1 //===-- ARMLowOverheadLoops.cpp - CodeGen Low-overhead Loops ---*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// Finalize v8.1-m low-overhead loops by converting the associated pseudo
10 /// instructions into machine operations.
11 /// The expectation is that the loop contains three pseudo instructions:
12 /// - t2*LoopStart - placed in the preheader or pre-preheader. The do-loop
13 ///   form should be in the preheader, whereas the while form should be in the
14 ///   preheaders only predecessor.
15 /// - t2LoopDec - placed within in the loop body.
16 /// - t2LoopEnd - the loop latch terminator.
17 ///
18 /// In addition to this, we also look for the presence of the VCTP instruction,
19 /// which determines whether we can generated the tail-predicated low-overhead
20 /// loop form.
21 ///
22 /// Assumptions and Dependencies:
23 /// Low-overhead loops are constructed and executed using a setup instruction:
24 /// DLS, WLS, DLSTP or WLSTP and an instruction that loops back: LE or LETP.
25 /// WLS(TP) and LE(TP) are branching instructions with a (large) limited range
26 /// but fixed polarity: WLS can only branch forwards and LE can only branch
27 /// backwards. These restrictions mean that this pass is dependent upon block
28 /// layout and block sizes, which is why it's the last pass to run. The same is
29 /// true for ConstantIslands, but this pass does not increase the size of the
30 /// basic blocks, nor does it change the CFG. Instructions are mainly removed
31 /// during the transform and pseudo instructions are replaced by real ones. In
32 /// some cases, when we have to revert to a 'normal' loop, we have to introduce
33 /// multiple instructions for a single pseudo (see RevertWhile and
34 /// RevertLoopEnd). To handle this situation, t2WhileLoopStart and t2LoopEnd
35 /// are defined to be as large as this maximum sequence of replacement
36 /// instructions.
37 ///
38 /// A note on VPR.P0 (the lane mask):
39 /// VPT, VCMP, VPNOT and VCTP won't overwrite VPR.P0 when they update it in a
40 /// "VPT Active" context (which includes low-overhead loops and vpt blocks).
41 /// They will simply "and" the result of their calculation with the current
42 /// value of VPR.P0. You can think of it like this:
43 /// \verbatim
44 /// if VPT active:    ; Between a DLSTP/LETP, or for predicated instrs
45 ///   VPR.P0 &= Value
46 /// else
47 ///   VPR.P0 = Value
48 /// \endverbatim
49 /// When we're inside the low-overhead loop (between DLSTP and LETP), we always
50 /// fall in the "VPT active" case, so we can consider that all VPR writes by
51 /// one of those instruction is actually a "and".
52 //===----------------------------------------------------------------------===//
53 
54 #include "ARM.h"
55 #include "ARMBaseInstrInfo.h"
56 #include "ARMBaseRegisterInfo.h"
57 #include "ARMBasicBlockInfo.h"
58 #include "ARMSubtarget.h"
59 #include "MVETailPredUtils.h"
60 #include "Thumb2InstrInfo.h"
61 #include "llvm/ADT/SetOperations.h"
62 #include "llvm/ADT/SmallSet.h"
63 #include "llvm/CodeGen/LivePhysRegs.h"
64 #include "llvm/CodeGen/MachineFunctionPass.h"
65 #include "llvm/CodeGen/MachineLoopInfo.h"
66 #include "llvm/CodeGen/MachineLoopUtils.h"
67 #include "llvm/CodeGen/MachineRegisterInfo.h"
68 #include "llvm/CodeGen/Passes.h"
69 #include "llvm/CodeGen/ReachingDefAnalysis.h"
70 #include "llvm/MC/MCInstrDesc.h"
71 
72 using namespace llvm;
73 
74 #define DEBUG_TYPE "arm-low-overhead-loops"
75 #define ARM_LOW_OVERHEAD_LOOPS_NAME "ARM Low Overhead Loops pass"
76 
77 static cl::opt<bool>
78 DisableTailPredication("arm-loloops-disable-tailpred", cl::Hidden,
79     cl::desc("Disable tail-predication in the ARM LowOverheadLoop pass"),
80     cl::init(false));
81 
82 static bool isVectorPredicated(MachineInstr *MI) {
83   int PIdx = llvm::findFirstVPTPredOperandIdx(*MI);
84   return PIdx != -1 && MI->getOperand(PIdx + 1).getReg() == ARM::VPR;
85 }
86 
87 static bool isVectorPredicate(MachineInstr *MI) {
88   return MI->findRegisterDefOperandIdx(ARM::VPR) != -1;
89 }
90 
91 static bool hasVPRUse(MachineInstr &MI) {
92   return MI.findRegisterUseOperandIdx(ARM::VPR) != -1;
93 }
94 
95 static bool isDomainMVE(MachineInstr *MI) {
96   uint64_t Domain = MI->getDesc().TSFlags & ARMII::DomainMask;
97   return Domain == ARMII::DomainMVE;
98 }
99 
100 static bool shouldInspect(MachineInstr &MI) {
101   return isDomainMVE(&MI) || isVectorPredicate(&MI) || hasVPRUse(MI);
102 }
103 
104 static bool isDo(MachineInstr *MI) {
105   return MI->getOpcode() != ARM::t2WhileLoopStart;
106 }
107 
108 namespace {
109 
110   using InstSet = SmallPtrSetImpl<MachineInstr *>;
111 
112   class PostOrderLoopTraversal {
113     MachineLoop &ML;
114     MachineLoopInfo &MLI;
115     SmallPtrSet<MachineBasicBlock*, 4> Visited;
116     SmallVector<MachineBasicBlock*, 4> Order;
117 
118   public:
119     PostOrderLoopTraversal(MachineLoop &ML, MachineLoopInfo &MLI)
120       : ML(ML), MLI(MLI) { }
121 
122     const SmallVectorImpl<MachineBasicBlock*> &getOrder() const {
123       return Order;
124     }
125 
126     // Visit all the blocks within the loop, as well as exit blocks and any
127     // blocks properly dominating the header.
128     void ProcessLoop() {
129       std::function<void(MachineBasicBlock*)> Search = [this, &Search]
130         (MachineBasicBlock *MBB) -> void {
131         if (Visited.count(MBB))
132           return;
133 
134         Visited.insert(MBB);
135         for (auto *Succ : MBB->successors()) {
136           if (!ML.contains(Succ))
137             continue;
138           Search(Succ);
139         }
140         Order.push_back(MBB);
141       };
142 
143       // Insert exit blocks.
144       SmallVector<MachineBasicBlock*, 2> ExitBlocks;
145       ML.getExitBlocks(ExitBlocks);
146       append_range(Order, ExitBlocks);
147 
148       // Then add the loop body.
149       Search(ML.getHeader());
150 
151       // Then try the preheader and its predecessors.
152       std::function<void(MachineBasicBlock*)> GetPredecessor =
153         [this, &GetPredecessor] (MachineBasicBlock *MBB) -> void {
154         Order.push_back(MBB);
155         if (MBB->pred_size() == 1)
156           GetPredecessor(*MBB->pred_begin());
157       };
158 
159       if (auto *Preheader = ML.getLoopPreheader())
160         GetPredecessor(Preheader);
161       else if (auto *Preheader = MLI.findLoopPreheader(&ML, true))
162         GetPredecessor(Preheader);
163     }
164   };
165 
166   struct PredicatedMI {
167     MachineInstr *MI = nullptr;
168     SetVector<MachineInstr*> Predicates;
169 
170   public:
171     PredicatedMI(MachineInstr *I, SetVector<MachineInstr *> &Preds) : MI(I) {
172       assert(I && "Instruction must not be null!");
173       Predicates.insert(Preds.begin(), Preds.end());
174     }
175   };
176 
177   // Represent the current state of the VPR and hold all instances which
178   // represent a VPT block, which is a list of instructions that begins with a
179   // VPT/VPST and has a maximum of four proceeding instructions. All
180   // instructions within the block are predicated upon the vpr and we allow
181   // instructions to define the vpr within in the block too.
182   class VPTState {
183     friend struct LowOverheadLoop;
184 
185     SmallVector<MachineInstr *, 4> Insts;
186 
187     static SmallVector<VPTState, 4> Blocks;
188     static SetVector<MachineInstr *> CurrentPredicates;
189     static std::map<MachineInstr *,
190       std::unique_ptr<PredicatedMI>> PredicatedInsts;
191 
192     static void CreateVPTBlock(MachineInstr *MI) {
193       assert((CurrentPredicates.size() || MI->getParent()->isLiveIn(ARM::VPR))
194              && "Can't begin VPT without predicate");
195       Blocks.emplace_back(MI);
196       // The execution of MI is predicated upon the current set of instructions
197       // that are AND'ed together to form the VPR predicate value. In the case
198       // that MI is a VPT, CurrentPredicates will also just be MI.
199       PredicatedInsts.emplace(
200         MI, std::make_unique<PredicatedMI>(MI, CurrentPredicates));
201     }
202 
203     static void reset() {
204       Blocks.clear();
205       PredicatedInsts.clear();
206       CurrentPredicates.clear();
207     }
208 
209     static void addInst(MachineInstr *MI) {
210       Blocks.back().insert(MI);
211       PredicatedInsts.emplace(
212         MI, std::make_unique<PredicatedMI>(MI, CurrentPredicates));
213     }
214 
215     static void addPredicate(MachineInstr *MI) {
216       LLVM_DEBUG(dbgs() << "ARM Loops: Adding VPT Predicate: " << *MI);
217       CurrentPredicates.insert(MI);
218     }
219 
220     static void resetPredicate(MachineInstr *MI) {
221       LLVM_DEBUG(dbgs() << "ARM Loops: Resetting VPT Predicate: " << *MI);
222       CurrentPredicates.clear();
223       CurrentPredicates.insert(MI);
224     }
225 
226   public:
227     // Have we found an instruction within the block which defines the vpr? If
228     // so, not all the instructions in the block will have the same predicate.
