1 //===- ARMParallelDSP.cpp - Parallel DSP Pass -----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// Armv6 introduced instructions to perform 32-bit SIMD operations. The
11 /// purpose of this pass is do some IR pattern matching to create ACLE
12 /// DSP intrinsics, which map on these 32-bit SIMD operations.
13 /// This pass runs only when unaligned accesses is supported/enabled.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "ARM.h"
18 #include "ARMSubtarget.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/AssumptionCache.h"
23 #include "llvm/Analysis/GlobalsModRef.h"
24 #include "llvm/Analysis/LoopAccessAnalysis.h"
25 #include "llvm/Analysis/TargetLibraryInfo.h"
26 #include "llvm/CodeGen/TargetPassConfig.h"
27 #include "llvm/IR/Instructions.h"
28 #include "llvm/IR/IntrinsicsARM.h"
29 #include "llvm/IR/NoFolder.h"
30 #include "llvm/IR/PatternMatch.h"
31 #include "llvm/Pass.h"
32 #include "llvm/PassRegistry.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Transforms/Scalar.h"
35 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
36 
37 using namespace llvm;
38 using namespace PatternMatch;
39 
40 #define DEBUG_TYPE "arm-parallel-dsp"
41 
42 STATISTIC(NumSMLAD , "Number of smlad instructions generated");
43 
44 static cl::opt<bool>
45 DisableParallelDSP("disable-arm-parallel-dsp", cl::Hidden, cl::init(false),
46                    cl::desc("Disable the ARM Parallel DSP pass"));
47 
48 static cl::opt<unsigned>
49 NumLoadLimit("arm-parallel-dsp-load-limit", cl::Hidden, cl::init(16),
50              cl::desc("Limit the number of loads analysed"));
51 
52 namespace {
53   struct MulCandidate;
54   class Reduction;
55 
56   using MulCandList = SmallVector<std::unique_ptr<MulCandidate>, 8>;
57   using MemInstList = SmallVectorImpl<LoadInst*>;
58   using MulPairList = SmallVector<std::pair<MulCandidate*, MulCandidate*>, 8>;
59 
60   // 'MulCandidate' holds the multiplication instructions that are candidates
61   // for parallel execution.
62   struct MulCandidate {
63     Instruction   *Root;
64     Value*        LHS;
65     Value*        RHS;
66     bool          Exchange = false;
67     bool          ReadOnly = true;
68     bool          Paired = false;
69     SmallVector<LoadInst*, 2> VecLd;    // Container for loads to widen.
70 
71     MulCandidate(Instruction *I, Value *lhs, Value *rhs) :
72       Root(I), LHS(lhs), RHS(rhs) { }
73 
74     bool HasTwoLoadInputs() const {
75       return isa<LoadInst>(LHS) && isa<LoadInst>(RHS);
76     }
77 
78     LoadInst *getBaseLoad() const {
79       return VecLd.front();
80     }
81   };
82 
83   /// Represent a sequence of multiply-accumulate operations with the aim to
84   /// perform the multiplications in parallel.
85   class Reduction {
86     Instruction     *Root = nullptr;
87     Value           *Acc = nullptr;
88     MulCandList     Muls;
89     MulPairList        MulPairs;
90     SetVector<Instruction*> Adds;
91 
92   public:
93     Reduction() = delete;
94 
95     Reduction (Instruction *Add) : Root(Add) { }
96 
97     /// Record an Add instruction that is a part of the this reduction.
98     void InsertAdd(Instruction *I) { Adds.insert(I); }
99 
100     /// Create MulCandidates, each rooted at a Mul instruction, that is a part
101     /// of this reduction.
102     void InsertMuls() {
103       auto GetMulOperand = [](Value *V) -> Instruction* {
104         if (auto *SExt = dyn_cast<SExtInst>(V)) {
105           if (auto *I = dyn_cast<Instruction>(SExt->getOperand(0)))
106             if (I->getOpcode() == Instruction::Mul)
107               return I;
108         } else if (auto *I = dyn_cast<Instruction>(V)) {
109           if (I->getOpcode() == Instruction::Mul)
110             return I;
111         }
112         return nullptr;
113       };
114 
115       auto InsertMul = [this](Instruction *I) {
116         Value *LHS = cast<Instruction>(I->getOperand(0))->getOperand(0);
117         Value *RHS = cast<Instruction>(I->getOperand(1))->getOperand(0);
118         Muls.push_back(std::make_unique<MulCandidate>(I, LHS, RHS));
119       };
120 
121       for (auto *Add : Adds) {
122         if (Add == Acc)
123           continue;
124         if (auto *Mul = GetMulOperand(Add->getOperand(0)))
125           InsertMul(Mul);
126         if (auto *Mul = GetMulOperand(Add->getOperand(1)))
127           InsertMul(Mul);
128       }
129     }
130 
131     /// Add the incoming accumulator value, returns true if a value had not
132     /// already been added. Returning false signals to the user that this
133     /// reduction already has a value to initialise the accumulator.
