355
1356// Special version of addrmode6 to handle 64-bit or 128-bit alignment encoding
1357// for VLD/VST instructions and checking the alignment value.
1358def AddrMode6Align64or128AsmOperand : AsmOperandClass {
1359  let Name = "AlignedMemory64or128";
1360  let DiagnosticString = "alignment must be 64, 128 or omitted";
1361}
1362def addrmode6align64or128 : AddrMode6Align {
1363  // The alignment specifier can only be 64, 128 or omitted.
1364  let ParserMatchClass = AddrMode6Align64or128AsmOperand;
1365}
1366
1367// Special version of addrmode6 to handle 64-bit, 128-bit or 256-bit alignment
1368// encoding for VLD/VST instructions and checking the alignment value.
1369def AddrMode6Align64or128or256AsmOperand : AsmOperandClass {
1370  let Name = "AlignedMemory64or128or256";
1371  let DiagnosticString = "alignment must be 64, 128, 256 or omitted";
1372}
1373def addrmode6align64or128or256 : AddrMode6Align {
1374  // The alignment specifier can only be 64, 128, 256 or omitted.
1375  let ParserMatchClass = AddrMode6Align64or128or256AsmOperand;
1376}
1377
1378// Special version of addrmode6 to handle alignment encoding for VLD-dup
1379// instructions, specifically VLD4-dup.
1380def addrmode6dup : MemOperand,
1381                ComplexPattern<i32, 2, "SelectAddrMode6", [], [SDNPWantParent]>{
1382  let PrintMethod = "printAddrMode6Operand";
1383  let MIOperandInfo = (ops GPR:$addr, i32imm);
1384  let EncoderMethod = "getAddrMode6DupAddressOpValue";
1385  // FIXME: This is close, but not quite right. The alignment specifier is
1386  // different.
1387  let ParserMatchClass = AddrMode6AsmOperand;
1388}
1389
1390// Base class for addrmode6dup with specific alignment restrictions.
1391class AddrMode6DupAlign : MemOperand,
1392                ComplexPattern<i32, 2, "SelectAddrMode6", [], [SDNPWantParent]>{
1393  let PrintMethod = "printAddrMode6Operand";
1394  let MIOperandInfo = (ops GPR:$addr, i32imm);
1395  let EncoderMethod = "getAddrMode6DupAddressOpValue";
1396}
1397
1398// Special version of addrmode6 to handle no allowed alignment encoding for
1399// VLD-dup instruction and checking the alignment is not specified.
1400def AddrMode6dupAlignNoneAsmOperand : AsmOperandClass {
1401  let Name = "DupAlignedMemoryNone";
1402  let DiagnosticString = "alignment must be omitted";
1403}
1404def addrmode6dupalignNone : AddrMode6DupAlign {
1405  // The alignment specifier can only be omitted.
1406  let ParserMatchClass = AddrMode6dupAlignNoneAsmOperand;
1407}
1408
1409// Special version of addrmode6 to handle 16-bit alignment encoding for VLD-dup
1410// instruction and checking the alignment value.
1411def AddrMode6dupAlign16AsmOperand : AsmOperandClass {
1412  let Name = "DupAlignedMemory16";
1413  let DiagnosticString = "alignment must be 16 or omitted";
1414}
1415def addrmode6dupalign16 : AddrMode6DupAlign {
1416  // The alignment specifier can only be 16 or omitted.
1417  let ParserMatchClass = AddrMode6dupAlign16AsmOperand;
1418}
1419
1420// Special version of addrmode6 to handle 32-bit alignment encoding for VLD-dup
1421// instruction and checking the alignment value.
1422def AddrMode6dupAlign32AsmOperand : AsmOperandClass {
1423  let Name = "DupAlignedMemory32";
1424  let DiagnosticString = "alignment must be 32 or omitted";
1425}
1426def addrmode6dupalign32 : AddrMode6DupAlign {
1427  // The alignment specifier can only be 32 or omitted.
1428  let ParserMatchClass = AddrMode6dupAlign32AsmOperand;
1429}
1430
1431// Special version of addrmode6 to handle 64-bit alignment encoding for VLD
1432// instructions and checking the alignment value.
1433def AddrMode6dupAlign64AsmOperand : AsmOperandClass {
1434  let Name = "DupAlignedMemory64";
1435  let DiagnosticString = "alignment must be 64 or omitted";
1436}
1437def addrmode6dupalign64 : AddrMode6DupAlign {
1438  // The alignment specifier can only be 64 or omitted.
1439  let ParserMatchClass = AddrMode6dupAlign64AsmOperand;
1440}
1441
1442// Special version of addrmode6 to handle 64-bit or 128-bit alignment encoding
1443// for VLD instructions and checking the alignment value.
1444def AddrMode6dupAlign64or128AsmOperand : AsmOperandClass {
1445  let Name = "DupAlignedMemory64or128";
1446  let DiagnosticString = "alignment must be 64, 128 or omitted";
1447}
1448def addrmode6dupalign64or128 : AddrMode6DupAlign {
1449  // The alignment specifier can only be 64, 128 or omitted.
1450  let ParserMatchClass = AddrMode6dupAlign64or128AsmOperand;
1451}
1452
1453// addrmodepc := pc + reg
1454//
1455def addrmodepc : MemOperand,
1456                 ComplexPattern<i32, 2, "SelectAddrModePC", []> {
1457  let PrintMethod = "printAddrModePCOperand";
1458  let MIOperandInfo = (ops GPR, i32imm);
1459}
1460
1461// addr_offset_none := reg
1462//
1463def MemNoOffsetAsmOperand : AsmOperandClass { let Name = "MemNoOffset"; }
1464def addr_offset_none : MemOperand,
1465                       ComplexPattern<i32, 1, "SelectAddrOffsetNone", []> {
1466  let PrintMethod = "printAddrMode7Operand";
1467  let DecoderMethod = "DecodeAddrMode7Operand";
1468  let ParserMatchClass = MemNoOffsetAsmOperand;
1469  let MIOperandInfo = (ops GPR:$base);
1470}
1471
1472// t_addr_offset_none := reg [r0-r7]
1473def MemNoOffsetTAsmOperand : AsmOperandClass { let Name = "MemNoOffsetT"; }
1474def t_addr_offset_none : MemOperand {
1475  let PrintMethod = "printAddrMode7Operand";
1476  let DecoderMethod = "DecodetGPRRegisterClass";
1477  let ParserMatchClass = MemNoOffsetTAsmOperand;
1478  let MIOperandInfo = (ops tGPR:$base);
1479}
1480
1481def nohash_imm : Operand<i32> {
1482  let PrintMethod = "printNoHashImmediate";
1483}
1484
1485def CoprocNumAsmOperand : AsmOperandClass {
1486  let Name = "CoprocNum";
1487  let ParserMethod = "parseCoprocNumOperand";
1488}
1489def p_imm : Operand<i32> {
1490  let PrintMethod = "printPImmediate";
1491  let ParserMatchClass = CoprocNumAsmOperand;
1492  let DecoderMethod = "DecodeCoprocessor";
1493}
1494
1495def CoprocRegAsmOperand : AsmOperandClass {
1496  let Name = "CoprocReg";
1497  let ParserMethod = "parseCoprocRegOperand";
1498}
1499def c_imm : Operand<i32> {
1500  let PrintMethod = "printCImmediate";
1501  let ParserMatchClass = CoprocRegAsmOperand;
1502}
1503def CoprocOptionAsmOperand : AsmOperandClass {
1504  let Name = "CoprocOption";
1505  let ParserMethod = "parseCoprocOptionOperand";
1506}
1507def coproc_option_imm : Operand<i32> {
1508  let PrintMethod = "printCoprocOptionImm";
1509  let ParserMatchClass = CoprocOptionAsmOperand;
1510}
1511
1512//===----------------------------------------------------------------------===//
1513
1514include "ARMInstrFormats.td"
1515
1516//===----------------------------------------------------------------------===//
1517// Multiclass helpers...
1518//
1519
1520/// AsI1_bin_irs - Defines a set of (op r, {mod_imm|r|so_reg}) patterns for a
1521/// binop that produces a value.
1522let TwoOperandAliasConstraint = "$Rn = $Rd" in
1523multiclass AsI1_bin_irs<bits<4> opcod, string opc,
1524                     InstrItinClass iii, InstrItinClass iir, InstrItinClass iis,
1525                     SDPatternOperator opnode, bit Commutable = 0> {
1526  // The register-immediate version is re-materializable. This is useful
1527  // in particular for taking the address of a local.
1528  let isReMaterializable = 1 in {
1529  def ri : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, mod_imm:$imm), DPFrm,
1530               iii, opc, "\t$Rd, $Rn, $imm",
1531               [(set GPR:$Rd, (opnode GPR:$Rn, mod_imm:$imm))]>,
1532           Sched<[WriteALU, ReadALU]> {
1533    bits<4> Rd;
1534    bits<4> Rn;
1535    bits<12> imm;
1536    let Inst{25} = 1;
1537    let Inst{19-16} = Rn;
1538    let Inst{15-12} = Rd;
1539    let Inst{11-0} = imm;
1540  }
1541  }
1542  def rr : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), DPFrm,
1543               iir, opc, "\t$Rd, $Rn, $Rm",
1544               [(set GPR:$Rd, (opnode GPR:$Rn, GPR:$Rm))]>,
1545           Sched<[WriteALU, ReadALU, ReadALU]> {
1546    bits<4> Rd;
1547    bits<4> Rn;
1548    bits<4> Rm;
1549    let Inst{25} = 0;
1550    let isCommutable = Commutable;
1551    let Inst{19-16} = Rn;
1552    let Inst{15-12} = Rd;
1553    let Inst{11-4} = 0b00000000;
1554    let Inst{3-0} = Rm;
1555  }
1556
1557  def rsi : AsI1<opcod, (outs GPR:$Rd),
1558               (ins GPR:$Rn, so_reg_imm:$shift), DPSoRegImmFrm,
1559               iis, opc, "\t$Rd, $Rn, $shift",
1560               [(set GPR:$Rd, (opnode GPR:$Rn, so_reg_imm:$shift))]>,
1561            Sched<[WriteALUsi, ReadALU]> {
1562    bits<4> Rd;
1563    bits<4> Rn;
1564    bits<12> shift;
1565    let Inst{25} = 0;
1566    let Inst{19-16} = Rn;
1567    let Inst{15-12} = Rd;
1568    let Inst{11-5} = shift{11-5};
1569    let Inst{4} = 0;
1570    let Inst{3-0} = shift{3-0};
1571  }
1572
1573  def rsr : AsI1<opcod, (outs GPR:$Rd),
1574               (ins GPR:$Rn, so_reg_reg:$shift), DPSoRegRegFrm,
1575               iis, opc, "\t$Rd, $Rn, $shift",
1576               [(set GPR:$Rd, (opnode GPR:$Rn, so_reg_reg:$shift))]>,
1577            Sched<[WriteALUsr, ReadALUsr]> {
1578    bits<4> Rd;
1579    bits<4> Rn;
1580    bits<12> shift;
1581    let Inst{25} = 0;
1582    let Inst{19-16} = Rn;
1583    let Inst{15-12} = Rd;
1584    let Inst{11-8} = shift{11-8};
1585    let Inst{7} = 0;
1586    let Inst{6-5} = shift{6-5};
1587    let Inst{4} = 1;
1588    let Inst{3-0} = shift{3-0};
1589  }
1590}
1591
1592/// AsI1_rbin_irs - Same as AsI1_bin_irs except the order of operands are
1593/// reversed.  The 'rr' form is only defined for the disassembler; for codegen
1594/// it is equivalent to the AsI1_bin_irs counterpart.
1595let TwoOperandAliasConstraint = "$Rn = $Rd" in
1596multiclass AsI1_rbin_irs<bits<4> opcod, string opc,
1597                     InstrItinClass iii, InstrItinClass iir, InstrItinClass iis,
1598                     SDNode opnode> {
1599  // The register-immediate version is re-materializable. This is useful
1600  // in particular for taking the address of a local.
1601  let isReMaterializable = 1 in {
1602  def ri : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, mod_imm:$imm), DPFrm,
1603               iii, opc, "\t$Rd, $Rn, $imm",
1604               [(set GPR:$Rd, (opnode mod_imm:$imm, GPR:$Rn))]>,
1605           Sched<[WriteALU, ReadALU]> {
1606    bits<4> Rd;
1607    bits<4> Rn;
1608    bits<12> imm;
1609    let Inst{25} = 1;
1610    let Inst{19-16} = Rn;
1611    let Inst{15-12} = Rd;
1612    let Inst{11-0} = imm;
1613  }
1614  }
1615  def rr : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), DPFrm,
1616               iir, opc, "\t$Rd, $Rn, $Rm",
1617               [/* pattern left blank */]>,
1618           Sched<[WriteALU, ReadALU, ReadALU]> {
1619    bits<4> Rd;
1620    bits<4> Rn;
1621    bits<4> Rm;
1622    let Inst{11-4} = 0b00000000;
1623    let Inst{25} = 0;
1624    let Inst{3-0} = Rm;
1625    let Inst{15-12} = Rd;
1626    let Inst{19-16} = Rn;
1627  }
1628
1629  def rsi : AsI1<opcod, (outs GPR:$Rd),
1630               (ins GPR:$Rn, so_reg_imm:$shift), DPSoRegImmFrm,
1631               iis, opc, "\t$Rd, $Rn, $shift",
1632               [(set GPR:$Rd, (opnode so_reg_imm:$shift, GPR:$Rn))]>,
1633            Sched<[WriteALUsi, ReadALU]> {
1634    bits<4> Rd;
1635    bits<4> Rn;
1636    bits<12> shift;
1637    let Inst{25} = 0;
1638    let Inst{19-16} = Rn;
1639    let Inst{15-12} = Rd;
1640    let Inst{11-5} = shift{11-5};
1641    let Inst{4} = 0;
1642    let Inst{3-0} = shift{3-0};
1643  }
1644
1645  def rsr : AsI1<opcod, (outs GPR:$Rd),
1646               (ins GPR:$Rn, so_reg_reg:$shift), DPSoRegRegFrm,
1647               iis, opc, "\t$Rd, $Rn, $shift",
1648               [(set GPR:$Rd, (opnode so_reg_reg:$shift, GPR:$Rn))]>,
1649            Sched<[WriteALUsr, ReadALUsr]> {
1650    bits<4> Rd;
1651    bits<4> Rn;
1652    bits<12> shift;
1653    let Inst{25} = 0;
1654    let Inst{19-16} = Rn;
1655    let Inst{15-12} = Rd;
1656    let Inst{11-8} = shift{11-8};
1657    let Inst{7} = 0;
1658    let Inst{6-5} = shift{6-5};
1659    let Inst{4} = 1;
1660    let Inst{3-0} = shift{3-0};
1661  }
1662}
1663
1664/// AsI1_bin_s_irs - Same as AsI1_bin_irs except it sets the 's' bit by default.
1665///
1666/// These opcodes will be converted to the real non-S opcodes by
1667/// AdjustInstrPostInstrSelection after giving them an optional CPSR operand.
1668let hasPostISelHook = 1, Defs = [CPSR] in {
1669multiclass AsI1_bin_s_irs<InstrItinClass iii, InstrItinClass iir,
1670                          InstrItinClass iis, SDNode opnode,
1671                          bit Commutable = 0> {
1672  def ri : ARMPseudoInst<(outs GPR:$Rd), (ins GPR:$Rn, mod_imm:$imm, pred:$p),
1673                         4, iii,
1674                         [(set GPR:$Rd, CPSR, (opnode GPR:$Rn, mod_imm:$imm))]>,
1675                         Sched<[WriteALU, ReadALU]>;
1676
1677  def rr : ARMPseudoInst<(outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm, pred:$p),
1678                         4, iir,
1679                         [(set GPR:$Rd, CPSR, (opnode GPR:$Rn, GPR:$Rm))]>,
1680                         Sched<[WriteALU, ReadALU, ReadALU]> {
1681    let isCommutable = Commutable;
1682  }
1683  def rsi : ARMPseudoInst<(outs GPR:$Rd),
1684                          (ins GPR:$Rn, so_reg_imm:$shift, pred:$p),
1685                          4, iis,
1686                          [(set GPR:$Rd, CPSR, (opnode GPR:$Rn,
1687                                                so_reg_imm:$shift))]>,
1688                          Sched<[WriteALUsi, ReadALU]>;
1689
1690  def rsr : ARMPseudoInst<(outs GPR:$Rd),
1691                          (ins GPR:$Rn, so_reg_reg:$shift, pred:$p),
1692                          4, iis,
1693                          [(set GPR:$Rd, CPSR, (opnode GPR:$Rn,
1694                                                so_reg_reg:$shift))]>,
1695                          Sched<[WriteALUSsr, ReadALUsr]>;
1696}
1697}
1698
1699/// AsI1_rbin_s_is - Same as AsI1_bin_s_irs, except selection DAG
1700/// operands are reversed.
1701let hasPostISelHook = 1, Defs = [CPSR] in {
1702multiclass AsI1_rbin_s_is<InstrItinClass iii,
1703                          InstrItinClass iis, SDNode opnode> {
1704  def ri : ARMPseudoInst<(outs GPR:$Rd), (ins GPR:$Rn, mod_imm:$imm, pred:$p),
1705                         4, iii,
1706                         [(set GPR:$Rd, CPSR, (opnode mod_imm:$imm, GPR:$Rn))]>,
1707           Sched<[WriteALU, ReadALU]>;
1708
1709  def rsi : ARMPseudoInst<(outs GPR:$Rd),
1710                          (ins GPR:$Rn, so_reg_imm:$shift, pred:$p),
1711                          4, iis,
1712                          [(set GPR:$Rd, CPSR, (opnode so_reg_imm:$shift,
1713                                             GPR:$Rn))]>,
1714            Sched<[WriteALUsi, ReadALU]>;
1715
1716  def rsr : ARMPseudoInst<(outs GPR:$Rd),
1717                          (ins GPR:$Rn, so_reg_reg:$shift, pred:$p),
1718                          4, iis,
1719                          [(set GPR:$Rd, CPSR, (opnode so_reg_reg:$shift,
1720                                             GPR:$Rn))]>,
1721            Sched<[WriteALUSsr, ReadALUsr]>;
1722}
1723}
1724
1725/// AI1_cmp_irs - Defines a set of (op r, {mod_imm|r|so_reg}) cmp / test
1726/// patterns. Similar to AsI1_bin_irs except the instruction does not produce
1727/// a explicit result, only implicitly set CPSR.
1728let isCompare = 1, Defs = [CPSR] in {
1729multiclass AI1_cmp_irs<bits<4> opcod, string opc,
1730                     InstrItinClass iii, InstrItinClass iir, InstrItinClass iis,
1731                     SDPatternOperator opnode, bit Commutable = 0,
1732                     string rrDecoderMethod = ""> {
1733  def ri : AI1<opcod, (outs), (ins GPR:$Rn, mod_imm:$imm), DPFrm, iii,
1734               opc, "\t$Rn, $imm",
1735               [(opnode GPR:$Rn, mod_imm:$imm)]>,
1736           Sched<[WriteCMP, ReadALU]> {
1737    bits<4> Rn;
1738    bits<12> imm;
1739    let Inst{25} = 1;
1740    let Inst{20} = 1;
1741    let Inst{19-16} = Rn;
1742    let Inst{15-12} = 0b0000;
1743    let Inst{11-0} = imm;
1744
1745    let Unpredictable{15-12} = 0b1111;
1746  }
1747  def rr : AI1<opcod, (outs), (ins GPR:$Rn, GPR:$Rm), DPFrm, iir,
1748               opc, "\t$Rn, $Rm",
1749               [(opnode GPR:$Rn, GPR:$Rm)]>,
1750           Sched<[WriteCMP, ReadALU, ReadALU]> {
1751    bits<4> Rn;
1752    bits<4> Rm;
1753    let isCommutable = Commutable;
1754    let Inst{25} = 0;
1755    let Inst{20} = 1;
1756    let Inst{19-16} = Rn;
1757    let Inst{15-12} = 0b0000;
1758    let Inst{11-4} = 0b00000000;
1759    let Inst{3-0} = Rm;
1760    let DecoderMethod = rrDecoderMethod;
1761
1762    let Unpredictable{15-12} = 0b1111;
1763  }
1764  def rsi : AI1<opcod, (outs),
1765               (ins GPR:$Rn, so_reg_imm:$shift), DPSoRegImmFrm, iis,
1766               opc, "\t$Rn, $shift",
1767               [(opnode GPR:$Rn, so_reg_imm:$shift)]>,
1768            Sched<[WriteCMPsi, ReadALU]> {
1769    bits<4> Rn;
1770    bits<12> shift;
1771    let Inst{25} = 0;
1772    let Inst{20} = 1;
1773    let Inst{19-16} = Rn;
1774    let Inst{15-12} = 0b0000;
1775    let Inst{11-5} = shift{11-5};
1776    let Inst{4} = 0;
1777    let Inst{3-0} = shift{3-0};
1778
1779    let Unpredictable{15-12} = 0b1111;
1780  }
1781  def rsr : AI1<opcod, (outs),
1782               (ins GPRnopc:$Rn, so_reg_reg:$shift), DPSoRegRegFrm, iis,
1783               opc, "\t$Rn, $shift",
1784               [(opnode GPRnopc:$Rn, so_reg_reg:$shift)]>,
1785            Sched<[WriteCMPsr, ReadALU]> {
1786    bits<4> Rn;
1787    bits<12> shift;
1788    let Inst{25} = 0;
1789    let Inst{20} = 1;
1790    let Inst{19-16} = Rn;
1791    let Inst{15-12} = 0b0000;
1792    let Inst{11-8} = shift{11-8};
1793    let Inst{7} = 0;
1794    let Inst{6-5} = shift{6-5};
1795    let Inst{4} = 1;
1796    let Inst{3-0} = shift{3-0};
1797
1798    let Unpredictable{15-12} = 0b1111;
1799  }
1800
1801}
1802}
1803
1804/// AI_ext_rrot - A unary operation with two forms: one whose operand is a
1805/// register and one whose operand is a register rotated by 8/16/24.
1806/// FIXME: Remove the 'r' variant. Its rot_imm is zero.
1807class AI_ext_rrot<bits<8> opcod, string opc, PatFrag opnode>
1808  : AExtI<opcod, (outs GPRnopc:$Rd), (ins GPRnopc:$Rm, rot_imm:$rot),
1809          IIC_iEXTr, opc, "\t$Rd, $Rm$rot",
1810          [(set GPRnopc:$Rd, (opnode (rotr GPRnopc:$Rm, rot_imm:$rot)))]>,
1811       Requires<[IsARM, HasV6]>, Sched<[WriteALUsi]> {
1812  bits<4> Rd;
1813  bits<4> Rm;
1814  bits<2> rot;
1815  let Inst{19-16} = 0b1111;
1816  let Inst{15-12} = Rd;
1817  let Inst{11-10} = rot;
1818  let Inst{3-0}   = Rm;
1819}
1820
1821class AI_ext_rrot_np<bits<8> opcod, string opc>
1822  : AExtI<opcod, (outs GPRnopc:$Rd), (ins GPRnopc:$Rm, rot_imm:$rot),
1823          IIC_iEXTr, opc, "\t$Rd, $Rm$rot", []>,
1824       Requires<[IsARM, HasV6]>, Sched<[WriteALUsi]> {
1825  bits<2> rot;
1826  let Inst{19-16} = 0b1111;
1827  let Inst{11-10} = rot;
1828 }
1829
1830/// AI_exta_rrot - A binary operation with two forms: one whose operand is a
1831/// register and one whose operand is a register rotated by 8/16/24.
1832class AI_exta_rrot<bits<8> opcod, string opc, PatFrag opnode>
1833  : AExtI<opcod, (outs GPRnopc:$Rd), (ins GPR:$Rn, GPRnopc:$Rm, rot_imm:$rot),
1834          IIC_iEXTAr, opc, "\t$Rd, $Rn, $Rm$rot",
1835          [(set GPRnopc:$Rd, (opnode GPR:$Rn,
1836                                     (rotr GPRnopc:$Rm, rot_imm:$rot)))]>,
1837        Requires<[IsARM, HasV6]>, Sched<[WriteALUsr]> {
1838  bits<4> Rd;
1839  bits<4> Rm;
1840  bits<4> Rn;
1841  bits<2> rot;
1842  let Inst{19-16} = Rn;
1843  let Inst{15-12} = Rd;
1844  let Inst{11-10} = rot;
1845  let Inst{9-4}   = 0b000111;
1846  let Inst{3-0}   = Rm;
1847}
1848
1849class AI_exta_rrot_np<bits<8> opcod, string opc>
1850  : AExtI<opcod, (outs GPRnopc:$Rd), (ins GPR:$Rn, GPRnopc:$Rm, rot_imm:$rot),
1851          IIC_iEXTAr, opc, "\t$Rd, $Rn, $Rm$rot", []>,
1852       Requires<[IsARM, HasV6]>, Sched<[WriteALUsr]> {
1853  bits<4> Rn;
1854  bits<2> rot;
1855  let Inst{19-16} = Rn;
1856  let Inst{11-10} = rot;
1857}
1858
1859/// AI1_adde_sube_irs - Define instructions and patterns for adde and sube.
1860let TwoOperandAliasConstraint = "$Rn = $Rd" in
1861multiclass AI1_adde_sube_irs<bits<4> opcod, string opc, SDNode opnode,
1862                             bit Commutable = 0> {
1863  let hasPostISelHook = 1, Defs = [CPSR], Uses = [CPSR] in {
1864  def ri : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, mod_imm:$imm),
1865                DPFrm, IIC_iALUi, opc, "\t$Rd, $Rn, $imm",
1866               [(set GPR:$Rd, CPSR, (opnode GPR:$Rn, mod_imm:$imm, CPSR))]>,
1867               Requires<[IsARM]>,
1868           Sched<[WriteALU, ReadALU]> {
1869    bits<4> Rd;
1870    bits<4> Rn;
1871    bits<12> imm;
1872    let Inst{25} = 1;
1873    let Inst{15-12} = Rd;
1874    let Inst{19-16} = Rn;
1875    let Inst{11-0} = imm;
1876  }
1877  def rr : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
1878                DPFrm, IIC_iALUr, opc, "\t$Rd, $Rn, $Rm",
1879               [(set GPR:$Rd, CPSR, (opnode GPR:$Rn, GPR:$Rm, CPSR))]>,
1880               Requires<[IsARM]>,
1881           Sched<[WriteALU, ReadALU, ReadALU]> {
1882    bits<4> Rd;
1883    bits<4> Rn;
1884    bits<4> Rm;
1885    let Inst{11-4} = 0b00000000;
1886    let Inst{25} = 0;
1887    let isCommutable = Commutable;
1888    let Inst{3-0} = Rm;
1889    let Inst{15-12} = Rd;
1890    let Inst{19-16} = Rn;
1891  }
1892  def rsi : AsI1<opcod, (outs GPR:$Rd),
1893                (ins GPR:$Rn, so_reg_imm:$shift),
1894                DPSoRegImmFrm, IIC_iALUsr, opc, "\t$Rd, $Rn, $shift",
1895              [(set GPR:$Rd, CPSR, (opnode GPR:$Rn, so_reg_imm:$shift, CPSR))]>,
1896               Requires<[IsARM]>,
1897            Sched<[WriteALUsi, ReadALU]> {
1898    bits<4> Rd;
1899    bits<4> Rn;
1900    bits<12> shift;
1901    let Inst{25} = 0;
1902    let Inst{19-16} = Rn;
1903    let Inst{15-12} = Rd;
1904    let Inst{11-5} = shift{11-5};
1905    let Inst{4} = 0;
1906    let Inst{3-0} = shift{3-0};
1907  }
1908  def rsr : AsI1<opcod, (outs GPRnopc:$Rd),
1909                (ins GPRnopc:$Rn, so_reg_reg:$shift),
1910                DPSoRegRegFrm, IIC_iALUsr, opc, "\t$Rd, $Rn, $shift",
1911              [(set GPRnopc:$Rd, CPSR,
1912                    (opnode GPRnopc:$Rn, so_reg_reg:$shift, CPSR))]>,
1913               Requires<[IsARM]>,
1914            Sched<[WriteALUsr, ReadALUsr]> {
1915    bits<4> Rd;
1916    bits<4> Rn;
1917    bits<12> shift;
1918    let Inst{25} = 0;
1919    let Inst{19-16} = Rn;
1920    let Inst{15-12} = Rd;
1921    let Inst{11-8} = shift{11-8};
1922    let Inst{7} = 0;
1923    let Inst{6-5} = shift{6-5};
1924    let Inst{4} = 1;
1925    let Inst{3-0} = shift{3-0};
1926  }
1927  }
1928}
1929
1930/// AI1_rsc_irs - Define instructions and patterns for rsc
1931let TwoOperandAliasConstraint = "$Rn = $Rd" in
1932multiclass AI1_rsc_irs<bits<4> opcod, string opc, SDNode opnode> {
1933  let hasPostISelHook = 1, Defs = [CPSR], Uses = [CPSR] in {
1934  def ri : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, mod_imm:$imm),
1935                DPFrm, IIC_iALUi, opc, "\t$Rd, $Rn, $imm",
1936               [(set GPR:$Rd, CPSR, (opnode mod_imm:$imm, GPR:$Rn, CPSR))]>,
1937               Requires<[IsARM]>,
1938           Sched<[WriteALU, ReadALU]> {
1939    bits<4> Rd;
1940    bits<4> Rn;
1941    bits<12> imm;
1942    let Inst{25} = 1;
1943    let Inst{15-12} = Rd;
1944    let Inst{19-16} = Rn;
1945    let Inst{11-0} = imm;
1946  }
1947  def rr : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
1948                DPFrm, IIC_iALUr, opc, "\t$Rd, $Rn, $Rm",
1949               [/* pattern left blank */]>,
1950           Sched<[WriteALU, ReadALU, ReadALU]> {
1951    bits<4> Rd;
1952    bits<4> Rn;
1953    bits<4> Rm;
1954    let Inst{11-4} = 0b00000000;
1955    let Inst{25} = 0;
1956    let Inst{3-0} = Rm;
1957    let Inst{15-12} = Rd;
1958    let Inst{19-16} = Rn;
1959  }
1960  def rsi : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, so_reg_imm:$shift),
1961                DPSoRegImmFrm, IIC_iALUsr, opc, "\t$Rd, $Rn, $shift",
1962              [(set GPR:$Rd, CPSR, (opnode so_reg_imm:$shift, GPR:$Rn, CPSR))]>,
1963               Requires<[IsARM]>,
1964            Sched<[WriteALUsi, ReadALU]> {
1965    bits<4> Rd;
1966    bits<4> Rn;
1967    bits<12> shift;
1968    let Inst{25} = 0;
1969    let Inst{19-16} = Rn;
1970    let Inst{15-12} = Rd;
1971    let Inst{11-5} = shift{11-5};
1972    let Inst{4} = 0;
1973    let Inst{3-0} = shift{3-0};
1974  }
1975  def rsr : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, so_reg_reg:$shift),
1976                DPSoRegRegFrm, IIC_iALUsr, opc, "\t$Rd, $Rn, $shift",
1977              [(set GPR:$Rd, CPSR, (opnode so_reg_reg:$shift, GPR:$Rn, CPSR))]>,
1978               Requires<[IsARM]>,
1979            Sched<[WriteALUsr, ReadALUsr]> {
1980    bits<4> Rd;
1981    bits<4> Rn;
1982    bits<12> shift;
1983    let Inst{25} = 0;
1984    let Inst{19-16} = Rn;
1985    let Inst{15-12} = Rd;
1986    let Inst{11-8} = shift{11-8};
1987    let Inst{7} = 0;
1988    let Inst{6-5} = shift{6-5};
1989    let Inst{4} = 1;
1990    let Inst{3-0} = shift{3-0};
1991  }
1992  }
1993}
1994
1995let canFoldAsLoad = 1, isReMaterializable = 1 in {
1996multiclass AI_ldr1<bit isByte, string opc, InstrItinClass iii,
1997           InstrItinClass iir, PatFrag opnode> {
1998  // Note: We use the complex addrmode_imm12 rather than just an input
1999  // GPR and a constrained immediate so that we can use this to match
2000  // frame index references and avoid matching constant pool references.
2001  def i12: AI2ldst<0b010, 1, isByte, (outs GPR:$Rt), (ins addrmode_imm12:$addr),
2002                   AddrMode_i12, LdFrm, iii, opc, "\t$Rt, $addr",
2003                  [(set GPR:$Rt, (opnode addrmode_imm12:$addr))]> {
2004    bits<4>  Rt;
2005    bits<17> addr;
2006    let Inst{23}    = addr{12};     // U (add = ('U' == 1))
2007    let Inst{19-16} = addr{16-13};  // Rn
2008    let Inst{15-12} = Rt;
2009    let Inst{11-0}  = addr{11-0};   // imm12
2010  }
2011  def rs : AI2ldst<0b011, 1, isByte, (outs GPR:$Rt), (ins ldst_so_reg:$shift),
2012                  AddrModeNone, LdFrm, iir, opc, "\t$Rt, $shift",
2013                 [(set GPR:$Rt, (opnode ldst_so_reg:$shift))]> {
2014    bits<4>  Rt;
2015    bits<17> shift;
2016    let shift{4}    = 0;            // Inst{4} = 0
2017    let Inst{23}    = shift{12};    // U (add = ('U' == 1))
2018    let Inst{19-16} = shift{16-13}; // Rn
2019    let Inst{15-12} = Rt;
2020    let Inst{11-0}  = shift{11-0};
2021  }
2022}
2023}
2024
2025let canFoldAsLoad = 1, isReMaterializable = 1 in {
2026multiclass AI_ldr1nopc<bit isByte, string opc, InstrItinClass iii,
2027           InstrItinClass iir, PatFrag opnode> {
2028  // Note: We use the complex addrmode_imm12 rather than just an input
2029  // GPR and a constrained immediate so that we can use this to match
2030  // frame index references and avoid matching constant pool references.
2031  def i12: AI2ldst<0b010, 1, isByte, (outs GPRnopc:$Rt),
2032                   (ins addrmode_imm12:$addr),
2033                   AddrMode_i12, LdFrm, iii, opc, "\t$Rt, $addr",
2034                   [(set GPRnopc:$Rt, (opnode addrmode_imm12:$addr))]> {
2035    bits<4>  Rt;
2036    bits<17> addr;
2037    let Inst{23}    = addr{12};     // U (add = ('U' == 1))
2038    let Inst{19-16} = addr{16-13};  // Rn
2039    let Inst{15-12} = Rt;
2040    let Inst{11-0}  = addr{11-0};   // imm12
2041  }
2042  def rs : AI2ldst<0b011, 1, isByte, (outs GPRnopc:$Rt),
2043                   (ins ldst_so_reg:$shift),
2044                   AddrModeNone, LdFrm, iir, opc, "\t$Rt, $shift",
2045                   [(set GPRnopc:$Rt, (opnode ldst_so_reg:$shift))]> {
2046    bits<4>  Rt;
2047    bits<17> shift;
2048    let shift{4}    = 0;            // Inst{4} = 0
2049    let Inst{23}    = shift{12};    // U (add = ('U' == 1))
2050    let Inst{19-16} = shift{16-13}; // Rn
2051    let Inst{15-12} = Rt;
2052    let Inst{11-0}  = shift{11-0};
2053  }
2054}
2055}
2056
2057
2058multiclass AI_str1<bit isByte, string opc, InstrItinClass iii,
2059           InstrItinClass iir, PatFrag opnode> {
2060  // Note: We use the complex addrmode_imm12 rather than just an input
2061  // GPR and a constrained immediate so that we can use this to match
2062  // frame index references and avoid matching constant pool references.
2063  def i12 : AI2ldst<0b010, 0, isByte, (outs),
2064                   (ins GPR:$Rt, addrmode_imm12:$addr),
2065                   AddrMode_i12, StFrm, iii, opc, "\t$Rt, $addr",
2066                  [(opnode GPR:$Rt, addrmode_imm12:$addr)]> {
2067    bits<4> Rt;
2068    bits<17> addr;
2069    let Inst{23}    = addr{12};     // U (add = ('U' == 1))
2070    let Inst{19-16} = addr{16-13};  // Rn
2071    let Inst{15-12} = Rt;
2072    let Inst{11-0}  = addr{11-0};   // imm12
2073  }
2074  def rs : AI2ldst<0b011, 0, isByte, (outs), (ins GPR:$Rt, ldst_so_reg:$shift),
2075                  AddrModeNone, StFrm, iir, opc, "\t$Rt, $shift",
2076                 [(opnode GPR:$Rt, ldst_so_reg:$shift)]> {
2077    bits<4> Rt;
2078    bits<17> shift;
2079    let shift{4}    = 0;            // Inst{4} = 0
2080    let Inst{23}    = shift{12};    // U (add = ('U' == 1))
2081    let Inst{19-16} = shift{16-13}; // Rn
2082    let Inst{15-12} = Rt;
2083    let Inst{11-0}  = shift{11-0};
2084  }
2085}
2086
2087multiclass AI_str1nopc<bit isByte, string opc, InstrItinClass iii,
2088           InstrItinClass iir, PatFrag opnode> {
2089  // Note: We use the complex addrmode_imm12 rather than just an input
2090  // GPR and a constrained immediate so that we can use this to match
2091  // frame index references and avoid matching constant pool references.