229     static bool hasUniformPredicate(VPTState &Block) {
230       return getDivergent(Block) == nullptr;
231     }
232 
233     // If it exists, return the first internal instruction which modifies the
234     // VPR.
235     static MachineInstr *getDivergent(VPTState &Block) {
236       SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts();
237       for (unsigned i = 1; i < Insts.size(); ++i) {
238         MachineInstr *Next = Insts[i];
239         if (isVectorPredicate(Next))
240           return Next; // Found an instruction altering the vpr.
241       }
242       return nullptr;
243     }
244 
245     // Return whether the given instruction is predicated upon a VCTP.
246     static bool isPredicatedOnVCTP(MachineInstr *MI, bool Exclusive = false) {
247       SetVector<MachineInstr *> &Predicates = PredicatedInsts[MI]->Predicates;
248       if (Exclusive && Predicates.size() != 1)
249         return false;
250       for (auto *PredMI : Predicates)
251         if (isVCTP(PredMI))
252           return true;
253       return false;
254     }
255 
256     // Is the VPST, controlling the block entry, predicated upon a VCTP.
257     static bool isEntryPredicatedOnVCTP(VPTState &Block,
258                                         bool Exclusive = false) {
259       SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts();
260       return isPredicatedOnVCTP(Insts.front(), Exclusive);
261     }
262 
263     // If this block begins with a VPT, we can check whether it's using
264     // at least one predicated input(s), as well as possible loop invariant
265     // which would result in it being implicitly predicated.
266     static bool hasImplicitlyValidVPT(VPTState &Block,
267                                       ReachingDefAnalysis &RDA) {
268       SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts();
269       MachineInstr *VPT = Insts.front();
270       assert(isVPTOpcode(VPT->getOpcode()) &&
271              "Expected VPT block to begin with VPT/VPST");
272 
273       if (VPT->getOpcode() == ARM::MVE_VPST)
274         return false;
275 
276       auto IsOperandPredicated = [&](MachineInstr *MI, unsigned Idx) {
277         MachineInstr *Op = RDA.getMIOperand(MI, MI->getOperand(Idx));
278         return Op && PredicatedInsts.count(Op) && isPredicatedOnVCTP(Op);
279       };
280 
281       auto IsOperandInvariant = [&](MachineInstr *MI, unsigned Idx) {
282         MachineOperand &MO = MI->getOperand(Idx);
283         if (!MO.isReg() || !MO.getReg())
284           return true;
285 
286         SmallPtrSet<MachineInstr *, 2> Defs;
287         RDA.getGlobalReachingDefs(MI, MO.getReg(), Defs);
288         if (Defs.empty())
289           return true;
290 
291         for (auto *Def : Defs)
292           if (Def->getParent() == VPT->getParent())
293             return false;
294         return true;
295       };
296 
297       // Check that at least one of the operands is directly predicated on a
298       // vctp and allow an invariant value too.
299       return (IsOperandPredicated(VPT, 1) || IsOperandPredicated(VPT, 2)) &&
300              (IsOperandPredicated(VPT, 1) || IsOperandInvariant(VPT, 1)) &&
301              (IsOperandPredicated(VPT, 2) || IsOperandInvariant(VPT, 2));
302     }
303 
304     static bool isValid(ReachingDefAnalysis &RDA) {
305       // All predication within the loop should be based on vctp. If the block
306       // isn't predicated on entry, check whether the vctp is within the block
307       // and that all other instructions are then predicated on it.
308       for (auto &Block : Blocks) {
309         if (isEntryPredicatedOnVCTP(Block, false) ||
310             hasImplicitlyValidVPT(Block, RDA))
311           continue;
312 
313         SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts();
314         // We don't know how to convert a block with just a VPT;VCTP into
315         // anything valid once we remove the VCTP. For now just bail out.
316         assert(isVPTOpcode(Insts.front()->getOpcode()) &&
317                "Expected VPT block to start with a VPST or VPT!");
318         if (Insts.size() == 2 && Insts.front()->getOpcode() != ARM::MVE_VPST &&
319             isVCTP(Insts.back()))
320           return false;
321 
322         for (auto *MI : Insts) {
323           // Check that any internal VCTPs are 'Then' predicated.
324           if (isVCTP(MI) && getVPTInstrPredicate(*MI) != ARMVCC::Then)
325             return false;
326           // Skip other instructions that build up the predicate.
327           if (MI->getOpcode() == ARM::MVE_VPST || isVectorPredicate(MI))
328             continue;
329           // Check that any other instructions are predicated upon a vctp.
330           // TODO: We could infer when VPTs are implicitly predicated on the
331           // vctp (when the operands are predicated).
332           if (!isPredicatedOnVCTP(MI)) {
333             LLVM_DEBUG(dbgs() << "ARM Loops: Can't convert: " << *MI);
334             return false;
335           }
336         }
337       }
338       return true;
339     }
340 
341     VPTState(MachineInstr *MI) { Insts.push_back(MI); }
342 
343     void insert(MachineInstr *MI) {
344       Insts.push_back(MI);
345       // VPT/VPST + 4 predicated instructions.
346       assert(Insts.size() <= 5 && "Too many instructions in VPT block!");
347     }
348 
349     bool containsVCTP() const {
350       for (auto *MI : Insts)
351         if (isVCTP(MI))
352           return true;
353       return false;
354     }
355 
356     unsigned size() const { return Insts.size(); }
357     SmallVectorImpl<MachineInstr *> &getInsts() { return Insts; }
358   };
359 
360   struct LowOverheadLoop {
361 
362     MachineLoop &ML;
363     MachineBasicBlock *Preheader = nullptr;
364     MachineLoopInfo &MLI;
365     ReachingDefAnalysis &RDA;
366     const TargetRegisterInfo &TRI;
367     const ARMBaseInstrInfo &TII;
368     MachineFunction *MF = nullptr;
369     MachineBasicBlock::iterator StartInsertPt;
370     MachineBasicBlock *StartInsertBB = nullptr;
371     MachineInstr *Start = nullptr;
372     MachineInstr *Dec = nullptr;
373     MachineInstr *End = nullptr;
374     MachineOperand TPNumElements;
375     SmallVector<MachineInstr*, 4> VCTPs;
376     SmallPtrSet<MachineInstr*, 4> ToRemove;
377     SmallPtrSet<MachineInstr*, 4> BlockMasksToRecompute;
378     bool Revert = false;
379     bool CannotTailPredicate = false;
380 
381     LowOverheadLoop(MachineLoop &ML, MachineLoopInfo &MLI,
382                     ReachingDefAnalysis &RDA, const TargetRegisterInfo &TRI,
383                     const ARMBaseInstrInfo &TII)
384         : ML(ML), MLI(MLI), RDA(RDA), TRI(TRI), TII(TII),
385           TPNumElements(MachineOperand::CreateImm(0)) {
386       MF = ML.getHeader()->getParent();
387       if (auto *MBB = ML.getLoopPreheader())
388         Preheader = MBB;
389       else if (auto *MBB = MLI.findLoopPreheader(&ML, true))
390         Preheader = MBB;
391       VPTState::reset();
392     }
393 
394     // If this is an MVE instruction, check that we know how to use tail
395     // predication with it. Record VPT blocks and return whether the
396     // instruction is valid for tail predication.
397     bool ValidateMVEInst(MachineInstr *MI);
398 
399     void AnalyseMVEInst(MachineInstr *MI) {
400       CannotTailPredicate = !ValidateMVEInst(MI);
401     }
402 
403     bool IsTailPredicationLegal() const {
404       // For now, let's keep things really simple and only support a single
405       // block for tail predication.
406       return !Revert && FoundAllComponents() && !VCTPs.empty() &&
407              !CannotTailPredicate && ML.getNumBlocks() == 1;
408     }
409 
410     // Given that MI is a VCTP, check that is equivalent to any other VCTPs
411     // found.
412     bool AddVCTP(MachineInstr *MI);
413 
414     // Check that the predication in the loop will be equivalent once we
415     // perform the conversion. Also ensure that we can provide the number
416     // of elements to the loop start instruction.
417     bool ValidateTailPredicate();
418 
419     // Check that any values available outside of the loop will be the same
420     // after tail predication conversion.
421     bool ValidateLiveOuts();
422 
423     // Is it safe to define LR with DLS/WLS?
424     // LR can be defined if it is the operand to start, because it's the same
425     // value, or if it's going to be equivalent to the operand to Start.
426     MachineInstr *isSafeToDefineLR();
427 
428     // Check the branch targets are within range and we satisfy our
429     // restrictions.
430     void Validate(ARMBasicBlockUtils *BBUtils);
431 
432     bool FoundAllComponents() const {
433       return Start && Dec && End;
434     }
435 
436     SmallVectorImpl<VPTState> &getVPTBlocks() {
437       return VPTState::Blocks;
438     }
439 
440     // Return the operand for the loop start instruction. This will be the loop
441     // iteration count, or the number of elements if we're tail predicating.