134     bool InsertAcc(Value *V) {
135       if (Acc)
136         return false;
137       Acc = V;
138       return true;
139     }
140 
141     /// Set two MulCandidates, rooted at muls, that can be executed as a single
142     /// parallel operation.
143     void AddMulPair(MulCandidate *Mul0, MulCandidate *Mul1,
144                     bool Exchange = false) {
145       LLVM_DEBUG(dbgs() << "Pairing:\n"
146                  << *Mul0->Root << "\n"
147                  << *Mul1->Root << "\n");
148       Mul0->Paired = true;
149       Mul1->Paired = true;
150       if (Exchange)
151         Mul1->Exchange = true;
152       MulPairs.push_back(std::make_pair(Mul0, Mul1));
153     }
154 
155     /// Return true if enough mul operations are found that can be executed in
156     /// parallel.
157     bool CreateParallelPairs();
158 
159     /// Return the add instruction which is the root of the reduction.
160     Instruction *getRoot() { return Root; }
161 
162     bool is64Bit() const { return Root->getType()->isIntegerTy(64); }
163 
164     Type *getType() const { return Root->getType(); }
165 
166     /// Return the incoming value to be accumulated. This maybe null.
167     Value *getAccumulator() { return Acc; }
168 
169     /// Return the set of adds that comprise the reduction.
170     SetVector<Instruction*> &getAdds() { return Adds; }
171 
172     /// Return the MulCandidate, rooted at mul instruction, that comprise the
173     /// the reduction.
174     MulCandList &getMuls() { return Muls; }
175 
176     /// Return the MulCandidate, rooted at mul instructions, that have been
177     /// paired for parallel execution.
178     MulPairList &getMulPairs() { return MulPairs; }
179 
180     /// To finalise, replace the uses of the root with the intrinsic call.
181     void UpdateRoot(Instruction *SMLAD) {
182       Root->replaceAllUsesWith(SMLAD);
183     }
184 
185     void dump() {
186       LLVM_DEBUG(dbgs() << "Reduction:\n";
187         for (auto *Add : Adds)
188           LLVM_DEBUG(dbgs() << *Add << "\n");
189         for (auto &Mul : Muls)
190           LLVM_DEBUG(dbgs() << *Mul->Root << "\n"
191                      << "  " << *Mul->LHS << "\n"
192                      << "  " << *Mul->RHS << "\n");
193         LLVM_DEBUG(if (Acc) dbgs() << "Acc in: " << *Acc << "\n")
194       );
195     }
196   };
197 
198   class WidenedLoad {
199     LoadInst *NewLd = nullptr;
200     SmallVector<LoadInst*, 4> Loads;
201 
202   public:
203     WidenedLoad(SmallVectorImpl<LoadInst*> &Lds, LoadInst *Wide)
204       : NewLd(Wide) {
205       append_range(Loads, Lds);
206     }
207     LoadInst *getLoad() {
208       return NewLd;
209     }
210   };
211 
212   class ARMParallelDSP : public FunctionPass {
213     ScalarEvolution   *SE;
214     AliasAnalysis     *AA;
215     TargetLibraryInfo *TLI;
216     DominatorTree     *DT;
217     const DataLayout  *DL;
218     Module            *M;
219     std::map<LoadInst*, LoadInst*> LoadPairs;
220     SmallPtrSet<LoadInst*, 4> OffsetLoads;
221     std::map<LoadInst*, std::unique_ptr<WidenedLoad>> WideLoads;
222 
223     template<unsigned>
224     bool IsNarrowSequence(Value *V);
225     bool Search(Value *V, BasicBlock *BB, Reduction &R);
226     bool RecordMemoryOps(BasicBlock *BB);
227     void InsertParallelMACs(Reduction &Reduction);
228     bool AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1, MemInstList &VecMem);
229     LoadInst* CreateWideLoad(MemInstList &Loads, IntegerType *LoadTy);
230     bool CreateParallelPairs(Reduction &R);
231 
232     /// Try to match and generate: SMLAD, SMLADX - Signed Multiply Accumulate
233     /// Dual performs two signed 16x16-bit multiplications. It adds the
234     /// products to a 32-bit accumulate operand. Optionally, the instruction can
235     /// exchange the halfwords of the second operand before performing the
236     /// arithmetic.