2092  def i12 : AI2ldst<0b010, 0, isByte, (outs),
2093                   (ins GPRnopc:$Rt, addrmode_imm12:$addr),
2094                   AddrMode_i12, StFrm, iii, opc, "\t$Rt, $addr",
2095                  [(opnode GPRnopc:$Rt, addrmode_imm12:$addr)]> {
2096    bits<4> Rt;
2097    bits<17> addr;
2098    let Inst{23}    = addr{12};     // U (add = ('U' == 1))
2099    let Inst{19-16} = addr{16-13};  // Rn
2100    let Inst{15-12} = Rt;
2101    let Inst{11-0}  = addr{11-0};   // imm12
2102  }
2103  def rs : AI2ldst<0b011, 0, isByte, (outs),
2104                   (ins GPRnopc:$Rt, ldst_so_reg:$shift),
2105                   AddrModeNone, StFrm, iir, opc, "\t$Rt, $shift",
2106                   [(opnode GPRnopc:$Rt, ldst_so_reg:$shift)]> {
2107    bits<4> Rt;
2108    bits<17> shift;
2109    let shift{4}    = 0;            // Inst{4} = 0
2110    let Inst{23}    = shift{12};    // U (add = ('U' == 1))
2111    let Inst{19-16} = shift{16-13}; // Rn
2112    let Inst{15-12} = Rt;
2113    let Inst{11-0}  = shift{11-0};
2114  }
2115}
2116
2117
2118//===----------------------------------------------------------------------===//
2119// Instructions
2120//===----------------------------------------------------------------------===//
2121
2122//===----------------------------------------------------------------------===//
2123//  Miscellaneous Instructions.
2124//
2125
2126/// CONSTPOOL_ENTRY - This instruction represents a floating constant pool in
2127/// the function.  The first operand is the ID# for this instruction, the second
2128/// is the index into the MachineConstantPool that this is, the third is the
2129/// size in bytes of this constant pool entry.
2130let hasSideEffects = 0, isNotDuplicable = 1, hasNoSchedulingInfo = 1 in
2131def CONSTPOOL_ENTRY :
2132PseudoInst<(outs), (ins cpinst_operand:$instid, cpinst_operand:$cpidx,
2133                    i32imm:$size), NoItinerary, []>;
2134
2135/// A jumptable consisting of direct 32-bit addresses of the destination basic
2136/// blocks (either absolute, or relative to the start of the jump-table in PIC
2137/// mode). Used mostly in ARM and Thumb-1 modes.
2138def JUMPTABLE_ADDRS :
2139PseudoInst<(outs), (ins cpinst_operand:$instid, cpinst_operand:$cpidx,
2140                        i32imm:$size), NoItinerary, []>;
2141
2142/// A jumptable consisting of 32-bit jump instructions. Used for Thumb-2 tables
2143/// that cannot be optimised to use TBB or TBH.
2144def JUMPTABLE_INSTS :
2145PseudoInst<(outs), (ins cpinst_operand:$instid, cpinst_operand:$cpidx,
2146                        i32imm:$size), NoItinerary, []>;
2147
2148/// A jumptable consisting of 8-bit unsigned integers representing offsets from
2149/// a TBB instruction.
2150def JUMPTABLE_TBB :
2151PseudoInst<(outs), (ins cpinst_operand:$instid, cpinst_operand:$cpidx,
2152                        i32imm:$size), NoItinerary, []>;
2153
2154/// A jumptable consisting of 16-bit unsigned integers representing offsets from
2155/// a TBH instruction.
2156def JUMPTABLE_TBH :
2157PseudoInst<(outs), (ins cpinst_operand:$instid, cpinst_operand:$cpidx,
2158                        i32imm:$size), NoItinerary, []>;
2159
2160
2161// FIXME: Marking these as hasSideEffects is necessary to prevent machine DCE
2162// from removing one half of the matched pairs. That breaks PEI, which assumes
2163// these will always be in pairs, and asserts if it finds otherwise. Better way?
2164let Defs = [SP], Uses = [SP], hasSideEffects = 1 in {
2165def ADJCALLSTACKUP :
2166PseudoInst<(outs), (ins i32imm:$amt1, i32imm:$amt2, pred:$p), NoItinerary,
2167           [(ARMcallseq_end timm:$amt1, timm:$amt2)]>;
2168
2169def ADJCALLSTACKDOWN :
2170PseudoInst<(outs), (ins i32imm:$amt, i32imm:$amt2, pred:$p), NoItinerary,
2171           [(ARMcallseq_start timm:$amt, timm:$amt2)]>;
2172}
2173
2174def HINT : AI<(outs), (ins imm0_239:$imm), MiscFrm, NoItinerary,
2175              "hint", "\t$imm", [(int_arm_hint imm0_239:$imm)]>,
2176           Requires<[IsARM, HasV6]> {
2177  bits<8> imm;
2178  let Inst{27-8} = 0b00110010000011110000;
2179  let Inst{7-0} = imm;
2180  let DecoderMethod = "DecodeHINTInstruction";
2181}
2182
2183def : InstAlias<"nop$p", (HINT 0, pred:$p)>, Requires<[IsARM, HasV6K]>;
2184def : InstAlias<"yield$p", (HINT 1, pred:$p)>, Requires<[IsARM, HasV6K]>;
2185def : InstAlias<"wfe$p", (HINT 2, pred:$p)>, Requires<[IsARM, HasV6K]>;
2186def : InstAlias<"wfi$p", (HINT 3, pred:$p)>, Requires<[IsARM, HasV6K]>;
2187def : InstAlias<"sev$p", (HINT 4, pred:$p)>, Requires<[IsARM, HasV6K]>;
2188def : InstAlias<"sevl$p", (HINT 5, pred:$p)>, Requires<[IsARM, HasV8]>;
2189def : InstAlias<"esb$p", (HINT 16, pred:$p)>, Requires<[IsARM, HasRAS]>;
2190def : InstAlias<"csdb$p", (HINT 20, pred:$p)>, Requires<[IsARM, HasV6K]>;
2191
2192def SEL : AI<(outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), DPFrm, NoItinerary, "sel",
2193             "\t$Rd, $Rn, $Rm",
2194             [(set GPR:$Rd, (int_arm_sel GPR:$Rn, GPR:$Rm))]>,
2195             Requires<[IsARM, HasV6]> {
2196  bits<4> Rd;
2197  bits<4> Rn;
2198  bits<4> Rm;
2199  let Inst{3-0} = Rm;
2200  let Inst{15-12} = Rd;
2201  let Inst{19-16} = Rn;
2202  let Inst{27-20} = 0b01101000;
2203  let Inst{7-4} = 0b1011;
2204  let Inst{11-8} = 0b1111;
2205  let Unpredictable{11-8} = 0b1111;
2206}
2207
2208// The 16-bit operand $val can be used by a debugger to store more information
2209// about the breakpoint.
2210def BKPT : AInoP<(outs), (ins imm0_65535:$val), MiscFrm, NoItinerary,
2211                 "bkpt", "\t$val", []>, Requires<[IsARM]> {
2212  bits<16> val;
2213  let Inst{3-0} = val{3-0};
2214  let Inst{19-8} = val{15-4};
2215  let Inst{27-20} = 0b00010010;
2216  let Inst{31-28} = 0xe; // AL
2217  let Inst{7-4} = 0b0111;
2218}
2219// default immediate for breakpoint mnemonic
2220def : InstAlias<"bkpt", (BKPT 0), 0>, Requires<[IsARM]>;
2221
2222def HLT : AInoP<(outs), (ins imm0_65535:$val), MiscFrm, NoItinerary,
2223                 "hlt", "\t$val", []>, Requires<[IsARM, HasV8]> {
2224  bits<16> val;
2225  let Inst{3-0} = val{3-0};
2226  let Inst{19-8} = val{15-4};
2227  let Inst{27-20} = 0b00010000;
2228  let Inst{31-28} = 0xe; // AL
2229  let Inst{7-4} = 0b0111;
2230}
2231
2232// Change Processor State
2233// FIXME: We should use InstAlias to handle the optional operands.
2234class CPS<dag iops, string asm_ops>
2235  : AXI<(outs), iops, MiscFrm, NoItinerary, !strconcat("cps", asm_ops),
2236        []>, Requires<[IsARM]> {
2237  bits<2> imod;
2238  bits<3> iflags;
2239  bits<5> mode;
2240  bit M;
2241
2242  let Inst{31-28} = 0b1111;
2243  let Inst{27-20} = 0b00010000;
2244  let Inst{19-18} = imod;
2245  let Inst{17}    = M; // Enabled if mode is set;
2246  let Inst{16-9}  = 0b00000000;
2247  let Inst{8-6}   = iflags;
2248  let Inst{5}     = 0;
2249  let Inst{4-0}   = mode;
2250}
2251
2252let DecoderMethod = "DecodeCPSInstruction" in {
2253let M = 1 in
2254  def CPS3p : CPS<(ins imod_op:$imod, iflags_op:$iflags, imm0_31:$mode),
2255                  "$imod\t$iflags, $mode">;
2256let mode = 0, M = 0 in
2257  def CPS2p : CPS<(ins imod_op:$imod, iflags_op:$iflags), "$imod\t$iflags">;
2258
2259let imod = 0, iflags = 0, M = 1 in
2260  def CPS1p : CPS<(ins imm0_31:$mode), "\t$mode">;
2261}
2262
2263// Preload signals the memory system of possible future data/instruction access.
2264multiclass APreLoad<bits<1> read, bits<1> data, string opc> {
2265
2266  def i12 : AXIM<(outs), (ins addrmode_imm12:$addr), AddrMode_i12, MiscFrm,
2267                IIC_Preload, !strconcat(opc, "\t$addr"),
2268                [(ARMPreload addrmode_imm12:$addr, (i32 read), (i32 data))]>,
2269                Sched<[WritePreLd]> {
2270    bits<4> Rt;
2271    bits<17> addr;
2272    let Inst{31-26} = 0b111101;
2273    let Inst{25} = 0; // 0 for immediate form
2274    let Inst{24} = data;
2275    let Inst{23} = addr{12};        // U (add = ('U' == 1))
2276    let Inst{22} = read;
2277    let Inst{21-20} = 0b01;
2278    let Inst{19-16} = addr{16-13};  // Rn
2279    let Inst{15-12} = 0b1111;
2280    let Inst{11-0}  = addr{11-0};   // imm12
2281  }
2282
2283  def rs : AXI<(outs), (ins ldst_so_reg:$shift), MiscFrm, IIC_Preload,
2284               !strconcat(opc, "\t$shift"),
2285               [(ARMPreload ldst_so_reg:$shift, (i32 read), (i32 data))]>,
2286               Sched<[WritePreLd]> {
2287    bits<17> shift;
2288    let Inst{31-26} = 0b111101;
2289    let Inst{25} = 1; // 1 for register form
2290    let Inst{24} = data;
2291    let Inst{23} = shift{12};    // U (add = ('U' == 1))
2292    let Inst{22} = read;
2293    let Inst{21-20} = 0b01;
2294    let Inst{19-16} = shift{16-13}; // Rn
2295    let Inst{15-12} = 0b1111;
2296    let Inst{11-0}  = shift{11-0};
2297    let Inst{4} = 0;
2298  }
2299}
2300
2301defm PLD  : APreLoad<1, 1, "pld">,  Requires<[IsARM]>;
2302defm PLDW : APreLoad<0, 1, "pldw">, Requires<[IsARM,HasV7,HasMP]>;
2303defm PLI  : APreLoad<1, 0, "pli">,  Requires<[IsARM,HasV7]>;
2304
2305def SETEND : AXI<(outs), (ins setend_op:$end), MiscFrm, NoItinerary,
2306                 "setend\t$end", []>, Requires<[IsARM]>, Deprecated<HasV8Ops> {
2307  bits<1> end;
2308  let Inst{31-10} = 0b1111000100000001000000;
2309  let Inst{9} = end;
2310  let Inst{8-0} = 0;
2311}
2312
2313def DBG : AI<(outs), (ins imm0_15:$opt), MiscFrm, NoItinerary, "dbg", "\t$opt",
2314             [(int_arm_dbg imm0_15:$opt)]>, Requires<[IsARM, HasV7]> {
2315  bits<4> opt;
2316  let Inst{27-4} = 0b001100100000111100001111;
2317  let Inst{3-0} = opt;
2318}
2319
2320// A8.8.247  UDF - Undefined (Encoding A1)
2321def UDF : AInoP<(outs), (ins imm0_65535:$imm16), MiscFrm, NoItinerary,
2322                "udf", "\t$imm16", [(int_arm_undefined imm0_65535:$imm16)]> {
2323  bits<16> imm16;
2324  let Inst{31-28} = 0b1110; // AL
2325  let Inst{27-25} = 0b011;
2326  let Inst{24-20} = 0b11111;
2327  let Inst{19-8} = imm16{15-4};
2328  let Inst{7-4} = 0b1111;
2329  let Inst{3-0} = imm16{3-0};
2330}
2331
2332/*
2333 * A5.4 Permanently UNDEFINED instructions.
2334 *
2335 * For most targets use UDF #65006, for which the OS will generate SIGTRAP.
2336 * Other UDF encodings generate SIGILL.
2337 *
2338 * NaCl's OS instead chooses an ARM UDF encoding that's also a UDF in Thumb.
2339 * Encoding A1:
2340 *  1110 0111 1111 iiii iiii iiii 1111 iiii
2341 * Encoding T1:
2342 *  1101 1110 iiii iiii
2343 * It uses the following encoding:
2344 *  1110 0111 1111 1110 1101 1110 1111 0000
2345 *  - In ARM: UDF #60896;
2346 *  - In Thumb: UDF #254 followed by a branch-to-self.
2347 */
2348let isBarrier = 1, isTerminator = 1 in
2349def TRAPNaCl : AXI<(outs), (ins), MiscFrm, NoItinerary,
2350               "trap", [(trap)]>,
2351           Requires<[IsARM,UseNaClTrap]> {
2352  let Inst = 0xe7fedef0;
2353}
2354let isBarrier = 1, isTerminator = 1 in
2355def TRAP : AXI<(outs), (ins), MiscFrm, NoItinerary,
2356               "trap", [(trap)]>,
2357           Requires<[IsARM,DontUseNaClTrap]> {
2358  let Inst = 0xe7ffdefe;
2359}
2360
2361def : Pat<(debugtrap), (BKPT 0)>, Requires<[IsARM, HasV5T]>;
2362def : Pat<(debugtrap), (UDF 254)>, Requires<[IsARM, NoV5T]>;
2363
2364// Address computation and loads and stores in PIC mode.
2365let isNotDuplicable = 1 in {
2366def PICADD  : ARMPseudoInst<(outs GPR:$dst), (ins GPR:$a, pclabel:$cp, pred:$p),
2367                            4, IIC_iALUr,
2368                            [(set GPR:$dst, (ARMpic_add GPR:$a, imm:$cp))]>,
2369                            Sched<[WriteALU, ReadALU]>;
2370
2371let AddedComplexity = 10 in {
2372def PICLDR  : ARMPseudoInst<(outs GPR:$dst), (ins addrmodepc:$addr, pred:$p),
2373                            4, IIC_iLoad_r,
2374                            [(set GPR:$dst, (load addrmodepc:$addr))]>;
2375
2376def PICLDRH : ARMPseudoInst<(outs GPR:$Rt), (ins addrmodepc:$addr, pred:$p),
2377                            4, IIC_iLoad_bh_r,
2378                            [(set GPR:$Rt, (zextloadi16 addrmodepc:$addr))]>;
2379
2380def PICLDRB : ARMPseudoInst<(outs GPR:$Rt), (ins addrmodepc:$addr, pred:$p),
2381                            4, IIC_iLoad_bh_r,
2382                            [(set GPR:$Rt, (zextloadi8 addrmodepc:$addr))]>;
2383
2384def PICLDRSH : ARMPseudoInst<(outs GPR:$Rt), (ins addrmodepc:$addr, pred:$p),
2385                            4, IIC_iLoad_bh_r,
2386                            [(set GPR:$Rt, (sextloadi16 addrmodepc:$addr))]>;
2387
2388def PICLDRSB : ARMPseudoInst<(outs GPR:$Rt), (ins addrmodepc:$addr, pred:$p),
2389                            4, IIC_iLoad_bh_r,
2390                            [(set GPR:$Rt, (sextloadi8 addrmodepc:$addr))]>;
2391}
2392let AddedComplexity = 10 in {
2393def PICSTR  : ARMPseudoInst<(outs), (ins GPR:$src, addrmodepc:$addr, pred:$p),
2394      4, IIC_iStore_r, [(store GPR:$src, addrmodepc:$addr)]>;
2395
2396def PICSTRH : ARMPseudoInst<(outs), (ins GPR:$src, addrmodepc:$addr, pred:$p),
2397      4, IIC_iStore_bh_r, [(truncstorei16 GPR:$src,
2398                                                   addrmodepc:$addr)]>;
2399
2400def PICSTRB : ARMPseudoInst<(outs), (ins GPR:$src, addrmodepc:$addr, pred:$p),
2401      4, IIC_iStore_bh_r, [(truncstorei8 GPR:$src, addrmodepc:$addr)]>;
2402}
2403} // isNotDuplicable = 1
2404
2405
2406// LEApcrel - Load a pc-relative address into a register without offending the
2407// assembler.
2408let hasSideEffects = 0, isReMaterializable = 1 in
2409// The 'adr' mnemonic encodes differently if the label is before or after
2410// the instruction. The {24-21} opcode bits are set by the fixup, as we don't
2411// know until then which form of the instruction will be used.
2412def ADR : AI1<{0,?,?,0}, (outs GPR:$Rd), (ins adrlabel:$label),
2413                 MiscFrm, IIC_iALUi, "adr", "\t$Rd, $label", []>,
2414                 Sched<[WriteALU, ReadALU]> {
2415  bits<4> Rd;
2416  bits<14> label;
2417  let Inst{27-25} = 0b001;
2418  let Inst{24} = 0;
2419  let Inst{23-22} = label{13-12};
2420  let Inst{21} = 0;
2421  let Inst{20} = 0;
2422  let Inst{19-16} = 0b1111;
2423  let Inst{15-12} = Rd;
2424  let Inst{11-0} = label{11-0};
2425}
2426
2427let hasSideEffects = 1 in {
2428def LEApcrel : ARMPseudoInst<(outs GPR:$Rd), (ins i32imm:$label, pred:$p),
2429                    4, IIC_iALUi, []>, Sched<[WriteALU, ReadALU]>;
2430
2431def LEApcrelJT : ARMPseudoInst<(outs GPR:$Rd),
2432                      (ins i32imm:$label, pred:$p),
2433                      4, IIC_iALUi, []>, Sched<[WriteALU, ReadALU]>;
2434}
2435
2436//===----------------------------------------------------------------------===//
2437//  Control Flow Instructions.
2438//
2439
2440let isReturn = 1, isTerminator = 1, isBarrier = 1 in {
2441  // ARMV4T and above
2442  def BX_RET : AI<(outs), (ins), BrMiscFrm, IIC_Br,
2443                  "bx", "\tlr", [(ARMretflag)]>,
2444               Requires<[IsARM, HasV4T]>, Sched<[WriteBr]> {
2445    let Inst{27-0}  = 0b0001001011111111111100011110;
2446  }
2447
2448  // ARMV4 only
2449  def MOVPCLR : AI<(outs), (ins), BrMiscFrm, IIC_Br,
2450                  "mov", "\tpc, lr", [(ARMretflag)]>,
2451               Requires<[IsARM, NoV4T]>, Sched<[WriteBr]> {
2452    let Inst{27-0} = 0b0001101000001111000000001110;
2453  }
2454
2455  // Exception return: N.b. doesn't set CPSR as far as we're concerned (it sets
2456  // the user-space one).
2457  def SUBS_PC_LR : ARMPseudoInst<(outs), (ins i32imm:$offset, pred:$p),
2458                                 4, IIC_Br,
2459                                 [(ARMintretflag imm:$offset)]>;
2460}
2461
2462// Indirect branches
2463let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in {
2464  // ARMV4T and above
2465  def BX : AXI<(outs), (ins GPR:$dst), BrMiscFrm, IIC_Br, "bx\t$dst",
2466                  [(brind GPR:$dst)]>,
2467              Requires<[IsARM, HasV4T]>, Sched<[WriteBr]> {
2468    bits<4> dst;
2469    let Inst{31-4} = 0b1110000100101111111111110001;
2470    let Inst{3-0}  = dst;
2471  }
2472
2473  def BX_pred : AI<(outs), (ins GPR:$dst), BrMiscFrm, IIC_Br,
2474                  "bx", "\t$dst", [/* pattern left blank */]>,
2475              Requires<[IsARM, HasV4T]>, Sched<[WriteBr]> {
2476    bits<4> dst;
2477    let Inst{27-4} = 0b000100101111111111110001;
2478    let Inst{3-0}  = dst;
2479  }
2480}
2481
2482// SP is marked as a use to prevent stack-pointer assignments that appear
2483// immediately before calls from potentially appearing dead.
2484let isCall = 1,
2485  // FIXME:  Do we really need a non-predicated version? If so, it should
2486  // at least be a pseudo instruction expanding to the predicated version
2487  // at MC lowering time.
2488  Defs = [LR], Uses = [SP] in {
2489  def BL  : ABXI<0b1011, (outs), (ins arm_bl_target:$func),
2490                IIC_Br, "bl\t$func",
2491                [(ARMcall tglobaladdr:$func)]>,
2492            Requires<[IsARM]>, Sched<[WriteBrL]> {
2493    let Inst{31-28} = 0b1110;
2494    bits<24> func;
2495    let Inst{23-0} = func;
2496    let DecoderMethod = "DecodeBranchImmInstruction";
2497  }
2498
2499  def BL_pred : ABI<0b1011, (outs), (ins arm_bl_target:$func),
2500                   IIC_Br, "bl", "\t$func",
2501                   [(ARMcall_pred tglobaladdr:$func)]>,
2502                Requires<[IsARM]>, Sched<[WriteBrL]> {
2503    bits<24> func;
2504    let Inst{23-0} = func;
2505    let DecoderMethod = "DecodeBranchImmInstruction";
2506  }
2507
2508  // ARMv5T and above
2509  def BLX : AXI<(outs), (ins GPR:$func), BrMiscFrm, IIC_Br, "blx\t$func", []>,
2510            Requires<[IsARM, HasV5T]>, Sched<[WriteBrL]> {
2511    bits<4> func;
2512    let Inst{31-4} = 0b1110000100101111111111110011;
2513    let Inst{3-0}  = func;
2514  }
2515  def BLX_noip :  ARMPseudoExpand<(outs), (ins GPRnoip:$func),
2516                   4, IIC_Br, [], (BLX GPR:$func)>,
2517                  Requires<[IsARM, HasV5T]>, Sched<[WriteBrL]>;
2518
2519
2520  def BLX_pred : AI<(outs), (ins GPR:$func), BrMiscFrm,
2521                    IIC_Br, "blx", "\t$func", []>,
2522                 Requires<[IsARM, HasV5T]>, Sched<[WriteBrL]> {
2523    bits<4> func;
2524    let Inst{27-4} = 0b000100101111111111110011;
2525    let Inst{3-0}  = func;
2526  }
2527  def BLX_pred_noip :  ARMPseudoExpand<(outs), (ins GPRnoip:$func),
2528                   4, IIC_Br, [],
2529                   (BLX_pred GPR:$func, (ops 14, zero_reg))>,
2530                   Requires<[IsARM, HasV5T]>, Sched<[WriteBrL]>;
2531
2532
2533  // ARMv4T
2534  // Note: Restrict $func to the tGPR regclass to prevent it being in LR.
2535  def BX_CALL : ARMPseudoInst<(outs), (ins tGPR:$func),
2536                   8, IIC_Br, [(ARMcall_nolink tGPR:$func)]>,
2537                   Requires<[IsARM, HasV4T]>, Sched<[WriteBr]>;
2538
2539  // ARMv4
2540  def BMOVPCRX_CALL : ARMPseudoInst<(outs), (ins tGPR:$func),
2541                   8, IIC_Br, [(ARMcall_nolink tGPR:$func)]>,
2542                   Requires<[IsARM, NoV4T]>, Sched<[WriteBr]>;
2543
2544  // mov lr, pc; b if callee is marked noreturn to avoid confusing the
2545  // return stack predictor.
2546  def BMOVPCB_CALL : ARMPseudoInst<(outs), (ins arm_bl_target:$func),
2547                               8, IIC_Br, [(ARMcall_nolink tglobaladdr:$func)]>,
2548                      Requires<[IsARM]>, Sched<[WriteBr]>;
2549
2550  // push lr before the call
2551  def BL_PUSHLR : ARMPseudoInst<(outs), (ins GPRlr:$ra, arm_bl_target:$func),
2552                  4, IIC_Br,
2553                  []>,
2554             Requires<[IsARM]>, Sched<[WriteBr]>;
2555}
2556
2557def : ARMPat<(ARMcall GPR:$func), (BLX $func)>,
2558      Requires<[IsARM, HasV5T, NoSLSBLRMitigation]>;
2559def : ARMPat<(ARMcall GPRnoip:$func), (BLX_noip $func)>,
2560      Requires<[IsARM, HasV5T, SLSBLRMitigation]>;
2561def : ARMPat<(ARMcall_pred GPR:$func), (BLX_pred $func)>,
2562      Requires<[IsARM, HasV5T, NoSLSBLRMitigation]>;
2563def : ARMPat<(ARMcall_pred GPRnoip:$func), (BLX_pred_noip $func)>,
2564      Requires<[IsARM, HasV5T, SLSBLRMitigation]>;
2565
2566
2567let isBranch = 1, isTerminator = 1 in {
2568  // FIXME: should be able to write a pattern for ARMBrcond, but can't use
2569  // a two-value operand where a dag node expects two operands. :(
2570  def Bcc : ABI<0b1010, (outs), (ins arm_br_target:$target),
2571               IIC_Br, "b", "\t$target",
2572               [/*(ARMbrcond bb:$target, imm:$cc, CCR:$ccr)*/]>,
2573               Sched<[WriteBr]>  {
2574    bits<24> target;
2575    let Inst{23-0} = target;
2576    let DecoderMethod = "DecodeBranchImmInstruction";
2577  }
2578
2579  let isBarrier = 1 in {
2580    // B is "predicable" since it's just a Bcc with an 'always' condition.
2581    let isPredicable = 1 in
2582    // FIXME: We shouldn't need this pseudo at all. Just using Bcc directly
2583    // should be sufficient.
2584    // FIXME: Is B really a Barrier? That doesn't seem right.
2585    def B : ARMPseudoExpand<(outs), (ins arm_br_target:$target), 4, IIC_Br,
2586                [(br bb:$target)], (Bcc arm_br_target:$target,
2587                (ops 14, zero_reg))>,
2588                Sched<[WriteBr]>;
2589
2590    let Size = 4, isNotDuplicable = 1, isIndirectBranch = 1 in {
2591    def BR_JTr : ARMPseudoInst<(outs),
2592                      (ins GPR:$target, i32imm:$jt),
2593                      0, IIC_Br,
2594                      [(ARMbrjt GPR:$target, tjumptable:$jt)]>,
2595                      Sched<[WriteBr]>;
2596    def BR_JTm_i12 : ARMPseudoInst<(outs),
2597                     (ins addrmode_imm12:$target, i32imm:$jt),
2598                     0, IIC_Br,
2599                     [(ARMbrjt (i32 (load addrmode_imm12:$target)),
2600                               tjumptable:$jt)]>, Sched<[WriteBrTbl]>;
2601    def BR_JTm_rs : ARMPseudoInst<(outs),
2602                     (ins ldst_so_reg:$target, i32imm:$jt),
2603                     0, IIC_Br,
2604                     [(ARMbrjt (i32 (load ldst_so_reg:$target)),
2605                               tjumptable:$jt)]>, Sched<[WriteBrTbl]>;
2606    def BR_JTadd : ARMPseudoInst<(outs),
2607                   (ins GPR:$target, GPR:$idx, i32imm:$jt),
2608                   0, IIC_Br,
2609                   [(ARMbrjt (add GPR:$target, GPR:$idx), tjumptable:$jt)]>,
2610                   Sched<[WriteBrTbl]>;
2611    } // isNotDuplicable = 1, isIndirectBranch = 1
2612  } // isBarrier = 1
2613
2614}
2615
2616// BLX (immediate)
2617def BLXi : AXI<(outs), (ins arm_blx_target:$target), BrMiscFrm, NoItinerary,
2618               "blx\t$target", []>,
2619           Requires<[IsARM, HasV5T]>, Sched<[WriteBrL]> {
2620  let Inst{31-25} = 0b1111101;
2621  bits<25> target;
2622  let Inst{23-0} = target{24-1};
2623  let Inst{24} = target{0};
2624  let isCall = 1;
2625}
2626
2627// Branch and Exchange Jazelle
2628def BXJ : ABI<0b0001, (outs), (ins GPR:$func), NoItinerary, "bxj", "\t$func",
2629              [/* pattern left blank */]>, Sched<[WriteBr]> {
2630  bits<4> func;
2631  let Inst{23-20} = 0b0010;
2632  let Inst{19-8} = 0xfff;
2633  let Inst{7-4} = 0b0010;
2634  let Inst{3-0} = func;
2635  let isBranch = 1;
2636  let isIndirectBranch = 1;
2637}
2638
2639// Tail calls.
2640
2641let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [SP] in {
2642  def TCRETURNdi : PseudoInst<(outs), (ins i32imm:$dst, i32imm:$SPDiff), IIC_Br, []>,
2643                   Sched<[WriteBr]>;
2644
2645  def TCRETURNri : PseudoInst<(outs), (ins tcGPR:$dst, i32imm:$SPDiff), IIC_Br, []>,
2646                   Sched<[WriteBr]>;
2647
2648  def TAILJMPd : ARMPseudoExpand<(outs), (ins arm_br_target:$dst),
2649                                 4, IIC_Br, [],
2650                                 (Bcc arm_br_target:$dst, (ops 14, zero_reg))>,
2651                                 Requires<[IsARM]>, Sched<[WriteBr]>;
2652
2653  def TAILJMPr : ARMPseudoExpand<(outs), (ins tcGPR:$dst),
2654                                 4, IIC_Br, [],
2655                                 (BX GPR:$dst)>, Sched<[WriteBr]>,
2656                                 Requires<[IsARM, HasV4T]>;
2657}
2658
2659// Secure Monitor Call is a system instruction.
2660def SMC : ABI<0b0001, (outs), (ins imm0_15:$opt), NoItinerary, "smc", "\t$opt",
2661              []>, Requires<[IsARM, HasTrustZone]> {
2662  bits<4> opt;
2663  let Inst{23-4} = 0b01100000000000000111;
2664  let Inst{3-0} = opt;
2665}
2666def : MnemonicAlias<"smi", "smc">;
2667
2668// Supervisor Call (Software Interrupt)
2669let isCall = 1, Uses = [SP] in {
2670def SVC : ABI<0b1111, (outs), (ins imm24b:$svc), IIC_Br, "svc", "\t$svc", []>,
2671          Sched<[WriteBr]> {
2672  bits<24> svc;
2673  let Inst{23-0} = svc;
2674}
2675}
2676
2677// Store Return State
2678class SRSI<bit wb, string asm>
2679  : XI<(outs), (ins imm0_31:$mode), AddrModeNone, 4, IndexModeNone, BrFrm,
2680       NoItinerary, asm, "", []> {
2681  bits<5> mode;
2682  let Inst{31-28} = 0b1111;
2683  let Inst{27-25} = 0b100;
2684  let Inst{22} = 1;
2685  let Inst{21} = wb;
2686  let Inst{20} = 0;
2687  let Inst{19-16} = 0b1101;  // SP
2688  let Inst{15-5} = 0b00000101000;
2689  let Inst{4-0} = mode;
2690}
2691
2692def SRSDA : SRSI<0, "srsda\tsp, $mode"> {
2693  let Inst{24-23} = 0;
2694}
2695def SRSDA_UPD : SRSI<1, "srsda\tsp!, $mode"> {
2696  let Inst{24-23} = 0;
2697}
2698def SRSDB : SRSI<0, "srsdb\tsp, $mode"> {
2699  let Inst{24-23} = 0b10;
2700}
2701def SRSDB_UPD : SRSI<1, "srsdb\tsp!, $mode"> {
2702  let Inst{24-23} = 0b10;
2703}
2704def SRSIA : SRSI<0, "srsia\tsp, $mode"> {
2705  let Inst{24-23} = 0b01;
2706}
2707def SRSIA_UPD : SRSI<1, "srsia\tsp!, $mode"> {
2708  let Inst{24-23} = 0b01;
2709}
2710def SRSIB : SRSI<0, "srsib\tsp, $mode"> {
2711  let Inst{24-23} = 0b11;
2712}
2713def SRSIB_UPD : SRSI<1, "srsib\tsp!, $mode"> {
2714  let Inst{24-23} = 0b11;
2715}
2716
2717def : ARMInstAlias<"srsda $mode", (SRSDA imm0_31:$mode)>;
2718def : ARMInstAlias<"srsda $mode!", (SRSDA_UPD imm0_31:$mode)>;
2719
2720def : ARMInstAlias<"srsdb $mode", (SRSDB imm0_31:$mode)>;
2721def : ARMInstAlias<"srsdb $mode!", (SRSDB_UPD imm0_31:$mode)>;
2722
2723def : ARMInstAlias<"srsia $mode", (SRSIA imm0_31:$mode)>;
2724def : ARMInstAlias<"srsia $mode!", (SRSIA_UPD imm0_31:$mode)>;
2725
2726def : ARMInstAlias<"srsib $mode", (SRSIB imm0_31:$mode)>;
2727def : ARMInstAlias<"srsib $mode!", (SRSIB_UPD imm0_31:$mode)>;
2728
2729// Return From Exception
2730class RFEI<bit wb, string asm>
2731  : XI<(outs), (ins GPR:$Rn), AddrModeNone, 4, IndexModeNone, BrFrm,
2732       NoItinerary, asm, "", []> {
2733  bits<4> Rn;
2734  let Inst{31-28} = 0b1111;
2735  let Inst{27-25} = 0b100;
2736  let Inst{22} = 0;
2737  let Inst{21} = wb;
2738  let Inst{20} = 1;
2739  let Inst{19-16} = Rn;
2740  let Inst{15-0} = 0xa00;
2741}
2742
2743def RFEDA : RFEI<0, "rfeda\t$Rn"> {
2744  let Inst{24-23} = 0;
2745}
2746def RFEDA_UPD : RFEI<1, "rfeda\t$Rn!"> {
2747  let Inst{24-23} = 0;
2748}
2749def RFEDB : RFEI<0, "rfedb\t$Rn"> {
2750  let Inst{24-23} = 0b10;
2751}
2752def RFEDB_UPD : RFEI<1, "rfedb\t$Rn!"> {
2753  let Inst{24-23} = 0b10;
2754}
2755def RFEIA : RFEI<0, "rfeia\t$Rn"> {
2756  let Inst{24-23} = 0b01;
2757}
2758def RFEIA_UPD : RFEI<1, "rfeia\t$Rn!"> {
2759  let Inst{24-23} = 0b01;
2760}
2761def RFEIB : RFEI<0, "rfeib\t$Rn"> {
2762  let Inst{24-23} = 0b11;
2763}
2764def RFEIB_UPD : RFEI<1, "rfeib\t$Rn!"> {
2765  let Inst{24-23} = 0b11;
2766}
2767
2768// Hypervisor Call is a system instruction
2769let isCall = 1 in {
2770def HVC : AInoP< (outs), (ins imm0_65535:$imm), BrFrm, NoItinerary,
2771                "hvc", "\t$imm", []>,
2772          Requires<[IsARM, HasVirtualization]> {
2773  bits<16> imm;
2774
2775  // Even though HVC isn't predicable, it's encoding includes a condition field.