442     MachineOperand &getLoopStartOperand() {
443       if (IsTailPredicationLegal())
444         return TPNumElements;
445       return isDo(Start) ? Start->getOperand(1) : Start->getOperand(0);
446     }
447 
448     unsigned getStartOpcode() const {
449       bool IsDo = isDo(Start);
450       if (!IsTailPredicationLegal())
451         return IsDo ? ARM::t2DLS : ARM::t2WLS;
452 
453       return VCTPOpcodeToLSTP(VCTPs.back()->getOpcode(), IsDo);
454     }
455 
456     void dump() const {
457       if (Start) dbgs() << "ARM Loops: Found Loop Start: " << *Start;
458       if (Dec) dbgs() << "ARM Loops: Found Loop Dec: " << *Dec;
459       if (End) dbgs() << "ARM Loops: Found Loop End: " << *End;
460       if (!VCTPs.empty()) {
461         dbgs() << "ARM Loops: Found VCTP(s):\n";
462         for (auto *MI : VCTPs)
463           dbgs() << " - " << *MI;
464       }
465       if (!FoundAllComponents())
466         dbgs() << "ARM Loops: Not a low-overhead loop.\n";
467       else if (!(Start && Dec && End))
468         dbgs() << "ARM Loops: Failed to find all loop components.\n";
469     }
470   };
471 
472   class ARMLowOverheadLoops : public MachineFunctionPass {
473     MachineFunction           *MF = nullptr;
474     MachineLoopInfo           *MLI = nullptr;
475     ReachingDefAnalysis       *RDA = nullptr;
476     const ARMBaseInstrInfo    *TII = nullptr;
477     MachineRegisterInfo       *MRI = nullptr;
478     const TargetRegisterInfo  *TRI = nullptr;
479     std::unique_ptr<ARMBasicBlockUtils> BBUtils = nullptr;
480 
481   public:
482     static char ID;
483 
484     ARMLowOverheadLoops() : MachineFunctionPass(ID) { }
485 
486     void getAnalysisUsage(AnalysisUsage &AU) const override {
487       AU.setPreservesCFG();
488       AU.addRequired<MachineLoopInfo>();
489       AU.addRequired<ReachingDefAnalysis>();
490       MachineFunctionPass::getAnalysisUsage(AU);
491     }
492 
493     bool runOnMachineFunction(MachineFunction &MF) override;
494 
495     MachineFunctionProperties getRequiredProperties() const override {
496       return MachineFunctionProperties().set(
497           MachineFunctionProperties::Property::NoVRegs).set(
498           MachineFunctionProperties::Property::TracksLiveness);
499     }
500 
501     StringRef getPassName() const override {
502       return ARM_LOW_OVERHEAD_LOOPS_NAME;
503     }
504 
505   private:
506     bool ProcessLoop(MachineLoop *ML);
507 
508     bool RevertNonLoops();
509 
510     void RevertWhile(MachineInstr *MI) const;
511     void RevertDo(MachineInstr *MI) const;
512 
513     bool RevertLoopDec(MachineInstr *MI) const;
514 
515     void RevertLoopEnd(MachineInstr *MI, bool SkipCmp = false) const;
516 
517     void RevertLoopEndDec(MachineInstr *MI) const;
518 
519     void ConvertVPTBlocks(LowOverheadLoop &LoLoop);
520 
521     MachineInstr *ExpandLoopStart(LowOverheadLoop &LoLoop);
522 
523     void Expand(LowOverheadLoop &LoLoop);
524 
525     void IterationCountDCE(LowOverheadLoop &LoLoop);
526   };
527 }
528 
529 char ARMLowOverheadLoops::ID = 0;
530 
531 SmallVector<VPTState, 4> VPTState::Blocks;
532 SetVector<MachineInstr *> VPTState::CurrentPredicates;
533 std::map<MachineInstr *,
534          std::unique_ptr<PredicatedMI>> VPTState::PredicatedInsts;
535 
536 INITIALIZE_PASS(ARMLowOverheadLoops, DEBUG_TYPE, ARM_LOW_OVERHEAD_LOOPS_NAME,
537                 false, false)
538 
539 static bool TryRemove(MachineInstr *MI, ReachingDefAnalysis &RDA,
540                       InstSet &ToRemove, InstSet &Ignore) {
541 
542   // Check that we can remove all of Killed without having to modify any IT
543   // blocks.
544   auto WontCorruptITs = [](InstSet &Killed, ReachingDefAnalysis &RDA) {
545     // Collect the dead code and the MBBs in which they reside.
546     SmallPtrSet<MachineBasicBlock*, 2> BasicBlocks;
547     for (auto *Dead : Killed)
548       BasicBlocks.insert(Dead->getParent());
549 
550     // Collect IT blocks in all affected basic blocks.
551     std::map<MachineInstr *, SmallPtrSet<MachineInstr *, 2>> ITBlocks;
552     for (auto *MBB : BasicBlocks) {
553       for (auto &IT : *MBB) {
554         if (IT.getOpcode() != ARM::t2IT)
555           continue;
556         RDA.getReachingLocalUses(&IT, MCRegister::from(ARM::ITSTATE),
557                                  ITBlocks[&IT]);
558       }
559     }
560 
561     // If we're removing all of the instructions within an IT block, then
562     // also remove the IT instruction.
563     SmallPtrSet<MachineInstr *, 2> ModifiedITs;
564     SmallPtrSet<MachineInstr *, 2> RemoveITs;
565     for (auto *Dead : Killed) {
566       if (MachineOperand *MO = Dead->findRegisterUseOperand(ARM::ITSTATE)) {
567         MachineInstr *IT = RDA.getMIOperand(Dead, *MO);
568         RemoveITs.insert(IT);
569         auto &CurrentBlock = ITBlocks[IT];
570         CurrentBlock.erase(Dead);
571         if (CurrentBlock.empty())
572           ModifiedITs.erase(IT);
573         else
574           ModifiedITs.insert(IT);
575       }
576     }
577     if (!ModifiedITs.empty())
578       return false;
579     Killed.insert(RemoveITs.begin(), RemoveITs.end());
580     return true;
581   };
582 
583   SmallPtrSet<MachineInstr *, 2> Uses;
584   if (!RDA.isSafeToRemove(MI, Uses, Ignore))
585     return false;
586 
587   if (WontCorruptITs(Uses, RDA)) {
588     ToRemove.insert(Uses.begin(), Uses.end());
589     LLVM_DEBUG(dbgs() << "ARM Loops: Able to remove: " << *MI
590                << " - can also remove:\n";
591                for (auto *Use : Uses)
592                  dbgs() << "   - " << *Use);
593 
594     SmallPtrSet<MachineInstr*, 4> Killed;
595     RDA.collectKilledOperands(MI, Killed);
596     if (WontCorruptITs(Killed, RDA)) {
597       ToRemove.insert(Killed.begin(), Killed.end());
598       LLVM_DEBUG(for (auto *Dead : Killed)
599                    dbgs() << "   - " << *Dead);
600     }
601     return true;
602   }
603   return false;
604 }
605 
606 bool LowOverheadLoop::ValidateTailPredicate() {
607   if (!IsTailPredicationLegal()) {
608     LLVM_DEBUG(if (VCTPs.empty())
609                  dbgs() << "ARM Loops: Didn't find a VCTP instruction.\n";
610                dbgs() << "ARM Loops: Tail-predication is not valid.\n");
611     return false;
612   }
613 
614   assert(!VCTPs.empty() && "VCTP instruction expected but is not set");
615   assert(ML.getBlocks().size() == 1 &&
616          "Shouldn't be processing a loop with more than one block");
617 
618   if (DisableTailPredication) {
619     LLVM_DEBUG(dbgs() << "ARM Loops: tail-predication is disabled\n");
620     return false;
621   }
622 
623   if (!VPTState::isValid(RDA)) {
624     LLVM_DEBUG(dbgs() << "ARM Loops: Invalid VPT state.\n");
625     return false;
626   }
627 
628   if (!ValidateLiveOuts()) {
629     LLVM_DEBUG(dbgs() << "ARM Loops: Invalid live outs.\n");
630     return false;
631   }
632 
633   // Check that creating a [W|D]LSTP, which will define LR with an element
634   // count instead of iteration count, won't affect any other instructions
635   // than the LoopStart and LoopDec.
636   // TODO: We should try to insert the [W|D]LSTP after any of the other uses.
637   Register StartReg = isDo(Start) ? Start->getOperand(1).getReg()
638                                   : Start->getOperand(0).getReg();
639   if (StartInsertPt == Start && StartReg == ARM::LR) {
640     if (auto *IterCount = RDA.getMIOperand(Start, isDo(Start) ? 1 : 0)) {
641       SmallPtrSet<MachineInstr *, 2> Uses;
642       RDA.getGlobalUses(IterCount, MCRegister::from(ARM::LR), Uses);
643       for (auto *Use : Uses) {
644         if (Use != Start && Use != Dec) {
645           LLVM_DEBUG(dbgs() << " ARM Loops: Found LR use: " << *Use);
646           return false;
647         }
648       }
649     }
650   }
651 
652   // For tail predication, we need to provide the number of elements, instead
653   // of the iteration count, to the loop start instruction. The number of
654   // elements is provided to the vctp instruction, so we need to check that
655   // we can use this register at InsertPt.
656   MachineInstr *VCTP = VCTPs.back();
657   if (Start->getOpcode() == ARM::t2DoLoopStartTP) {
658     TPNumElements = Start->getOperand(2);
659     StartInsertPt = Start;
660     StartInsertBB = Start->getParent();
661   } else {
662     TPNumElements = VCTP->getOperand(1);
663     MCRegister NumElements = TPNumElements.getReg().asMCReg();
664 
665     // If the register is defined within loop, then we can't perform TP.
666     // TODO: Check whether this is just a mov of a register that would be
667     // available.
668     if (RDA.hasLocalDefBefore(VCTP, NumElements)) {
669       LLVM_DEBUG(dbgs() << "ARM Loops: VCTP operand is defined in the loop.\n");
670       return false;
671     }
672 
673     // The element count register maybe defined after InsertPt, in which case we
674     // need to try to move either InsertPt or the def so that the [w|d]lstp can
675     // use the value.