237     bool MatchSMLAD(Function &F);
238 
239   public:
240     static char ID;
241 
242     ARMParallelDSP() : FunctionPass(ID) { }
243 
244     void getAnalysisUsage(AnalysisUsage &AU) const override {
245       FunctionPass::getAnalysisUsage(AU);
246       AU.addRequired<AssumptionCacheTracker>();
247       AU.addRequired<ScalarEvolutionWrapperPass>();
248       AU.addRequired<AAResultsWrapperPass>();
249       AU.addRequired<TargetLibraryInfoWrapperPass>();
250       AU.addRequired<DominatorTreeWrapperPass>();
251       AU.addRequired<TargetPassConfig>();
252       AU.addPreserved<ScalarEvolutionWrapperPass>();
253       AU.addPreserved<GlobalsAAWrapperPass>();
254       AU.setPreservesCFG();
255     }
256 
257     bool runOnFunction(Function &F) override {
258       if (DisableParallelDSP)
259         return false;
260       if (skipFunction(F))
261         return false;
262 
263       SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
264       AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
265       TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
266       DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
267       auto &TPC = getAnalysis<TargetPassConfig>();
268 
269       M = F.getParent();
270       DL = &M->getDataLayout();
271 
272       auto &TM = TPC.getTM<TargetMachine>();
273       auto *ST = &TM.getSubtarget<ARMSubtarget>(F);
274 
275       if (!ST->allowsUnalignedMem()) {
276         LLVM_DEBUG(dbgs() << "Unaligned memory access not supported: not "
277                              "running pass ARMParallelDSP\n");
278         return false;
279       }
280 
281       if (!ST->hasDSP()) {
282         LLVM_DEBUG(dbgs() << "DSP extension not enabled: not running pass "
283                              "ARMParallelDSP\n");
284         return false;
285       }
286 
287       if (!ST->isLittle()) {
288         LLVM_DEBUG(dbgs() << "Only supporting little endian: not running pass "
289                           << "ARMParallelDSP\n");
290         return false;
291       }
292 
293       LLVM_DEBUG(dbgs() << "\n== Parallel DSP pass ==\n");
294       LLVM_DEBUG(dbgs() << " - " << F.getName() << "\n\n");
295 
296       bool Changes = MatchSMLAD(F);
297       return Changes;
298     }
299   };
300 }
301 
302 bool ARMParallelDSP::AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1,
303                                         MemInstList &VecMem) {
304   if (!Ld0 || !Ld1)
305     return false;
306 
307   if (!LoadPairs.count(Ld0) || LoadPairs[Ld0] != Ld1)
308     return false;
309 
310   LLVM_DEBUG(dbgs() << "Loads are sequential and valid:\n";
311     dbgs() << "Ld0:"; Ld0->dump();
312     dbgs() << "Ld1:"; Ld1->dump();
313   );
314 
315   VecMem.clear();
316   VecMem.push_back(Ld0);
317   VecMem.push_back(Ld1);
318   return true;
319 }
320 
321 // MaxBitwidth: the maximum supported bitwidth of the elements in the DSP
322 // instructions, which is set to 16. So here we should collect all i8 and i16
323 // narrow operations.
324 // TODO: we currently only collect i16, and will support i8 later, so that's
325 // why we check that types are equal to MaxBitWidth, and not <= MaxBitWidth.
326 template<unsigned MaxBitWidth>
327 bool ARMParallelDSP::IsNarrowSequence(Value *V) {
328   if (auto *SExt = dyn_cast<SExtInst>(V)) {
329     if (SExt->getSrcTy()->getIntegerBitWidth() != MaxBitWidth)
330       return false;
331 
332     if (auto *Ld = dyn_cast<LoadInst>(SExt->getOperand(0))) {
333       // Check that this load could be paired.