2776  // The instruction is undefined if the condition field is 0xf otherwise it is
2777  // unpredictable if it isn't condition AL (0xe).
2778  let Inst{31-28} = 0b1110;
2779  let Unpredictable{31-28} = 0b1111;
2780  let Inst{27-24} = 0b0001;
2781  let Inst{23-20} = 0b0100;
2782  let Inst{19-8} = imm{15-4};
2783  let Inst{7-4} = 0b0111;
2784  let Inst{3-0} = imm{3-0};
2785}
2786}
2787
2788// Return from exception in Hypervisor mode.
2789let isReturn = 1, isBarrier = 1, isTerminator = 1, Defs = [PC] in
2790def ERET : ABI<0b0001, (outs), (ins), NoItinerary, "eret", "", []>,
2791    Requires<[IsARM, HasVirtualization]> {
2792    let Inst{23-0} = 0b011000000000000001101110;
2793}
2794
2795//===----------------------------------------------------------------------===//
2796//  Load / Store Instructions.
2797//
2798
2799// Load
2800
2801
2802defm LDR  : AI_ldr1<0, "ldr", IIC_iLoad_r, IIC_iLoad_si, load>;
2803defm LDRB : AI_ldr1nopc<1, "ldrb", IIC_iLoad_bh_r, IIC_iLoad_bh_si,
2804                        zextloadi8>;
2805defm STR  : AI_str1<0, "str", IIC_iStore_r, IIC_iStore_si, store>;
2806defm STRB : AI_str1nopc<1, "strb", IIC_iStore_bh_r, IIC_iStore_bh_si,
2807                        truncstorei8>;
2808
2809// Special LDR for loads from non-pc-relative constpools.
2810let canFoldAsLoad = 1, mayLoad = 1, hasSideEffects = 0,
2811    isReMaterializable = 1, isCodeGenOnly = 1 in
2812def LDRcp : AI2ldst<0b010, 1, 0, (outs GPR:$Rt), (ins addrmode_imm12:$addr),
2813                 AddrMode_i12, LdFrm, IIC_iLoad_r, "ldr", "\t$Rt, $addr",
2814                 []> {
2815  bits<4> Rt;
2816  bits<17> addr;
2817  let Inst{23}    = addr{12};     // U (add = ('U' == 1))
2818  let Inst{19-16} = 0b1111;
2819  let Inst{15-12} = Rt;
2820  let Inst{11-0}  = addr{11-0};   // imm12
2821}
2822
2823// Loads with zero extension
2824def LDRH  : AI3ld<0b1011, 1, (outs GPR:$Rt), (ins addrmode3:$addr), LdMiscFrm,
2825                  IIC_iLoad_bh_r, "ldrh", "\t$Rt, $addr",
2826                  [(set GPR:$Rt, (zextloadi16 addrmode3:$addr))]>;
2827
2828// Loads with sign extension
2829def LDRSH : AI3ld<0b1111, 1, (outs GPR:$Rt), (ins addrmode3:$addr), LdMiscFrm,
2830                   IIC_iLoad_bh_r, "ldrsh", "\t$Rt, $addr",
2831                   [(set GPR:$Rt, (sextloadi16 addrmode3:$addr))]>;
2832
2833def LDRSB : AI3ld<0b1101, 1, (outs GPR:$Rt), (ins addrmode3:$addr), LdMiscFrm,
2834                   IIC_iLoad_bh_r, "ldrsb", "\t$Rt, $addr",
2835                   [(set GPR:$Rt, (sextloadi8 addrmode3:$addr))]>;
2836
2837let mayLoad = 1, hasSideEffects = 0, hasExtraDefRegAllocReq = 1 in {
2838  // Load doubleword
2839  def LDRD : AI3ld<0b1101, 0, (outs GPR:$Rt, GPR:$Rt2), (ins addrmode3:$addr),
2840                   LdMiscFrm, IIC_iLoad_d_r, "ldrd", "\t$Rt, $Rt2, $addr", []>,
2841             Requires<[IsARM, HasV5TE]>;
2842}
2843
2844let mayLoad = 1, hasSideEffects = 0, hasNoSchedulingInfo = 1 in {
2845def LOADDUAL : ARMPseudoInst<(outs GPRPairOp:$Rt), (ins addrmode3:$addr),
2846                             64, IIC_iLoad_d_r, []>,
2847               Requires<[IsARM, HasV5TE]> {
2848  let AM = AddrMode3;
2849}
2850}
2851
2852def LDA : AIldracq<0b00, (outs GPR:$Rt), (ins addr_offset_none:$addr),
2853                    NoItinerary, "lda", "\t$Rt, $addr", []>;
2854def LDAB : AIldracq<0b10, (outs GPR:$Rt), (ins addr_offset_none:$addr),
2855                    NoItinerary, "ldab", "\t$Rt, $addr", []>;
2856def LDAH : AIldracq<0b11, (outs GPR:$Rt), (ins addr_offset_none:$addr),
2857                    NoItinerary, "ldah", "\t$Rt, $addr", []>;
2858
2859// Indexed loads
2860multiclass AI2_ldridx<bit isByte, string opc,
2861                      InstrItinClass iii, InstrItinClass iir> {
2862  def _PRE_IMM  : AI2ldstidx<1, isByte, 1, (outs GPR:$Rt, GPR:$Rn_wb),
2863                      (ins addrmode_imm12_pre:$addr), IndexModePre, LdFrm, iii,
2864                      opc, "\t$Rt, $addr!", "$addr.base = $Rn_wb", []> {
2865    bits<17> addr;
2866    let Inst{25} = 0;
2867    let Inst{23} = addr{12};
2868    let Inst{19-16} = addr{16-13};
2869    let Inst{11-0} = addr{11-0};
2870    let DecoderMethod = "DecodeLDRPreImm";
2871  }
2872
2873  def _PRE_REG  : AI2ldstidx<1, isByte, 1, (outs GPR:$Rt, GPR:$Rn_wb),
2874                      (ins ldst_so_reg:$addr), IndexModePre, LdFrm, iir,
2875                      opc, "\t$Rt, $addr!", "$addr.base = $Rn_wb", []> {
2876    bits<17> addr;
2877    let Inst{25} = 1;
2878    let Inst{23} = addr{12};
2879    let Inst{19-16} = addr{16-13};
2880    let Inst{11-0} = addr{11-0};
2881    let Inst{4} = 0;
2882    let DecoderMethod = "DecodeLDRPreReg";
2883  }
2884
2885  def _POST_REG : AI2ldstidx<1, isByte, 0, (outs GPR:$Rt, GPR:$Rn_wb),
2886                       (ins addr_offset_none:$addr, am2offset_reg:$offset),
2887                       IndexModePost, LdFrm, iir,
2888                       opc, "\t$Rt, $addr, $offset",
2889                       "$addr.base = $Rn_wb", []> {
2890     // {12}     isAdd
2891     // {11-0}   imm12/Rm
2892     bits<14> offset;
2893     bits<4> addr;
2894     let Inst{25} = 1;
2895     let Inst{23} = offset{12};
2896     let Inst{19-16} = addr;
2897     let Inst{11-0} = offset{11-0};
2898     let Inst{4} = 0;
2899
2900    let DecoderMethod = "DecodeAddrMode2IdxInstruction";
2901   }
2902
2903   def _POST_IMM : AI2ldstidx<1, isByte, 0, (outs GPR:$Rt, GPR:$Rn_wb),
2904                       (ins addr_offset_none:$addr, am2offset_imm:$offset),
2905                      IndexModePost, LdFrm, iii,
2906                      opc, "\t$Rt, $addr, $offset",
2907                      "$addr.base = $Rn_wb", []> {
2908    // {12}     isAdd
2909    // {11-0}   imm12/Rm
2910    bits<14> offset;
2911    bits<4> addr;
2912    let Inst{25} = 0;
2913    let Inst{23} = offset{12};
2914    let Inst{19-16} = addr;
2915    let Inst{11-0} = offset{11-0};
2916
2917    let DecoderMethod = "DecodeAddrMode2IdxInstruction";
2918  }
2919
2920}
2921
2922let mayLoad = 1, hasSideEffects = 0 in {
2923// FIXME: for LDR_PRE_REG etc. the itinerary should be either IIC_iLoad_ru or
2924// IIC_iLoad_siu depending on whether it the offset register is shifted.
2925defm LDR  : AI2_ldridx<0, "ldr", IIC_iLoad_iu, IIC_iLoad_ru>;
2926defm LDRB : AI2_ldridx<1, "ldrb", IIC_iLoad_bh_iu, IIC_iLoad_bh_ru>;
2927}
2928
2929multiclass AI3_ldridx<bits<4> op, string opc, InstrItinClass itin> {
2930  def _PRE  : AI3ldstidx<op, 1, 1, (outs GPR:$Rt, GPR:$Rn_wb),
2931                        (ins addrmode3_pre:$addr), IndexModePre,
2932                        LdMiscFrm, itin,
2933                        opc, "\t$Rt, $addr!", "$addr.base = $Rn_wb", []> {
2934    bits<14> addr;
2935    let Inst{23}    = addr{8};      // U bit
2936    let Inst{22}    = addr{13};     // 1 == imm8, 0 == Rm
2937    let Inst{19-16} = addr{12-9};   // Rn
2938    let Inst{11-8}  = addr{7-4};    // imm7_4/zero
2939    let Inst{3-0}   = addr{3-0};    // imm3_0/Rm
2940    let DecoderMethod = "DecodeAddrMode3Instruction";
2941  }
2942  def _POST : AI3ldstidx<op, 1, 0, (outs GPR:$Rt, GPR:$Rn_wb),
2943                        (ins addr_offset_none:$addr, am3offset:$offset),
2944                        IndexModePost, LdMiscFrm, itin,
2945                        opc, "\t$Rt, $addr, $offset", "$addr.base = $Rn_wb",
2946                        []> {
2947    bits<10> offset;
2948    bits<4> addr;
2949    let Inst{23}    = offset{8};      // U bit
2950    let Inst{22}    = offset{9};      // 1 == imm8, 0 == Rm
2951    let Inst{19-16} = addr;
2952    let Inst{11-8}  = offset{7-4};    // imm7_4/zero
2953    let Inst{3-0}   = offset{3-0};    // imm3_0/Rm
2954    let DecoderMethod = "DecodeAddrMode3Instruction";
2955  }
2956}
2957
2958let mayLoad = 1, hasSideEffects = 0 in {
2959defm LDRH  : AI3_ldridx<0b1011, "ldrh", IIC_iLoad_bh_ru>;
2960defm LDRSH : AI3_ldridx<0b1111, "ldrsh", IIC_iLoad_bh_ru>;
2961defm LDRSB : AI3_ldridx<0b1101, "ldrsb", IIC_iLoad_bh_ru>;
2962let hasExtraDefRegAllocReq = 1 in {
2963def LDRD_PRE : AI3ldstidx<0b1101, 0, 1, (outs GPR:$Rt, GPR:$Rt2, GPR:$Rn_wb),
2964                          (ins addrmode3_pre:$addr), IndexModePre,
2965                          LdMiscFrm, IIC_iLoad_d_ru,
2966                          "ldrd", "\t$Rt, $Rt2, $addr!",
2967                          "$addr.base = $Rn_wb", []> {
2968  bits<14> addr;
2969  let Inst{23}    = addr{8};      // U bit
2970  let Inst{22}    = addr{13};     // 1 == imm8, 0 == Rm
2971  let Inst{19-16} = addr{12-9};   // Rn
2972  let Inst{11-8}  = addr{7-4};    // imm7_4/zero
2973  let Inst{3-0}   = addr{3-0};    // imm3_0/Rm
2974  let DecoderMethod = "DecodeAddrMode3Instruction";
2975}
2976def LDRD_POST: AI3ldstidx<0b1101, 0, 0, (outs GPR:$Rt, GPR:$Rt2, GPR:$Rn_wb),
2977                          (ins addr_offset_none:$addr, am3offset:$offset),
2978                          IndexModePost, LdMiscFrm, IIC_iLoad_d_ru,
2979                          "ldrd", "\t$Rt, $Rt2, $addr, $offset",
2980                          "$addr.base = $Rn_wb", []> {
2981  bits<10> offset;
2982  bits<4> addr;
2983  let Inst{23}    = offset{8};      // U bit
2984  let Inst{22}    = offset{9};      // 1 == imm8, 0 == Rm
2985  let Inst{19-16} = addr;
2986  let Inst{11-8}  = offset{7-4};    // imm7_4/zero
2987  let Inst{3-0}   = offset{3-0};    // imm3_0/Rm
2988  let DecoderMethod = "DecodeAddrMode3Instruction";
2989}
2990} // hasExtraDefRegAllocReq = 1
2991} // mayLoad = 1, hasSideEffects = 0
2992
2993// LDRT, LDRBT, LDRSBT, LDRHT, LDRSHT.
2994let mayLoad = 1, hasSideEffects = 0 in {
2995def LDRT_POST_REG : AI2ldstidx<1, 0, 0, (outs GPR:$Rt, GPR:$Rn_wb),
2996                    (ins addr_offset_none:$addr, am2offset_reg:$offset),
2997                    IndexModePost, LdFrm, IIC_iLoad_ru,
2998                    "ldrt", "\t$Rt, $addr, $offset",
2999                    "$addr.base = $Rn_wb", []> {
3000  // {12}     isAdd
3001  // {11-0}   imm12/Rm
3002  bits<14> offset;
3003  bits<4> addr;
3004  let Inst{25} = 1;
3005  let Inst{23} = offset{12};
3006  let Inst{21} = 1; // overwrite
3007  let Inst{19-16} = addr;
3008  let Inst{11-5} = offset{11-5};
3009  let Inst{4} = 0;
3010  let Inst{3-0} = offset{3-0};
3011  let DecoderMethod = "DecodeAddrMode2IdxInstruction";
3012}
3013
3014def LDRT_POST_IMM
3015  : AI2ldstidx<1, 0, 0, (outs GPR:$Rt, GPR:$Rn_wb),
3016               (ins addr_offset_none:$addr, am2offset_imm:$offset),
3017               IndexModePost, LdFrm, IIC_iLoad_ru,
3018               "ldrt", "\t$Rt, $addr, $offset", "$addr.base = $Rn_wb", []> {
3019  // {12}     isAdd
3020  // {11-0}   imm12/Rm
3021  bits<14> offset;
3022  bits<4> addr;
3023  let Inst{25} = 0;
3024  let Inst{23} = offset{12};
3025  let Inst{21} = 1; // overwrite
3026  let Inst{19-16} = addr;
3027  let Inst{11-0} = offset{11-0};
3028  let DecoderMethod = "DecodeAddrMode2IdxInstruction";
3029}
3030
3031def LDRBT_POST_REG : AI2ldstidx<1, 1, 0, (outs GPR:$Rt, GPR:$Rn_wb),
3032                     (ins addr_offset_none:$addr, am2offset_reg:$offset),
3033                     IndexModePost, LdFrm, IIC_iLoad_bh_ru,
3034                     "ldrbt", "\t$Rt, $addr, $offset",
3035                     "$addr.base = $Rn_wb", []> {
3036  // {12}     isAdd
3037  // {11-0}   imm12/Rm
3038  bits<14> offset;
3039  bits<4> addr;
3040  let Inst{25} = 1;
3041  let Inst{23} = offset{12};
3042  let Inst{21} = 1; // overwrite
3043  let Inst{19-16} = addr;
3044  let Inst{11-5} = offset{11-5};
3045  let Inst{4} = 0;
3046  let Inst{3-0} = offset{3-0};
3047  let DecoderMethod = "DecodeAddrMode2IdxInstruction";
3048}
3049
3050def LDRBT_POST_IMM
3051  : AI2ldstidx<1, 1, 0, (outs GPR:$Rt, GPR:$Rn_wb),
3052               (ins addr_offset_none:$addr, am2offset_imm:$offset),
3053               IndexModePost, LdFrm, IIC_iLoad_bh_ru,
3054               "ldrbt", "\t$Rt, $addr, $offset", "$addr.base = $Rn_wb", []> {
3055  // {12}     isAdd
3056  // {11-0}   imm12/Rm
3057  bits<14> offset;
3058  bits<4> addr;
3059  let Inst{25} = 0;
3060  let Inst{23} = offset{12};
3061  let Inst{21} = 1; // overwrite
3062  let Inst{19-16} = addr;
3063  let Inst{11-0} = offset{11-0};
3064  let DecoderMethod = "DecodeAddrMode2IdxInstruction";
3065}
3066
3067multiclass AI3ldrT<bits<4> op, string opc> {
3068  def i : AI3ldstidxT<op, 1, (outs GPR:$Rt, GPR:$base_wb),
3069                      (ins addr_offset_none:$addr, postidx_imm8:$offset),
3070                      IndexModePost, LdMiscFrm, IIC_iLoad_bh_ru, opc,
3071                      "\t$Rt, $addr, $offset", "$addr.base = $base_wb", []> {
3072    bits<9> offset;
3073    let Inst{23} = offset{8};
3074    let Inst{22} = 1;
3075    let Inst{11-8} = offset{7-4};
3076    let Inst{3-0} = offset{3-0};
3077  }
3078  def r : AI3ldstidxT<op, 1, (outs GPRnopc:$Rt, GPRnopc:$base_wb),
3079                      (ins addr_offset_none:$addr, postidx_reg:$Rm),
3080                      IndexModePost, LdMiscFrm, IIC_iLoad_bh_ru, opc,
3081                      "\t$Rt, $addr, $Rm", "$addr.base = $base_wb", []> {
3082    bits<5> Rm;
3083    let Inst{23} = Rm{4};
3084    let Inst{22} = 0;
3085    let Inst{11-8} = 0;
3086    let Unpredictable{11-8} = 0b1111;
3087    let Inst{3-0} = Rm{3-0};
3088    let DecoderMethod = "DecodeLDR";
3089  }
3090
3091  def ii : ARMAsmPseudo<!strconcat(opc, "${p} $Rt, $addr"),
3092                        (ins addr_offset_none:$addr, pred:$p), (outs GPR:$Rt)>;
3093}
3094
3095defm LDRSBT : AI3ldrT<0b1101, "ldrsbt">;
3096defm LDRHT  : AI3ldrT<0b1011, "ldrht">;
3097defm LDRSHT : AI3ldrT<0b1111, "ldrsht">;
3098}
3099
3100def LDRT_POST
3101  : ARMAsmPseudo<"ldrt${q} $Rt, $addr", (ins addr_offset_none:$addr, pred:$q),
3102                 (outs GPR:$Rt)>;
3103
3104def LDRBT_POST
3105  : ARMAsmPseudo<"ldrbt${q} $Rt, $addr", (ins addr_offset_none:$addr, pred:$q),
3106                 (outs GPR:$Rt)>;
3107
3108// Pseudo instruction ldr Rt, =immediate
3109def LDRConstPool
3110  : ARMAsmPseudo<"ldr${q} $Rt, $immediate",
3111                 (ins const_pool_asm_imm:$immediate, pred:$q),
3112                 (outs GPR:$Rt)>;
3113
3114// Store
3115
3116// Stores with truncate
3117def STRH : AI3str<0b1011, (outs), (ins GPR:$Rt, addrmode3:$addr), StMiscFrm,
3118               IIC_iStore_bh_r, "strh", "\t$Rt, $addr",
3119               [(truncstorei16 GPR:$Rt, addrmode3:$addr)]>;
3120
3121// Store doubleword
3122let mayStore = 1, hasSideEffects = 0, hasExtraSrcRegAllocReq = 1 in {
3123  def STRD : AI3str<0b1111, (outs), (ins GPR:$Rt, GPR:$Rt2, addrmode3:$addr),
3124                    StMiscFrm, IIC_iStore_d_r, "strd", "\t$Rt, $Rt2, $addr", []>,
3125             Requires<[IsARM, HasV5TE]> {
3126    let Inst{21} = 0;
3127  }
3128}
3129
3130let mayStore = 1, hasSideEffects = 0, hasNoSchedulingInfo = 1 in {
3131def STOREDUAL : ARMPseudoInst<(outs), (ins GPRPairOp:$Rt, addrmode3:$addr),
3132                              64, IIC_iStore_d_r, []>,
3133                Requires<[IsARM, HasV5TE]> {
3134  let AM = AddrMode3;
3135}
3136}
3137
3138// Indexed stores
3139multiclass AI2_stridx<bit isByte, string opc,
3140                      InstrItinClass iii, InstrItinClass iir> {
3141  def _PRE_IMM : AI2ldstidx<0, isByte, 1, (outs GPR:$Rn_wb),
3142                            (ins GPR:$Rt, addrmode_imm12_pre:$addr), IndexModePre,
3143                            StFrm, iii,
3144                            opc, "\t$Rt, $addr!",
3145                            "$addr.base = $Rn_wb,@earlyclobber $Rn_wb", []> {
3146    bits<17> addr;
3147    let Inst{25} = 0;
3148    let Inst{23}    = addr{12};     // U (add = ('U' == 1))
3149    let Inst{19-16} = addr{16-13};  // Rn
3150    let Inst{11-0}  = addr{11-0};   // imm12
3151    let DecoderMethod = "DecodeSTRPreImm";
3152  }
3153
3154  def _PRE_REG  : AI2ldstidx<0, isByte, 1, (outs GPR:$Rn_wb),
3155                      (ins GPR:$Rt, ldst_so_reg:$addr),
3156                      IndexModePre, StFrm, iir,
3157                      opc, "\t$Rt, $addr!",
3158                      "$addr.base = $Rn_wb,@earlyclobber $Rn_wb", []> {
3159    bits<17> addr;
3160    let Inst{25} = 1;
3161    let Inst{23}    = addr{12};    // U (add = ('U' == 1))
3162    let Inst{19-16} = addr{16-13}; // Rn
3163    let Inst{11-0}  = addr{11-0};
3164    let Inst{4}     = 0;           // Inst{4} = 0
3165    let DecoderMethod = "DecodeSTRPreReg";
3166  }
3167  def _POST_REG : AI2ldstidx<0, isByte, 0, (outs GPR:$Rn_wb),
3168                (ins GPR:$Rt, addr_offset_none:$addr, am2offset_reg:$offset),
3169                IndexModePost, StFrm, iir,
3170                opc, "\t$Rt, $addr, $offset",
3171                "$addr.base = $Rn_wb,@earlyclobber $Rn_wb", []> {
3172     // {12}     isAdd
3173     // {11-0}   imm12/Rm
3174     bits<14> offset;
3175     bits<4> addr;
3176     let Inst{25} = 1;
3177     let Inst{23} = offset{12};
3178     let Inst{19-16} = addr;
3179     let Inst{11-0} = offset{11-0};
3180     let Inst{4} = 0;
3181
3182    let DecoderMethod = "DecodeAddrMode2IdxInstruction";
3183   }
3184
3185   def _POST_IMM : AI2ldstidx<0, isByte, 0, (outs GPR:$Rn_wb),
3186                (ins GPR:$Rt, addr_offset_none:$addr, am2offset_imm:$offset),
3187                IndexModePost, StFrm, iii,
3188                opc, "\t$Rt, $addr, $offset",
3189                "$addr.base = $Rn_wb,@earlyclobber $Rn_wb", []> {
3190    // {12}     isAdd
3191    // {11-0}   imm12/Rm
3192    bits<14> offset;
3193    bits<4> addr;
3194    let Inst{25} = 0;
3195    let Inst{23} = offset{12};
3196    let Inst{19-16} = addr;
3197    let Inst{11-0} = offset{11-0};
3198
3199    let DecoderMethod = "DecodeAddrMode2IdxInstruction";
3200  }
3201}
3202
3203let mayStore = 1, hasSideEffects = 0 in {
3204// FIXME: for STR_PRE_REG etc. the itinerary should be either IIC_iStore_ru or
3205// IIC_iStore_siu depending on whether it the offset register is shifted.
3206defm STR  : AI2_stridx<0, "str", IIC_iStore_iu, IIC_iStore_ru>;
3207defm STRB : AI2_stridx<1, "strb", IIC_iStore_bh_iu, IIC_iStore_bh_ru>;
3208}
3209
3210def : ARMPat<(post_store GPR:$Rt, addr_offset_none:$addr,
3211                         am2offset_reg:$offset),
3212             (STR_POST_REG GPR:$Rt, addr_offset_none:$addr,
3213                           am2offset_reg:$offset)>;
3214def : ARMPat<(post_store GPR:$Rt, addr_offset_none:$addr,
3215                         am2offset_imm:$offset),
3216             (STR_POST_IMM GPR:$Rt, addr_offset_none:$addr,
3217                           am2offset_imm:$offset)>;
3218def : ARMPat<(post_truncsti8 GPR:$Rt, addr_offset_none:$addr,
3219                             am2offset_reg:$offset),
3220             (STRB_POST_REG GPR:$Rt, addr_offset_none:$addr,
3221                            am2offset_reg:$offset)>;
3222def : ARMPat<(post_truncsti8 GPR:$Rt, addr_offset_none:$addr,
3223                             am2offset_imm:$offset),
3224             (STRB_POST_IMM GPR:$Rt, addr_offset_none:$addr,
3225                            am2offset_imm:$offset)>;
3226
3227// Pseudo-instructions for pattern matching the pre-indexed stores. We can't
3228// put the patterns on the instruction definitions directly as ISel wants
3229// the address base and offset to be separate operands, not a single
3230// complex operand like we represent the instructions themselves. The
3231// pseudos map between the two.
3232let usesCustomInserter = 1,
3233    Constraints = "$Rn = $Rn_wb,@earlyclobber $Rn_wb" in {
3234def STRi_preidx: ARMPseudoInst<(outs GPR:$Rn_wb),
3235               (ins GPR:$Rt, GPR:$Rn, am2offset_imm:$offset, pred:$p),
3236               4, IIC_iStore_ru,
3237            [(set GPR:$Rn_wb,
3238                  (pre_store GPR:$Rt, GPR:$Rn, am2offset_imm:$offset))]>;
3239def STRr_preidx: ARMPseudoInst<(outs GPR:$Rn_wb),
3240               (ins GPR:$Rt, GPR:$Rn, am2offset_reg:$offset, pred:$p),
3241               4, IIC_iStore_ru,
3242            [(set GPR:$Rn_wb,
3243                  (pre_store GPR:$Rt, GPR:$Rn, am2offset_reg:$offset))]>;
3244def STRBi_preidx: ARMPseudoInst<(outs GPR:$Rn_wb),
3245               (ins GPR:$Rt, GPR:$Rn, am2offset_imm:$offset, pred:$p),
3246               4, IIC_iStore_ru,
3247            [(set GPR:$Rn_wb,
3248                  (pre_truncsti8 GPR:$Rt, GPR:$Rn, am2offset_imm:$offset))]>;
3249def STRBr_preidx: ARMPseudoInst<(outs GPR:$Rn_wb),
3250               (ins GPR:$Rt, GPR:$Rn, am2offset_reg:$offset, pred:$p),
3251               4, IIC_iStore_ru,
3252            [(set GPR:$Rn_wb,
3253                  (pre_truncsti8 GPR:$Rt, GPR:$Rn, am2offset_reg:$offset))]>;
3254def STRH_preidx: ARMPseudoInst<(outs GPR:$Rn_wb),
3255               (ins GPR:$Rt, GPR:$Rn, am3offset:$offset, pred:$p),
3256               4, IIC_iStore_ru,
3257            [(set GPR:$Rn_wb,
3258                  (pre_truncsti16 GPR:$Rt, GPR:$Rn, am3offset:$offset))]>;
3259}
3260
3261
3262
3263def STRH_PRE  : AI3ldstidx<0b1011, 0, 1, (outs GPR:$Rn_wb),
3264                           (ins GPR:$Rt, addrmode3_pre:$addr), IndexModePre,
3265                           StMiscFrm, IIC_iStore_bh_ru,
3266                           "strh", "\t$Rt, $addr!",
3267                           "$addr.base = $Rn_wb,@earlyclobber $Rn_wb", []> {
3268  bits<14> addr;
3269  let Inst{23}    = addr{8};      // U bit
3270  let Inst{22}    = addr{13};     // 1 == imm8, 0 == Rm
3271  let Inst{19-16} = addr{12-9};   // Rn
3272  let Inst{11-8}  = addr{7-4};    // imm7_4/zero
3273  let Inst{3-0}   = addr{3-0};    // imm3_0/Rm
3274  let DecoderMethod = "DecodeAddrMode3Instruction";
3275}
3276
3277def STRH_POST : AI3ldstidx<0b1011, 0, 0, (outs GPR:$Rn_wb),
3278                       (ins GPR:$Rt, addr_offset_none:$addr, am3offset:$offset),
3279                       IndexModePost, StMiscFrm, IIC_iStore_bh_ru,
3280                       "strh", "\t$Rt, $addr, $offset",
3281                       "$addr.base = $Rn_wb,@earlyclobber $Rn_wb",
3282                   [(set GPR:$Rn_wb, (post_truncsti16 GPR:$Rt,
3283                                                      addr_offset_none:$addr,
3284                                                      am3offset:$offset))]> {
3285  bits<10> offset;
3286  bits<4> addr;
3287  let Inst{23}    = offset{8};      // U bit
3288  let Inst{22}    = offset{9};      // 1 == imm8, 0 == Rm
3289  let Inst{19-16} = addr;
3290  let Inst{11-8}  = offset{7-4};    // imm7_4/zero
3291  let Inst{3-0}   = offset{3-0};    // imm3_0/Rm
3292  let DecoderMethod = "DecodeAddrMode3Instruction";
3293}
3294
3295let mayStore = 1, hasSideEffects = 0, hasExtraSrcRegAllocReq = 1 in {
3296def STRD_PRE : AI3ldstidx<0b1111, 0, 1, (outs GPR:$Rn_wb),
3297                          (ins GPR:$Rt, GPR:$Rt2, addrmode3_pre:$addr),
3298                          IndexModePre, StMiscFrm, IIC_iStore_d_ru,
3299                          "strd", "\t$Rt, $Rt2, $addr!",
3300                          "$addr.base = $Rn_wb", []> {
3301  bits<14> addr;
3302  let Inst{23}    = addr{8};      // U bit
3303  let Inst{22}    = addr{13};     // 1 == imm8, 0 == Rm
3304  let Inst{19-16} = addr{12-9};   // Rn
3305  let Inst{11-8}  = addr{7-4};    // imm7_4/zero
3306  let Inst{3-0}   = addr{3-0};    // imm3_0/Rm
3307  let DecoderMethod = "DecodeAddrMode3Instruction";
3308}
3309
3310def STRD_POST: AI3ldstidx<0b1111, 0, 0, (outs GPR:$Rn_wb),
3311                          (ins GPR:$Rt, GPR:$Rt2, addr_offset_none:$addr,
3312                               am3offset:$offset),
3313                          IndexModePost, StMiscFrm, IIC_iStore_d_ru,
3314                          "strd", "\t$Rt, $Rt2, $addr, $offset",
3315                          "$addr.base = $Rn_wb", []> {
3316  bits<10> offset;
3317  bits<4> addr;
3318  let Inst{23}    = offset{8};      // U bit
3319  let Inst{22}    = offset{9};      // 1 == imm8, 0 == Rm
3320  let Inst{19-16} = addr;
3321  let Inst{11-8}  = offset{7-4};    // imm7_4/zero
3322  let Inst{3-0}   = offset{3-0};    // imm3_0/Rm
3323  let DecoderMethod = "DecodeAddrMode3Instruction";
3324}
3325} // mayStore = 1, hasSideEffects = 0, hasExtraSrcRegAllocReq = 1
3326
3327// STRT, STRBT, and STRHT
3328
3329def STRBT_POST_REG : AI2ldstidx<0, 1, 0, (outs GPR:$Rn_wb),
3330                   (ins GPR:$Rt, addr_offset_none:$addr, am2offset_reg:$offset),
3331                   IndexModePost, StFrm, IIC_iStore_bh_ru,
3332                   "strbt", "\t$Rt, $addr, $offset",
3333                   "$addr.base = $Rn_wb", []> {
3334  // {12}     isAdd
3335  // {11-0}   imm12/Rm
3336  bits<14> offset;
3337  bits<4> addr;
3338  let Inst{25} = 1;
3339  let Inst{23} = offset{12};
3340  let Inst{21} = 1; // overwrite
3341  let Inst{19-16} = addr;
3342  let Inst{11-5} = offset{11-5};
3343  let Inst{4} = 0;
3344  let Inst{3-0} = offset{3-0};
3345  let DecoderMethod = "DecodeAddrMode2IdxInstruction";
3346}
3347
3348def STRBT_POST_IMM
3349  : AI2ldstidx<0, 1, 0, (outs GPR:$Rn_wb),
3350               (ins GPR:$Rt, addr_offset_none:$addr, am2offset_imm:$offset),
3351               IndexModePost, StFrm, IIC_iStore_bh_ru,
3352               "strbt", "\t$Rt, $addr, $offset", "$addr.base = $Rn_wb", []> {
3353  // {12}     isAdd
3354  // {11-0}   imm12/Rm
3355  bits<14> offset;
3356  bits<4> addr;
3357  let Inst{25} = 0;
3358  let Inst{23} = offset{12};
3359  let Inst{21} = 1; // overwrite
3360  let Inst{19-16} = addr;
3361  let Inst{11-0} = offset{11-0};
3362  let DecoderMethod = "DecodeAddrMode2IdxInstruction";
3363}
3364
3365def STRBT_POST
3366  : ARMAsmPseudo<"strbt${q} $Rt, $addr",
3367                 (ins GPR:$Rt, addr_offset_none:$addr, pred:$q)>;
3368
3369let mayStore = 1, hasSideEffects = 0 in {
3370def STRT_POST_REG : AI2ldstidx<0, 0, 0, (outs GPR:$Rn_wb),
3371                   (ins GPR:$Rt, addr_offset_none:$addr, am2offset_reg:$offset),
3372                   IndexModePost, StFrm, IIC_iStore_ru,
3373                   "strt", "\t$Rt, $addr, $offset",
3374                   "$addr.base = $Rn_wb", []> {
3375  // {12}     isAdd
3376  // {11-0}   imm12/Rm
3377  bits<14> offset;
3378  bits<4> addr;
3379  let Inst{25} = 1;
3380  let Inst{23} = offset{12};
3381  let Inst{21} = 1; // overwrite
3382  let Inst{19-16} = addr;
3383  let Inst{11-5} = offset{11-5};
3384  let Inst{4} = 0;
3385  let Inst{3-0} = offset{3-0};
3386  let DecoderMethod = "DecodeAddrMode2IdxInstruction";
3387}
3388
3389def STRT_POST_IMM
3390  : AI2ldstidx<0, 0, 0, (outs GPR:$Rn_wb),
3391               (ins GPR:$Rt, addr_offset_none:$addr, am2offset_imm:$offset),
3392               IndexModePost, StFrm, IIC_iStore_ru,
3393               "strt", "\t$Rt, $addr, $offset", "$addr.base = $Rn_wb", []> {
3394  // {12}     isAdd
3395  // {11-0}   imm12/Rm
3396  bits<14> offset;
3397  bits<4> addr;
3398  let Inst{25} = 0;
3399  let Inst{23} = offset{12};
3400  let Inst{21} = 1; // overwrite
3401  let Inst{19-16} = addr;
3402  let Inst{11-0} = offset{11-0};
3403  let DecoderMethod = "DecodeAddrMode2IdxInstruction";
3404}
3405}
3406
3407def STRT_POST
3408  : ARMAsmPseudo<"strt${q} $Rt, $addr",
3409                 (ins GPR:$Rt, addr_offset_none:$addr, pred:$q)>;
3410
3411multiclass AI3strT<bits<4> op, string opc> {
3412  def i : AI3ldstidxT<op, 0, (outs GPR:$base_wb),
3413                    (ins GPR:$Rt, addr_offset_none:$addr, postidx_imm8:$offset),
3414                    IndexModePost, StMiscFrm, IIC_iStore_bh_ru, opc,
3415                    "\t$Rt, $addr, $offset", "$addr.base = $base_wb", []> {
3416    bits<9> offset;
3417    let Inst{23} = offset{8};
3418    let Inst{22} = 1;
3419    let Inst{11-8} = offset{7-4};
3420    let Inst{3-0} = offset{3-0};
3421  }
3422  def r : AI3ldstidxT<op, 0, (outs GPR:$base_wb),
3423                      (ins GPR:$Rt, addr_offset_none:$addr, postidx_reg:$Rm),
3424                      IndexModePost, StMiscFrm, IIC_iStore_bh_ru, opc,
3425                      "\t$Rt, $addr, $Rm", "$addr.base = $base_wb", []> {
3426    bits<5> Rm;
3427    let Inst{23} = Rm{4};
3428    let Inst{22} = 0;
3429    let Inst{11-8} = 0;
3430    let Inst{3-0} = Rm{3-0};
3431  }
3432}
3433
3434
3435defm STRHT : AI3strT<0b1011, "strht">;
3436
3437def STL : AIstrrel<0b00, (outs), (ins GPR:$Rt, addr_offset_none:$addr),
3438                   NoItinerary, "stl", "\t$Rt, $addr", []>;
3439def STLB : AIstrrel<0b10, (outs), (ins GPR:$Rt, addr_offset_none:$addr),
3440                    NoItinerary, "stlb", "\t$Rt, $addr", []>;
3441def STLH : AIstrrel<0b11, (outs), (ins GPR:$Rt, addr_offset_none:$addr),
3442                    NoItinerary, "stlh", "\t$Rt, $addr", []>;
3443
3444//===----------------------------------------------------------------------===//
3445//  Load / store multiple Instructions.