676 
677     if (StartInsertPt != StartInsertBB->end() &&
678         !RDA.isReachingDefLiveOut(&*StartInsertPt, NumElements)) {
679       if (auto *ElemDef =
680               RDA.getLocalLiveOutMIDef(StartInsertBB, NumElements)) {
681         if (RDA.isSafeToMoveForwards(ElemDef, &*StartInsertPt)) {
682           ElemDef->removeFromParent();
683           StartInsertBB->insert(StartInsertPt, ElemDef);
684           LLVM_DEBUG(dbgs()
685                      << "ARM Loops: Moved element count def: " << *ElemDef);
686         } else if (RDA.isSafeToMoveBackwards(&*StartInsertPt, ElemDef)) {
687           StartInsertPt->removeFromParent();
688           StartInsertBB->insertAfter(MachineBasicBlock::iterator(ElemDef),
689                                      &*StartInsertPt);
690           LLVM_DEBUG(dbgs() << "ARM Loops: Moved start past: " << *ElemDef);
691         } else {
692           // If we fail to move an instruction and the element count is provided
693           // by a mov, use the mov operand if it will have the same value at the
694           // insertion point
695           MachineOperand Operand = ElemDef->getOperand(1);
696           if (isMovRegOpcode(ElemDef->getOpcode()) &&
697               RDA.getUniqueReachingMIDef(ElemDef, Operand.getReg().asMCReg()) ==
698                   RDA.getUniqueReachingMIDef(&*StartInsertPt,
699                                              Operand.getReg().asMCReg())) {
700             TPNumElements = Operand;
701             NumElements = TPNumElements.getReg();
702           } else {
703             LLVM_DEBUG(dbgs()
704                        << "ARM Loops: Unable to move element count to loop "
705                        << "start instruction.\n");
706             return false;
707           }
708         }
709       }
710     }
711 
712     // Especially in the case of while loops, InsertBB may not be the
713     // preheader, so we need to check that the register isn't redefined
714     // before entering the loop.
715     auto CannotProvideElements = [this](MachineBasicBlock *MBB,
716                                         MCRegister NumElements) {
717       if (MBB->empty())
718         return false;
719       // NumElements is redefined in this block.
720       if (RDA.hasLocalDefBefore(&MBB->back(), NumElements))
721         return true;
722 
723       // Don't continue searching up through multiple predecessors.
724       if (MBB->pred_size() > 1)
725         return true;
726 
727       return false;
728     };
729 
730     // Search backwards for a def, until we get to InsertBB.
731     MachineBasicBlock *MBB = Preheader;
732     while (MBB && MBB != StartInsertBB) {
733       if (CannotProvideElements(MBB, NumElements)) {
734         LLVM_DEBUG(dbgs() << "ARM Loops: Unable to provide element count.\n");
735         return false;
736       }
737       MBB = *MBB->pred_begin();
738     }
739   }
740 
741   // Could inserting the [W|D]LSTP cause some unintended affects? In a perfect
742   // world the [w|d]lstp instruction would be last instruction in the preheader
743   // and so it would only affect instructions within the loop body. But due to
744   // scheduling, and/or the logic in this pass (above), the insertion point can
745   // be moved earlier. So if the Loop Start isn't the last instruction in the
746   // preheader, and if the initial element count is smaller than the vector
747   // width, the Loop Start instruction will immediately generate one or more
748   // false lane mask which can, incorrectly, affect the proceeding MVE
749   // instructions in the preheader.
750   if (std::any_of(StartInsertPt, StartInsertBB->end(), shouldInspect)) {
751     LLVM_DEBUG(dbgs() << "ARM Loops: Instruction blocks [W|D]LSTP\n");
752     return false;
753   }
754 
755   // Check that the value change of the element count is what we expect and
756   // that the predication will be equivalent. For this we need:
757   // NumElements = NumElements - VectorWidth. The sub will be a sub immediate
758   // and we can also allow register copies within the chain too.
759   auto IsValidSub = [](MachineInstr *MI, int ExpectedVecWidth) {
760     return -getAddSubImmediate(*MI) == ExpectedVecWidth;
761   };
762 
763   MachineBasicBlock *MBB = VCTP->getParent();
764   // Remove modifications to the element count since they have no purpose in a
765   // tail predicated loop. Explicitly refer to the vctp operand no matter which
766   // register NumElements has been assigned to, since that is what the
767   // modifications will be using
768   if (auto *Def = RDA.getUniqueReachingMIDef(
769           &MBB->back(), VCTP->getOperand(1).getReg().asMCReg())) {
770     SmallPtrSet<MachineInstr*, 2> ElementChain;
771     SmallPtrSet<MachineInstr*, 2> Ignore;
772     unsigned ExpectedVectorWidth = getTailPredVectorWidth(VCTP->getOpcode());
773 
774     Ignore.insert(VCTPs.begin(), VCTPs.end());
775 
776     if (TryRemove(Def, RDA, ElementChain, Ignore)) {
777       bool FoundSub = false;
778 
779       for (auto *MI : ElementChain) {
780         if (isMovRegOpcode(MI->getOpcode()))
781           continue;
782 
783         if (isSubImmOpcode(MI->getOpcode())) {
784           if (FoundSub || !IsValidSub(MI, ExpectedVectorWidth)) {
785             LLVM_DEBUG(dbgs() << "ARM Loops: Unexpected instruction in element"
786                        " count: " << *MI);
787             return false;
788           }
789           FoundSub = true;
790         } else {
791           LLVM_DEBUG(dbgs() << "ARM Loops: Unexpected instruction in element"
792                      " count: " << *MI);
793           return false;
794         }
795       }
796       ToRemove.insert(ElementChain.begin(), ElementChain.end());
797     }
798   }
799   return true;
800 }
801 
802 static bool isRegInClass(const MachineOperand &MO,
803                          const TargetRegisterClass *Class) {
804   return MO.isReg() && MO.getReg() && Class->contains(MO.getReg());
805 }
806 
807 // MVE 'narrowing' operate on half a lane, reading from half and writing
808 // to half, which are referred to has the top and bottom half. The other
809 // half retains its previous value.
810 static bool retainsPreviousHalfElement(const MachineInstr &MI) {
811   const MCInstrDesc &MCID = MI.getDesc();
812   uint64_t Flags = MCID.TSFlags;
813   return (Flags & ARMII::RetainsPreviousHalfElement) != 0;
814 }
815 
816 // Some MVE instructions read from the top/bottom halves of their operand(s)
817 // and generate a vector result with result elements that are double the
818 // width of the input.
819 static bool producesDoubleWidthResult(const MachineInstr &MI) {
820   const MCInstrDesc &MCID = MI.getDesc();
821   uint64_t Flags = MCID.TSFlags;
822   return (Flags & ARMII::DoubleWidthResult) != 0;
823 }
824 
825 static bool isHorizontalReduction(const MachineInstr &MI) {
826   const MCInstrDesc &MCID = MI.getDesc();
827   uint64_t Flags = MCID.TSFlags;
828   return (Flags & ARMII::HorizontalReduction) != 0;
829 }
830 
831 // Can this instruction generate a non-zero result when given only zeroed
832 // operands? This allows us to know that, given operands with false bytes
833 // zeroed by masked loads, that the result will also contain zeros in those
834 // bytes.
835 static bool canGenerateNonZeros(const MachineInstr &MI) {
836 
837   // Check for instructions which can write into a larger element size,
838   // possibly writing into a previous zero'd lane.
839   if (producesDoubleWidthResult(MI))
840     return true;
841 
842   switch (MI.getOpcode()) {
843   default:
844     break;
845   // FIXME: VNEG FP and -0? I think we'll need to handle this once we allow
846   // fp16 -> fp32 vector conversions.
847   // Instructions that perform a NOT will generate 1s from 0s.
848   case ARM::MVE_VMVN:
849   case ARM::MVE_VORN:
850   // Count leading zeros will do just that!
851   case ARM::MVE_VCLZs8:
852   case ARM::MVE_VCLZs16:
853   case ARM::MVE_VCLZs32:
854     return true;
855   }
856   return false;
857 }
858 
859 // Look at its register uses to see if it only can only receive zeros
860 // into its false lanes which would then produce zeros. Also check that
861 // the output register is also defined by an FalseLanesZero instruction
862 // so that if tail-predication happens, the lanes that aren't updated will
863 // still be zeros.
864 static bool producesFalseLanesZero(MachineInstr &MI,
865                                    const TargetRegisterClass *QPRs,
866                                    const ReachingDefAnalysis &RDA,
867                                    InstSet &FalseLanesZero) {
868   if (canGenerateNonZeros(MI))
869     return false;
870 
871   bool isPredicated = isVectorPredicated(&MI);
872   // Predicated loads will write zeros to the falsely predicated bytes of the
873   // destination register.
874   if (MI.mayLoad())
875     return isPredicated;
876 
877   auto IsZeroInit = [](MachineInstr *Def) {
878     return !isVectorPredicated(Def) &&
879            Def->getOpcode() == ARM::MVE_VMOVimmi32 &&
880            Def->getOperand(1).getImm() == 0;
881   };
882 
883   bool AllowScalars = isHorizontalReduction(MI);
884   for (auto &MO : MI.operands()) {
885     if (!MO.isReg() || !MO.getReg())
886       continue;
887     if (!isRegInClass(MO, QPRs) && AllowScalars)
888       continue;
889 
890     // Check that this instruction will produce zeros in its false lanes:
891     // - If it only consumes false lanes zero or constant 0 (vmov #0)
892     // - If it's predicated, it only matters that it's def register already has
893     //   false lane zeros, so we can ignore the uses.
894     SmallPtrSet<MachineInstr *, 2> Defs;
895     RDA.getGlobalReachingDefs(&MI, MO.getReg(), Defs);
896     for (auto *Def : Defs) {
897       if (Def == &MI || FalseLanesZero.count(Def) || IsZeroInit(Def))
898         continue;
899       if (MO.isUse() && isPredicated)
900         continue;
901       return false;
902     }
903   }
904   LLVM_DEBUG(dbgs() << "ARM Loops: Always False Zeros: " << MI);
905   return true;
906 }
907 
908 bool LowOverheadLoop::ValidateLiveOuts() {
909   // We want to find out if the tail-predicated version of this loop will
910   // produce the same values as the loop in its original form. For this to
911   // be true, the newly inserted implicit predication must not change the
912   // the (observable) results.
913   // We're doing this because many instructions in the loop will not be
914   // predicated and so the conversion from VPT predication to tail-predication
915   // can result in different values being produced; due to the tail-predication
916   // preventing many instructions from updating their falsely predicated
917   // lanes. This analysis assumes that all the instructions perform lane-wise
918   // operations and don't perform any exchanges.