334       return LoadPairs.count(Ld) || OffsetLoads.count(Ld);
335     }
336   }
337   return false;
338 }
339 
340 /// Iterate through the block and record base, offset pairs of loads which can
341 /// be widened into a single load.
342 bool ARMParallelDSP::RecordMemoryOps(BasicBlock *BB) {
343   SmallVector<LoadInst*, 8> Loads;
344   SmallVector<Instruction*, 8> Writes;
345   LoadPairs.clear();
346   WideLoads.clear();
347 
348   // Collect loads and instruction that may write to memory. For now we only
349   // record loads which are simple, sign-extended and have a single user.
350   // TODO: Allow zero-extended loads.
351   for (auto &I : *BB) {
352     if (I.mayWriteToMemory())
353       Writes.push_back(&I);
354     auto *Ld = dyn_cast<LoadInst>(&I);
355     if (!Ld || !Ld->isSimple() ||
356         !Ld->hasOneUse() || !isa<SExtInst>(Ld->user_back()))
357       continue;
358     Loads.push_back(Ld);
359   }
360 
361   if (Loads.empty() || Loads.size() > NumLoadLimit)
362     return false;
363 
364   using InstSet = std::set<Instruction*>;
365   using DepMap = std::map<Instruction*, InstSet>;
366   DepMap RAWDeps;
367 
368   // Record any writes that may alias a load.
369   const auto Size = LocationSize::beforeOrAfterPointer();
370   for (auto Write : Writes) {
371     for (auto Read : Loads) {
372       MemoryLocation ReadLoc =
373         MemoryLocation(Read->getPointerOperand(), Size);
374 
375       if (!isModOrRefSet(intersectModRef(AA->getModRefInfo(Write, ReadLoc),
376           ModRefInfo::ModRef)))
377         continue;
378       if (Write->comesBefore(Read))
379         RAWDeps[Read].insert(Write);
380     }
381   }
382 
383   // Check whether there's not a write between the two loads which would
384   // prevent them from being safely merged.
385   auto SafeToPair = [&](LoadInst *Base, LoadInst *Offset) {
386     bool BaseFirst = Base->comesBefore(Offset);
387     LoadInst *Dominator = BaseFirst ? Base : Offset;
388     LoadInst *Dominated = BaseFirst ? Offset : Base;
389 
390     if (RAWDeps.count(Dominated)) {
391       InstSet &WritesBefore = RAWDeps[Dominated];
392 
393       for (auto Before : WritesBefore) {
394         // We can't move the second load backward, past a write, to merge
395         // with the first load.
396         if (Dominator->comesBefore(Before))
397           return false;
398       }
399     }
400     return true;
401   };
402 
403   // Record base, offset load pairs.
404   for (auto *Base : Loads) {
405     for (auto *Offset : Loads) {
406       if (Base == Offset || OffsetLoads.count(Offset))
407         continue;
408 
409       if (isConsecutiveAccess(Base, Offset, *DL, *SE) &&
410           SafeToPair(Base, Offset)) {
411         LoadPairs[Base] = Offset;
412         OffsetLoads.insert(Offset);
413         break;
414       }
415     }
416   }
417 
418   LLVM_DEBUG(if (!LoadPairs.empty()) {
419                dbgs() << "Consecutive load pairs:\n";
420                for (auto &MapIt : LoadPairs) {
421                  LLVM_DEBUG(dbgs() << *MapIt.first << ", "
422                             << *MapIt.second << "\n");
423                }
424              });
425   return LoadPairs.size() > 1;
426 }
427 
428 // Search recursively back through the operands to find a tree of values that
429 // form a multiply-accumulate chain. The search records the Add and Mul
430 // instructions that form the reduction and allows us to find a single value
431 // to be used as the initial input to the accumlator.
432 bool ARMParallelDSP::Search(Value *V, BasicBlock *BB, Reduction &R) {
433   // If we find a non-instruction, try to use it as the initial accumulator
434   // value. This may have already been found during the search in which case
435   // this function will return false, signaling a search fail.
436   auto *I = dyn_cast<Instruction>(V);
437   if (!I)
438     return R.InsertAcc(V);
439 
440   if (I->getParent() != BB)
441     return false;
442 
443   switch (I->getOpcode()) {
444   default:
445     break;
446   case Instruction::PHI:
447     // Could be the accumulator value.