3446//
3447
3448multiclass arm_ldst_mult<string asm, string sfx, bit L_bit, bit P_bit, Format f,
3449                         InstrItinClass itin, InstrItinClass itin_upd> {
3450  // IA is the default, so no need for an explicit suffix on the
3451  // mnemonic here. Without it is the canonical spelling.
3452  def IA :
3453    AXI4<(outs), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops),
3454         IndexModeNone, f, itin,
3455         !strconcat(asm, "${p}\t$Rn, $regs", sfx), "", []> {
3456    let Inst{24-23} = 0b01;       // Increment After
3457    let Inst{22}    = P_bit;
3458    let Inst{21}    = 0;          // No writeback
3459    let Inst{20}    = L_bit;
3460  }
3461  def IA_UPD :
3462    AXI4<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops),
3463         IndexModeUpd, f, itin_upd,
3464         !strconcat(asm, "${p}\t$Rn!, $regs", sfx), "$Rn = $wb", []> {
3465    let Inst{24-23} = 0b01;       // Increment After
3466    let Inst{22}    = P_bit;
3467    let Inst{21}    = 1;          // Writeback
3468    let Inst{20}    = L_bit;
3469
3470    let DecoderMethod = "DecodeMemMultipleWritebackInstruction";
3471  }
3472  def DA :
3473    AXI4<(outs), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops),
3474         IndexModeNone, f, itin,
3475         !strconcat(asm, "da${p}\t$Rn, $regs", sfx), "", []> {
3476    let Inst{24-23} = 0b00;       // Decrement After
3477    let Inst{22}    = P_bit;
3478    let Inst{21}    = 0;          // No writeback
3479    let Inst{20}    = L_bit;
3480  }
3481  def DA_UPD :
3482    AXI4<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops),
3483         IndexModeUpd, f, itin_upd,
3484         !strconcat(asm, "da${p}\t$Rn!, $regs", sfx), "$Rn = $wb", []> {
3485    let Inst{24-23} = 0b00;       // Decrement After
3486    let Inst{22}    = P_bit;
3487    let Inst{21}    = 1;          // Writeback
3488    let Inst{20}    = L_bit;
3489
3490    let DecoderMethod = "DecodeMemMultipleWritebackInstruction";
3491  }
3492  def DB :
3493    AXI4<(outs), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops),
3494         IndexModeNone, f, itin,
3495         !strconcat(asm, "db${p}\t$Rn, $regs", sfx), "", []> {
3496    let Inst{24-23} = 0b10;       // Decrement Before
3497    let Inst{22}    = P_bit;
3498    let Inst{21}    = 0;          // No writeback
3499    let Inst{20}    = L_bit;
3500  }
3501  def DB_UPD :
3502    AXI4<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops),
3503         IndexModeUpd, f, itin_upd,
3504         !strconcat(asm, "db${p}\t$Rn!, $regs", sfx), "$Rn = $wb", []> {
3505    let Inst{24-23} = 0b10;       // Decrement Before
3506    let Inst{22}    = P_bit;
3507    let Inst{21}    = 1;          // Writeback
3508    let Inst{20}    = L_bit;
3509
3510    let DecoderMethod = "DecodeMemMultipleWritebackInstruction";
3511  }
3512  def IB :
3513    AXI4<(outs), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops),
3514         IndexModeNone, f, itin,
3515         !strconcat(asm, "ib${p}\t$Rn, $regs", sfx), "", []> {
3516    let Inst{24-23} = 0b11;       // Increment Before
3517    let Inst{22}    = P_bit;
3518    let Inst{21}    = 0;          // No writeback
3519    let Inst{20}    = L_bit;
3520  }
3521  def IB_UPD :
3522    AXI4<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops),
3523         IndexModeUpd, f, itin_upd,
3524         !strconcat(asm, "ib${p}\t$Rn!, $regs", sfx), "$Rn = $wb", []> {
3525    let Inst{24-23} = 0b11;       // Increment Before
3526    let Inst{22}    = P_bit;
3527    let Inst{21}    = 1;          // Writeback
3528    let Inst{20}    = L_bit;
3529
3530    let DecoderMethod = "DecodeMemMultipleWritebackInstruction";
3531  }
3532}
3533
3534let hasSideEffects = 0 in {
3535
3536let mayLoad = 1, hasExtraDefRegAllocReq = 1, variadicOpsAreDefs = 1 in
3537defm LDM : arm_ldst_mult<"ldm", "", 1, 0, LdStMulFrm, IIC_iLoad_m,
3538                         IIC_iLoad_mu>, ComplexDeprecationPredicate<"ARMLoad">;
3539
3540let mayStore = 1, hasExtraSrcRegAllocReq = 1 in
3541defm STM : arm_ldst_mult<"stm", "", 0, 0, LdStMulFrm, IIC_iStore_m,
3542                         IIC_iStore_mu>,
3543           ComplexDeprecationPredicate<"ARMStore">;
3544
3545} // hasSideEffects
3546
3547// FIXME: remove when we have a way to marking a MI with these properties.
3548// FIXME: Should pc be an implicit operand like PICADD, etc?
3549let isReturn = 1, isTerminator = 1, isBarrier = 1, mayLoad = 1,
3550    hasExtraDefRegAllocReq = 1, isCodeGenOnly = 1 in
3551def LDMIA_RET : ARMPseudoExpand<(outs GPR:$wb), (ins GPR:$Rn, pred:$p,
3552                                                 reglist:$regs, variable_ops),
3553                     4, IIC_iLoad_mBr, [],
3554                     (LDMIA_UPD GPR:$wb, GPR:$Rn, pred:$p, reglist:$regs)>,
3555      RegConstraint<"$Rn = $wb">;
3556
3557let mayLoad = 1, hasExtraDefRegAllocReq = 1 in
3558defm sysLDM : arm_ldst_mult<"ldm", " ^", 1, 1, LdStMulFrm, IIC_iLoad_m,
3559                               IIC_iLoad_mu>;
3560
3561let mayStore = 1, hasExtraSrcRegAllocReq = 1 in
3562defm sysSTM : arm_ldst_mult<"stm", " ^", 0, 1, LdStMulFrm, IIC_iStore_m,
3563                               IIC_iStore_mu>;
3564
3565
3566
3567//===----------------------------------------------------------------------===//
3568//  Move Instructions.
3569//
3570
3571let hasSideEffects = 0, isMoveReg = 1 in
3572def MOVr : AsI1<0b1101, (outs GPR:$Rd), (ins GPR:$Rm), DPFrm, IIC_iMOVr,
3573                "mov", "\t$Rd, $Rm", []>, UnaryDP, Sched<[WriteALU]> {
3574  bits<4> Rd;
3575  bits<4> Rm;
3576
3577  let Inst{19-16} = 0b0000;
3578  let Inst{11-4} = 0b00000000;
3579  let Inst{25} = 0;
3580  let Inst{3-0} = Rm;
3581  let Inst{15-12} = Rd;
3582}
3583
3584// A version for the smaller set of tail call registers.
3585let hasSideEffects = 0 in
3586def MOVr_TC : AsI1<0b1101, (outs tcGPR:$Rd), (ins tcGPR:$Rm), DPFrm,
3587                IIC_iMOVr, "mov", "\t$Rd, $Rm", []>, UnaryDP, Sched<[WriteALU]> {
3588  bits<4> Rd;
3589  bits<4> Rm;
3590
3591  let Inst{11-4} = 0b00000000;
3592  let Inst{25} = 0;
3593  let Inst{3-0} = Rm;
3594  let Inst{15-12} = Rd;
3595}
3596
3597def MOVsr : AsI1<0b1101, (outs GPRnopc:$Rd), (ins shift_so_reg_reg:$src),
3598                DPSoRegRegFrm, IIC_iMOVsr,
3599                "mov", "\t$Rd, $src",
3600                [(set GPRnopc:$Rd, shift_so_reg_reg:$src)]>, UnaryDP,
3601                Sched<[WriteALU]> {
3602  bits<4> Rd;
3603  bits<12> src;
3604  let Inst{15-12} = Rd;
3605  let Inst{19-16} = 0b0000;
3606  let Inst{11-8} = src{11-8};
3607  let Inst{7} = 0;
3608  let Inst{6-5} = src{6-5};
3609  let Inst{4} = 1;
3610  let Inst{3-0} = src{3-0};
3611  let Inst{25} = 0;
3612}
3613
3614def MOVsi : AsI1<0b1101, (outs GPR:$Rd), (ins shift_so_reg_imm:$src),
3615                DPSoRegImmFrm, IIC_iMOVsr,
3616                "mov", "\t$Rd, $src", [(set GPR:$Rd, shift_so_reg_imm:$src)]>,
3617                UnaryDP, Sched<[WriteALU]> {
3618  bits<4> Rd;
3619  bits<12> src;
3620  let Inst{15-12} = Rd;
3621  let Inst{19-16} = 0b0000;
3622  let Inst{11-5} = src{11-5};
3623  let Inst{4} = 0;
3624  let Inst{3-0} = src{3-0};
3625  let Inst{25} = 0;
3626}
3627
3628let isReMaterializable = 1, isAsCheapAsAMove = 1, isMoveImm = 1 in
3629def MOVi : AsI1<0b1101, (outs GPR:$Rd), (ins mod_imm:$imm), DPFrm, IIC_iMOVi,
3630                "mov", "\t$Rd, $imm", [(set GPR:$Rd, mod_imm:$imm)]>, UnaryDP,
3631                Sched<[WriteALU]> {
3632  bits<4> Rd;
3633  bits<12> imm;
3634  let Inst{25} = 1;
3635  let Inst{15-12} = Rd;
3636  let Inst{19-16} = 0b0000;
3637  let Inst{11-0} = imm;
3638}
3639
3640let isReMaterializable = 1, isAsCheapAsAMove = 1, isMoveImm = 1 in
3641def MOVi16 : AI1<0b1000, (outs GPR:$Rd), (ins imm0_65535_expr:$imm),
3642                 DPFrm, IIC_iMOVi,
3643                 "movw", "\t$Rd, $imm",
3644                 [(set GPR:$Rd, imm0_65535:$imm)]>,
3645                 Requires<[IsARM, HasV6T2]>, UnaryDP, Sched<[WriteALU]> {
3646  bits<4> Rd;
3647  bits<16> imm;
3648  let Inst{15-12} = Rd;
3649  let Inst{11-0}  = imm{11-0};
3650  let Inst{19-16} = imm{15-12};
3651  let Inst{20} = 0;
3652  let Inst{25} = 1;
3653  let DecoderMethod = "DecodeArmMOVTWInstruction";
3654}
3655
3656def : InstAlias<"mov${p} $Rd, $imm",
3657                (MOVi16 GPR:$Rd, imm0_65535_expr:$imm, pred:$p), 0>,
3658        Requires<[IsARM, HasV6T2]>;
3659
3660// This gets lowered to a single 4-byte instructions
3661let Size = 4 in
3662def MOVi16_ga_pcrel : PseudoInst<(outs GPR:$Rd),
3663                                (ins i32imm:$addr, pclabel:$id), IIC_iMOVi, []>,
3664                      Sched<[WriteALU]>;
3665
3666let Constraints = "$src = $Rd" in {
3667def MOVTi16 : AI1<0b1010, (outs GPRnopc:$Rd),
3668                  (ins GPR:$src, imm0_65535_expr:$imm),
3669                  DPFrm, IIC_iMOVi,
3670                  "movt", "\t$Rd, $imm",
3671                  [(set GPRnopc:$Rd,
3672                        (or (and GPR:$src, 0xffff),
3673                            lo16AllZero:$imm))]>, UnaryDP,
3674                  Requires<[IsARM, HasV6T2]>, Sched<[WriteALU]> {
3675  bits<4> Rd;
3676  bits<16> imm;
3677  let Inst{15-12} = Rd;
3678  let Inst{11-0}  = imm{11-0};
3679  let Inst{19-16} = imm{15-12};
3680  let Inst{20} = 0;
3681  let Inst{25} = 1;
3682  let DecoderMethod = "DecodeArmMOVTWInstruction";
3683}
3684
3685// This gets lowered to a single 4-byte instructions
3686let Size = 4 in
3687def MOVTi16_ga_pcrel : PseudoInst<(outs GPR:$Rd),
3688                      (ins GPR:$src, i32imm:$addr, pclabel:$id), IIC_iMOVi, []>,
3689                      Sched<[WriteALU]>;
3690
3691} // Constraints
3692
3693def : ARMPat<(or GPR:$src, 0xffff0000), (MOVTi16 GPR:$src, 0xffff)>,
3694      Requires<[IsARM, HasV6T2]>;
3695
3696let Uses = [CPSR] in
3697def RRX: PseudoInst<(outs GPR:$Rd), (ins GPR:$Rm), IIC_iMOVsi,
3698                    [(set GPR:$Rd, (ARMrrx GPR:$Rm))]>, UnaryDP,
3699                    Requires<[IsARM]>, Sched<[WriteALU]>;
3700
3701// These aren't really mov instructions, but we have to define them this way
3702// due to flag operands.
3703
3704let Defs = [CPSR] in {
3705def MOVsrl_flag : PseudoInst<(outs GPR:$dst), (ins GPR:$src), IIC_iMOVsi,
3706                      [(set GPR:$dst, (ARMsrl_flag GPR:$src))]>, UnaryDP,
3707                      Sched<[WriteALU]>, Requires<[IsARM]>;
3708def MOVsra_flag : PseudoInst<(outs GPR:$dst), (ins GPR:$src), IIC_iMOVsi,
3709                      [(set GPR:$dst, (ARMsra_flag GPR:$src))]>, UnaryDP,
3710                      Sched<[WriteALU]>, Requires<[IsARM]>;
3711}
3712
3713//===----------------------------------------------------------------------===//
3714//  Extend Instructions.
3715//
3716
3717// Sign extenders
3718
3719def SXTB  : AI_ext_rrot<0b01101010,
3720                         "sxtb", UnOpFrag<(sext_inreg node:$Src, i8)>>;
3721def SXTH  : AI_ext_rrot<0b01101011,
3722                         "sxth", UnOpFrag<(sext_inreg node:$Src, i16)>>;
3723
3724def SXTAB : AI_exta_rrot<0b01101010,
3725               "sxtab", BinOpFrag<(add node:$LHS, (sext_inreg node:$RHS, i8))>>;
3726def SXTAH : AI_exta_rrot<0b01101011,
3727               "sxtah", BinOpFrag<(add node:$LHS, (sext_inreg node:$RHS,i16))>>;
3728
3729def : ARMV6Pat<(add rGPR:$Rn, (sext_inreg (srl rGPR:$Rm, rot_imm:$rot), i8)),
3730               (SXTAB rGPR:$Rn, rGPR:$Rm, rot_imm:$rot)>;
3731def : ARMV6Pat<(add rGPR:$Rn, (sext_inreg (srl rGPR:$Rm, imm8_or_16:$rot),
3732                                          i16)),
3733               (SXTAH rGPR:$Rn, rGPR:$Rm, rot_imm:$rot)>;
3734
3735def SXTB16  : AI_ext_rrot_np<0b01101000, "sxtb16">;
3736def : ARMV6Pat<(int_arm_sxtb16 GPR:$Src),
3737               (SXTB16 GPR:$Src, 0)>;
3738def : ARMV6Pat<(int_arm_sxtb16 (rotr GPR:$Src, rot_imm:$rot)),
3739               (SXTB16 GPR:$Src, rot_imm:$rot)>;
3740
3741def SXTAB16 : AI_exta_rrot_np<0b01101000, "sxtab16">;
3742def : ARMV6Pat<(int_arm_sxtab16 GPR:$LHS, GPR:$RHS),
3743               (SXTAB16 GPR:$LHS, GPR:$RHS, 0)>;
3744def : ARMV6Pat<(int_arm_sxtab16 GPR:$LHS, (rotr GPR:$RHS, rot_imm:$rot)),
3745               (SXTAB16 GPR:$LHS, GPR:$RHS, rot_imm:$rot)>;
3746
3747// Zero extenders
3748
3749let AddedComplexity = 16 in {
3750def UXTB   : AI_ext_rrot<0b01101110,
3751                          "uxtb"  , UnOpFrag<(and node:$Src, 0x000000FF)>>;
3752def UXTH   : AI_ext_rrot<0b01101111,
3753                          "uxth"  , UnOpFrag<(and node:$Src, 0x0000FFFF)>>;
3754def UXTB16 : AI_ext_rrot<0b01101100,
3755                          "uxtb16", UnOpFrag<(and node:$Src, 0x00FF00FF)>>;
3756
3757// FIXME: This pattern incorrectly assumes the shl operator is a rotate.
3758//        The transformation should probably be done as a combiner action
3759//        instead so we can include a check for masking back in the upper
3760//        eight bits of the source into the lower eight bits of the result.
3761//def : ARMV6Pat<(and (shl GPR:$Src, (i32 8)), 0xFF00FF),
3762//               (UXTB16r_rot GPR:$Src, 3)>;
3763def : ARMV6Pat<(and (srl GPR:$Src, (i32 8)), 0xFF00FF),
3764               (UXTB16 GPR:$Src, 1)>;
3765def : ARMV6Pat<(int_arm_uxtb16 GPR:$Src),
3766               (UXTB16 GPR:$Src, 0)>;
3767def : ARMV6Pat<(int_arm_uxtb16 (rotr GPR:$Src, rot_imm:$rot)),
3768               (UXTB16 GPR:$Src, rot_imm:$rot)>;
3769
3770def UXTAB : AI_exta_rrot<0b01101110, "uxtab",
3771                        BinOpFrag<(add node:$LHS, (and node:$RHS, 0x00FF))>>;
3772def UXTAH : AI_exta_rrot<0b01101111, "uxtah",
3773                        BinOpFrag<(add node:$LHS, (and node:$RHS, 0xFFFF))>>;
3774
3775def : ARMV6Pat<(add rGPR:$Rn, (and (srl rGPR:$Rm, rot_imm:$rot), 0xFF)),
3776               (UXTAB rGPR:$Rn, rGPR:$Rm, rot_imm:$rot)>;
3777def : ARMV6Pat<(add rGPR:$Rn, (and (srl rGPR:$Rm, imm8_or_16:$rot), 0xFFFF)),
3778               (UXTAH rGPR:$Rn, rGPR:$Rm, rot_imm:$rot)>;
3779}
3780
3781// This isn't safe in general, the add is two 16-bit units, not a 32-bit add.
3782def UXTAB16 : AI_exta_rrot_np<0b01101100, "uxtab16">;
3783def : ARMV6Pat<(int_arm_uxtab16 GPR:$LHS, GPR:$RHS),
3784               (UXTAB16 GPR:$LHS, GPR:$RHS, 0)>;
3785def : ARMV6Pat<(int_arm_uxtab16 GPR:$LHS, (rotr GPR:$RHS, rot_imm:$rot)),
3786               (UXTAB16 GPR:$LHS, GPR:$RHS, rot_imm:$rot)>;
3787
3788
3789def SBFX  : I<(outs GPRnopc:$Rd),
3790              (ins GPRnopc:$Rn, imm0_31:$lsb, imm1_32:$width),
3791               AddrMode1, 4, IndexModeNone, DPFrm, IIC_iUNAsi,
3792               "sbfx", "\t$Rd, $Rn, $lsb, $width", "", []>,
3793               Requires<[IsARM, HasV6T2]> {
3794  bits<4> Rd;
3795  bits<4> Rn;
3796  bits<5> lsb;
3797  bits<5> width;
3798  let Inst{27-21} = 0b0111101;
3799  let Inst{6-4}   = 0b101;
3800  let Inst{20-16} = width;
3801  let Inst{15-12} = Rd;
3802  let Inst{11-7}  = lsb;
3803  let Inst{3-0}   = Rn;
3804}
3805
3806def UBFX  : I<(outs GPRnopc:$Rd),
3807              (ins GPRnopc:$Rn, imm0_31:$lsb, imm1_32:$width),
3808               AddrMode1, 4, IndexModeNone, DPFrm, IIC_iUNAsi,
3809               "ubfx", "\t$Rd, $Rn, $lsb, $width", "", []>,
3810               Requires<[IsARM, HasV6T2]> {
3811  bits<4> Rd;
3812  bits<4> Rn;
3813  bits<5> lsb;
3814  bits<5> width;
3815  let Inst{27-21} = 0b0111111;
3816  let Inst{6-4}   = 0b101;
3817  let Inst{20-16} = width;
3818  let Inst{15-12} = Rd;
3819  let Inst{11-7}  = lsb;
3820  let Inst{3-0}   = Rn;
3821}
3822
3823//===----------------------------------------------------------------------===//
3824//  Arithmetic Instructions.
3825//
3826
3827let isAdd = 1 in
3828defm ADD  : AsI1_bin_irs<0b0100, "add",
3829                         IIC_iALUi, IIC_iALUr, IIC_iALUsr, add, 1>;
3830defm SUB  : AsI1_bin_irs<0b0010, "sub",
3831                         IIC_iALUi, IIC_iALUr, IIC_iALUsr, sub>;
3832
3833// ADD and SUB with 's' bit set.
3834//
3835// Currently, ADDS/SUBS are pseudo opcodes that exist only in the
3836// selection DAG. They are "lowered" to real ADD/SUB opcodes by
3837// AdjustInstrPostInstrSelection where we determine whether or not to
3838// set the "s" bit based on CPSR liveness.
3839//
3840// FIXME: Eliminate ADDS/SUBS pseudo opcodes after adding tablegen
3841// support for an optional CPSR definition that corresponds to the DAG
3842// node's second value. We can then eliminate the implicit def of CPSR.
3843let isAdd = 1 in
3844defm ADDS : AsI1_bin_s_irs<IIC_iALUi, IIC_iALUr, IIC_iALUsr, ARMaddc, 1>;
3845defm SUBS : AsI1_bin_s_irs<IIC_iALUi, IIC_iALUr, IIC_iALUsr, ARMsubc>;
3846
3847def : ARMPat<(ARMsubs GPR:$Rn, mod_imm:$imm), (SUBSri $Rn, mod_imm:$imm)>;
3848def : ARMPat<(ARMsubs GPR:$Rn, GPR:$Rm), (SUBSrr $Rn, $Rm)>;
3849def : ARMPat<(ARMsubs GPR:$Rn, so_reg_imm:$shift),
3850             (SUBSrsi $Rn, so_reg_imm:$shift)>;
3851def : ARMPat<(ARMsubs GPR:$Rn, so_reg_reg:$shift),
3852             (SUBSrsr $Rn, so_reg_reg:$shift)>;
3853
3854
3855let isAdd = 1 in
3856defm ADC : AI1_adde_sube_irs<0b0101, "adc", ARMadde, 1>;
3857defm SBC : AI1_adde_sube_irs<0b0110, "sbc", ARMsube>;
3858
3859defm RSB  : AsI1_rbin_irs<0b0011, "rsb",
3860                          IIC_iALUi, IIC_iALUr, IIC_iALUsr,
3861                          sub>;
3862
3863// FIXME: Eliminate them if we can write def : Pat patterns which defines
3864// CPSR and the implicit def of CPSR is not needed.
3865defm RSBS : AsI1_rbin_s_is<IIC_iALUi, IIC_iALUsr, ARMsubc>;
3866
3867defm RSC : AI1_rsc_irs<0b0111, "rsc", ARMsube>;
3868
3869// (sub X, imm) gets canonicalized to (add X, -imm).  Match this form.
3870// The assume-no-carry-in form uses the negation of the input since add/sub
3871// assume opposite meanings of the carry flag (i.e., carry == !borrow).
3872// See the definition of AddWithCarry() in the ARM ARM A2.2.1 for the gory
3873// details.
3874def : ARMPat<(add     GPR:$src, mod_imm_neg:$imm),
3875             (SUBri   GPR:$src, mod_imm_neg:$imm)>;
3876def : ARMPat<(ARMaddc GPR:$src, mod_imm_neg:$imm),
3877             (SUBSri  GPR:$src, mod_imm_neg:$imm)>;
3878
3879def : ARMPat<(add     GPR:$src, imm0_65535_neg:$imm),
3880             (SUBrr   GPR:$src, (MOVi16 (imm_neg_XFORM imm:$imm)))>,
3881             Requires<[IsARM, HasV6T2]>;
3882def : ARMPat<(ARMaddc GPR:$src, imm0_65535_neg:$imm),
3883             (SUBSrr  GPR:$src, (MOVi16 (imm_neg_XFORM imm:$imm)))>,
3884             Requires<[IsARM, HasV6T2]>;
3885
3886// The with-carry-in form matches bitwise not instead of the negation.
3887// Effectively, the inverse interpretation of the carry flag already accounts
3888// for part of the negation.
3889def : ARMPat<(ARMadde GPR:$src, mod_imm_not:$imm, CPSR),
3890             (SBCri   GPR:$src, mod_imm_not:$imm)>;
3891def : ARMPat<(ARMadde GPR:$src, imm0_65535_neg:$imm, CPSR),
3892             (SBCrr   GPR:$src, (MOVi16 (imm_not_XFORM imm:$imm)))>,
3893             Requires<[IsARM, HasV6T2]>;
3894
3895// Note: These are implemented in C++ code, because they have to generate
3896// ADD/SUBrs instructions, which use a complex pattern that a xform function
3897// cannot produce.
3898// (mul X, 2^n+1) -> (add (X << n), X)
3899// (mul X, 2^n-1) -> (rsb X, (X << n))
3900
3901// ARM Arithmetic Instruction
3902// GPR:$dst = GPR:$a op GPR:$b
3903class AAI<bits<8> op27_20, bits<8> op11_4, string opc,
3904          list<dag> pattern = [],
3905          dag iops = (ins GPRnopc:$Rn, GPRnopc:$Rm),
3906          string asm = "\t$Rd, $Rn, $Rm">
3907  : AI<(outs GPRnopc:$Rd), iops, DPFrm, IIC_iALUr, opc, asm, pattern>,
3908    Sched<[WriteALU, ReadALU, ReadALU]> {
3909  bits<4> Rn;
3910  bits<4> Rd;
3911  bits<4> Rm;
3912  let Inst{27-20} = op27_20;
3913  let Inst{11-4} = op11_4;
3914  let Inst{19-16} = Rn;
3915  let Inst{15-12} = Rd;
3916  let Inst{3-0}   = Rm;
3917
3918  let Unpredictable{11-8} = 0b1111;
3919}
3920
3921// Wrappers around the AAI class
3922class AAIRevOpr<bits<8> op27_20, bits<8> op11_4, string opc,
3923                list<dag> pattern = []>
3924  : AAI<op27_20, op11_4, opc,
3925        pattern,
3926        (ins GPRnopc:$Rm, GPRnopc:$Rn),
3927        "\t$Rd, $Rm, $Rn">;
3928
3929class AAIIntrinsic<bits<8> op27_20, bits<8> op11_4, string opc,
3930                 Intrinsic intrinsic>
3931  : AAI<op27_20, op11_4, opc,
3932        [(set GPRnopc:$Rd, (intrinsic GPRnopc:$Rn, GPRnopc:$Rm))]>;
3933
3934// Saturating add/subtract
3935let hasSideEffects = 1 in {
3936def QADD8   : AAIIntrinsic<0b01100010, 0b11111001, "qadd8", int_arm_qadd8>;
3937def QADD16  : AAIIntrinsic<0b01100010, 0b11110001, "qadd16", int_arm_qadd16>;
3938def QSUB16  : AAIIntrinsic<0b01100010, 0b11110111, "qsub16", int_arm_qsub16>;
3939def QSUB8   : AAIIntrinsic<0b01100010, 0b11111111, "qsub8", int_arm_qsub8>;
3940
3941def QDADD   : AAIRevOpr<0b00010100, 0b00000101, "qdadd",
3942              [(set GPRnopc:$Rd, (int_arm_qadd GPRnopc:$Rm,
3943                                  (int_arm_qadd GPRnopc:$Rn, GPRnopc:$Rn)))]>;
3944def QDSUB   : AAIRevOpr<0b00010110, 0b00000101, "qdsub",
3945              [(set GPRnopc:$Rd, (int_arm_qsub GPRnopc:$Rm,
3946                                  (int_arm_qadd GPRnopc:$Rn, GPRnopc:$Rn)))]>;
3947def QSUB    : AAIRevOpr<0b00010010, 0b00000101, "qsub",
3948              [(set GPRnopc:$Rd, (int_arm_qsub GPRnopc:$Rm, GPRnopc:$Rn))]>;
3949let DecoderMethod = "DecodeQADDInstruction" in
3950  def QADD    : AAIRevOpr<0b00010000, 0b00000101, "qadd",
3951                [(set GPRnopc:$Rd, (int_arm_qadd GPRnopc:$Rm, GPRnopc:$Rn))]>;
3952}
3953
3954def : ARMV5TEPat<(saddsat GPR:$a, GPR:$b),
3955                 (QADD GPR:$a, GPR:$b)>;
3956def : ARMV5TEPat<(ssubsat GPR:$a, GPR:$b),
3957                 (QSUB GPR:$a, GPR:$b)>;
3958def : ARMV5TEPat<(saddsat rGPR:$Rm, (saddsat rGPR:$Rn, rGPR:$Rn)),
3959                 (QDADD rGPR:$Rm, rGPR:$Rn)>;
3960def : ARMV5TEPat<(ssubsat rGPR:$Rm, (saddsat rGPR:$Rn, rGPR:$Rn)),
3961                 (QDSUB rGPR:$Rm, rGPR:$Rn)>;
3962
3963def : ARMV6Pat<(ARMqadd8b rGPR:$Rm, rGPR:$Rn),
3964               (QADD8 rGPR:$Rm, rGPR:$Rn)>;
3965def : ARMV6Pat<(ARMqsub8b rGPR:$Rm, rGPR:$Rn),
3966               (QSUB8 rGPR:$Rm, rGPR:$Rn)>;
3967def : ARMV6Pat<(ARMqadd16b rGPR:$Rm, rGPR:$Rn),
3968               (QADD16 rGPR:$Rm, rGPR:$Rn)>;
3969def : ARMV6Pat<(ARMqsub16b rGPR:$Rm, rGPR:$Rn),
3970               (QSUB16 rGPR:$Rm, rGPR:$Rn)>;
3971
3972def UQADD16 : AAIIntrinsic<0b01100110, 0b11110001, "uqadd16", int_arm_uqadd16>;
3973def UQADD8  : AAIIntrinsic<0b01100110, 0b11111001, "uqadd8", int_arm_uqadd8>;
3974def UQSUB16 : AAIIntrinsic<0b01100110, 0b11110111, "uqsub16", int_arm_uqsub16>;
3975def UQSUB8  : AAIIntrinsic<0b01100110, 0b11111111, "uqsub8", int_arm_uqsub8>;
3976def QASX    : AAIIntrinsic<0b01100010, 0b11110011, "qasx", int_arm_qasx>;
3977def QSAX    : AAIIntrinsic<0b01100010, 0b11110101, "qsax", int_arm_qsax>;
3978def UQASX   : AAIIntrinsic<0b01100110, 0b11110011, "uqasx", int_arm_uqasx>;
3979def UQSAX   : AAIIntrinsic<0b01100110, 0b11110101, "uqsax", int_arm_uqsax>;
3980
3981def : ARMV6Pat<(ARMuqadd8b rGPR:$Rm, rGPR:$Rn),
3982               (UQADD8 rGPR:$Rm, rGPR:$Rn)>;
3983def : ARMV6Pat<(ARMuqsub8b rGPR:$Rm, rGPR:$Rn),
3984               (UQSUB8 rGPR:$Rm, rGPR:$Rn)>;
3985def : ARMV6Pat<(ARMuqadd16b rGPR:$Rm, rGPR:$Rn),
3986               (UQADD16 rGPR:$Rm, rGPR:$Rn)>;
3987def : ARMV6Pat<(ARMuqsub16b rGPR:$Rm, rGPR:$Rn),
3988               (UQSUB16 rGPR:$Rm, rGPR:$Rn)>;
3989
3990
3991// Signed/Unsigned add/subtract
3992
3993def SASX   : AAIIntrinsic<0b01100001, 0b11110011, "sasx", int_arm_sasx>;
3994def SADD16 : AAIIntrinsic<0b01100001, 0b11110001, "sadd16", int_arm_sadd16>;
3995def SADD8  : AAIIntrinsic<0b01100001, 0b11111001, "sadd8", int_arm_sadd8>;
3996def SSAX   : AAIIntrinsic<0b01100001, 0b11110101, "ssax", int_arm_ssax>;
3997def SSUB16 : AAIIntrinsic<0b01100001, 0b11110111, "ssub16", int_arm_ssub16>;
3998def SSUB8  : AAIIntrinsic<0b01100001, 0b11111111, "ssub8", int_arm_ssub8>;
3999def UASX   : AAIIntrinsic<0b01100101, 0b11110011, "uasx", int_arm_uasx>;
4000def UADD16 : AAIIntrinsic<0b01100101, 0b11110001, "uadd16", int_arm_uadd16>;
4001def UADD8  : AAIIntrinsic<0b01100101, 0b11111001, "uadd8", int_arm_uadd8>;
4002def USAX   : AAIIntrinsic<0b01100101, 0b11110101, "usax", int_arm_usax>;
4003def USUB16 : AAIIntrinsic<0b01100101, 0b11110111, "usub16", int_arm_usub16>;
4004def USUB8  : AAIIntrinsic<0b01100101, 0b11111111, "usub8", int_arm_usub8>;
4005
4006// Signed/Unsigned halving add/subtract
4007
4008def SHASX   : AAIIntrinsic<0b01100011, 0b11110011, "shasx", int_arm_shasx>;
4009def SHADD16 : AAIIntrinsic<0b01100011, 0b11110001, "shadd16", int_arm_shadd16>;
4010def SHADD8  : AAIIntrinsic<0b01100011, 0b11111001, "shadd8", int_arm_shadd8>;
4011def SHSAX   : AAIIntrinsic<0b01100011, 0b11110101, "shsax", int_arm_shsax>;
4012def SHSUB16 : AAIIntrinsic<0b01100011, 0b11110111, "shsub16", int_arm_shsub16>;
4013def SHSUB8  : AAIIntrinsic<0b01100011, 0b11111111, "shsub8", int_arm_shsub8>;
4014def UHASX   : AAIIntrinsic<0b01100111, 0b11110011, "uhasx", int_arm_uhasx>;
4015def UHADD16 : AAIIntrinsic<0b01100111, 0b11110001, "uhadd16", int_arm_uhadd16>;
4016def UHADD8  : AAIIntrinsic<0b01100111, 0b11111001, "uhadd8", int_arm_uhadd8>;
4017def UHSAX   : AAIIntrinsic<0b01100111, 0b11110101, "uhsax", int_arm_uhsax>;
4018def UHSUB16 : AAIIntrinsic<0b01100111, 0b11110111, "uhsub16", int_arm_uhsub16>;
4019def UHSUB8  : AAIIntrinsic<0b01100111, 0b11111111, "uhsub8", int_arm_uhsub8>;
4020
4021// Unsigned Sum of Absolute Differences [and Accumulate].