919   // A masked load, whether through VPT or tail predication, will write zeros
920   // to any of the falsely predicated bytes. So, from the loads, we know that
921   // the false lanes are zeroed and here we're trying to track that those false
922   // lanes remain zero, or where they change, the differences are masked away
923   // by their user(s).
924   // All MVE stores have to be predicated, so we know that any predicate load
925   // operands, or stored results are equivalent already. Other explicitly
926   // predicated instructions will perform the same operation in the original
927   // loop and the tail-predicated form too. Because of this, we can insert
928   // loads, stores and other predicated instructions into our Predicated
929   // set and build from there.
930   const TargetRegisterClass *QPRs = TRI.getRegClass(ARM::MQPRRegClassID);
931   SetVector<MachineInstr *> FalseLanesUnknown;
932   SmallPtrSet<MachineInstr *, 4> FalseLanesZero;
933   SmallPtrSet<MachineInstr *, 4> Predicated;
934   MachineBasicBlock *Header = ML.getHeader();
935 
936   for (auto &MI : *Header) {
937     if (!shouldInspect(MI))
938       continue;
939 
940     if (isVCTP(&MI) || isVPTOpcode(MI.getOpcode()))
941       continue;
942 
943     bool isPredicated = isVectorPredicated(&MI);
944     bool retainsOrReduces =
945       retainsPreviousHalfElement(MI) || isHorizontalReduction(MI);
946 
947     if (isPredicated)
948       Predicated.insert(&MI);
949     if (producesFalseLanesZero(MI, QPRs, RDA, FalseLanesZero))
950       FalseLanesZero.insert(&MI);
951     else if (MI.getNumDefs() == 0)
952       continue;
953     else if (!isPredicated && retainsOrReduces)
954       return false;
955     else if (!isPredicated)
956       FalseLanesUnknown.insert(&MI);
957   }
958 
959   auto HasPredicatedUsers = [this](MachineInstr *MI, const MachineOperand &MO,
960                               SmallPtrSetImpl<MachineInstr *> &Predicated) {
961     SmallPtrSet<MachineInstr *, 2> Uses;
962     RDA.getGlobalUses(MI, MO.getReg().asMCReg(), Uses);
963     for (auto *Use : Uses) {
964       if (Use != MI && !Predicated.count(Use))
965         return false;
966     }
967     return true;
968   };
969 
970   // Visit the unknowns in reverse so that we can start at the values being
971   // stored and then we can work towards the leaves, hopefully adding more
972   // instructions to Predicated. Successfully terminating the loop means that
973   // all the unknown values have to found to be masked by predicated user(s).
974   // For any unpredicated values, we store them in NonPredicated so that we
975   // can later check whether these form a reduction.
976   SmallPtrSet<MachineInstr*, 2> NonPredicated;
977   for (auto *MI : reverse(FalseLanesUnknown)) {
978     for (auto &MO : MI->operands()) {
979       if (!isRegInClass(MO, QPRs) || !MO.isDef())
980         continue;
981       if (!HasPredicatedUsers(MI, MO, Predicated)) {
982         LLVM_DEBUG(dbgs() << "ARM Loops: Found an unknown def of : "
983                           << TRI.getRegAsmName(MO.getReg()) << " at " << *MI);
984         NonPredicated.insert(MI);
985         break;
986       }
987     }
988     // Any unknown false lanes have been masked away by the user(s).
989     if (!NonPredicated.contains(MI))
990       Predicated.insert(MI);
991   }
992 
993   SmallPtrSet<MachineInstr *, 2> LiveOutMIs;
994   SmallVector<MachineBasicBlock *, 2> ExitBlocks;
995   ML.getExitBlocks(ExitBlocks);
996   assert(ML.getNumBlocks() == 1 && "Expected single block loop!");
997   assert(ExitBlocks.size() == 1 && "Expected a single exit block");
998   MachineBasicBlock *ExitBB = ExitBlocks.front();
999   for (const MachineBasicBlock::RegisterMaskPair &RegMask : ExitBB->liveins()) {
1000     // TODO: Instead of blocking predication, we could move the vctp to the exit
1001     // block and calculate it's operand there in or the preheader.
1002     if (RegMask.PhysReg == ARM::VPR)
1003       return false;
1004     // Check Q-regs that are live in the exit blocks. We don't collect scalars
1005     // because they won't be affected by lane predication.
1006     if (QPRs->contains(RegMask.PhysReg))
1007       if (auto *MI = RDA.getLocalLiveOutMIDef(Header, RegMask.PhysReg))
1008         LiveOutMIs.insert(MI);
1009   }
1010 
1011   // We've already validated that any VPT predication within the loop will be
1012   // equivalent when we perform the predication transformation; so we know that
1013   // any VPT predicated instruction is predicated upon VCTP. Any live-out
1014   // instruction needs to be predicated, so check this here. The instructions
1015   // in NonPredicated have been found to be a reduction that we can ensure its
1016   // legality.
1017   for (auto *MI : LiveOutMIs) {
1018     if (NonPredicated.count(MI) && FalseLanesUnknown.contains(MI)) {
1019       LLVM_DEBUG(dbgs() << "ARM Loops: Unable to handle live out: " << *MI);
1020       return false;
1021     }
1022   }
1023 
1024   return true;
1025 }
1026 
1027 void LowOverheadLoop::Validate(ARMBasicBlockUtils *BBUtils) {
1028   if (Revert)
1029     return;
1030 
1031   // Check branch target ranges: WLS[TP] can only branch forwards and LE[TP]
1032   // can only jump back.
1033   auto ValidateRanges = [](MachineInstr *Start, MachineInstr *End,
1034                            ARMBasicBlockUtils *BBUtils, MachineLoop &ML) {
1035     MachineBasicBlock *TgtBB = End->getOpcode() == ARM::t2LoopEnd
1036                                    ? End->getOperand(1).getMBB()
1037                                    : End->getOperand(2).getMBB();
1038     // TODO Maybe there's cases where the target doesn't have to be the header,
1039     // but for now be safe and revert.
1040     if (TgtBB != ML.getHeader()) {
1041       LLVM_DEBUG(dbgs() << "ARM Loops: LoopEnd is not targeting header.\n");
1042       return false;
1043     }
1044 
1045     // The WLS and LE instructions have 12-bits for the label offset. WLS
1046     // requires a positive offset, while LE uses negative.
1047     if (BBUtils->getOffsetOf(End) < BBUtils->getOffsetOf(ML.getHeader()) ||
1048         !BBUtils->isBBInRange(End, ML.getHeader(), 4094)) {
1049       LLVM_DEBUG(dbgs() << "ARM Loops: LE offset is out-of-range\n");
1050       return false;
1051     }
1052 
1053     if (Start->getOpcode() == ARM::t2WhileLoopStart &&
1054         (BBUtils->getOffsetOf(Start) >
1055          BBUtils->getOffsetOf(Start->getOperand(1).getMBB()) ||
1056          !BBUtils->isBBInRange(Start, Start->getOperand(1).getMBB(), 4094))) {
1057       LLVM_DEBUG(dbgs() << "ARM Loops: WLS offset is out-of-range!\n");
1058       return false;
1059     }
1060     return true;
1061   };
1062 
1063   // Find a suitable position to insert the loop start instruction. It needs to
1064   // be able to safely define LR.
1065   auto FindStartInsertionPoint = [](MachineInstr *Start, MachineInstr *Dec,
1066                                     MachineBasicBlock::iterator &InsertPt,
1067                                     MachineBasicBlock *&InsertBB,
1068                                     ReachingDefAnalysis &RDA,
1069                                     InstSet &ToRemove) {
1070     // For a t2DoLoopStart it is always valid to use the start insertion point.
1071     // For WLS we can define LR if LR already contains the same value.
1072     if (isDo(Start) || Start->getOperand(0).getReg() == ARM::LR) {
1073       InsertPt = MachineBasicBlock::iterator(Start);
1074       InsertBB = Start->getParent();
1075       return true;
1076     }
1077 
1078     // We've found no suitable LR def and Start doesn't use LR directly. Can we
1079     // just define LR anyway?
1080     if (!RDA.isSafeToDefRegAt(Start, MCRegister::from(ARM::LR)))
1081       return false;
1082 
1083     InsertPt = MachineBasicBlock::iterator(Start);
1084     InsertBB = Start->getParent();
1085     return true;
1086   };
1087 
1088   if (!FindStartInsertionPoint(Start, Dec, StartInsertPt, StartInsertBB, RDA,
1089                                ToRemove)) {
1090     LLVM_DEBUG(dbgs() << "ARM Loops: Unable to find safe insertion point.\n");
1091     Revert = true;
1092     return;
1093   }
1094   LLVM_DEBUG(if (StartInsertPt == StartInsertBB->end())
1095                dbgs() << "ARM Loops: Will insert LoopStart at end of block\n";
1096              else
1097                dbgs() << "ARM Loops: Will insert LoopStart at "
1098                       << *StartInsertPt
1099             );
1100 
1101   Revert = !ValidateRanges(Start, End, BBUtils, ML);
1102   CannotTailPredicate = !ValidateTailPredicate();
1103 }
1104 
1105 bool LowOverheadLoop::AddVCTP(MachineInstr *MI) {
1106   LLVM_DEBUG(dbgs() << "ARM Loops: Adding VCTP: " << *MI);
1107   if (VCTPs.empty()) {
1108     VCTPs.push_back(MI);
1109     return true;
1110   }
1111 
1112   // If we find another VCTP, check whether it uses the same value as the main VCTP.
1113   // If it does, store it in the VCTPs set, else refuse it.