448     return R.InsertAcc(V);
449   case Instruction::Add: {
450     // Adds should be adding together two muls, or another add and a mul to
451     // be within the mac chain. One of the operands may also be the
452     // accumulator value at which point we should stop searching.
453     R.InsertAdd(I);
454     Value *LHS = I->getOperand(0);
455     Value *RHS = I->getOperand(1);
456     bool ValidLHS = Search(LHS, BB, R);
457     bool ValidRHS = Search(RHS, BB, R);
458 
459     if (ValidLHS && ValidRHS)
460       return true;
461 
462     // Ensure we don't add the root as the incoming accumulator.
463     if (R.getRoot() == I)
464       return false;
465 
466     return R.InsertAcc(I);
467   }
468   case Instruction::Mul: {
469     Value *MulOp0 = I->getOperand(0);
470     Value *MulOp1 = I->getOperand(1);
471     return IsNarrowSequence<16>(MulOp0) && IsNarrowSequence<16>(MulOp1);
472   }
473   case Instruction::SExt:
474     return Search(I->getOperand(0), BB, R);
475   }
476   return false;
477 }
478 
479 // The pass needs to identify integer add/sub reductions of 16-bit vector
480 // multiplications.
481 // To use SMLAD:
482 // 1) we first need to find integer add then look for this pattern:
483 //
484 // acc0 = ...
485 // ld0 = load i16
486 // sext0 = sext i16 %ld0 to i32
487 // ld1 = load i16
488 // sext1 = sext i16 %ld1 to i32
489 // mul0 = mul %sext0, %sext1
490 // ld2 = load i16
491 // sext2 = sext i16 %ld2 to i32
492 // ld3 = load i16
493 // sext3 = sext i16 %ld3 to i32
494 // mul1 = mul i32 %sext2, %sext3
495 // add0 = add i32 %mul0, %acc0
496 // acc1 = add i32 %add0, %mul1
497 //
498 // Which can be selected to:
499 //
500 // ldr r0
501 // ldr r1
502 // smlad r2, r0, r1, r2
503 //
504 // If constants are used instead of loads, these will need to be hoisted
505 // out and into a register.
506 //
507 // If loop invariants are used instead of loads, these need to be packed
508 // before the loop begins.
509 //
510 bool ARMParallelDSP::MatchSMLAD(Function &F) {
511   bool Changed = false;
512 
513   for (auto &BB : F) {
514     SmallPtrSet<Instruction*, 4> AllAdds;
515     if (!RecordMemoryOps(&BB))
516       continue;
517 
518     for (Instruction &I : reverse(BB)) {
519       if (I.getOpcode() != Instruction::Add)
520         continue;
521 
522       if (AllAdds.count(&I))
523         continue;
524 
525       const auto *Ty = I.getType();
526       if (!Ty->isIntegerTy(32) && !Ty->isIntegerTy(64))
527         continue;
528 
529       Reduction R(&I);
530       if (!Search(&I, &BB, R))
531         continue;
532 
533       R.InsertMuls();
534       LLVM_DEBUG(dbgs() << "After search, Reduction:\n"; R.dump());
535 
536       if (!CreateParallelPairs(R))
537         continue;
538 
539       InsertParallelMACs(R);
540       Changed = true;
541       AllAdds.insert(R.getAdds().begin(), R.getAdds().end());
542       LLVM_DEBUG(dbgs() << "BB after inserting parallel MACs:\n" << BB);
543     }
544   }
545 
546   return Changed;
547 }
548 
549 bool ARMParallelDSP::CreateParallelPairs(Reduction &R) {
550 
551   // Not enough mul operations to make a pair.
552   if (R.getMuls().size() < 2)
553     return false;
554 
555   // Check that the muls operate directly upon sign extended loads.
556   for (auto &MulCand : R.getMuls()) {
557     if (!MulCand->HasTwoLoadInputs())
558       return false;
559   }
560 
561   auto CanPair = [&](Reduction &R, MulCandidate *PMul0, MulCandidate *PMul1) {
562     // The first elements of each vector should be loads with sexts. If we
563     // find that its two pairs of consecutive loads, then these can be
564     // transformed into two wider loads and the users can be replaced with
565     // DSP intrinsics.