4022
4023def USAD8  : AI<(outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
4024                MulFrm /* for convenience */, NoItinerary, "usad8",
4025                "\t$Rd, $Rn, $Rm",
4026             [(set GPR:$Rd, (int_arm_usad8 GPR:$Rn, GPR:$Rm))]>,
4027             Requires<[IsARM, HasV6]>, Sched<[WriteALU, ReadALU, ReadALU]> {
4028  bits<4> Rd;
4029  bits<4> Rn;
4030  bits<4> Rm;
4031  let Inst{27-20} = 0b01111000;
4032  let Inst{15-12} = 0b1111;
4033  let Inst{7-4} = 0b0001;
4034  let Inst{19-16} = Rd;
4035  let Inst{11-8} = Rm;
4036  let Inst{3-0} = Rn;
4037}
4038def USADA8 : AI<(outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm, GPR:$Ra),
4039                MulFrm /* for convenience */, NoItinerary, "usada8",
4040                "\t$Rd, $Rn, $Rm, $Ra",
4041             [(set GPR:$Rd, (int_arm_usada8 GPR:$Rn, GPR:$Rm, GPR:$Ra))]>,
4042             Requires<[IsARM, HasV6]>, Sched<[WriteALU, ReadALU, ReadALU]>{
4043  bits<4> Rd;
4044  bits<4> Rn;
4045  bits<4> Rm;
4046  bits<4> Ra;
4047  let Inst{27-20} = 0b01111000;
4048  let Inst{7-4} = 0b0001;
4049  let Inst{19-16} = Rd;
4050  let Inst{15-12} = Ra;
4051  let Inst{11-8} = Rm;
4052  let Inst{3-0} = Rn;
4053}
4054
4055// Signed/Unsigned saturate
4056def SSAT : AI<(outs GPRnopc:$Rd),
4057              (ins imm1_32:$sat_imm, GPRnopc:$Rn, shift_imm:$sh),
4058              SatFrm, NoItinerary, "ssat", "\t$Rd, $sat_imm, $Rn$sh", []>,
4059              Requires<[IsARM,HasV6]>{
4060  bits<4> Rd;
4061  bits<5> sat_imm;
4062  bits<4> Rn;
4063  bits<8> sh;
4064  let Inst{27-21} = 0b0110101;
4065  let Inst{5-4} = 0b01;
4066  let Inst{20-16} = sat_imm;
4067  let Inst{15-12} = Rd;
4068  let Inst{11-7} = sh{4-0};
4069  let Inst{6} = sh{5};
4070  let Inst{3-0} = Rn;
4071}
4072
4073def SSAT16 : AI<(outs GPRnopc:$Rd),
4074                (ins imm1_16:$sat_imm, GPRnopc:$Rn), SatFrm,
4075                NoItinerary, "ssat16", "\t$Rd, $sat_imm, $Rn", []>,
4076                Requires<[IsARM,HasV6]>{
4077  bits<4> Rd;
4078  bits<4> sat_imm;
4079  bits<4> Rn;
4080  let Inst{27-20} = 0b01101010;
4081  let Inst{11-4} = 0b11110011;
4082  let Inst{15-12} = Rd;
4083  let Inst{19-16} = sat_imm;
4084  let Inst{3-0} = Rn;
4085}
4086
4087def USAT : AI<(outs GPRnopc:$Rd),
4088              (ins imm0_31:$sat_imm, GPRnopc:$Rn, shift_imm:$sh),
4089              SatFrm, NoItinerary, "usat", "\t$Rd, $sat_imm, $Rn$sh", []>,
4090              Requires<[IsARM,HasV6]> {
4091  bits<4> Rd;
4092  bits<5> sat_imm;
4093  bits<4> Rn;
4094  bits<8> sh;
4095  let Inst{27-21} = 0b0110111;
4096  let Inst{5-4} = 0b01;
4097  let Inst{15-12} = Rd;
4098  let Inst{11-7} = sh{4-0};
4099  let Inst{6} = sh{5};
4100  let Inst{20-16} = sat_imm;
4101  let Inst{3-0} = Rn;
4102}
4103
4104def USAT16 : AI<(outs GPRnopc:$Rd),
4105                (ins imm0_15:$sat_imm, GPRnopc:$Rn), SatFrm,
4106                NoItinerary, "usat16", "\t$Rd, $sat_imm, $Rn", []>,
4107                Requires<[IsARM,HasV6]>{
4108  bits<4> Rd;
4109  bits<4> sat_imm;
4110  bits<4> Rn;
4111  let Inst{27-20} = 0b01101110;
4112  let Inst{11-4} = 0b11110011;
4113  let Inst{15-12} = Rd;
4114  let Inst{19-16} = sat_imm;
4115  let Inst{3-0} = Rn;
4116}
4117
4118def : ARMV6Pat<(int_arm_ssat GPRnopc:$a, imm1_32:$pos),
4119               (SSAT imm1_32:$pos, GPRnopc:$a, 0)>;
4120def : ARMV6Pat<(int_arm_usat GPRnopc:$a, imm0_31:$pos),
4121               (USAT imm0_31:$pos, GPRnopc:$a, 0)>;
4122def : ARMPat<(ARMssat GPRnopc:$Rn, imm0_31:$imm),
4123             (SSAT imm0_31:$imm, GPRnopc:$Rn, 0)>;
4124def : ARMPat<(ARMusat GPRnopc:$Rn, imm0_31:$imm),
4125             (USAT imm0_31:$imm, GPRnopc:$Rn, 0)>;
4126def : ARMV6Pat<(int_arm_ssat16 GPRnopc:$a, imm1_16:$pos),
4127               (SSAT16 imm1_16:$pos, GPRnopc:$a)>;
4128def : ARMV6Pat<(int_arm_usat16 GPRnopc:$a, imm0_15:$pos),
4129               (USAT16 imm0_15:$pos, GPRnopc:$a)>;
4130def : ARMV6Pat<(int_arm_ssat (shl GPRnopc:$a, imm0_31:$shft), imm1_32:$pos),
4131               (SSAT imm1_32:$pos, GPRnopc:$a, imm0_31:$shft)>;
4132def : ARMV6Pat<(int_arm_ssat (sra GPRnopc:$a, asr_imm:$shft), imm1_32:$pos),
4133               (SSAT imm1_32:$pos, GPRnopc:$a, asr_imm:$shft)>;
4134def : ARMV6Pat<(int_arm_usat (shl GPRnopc:$a, imm0_31:$shft), imm0_31:$pos),
4135               (USAT imm0_31:$pos, GPRnopc:$a, imm0_31:$shft)>;
4136def : ARMV6Pat<(int_arm_usat (sra GPRnopc:$a, asr_imm:$shft), imm0_31:$pos),
4137               (USAT imm0_31:$pos, GPRnopc:$a, asr_imm:$shft)>;
4138def : ARMPat<(ARMssat (shl GPRnopc:$Rn, imm0_31:$shft), imm0_31:$pos),
4139               (SSAT imm0_31:$pos, GPRnopc:$Rn, imm0_31:$shft)>;
4140def : ARMPat<(ARMssat (sra GPRnopc:$Rn, asr_imm:$shft), imm0_31:$pos),
4141               (SSAT imm0_31:$pos, GPRnopc:$Rn, asr_imm:$shft)>;
4142def : ARMPat<(ARMusat (shl GPRnopc:$Rn, imm0_31:$shft), imm0_31:$pos),
4143               (USAT imm0_31:$pos, GPRnopc:$Rn, imm0_31:$shft)>;
4144def : ARMPat<(ARMusat (sra GPRnopc:$Rn, asr_imm:$shft), imm0_31:$pos),
4145               (USAT imm0_31:$pos, GPRnopc:$Rn, asr_imm:$shft)>;
4146
4147
4148//===----------------------------------------------------------------------===//
4149//  Bitwise Instructions.
4150//
4151
4152defm AND   : AsI1_bin_irs<0b0000, "and",
4153                          IIC_iBITi, IIC_iBITr, IIC_iBITsr, and, 1>;
4154defm ORR   : AsI1_bin_irs<0b1100, "orr",
4155                          IIC_iBITi, IIC_iBITr, IIC_iBITsr, or, 1>;
4156defm EOR   : AsI1_bin_irs<0b0001, "eor",
4157                          IIC_iBITi, IIC_iBITr, IIC_iBITsr, xor, 1>;
4158defm BIC   : AsI1_bin_irs<0b1110, "bic",
4159                          IIC_iBITi, IIC_iBITr, IIC_iBITsr,
4160                          BinOpFrag<(and node:$LHS, (not node:$RHS))>>;
4161
4162// FIXME: bf_inv_mask_imm should be two operands, the lsb and the msb, just
4163// like in the actual instruction encoding. The complexity of mapping the mask
4164// to the lsb/msb pair should be handled by ISel, not encapsulated in the
4165// instruction description.
4166def BFC    : I<(outs GPR:$Rd), (ins GPR:$src, bf_inv_mask_imm:$imm),
4167               AddrMode1, 4, IndexModeNone, DPFrm, IIC_iUNAsi,
4168               "bfc", "\t$Rd, $imm", "$src = $Rd",
4169               [(set GPR:$Rd, (and GPR:$src, bf_inv_mask_imm:$imm))]>,
4170               Requires<[IsARM, HasV6T2]> {
4171  bits<4> Rd;
4172  bits<10> imm;
4173  let Inst{27-21} = 0b0111110;
4174  let Inst{6-0}   = 0b0011111;
4175  let Inst{15-12} = Rd;
4176  let Inst{11-7}  = imm{4-0}; // lsb
4177  let Inst{20-16} = imm{9-5}; // msb
4178}
4179
4180// A8.6.18  BFI - Bitfield insert (Encoding A1)
4181def BFI:I<(outs GPRnopc:$Rd), (ins GPRnopc:$src, GPR:$Rn, bf_inv_mask_imm:$imm),
4182          AddrMode1, 4, IndexModeNone, DPFrm, IIC_iUNAsi,
4183          "bfi", "\t$Rd, $Rn, $imm", "$src = $Rd",
4184          [(set GPRnopc:$Rd, (ARMbfi GPRnopc:$src, GPR:$Rn,
4185                           bf_inv_mask_imm:$imm))]>,
4186          Requires<[IsARM, HasV6T2]> {
4187  bits<4> Rd;
4188  bits<4> Rn;
4189  bits<10> imm;
4190  let Inst{27-21} = 0b0111110;
4191  let Inst{6-4}   = 0b001; // Rn: Inst{3-0} != 15
4192  let Inst{15-12} = Rd;
4193  let Inst{11-7}  = imm{4-0}; // lsb
4194  let Inst{20-16} = imm{9-5}; // width
4195  let Inst{3-0}   = Rn;
4196}
4197
4198def  MVNr  : AsI1<0b1111, (outs GPR:$Rd), (ins GPR:$Rm), DPFrm, IIC_iMVNr,
4199                  "mvn", "\t$Rd, $Rm",
4200                  [(set GPR:$Rd, (not GPR:$Rm))]>, UnaryDP, Sched<[WriteALU]> {
4201  bits<4> Rd;
4202  bits<4> Rm;
4203  let Inst{25} = 0;
4204  let Inst{19-16} = 0b0000;
4205  let Inst{11-4} = 0b00000000;
4206  let Inst{15-12} = Rd;
4207  let Inst{3-0} = Rm;
4208
4209  let Unpredictable{19-16} = 0b1111;
4210}
4211def  MVNsi  : AsI1<0b1111, (outs GPR:$Rd), (ins so_reg_imm:$shift),
4212                  DPSoRegImmFrm, IIC_iMVNsr, "mvn", "\t$Rd, $shift",
4213                  [(set GPR:$Rd, (not so_reg_imm:$shift))]>, UnaryDP,
4214                  Sched<[WriteALU]> {
4215  bits<4> Rd;
4216  bits<12> shift;
4217  let Inst{25} = 0;
4218  let Inst{19-16} = 0b0000;
4219  let Inst{15-12} = Rd;
4220  let Inst{11-5} = shift{11-5};
4221  let Inst{4} = 0;
4222  let Inst{3-0} = shift{3-0};
4223
4224  let Unpredictable{19-16} = 0b1111;
4225}
4226def  MVNsr  : AsI1<0b1111, (outs GPRnopc:$Rd), (ins so_reg_reg:$shift),
4227                  DPSoRegRegFrm, IIC_iMVNsr, "mvn", "\t$Rd, $shift",
4228                  [(set GPRnopc:$Rd, (not so_reg_reg:$shift))]>, UnaryDP,
4229                  Sched<[WriteALU]> {
4230  bits<4> Rd;
4231  bits<12> shift;
4232  let Inst{25} = 0;
4233  let Inst{19-16} = 0b0000;
4234  let Inst{15-12} = Rd;
4235  let Inst{11-8} = shift{11-8};
4236  let Inst{7} = 0;
4237  let Inst{6-5} = shift{6-5};
4238  let Inst{4} = 1;
4239  let Inst{3-0} = shift{3-0};
4240
4241  let Unpredictable{19-16} = 0b1111;
4242}
4243let isReMaterializable = 1, isAsCheapAsAMove = 1, isMoveImm = 1 in
4244def  MVNi  : AsI1<0b1111, (outs GPR:$Rd), (ins mod_imm:$imm), DPFrm,
4245                  IIC_iMVNi, "mvn", "\t$Rd, $imm",
4246                  [(set GPR:$Rd, mod_imm_not:$imm)]>,UnaryDP, Sched<[WriteALU]> {
4247  bits<4> Rd;
4248  bits<12> imm;
4249  let Inst{25} = 1;
4250  let Inst{19-16} = 0b0000;
4251  let Inst{15-12} = Rd;
4252  let Inst{11-0} = imm;
4253}
4254
4255let AddedComplexity = 1 in
4256def : ARMPat<(and   GPR:$src, mod_imm_not:$imm),
4257             (BICri GPR:$src, mod_imm_not:$imm)>;
4258
4259//===----------------------------------------------------------------------===//
4260//  Multiply Instructions.
4261//
4262class AsMul1I32<bits<7> opcod, dag oops, dag iops, InstrItinClass itin,
4263             string opc, string asm, list<dag> pattern>
4264  : AsMul1I<opcod, oops, iops, itin, opc, asm, pattern> {
4265  bits<4> Rd;
4266  bits<4> Rm;
4267  bits<4> Rn;
4268  let Inst{19-16} = Rd;
4269  let Inst{11-8}  = Rm;
4270  let Inst{3-0}   = Rn;
4271}
4272class AsMul1I64<bits<7> opcod, dag oops, dag iops, InstrItinClass itin,
4273             string opc, string asm, list<dag> pattern>
4274  : AsMul1I<opcod, oops, iops, itin, opc, asm, pattern> {
4275  bits<4> RdLo;
4276  bits<4> RdHi;
4277  bits<4> Rm;
4278  bits<4> Rn;
4279  let Inst{19-16} = RdHi;
4280  let Inst{15-12} = RdLo;
4281  let Inst{11-8}  = Rm;
4282  let Inst{3-0}   = Rn;
4283}
4284class AsMla1I64<bits<7> opcod, dag oops, dag iops, InstrItinClass itin,
4285             string opc, string asm, list<dag> pattern>
4286  : AsMul1I<opcod, oops, iops, itin, opc, asm, pattern> {
4287  bits<4> RdLo;
4288  bits<4> RdHi;
4289  bits<4> Rm;
4290  bits<4> Rn;
4291  let Inst{19-16} = RdHi;
4292  let Inst{15-12} = RdLo;
4293  let Inst{11-8}  = Rm;
4294  let Inst{3-0}   = Rn;
4295}
4296
4297// FIXME: The v5 pseudos are only necessary for the additional Constraint
4298//        property. Remove them when it's possible to add those properties
4299//        on an individual MachineInstr, not just an instruction description.
4300let isCommutable = 1, TwoOperandAliasConstraint = "$Rn = $Rd" in {
4301def MUL : AsMul1I32<0b0000000, (outs GPRnopc:$Rd),
4302                    (ins GPRnopc:$Rn, GPRnopc:$Rm),
4303                    IIC_iMUL32, "mul", "\t$Rd, $Rn, $Rm",
4304                  [(set GPRnopc:$Rd, (mul GPRnopc:$Rn, GPRnopc:$Rm))]>,
4305                  Requires<[IsARM, HasV6]>,
4306         Sched<[WriteMUL32, ReadMUL, ReadMUL]> {
4307  let Inst{15-12} = 0b0000;
4308  let Unpredictable{15-12} = 0b1111;
4309}
4310
4311let Constraints = "@earlyclobber $Rd" in
4312def MULv5: ARMPseudoExpand<(outs GPRnopc:$Rd), (ins GPRnopc:$Rn, GPRnopc:$Rm,
4313                                                    pred:$p, cc_out:$s),
4314                           4, IIC_iMUL32,
4315               [(set GPRnopc:$Rd, (mul GPRnopc:$Rn, GPRnopc:$Rm))],
4316               (MUL GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, pred:$p, cc_out:$s)>,
4317               Requires<[IsARM, NoV6, UseMulOps]>,
4318           Sched<[WriteMUL32, ReadMUL, ReadMUL]>;
4319}
4320
4321def MLA  : AsMul1I32<0b0000001, (outs GPRnopc:$Rd),
4322                     (ins GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$Ra),
4323                     IIC_iMAC32, "mla", "\t$Rd, $Rn, $Rm, $Ra",
4324        [(set GPRnopc:$Rd, (add (mul GPRnopc:$Rn, GPRnopc:$Rm), GPRnopc:$Ra))]>,
4325                     Requires<[IsARM, HasV6, UseMulOps]>,
4326        Sched<[WriteMAC32, ReadMUL, ReadMUL, ReadMAC]> {
4327  bits<4> Ra;
4328  let Inst{15-12} = Ra;
4329}
4330
4331let Constraints = "@earlyclobber $Rd" in
4332def MLAv5: ARMPseudoExpand<(outs GPRnopc:$Rd),
4333                           (ins GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$Ra,
4334                            pred:$p, cc_out:$s), 4, IIC_iMAC32,
4335         [(set GPRnopc:$Rd, (add (mul GPRnopc:$Rn, GPRnopc:$Rm), GPRnopc:$Ra))],
4336  (MLA GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$Ra, pred:$p, cc_out:$s)>,
4337                           Requires<[IsARM, NoV6]>,
4338           Sched<[WriteMAC32, ReadMUL, ReadMUL, ReadMAC]>;
4339
4340def MLS  : AMul1I<0b0000011, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm, GPR:$Ra),
4341                   IIC_iMAC32, "mls", "\t$Rd, $Rn, $Rm, $Ra",
4342                   [(set GPR:$Rd, (sub GPR:$Ra, (mul GPR:$Rn, GPR:$Rm)))]>,
4343                   Requires<[IsARM, HasV6T2, UseMulOps]>,
4344          Sched<[WriteMAC32, ReadMUL, ReadMUL, ReadMAC]> {
4345  bits<4> Rd;
4346  bits<4> Rm;
4347  bits<4> Rn;
4348  bits<4> Ra;
4349  let Inst{19-16} = Rd;
4350  let Inst{15-12} = Ra;
4351  let Inst{11-8}  = Rm;
4352  let Inst{3-0}   = Rn;
4353}
4354
4355// Extra precision multiplies with low / high results
4356let hasSideEffects = 0 in {
4357let isCommutable = 1 in {
4358def SMULL : AsMul1I64<0b0000110, (outs GPR:$RdLo, GPR:$RdHi),
4359                                 (ins GPR:$Rn, GPR:$Rm), IIC_iMUL64,
4360                    "smull", "\t$RdLo, $RdHi, $Rn, $Rm",
4361                    [(set GPR:$RdLo, GPR:$RdHi,
4362                          (smullohi GPR:$Rn, GPR:$Rm))]>,
4363                    Requires<[IsARM, HasV6]>,
4364           Sched<[WriteMUL64Lo, WriteMUL64Hi, ReadMUL, ReadMUL]>;
4365
4366def UMULL : AsMul1I64<0b0000100, (outs GPR:$RdLo, GPR:$RdHi),
4367                                 (ins GPR:$Rn, GPR:$Rm), IIC_iMUL64,
4368                    "umull", "\t$RdLo, $RdHi, $Rn, $Rm",
4369                    [(set GPR:$RdLo, GPR:$RdHi,
4370                          (umullohi GPR:$Rn, GPR:$Rm))]>,
4371                    Requires<[IsARM, HasV6]>,
4372           Sched<[WriteMAC64Lo, WriteMAC64Hi, ReadMUL, ReadMUL]>;
4373
4374let Constraints = "@earlyclobber $RdLo,@earlyclobber $RdHi" in {
4375def SMULLv5 : ARMPseudoExpand<(outs GPR:$RdLo, GPR:$RdHi),
4376                            (ins GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s),
4377                            4, IIC_iMUL64,
4378                            [(set GPR:$RdLo, GPR:$RdHi,
4379                                  (smullohi GPR:$Rn, GPR:$Rm))],
4380          (SMULL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s)>,
4381                           Requires<[IsARM, NoV6]>,
4382              Sched<[WriteMUL64Lo, WriteMUL64Hi, ReadMUL, ReadMUL]>;
4383
4384def UMULLv5 : ARMPseudoExpand<(outs GPR:$RdLo, GPR:$RdHi),
4385                            (ins GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s),
4386                            4, IIC_iMUL64,
4387                            [(set GPR:$RdLo, GPR:$RdHi,
4388                                  (umullohi GPR:$Rn, GPR:$Rm))],
4389          (UMULL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s)>,
4390                           Requires<[IsARM, NoV6]>,
4391             Sched<[WriteMUL64Lo, WriteMUL64Hi, ReadMUL, ReadMUL]>;
4392}
4393}
4394
4395// Multiply + accumulate
4396def SMLAL : AsMla1I64<0b0000111, (outs GPR:$RdLo, GPR:$RdHi),
4397                        (ins GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi), IIC_iMAC64,
4398                    "smlal", "\t$RdLo, $RdHi, $Rn, $Rm", []>,
4399         RegConstraint<"$RLo = $RdLo, $RHi = $RdHi">, Requires<[IsARM, HasV6]>,
4400           Sched<[WriteMAC64Lo, WriteMAC64Hi, ReadMUL, ReadMUL, ReadMAC, ReadMAC]>;
4401def UMLAL : AsMla1I64<0b0000101, (outs GPR:$RdLo, GPR:$RdHi),
4402                        (ins GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi), IIC_iMAC64,
4403                    "umlal", "\t$RdLo, $RdHi, $Rn, $Rm", []>,
4404         RegConstraint<"$RLo = $RdLo, $RHi = $RdHi">, Requires<[IsARM, HasV6]>,
4405            Sched<[WriteMAC64Lo, WriteMAC64Hi, ReadMUL, ReadMUL, ReadMAC, ReadMAC]>;
4406
4407def UMAAL : AMul1I <0b0000010, (outs GPR:$RdLo, GPR:$RdHi),
4408                               (ins GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi),
4409                               IIC_iMAC64,
4410                    "umaal", "\t$RdLo, $RdHi, $Rn, $Rm", []>,
4411         RegConstraint<"$RLo = $RdLo, $RHi = $RdHi">, Requires<[IsARM, HasV6]>,
4412            Sched<[WriteMAC64Lo, WriteMAC64Hi, ReadMUL, ReadMUL, ReadMAC, ReadMAC]> {
4413  bits<4> RdLo;
4414  bits<4> RdHi;
4415  bits<4> Rm;
4416  bits<4> Rn;
4417  let Inst{19-16} = RdHi;
4418  let Inst{15-12} = RdLo;
4419  let Inst{11-8}  = Rm;
4420  let Inst{3-0}   = Rn;
4421}
4422
4423let Constraints =
4424    "@earlyclobber $RdLo,@earlyclobber $RdHi,$RLo = $RdLo,$RHi = $RdHi" in {
4425def SMLALv5 : ARMPseudoExpand<(outs GPR:$RdLo, GPR:$RdHi),
4426                (ins GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi, pred:$p, cc_out:$s),
4427                              4, IIC_iMAC64, [],
4428             (SMLAL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi,
4429                           pred:$p, cc_out:$s)>,
4430                           Requires<[IsARM, NoV6]>,
4431              Sched<[WriteMAC64Lo, WriteMAC64Hi, ReadMUL, ReadMUL, ReadMAC, ReadMAC]>;
4432def UMLALv5 : ARMPseudoExpand<(outs GPR:$RdLo, GPR:$RdHi),
4433                (ins GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi, pred:$p, cc_out:$s),
4434                              4, IIC_iMAC64, [],
4435             (UMLAL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi,
4436                           pred:$p, cc_out:$s)>,
4437                           Requires<[IsARM, NoV6]>,
4438              Sched<[WriteMAC64Lo, WriteMAC64Hi, ReadMUL, ReadMUL, ReadMAC, ReadMAC]>;
4439}
4440
4441} // hasSideEffects
4442
4443// Most significant word multiply
4444def SMMUL : AMul2I <0b0111010, 0b0001, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
4445               IIC_iMUL32, "smmul", "\t$Rd, $Rn, $Rm",
4446               [(set GPR:$Rd, (mulhs GPR:$Rn, GPR:$Rm))]>,
4447            Requires<[IsARM, HasV6]>,
4448            Sched<[WriteMUL32, ReadMUL, ReadMUL]> {
4449  let Inst{15-12} = 0b1111;
4450}
4451
4452def SMMULR : AMul2I <0b0111010, 0b0011, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
4453               IIC_iMUL32, "smmulr", "\t$Rd, $Rn, $Rm",
4454               [(set GPR:$Rd, (ARMsmmlar GPR:$Rn, GPR:$Rm, (i32 0)))]>,
4455            Requires<[IsARM, HasV6]>,
4456             Sched<[WriteMUL32, ReadMUL, ReadMUL]>  {
4457  let Inst{15-12} = 0b1111;
4458}
4459
4460def SMMLA : AMul2Ia <0b0111010, 0b0001, (outs GPR:$Rd),
4461               (ins GPR:$Rn, GPR:$Rm, GPR:$Ra),
4462               IIC_iMAC32, "smmla", "\t$Rd, $Rn, $Rm, $Ra",
4463               [(set GPR:$Rd, (add (mulhs GPR:$Rn, GPR:$Rm), GPR:$Ra))]>,
4464            Requires<[IsARM, HasV6, UseMulOps]>,
4465            Sched<[WriteMAC32, ReadMUL, ReadMUL, ReadMAC]>;
4466
4467def SMMLAR : AMul2Ia <0b0111010, 0b0011, (outs GPR:$Rd),
4468               (ins GPR:$Rn, GPR:$Rm, GPR:$Ra),
4469               IIC_iMAC32, "smmlar", "\t$Rd, $Rn, $Rm, $Ra",
4470               [(set GPR:$Rd, (ARMsmmlar GPR:$Rn, GPR:$Rm, GPR:$Ra))]>,
4471            Requires<[IsARM, HasV6]>,
4472             Sched<[WriteMAC32, ReadMUL, ReadMUL, ReadMAC]>;
4473
4474def SMMLS : AMul2Ia <0b0111010, 0b1101, (outs GPR:$Rd),
4475               (ins GPR:$Rn, GPR:$Rm, GPR:$Ra),
4476               IIC_iMAC32, "smmls", "\t$Rd, $Rn, $Rm, $Ra", []>,
4477            Requires<[IsARM, HasV6, UseMulOps]>,
4478            Sched<[WriteMAC32, ReadMUL, ReadMUL, ReadMAC]>;
4479
4480def SMMLSR : AMul2Ia <0b0111010, 0b1111, (outs GPR:$Rd),
4481               (ins GPR:$Rn, GPR:$Rm, GPR:$Ra),
4482               IIC_iMAC32, "smmlsr", "\t$Rd, $Rn, $Rm, $Ra",
4483               [(set GPR:$Rd, (ARMsmmlsr GPR:$Rn, GPR:$Rm, GPR:$Ra))]>,
4484            Requires<[IsARM, HasV6]>,
4485             Sched<[WriteMAC32, ReadMUL, ReadMUL, ReadMAC]>;
4486
4487multiclass AI_smul<string opc> {
4488  def BB : AMulxyI<0b0001011, 0b00, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
4489              IIC_iMUL16, !strconcat(opc, "bb"), "\t$Rd, $Rn, $Rm",
4490              [(set GPR:$Rd, (bb_mul GPR:$Rn, GPR:$Rm))]>,
4491           Requires<[IsARM, HasV5TE]>,
4492           Sched<[WriteMUL16, ReadMUL, ReadMUL]>;
4493
4494  def BT : AMulxyI<0b0001011, 0b10, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
4495              IIC_iMUL16, !strconcat(opc, "bt"), "\t$Rd, $Rn, $Rm",
4496              [(set GPR:$Rd, (bt_mul GPR:$Rn, GPR:$Rm))]>,
4497           Requires<[IsARM, HasV5TE]>,
4498           Sched<[WriteMUL16, ReadMUL, ReadMUL]>;
4499
4500  def TB : AMulxyI<0b0001011, 0b01, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
4501              IIC_iMUL16, !strconcat(opc, "tb"), "\t$Rd, $Rn, $Rm",
4502              [(set GPR:$Rd, (tb_mul GPR:$Rn, GPR:$Rm))]>,
4503           Requires<[IsARM, HasV5TE]>,
4504           Sched<[WriteMUL16, ReadMUL, ReadMUL]>;
4505
4506  def TT : AMulxyI<0b0001011, 0b11, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
4507              IIC_iMUL16, !strconcat(opc, "tt"), "\t$Rd, $Rn, $Rm",
4508              [(set GPR:$Rd, (tt_mul GPR:$Rn, GPR:$Rm))]>,
4509            Requires<[IsARM, HasV5TE]>,
4510           Sched<[WriteMUL16, ReadMUL, ReadMUL]>;
4511
4512  def WB : AMulxyI<0b0001001, 0b01, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
4513              IIC_iMUL16, !strconcat(opc, "wb"), "\t$Rd, $Rn, $Rm",
4514              [(set GPR:$Rd, (ARMsmulwb GPR:$Rn, GPR:$Rm))]>,
4515           Requires<[IsARM, HasV5TE]>,
4516           Sched<[WriteMUL16, ReadMUL, ReadMUL]>;
4517
4518  def WT : AMulxyI<0b0001001, 0b11, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
4519              IIC_iMUL16, !strconcat(opc, "wt"), "\t$Rd, $Rn, $Rm",
4520              [(set GPR:$Rd, (ARMsmulwt GPR:$Rn, GPR:$Rm))]>,
4521            Requires<[IsARM, HasV5TE]>,
4522           Sched<[WriteMUL16, ReadMUL, ReadMUL]>;
4523}
4524
4525
4526multiclass AI_smla<string opc> {
4527  let DecoderMethod = "DecodeSMLAInstruction" in {
4528  def BB : AMulxyIa<0b0001000, 0b00, (outs GPRnopc:$Rd),
4529              (ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
4530              IIC_iMAC16, !strconcat(opc, "bb"), "\t$Rd, $Rn, $Rm, $Ra",
4531              [(set GPRnopc:$Rd, (add GPR:$Ra,
4532                                      (bb_mul GPRnopc:$Rn, GPRnopc:$Rm)))]>,
4533           Requires<[IsARM, HasV5TE, UseMulOps]>,
4534           Sched<[WriteMAC16, ReadMUL, ReadMUL, ReadMAC]>;
4535
4536  def BT : AMulxyIa<0b0001000, 0b10, (outs GPRnopc:$Rd),
4537              (ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
4538              IIC_iMAC16, !strconcat(opc, "bt"), "\t$Rd, $Rn, $Rm, $Ra",
4539              [(set GPRnopc:$Rd, (add GPR:$Ra,
4540                                      (bt_mul GPRnopc:$Rn, GPRnopc:$Rm)))]>,
4541           Requires<[IsARM, HasV5TE, UseMulOps]>,
4542           Sched<[WriteMAC16, ReadMUL, ReadMUL, ReadMAC]>;
4543
4544  def TB : AMulxyIa<0b0001000, 0b01, (outs GPRnopc:$Rd),
4545              (ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
4546              IIC_iMAC16, !strconcat(opc, "tb"), "\t$Rd, $Rn, $Rm, $Ra",
4547              [(set GPRnopc:$Rd, (add GPR:$Ra,
4548                                      (tb_mul GPRnopc:$Rn, GPRnopc:$Rm)))]>,
4549           Requires<[IsARM, HasV5TE, UseMulOps]>,
4550           Sched<[WriteMAC16, ReadMUL, ReadMUL, ReadMAC]>;
4551
4552  def TT : AMulxyIa<0b0001000, 0b11, (outs GPRnopc:$Rd),
4553              (ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
4554              IIC_iMAC16, !strconcat(opc, "tt"), "\t$Rd, $Rn, $Rm, $Ra",
4555             [(set GPRnopc:$Rd, (add GPR:$Ra,
4556                                     (tt_mul GPRnopc:$Rn, GPRnopc:$Rm)))]>,
4557            Requires<[IsARM, HasV5TE, UseMulOps]>,
4558            Sched<[WriteMAC16, ReadMUL, ReadMUL, ReadMAC]>;
4559
4560  def WB : AMulxyIa<0b0001001, 0b00, (outs GPRnopc:$Rd),
4561              (ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
4562              IIC_iMAC16, !strconcat(opc, "wb"), "\t$Rd, $Rn, $Rm, $Ra",
4563              [(set GPRnopc:$Rd,
4564                    (add GPR:$Ra, (ARMsmulwb GPRnopc:$Rn, GPRnopc:$Rm)))]>,
4565           Requires<[IsARM, HasV5TE, UseMulOps]>,
4566           Sched<[WriteMAC16, ReadMUL, ReadMUL, ReadMAC]>;
4567
4568  def WT : AMulxyIa<0b0001001, 0b10, (outs GPRnopc:$Rd),
4569              (ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
4570              IIC_iMAC16, !strconcat(opc, "wt"), "\t$Rd, $Rn, $Rm, $Ra",
4571              [(set GPRnopc:$Rd,
4572                    (add GPR:$Ra, (ARMsmulwt GPRnopc:$Rn, GPRnopc:$Rm)))]>,
4573            Requires<[IsARM, HasV5TE, UseMulOps]>,
4574            Sched<[WriteMAC16, ReadMUL, ReadMUL, ReadMAC]>;
4575  }
4576}
4577
4578defm SMUL : AI_smul<"smul">;
4579defm SMLA : AI_smla<"smla">;
4580
4581// Halfword multiply accumulate long: SMLAL<x><y>.
4582class SMLAL<bits<2> opc1, string asm>
4583 : AMulxyI64<0b0001010, opc1,
4584        (outs GPRnopc:$RdLo, GPRnopc:$RdHi),
4585        (ins GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$RLo, GPRnopc:$RHi),
4586        IIC_iMAC64, asm, "\t$RdLo, $RdHi, $Rn, $Rm", []>,
4587        RegConstraint<"$RLo = $RdLo, $RHi = $RdHi">,
4588        Requires<[IsARM, HasV5TE]>,
4589        Sched<[WriteMAC64Lo, WriteMAC64Hi, ReadMUL, ReadMUL, ReadMAC, ReadMAC]>;
4590
4591def SMLALBB : SMLAL<0b00, "smlalbb">;
4592def SMLALBT : SMLAL<0b10, "smlalbt">;
4593def SMLALTB : SMLAL<0b01, "smlaltb">;
4594def SMLALTT : SMLAL<0b11, "smlaltt">;
4595
4596def : ARMV5TEPat<(ARMsmlalbb GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi),
4597                 (SMLALBB $Rn, $Rm, $RLo, $RHi)>;
4598def : ARMV5TEPat<(ARMsmlalbt GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi),
4599                 (SMLALBT $Rn, $Rm, $RLo, $RHi)>;
4600def : ARMV5TEPat<(ARMsmlaltb GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi),
4601                 (SMLALTB $Rn, $Rm, $RLo, $RHi)>;
4602def : ARMV5TEPat<(ARMsmlaltt GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi),
4603                 (SMLALTT $Rn, $Rm, $RLo, $RHi)>;
4604
4605// Helper class for AI_smld.