1114   MachineInstr *Prev = VCTPs.back();
1115   if (!Prev->getOperand(1).isIdenticalTo(MI->getOperand(1)) ||
1116       !RDA.hasSameReachingDef(Prev, MI, MI->getOperand(1).getReg().asMCReg())) {
1117     LLVM_DEBUG(dbgs() << "ARM Loops: Found VCTP with a different reaching "
1118                          "definition from the main VCTP");
1119     return false;
1120   }
1121   VCTPs.push_back(MI);
1122   return true;
1123 }
1124 
1125 bool LowOverheadLoop::ValidateMVEInst(MachineInstr* MI) {
1126   if (CannotTailPredicate)
1127     return false;
1128 
1129   if (!shouldInspect(*MI))
1130     return true;
1131 
1132   if (MI->getOpcode() == ARM::MVE_VPSEL ||
1133       MI->getOpcode() == ARM::MVE_VPNOT) {
1134     // TODO: Allow VPSEL and VPNOT, we currently cannot because:
1135     // 1) It will use the VPR as a predicate operand, but doesn't have to be
1136     //    instead a VPT block, which means we can assert while building up
1137     //    the VPT block because we don't find another VPT or VPST to being a new
1138     //    one.
1139     // 2) VPSEL still requires a VPR operand even after tail predicating,
1140     //    which means we can't remove it unless there is another
1141     //    instruction, such as vcmp, that can provide the VPR def.
1142     return false;
1143   }
1144 
1145   // Record all VCTPs and check that they're equivalent to one another.
1146   if (isVCTP(MI) && !AddVCTP(MI))
1147     return false;
1148 
1149   // Inspect uses first so that any instructions that alter the VPR don't
1150   // alter the predicate upon themselves.
1151   const MCInstrDesc &MCID = MI->getDesc();
1152   bool IsUse = false;
1153   unsigned LastOpIdx = MI->getNumOperands() - 1;
1154   for (auto &Op : enumerate(reverse(MCID.operands()))) {
1155     const MachineOperand &MO = MI->getOperand(LastOpIdx - Op.index());
1156     if (!MO.isReg() || !MO.isUse() || MO.getReg() != ARM::VPR)
1157       continue;
1158 
1159     if (ARM::isVpred(Op.value().OperandType)) {
1160       VPTState::addInst(MI);
1161       IsUse = true;
1162     } else if (MI->getOpcode() != ARM::MVE_VPST) {
1163       LLVM_DEBUG(dbgs() << "ARM Loops: Found instruction using vpr: " << *MI);
1164       return false;
1165     }
1166   }
1167 
1168   // If we find an instruction that has been marked as not valid for tail
1169   // predication, only allow the instruction if it's contained within a valid
1170   // VPT block.
1171   bool RequiresExplicitPredication =
1172     (MCID.TSFlags & ARMII::ValidForTailPredication) == 0;
1173   if (isDomainMVE(MI) && RequiresExplicitPredication) {
1174     LLVM_DEBUG(if (!IsUse)
1175                dbgs() << "ARM Loops: Can't tail predicate: " << *MI);
1176     return IsUse;
1177   }
1178 
1179   // If the instruction is already explicitly predicated, then the conversion
1180   // will be fine, but ensure that all store operations are predicated.
1181   if (MI->mayStore())
1182     return IsUse;
1183 
1184   // If this instruction defines the VPR, update the predicate for the
1185   // proceeding instructions.
1186   if (isVectorPredicate(MI)) {
1187     // Clear the existing predicate when we're not in VPT Active state,
1188     // otherwise we add to it.
1189     if (!isVectorPredicated(MI))
1190       VPTState::resetPredicate(MI);
1191     else
1192       VPTState::addPredicate(MI);
1193   }
1194 
1195   // Finally once the predicate has been modified, we can start a new VPT
1196   // block if necessary.
1197   if (isVPTOpcode(MI->getOpcode()))
1198     VPTState::CreateVPTBlock(MI);
1199 
1200   return true;
1201 }
1202 
1203 bool ARMLowOverheadLoops::runOnMachineFunction(MachineFunction &mf) {
1204   const ARMSubtarget &ST = static_cast<const ARMSubtarget&>(mf.getSubtarget());
1205   if (!ST.hasLOB())
1206     return false;
1207 
1208   MF = &mf;
1209   LLVM_DEBUG(dbgs() << "ARM Loops on " << MF->getName() << " ------------- \n");
1210 
1211   MLI = &getAnalysis<MachineLoopInfo>();
1212   RDA = &getAnalysis<ReachingDefAnalysis>();
1213   MF->getProperties().set(MachineFunctionProperties::Property::TracksLiveness);
1214   MRI = &MF->getRegInfo();
1215   TII = static_cast<const ARMBaseInstrInfo*>(ST.getInstrInfo());
1216   TRI = ST.getRegisterInfo();
1217   BBUtils = std::unique_ptr<ARMBasicBlockUtils>(new ARMBasicBlockUtils(*MF));
1218   BBUtils->computeAllBlockSizes();
1219   BBUtils->adjustBBOffsetsAfter(&MF->front());
1220 
1221   bool Changed = false;
1222   for (auto ML : *MLI) {
1223     if (ML->isOutermost())
1224       Changed |= ProcessLoop(ML);
1225   }
1226   Changed |= RevertNonLoops();
1227   return Changed;
1228 }
1229 
1230 bool ARMLowOverheadLoops::ProcessLoop(MachineLoop *ML) {
1231 
1232   bool Changed = false;
1233 
1234   // Process inner loops first.
1235   for (auto I = ML->begin(), E = ML->end(); I != E; ++I)
1236     Changed |= ProcessLoop(*I);
1237 
1238   LLVM_DEBUG(dbgs() << "ARM Loops: Processing loop containing:\n";
1239              if (auto *Preheader = ML->getLoopPreheader())
1240                dbgs() << " - " << Preheader->getName() << "\n";
1241              else if (auto *Preheader = MLI->findLoopPreheader(ML))
1242                dbgs() << " - " << Preheader->getName() << "\n";
1243              else if (auto *Preheader = MLI->findLoopPreheader(ML, true))
1244                dbgs() << " - " << Preheader->getName() << "\n";
1245              for (auto *MBB : ML->getBlocks())
1246                dbgs() << " - " << MBB->getName() << "\n";
1247             );
1248 
1249   // Search the given block for a loop start instruction. If one isn't found,
1250   // and there's only one predecessor block, search that one too.
1251   std::function<MachineInstr*(MachineBasicBlock*)> SearchForStart =
1252     [&SearchForStart](MachineBasicBlock *MBB) -> MachineInstr* {
1253     for (auto &MI : *MBB) {
1254       if (isLoopStart(MI))
1255         return &MI;
1256     }
1257     if (MBB->pred_size() == 1)
1258       return SearchForStart(*MBB->pred_begin());
1259     return nullptr;
1260   };
1261 
1262   LowOverheadLoop LoLoop(*ML, *MLI, *RDA, *TRI, *TII);
1263   // Search the preheader for the start intrinsic.
1264   // FIXME: I don't see why we shouldn't be supporting multiple predecessors
1265   // with potentially multiple set.loop.iterations, so we need to enable this.
1266   if (LoLoop.Preheader)
1267     LoLoop.Start = SearchForStart(LoLoop.Preheader);
1268   else
1269     return false;
1270 
1271   // Find the low-overhead loop components and decide whether or not to fall
1272   // back to a normal loop. Also look for a vctp instructions and decide
1273   // whether we can convert that predicate using tail predication.
1274   for (auto *MBB : reverse(ML->getBlocks())) {
1275     for (auto &MI : *MBB) {
1276       if (MI.isDebugValue())
1277         continue;
1278       else if (MI.getOpcode() == ARM::t2LoopDec)
1279         LoLoop.Dec = &MI;
1280       else if (MI.getOpcode() == ARM::t2LoopEnd)
1281         LoLoop.End = &MI;
1282       else if (MI.getOpcode() == ARM::t2LoopEndDec)
1283         LoLoop.End = LoLoop.Dec = &MI;
1284       else if (isLoopStart(MI))
1285         LoLoop.Start = &MI;
1286       else if (MI.getDesc().isCall()) {
1287         // TODO: Though the call will require LE to execute again, does this
1288         // mean we should revert? Always executing LE hopefully should be
1289         // faster than performing a sub,cmp,br or even subs,br.
1290         LoLoop.Revert = true;
1291         LLVM_DEBUG(dbgs() << "ARM Loops: Found call.\n");
1292       } else {
1293         // Record VPR defs and build up their corresponding vpt blocks.
1294         // Check we know how to tail predicate any mve instructions.
1295         LoLoop.AnalyseMVEInst(&MI);
1296       }
1297     }
1298   }
1299 
1300   LLVM_DEBUG(LoLoop.dump());
1301   if (!LoLoop.FoundAllComponents()) {
1302     LLVM_DEBUG(dbgs() << "ARM Loops: Didn't find loop start, update, end\n");
1303     return false;
1304   }
1305 
1306   // Check that the only instruction using LoopDec is LoopEnd. This can only
1307   // happen when the Dec and End are separate, not a single t2LoopEndDec.
1308   // TODO: Check for copy chains that really have no effect.
1309   if (LoLoop.Dec != LoLoop.End) {
1310     SmallPtrSet<MachineInstr *, 2> Uses;
1311     RDA->getReachingLocalUses(LoLoop.Dec, MCRegister::from(ARM::LR), Uses);
1312     if (Uses.size() > 1 || !Uses.count(LoLoop.End)) {
1313       LLVM_DEBUG(dbgs() << "ARM Loops: Unable to remove LoopDec.\n");
1314       LoLoop.Revert = true;
1315     }
1316   }
1317   LoLoop.Validate(BBUtils.get());
1318   Expand(LoLoop);
1319   return true;
1320 }
1321 
1322 // WhileLoopStart holds the exit block, so produce a cmp lr, 0 and then a
1323 // beq that branches to the exit branch.
1324 // TODO: We could also try to generate a cbz if the value in LR is also in
1325 // another low register.
1326 void ARMLowOverheadLoops::RevertWhile(MachineInstr *MI) const {
1327   LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp: " << *MI);
1328   MachineBasicBlock *DestBB = MI->getOperand(1).getMBB();
1329   unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ?