566     auto Ld0 = static_cast<LoadInst*>(PMul0->LHS);
567     auto Ld1 = static_cast<LoadInst*>(PMul1->LHS);
568     auto Ld2 = static_cast<LoadInst*>(PMul0->RHS);
569     auto Ld3 = static_cast<LoadInst*>(PMul1->RHS);
570 
571     // Check that each mul is operating on two different loads.
572     if (Ld0 == Ld2 || Ld1 == Ld3)
573       return false;
574 
575     if (AreSequentialLoads(Ld0, Ld1, PMul0->VecLd)) {
576       if (AreSequentialLoads(Ld2, Ld3, PMul1->VecLd)) {
577         LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n");
578         R.AddMulPair(PMul0, PMul1);
579         return true;
580       } else if (AreSequentialLoads(Ld3, Ld2, PMul1->VecLd)) {
581         LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n");
582         LLVM_DEBUG(dbgs() << "    exchanging Ld2 and Ld3\n");
583         R.AddMulPair(PMul0, PMul1, true);
584         return true;
585       }
586     } else if (AreSequentialLoads(Ld1, Ld0, PMul0->VecLd) &&
587                AreSequentialLoads(Ld2, Ld3, PMul1->VecLd)) {
588       LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n");
589       LLVM_DEBUG(dbgs() << "    exchanging Ld0 and Ld1\n");
590       LLVM_DEBUG(dbgs() << "    and swapping muls\n");
591       // Only the second operand can be exchanged, so swap the muls.
592       R.AddMulPair(PMul1, PMul0, true);
593       return true;
594     }
595     return false;
596   };
597 
598   MulCandList &Muls = R.getMuls();
599   const unsigned Elems = Muls.size();
600   for (unsigned i = 0; i < Elems; ++i) {
601     MulCandidate *PMul0 = static_cast<MulCandidate*>(Muls[i].get());
602     if (PMul0->Paired)
603       continue;
604 
605     for (unsigned j = 0; j < Elems; ++j) {
606       if (i == j)
607         continue;
608 
609       MulCandidate *PMul1 = static_cast<MulCandidate*>(Muls[j].get());
610       if (PMul1->Paired)
611         continue;
612 
613       const Instruction *Mul0 = PMul0->Root;
614       const Instruction *Mul1 = PMul1->Root;
615       if (Mul0 == Mul1)
616         continue;
617 
618       assert(PMul0 != PMul1 && "expected different chains");
619 
620       if (CanPair(R, PMul0, PMul1))
621         break;
622     }
623   }
624   return !R.getMulPairs().empty();
625 }
626 
627 void ARMParallelDSP::InsertParallelMACs(Reduction &R) {
628 
629   auto CreateSMLAD = [&](LoadInst* WideLd0, LoadInst *WideLd1,
630                          Value *Acc, bool Exchange,
631                          Instruction *InsertAfter) {
632     // Replace the reduction chain with an intrinsic call
633 
634     Value* Args[] = { WideLd0, WideLd1, Acc };
635     Function *SMLAD = nullptr;
636     if (Exchange)
637       SMLAD = Acc->getType()->isIntegerTy(32) ?
638         Intrinsic::getDeclaration(M, Intrinsic::arm_smladx) :
639         Intrinsic::getDeclaration(M, Intrinsic::arm_smlaldx);
640     else
641       SMLAD = Acc->getType()->isIntegerTy(32) ?
642         Intrinsic::getDeclaration(M, Intrinsic::arm_smlad) :
643         Intrinsic::getDeclaration(M, Intrinsic::arm_smlald);
644 
645     IRBuilder<NoFolder> Builder(InsertAfter->getParent(),
646                                 BasicBlock::iterator(InsertAfter));
647     Instruction *Call = Builder.CreateCall(SMLAD, Args);
648     NumSMLAD++;
649     return Call;
650   };
651 
652   // Return the instruction after the dominated instruction.
653   auto GetInsertPoint = [this](Value *A, Value *B) {
654     assert((isa<Instruction>(A) || isa<Instruction>(B)) &&
655            "expected at least one instruction");
656 
657     Value *V = nullptr;
658     if (!isa<Instruction>(A))
659       V = B;
660     else if (!isa<Instruction>(B))
661       V = A;
662     else
663       V = DT->dominates(cast<Instruction>(A), cast<Instruction>(B)) ? B : A;
664 
665     return &*++BasicBlock::iterator(cast<Instruction>(V));
666   };
667 
668   Value *Acc = R.getAccumulator();
669 
670   // For any muls that were discovered but not paired, accumulate their values
671   // as before.