4606class AMulDualIbase<bit long, bit sub, bit swap, dag oops, dag iops,
4607                    InstrItinClass itin, string opc, string asm>
4608  : AI<oops, iops, MulFrm, itin, opc, asm, []>,
4609       Requires<[IsARM, HasV6]> {
4610  bits<4> Rn;
4611  bits<4> Rm;
4612  let Inst{27-23} = 0b01110;
4613  let Inst{22}    = long;
4614  let Inst{21-20} = 0b00;
4615  let Inst{11-8}  = Rm;
4616  let Inst{7}     = 0;
4617  let Inst{6}     = sub;
4618  let Inst{5}     = swap;
4619  let Inst{4}     = 1;
4620  let Inst{3-0}   = Rn;
4621}
4622class AMulDualI<bit long, bit sub, bit swap, dag oops, dag iops,
4623                InstrItinClass itin, string opc, string asm>
4624  : AMulDualIbase<long, sub, swap, oops, iops, itin, opc, asm> {
4625  bits<4> Rd;
4626  let Inst{15-12} = 0b1111;
4627  let Inst{19-16} = Rd;
4628}
4629class AMulDualIa<bit long, bit sub, bit swap, dag oops, dag iops,
4630                InstrItinClass itin, string opc, string asm>
4631  : AMulDualIbase<long, sub, swap, oops, iops, itin, opc, asm> {
4632  bits<4> Ra;
4633  bits<4> Rd;
4634  let Inst{19-16} = Rd;
4635  let Inst{15-12} = Ra;
4636}
4637class AMulDualI64<bit long, bit sub, bit swap, dag oops, dag iops,
4638                  InstrItinClass itin, string opc, string asm>
4639  : AMulDualIbase<long, sub, swap, oops, iops, itin, opc, asm> {
4640  bits<4> RdLo;
4641  bits<4> RdHi;
4642  let Inst{19-16} = RdHi;
4643  let Inst{15-12} = RdLo;
4644}
4645
4646multiclass AI_smld<bit sub, string opc> {
4647
4648  def D : AMulDualIa<0, sub, 0, (outs GPRnopc:$Rd),
4649                  (ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
4650                  NoItinerary, !strconcat(opc, "d"), "\t$Rd, $Rn, $Rm, $Ra">,
4651          Sched<[WriteMAC32, ReadMUL, ReadMUL, ReadMAC]>;
4652
4653  def DX: AMulDualIa<0, sub, 1, (outs GPRnopc:$Rd),
4654                  (ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
4655                  NoItinerary, !strconcat(opc, "dx"), "\t$Rd, $Rn, $Rm, $Ra">,
4656          Sched<[WriteMAC32, ReadMUL, ReadMUL, ReadMAC]>;
4657
4658  def LD: AMulDualI64<1, sub, 0, (outs GPRnopc:$RdLo, GPRnopc:$RdHi),
4659                  (ins GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$RLo, GPRnopc:$RHi),
4660                  NoItinerary,
4661                  !strconcat(opc, "ld"), "\t$RdLo, $RdHi, $Rn, $Rm">,
4662                  RegConstraint<"$RLo = $RdLo, $RHi = $RdHi">,
4663          Sched<[WriteMAC64Lo, WriteMAC64Hi, ReadMUL, ReadMUL, ReadMAC, ReadMAC]>;
4664
4665  def LDX : AMulDualI64<1, sub, 1, (outs GPRnopc:$RdLo, GPRnopc:$RdHi),
4666                  (ins GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$RLo, GPRnopc:$RHi),
4667                  NoItinerary,
4668                  !strconcat(opc, "ldx"),"\t$RdLo, $RdHi, $Rn, $Rm">,
4669                  RegConstraint<"$RLo = $RdLo, $RHi = $RdHi">,
4670             Sched<[WriteMUL64Lo, WriteMUL64Hi, ReadMUL, ReadMUL]>;
4671}
4672
4673defm SMLA : AI_smld<0, "smla">;
4674defm SMLS : AI_smld<1, "smls">;
4675
4676def : ARMV6Pat<(int_arm_smlad GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
4677               (SMLAD GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$Ra)>;
4678def : ARMV6Pat<(int_arm_smladx GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
4679               (SMLADX GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$Ra)>;
4680def : ARMV6Pat<(int_arm_smlsd GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
4681               (SMLSD GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$Ra)>;
4682def : ARMV6Pat<(int_arm_smlsdx GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
4683               (SMLSDX GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$Ra)>;
4684def : ARMV6Pat<(ARMSmlald GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$RLo, GPRnopc:$RHi),
4685               (SMLALD GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$RLo, GPRnopc:$RHi)>;
4686def : ARMV6Pat<(ARMSmlaldx GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$RLo, GPRnopc:$RHi),
4687               (SMLALDX GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$RLo, GPRnopc:$RHi)>;
4688def : ARMV6Pat<(ARMSmlsld GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$RLo, GPRnopc:$RHi),
4689               (SMLSLD GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$RLo, GPRnopc:$RHi)>;
4690def : ARMV6Pat<(ARMSmlsldx GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$RLo, GPRnopc:$RHi),
4691               (SMLSLDX GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$RLo, GPRnopc:$RHi)>;
4692
4693multiclass AI_sdml<bit sub, string opc> {
4694
4695  def D:AMulDualI<0, sub, 0, (outs GPRnopc:$Rd), (ins GPRnopc:$Rn, GPRnopc:$Rm),
4696                  NoItinerary, !strconcat(opc, "d"), "\t$Rd, $Rn, $Rm">,
4697        Sched<[WriteMUL32, ReadMUL, ReadMUL]>;
4698  def DX:AMulDualI<0, sub, 1, (outs GPRnopc:$Rd),(ins GPRnopc:$Rn, GPRnopc:$Rm),
4699                  NoItinerary, !strconcat(opc, "dx"), "\t$Rd, $Rn, $Rm">,
4700         Sched<[WriteMUL32, ReadMUL, ReadMUL]>;
4701}
4702
4703defm SMUA : AI_sdml<0, "smua">;
4704defm SMUS : AI_sdml<1, "smus">;
4705
4706def : ARMV6Pat<(int_arm_smuad GPRnopc:$Rn, GPRnopc:$Rm),
4707               (SMUAD GPRnopc:$Rn, GPRnopc:$Rm)>;
4708def : ARMV6Pat<(int_arm_smuadx GPRnopc:$Rn, GPRnopc:$Rm),
4709               (SMUADX GPRnopc:$Rn, GPRnopc:$Rm)>;
4710def : ARMV6Pat<(int_arm_smusd GPRnopc:$Rn, GPRnopc:$Rm),
4711               (SMUSD GPRnopc:$Rn, GPRnopc:$Rm)>;
4712def : ARMV6Pat<(int_arm_smusdx GPRnopc:$Rn, GPRnopc:$Rm),
4713               (SMUSDX GPRnopc:$Rn, GPRnopc:$Rm)>;
4714
4715//===----------------------------------------------------------------------===//
4716//  Division Instructions (ARMv7-A with virtualization extension)
4717//
4718def SDIV : ADivA1I<0b001, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), IIC_iDIV,
4719                   "sdiv", "\t$Rd, $Rn, $Rm",
4720                   [(set GPR:$Rd, (sdiv GPR:$Rn, GPR:$Rm))]>,
4721           Requires<[IsARM, HasDivideInARM]>,
4722           Sched<[WriteDIV]>;
4723
4724def UDIV : ADivA1I<0b011, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), IIC_iDIV,
4725                   "udiv", "\t$Rd, $Rn, $Rm",
4726                   [(set GPR:$Rd, (udiv GPR:$Rn, GPR:$Rm))]>,
4727           Requires<[IsARM, HasDivideInARM]>,
4728           Sched<[WriteDIV]>;
4729
4730//===----------------------------------------------------------------------===//
4731//  Misc. Arithmetic Instructions.
4732//
4733
4734def CLZ  : AMiscA1I<0b00010110, 0b0001, (outs GPR:$Rd), (ins GPR:$Rm),
4735              IIC_iUNAr, "clz", "\t$Rd, $Rm",
4736              [(set GPR:$Rd, (ctlz GPR:$Rm))]>, Requires<[IsARM, HasV5T]>,
4737           Sched<[WriteALU]>;
4738
4739def RBIT : AMiscA1I<0b01101111, 0b0011, (outs GPR:$Rd), (ins GPR:$Rm),
4740              IIC_iUNAr, "rbit", "\t$Rd, $Rm",
4741              [(set GPR:$Rd, (bitreverse GPR:$Rm))]>,
4742           Requires<[IsARM, HasV6T2]>,
4743           Sched<[WriteALU]>;
4744
4745def REV  : AMiscA1I<0b01101011, 0b0011, (outs GPR:$Rd), (ins GPR:$Rm),
4746              IIC_iUNAr, "rev", "\t$Rd, $Rm",
4747              [(set GPR:$Rd, (bswap GPR:$Rm))]>, Requires<[IsARM, HasV6]>,
4748           Sched<[WriteALU]>;
4749
4750let AddedComplexity = 5 in
4751def REV16 : AMiscA1I<0b01101011, 0b1011, (outs GPR:$Rd), (ins GPR:$Rm),
4752               IIC_iUNAr, "rev16", "\t$Rd, $Rm",
4753               [(set GPR:$Rd, (rotr (bswap GPR:$Rm), (i32 16)))]>,
4754               Requires<[IsARM, HasV6]>,
4755           Sched<[WriteALU]>;
4756
4757def : ARMV6Pat<(srl (bswap (extloadi16 addrmode3:$addr)), (i32 16)),
4758              (REV16 (LDRH addrmode3:$addr))>;
4759def : ARMV6Pat<(truncstorei16 (srl (bswap GPR:$Rn), (i32 16)), addrmode3:$addr),
4760               (STRH (REV16 GPR:$Rn), addrmode3:$addr)>;
4761def : ARMV6Pat<(srl (bswap top16Zero:$Rn), (i32 16)),
4762               (REV16 GPR:$Rn)>;
4763
4764let AddedComplexity = 5 in
4765def REVSH : AMiscA1I<0b01101111, 0b1011, (outs GPR:$Rd), (ins GPR:$Rm),
4766               IIC_iUNAr, "revsh", "\t$Rd, $Rm",
4767               [(set GPR:$Rd, (sra (bswap GPR:$Rm), (i32 16)))]>,
4768               Requires<[IsARM, HasV6]>,
4769           Sched<[WriteALU]>;
4770
4771def : ARMV6Pat<(or (sra (shl GPR:$Rm, (i32 24)), (i32 16)),
4772                   (and (srl GPR:$Rm, (i32 8)), 0xFF)),
4773               (REVSH GPR:$Rm)>;
4774
4775def PKHBT : APKHI<0b01101000, 0, (outs GPRnopc:$Rd),
4776                              (ins GPRnopc:$Rn, GPRnopc:$Rm, pkh_lsl_amt:$sh),
4777               IIC_iALUsi, "pkhbt", "\t$Rd, $Rn, $Rm$sh",
4778               [(set GPRnopc:$Rd, (or (and GPRnopc:$Rn, 0xFFFF),
4779                                      (and (shl GPRnopc:$Rm, pkh_lsl_amt:$sh),
4780                                           0xFFFF0000)))]>,
4781               Requires<[IsARM, HasV6]>,
4782           Sched<[WriteALUsi, ReadALU]>;
4783
4784// Alternate cases for PKHBT where identities eliminate some nodes.
4785def : ARMV6Pat<(or (and GPRnopc:$Rn, 0xFFFF), (and GPRnopc:$Rm, 0xFFFF0000)),
4786               (PKHBT GPRnopc:$Rn, GPRnopc:$Rm, 0)>;
4787def : ARMV6Pat<(or (and GPRnopc:$Rn, 0xFFFF), (shl GPRnopc:$Rm, imm16_31:$sh)),
4788               (PKHBT GPRnopc:$Rn, GPRnopc:$Rm, imm16_31:$sh)>;
4789
4790// Note: Shifts of 1-15 bits will be transformed to srl instead of sra and
4791// will match the pattern below.
4792def PKHTB : APKHI<0b01101000, 1, (outs GPRnopc:$Rd),
4793                              (ins GPRnopc:$Rn, GPRnopc:$Rm, pkh_asr_amt:$sh),
4794               IIC_iBITsi, "pkhtb", "\t$Rd, $Rn, $Rm$sh",
4795               [(set GPRnopc:$Rd, (or (and GPRnopc:$Rn, 0xFFFF0000),
4796                                      (and (sra GPRnopc:$Rm, pkh_asr_amt:$sh),
4797                                           0xFFFF)))]>,
4798               Requires<[IsARM, HasV6]>,
4799           Sched<[WriteALUsi, ReadALU]>;
4800
4801// Alternate cases for PKHTB where identities eliminate some nodes.  Note that
4802// a shift amount of 0 is *not legal* here, it is PKHBT instead.
4803// We also can not replace a srl (17..31) by an arithmetic shift we would use in
4804// pkhtb src1, src2, asr (17..31).
4805def : ARMV6Pat<(or (and GPRnopc:$src1, 0xFFFF0000),
4806                   (srl GPRnopc:$src2, imm16:$sh)),
4807               (PKHTB GPRnopc:$src1, GPRnopc:$src2, imm16:$sh)>;
4808def : ARMV6Pat<(or (and GPRnopc:$src1, 0xFFFF0000),
4809                   (sra GPRnopc:$src2, imm16_31:$sh)),
4810               (PKHTB GPRnopc:$src1, GPRnopc:$src2, imm16_31:$sh)>;
4811def : ARMV6Pat<(or (and GPRnopc:$src1, 0xFFFF0000),
4812                   (and (srl GPRnopc:$src2, imm1_15:$sh), 0xFFFF)),
4813               (PKHTB GPRnopc:$src1, GPRnopc:$src2, imm1_15:$sh)>;
4814
4815//===----------------------------------------------------------------------===//
4816// CRC Instructions
4817//
4818// Polynomials:
4819// + CRC32{B,H,W}       0x04C11DB7
4820// + CRC32C{B,H,W}      0x1EDC6F41
4821//
4822
4823class AI_crc32<bit C, bits<2> sz, string suffix, SDPatternOperator builtin>
4824  : AInoP<(outs GPRnopc:$Rd), (ins GPRnopc:$Rn, GPRnopc:$Rm), MiscFrm, NoItinerary,
4825               !strconcat("crc32", suffix), "\t$Rd, $Rn, $Rm",
4826               [(set GPRnopc:$Rd, (builtin GPRnopc:$Rn, GPRnopc:$Rm))]>,
4827               Requires<[IsARM, HasV8, HasCRC]> {
4828  bits<4> Rd;
4829  bits<4> Rn;
4830  bits<4> Rm;
4831
4832  let Inst{31-28} = 0b1110;
4833  let Inst{27-23} = 0b00010;
4834  let Inst{22-21} = sz;
4835  let Inst{20}    = 0;
4836  let Inst{19-16} = Rn;
4837  let Inst{15-12} = Rd;
4838  let Inst{11-10} = 0b00;
4839  let Inst{9}     = C;
4840  let Inst{8}     = 0;
4841  let Inst{7-4}   = 0b0100;
4842  let Inst{3-0}   = Rm;
4843
4844  let Unpredictable{11-8} = 0b1101;
4845}
4846
4847def CRC32B  : AI_crc32<0, 0b00, "b", int_arm_crc32b>;
4848def CRC32CB : AI_crc32<1, 0b00, "cb", int_arm_crc32cb>;
4849def CRC32H  : AI_crc32<0, 0b01, "h", int_arm_crc32h>;
4850def CRC32CH : AI_crc32<1, 0b01, "ch", int_arm_crc32ch>;
4851def CRC32W  : AI_crc32<0, 0b10, "w", int_arm_crc32w>;
4852def CRC32CW : AI_crc32<1, 0b10, "cw", int_arm_crc32cw>;
4853
4854//===----------------------------------------------------------------------===//
4855// ARMv8.1a Privilege Access Never extension
4856//
4857// SETPAN #imm1
4858
4859def SETPAN : AInoP<(outs), (ins imm0_1:$imm), MiscFrm, NoItinerary, "setpan",
4860                "\t$imm", []>, Requires<[IsARM, HasV8, HasV8_1a]> {
4861  bits<1> imm;
4862
4863  let Inst{31-28} = 0b1111;
4864  let Inst{27-20} = 0b00010001;
4865  let Inst{19-16} = 0b0000;
4866  let Inst{15-10} = 0b000000;
4867  let Inst{9} = imm;
4868  let Inst{8} = 0b0;
4869  let Inst{7-4} = 0b0000;
4870  let Inst{3-0} = 0b0000;
4871
4872  let Unpredictable{19-16} = 0b1111;
4873  let Unpredictable{15-10} = 0b111111;
4874  let Unpredictable{8} = 0b1;
4875  let Unpredictable{3-0} = 0b1111;
4876}
4877
4878//===----------------------------------------------------------------------===//
4879//  Comparison Instructions...
4880//
4881
4882defm CMP  : AI1_cmp_irs<0b1010, "cmp",
4883                        IIC_iCMPi, IIC_iCMPr, IIC_iCMPsr, ARMcmp>;
4884
4885// ARMcmpZ can re-use the above instruction definitions.
4886def : ARMPat<(ARMcmpZ GPR:$src, mod_imm:$imm),
4887             (CMPri   GPR:$src, mod_imm:$imm)>;
4888def : ARMPat<(ARMcmpZ GPR:$src, GPR:$rhs),
4889             (CMPrr   GPR:$src, GPR:$rhs)>;
4890def : ARMPat<(ARMcmpZ GPR:$src, so_reg_imm:$rhs),
4891             (CMPrsi   GPR:$src, so_reg_imm:$rhs)>;
4892def : ARMPat<(ARMcmpZ GPR:$src, so_reg_reg:$rhs),
4893             (CMPrsr   GPR:$src, so_reg_reg:$rhs)>;
4894
4895// CMN register-integer
4896let isCompare = 1, Defs = [CPSR] in {
4897def CMNri : AI1<0b1011, (outs), (ins GPR:$Rn, mod_imm:$imm), DPFrm, IIC_iCMPi,
4898                "cmn", "\t$Rn, $imm",
4899                [(ARMcmn GPR:$Rn, mod_imm:$imm)]>,
4900                Sched<[WriteCMP, ReadALU]> {
4901  bits<4> Rn;
4902  bits<12> imm;
4903  let Inst{25} = 1;
4904  let Inst{20} = 1;
4905  let Inst{19-16} = Rn;
4906  let Inst{15-12} = 0b0000;
4907  let Inst{11-0} = imm;
4908
4909  let Unpredictable{15-12} = 0b1111;
4910}
4911
4912// CMN register-register/shift
4913def CMNzrr : AI1<0b1011, (outs), (ins GPR:$Rn, GPR:$Rm), DPFrm, IIC_iCMPr,
4914                 "cmn", "\t$Rn, $Rm",
4915                 [(BinOpFrag<(ARMcmpZ node:$LHS,(ineg node:$RHS))>
4916                   GPR:$Rn, GPR:$Rm)]>, Sched<[WriteCMP, ReadALU, ReadALU]> {
4917  bits<4> Rn;
4918  bits<4> Rm;
4919  let isCommutable = 1;
4920  let Inst{25} = 0;
4921  let Inst{20} = 1;
4922  let Inst{19-16} = Rn;
4923  let Inst{15-12} = 0b0000;
4924  let Inst{11-4} = 0b00000000;
4925  let Inst{3-0} = Rm;
4926
4927  let Unpredictable{15-12} = 0b1111;
4928}
4929
4930def CMNzrsi : AI1<0b1011, (outs),
4931                  (ins GPR:$Rn, so_reg_imm:$shift), DPSoRegImmFrm, IIC_iCMPsr,
4932                  "cmn", "\t$Rn, $shift",
4933                  [(BinOpFrag<(ARMcmpZ node:$LHS,(ineg node:$RHS))>
4934                    GPR:$Rn, so_reg_imm:$shift)]>,
4935                    Sched<[WriteCMPsi, ReadALU]> {
4936  bits<4> Rn;
4937  bits<12> shift;
4938  let Inst{25} = 0;
4939  let Inst{20} = 1;
4940  let Inst{19-16} = Rn;
4941  let Inst{15-12} = 0b0000;
4942  let Inst{11-5} = shift{11-5};
4943  let Inst{4} = 0;
4944  let Inst{3-0} = shift{3-0};
4945
4946  let Unpredictable{15-12} = 0b1111;
4947}
4948
4949def CMNzrsr : AI1<0b1011, (outs),
4950                  (ins GPRnopc:$Rn, so_reg_reg:$shift), DPSoRegRegFrm, IIC_iCMPsr,
4951                  "cmn", "\t$Rn, $shift",
4952                  [(BinOpFrag<(ARMcmpZ node:$LHS,(ineg node:$RHS))>
4953                    GPRnopc:$Rn, so_reg_reg:$shift)]>,
4954                    Sched<[WriteCMPsr, ReadALU]> {
4955  bits<4> Rn;
4956  bits<12> shift;
4957  let Inst{25} = 0;
4958  let Inst{20} = 1;
4959  let Inst{19-16} = Rn;
4960  let Inst{15-12} = 0b0000;
4961  let Inst{11-8} = shift{11-8};
4962  let Inst{7} = 0;
4963  let Inst{6-5} = shift{6-5};
4964  let Inst{4} = 1;
4965  let Inst{3-0} = shift{3-0};
4966
4967  let Unpredictable{15-12} = 0b1111;
4968}
4969
4970}
4971
4972def : ARMPat<(ARMcmp  GPR:$src, mod_imm_neg:$imm),
4973             (CMNri   GPR:$src, mod_imm_neg:$imm)>;
4974
4975def : ARMPat<(ARMcmpZ GPR:$src, mod_imm_neg:$imm),
4976             (CMNri   GPR:$src, mod_imm_neg:$imm)>;
4977
4978// Note that TST/TEQ don't set all the same flags that CMP does!
4979defm TST  : AI1_cmp_irs<0b1000, "tst",
4980                        IIC_iTSTi, IIC_iTSTr, IIC_iTSTsr,
4981                      BinOpFrag<(ARMcmpZ (and_su node:$LHS, node:$RHS), 0)>, 1,
4982                      "DecodeTSTInstruction">;
4983defm TEQ  : AI1_cmp_irs<0b1001, "teq",
4984                        IIC_iTSTi, IIC_iTSTr, IIC_iTSTsr,
4985                      BinOpFrag<(ARMcmpZ (xor_su node:$LHS, node:$RHS), 0)>, 1>;
4986
4987// Pseudo i64 compares for some floating point compares.
4988let usesCustomInserter = 1, isBranch = 1, isTerminator = 1,
4989    Defs = [CPSR] in {
4990def BCCi64 : PseudoInst<(outs),
4991    (ins i32imm:$cc, GPR:$lhs1, GPR:$lhs2, GPR:$rhs1, GPR:$rhs2, brtarget:$dst),
4992     IIC_Br,
4993    [(ARMBcci64 imm:$cc, GPR:$lhs1, GPR:$lhs2, GPR:$rhs1, GPR:$rhs2, bb:$dst)]>,
4994    Sched<[WriteBr]>;
4995
4996def BCCZi64 : PseudoInst<(outs),
4997     (ins i32imm:$cc, GPR:$lhs1, GPR:$lhs2, brtarget:$dst), IIC_Br,
4998    [(ARMBcci64 imm:$cc, GPR:$lhs1, GPR:$lhs2, 0, 0, bb:$dst)]>,
4999    Sched<[WriteBr]>;
5000} // usesCustomInserter
5001
5002
5003// Conditional moves
5004let hasSideEffects = 0 in {
5005
5006let isCommutable = 1, isSelect = 1 in
5007def MOVCCr : ARMPseudoInst<(outs GPR:$Rd),
5008                           (ins GPR:$false, GPR:$Rm, cmovpred:$p),
5009                           4, IIC_iCMOVr,
5010                           [(set GPR:$Rd, (ARMcmov GPR:$false, GPR:$Rm,
5011                                                   cmovpred:$p))]>,
5012             RegConstraint<"$false = $Rd">, Sched<[WriteALU]>;
5013
5014def MOVCCsi : ARMPseudoInst<(outs GPR:$Rd),
5015                            (ins GPR:$false, so_reg_imm:$shift, cmovpred:$p),
5016                            4, IIC_iCMOVsr,
5017                            [(set GPR:$Rd,
5018                                  (ARMcmov GPR:$false, so_reg_imm:$shift,
5019                                           cmovpred:$p))]>,
5020      RegConstraint<"$false = $Rd">, Sched<[WriteALU]>;
5021def MOVCCsr : ARMPseudoInst<(outs GPR:$Rd),
5022                            (ins GPR:$false, so_reg_reg:$shift, cmovpred:$p),
5023                           4, IIC_iCMOVsr,
5024  [(set GPR:$Rd, (ARMcmov GPR:$false, so_reg_reg:$shift,
5025                            cmovpred:$p))]>,
5026      RegConstraint<"$false = $Rd">, Sched<[WriteALU]>;
5027
5028
5029let isMoveImm = 1 in
5030def MOVCCi16
5031    : ARMPseudoInst<(outs GPR:$Rd),
5032                    (ins GPR:$false, imm0_65535_expr:$imm, cmovpred:$p),
5033                    4, IIC_iMOVi,
5034                    [(set GPR:$Rd, (ARMcmov GPR:$false, imm0_65535:$imm,
5035                                            cmovpred:$p))]>,
5036      RegConstraint<"$false = $Rd">, Requires<[IsARM, HasV6T2]>,
5037      Sched<[WriteALU]>;
5038
5039let isMoveImm = 1 in
5040def MOVCCi : ARMPseudoInst<(outs GPR:$Rd),
5041                           (ins GPR:$false, mod_imm:$imm, cmovpred:$p),
5042                           4, IIC_iCMOVi,
5043                           [(set GPR:$Rd, (ARMcmov GPR:$false, mod_imm:$imm,
5044                                                   cmovpred:$p))]>,
5045      RegConstraint<"$false = $Rd">, Sched<[WriteALU]>;
5046
5047// Two instruction predicate mov immediate.
5048let isMoveImm = 1 in
5049def MOVCCi32imm
5050    : ARMPseudoInst<(outs GPR:$Rd),
5051                    (ins GPR:$false, i32imm:$src, cmovpred:$p),
5052                    8, IIC_iCMOVix2,
5053                    [(set GPR:$Rd, (ARMcmov GPR:$false, imm:$src,
5054                                            cmovpred:$p))]>,
5055      RegConstraint<"$false = $Rd">, Requires<[IsARM, HasV6T2]>;
5056
5057let isMoveImm = 1 in
5058def MVNCCi : ARMPseudoInst<(outs GPR:$Rd),
5059                           (ins GPR:$false, mod_imm:$imm, cmovpred:$p),
5060                           4, IIC_iCMOVi,
5061                           [(set GPR:$Rd, (ARMcmov GPR:$false, mod_imm_not:$imm,
5062                                                   cmovpred:$p))]>,
5063                RegConstraint<"$false = $Rd">, Sched<[WriteALU]>;
5064
5065} // hasSideEffects
5066
5067
5068//===----------------------------------------------------------------------===//
5069// Atomic operations intrinsics
5070//
5071
5072def MemBarrierOptOperand : AsmOperandClass {
5073  let Name = "MemBarrierOpt";
5074  let ParserMethod = "parseMemBarrierOptOperand";
5075}
5076def memb_opt : Operand<i32> {
5077  let PrintMethod = "printMemBOption";
5078  let ParserMatchClass = MemBarrierOptOperand;
5079  let DecoderMethod = "DecodeMemBarrierOption";
5080}
5081
5082def InstSyncBarrierOptOperand : AsmOperandClass {
5083  let Name = "InstSyncBarrierOpt";
5084  let ParserMethod = "parseInstSyncBarrierOptOperand";
5085}
5086def instsyncb_opt : Operand<i32> {
5087  let PrintMethod = "printInstSyncBOption";
5088  let ParserMatchClass = InstSyncBarrierOptOperand;
5089  let DecoderMethod = "DecodeInstSyncBarrierOption";
5090}
5091
5092def TraceSyncBarrierOptOperand : AsmOperandClass {
5093  let Name = "TraceSyncBarrierOpt";
5094  let ParserMethod = "parseTraceSyncBarrierOptOperand";
5095}
5096def tsb_opt : Operand<i32> {
5097  let PrintMethod = "printTraceSyncBOption";
5098  let ParserMatchClass = TraceSyncBarrierOptOperand;
5099}
5100
5101// Memory barriers protect the atomic sequences
5102let hasSideEffects = 1 in {
5103def DMB : AInoP<(outs), (ins memb_opt:$opt), MiscFrm, NoItinerary,
5104                "dmb", "\t$opt", [(int_arm_dmb (i32 imm0_15:$opt))]>,
5105                Requires<[IsARM, HasDB]> {
5106  bits<4> opt;
5107  let Inst{31-4} = 0xf57ff05;
5108  let Inst{3-0} = opt;
5109}
5110
5111def DSB : AInoP<(outs), (ins memb_opt:$opt), MiscFrm, NoItinerary,
5112                "dsb", "\t$opt", [(int_arm_dsb (i32 imm0_15:$opt))]>,
5113                Requires<[IsARM, HasDB]> {
5114  bits<4> opt;
5115  let Inst{31-4} = 0xf57ff04;
5116  let Inst{3-0} = opt;
5117}
5118
5119// ISB has only full system option
5120def ISB : AInoP<(outs), (ins instsyncb_opt:$opt), MiscFrm, NoItinerary,
5121                "isb", "\t$opt", [(int_arm_isb (i32 imm0_15:$opt))]>,
5122                Requires<[IsARM, HasDB]> {
5123  bits<4> opt;
5124  let Inst{31-4} = 0xf57ff06;
5125  let Inst{3-0} = opt;
5126}
5127
5128let hasNoSchedulingInfo = 1 in
5129def TSB : AInoP<(outs), (ins tsb_opt:$opt), MiscFrm, NoItinerary,
5130                "tsb", "\t$opt", []>, Requires<[IsARM, HasV8_4a]> {
5131  let Inst{31-0} = 0xe320f012;
5132  let DecoderMethod = "DecodeTSBInstruction";
5133}
5134
5135}
5136
5137// Armv8.5-A speculation barrier
5138def SB : AInoP<(outs), (ins), MiscFrm, NoItinerary, "sb", "", []>,
5139         Requires<[IsARM, HasSB]>, Sched<[]> {
5140  let Inst{31-0} = 0xf57ff070;
5141  let Unpredictable = 0x000fff0f;
5142  let hasSideEffects = 1;
5143}
5144
5145let usesCustomInserter = 1, Defs = [CPSR], hasNoSchedulingInfo = 1 in {
5146  // Pseudo instruction that combines movs + predicated rsbmi
5147  // to implement integer ABS
5148  def ABS : ARMPseudoInst<(outs GPR:$dst), (ins GPR:$src), 8, NoItinerary, []>;
5149}
5150
5151let usesCustomInserter = 1, Defs = [CPSR], hasNoSchedulingInfo = 1 in {
5152    def COPY_STRUCT_BYVAL_I32 : PseudoInst<
5153      (outs), (ins GPR:$dst, GPR:$src, i32imm:$size, i32imm:$alignment),
5154      NoItinerary,
5155      [(ARMcopystructbyval GPR:$dst, GPR:$src, imm:$size, imm:$alignment)]>;
5156}
5157
5158let hasPostISelHook = 1, Constraints = "$newdst = $dst, $newsrc = $src" in {
5159    // %newsrc, %newdst = MEMCPY %dst, %src, N, ...N scratch regs...
5160    // Copies N registers worth of memory from address %src to address %dst
5161    // and returns the incremented addresses.  N scratch register will
5162    // be attached for the copy to use.
5163    def MEMCPY : PseudoInst<
5164      (outs GPR:$newdst, GPR:$newsrc),
5165      (ins GPR:$dst, GPR:$src, i32imm:$nreg, variable_ops),
5166      NoItinerary,
5167      [(set GPR:$newdst, GPR:$newsrc,
5168            (ARMmemcopy GPR:$dst, GPR:$src, imm:$nreg))]>;
5169}
5170
5171def ldrex_1 : PatFrag<(ops node:$ptr), (int_arm_ldrex node:$ptr), [{
5172  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i8;
5173}]>;
5174
5175def ldrex_2 : PatFrag<(ops node:$ptr), (int_arm_ldrex node:$ptr), [{
5176  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16;
5177}]>;
5178
5179def ldrex_4 : PatFrag<(ops node:$ptr), (int_arm_ldrex node:$ptr), [{
5180  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32;
5181}]>;
5182
5183def strex_1 : PatFrag<(ops node:$val, node:$ptr),
5184                      (int_arm_strex node:$val, node:$ptr), [{
5185  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i8;
5186}]>;
5187
5188def strex_2 : PatFrag<(ops node:$val, node:$ptr),
5189                      (int_arm_strex node:$val, node:$ptr), [{
5190  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16;
5191}]>;
5192
5193def strex_4 : PatFrag<(ops node:$val, node:$ptr),
5194                      (int_arm_strex node:$val, node:$ptr), [{
5195  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32;
5196}]>;
5197
5198def ldaex_1 : PatFrag<(ops node:$ptr), (int_arm_ldaex node:$ptr), [{
5199  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i8;
5200}]>;
5201
5202def ldaex_2 : PatFrag<(ops node:$ptr), (int_arm_ldaex node:$ptr), [{
5203  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16;
5204}]>;
5205
5206def ldaex_4 : PatFrag<(ops node:$ptr), (int_arm_ldaex node:$ptr), [{
5207  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32;
5208}]>;
5209
5210def stlex_1 : PatFrag<(ops node:$val, node:$ptr),
5211                      (int_arm_stlex node:$val, node:$ptr), [{
5212  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i8;
5213}]>;
5214
5215def stlex_2 : PatFrag<(ops node:$val, node:$ptr),
5216                      (int_arm_stlex node:$val, node:$ptr), [{
5217  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16;
5218}]>;
5219
5220def stlex_4 : PatFrag<(ops node:$val, node:$ptr),
5221                      (int_arm_stlex node:$val, node:$ptr), [{
5222  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32;
5223}]>;
5224
5225let mayLoad = 1 in {
5226def LDREXB : AIldrex<0b10, (outs GPR:$Rt), (ins addr_offset_none:$addr),
5227                     NoItinerary, "ldrexb", "\t$Rt, $addr",
5228                     [(set GPR:$Rt, (ldrex_1 addr_offset_none:$addr))]>;
5229def LDREXH : AIldrex<0b11, (outs GPR:$Rt), (ins addr_offset_none:$addr),
5230                     NoItinerary, "ldrexh", "\t$Rt, $addr",
5231                     [(set GPR:$Rt, (ldrex_2 addr_offset_none:$addr))]>;
5232def LDREX  : AIldrex<0b00, (outs GPR:$Rt), (ins addr_offset_none:$addr),
5233                     NoItinerary, "ldrex", "\t$Rt, $addr",
5234                     [(set GPR:$Rt, (ldrex_4 addr_offset_none:$addr))]>;
5235let hasExtraDefRegAllocReq = 1 in
5236def LDREXD : AIldrex<0b01, (outs GPRPairOp:$Rt),(ins addr_offset_none:$addr),
5237                      NoItinerary, "ldrexd", "\t$Rt, $addr", []> {
5238  let DecoderMethod = "DecodeDoubleRegLoad";
5239}
5240
5241def LDAEXB : AIldaex<0b10, (outs GPR:$Rt), (ins addr_offset_none:$addr),
5242                     NoItinerary, "ldaexb", "\t$Rt, $addr",
5243                     [(set GPR:$Rt, (ldaex_1 addr_offset_none:$addr))]>;
5244def LDAEXH : AIldaex<0b11, (outs GPR:$Rt), (ins addr_offset_none:$addr),
5245                     NoItinerary, "ldaexh", "\t$Rt, $addr",
5246                    [(set GPR:$Rt, (ldaex_2 addr_offset_none:$addr))]>;
5247def LDAEX  : AIldaex<0b00, (outs GPR:$Rt), (ins addr_offset_none:$addr),
5248                     NoItinerary, "ldaex", "\t$Rt, $addr",
5249                    [(set GPR:$Rt, (ldaex_4 addr_offset_none:$addr))]>;
5250let hasExtraDefRegAllocReq = 1 in
5251def LDAEXD : AIldaex<0b01, (outs GPRPairOp:$Rt),(ins addr_offset_none:$addr),
5252                      NoItinerary, "ldaexd", "\t$Rt, $addr", []> {
5253  let DecoderMethod = "DecodeDoubleRegLoad";
5254}
5255}
5256
5257let mayStore = 1, Constraints = "@earlyclobber $Rd" in {
5258def STREXB: AIstrex<0b10, (outs GPR:$Rd), (ins GPR:$Rt, addr_offset_none:$addr),
5259                    NoItinerary, "strexb", "\t$Rd, $Rt, $addr",
5260                    [(set GPR:$Rd, (strex_1 GPR:$Rt,
5261                                            addr_offset_none:$addr))]>;
5262def STREXH: AIstrex<0b11, (outs GPR:$Rd), (ins GPR:$Rt, addr_offset_none:$addr),
5263                    NoItinerary, "strexh", "\t$Rd, $Rt, $addr",
5264                    [(set GPR:$Rd, (strex_2 GPR:$Rt,
5265                                            addr_offset_none:$addr))]>;
5266def STREX : AIstrex<0b00, (outs GPR:$Rd), (ins GPR:$Rt, addr_offset_none:$addr),
5267                    NoItinerary, "strex", "\t$Rd, $Rt, $addr",
5268                    [(set GPR:$Rd, (strex_4 GPR:$Rt,
5269                                            addr_offset_none:$addr))]>;
5270let hasExtraSrcRegAllocReq = 1 in
5271def STREXD : AIstrex<0b01, (outs GPR:$Rd),
5272                    (ins GPRPairOp:$Rt, addr_offset_none:$addr),
5273                    NoItinerary, "strexd", "\t$Rd, $Rt, $addr", []> {
5274  let DecoderMethod = "DecodeDoubleRegStore";
5275}
5276def STLEXB: AIstlex<0b10, (outs GPR:$Rd), (ins GPR:$Rt, addr_offset_none:$addr),
5277                    NoItinerary, "stlexb", "\t$Rd, $Rt, $addr",
5278                    [(set GPR:$Rd,
5279                          (stlex_1 GPR:$Rt, addr_offset_none:$addr))]>;
5280def STLEXH: AIstlex<0b11, (outs GPR:$Rd), (ins GPR:$Rt, addr_offset_none:$addr),
5281                    NoItinerary, "stlexh", "\t$Rd, $Rt, $addr",
5282                    [(set GPR:$Rd,
5283                          (stlex_2 GPR:$Rt, addr_offset_none:$addr))]>;
5284def STLEX : AIstlex<0b00, (outs GPR:$Rd), (ins GPR:$Rt, addr_offset_none:$addr),
5285                    NoItinerary, "stlex", "\t$Rd, $Rt, $addr",
5286                    [(set GPR:$Rd,
5287                          (stlex_4 GPR:$Rt, addr_offset_none:$addr))]>;
5288let hasExtraSrcRegAllocReq = 1 in
5289def STLEXD : AIstlex<0b01, (outs GPR:$Rd),
5290                    (ins GPRPairOp:$Rt, addr_offset_none:$addr),
5291                    NoItinerary, "stlexd", "\t$Rd, $Rt, $addr", []> {
5292  let DecoderMethod = "DecodeDoubleRegStore";
5293}
5294}
5295
5296def CLREX : AXI<(outs), (ins), MiscFrm, NoItinerary, "clrex",
5297                [(int_arm_clrex)]>,
5298            Requires<[IsARM, HasV6K]>  {
5299  let Inst{31-0} = 0b11110101011111111111000000011111;
5300}
5301
5302def : ARMPat<(strex_1 (and GPR:$Rt, 0xff), addr_offset_none:$addr),
5303             (STREXB GPR:$Rt, addr_offset_none:$addr)>;
5304def : ARMPat<(strex_2 (and GPR:$Rt, 0xffff), addr_offset_none:$addr),
5305             (STREXH GPR:$Rt, addr_offset_none:$addr)>;
5306
5307def : ARMPat<(stlex_1 (and GPR:$Rt, 0xff), addr_offset_none:$addr),
5308             (STLEXB GPR:$Rt, addr_offset_none:$addr)>;
5309def : ARMPat<(stlex_2 (and GPR:$Rt, 0xffff), addr_offset_none:$addr),
5310             (STLEXH GPR:$Rt, addr_offset_none:$addr)>;
5311
5312class acquiring_load<PatFrag base>
5313  : PatFrag<(ops node:$ptr), (base node:$ptr), [{
5314  AtomicOrdering Ordering = cast<AtomicSDNode>(N)->getSuccessOrdering();
5315  return isAcquireOrStronger(Ordering);
5316}]>;
5317
5318def atomic_load_acquire_8  : acquiring_load<atomic_load_8>;
5319def atomic_load_acquire_16 : acquiring_load<atomic_load_16>;
5320def atomic_load_acquire_32 : acquiring_load<atomic_load_32>;
5321
5322class releasing_store<PatFrag base>
5323  : PatFrag<(ops node:$ptr, node:$val), (base node:$ptr, node:$val), [{
5324  AtomicOrdering Ordering = cast<AtomicSDNode>(N)->getSuccessOrdering();
5325  return isReleaseOrStronger(Ordering);
5326}]>;
5327
5328def atomic_store_release_8  : releasing_store<atomic_store_8>;
5329def atomic_store_release_16 : releasing_store<atomic_store_16>;
5330def atomic_store_release_32 : releasing_store<atomic_store_32>;
5331
5332let AddedComplexity = 8 in {
5333  def : ARMPat<(atomic_load_acquire_8 addr_offset_none:$addr),  (LDAB addr_offset_none:$addr)>;
5334  def : ARMPat<(atomic_load_acquire_16 addr_offset_none:$addr), (LDAH addr_offset_none:$addr)>;
5335  def : ARMPat<(atomic_load_acquire_32 addr_offset_none:$addr), (LDA  addr_offset_none:$addr)>;
5336  def : ARMPat<(atomic_store_release_8 addr_offset_none:$addr, GPR:$val),  (STLB GPR:$val, addr_offset_none:$addr)>;
5337  def : ARMPat<(atomic_store_release_16 addr_offset_none:$addr, GPR:$val), (STLH GPR:$val, addr_offset_none:$addr)>;
5338  def : ARMPat<(atomic_store_release_32 addr_offset_none:$addr, GPR:$val), (STL  GPR:$val, addr_offset_none:$addr)>;
5339}
5340
5341// SWP/SWPB are deprecated in V6/V7 and optional in v7VE.