1330     ARM::tBcc : ARM::t2Bcc;
1331 
1332   RevertWhileLoopStart(MI, TII, BrOpc);
1333 }
1334 
1335 void ARMLowOverheadLoops::RevertDo(MachineInstr *MI) const {
1336   LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to mov: " << *MI);
1337   RevertDoLoopStart(MI, TII);
1338 }
1339 
1340 bool ARMLowOverheadLoops::RevertLoopDec(MachineInstr *MI) const {
1341   LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to sub: " << *MI);
1342   MachineBasicBlock *MBB = MI->getParent();
1343   SmallPtrSet<MachineInstr*, 1> Ignore;
1344   for (auto I = MachineBasicBlock::iterator(MI), E = MBB->end(); I != E; ++I) {
1345     if (I->getOpcode() == ARM::t2LoopEnd) {
1346       Ignore.insert(&*I);
1347       break;
1348     }
1349   }
1350 
1351   // If nothing defines CPSR between LoopDec and LoopEnd, use a t2SUBS.
1352   bool SetFlags =
1353       RDA->isSafeToDefRegAt(MI, MCRegister::from(ARM::CPSR), Ignore);
1354 
1355   llvm::RevertLoopDec(MI, TII, SetFlags);
1356   return SetFlags;
1357 }
1358 
1359 // Generate a subs, or sub and cmp, and a branch instead of an LE.
1360 void ARMLowOverheadLoops::RevertLoopEnd(MachineInstr *MI, bool SkipCmp) const {
1361   LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp, br: " << *MI);
1362 
1363   MachineBasicBlock *DestBB = MI->getOperand(1).getMBB();
1364   unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ?
1365     ARM::tBcc : ARM::t2Bcc;
1366 
1367   llvm::RevertLoopEnd(MI, TII, BrOpc, SkipCmp);
1368 }
1369 
1370 // Generate a subs, or sub and cmp, and a branch instead of an LE.
1371 void ARMLowOverheadLoops::RevertLoopEndDec(MachineInstr *MI) const {
1372   LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to subs, br: " << *MI);
1373   assert(MI->getOpcode() == ARM::t2LoopEndDec && "Expected a t2LoopEndDec!");
1374   MachineBasicBlock *MBB = MI->getParent();
1375 
1376   MachineInstrBuilder MIB =
1377       BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(ARM::t2SUBri));
1378   MIB.addDef(ARM::LR);
1379   MIB.add(MI->getOperand(1));
1380   MIB.addImm(1);
1381   MIB.addImm(ARMCC::AL);
1382   MIB.addReg(ARM::NoRegister);
1383   MIB.addReg(ARM::CPSR);
1384   MIB->getOperand(5).setIsDef(true);
1385 
1386   MachineBasicBlock *DestBB = MI->getOperand(2).getMBB();
1387   unsigned BrOpc =
1388       BBUtils->isBBInRange(MI, DestBB, 254) ? ARM::tBcc : ARM::t2Bcc;
1389 
1390   // Create bne
1391   MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(BrOpc));
1392   MIB.add(MI->getOperand(2)); // branch target
1393   MIB.addImm(ARMCC::NE);      // condition code
1394   MIB.addReg(ARM::CPSR);
1395 
1396   MI->eraseFromParent();
1397 }
1398 
1399 // Perform dead code elimation on the loop iteration count setup expression.
1400 // If we are tail-predicating, the number of elements to be processed is the
1401 // operand of the VCTP instruction in the vector body, see getCount(), which is
1402 // register $r3 in this example:
1403 //
1404 //   $lr = big-itercount-expression
1405 //   ..
1406 //   $lr = t2DoLoopStart renamable $lr
1407 //   vector.body:
1408 //     ..
1409 //     $vpr = MVE_VCTP32 renamable $r3
1410 //     renamable $lr = t2LoopDec killed renamable $lr, 1
1411 //     t2LoopEnd renamable $lr, %vector.body
1412 //     tB %end
1413 //
1414 // What we would like achieve here is to replace the do-loop start pseudo
1415 // instruction t2DoLoopStart with:
1416 //
1417 //    $lr = MVE_DLSTP_32 killed renamable $r3
1418 //
1419 // Thus, $r3 which defines the number of elements, is written to $lr,
1420 // and then we want to delete the whole chain that used to define $lr,
1421 // see the comment below how this chain could look like.
1422 //
1423 void ARMLowOverheadLoops::IterationCountDCE(LowOverheadLoop &LoLoop) {
1424   if (!LoLoop.IsTailPredicationLegal())
1425     return;
1426 
1427   LLVM_DEBUG(dbgs() << "ARM Loops: Trying DCE on loop iteration count.\n");
1428 
1429   MachineInstr *Def =
1430       RDA->getMIOperand(LoLoop.Start, isDo(LoLoop.Start) ? 1 : 0);
1431   if (!Def) {
1432     LLVM_DEBUG(dbgs() << "ARM Loops: Couldn't find iteration count.\n");
1433     return;
1434   }
1435 
1436   // Collect and remove the users of iteration count.
1437   SmallPtrSet<MachineInstr*, 4> Killed  = { LoLoop.Start, LoLoop.Dec,
1438                                             LoLoop.End };
1439   if (!TryRemove(Def, *RDA, LoLoop.ToRemove, Killed))
1440     LLVM_DEBUG(dbgs() << "ARM Loops: Unsafe to remove loop iteration count.\n");
1441 }
1442 
1443 MachineInstr* ARMLowOverheadLoops::ExpandLoopStart(LowOverheadLoop &LoLoop) {
1444   LLVM_DEBUG(dbgs() << "ARM Loops: Expanding LoopStart.\n");
1445   // When using tail-predication, try to delete the dead code that was used to
1446   // calculate the number of loop iterations.
1447   IterationCountDCE(LoLoop);
1448 
1449   MachineBasicBlock::iterator InsertPt = LoLoop.StartInsertPt;
1450   MachineInstr *Start = LoLoop.Start;
1451   MachineBasicBlock *MBB = LoLoop.StartInsertBB;
1452   unsigned Opc = LoLoop.getStartOpcode();
1453   MachineOperand &Count = LoLoop.getLoopStartOperand();
1454 
1455   MachineInstrBuilder MIB =
1456     BuildMI(*MBB, InsertPt, Start->getDebugLoc(), TII->get(Opc));
1457 
1458   MIB.addDef(ARM::LR);
1459   MIB.add(Count);
1460   if (!isDo(Start))
1461     MIB.add(Start->getOperand(1));
1462 
1463   LoLoop.ToRemove.insert(Start);
1464   LLVM_DEBUG(dbgs() << "ARM Loops: Inserted start: " << *MIB);
1465   return &*MIB;
1466 }
1467 
1468 void ARMLowOverheadLoops::ConvertVPTBlocks(LowOverheadLoop &LoLoop) {
1469   auto RemovePredicate = [](MachineInstr *MI) {
1470     if (MI->isDebugInstr())
1471       return;
1472     LLVM_DEBUG(dbgs() << "ARM Loops: Removing predicate from: " << *MI);
1473     int PIdx = llvm::findFirstVPTPredOperandIdx(*MI);
1474     assert(PIdx >= 1 && "Trying to unpredicate a non-predicated instruction");
1475     assert(MI->getOperand(PIdx).getImm() == ARMVCC::Then &&
1476            "Expected Then predicate!");
1477     MI->getOperand(PIdx).setImm(ARMVCC::None);
1478     MI->getOperand(PIdx + 1).setReg(0);
1479   };
1480 
1481   for (auto &Block : LoLoop.getVPTBlocks()) {
1482     SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts();
1483 
1484     auto ReplaceVCMPWithVPT = [&](MachineInstr *&TheVCMP, MachineInstr *At) {
1485       assert(TheVCMP && "Replacing a removed or non-existent VCMP");
1486       // Replace the VCMP with a VPT
1487       MachineInstrBuilder MIB =
1488           BuildMI(*At->getParent(), At, At->getDebugLoc(),
1489                   TII->get(VCMPOpcodeToVPT(TheVCMP->getOpcode())));
1490       MIB.addImm(ARMVCC::Then);
1491       // Register one
1492       MIB.add(TheVCMP->getOperand(1));
1493       // Register two
1494       MIB.add(TheVCMP->getOperand(2));
1495       // The comparison code, e.g. ge, eq, lt
1496       MIB.add(TheVCMP->getOperand(3));
1497       LLVM_DEBUG(dbgs() << "ARM Loops: Combining with VCMP to VPT: " << *MIB);
1498       LoLoop.BlockMasksToRecompute.insert(MIB.getInstr());
1499       LoLoop.ToRemove.insert(TheVCMP);
1500       TheVCMP = nullptr;
1501     };
1502 
1503     if (VPTState::isEntryPredicatedOnVCTP(Block, /*exclusive*/ true)) {
1504       MachineInstr *VPST = Insts.front();
1505       if (VPTState::hasUniformPredicate(Block)) {
1506         // A vpt block starting with VPST, is only predicated upon vctp and has no
1507         // internal vpr defs:
1508         // - Remove vpst.
1509         // - Unpredicate the remaining instructions.
1510         LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *VPST);
1511         for (unsigned i = 1; i < Insts.size(); ++i)
1512           RemovePredicate(Insts[i]);
1513       } else {
1514         // The VPT block has a non-uniform predicate but it uses a vpst and its
1515         // entry is guarded only by a vctp, which means we:
1516         // - Need to remove the original vpst.
1517         // - Then need to unpredicate any following instructions, until
1518         //   we come across the divergent vpr def.
1519         // - Insert a new vpst to predicate the instruction(s) that following
1520         //   the divergent vpr def.