5342// FIXME Use InstAlias to generate LDREX/STREX pairs instead.
5343let mayLoad = 1, mayStore = 1 in {
5344def SWP : AIswp<0, (outs GPRnopc:$Rt),
5345                (ins GPRnopc:$Rt2, addr_offset_none:$addr), "swp", []>,
5346                Requires<[IsARM,PreV8]>;
5347def SWPB: AIswp<1, (outs GPRnopc:$Rt),
5348                (ins GPRnopc:$Rt2, addr_offset_none:$addr), "swpb", []>,
5349                Requires<[IsARM,PreV8]>;
5350}
5351
5352//===----------------------------------------------------------------------===//
5353// Coprocessor Instructions.
5354//
5355
5356def CDP : ABI<0b1110, (outs), (ins p_imm:$cop, imm0_15:$opc1,
5357            c_imm:$CRd, c_imm:$CRn, c_imm:$CRm, imm0_7:$opc2),
5358            NoItinerary, "cdp", "\t$cop, $opc1, $CRd, $CRn, $CRm, $opc2",
5359            [(int_arm_cdp timm:$cop, timm:$opc1, timm:$CRd, timm:$CRn,
5360                          timm:$CRm, timm:$opc2)]>,
5361            Requires<[IsARM,PreV8]> {
5362  bits<4> opc1;
5363  bits<4> CRn;
5364  bits<4> CRd;
5365  bits<4> cop;
5366  bits<3> opc2;
5367  bits<4> CRm;
5368
5369  let Inst{3-0}   = CRm;
5370  let Inst{4}     = 0;
5371  let Inst{7-5}   = opc2;
5372  let Inst{11-8}  = cop;
5373  let Inst{15-12} = CRd;
5374  let Inst{19-16} = CRn;
5375  let Inst{23-20} = opc1;
5376
5377  let DecoderNamespace = "CoProc";
5378}
5379
5380def CDP2 : ABXI<0b1110, (outs), (ins p_imm:$cop, imm0_15:$opc1,
5381               c_imm:$CRd, c_imm:$CRn, c_imm:$CRm, imm0_7:$opc2),
5382               NoItinerary, "cdp2\t$cop, $opc1, $CRd, $CRn, $CRm, $opc2",
5383               [(int_arm_cdp2 timm:$cop, timm:$opc1, timm:$CRd, timm:$CRn,
5384                              timm:$CRm, timm:$opc2)]>,
5385               Requires<[IsARM,PreV8]> {
5386  let Inst{31-28} = 0b1111;
5387  bits<4> opc1;
5388  bits<4> CRn;
5389  bits<4> CRd;
5390  bits<4> cop;
5391  bits<3> opc2;
5392  bits<4> CRm;
5393
5394  let Inst{3-0}   = CRm;
5395  let Inst{4}     = 0;
5396  let Inst{7-5}   = opc2;
5397  let Inst{11-8}  = cop;
5398  let Inst{15-12} = CRd;
5399  let Inst{19-16} = CRn;
5400  let Inst{23-20} = opc1;
5401
5402  let DecoderNamespace = "CoProc";
5403}
5404
5405class ACI<dag oops, dag iops, string opc, string asm,
5406            list<dag> pattern, IndexMode im = IndexModeNone,
5407            AddrMode am = AddrModeNone>
5408  : I<oops, iops, am, 4, im, BrFrm, NoItinerary,
5409      opc, asm, "", pattern> {
5410  let Inst{27-25} = 0b110;
5411}
5412class ACInoP<dag oops, dag iops, string opc, string asm,
5413          list<dag> pattern, IndexMode im = IndexModeNone,
5414          AddrMode am = AddrModeNone>
5415  : InoP<oops, iops, am, 4, im, BrFrm, NoItinerary,
5416         opc, asm, "", pattern> {
5417  let Inst{31-28} = 0b1111;
5418  let Inst{27-25} = 0b110;
5419}
5420
5421let DecoderNamespace = "CoProc" in {
5422multiclass LdStCop<bit load, bit Dbit, string asm, list<dag> pattern> {
5423  def _OFFSET : ACI<(outs), (ins p_imm:$cop, c_imm:$CRd, addrmode5:$addr),
5424                    asm, "\t$cop, $CRd, $addr", pattern, IndexModeNone,
5425                    AddrMode5> {
5426    bits<13> addr;
5427    bits<4> cop;
5428    bits<4> CRd;
5429    let Inst{24} = 1; // P = 1
5430    let Inst{23} = addr{8};
5431    let Inst{22} = Dbit;
5432    let Inst{21} = 0; // W = 0
5433    let Inst{20} = load;
5434    let Inst{19-16} = addr{12-9};
5435    let Inst{15-12} = CRd;
5436    let Inst{11-8} = cop;
5437    let Inst{7-0} = addr{7-0};
5438    let DecoderMethod = "DecodeCopMemInstruction";
5439  }
5440  def _PRE : ACI<(outs), (ins p_imm:$cop, c_imm:$CRd, addrmode5_pre:$addr),
5441                 asm, "\t$cop, $CRd, $addr!", [], IndexModePre> {
5442    bits<13> addr;
5443    bits<4> cop;
5444    bits<4> CRd;
5445    let Inst{24} = 1; // P = 1
5446    let Inst{23} = addr{8};
5447    let Inst{22} = Dbit;
5448    let Inst{21} = 1; // W = 1
5449    let Inst{20} = load;
5450    let Inst{19-16} = addr{12-9};
5451    let Inst{15-12} = CRd;
5452    let Inst{11-8} = cop;
5453    let Inst{7-0} = addr{7-0};
5454    let DecoderMethod = "DecodeCopMemInstruction";
5455  }
5456  def _POST: ACI<(outs), (ins p_imm:$cop, c_imm:$CRd, addr_offset_none:$addr,
5457                              postidx_imm8s4:$offset),
5458                 asm, "\t$cop, $CRd, $addr, $offset", [], IndexModePost> {
5459    bits<9> offset;
5460    bits<4> addr;
5461    bits<4> cop;
5462    bits<4> CRd;
5463    let Inst{24} = 0; // P = 0
5464    let Inst{23} = offset{8};
5465    let Inst{22} = Dbit;
5466    let Inst{21} = 1; // W = 1
5467    let Inst{20} = load;
5468    let Inst{19-16} = addr;
5469    let Inst{15-12} = CRd;
5470    let Inst{11-8} = cop;
5471    let Inst{7-0} = offset{7-0};
5472    let DecoderMethod = "DecodeCopMemInstruction";
5473  }
5474  def _OPTION : ACI<(outs),
5475                    (ins p_imm:$cop, c_imm:$CRd, addr_offset_none:$addr,
5476                         coproc_option_imm:$option),
5477      asm, "\t$cop, $CRd, $addr, $option", []> {
5478    bits<8> option;
5479    bits<4> addr;
5480    bits<4> cop;
5481    bits<4> CRd;
5482    let Inst{24} = 0; // P = 0
5483    let Inst{23} = 1; // U = 1
5484    let Inst{22} = Dbit;
5485    let Inst{21} = 0; // W = 0
5486    let Inst{20} = load;
5487    let Inst{19-16} = addr;
5488    let Inst{15-12} = CRd;
5489    let Inst{11-8} = cop;
5490    let Inst{7-0} = option;
5491    let DecoderMethod = "DecodeCopMemInstruction";
5492  }
5493}
5494multiclass LdSt2Cop<bit load, bit Dbit, string asm, list<dag> pattern> {
5495  def _OFFSET : ACInoP<(outs), (ins p_imm:$cop, c_imm:$CRd, addrmode5:$addr),
5496                       asm, "\t$cop, $CRd, $addr", pattern, IndexModeNone,
5497                       AddrMode5> {
5498    bits<13> addr;
5499    bits<4> cop;
5500    bits<4> CRd;
5501    let Inst{24} = 1; // P = 1
5502    let Inst{23} = addr{8};
5503    let Inst{22} = Dbit;
5504    let Inst{21} = 0; // W = 0
5505    let Inst{20} = load;
5506    let Inst{19-16} = addr{12-9};
5507    let Inst{15-12} = CRd;
5508    let Inst{11-8} = cop;
5509    let Inst{7-0} = addr{7-0};
5510    let DecoderMethod = "DecodeCopMemInstruction";
5511  }
5512  def _PRE : ACInoP<(outs), (ins p_imm:$cop, c_imm:$CRd, addrmode5_pre:$addr),
5513                    asm, "\t$cop, $CRd, $addr!", [], IndexModePre> {
5514    bits<13> addr;
5515    bits<4> cop;
5516    bits<4> CRd;
5517    let Inst{24} = 1; // P = 1
5518    let Inst{23} = addr{8};
5519    let Inst{22} = Dbit;
5520    let Inst{21} = 1; // W = 1
5521    let Inst{20} = load;
5522    let Inst{19-16} = addr{12-9};
5523    let Inst{15-12} = CRd;
5524    let Inst{11-8} = cop;
5525    let Inst{7-0} = addr{7-0};
5526    let DecoderMethod = "DecodeCopMemInstruction";
5527  }
5528  def _POST: ACInoP<(outs), (ins p_imm:$cop, c_imm:$CRd, addr_offset_none:$addr,
5529                                 postidx_imm8s4:$offset),
5530                 asm, "\t$cop, $CRd, $addr, $offset", [], IndexModePost> {
5531    bits<9> offset;
5532    bits<4> addr;
5533    bits<4> cop;
5534    bits<4> CRd;
5535    let Inst{24} = 0; // P = 0
5536    let Inst{23} = offset{8};
5537    let Inst{22} = Dbit;
5538    let Inst{21} = 1; // W = 1
5539    let Inst{20} = load;
5540    let Inst{19-16} = addr;
5541    let Inst{15-12} = CRd;
5542    let Inst{11-8} = cop;
5543    let Inst{7-0} = offset{7-0};
5544    let DecoderMethod = "DecodeCopMemInstruction";
5545  }
5546  def _OPTION : ACInoP<(outs),
5547                       (ins p_imm:$cop, c_imm:$CRd, addr_offset_none:$addr,
5548                            coproc_option_imm:$option),
5549      asm, "\t$cop, $CRd, $addr, $option", []> {
5550    bits<8> option;
5551    bits<4> addr;
5552    bits<4> cop;
5553    bits<4> CRd;
5554    let Inst{24} = 0; // P = 0
5555    let Inst{23} = 1; // U = 1
5556    let Inst{22} = Dbit;
5557    let Inst{21} = 0; // W = 0
5558    let Inst{20} = load;
5559    let Inst{19-16} = addr;
5560    let Inst{15-12} = CRd;
5561    let Inst{11-8} = cop;
5562    let Inst{7-0} = option;
5563    let DecoderMethod = "DecodeCopMemInstruction";
5564  }
5565}
5566
5567defm LDC   : LdStCop <1, 0, "ldc", [(int_arm_ldc timm:$cop, timm:$CRd, addrmode5:$addr)]>;
5568defm LDCL  : LdStCop <1, 1, "ldcl", [(int_arm_ldcl timm:$cop, timm:$CRd, addrmode5:$addr)]>;
5569defm LDC2  : LdSt2Cop<1, 0, "ldc2", [(int_arm_ldc2 timm:$cop, timm:$CRd, addrmode5:$addr)]>, Requires<[IsARM,PreV8]>;
5570defm LDC2L : LdSt2Cop<1, 1, "ldc2l", [(int_arm_ldc2l timm:$cop, timm:$CRd, addrmode5:$addr)]>, Requires<[IsARM,PreV8]>;
5571
5572defm STC   : LdStCop <0, 0, "stc", [(int_arm_stc timm:$cop, timm:$CRd, addrmode5:$addr)]>;
5573defm STCL  : LdStCop <0, 1, "stcl", [(int_arm_stcl timm:$cop, timm:$CRd, addrmode5:$addr)]>;
5574defm STC2  : LdSt2Cop<0, 0, "stc2", [(int_arm_stc2 timm:$cop, timm:$CRd, addrmode5:$addr)]>, Requires<[IsARM,PreV8]>;
5575defm STC2L : LdSt2Cop<0, 1, "stc2l", [(int_arm_stc2l timm:$cop, timm:$CRd, addrmode5:$addr)]>, Requires<[IsARM,PreV8]>;
5576
5577} // DecoderNamespace = "CoProc"
5578
5579//===----------------------------------------------------------------------===//
5580// Move between coprocessor and ARM core register.
5581//
5582
5583class MovRCopro<string opc, bit direction, dag oops, dag iops,
5584                list<dag> pattern>
5585  : ABI<0b1110, oops, iops, NoItinerary, opc,
5586        "\t$cop, $opc1, $Rt, $CRn, $CRm, $opc2", pattern> {
5587  let Inst{20} = direction;
5588  let Inst{4} = 1;
5589
5590  bits<4> Rt;
5591  bits<4> cop;
5592  bits<3> opc1;
5593  bits<3> opc2;
5594  bits<4> CRm;
5595  bits<4> CRn;
5596
5597  let Inst{15-12} = Rt;
5598  let Inst{11-8}  = cop;
5599  let Inst{23-21} = opc1;
5600  let Inst{7-5}   = opc2;
5601  let Inst{3-0}   = CRm;
5602  let Inst{19-16} = CRn;
5603
5604  let DecoderNamespace = "CoProc";
5605}
5606
5607def MCR : MovRCopro<"mcr", 0 /* from ARM core register to coprocessor */,
5608                    (outs),
5609                    (ins p_imm:$cop, imm0_7:$opc1, GPR:$Rt, c_imm:$CRn,
5610                         c_imm:$CRm, imm0_7:$opc2),
5611                    [(int_arm_mcr timm:$cop, timm:$opc1, GPR:$Rt, timm:$CRn,
5612                                  timm:$CRm, timm:$opc2)]>,
5613                    ComplexDeprecationPredicate<"MCR">;
5614def : ARMInstAlias<"mcr${p} $cop, $opc1, $Rt, $CRn, $CRm",
5615                   (MCR p_imm:$cop, imm0_7:$opc1, GPR:$Rt, c_imm:$CRn,
5616                        c_imm:$CRm, 0, pred:$p)>;
5617def MRC : MovRCopro<"mrc", 1 /* from coprocessor to ARM core register */,
5618                    (outs GPRwithAPSR:$Rt),
5619                    (ins p_imm:$cop, imm0_7:$opc1, c_imm:$CRn, c_imm:$CRm,
5620                         imm0_7:$opc2), []>,
5621                    ComplexDeprecationPredicate<"MRC">;
5622def : ARMInstAlias<"mrc${p} $cop, $opc1, $Rt, $CRn, $CRm",
5623                   (MRC GPRwithAPSR:$Rt, p_imm:$cop, imm0_7:$opc1, c_imm:$CRn,
5624                        c_imm:$CRm, 0, pred:$p)>;
5625
5626def : ARMPat<(int_arm_mrc timm:$cop, timm:$opc1, timm:$CRn, timm:$CRm, timm:$opc2),
5627             (MRC p_imm:$cop, imm0_7:$opc1, c_imm:$CRn, c_imm:$CRm, imm0_7:$opc2)>;
5628
5629class MovRCopro2<string opc, bit direction, dag oops, dag iops,
5630                 list<dag> pattern>
5631  : ABXI<0b1110, oops, iops, NoItinerary,
5632         !strconcat(opc, "\t$cop, $opc1, $Rt, $CRn, $CRm, $opc2"), pattern> {
5633  let Inst{31-24} = 0b11111110;
5634  let Inst{20} = direction;
5635  let Inst{4} = 1;
5636
5637  bits<4> Rt;
5638  bits<4> cop;
5639  bits<3> opc1;
5640  bits<3> opc2;
5641  bits<4> CRm;
5642  bits<4> CRn;
5643
5644  let Inst{15-12} = Rt;
5645  let Inst{11-8}  = cop;
5646  let Inst{23-21} = opc1;
5647  let Inst{7-5}   = opc2;
5648  let Inst{3-0}   = CRm;
5649  let Inst{19-16} = CRn;
5650
5651  let DecoderNamespace = "CoProc";
5652}
5653
5654def MCR2 : MovRCopro2<"mcr2", 0 /* from ARM core register to coprocessor */,
5655                      (outs),
5656                      (ins p_imm:$cop, imm0_7:$opc1, GPR:$Rt, c_imm:$CRn,
5657                           c_imm:$CRm, imm0_7:$opc2),
5658                      [(int_arm_mcr2 timm:$cop, timm:$opc1, GPR:$Rt, timm:$CRn,
5659                                     timm:$CRm, timm:$opc2)]>,
5660                      Requires<[IsARM,PreV8]>;
5661def : ARMInstAlias<"mcr2 $cop, $opc1, $Rt, $CRn, $CRm",
5662                   (MCR2 p_imm:$cop, imm0_7:$opc1, GPR:$Rt, c_imm:$CRn,
5663                         c_imm:$CRm, 0)>;
5664def MRC2 : MovRCopro2<"mrc2", 1 /* from coprocessor to ARM core register */,
5665                      (outs GPRwithAPSR:$Rt),
5666                      (ins p_imm:$cop, imm0_7:$opc1, c_imm:$CRn, c_imm:$CRm,
5667                           imm0_7:$opc2), []>,
5668                      Requires<[IsARM,PreV8]>;
5669def : ARMInstAlias<"mrc2 $cop, $opc1, $Rt, $CRn, $CRm",
5670                   (MRC2 GPRwithAPSR:$Rt, p_imm:$cop, imm0_7:$opc1, c_imm:$CRn,
5671                         c_imm:$CRm, 0)>;
5672
5673def : ARMV5TPat<(int_arm_mrc2 timm:$cop, timm:$opc1, timm:$CRn,
5674                              timm:$CRm, timm:$opc2),
5675                (MRC2 p_imm:$cop, imm0_7:$opc1, c_imm:$CRn, c_imm:$CRm, imm0_7:$opc2)>;
5676
5677class MovRRCopro<string opc, bit direction, dag oops, dag iops, list<dag>
5678                 pattern = []>
5679  : ABI<0b1100, oops, iops, NoItinerary, opc, "\t$cop, $opc1, $Rt, $Rt2, $CRm",
5680        pattern> {
5681
5682  let Inst{23-21} = 0b010;
5683  let Inst{20} = direction;
5684
5685  bits<4> Rt;
5686  bits<4> Rt2;
5687  bits<4> cop;
5688  bits<4> opc1;
5689  bits<4> CRm;
5690
5691  let Inst{15-12} = Rt;
5692  let Inst{19-16} = Rt2;
5693  let Inst{11-8}  = cop;
5694  let Inst{7-4}   = opc1;
5695  let Inst{3-0}   = CRm;
5696}
5697
5698def MCRR : MovRRCopro<"mcrr", 0 /* from ARM core register to coprocessor */,
5699                      (outs), (ins p_imm:$cop, imm0_15:$opc1, GPRnopc:$Rt,
5700                      GPRnopc:$Rt2, c_imm:$CRm),
5701                      [(int_arm_mcrr timm:$cop, timm:$opc1, GPRnopc:$Rt,
5702                                     GPRnopc:$Rt2, timm:$CRm)]>;
5703def MRRC : MovRRCopro<"mrrc", 1 /* from coprocessor to ARM core register */,
5704                      (outs GPRnopc:$Rt, GPRnopc:$Rt2),
5705                      (ins p_imm:$cop, imm0_15:$opc1, c_imm:$CRm), []>;
5706
5707class MovRRCopro2<string opc, bit direction, dag oops, dag iops,
5708                  list<dag> pattern = []>
5709  : ABXI<0b1100, oops, iops, NoItinerary,
5710         !strconcat(opc, "\t$cop, $opc1, $Rt, $Rt2, $CRm"), pattern>,
5711    Requires<[IsARM,PreV8]> {
5712  let Inst{31-28} = 0b1111;
5713  let Inst{23-21} = 0b010;
5714  let Inst{20} = direction;
5715
5716  bits<4> Rt;
5717  bits<4> Rt2;
5718  bits<4> cop;
5719  bits<4> opc1;
5720  bits<4> CRm;
5721
5722  let Inst{15-12} = Rt;
5723  let Inst{19-16} = Rt2;
5724  let Inst{11-8}  = cop;
5725  let Inst{7-4}   = opc1;
5726  let Inst{3-0}   = CRm;
5727
5728  let DecoderMethod = "DecoderForMRRC2AndMCRR2";
5729}
5730
5731def MCRR2 : MovRRCopro2<"mcrr2", 0 /* from ARM core register to coprocessor */,
5732                        (outs), (ins p_imm:$cop, imm0_15:$opc1, GPRnopc:$Rt,
5733                        GPRnopc:$Rt2, c_imm:$CRm),
5734                        [(int_arm_mcrr2 timm:$cop, timm:$opc1, GPRnopc:$Rt,
5735                                        GPRnopc:$Rt2, timm:$CRm)]>;
5736
5737def MRRC2 : MovRRCopro2<"mrrc2", 1 /* from coprocessor to ARM core register */,
5738                       (outs GPRnopc:$Rt, GPRnopc:$Rt2),
5739                       (ins p_imm:$cop, imm0_15:$opc1, c_imm:$CRm), []>;
5740
5741//===----------------------------------------------------------------------===//
5742// Move between special register and ARM core register
5743//
5744
5745// Move to ARM core register from Special Register
5746def MRS : ABI<0b0001, (outs GPRnopc:$Rd), (ins), NoItinerary,
5747              "mrs", "\t$Rd, apsr", []> {
5748  bits<4> Rd;
5749  let Inst{23-16} = 0b00001111;
5750  let Unpredictable{19-17} = 0b111;
5751
5752  let Inst{15-12} = Rd;
5753
5754  let Inst{11-0} = 0b000000000000;
5755  let Unpredictable{11-0} = 0b110100001111;
5756}
5757
5758def : InstAlias<"mrs${p} $Rd, cpsr", (MRS GPRnopc:$Rd, pred:$p), 0>,
5759         Requires<[IsARM]>;
5760
5761// The MRSsys instruction is the MRS instruction from the ARM ARM,
5762// section B9.3.9, with the R bit set to 1.
5763def MRSsys : ABI<0b0001, (outs GPRnopc:$Rd), (ins), NoItinerary,
5764                 "mrs", "\t$Rd, spsr", []> {
5765  bits<4> Rd;
5766  let Inst{23-16} = 0b01001111;
5767  let Unpredictable{19-16} = 0b1111;
5768
5769  let Inst{15-12} = Rd;
5770
5771  let Inst{11-0} = 0b000000000000;
5772  let Unpredictable{11-0} = 0b110100001111;
5773}
5774
5775// However, the MRS (banked register) system instruction (ARMv7VE) *does* have a
5776// separate encoding (distinguished by bit 5.
5777def MRSbanked : ABI<0b0001, (outs GPRnopc:$Rd), (ins banked_reg:$banked),
5778                    NoItinerary, "mrs", "\t$Rd, $banked", []>,
5779                Requires<[IsARM, HasVirtualization]> {
5780  bits<6> banked;
5781  bits<4> Rd;
5782
5783  let Inst{23} = 0;
5784  let Inst{22} = banked{5}; // R bit
5785  let Inst{21-20} = 0b00;
5786  let Inst{19-16} = banked{3-0};
5787  let Inst{15-12} = Rd;
5788  let Inst{11-9} = 0b001;
5789  let Inst{8} = banked{4};
5790  let Inst{7-0} = 0b00000000;
5791}
5792
5793// Move from ARM core register to Special Register
5794//
5795// No need to have both system and application versions of MSR (immediate) or
5796// MSR (register), the encodings are the same and the assembly parser has no way
5797// to distinguish between them. The mask operand contains the special register
5798// (R Bit) in bit 4 and bits 3-0 contains the mask with the fields to be
5799// accessed in the special register.
5800let Defs = [CPSR] in
5801def MSR : ABI<0b0001, (outs), (ins msr_mask:$mask, GPR:$Rn), NoItinerary,
5802              "msr", "\t$mask, $Rn", []> {
5803  bits<5> mask;
5804  bits<4> Rn;
5805
5806  let Inst{23} = 0;
5807  let Inst{22} = mask{4}; // R bit
5808  let Inst{21-20} = 0b10;
5809  let Inst{19-16} = mask{3-0};
5810  let Inst{15-12} = 0b1111;
5811  let Inst{11-4} = 0b00000000;
5812  let Inst{3-0} = Rn;
5813}
5814
5815let Defs = [CPSR] in
5816def MSRi : ABI<0b0011, (outs), (ins msr_mask:$mask,  mod_imm:$imm), NoItinerary,
5817               "msr", "\t$mask, $imm", []> {
5818  bits<5> mask;
5819  bits<12> imm;
5820
5821  let Inst{23} = 0;
5822  let Inst{22} = mask{4}; // R bit
5823  let Inst{21-20} = 0b10;
5824  let Inst{19-16} = mask{3-0};
5825  let Inst{15-12} = 0b1111;
5826  let Inst{11-0} = imm;
5827}
5828
5829// However, the MSR (banked register) system instruction (ARMv7VE) *does* have a
5830// separate encoding (distinguished by bit 5.
5831def MSRbanked : ABI<0b0001, (outs), (ins banked_reg:$banked, GPRnopc:$Rn),
5832                    NoItinerary, "msr", "\t$banked, $Rn", []>,
5833                Requires<[IsARM, HasVirtualization]> {
5834  bits<6> banked;
5835  bits<4> Rn;
5836
5837  let Inst{23} = 0;
5838  let Inst{22} = banked{5}; // R bit
5839  let Inst{21-20} = 0b10;
5840  let Inst{19-16} = banked{3-0};
5841  let Inst{15-12} = 0b1111;
5842  let Inst{11-9} = 0b001;
5843  let Inst{8} = banked{4};
5844  let Inst{7-4} = 0b0000;
5845  let Inst{3-0} = Rn;
5846}
5847
5848// Dynamic stack allocation yields a _chkstk for Windows targets.  These calls
5849// are needed to probe the stack when allocating more than
5850// 4k bytes in one go. Touching the stack at 4K increments is necessary to
5851// ensure that the guard pages used by the OS virtual memory manager are
5852// allocated in correct sequence.
5853// The main point of having separate instruction are extra unmodelled effects
5854// (compared to ordinary calls) like stack pointer change.
5855
5856def win__chkstk : SDNode<"ARMISD::WIN__CHKSTK", SDTNone,
5857                      [SDNPHasChain, SDNPSideEffect]>;
5858let usesCustomInserter = 1, Uses = [R4], Defs = [R4, SP], hasNoSchedulingInfo = 1 in
5859  def WIN__CHKSTK : PseudoInst<(outs), (ins), NoItinerary, [(win__chkstk)]>;
5860
5861def win__dbzchk : SDNode<"ARMISD::WIN__DBZCHK", SDT_WIN__DBZCHK,
5862                         [SDNPHasChain, SDNPSideEffect, SDNPOutGlue]>;
5863let usesCustomInserter = 1, Defs = [CPSR], hasNoSchedulingInfo = 1 in
5864  def WIN__DBZCHK : PseudoInst<(outs), (ins tGPR:$divisor), NoItinerary,
5865                               [(win__dbzchk tGPR:$divisor)]>;
5866
5867//===----------------------------------------------------------------------===//
5868// TLS Instructions
5869//
5870
5871// __aeabi_read_tp preserves the registers r1-r3.
5872// This is a pseudo inst so that we can get the encoding right,
5873// complete with fixup for the aeabi_read_tp function.
5874// TPsoft is valid for ARM mode only, in case of Thumb mode a tTPsoft pattern
5875// is defined in "ARMInstrThumb.td".
5876let isCall = 1,
5877  Defs = [R0, R12, LR, CPSR], Uses = [SP] in {
5878  def TPsoft : ARMPseudoInst<(outs), (ins), 4, IIC_Br,
5879               [(set R0, ARMthread_pointer)]>, Sched<[WriteBr]>,
5880               Requires<[IsARM, IsReadTPSoft]>;
5881}
5882
5883// Reading thread pointer from coprocessor register
5884def : ARMPat<(ARMthread_pointer), (MRC 15, 0, 13, 0, 3)>,
5885      Requires<[IsARM, IsReadTPHard]>;
5886
5887//===----------------------------------------------------------------------===//
5888// SJLJ Exception handling intrinsics
5889//   eh_sjlj_setjmp() is an instruction sequence to store the return
5890//   address and save #0 in R0 for the non-longjmp case.
5891//   Since by its nature we may be coming from some other function to get
5892//   here, and we're using the stack frame for the containing function to
5893//   save/restore registers, we can't keep anything live in regs across
5894//   the eh_sjlj_setjmp(), else it will almost certainly have been tromped upon
5895//   when we get here from a longjmp(). We force everything out of registers
5896//   except for our own input by listing the relevant registers in Defs. By
5897//   doing so, we also cause the prologue/epilogue code to actively preserve
5898//   all of the callee-saved registers, which is exactly what we want.
5899//   A constant value is passed in $val, and we use the location as a scratch.
5900//
5901// These are pseudo-instructions and are lowered to individual MC-insts, so
5902// no encoding information is necessary.
5903// This gets lowered to an instruction sequence of 20 bytes
5904let Defs =
5905  [ R0,  R1,  R2,  R3,  R4,  R5,  R6,  R7,  R8,  R9,  R10, R11, R12, LR, CPSR,
5906    Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9, Q10, Q11, Q12, Q13, Q14, Q15 ],
5907  hasSideEffects = 1, isBarrier = 1, usesCustomInserter = 1, Size = 20 in {
5908  def Int_eh_sjlj_setjmp : PseudoInst<(outs), (ins GPR:$src, GPR:$val),
5909                               NoItinerary,
5910                         [(set R0, (ARMeh_sjlj_setjmp GPR:$src, GPR:$val))]>,
5911                           Requires<[IsARM, HasVFP2]>;
5912}
5913
5914// This gets lowered to an instruction sequence of 20 bytes
5915let Defs =
5916  [ R0,  R1,  R2,  R3,  R4,  R5,  R6,  R7,  R8,  R9,  R10, R11, R12, LR, CPSR ],
5917  hasSideEffects = 1, isBarrier = 1, usesCustomInserter = 1, Size = 20 in {
5918  def Int_eh_sjlj_setjmp_nofp : PseudoInst<(outs), (ins GPR:$src, GPR:$val),
5919                                   NoItinerary,
5920                         [(set R0, (ARMeh_sjlj_setjmp GPR:$src, GPR:$val))]>,
5921                                Requires<[IsARM, NoVFP]>;
5922}
5923
5924// This gets lowered to an instruction sequence of 16 bytes
5925// FIXME: Non-IOS version(s)
5926let isBarrier = 1, hasSideEffects = 1, isTerminator = 1, Size = 16,
5927    Defs = [ R7, LR, SP ] in {
5928def Int_eh_sjlj_longjmp : PseudoInst<(outs), (ins GPR:$src, GPR:$scratch),
5929                             NoItinerary,
5930                         [(ARMeh_sjlj_longjmp GPR:$src, GPR:$scratch)]>,
5931                                Requires<[IsARM]>;
5932}
5933
5934let isBarrier = 1, hasSideEffects = 1, usesCustomInserter = 1 in
5935def Int_eh_sjlj_setup_dispatch : PseudoInst<(outs), (ins), NoItinerary,
5936            [(ARMeh_sjlj_setup_dispatch)]>;
5937
5938// eh.sjlj.dispatchsetup pseudo-instruction.
5939// This pseudo is used for both ARM and Thumb. Any differences are handled when
5940// the pseudo is expanded (which happens before any passes that need the
5941// instruction size).
5942let isBarrier = 1 in
5943def Int_eh_sjlj_dispatchsetup : PseudoInst<(outs), (ins), NoItinerary, []>;
5944
5945
5946//===----------------------------------------------------------------------===//
5947// Non-Instruction Patterns
5948//
5949
5950// ARMv4 indirect branch using (MOVr PC, dst)
5951let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in
5952  def MOVPCRX : ARMPseudoExpand<(outs), (ins GPR:$dst),
5953                    4, IIC_Br, [(brind GPR:$dst)],
5954                    (MOVr PC, GPR:$dst, (ops 14, zero_reg), zero_reg)>,
5955                  Requires<[IsARM, NoV4T]>, Sched<[WriteBr]>;
5956
5957let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [SP] in
5958  def TAILJMPr4 : ARMPseudoExpand<(outs), (ins GPR:$dst),
5959                    4, IIC_Br, [],
5960                    (MOVr PC, GPR:$dst, (ops 14, zero_reg), zero_reg)>,
5961                  Requires<[IsARM, NoV4T]>, Sched<[WriteBr]>;
5962
5963// Large immediate handling.
5964
5965// 32-bit immediate using two piece mod_imms or movw + movt.
5966// This is a single pseudo instruction, the benefit is that it can be remat'd
5967// as a single unit instead of having to handle reg inputs.
5968// FIXME: Remove this when we can do generalized remat.
5969let isReMaterializable = 1, isMoveImm = 1, Size = 8 in
5970def MOVi32imm : PseudoInst<(outs GPR:$dst), (ins i32imm:$src), IIC_iMOVix2,
5971                           [(set GPR:$dst, (arm_i32imm:$src))]>,
5972                           Requires<[IsARM]>;
5973
5974def LDRLIT_ga_abs : PseudoInst<(outs GPR:$dst), (ins i32imm:$src), IIC_iLoad_i,
5975                               [(set GPR:$dst, (ARMWrapper tglobaladdr:$src))]>,
5976                    Requires<[IsARM, DontUseMovt]>;
5977
5978// Pseudo instruction that combines movw + movt + add pc (if PIC).
5979// It also makes it possible to rematerialize the instructions.
5980// FIXME: Remove this when we can do generalized remat and when machine licm
5981// can properly the instructions.
5982let isReMaterializable = 1 in {
5983def MOV_ga_pcrel : PseudoInst<(outs GPR:$dst), (ins i32imm:$addr),
5984                              IIC_iMOVix2addpc,
5985                        [(set GPR:$dst, (ARMWrapperPIC tglobaladdr:$addr))]>,
5986                        Requires<[IsARM, UseMovtInPic]>;
5987
5988def LDRLIT_ga_pcrel : PseudoInst<(outs GPR:$dst), (ins i32imm:$addr),
5989                                 IIC_iLoadiALU,
5990                                 [(set GPR:$dst,
5991                                       (ARMWrapperPIC tglobaladdr:$addr))]>,
5992                      Requires<[IsARM, DontUseMovtInPic]>;
5993
5994let AddedComplexity = 10 in
5995def LDRLIT_ga_pcrel_ldr : PseudoInst<(outs GPR:$dst), (ins i32imm:$addr),
5996                              NoItinerary,
5997                              [(set GPR:$dst,
5998                                    (load (ARMWrapperPIC tglobaladdr:$addr)))]>,
5999                          Requires<[IsARM, DontUseMovtInPic]>;
6000
6001let AddedComplexity = 10 in
6002def MOV_ga_pcrel_ldr : PseudoInst<(outs GPR:$dst), (ins i32imm:$addr),
6003                                IIC_iMOVix2ld,
6004                    [(set GPR:$dst, (load (ARMWrapperPIC tglobaladdr:$addr)))]>,
6005                    Requires<[IsARM, UseMovtInPic]>;
6006} // isReMaterializable
6007
6008// The many different faces of TLS access.
6009def : ARMPat<(ARMWrapper tglobaltlsaddr :$dst),
6010             (MOVi32imm tglobaltlsaddr :$dst)>,
6011      Requires<[IsARM, UseMovt]>;
6012
6013def : Pat<(ARMWrapper tglobaltlsaddr:$src),
6014          (LDRLIT_ga_abs tglobaltlsaddr:$src)>,
6015      Requires<[IsARM, DontUseMovt]>;
6016
6017def : Pat<(ARMWrapperPIC tglobaltlsaddr:$addr),
6018          (MOV_ga_pcrel tglobaltlsaddr:$addr)>, Requires<[IsARM, UseMovtInPic]>;
6019
6020def : Pat<(ARMWrapperPIC tglobaltlsaddr:$addr),
6021          (LDRLIT_ga_pcrel tglobaltlsaddr:$addr)>,
6022      Requires<[IsARM, DontUseMovtInPic]>;
6023let AddedComplexity = 10 in
6024def : Pat<(load (ARMWrapperPIC tglobaltlsaddr:$addr)),
6025          (MOV_ga_pcrel_ldr tglobaltlsaddr:$addr)>,
6026      Requires<[IsARM, UseMovtInPic]>;
6027
6028
6029// ConstantPool, GlobalAddress, and JumpTable
6030def : ARMPat<(ARMWrapper  tconstpool  :$dst), (LEApcrel tconstpool  :$dst)>;
6031def : ARMPat<(ARMWrapper  tglobaladdr :$dst), (MOVi32imm tglobaladdr :$dst)>,
6032            Requires<[IsARM, UseMovt]>;
6033def : ARMPat<(ARMWrapper texternalsym :$dst), (MOVi32imm texternalsym :$dst)>,
6034            Requires<[IsARM, UseMovt]>;
6035def : ARMPat<(ARMWrapperJT tjumptable:$dst),
6036             (LEApcrelJT tjumptable:$dst)>;
6037
6038// TODO: add,sub,and, 3-instr forms?
6039
6040// Tail calls. These patterns also apply to Thumb mode.
6041def : Pat<(ARMtcret tcGPR:$dst, (i32 timm:$SPDiff)),
6042          (TCRETURNri tcGPR:$dst, timm:$SPDiff)>;
6043def : Pat<(ARMtcret (i32 tglobaladdr:$dst), (i32 timm:$SPDiff)),
6044          (TCRETURNdi texternalsym:$dst, (i32 timm:$SPDiff))>;
6045def : Pat<(ARMtcret (i32 texternalsym:$dst), (i32 timm:$SPDiff)),
6046          (TCRETURNdi texternalsym:$dst, i32imm:$SPDiff)>;
6047
6048// Direct calls
6049def : ARMPat<(ARMcall texternalsym:$func), (BL texternalsym:$func)>;
6050def : ARMPat<(ARMcall_nolink texternalsym:$func),
6051             (BMOVPCB_CALL texternalsym:$func)>;
6052
6053// zextload i1 -> zextload i8
6054def : ARMPat<(zextloadi1 addrmode_imm12:$addr), (LDRBi12 addrmode_imm12:$addr)>;
6055def : ARMPat<(zextloadi1 ldst_so_reg:$addr),    (LDRBrs ldst_so_reg:$addr)>;
6056
6057// extload -> zextload
6058def : ARMPat<(extloadi1 addrmode_imm12:$addr),  (LDRBi12 addrmode_imm12:$addr)>;
6059def : ARMPat<(extloadi1 ldst_so_reg:$addr),     (LDRBrs ldst_so_reg:$addr)>;
6060def : ARMPat<(extloadi8 addrmode_imm12:$addr),  (LDRBi12 addrmode_imm12:$addr)>;
6061def : ARMPat<(extloadi8 ldst_so_reg:$addr),     (LDRBrs ldst_so_reg:$addr)>;
6062
6063def : ARMPat<(extloadi16 addrmode3:$addr),  (LDRH addrmode3:$addr)>;
6064
6065def : ARMPat<(extloadi8  addrmodepc:$addr), (PICLDRB addrmodepc:$addr)>;
6066def : ARMPat<(extloadi16 addrmodepc:$addr), (PICLDRH addrmodepc:$addr)>;
6067
6068// smul* and smla*
6069def : ARMV5TEPat<(mul sext_16_node:$a, sext_16_node:$b),
6070                 (SMULBB GPR:$a, GPR:$b)>;
6071def : ARMV5TEPat<(mul sext_16_node:$a, (sext_bottom_16 GPR:$b)),
6072                 (SMULBB GPR:$a, GPR:$b)>;
6073def : ARMV5TEPat<(mul sext_16_node:$a, (sext_top_16 GPR:$b)),
6074                 (SMULBT GPR:$a, GPR:$b)>;
6075def : ARMV5TEPat<(mul (sext_top_16 GPR:$a), sext_16_node:$b),
6076                 (SMULTB GPR:$a, GPR:$b)>;
6077def : ARMV5MOPat<(add GPR:$acc, (mul sext_16_node:$a, sext_16_node:$b)),
6078                 (SMLABB GPR:$a, GPR:$b, GPR:$acc)>;
6079def : ARMV5MOPat<(add GPR:$acc, (mul sext_16_node:$a, (sext_bottom_16 GPR:$b))),
6080                 (SMLABB GPR:$a, GPR:$b, GPR:$acc)>;
6081def : ARMV5MOPat<(add GPR:$acc, (mul sext_16_node:$a, (sext_top_16 GPR:$b))),
6082                 (SMLABT GPR:$a, GPR:$b, GPR:$acc)>;
6083def : ARMV5MOPat<(add GPR:$acc, (mul (sext_top_16 GPR:$a), sext_16_node:$b)),
6084                 (SMLATB GPR:$a, GPR:$b, GPR:$acc)>;
6085
6086def : ARMV5TEPat<(int_arm_smulbb GPR:$a, GPR:$b),
6087                 (SMULBB GPR:$a, GPR:$b)>;
6088def : ARMV5TEPat<(int_arm_smulbt GPR:$a, GPR:$b),
6089                 (SMULBT GPR:$a, GPR:$b)>;
6090def : ARMV5TEPat<(int_arm_smultb GPR:$a, GPR:$b),
6091                 (SMULTB GPR:$a, GPR:$b)>;
6092def : ARMV5TEPat<(int_arm_smultt GPR:$a, GPR:$b),
6093                 (SMULTT GPR:$a, GPR:$b)>;
6094def : ARMV5TEPat<(int_arm_smulwb GPR:$a, GPR:$b),
6095                 (SMULWB GPR:$a, GPR:$b)>;
6096def : ARMV5TEPat<(int_arm_smulwt GPR:$a, GPR:$b),
6097                 (SMULWT GPR:$a, GPR:$b)>;
6098
6099def : ARMV5TEPat<(int_arm_smlabb GPR:$a, GPR:$b, GPR:$acc),
6100                 (SMLABB GPR:$a, GPR:$b, GPR:$acc)>;
6101def : ARMV5TEPat<(int_arm_smlabt GPR:$a, GPR:$b, GPR:$acc),
6102                 (SMLABT GPR:$a, GPR:$b, GPR:$acc)>;
6103def : ARMV5TEPat<(int_arm_smlatb GPR:$a, GPR:$b, GPR:$acc),
6104                 (SMLATB GPR:$a, GPR:$b, GPR:$acc)>;
6105def : ARMV5TEPat<(int_arm_smlatt GPR:$a, GPR:$b, GPR:$acc),
6106                 (SMLATT GPR:$a, GPR:$b, GPR:$acc)>;
6107def : ARMV5TEPat<(int_arm_smlawb GPR:$a, GPR:$b, GPR:$acc),
6108                 (SMLAWB GPR:$a, GPR:$b, GPR:$acc)>;
6109def : ARMV5TEPat<(int_arm_smlawt GPR:$a, GPR:$b, GPR:$acc),
6110                 (SMLAWT GPR:$a, GPR:$b, GPR:$acc)>;
6111
6112// Pre-v7 uses MCR for synchronization barriers.
6113def : ARMPat<(ARMMemBarrierMCR GPR:$zero), (MCR 15, 0, GPR:$zero, 7, 10, 5)>,
6114         Requires<[IsARM, HasV6]>;
6115
6116// SXT/UXT with no rotate
6117let AddedComplexity = 16 in {
6118def : ARMV6Pat<(and GPR:$Src, 0x000000FF), (UXTB GPR:$Src, 0)>;
6119def : ARMV6Pat<(and GPR:$Src, 0x0000FFFF), (UXTH GPR:$Src, 0)>;
6120def : ARMV6Pat<(and GPR:$Src, 0x00FF00FF), (UXTB16 GPR:$Src, 0)>;
6121def : ARMV6Pat<(add GPR:$Rn, (and GPR:$Rm, 0x00FF)),
6122               (UXTAB GPR:$Rn, GPR:$Rm, 0)>;
6123def : ARMV6Pat<(add GPR:$Rn, (and GPR:$Rm, 0xFFFF)),
6124               (UXTAH GPR:$Rn, GPR:$Rm, 0)>;
6125}
6126
6127def : ARMV6Pat<(sext_inreg GPR:$Src, i8),  (SXTB GPR:$Src, 0)>;
6128def : ARMV6Pat<(sext_inreg GPR:$Src, i16), (SXTH GPR:$Src, 0)>;
6129
6130def : ARMV6Pat<(add GPR:$Rn, (sext_inreg GPRnopc:$Rm, i8)),
6131               (SXTAB GPR:$Rn, GPRnopc:$Rm, 0)>;
6132def : ARMV6Pat<(add GPR:$Rn, (sext_inreg GPRnopc:$Rm, i16)),
6133               (SXTAH GPR:$Rn, GPRnopc:$Rm, 0)>;
6134
6135// Atomic load/store patterns
6136def : ARMPat<(atomic_load_8 ldst_so_reg:$src),
6137             (LDRBrs ldst_so_reg:$src)>;
6138def : ARMPat<(atomic_load_8 addrmode_imm12:$src),
6139             (LDRBi12 addrmode_imm12:$src)>;
6140def : ARMPat<(atomic_load_16 addrmode3:$src),
6141             (LDRH addrmode3:$src)>;
6142def : ARMPat<(atomic_load_32 ldst_so_reg:$src),
6143             (LDRrs ldst_so_reg:$src)>;
6144def : ARMPat<(atomic_load_32 addrmode_imm12:$src),
6145             (LDRi12 addrmode_imm12:$src)>;
6146def : ARMPat<(atomic_store_8 ldst_so_reg:$ptr, GPR:$val),
6147             (STRBrs GPR:$val, ldst_so_reg:$ptr)>;
6148def : ARMPat<(atomic_store_8 addrmode_imm12:$ptr, GPR:$val),
6149             (STRBi12 GPR:$val, addrmode_imm12:$ptr)>;
6150def : ARMPat<(atomic_store_16 addrmode3:$ptr, GPR:$val),
6151             (STRH GPR:$val, addrmode3:$ptr)>;
6152def : ARMPat<(atomic_store_32 ldst_so_reg:$ptr, GPR:$val),
6153             (STRrs GPR:$val, ldst_so_reg:$ptr)>;
6154def : ARMPat<(atomic_store_32 addrmode_imm12:$ptr, GPR:$val),
6155             (STRi12 GPR:$val, addrmode_imm12:$ptr)>;
6156
6157
6158//===----------------------------------------------------------------------===//
6159// Thumb Support
6160//
6161
6162include "ARMInstrThumb.td"
6163
6164//===----------------------------------------------------------------------===//
6165// Thumb2 Support
6166//
6167
6168include "ARMInstrThumb2.td"
6169
6170//===----------------------------------------------------------------------===//
6171// Floating Point Support
6172//
6173
6174include "ARMInstrVFP.td"
6175
6176//===----------------------------------------------------------------------===//
6177// Advanced SIMD (NEON) Support
6178//
6179
6180include "ARMInstrNEON.td"
6181
6182//===----------------------------------------------------------------------===//
6183// MVE Support
6184//
6185
6186include "ARMInstrMVE.td"
6187
6188//===----------------------------------------------------------------------===//
6189// CDE (Custom Datapath Extension)
6190//
6191
6192include "ARMInstrCDE.td"
6193
6194//===----------------------------------------------------------------------===//
6195// Assembler aliases
6196//
6197
6198// Memory barriers
6199def : InstAlias<"dmb", (DMB 0xf), 0>, Requires<[IsARM, HasDB]>;
6200def : InstAlias<"dsb", (DSB 0xf), 0>, Requires<[IsARM, HasDB]>;
6201def : InstAlias<"ssbb", (DSB 0x0), 1>, Requires<[IsARM, HasDB]>;
6202def : InstAlias<"pssbb", (DSB 0x4), 1>, Requires<[IsARM, HasDB]>;
6203def : InstAlias<"isb", (ISB 0xf), 0>, Requires<[IsARM, HasDB]>;
6204// Armv8-R 'Data Full Barrier'
6205def : InstAlias<"dfb", (DSB 0xc), 1>, Requires<[IsARM, HasDFB]>;
6206
6207// System instructions
6208def : MnemonicAlias<"swi", "svc">;
6209
6210// Load / Store Multiple
6211def : MnemonicAlias<"ldmfd", "ldm">;
6212def : MnemonicAlias<"ldmia", "ldm">;
6213def : MnemonicAlias<"ldmea", "ldmdb">;
6214def : MnemonicAlias<"stmfd", "stmdb">;
6215def : MnemonicAlias<"stmia", "stm">;
6216def : MnemonicAlias<"stmea", "stm">;
6217
6218// PKHBT/PKHTB with default shift amount. PKHTB is equivalent to PKHBT with the
6219// input operands swapped when the shift amount is zero (i.e., unspecified).
6220def : InstAlias<"pkhbt${p} $Rd, $Rn, $Rm",
6221                (PKHBT GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, 0, pred:$p), 0>,
6222        Requires<[IsARM, HasV6]>;
6223def : InstAlias<"pkhtb${p} $Rd, $Rn, $Rm",
6224                (PKHBT GPRnopc:$Rd, GPRnopc:$Rm, GPRnopc:$Rn, 0, pred:$p), 0>,
6225        Requires<[IsARM, HasV6]>;
6226
6227// PUSH/POP aliases for STM/LDM
6228def : ARMInstAlias<"push${p} $regs", (STMDB_UPD SP, pred:$p, reglist:$regs)>;
6229def : ARMInstAlias<"pop${p} $regs", (LDMIA_UPD SP, pred:$p, reglist:$regs)>;
6230
6231// SSAT/USAT optional shift operand.
6232def : ARMInstAlias<"ssat${p} $Rd, $sat_imm, $Rn",
6233                (SSAT GPRnopc:$Rd, imm1_32:$sat_imm, GPRnopc:$Rn, 0, pred:$p)>;
6234def : ARMInstAlias<"usat${p} $Rd, $sat_imm, $Rn",
6235                (USAT GPRnopc:$Rd, imm0_31:$sat_imm, GPRnopc:$Rn, 0, pred:$p)>;
6236
6237
6238// Extend instruction optional rotate operand.
6239def : ARMInstAlias<"sxtab${p} $Rd, $Rn, $Rm",
6240                (SXTAB GPRnopc:$Rd, GPR:$Rn, GPRnopc:$Rm, 0, pred:$p)>;
6241def : ARMInstAlias<"sxtah${p} $Rd, $Rn, $Rm",
6242                (SXTAH GPRnopc:$Rd, GPR:$Rn, GPRnopc:$Rm, 0, pred:$p)>;
6243def : ARMInstAlias<"sxtab16${p} $Rd, $Rn, $Rm",
6244                (SXTAB16 GPRnopc:$Rd, GPR:$Rn, GPRnopc:$Rm, 0, pred:$p)>;
6245def : ARMInstAlias<"sxtb${p} $Rd, $Rm",
6246                (SXTB GPRnopc:$Rd, GPRnopc:$Rm, 0, pred:$p)>;
6247def : ARMInstAlias<"sxtb16${p} $Rd, $Rm",
6248                (SXTB16 GPRnopc:$Rd, GPRnopc:$Rm, 0, pred:$p)>;
6249def : ARMInstAlias<"sxth${p} $Rd, $Rm",
6250                (SXTH GPRnopc:$Rd, GPRnopc:$Rm, 0, pred:$p)>;
6251
6252def : ARMInstAlias<"uxtab${p} $Rd, $Rn, $Rm",
6253                (UXTAB GPRnopc:$Rd, GPR:$Rn, GPRnopc:$Rm, 0, pred:$p)>;
6254def : ARMInstAlias<"uxtah${p} $Rd, $Rn, $Rm",
6255                (UXTAH GPRnopc:$Rd, GPR:$Rn, GPRnopc:$Rm, 0, pred:$p)>;
6256def : ARMInstAlias<"uxtab16${p} $Rd, $Rn, $Rm",
6257                (UXTAB16 GPRnopc:$Rd, GPR:$Rn, GPRnopc:$Rm, 0, pred:$p)>;
6258def : ARMInstAlias<"uxtb${p} $Rd, $Rm",
6259                (UXTB GPRnopc:$Rd, GPRnopc:$Rm, 0, pred:$p)>;
6260def : ARMInstAlias<"uxtb16${p} $Rd, $Rm",
6261                (UXTB16 GPRnopc:$Rd, GPRnopc:$Rm, 0, pred:$p)>;
6262def : ARMInstAlias<"uxth${p} $Rd, $Rm",
6263                (UXTH GPRnopc:$Rd, GPRnopc:$Rm, 0, pred:$p)>;
6264
6265
6266// RFE aliases
6267def : MnemonicAlias<"rfefa", "rfeda">;
6268def : MnemonicAlias<"rfeea", "rfedb">;
6269def : MnemonicAlias<"rfefd", "rfeia">;
6270def : MnemonicAlias<"rfeed", "rfeib">;
6271def : MnemonicAlias<"rfe", "rfeia">;
6272
6273// SRS aliases
6274def : MnemonicAlias<"srsfa", "srsib">;
6275def : MnemonicAlias<"srsea", "srsia">;
6276def : MnemonicAlias<"srsfd", "srsdb">;
6277def : MnemonicAlias<"srsed", "srsda">;
6278def : MnemonicAlias<"srs", "srsia">;
6279
6280// QSAX == QSUBADDX
6281def : MnemonicAlias<"qsubaddx", "qsax">;
6282// SASX == SADDSUBX
6283def : MnemonicAlias<"saddsubx", "sasx">;
6284// SHASX == SHADDSUBX
6285def : MnemonicAlias<"shaddsubx", "shasx">;
6286// SHSAX == SHSUBADDX
6287def : MnemonicAlias<"shsubaddx", "shsax">;
6288// SSAX == SSUBADDX
6289def : MnemonicAlias<"ssubaddx", "ssax">;
6290// UASX == UADDSUBX
6291def : MnemonicAlias<"uaddsubx", "uasx">;
6292// UHASX == UHADDSUBX
6293def : MnemonicAlias<"uhaddsubx", "uhasx">;
6294// UHSAX == UHSUBADDX
6295def : MnemonicAlias<"uhsubaddx", "uhsax">;
6296// UQASX == UQADDSUBX
6297def : MnemonicAlias<"uqaddsubx", "uqasx">;
6298// UQSAX == UQSUBADDX
6299def : MnemonicAlias<"uqsubaddx", "uqsax">;
6300// USAX == USUBADDX
6301def : MnemonicAlias<"usubaddx", "usax">;
6302
6303// "mov Rd, mod_imm_not" can be handled via "mvn" in assembly, just like
6304// for isel.
6305def : ARMInstSubst<"mov${s}${p} $Rd, $imm",
6306                   (MVNi rGPR:$Rd, mod_imm_not:$imm, pred:$p, cc_out:$s)>;
6307def : ARMInstSubst<"mvn${s}${p} $Rd, $imm",
6308                   (MOVi rGPR:$Rd, mod_imm_not:$imm, pred:$p, cc_out:$s)>;
6309// Same for AND <--> BIC
6310def : ARMInstSubst<"bic${s}${p} $Rd, $Rn, $imm",
6311                   (ANDri GPR:$Rd, GPR:$Rn, mod_imm_not:$imm,
6312                          pred:$p, cc_out:$s)>;
6313def : ARMInstSubst<"bic${s}${p} $Rdn, $imm",
6314                   (ANDri GPR:$Rdn, GPR:$Rdn, mod_imm_not:$imm,
6315                          pred:$p, cc_out:$s)>;
6316def : ARMInstSubst<"and${s}${p} $Rd, $Rn, $imm",
6317                   (BICri GPR:$Rd, GPR:$Rn, mod_imm_not:$imm,
6318                          pred:$p, cc_out:$s)>;
6319def : ARMInstSubst<"and${s}${p} $Rdn, $imm",
6320                   (BICri GPR:$Rdn, GPR:$Rdn, mod_imm_not:$imm,
6321                          pred:$p, cc_out:$s)>;
6322
6323// Likewise, "add Rd, mod_imm_neg" -> sub
6324def : ARMInstSubst<"add${s}${p} $Rd, $Rn, $imm",
6325                 (SUBri GPR:$Rd, GPR:$Rn, mod_imm_neg:$imm, pred:$p, cc_out:$s)>;
6326def : ARMInstSubst<"add${s}${p} $Rd, $imm",
6327                 (SUBri GPR:$Rd, GPR:$Rd, mod_imm_neg:$imm, pred:$p, cc_out:$s)>;
6328// Likewise, "sub Rd, mod_imm_neg" -> add
6329def : ARMInstSubst<"sub${s}${p} $Rd, $Rn, $imm",
6330                 (ADDri GPR:$Rd, GPR:$Rn, mod_imm_neg:$imm, pred:$p, cc_out:$s)>;
6331def : ARMInstSubst<"sub${s}${p} $Rd, $imm",
6332                 (ADDri GPR:$Rd, GPR:$Rd, mod_imm_neg:$imm, pred:$p, cc_out:$s)>;
6333
6334
6335def : ARMInstSubst<"adc${s}${p} $Rd, $Rn, $imm",
6336                 (SBCri GPR:$Rd, GPR:$Rn, mod_imm_not:$imm, pred:$p, cc_out:$s)>;
6337def : ARMInstSubst<"adc${s}${p} $Rdn, $imm",
6338                 (SBCri GPR:$Rdn, GPR:$Rdn, mod_imm_not:$imm, pred:$p, cc_out:$s)>;
6339def : ARMInstSubst<"sbc${s}${p} $Rd, $Rn, $imm",
6340                 (ADCri GPR:$Rd, GPR:$Rn, mod_imm_not:$imm, pred:$p, cc_out:$s)>;
6341def : ARMInstSubst<"sbc${s}${p} $Rdn, $imm",
6342                 (ADCri GPR:$Rdn, GPR:$Rdn, mod_imm_not:$imm, pred:$p, cc_out:$s)>;
6343
6344// Same for CMP <--> CMN via mod_imm_neg
6345def : ARMInstSubst<"cmp${p} $Rd, $imm",
6346                   (CMNri rGPR:$Rd, mod_imm_neg:$imm, pred:$p)>;
6347def : ARMInstSubst<"cmn${p} $Rd, $imm",
6348                   (CMPri rGPR:$Rd, mod_imm_neg:$imm, pred:$p)>;
6349
6350// The shifter forms of the MOV instruction are aliased to the ASR, LSL,
6351// LSR, ROR, and RRX instructions.
6352// FIXME: We need C++ parser hooks to map the alias to the MOV
6353//        encoding. It seems we should be able to do that sort of thing
6354//        in tblgen, but it could get ugly.
6355let TwoOperandAliasConstraint = "$Rm = $Rd" in {
6356def ASRi : ARMAsmPseudo<"asr${s}${p} $Rd, $Rm, $imm",
6357                        (ins GPR:$Rd, GPR:$Rm, imm0_32:$imm, pred:$p,
6358                             cc_out:$s)>;
6359def LSRi : ARMAsmPseudo<"lsr${s}${p} $Rd, $Rm, $imm",
6360                        (ins GPR:$Rd, GPR:$Rm, imm0_32:$imm, pred:$p,
6361                             cc_out:$s)>;
6362def LSLi : ARMAsmPseudo<"lsl${s}${p} $Rd, $Rm, $imm",
6363                        (ins GPR:$Rd, GPR:$Rm, imm0_31:$imm, pred:$p,
6364                             cc_out:$s)>;
6365def RORi : ARMAsmPseudo<"ror${s}${p} $Rd, $Rm, $imm",
6366                        (ins GPR:$Rd, GPR:$Rm, imm0_31:$imm, pred:$p,
6367                             cc_out:$s)>;
6368}
6369def RRXi : ARMAsmPseudo<"rrx${s}${p} $Rd, $Rm",
6370                        (ins GPR:$Rd, GPR:$Rm, pred:$p, cc_out:$s)>;
6371let TwoOperandAliasConstraint = "$Rn = $Rd" in {
6372def ASRr : ARMAsmPseudo<"asr${s}${p} $Rd, $Rn, $Rm",
6373                        (ins GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, pred:$p,
6374                             cc_out:$s)>;
6375def LSRr : ARMAsmPseudo<"lsr${s}${p} $Rd, $Rn, $Rm",
6376                        (ins GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, pred:$p,
6377                             cc_out:$s)>;
6378def LSLr : ARMAsmPseudo<"lsl${s}${p} $Rd, $Rn, $Rm",
6379                        (ins GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, pred:$p,
6380                             cc_out:$s)>;
6381def RORr : ARMAsmPseudo<"ror${s}${p} $Rd, $Rn, $Rm",
6382                        (ins GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, pred:$p,
6383                             cc_out:$s)>;
6384}
6385
6386// "neg" is and alias for "rsb rd, rn, #0"
6387def : ARMInstAlias<"neg${s}${p} $Rd, $Rm",
6388                   (RSBri GPR:$Rd, GPR:$Rm, 0, pred:$p, cc_out:$s)>;
6389
6390// Pre-v6, 'mov r0, r0' was used as a NOP encoding.
6391def : InstAlias<"nop${p}", (MOVr R0, R0, pred:$p, zero_reg), 0>,
6392         Requires<[IsARM, NoV6]>;
6393
6394// MUL/UMLAL/SMLAL/UMULL/SMULL are available on all arches, but
6395// the instruction definitions need difference constraints pre-v6.
6396// Use these aliases for the assembly parsing on pre-v6.
6397def : InstAlias<"mul${s}${p} $Rd, $Rn, $Rm",
6398            (MUL GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, pred:$p, cc_out:$s), 0>,
6399         Requires<[IsARM, NoV6]>;
6400def : InstAlias<"mla${s}${p} $Rd, $Rn, $Rm, $Ra",
6401            (MLA GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$Ra,
6402             pred:$p, cc_out:$s), 0>,
6403         Requires<[IsARM, NoV6]>;
6404def : InstAlias<"smlal${s}${p} $RdLo, $RdHi, $Rn, $Rm",
6405            (SMLAL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s), 0>,
6406         Requires<[IsARM, NoV6]>;
6407def : InstAlias<"umlal${s}${p} $RdLo, $RdHi, $Rn, $Rm",
6408            (UMLAL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s), 0>,
6409         Requires<[IsARM, NoV6]>;
6410def : InstAlias<"smull${s}${p} $RdLo, $RdHi, $Rn, $Rm",
6411            (SMULL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s), 0>,
6412         Requires<[IsARM, NoV6]>;
6413def : InstAlias<"umull${s}${p} $RdLo, $RdHi, $Rn, $Rm",
6414            (UMULL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s), 0>,
6415         Requires<[IsARM, NoV6]>;
6416
6417// 'it' blocks in ARM mode just validate the predicates. The IT itself
6418// is discarded.
6419def ITasm : ARMAsmPseudo<"it$mask $cc", (ins it_pred:$cc, it_mask:$mask)>;
6420
6421let mayLoad = 1, mayStore =1, hasSideEffects = 1, hasNoSchedulingInfo = 1 in
6422def SPACE : PseudoInst<(outs GPR:$Rd), (ins i32imm:$size, GPR:$Rn),
6423                       NoItinerary,
6424                       [(set GPR:$Rd, (int_arm_space timm:$size, GPR:$Rn))]>;
6425
6426// SpeculationBarrierEndBB must only be used after an unconditional control
6427// flow, i.e. after a terminator for which isBarrier is True.
6428let hasSideEffects = 1, isCodeGenOnly = 1, isTerminator = 1, isBarrier = 1 in {
6429  // This gets lowered to a pair of 4-byte instructions
6430  let Size = 8 in
6431  def SpeculationBarrierISBDSBEndBB
6432      : PseudoInst<(outs), (ins), NoItinerary, []>, Sched<[]>;
6433  // This gets lowered to a single 4-byte instructions
6434  let Size = 4 in
6435  def SpeculationBarrierSBEndBB
6436      : PseudoInst<(outs), (ins), NoItinerary, []>, Sched<[]>;
6437}
6438
6439//===----------------------------------
6440// Atomic cmpxchg for -O0
6441//===----------------------------------
6442
6443// The fast register allocator used during -O0 inserts spills to cover any VRegs
6444// live across basic block boundaries. When this happens between an LDXR and an
6445// STXR it can clear the exclusive monitor, causing all cmpxchg attempts to
6446// fail.
6447
6448// Unfortunately, this means we have to have an alternative (expanded
6449// post-regalloc) path for -O0 compilations. Fortunately this path can be
6450// significantly more naive than the standard expansion: we conservatively
6451// assume seq_cst, strong cmpxchg and omit clrex on failure.
6452
6453let Constraints = "@earlyclobber $Rd,@earlyclobber $temp",
6454    mayLoad = 1, mayStore = 1 in {
6455def CMP_SWAP_8 : PseudoInst<(outs GPR:$Rd, GPR:$temp),
6456                            (ins GPR:$addr, GPR:$desired, GPR:$new),
6457                            NoItinerary, []>, Sched<[]>;
6458
6459def CMP_SWAP_16 : PseudoInst<(outs GPR:$Rd, GPR:$temp),
6460                             (ins GPR:$addr, GPR:$desired, GPR:$new),
6461                             NoItinerary, []>, Sched<[]>;
6462
6463def CMP_SWAP_32 : PseudoInst<(outs GPR:$Rd, GPR:$temp),
6464                             (ins GPR:$addr, GPR:$desired, GPR:$new),
6465                             NoItinerary, []>, Sched<[]>;
6466
6467def CMP_SWAP_64 : PseudoInst<(outs GPRPair:$Rd, GPR:$temp),
6468                             (ins GPR:$addr, GPRPair:$desired, GPRPair:$new),
6469                             NoItinerary, []>, Sched<[]>;
6470}
6471
6472def CompilerBarrier : PseudoInst<(outs), (ins i32imm:$ordering), NoItinerary,
6473                                 [(atomic_fence timm:$ordering, 0)]> {
6474  let hasSideEffects = 1;
6475  let Size = 0;
6476  let AsmString = "@ COMPILER BARRIER";
6477  let hasNoSchedulingInfo = 1;
6478}
6479
6480//===----------------------------------------------------------------------===//
6481// Instructions used for emitting unwind opcodes on Windows.
6482//===----------------------------------------------------------------------===//
6483let isPseudo = 1 in {
6484  def SEH_StackAlloc : PseudoInst<(outs), (ins i32imm:$size, i32imm:$wide), NoItinerary, []>, Sched<[]>;
6485  def SEH_SaveRegs : PseudoInst<(outs), (ins i32imm:$mask, i32imm:$wide), NoItinerary, []>, Sched<[]>;
6486  let isTerminator = 1 in
6487  def SEH_SaveRegs_Ret : PseudoInst<(outs), (ins i32imm:$mask, i32imm:$wide), NoItinerary, []>, Sched<[]>;
6488  def SEH_SaveSP : PseudoInst<(outs), (ins i32imm:$reg), NoItinerary, []>, Sched<[]>;
6489  def SEH_SaveFRegs : PseudoInst<(outs), (ins i32imm:$first, i32imm:$last), NoItinerary, []>, Sched<[]>;
6490  let isTerminator = 1 in
6491  def SEH_SaveLR : PseudoInst<(outs), (ins i32imm:$offst), NoItinerary, []>, Sched<[]>;
6492  def SEH_Nop : PseudoInst<(outs), (ins i32imm:$wide), NoItinerary, []>, Sched<[]>;
6493  let isTerminator = 1 in
6494  def SEH_Nop_Ret : PseudoInst<(outs), (ins i32imm:$wide), NoItinerary, []>, Sched<[]>;
6495  def SEH_PrologEnd : PseudoInst<(outs), (ins), NoItinerary, []>, Sched<[]>;
6496  def SEH_EpilogStart : PseudoInst<(outs), (ins), NoItinerary, []>, Sched<[]>;
6497  let isTerminator = 1 in
6498  def SEH_EpilogEnd : PseudoInst<(outs), (ins), NoItinerary, []>, Sched<[]>;
6499}
6500