1521         MachineInstr *Divergent = VPTState::getDivergent(Block);
1522         MachineBasicBlock *MBB = Divergent->getParent();
1523         auto DivergentNext = ++MachineBasicBlock::iterator(Divergent);
1524         while (DivergentNext != MBB->end() && DivergentNext->isDebugInstr())
1525           ++DivergentNext;
1526 
1527         bool DivergentNextIsPredicated =
1528             DivergentNext != MBB->end() &&
1529             getVPTInstrPredicate(*DivergentNext) != ARMVCC::None;
1530 
1531         for (auto I = ++MachineBasicBlock::iterator(VPST), E = DivergentNext;
1532              I != E; ++I)
1533           RemovePredicate(&*I);
1534 
1535         // Check if the instruction defining vpr is a vcmp so it can be combined
1536         // with the VPST This should be the divergent instruction
1537         MachineInstr *VCMP =
1538             VCMPOpcodeToVPT(Divergent->getOpcode()) != 0 ? Divergent : nullptr;
1539 
1540         if (DivergentNextIsPredicated) {
1541           // Insert a VPST at the divergent only if the next instruction
1542           // would actually use it. A VCMP following a VPST can be
1543           // merged into a VPT so do that instead if the VCMP exists.
1544           if (!VCMP) {
1545             // Create a VPST (with a null mask for now, we'll recompute it
1546             // later)
1547             MachineInstrBuilder MIB =
1548                 BuildMI(*Divergent->getParent(), Divergent,
1549                         Divergent->getDebugLoc(), TII->get(ARM::MVE_VPST));
1550             MIB.addImm(0);
1551             LLVM_DEBUG(dbgs() << "ARM Loops: Created VPST: " << *MIB);
1552             LoLoop.BlockMasksToRecompute.insert(MIB.getInstr());
1553           } else {
1554             // No RDA checks are necessary here since the VPST would have been
1555             // directly after the VCMP
1556             ReplaceVCMPWithVPT(VCMP, VCMP);
1557           }
1558         }
1559       }
1560       LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *VPST);
1561       LoLoop.ToRemove.insert(VPST);
1562     } else if (Block.containsVCTP()) {
1563       // The vctp will be removed, so either the entire block will be dead or
1564       // the block mask of the vp(s)t will need to be recomputed.
1565       MachineInstr *VPST = Insts.front();
1566       if (Block.size() == 2) {
1567         assert(VPST->getOpcode() == ARM::MVE_VPST &&
1568                "Found a VPST in an otherwise empty vpt block");
1569         LoLoop.ToRemove.insert(VPST);
1570       } else
1571         LoLoop.BlockMasksToRecompute.insert(VPST);
1572     } else if (Insts.front()->getOpcode() == ARM::MVE_VPST) {
1573       // If this block starts with a VPST then attempt to merge it with the
1574       // preceeding un-merged VCMP into a VPT. This VCMP comes from a VPT
1575       // block that no longer exists
1576       MachineInstr *VPST = Insts.front();
1577       auto Next = ++MachineBasicBlock::iterator(VPST);
1578       assert(getVPTInstrPredicate(*Next) != ARMVCC::None &&
1579              "The instruction after a VPST must be predicated");
1580       (void)Next;
1581       MachineInstr *VprDef = RDA->getUniqueReachingMIDef(VPST, ARM::VPR);
1582       if (VprDef && VCMPOpcodeToVPT(VprDef->getOpcode()) &&
1583           !LoLoop.ToRemove.contains(VprDef)) {
1584         MachineInstr *VCMP = VprDef;
1585         // The VCMP and VPST can only be merged if the VCMP's operands will have
1586         // the same values at the VPST.
1587         // If any of the instructions between the VCMP and VPST are predicated
1588         // then a different code path is expected to have merged the VCMP and
1589         // VPST already.
1590         if (!std::any_of(++MachineBasicBlock::iterator(VCMP),
1591                          MachineBasicBlock::iterator(VPST), hasVPRUse) &&
1592             RDA->hasSameReachingDef(VCMP, VPST, VCMP->getOperand(1).getReg()) &&
1593             RDA->hasSameReachingDef(VCMP, VPST, VCMP->getOperand(2).getReg())) {
1594           ReplaceVCMPWithVPT(VCMP, VPST);
1595           LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *VPST);
1596           LoLoop.ToRemove.insert(VPST);
1597         }
1598       }
1599     }
1600   }
1601 
1602   LoLoop.ToRemove.insert(LoLoop.VCTPs.begin(), LoLoop.VCTPs.end());
1603 }
1604 
1605 void ARMLowOverheadLoops::Expand(LowOverheadLoop &LoLoop) {
1606 
1607   // Combine the LoopDec and LoopEnd instructions into LE(TP).
1608   auto ExpandLoopEnd = [this](LowOverheadLoop &LoLoop) {
1609     MachineInstr *End = LoLoop.End;
1610     MachineBasicBlock *MBB = End->getParent();
1611     unsigned Opc = LoLoop.IsTailPredicationLegal() ?
1612       ARM::MVE_LETP : ARM::t2LEUpdate;
1613     MachineInstrBuilder MIB = BuildMI(*MBB, End, End->getDebugLoc(),
1614                                       TII->get(Opc));
1615     MIB.addDef(ARM::LR);
1616     unsigned Off = LoLoop.Dec == LoLoop.End ? 1 : 0;
1617     MIB.add(End->getOperand(Off + 0));
1618     MIB.add(End->getOperand(Off + 1));
1619     LLVM_DEBUG(dbgs() << "ARM Loops: Inserted LE: " << *MIB);
1620     LoLoop.ToRemove.insert(LoLoop.Dec);
1621     LoLoop.ToRemove.insert(End);
1622     return &*MIB;
1623   };
1624 
1625   // TODO: We should be able to automatically remove these branches before we
1626   // get here - probably by teaching analyzeBranch about the pseudo
1627   // instructions.
1628   // If there is an unconditional branch, after I, that just branches to the
1629   // next block, remove it.
1630   auto RemoveDeadBranch = [](MachineInstr *I) {
1631     MachineBasicBlock *BB = I->getParent();
1632     MachineInstr *Terminator = &BB->instr_back();
1633     if (Terminator->isUnconditionalBranch() && I != Terminator) {
1634       MachineBasicBlock *Succ = Terminator->getOperand(0).getMBB();
1635       if (BB->isLayoutSuccessor(Succ)) {
1636         LLVM_DEBUG(dbgs() << "ARM Loops: Removing branch: " << *Terminator);
1637         Terminator->eraseFromParent();
1638       }
1639     }
1640   };
1641 
1642   if (LoLoop.Revert) {
1643     if (LoLoop.Start->getOpcode() == ARM::t2WhileLoopStart)
1644       RevertWhile(LoLoop.Start);
1645     else
1646       RevertDo(LoLoop.Start);
1647     if (LoLoop.Dec == LoLoop.End)
1648       RevertLoopEndDec(LoLoop.End);
1649     else
1650       RevertLoopEnd(LoLoop.End, RevertLoopDec(LoLoop.Dec));
1651   } else {
1652     LoLoop.Start = ExpandLoopStart(LoLoop);
1653     RemoveDeadBranch(LoLoop.Start);
1654     LoLoop.End = ExpandLoopEnd(LoLoop);
1655     RemoveDeadBranch(LoLoop.End);
1656     if (LoLoop.IsTailPredicationLegal())
1657       ConvertVPTBlocks(LoLoop);
1658     for (auto *I : LoLoop.ToRemove) {
1659       LLVM_DEBUG(dbgs() << "ARM Loops: Erasing " << *I);
1660       I->eraseFromParent();
1661     }
1662     for (auto *I : LoLoop.BlockMasksToRecompute) {
1663       LLVM_DEBUG(dbgs() << "ARM Loops: Recomputing VPT/VPST Block Mask: " << *I);
1664       recomputeVPTBlockMask(*I);
1665       LLVM_DEBUG(dbgs() << "           ... done: " << *I);
1666     }
1667   }
1668 
1669   PostOrderLoopTraversal DFS(LoLoop.ML, *MLI);
1670   DFS.ProcessLoop();
1671   const SmallVectorImpl<MachineBasicBlock*> &PostOrder = DFS.getOrder();
1672   for (auto *MBB : PostOrder) {
1673     recomputeLiveIns(*MBB);
1674     // FIXME: For some reason, the live-in print order is non-deterministic for
1675     // our tests and I can't out why... So just sort them.
1676     MBB->sortUniqueLiveIns();
1677   }
1678 
1679   for (auto *MBB : reverse(PostOrder))
1680     recomputeLivenessFlags(*MBB);
1681 
1682   // We've moved, removed and inserted new instructions, so update RDA.
1683   RDA->reset();
1684 }
1685 
1686 bool ARMLowOverheadLoops::RevertNonLoops() {
1687   LLVM_DEBUG(dbgs() << "ARM Loops: Reverting any remaining pseudos...\n");
1688   bool Changed = false;
1689 
1690   for (auto &MBB : *MF) {
1691     SmallVector<MachineInstr*, 4> Starts;
1692     SmallVector<MachineInstr*, 4> Decs;
1693     SmallVector<MachineInstr*, 4> Ends;
1694     SmallVector<MachineInstr *, 4> EndDecs;
1695 
1696     for (auto &I : MBB) {
1697       if (isLoopStart(I))
1698         Starts.push_back(&I);
1699       else if (I.getOpcode() == ARM::t2LoopDec)
1700         Decs.push_back(&I);
1701       else if (I.getOpcode() == ARM::t2LoopEnd)
1702         Ends.push_back(&I);
1703       else if (I.getOpcode() == ARM::t2LoopEndDec)
1704         EndDecs.push_back(&I);
1705     }
1706 
1707     if (Starts.empty() && Decs.empty() && Ends.empty() && EndDecs.empty())
1708       continue;
1709 
1710     Changed = true;
1711 
1712     for (auto *Start : Starts) {
1713       if (Start->getOpcode() == ARM::t2WhileLoopStart)
1714         RevertWhile(Start);
1715       else
1716         RevertDo(Start);
1717     }
1718     for (auto *Dec : Decs)
1719       RevertLoopDec(Dec);
1720 
1721     for (auto *End : Ends)
1722       RevertLoopEnd(End);
1723     for (auto *End : EndDecs)
1724       RevertLoopEndDec(End);
1725   }
1726   return Changed;
1727 }
1728 
1729 FunctionPass *llvm::createARMLowOverheadLoopsPass() {
1730   return new ARMLowOverheadLoops();
1731 }
1732