672   IRBuilder<NoFolder> Builder(R.getRoot()->getParent());
673   MulCandList &MulCands = R.getMuls();
674   for (auto &MulCand : MulCands) {
675     if (MulCand->Paired)
676       continue;
677 
678     Instruction *Mul = cast<Instruction>(MulCand->Root);
679     LLVM_DEBUG(dbgs() << "Accumulating unpaired mul: " << *Mul << "\n");
680 
681     if (R.getType() != Mul->getType()) {
682       assert(R.is64Bit() && "expected 64-bit result");
683       Builder.SetInsertPoint(&*++BasicBlock::iterator(Mul));
684       Mul = cast<Instruction>(Builder.CreateSExt(Mul, R.getRoot()->getType()));
685     }
686 
687     if (!Acc) {
688       Acc = Mul;
689       continue;
690     }
691 
692     // If Acc is the original incoming value to the reduction, it could be a
693     // phi. But the phi will dominate Mul, meaning that Mul will be the
694     // insertion point.
695     Builder.SetInsertPoint(GetInsertPoint(Mul, Acc));
696     Acc = Builder.CreateAdd(Mul, Acc);
697   }
698 
699   if (!Acc) {
700     Acc = R.is64Bit() ?
701       ConstantInt::get(IntegerType::get(M->getContext(), 64), 0) :
702       ConstantInt::get(IntegerType::get(M->getContext(), 32), 0);
703   } else if (Acc->getType() != R.getType()) {
704     Builder.SetInsertPoint(R.getRoot());
705     Acc = Builder.CreateSExt(Acc, R.getType());
706   }
707 
708   // Roughly sort the mul pairs in their program order.
709   llvm::sort(R.getMulPairs(), [](auto &PairA, auto &PairB) {
710     const Instruction *A = PairA.first->Root;
711     const Instruction *B = PairB.first->Root;
712     return A->comesBefore(B);
713   });
714 
715   IntegerType *Ty = IntegerType::get(M->getContext(), 32);
716   for (auto &Pair : R.getMulPairs()) {
717     MulCandidate *LHSMul = Pair.first;
718     MulCandidate *RHSMul = Pair.second;
719     LoadInst *BaseLHS = LHSMul->getBaseLoad();
720     LoadInst *BaseRHS = RHSMul->getBaseLoad();
721     LoadInst *WideLHS = WideLoads.count(BaseLHS) ?
722       WideLoads[BaseLHS]->getLoad() : CreateWideLoad(LHSMul->VecLd, Ty);
723     LoadInst *WideRHS = WideLoads.count(BaseRHS) ?
724       WideLoads[BaseRHS]->getLoad() : CreateWideLoad(RHSMul->VecLd, Ty);
725 
726     Instruction *InsertAfter = GetInsertPoint(WideLHS, WideRHS);
727     InsertAfter = GetInsertPoint(InsertAfter, Acc);
728     Acc = CreateSMLAD(WideLHS, WideRHS, Acc, RHSMul->Exchange, InsertAfter);
729   }
730   R.UpdateRoot(cast<Instruction>(Acc));
731 }
732 
733 LoadInst* ARMParallelDSP::CreateWideLoad(MemInstList &Loads,
734                                          IntegerType *LoadTy) {
735   assert(Loads.size() == 2 && "currently only support widening two loads");
736 
737   LoadInst *Base = Loads[0];
738   LoadInst *Offset = Loads[1];
739 
740   Instruction *BaseSExt = dyn_cast<SExtInst>(Base->user_back());
741   Instruction *OffsetSExt = dyn_cast<SExtInst>(Offset->user_back());
742 
743   assert((BaseSExt && OffsetSExt)
744          && "Loads should have a single, extending, user");
745 
746   std::function<void(Value*, Value*)> MoveBefore =
747     [&](Value *A, Value *B) -> void {
748       if (!isa<Instruction>(A) || !isa<Instruction>(B))
749         return;
750 
751       auto *Source = cast<Instruction>(A);
752       auto *Sink = cast<Instruction>(B);
753 
754       if (DT->dominates(Source, Sink) ||
755           Source->getParent() != Sink->getParent() ||
756           isa<PHINode>(Source) || isa<PHINode>(Sink))
757         return;
758 
759       Source->moveBefore(Sink);
760       for (auto &Op : Source->operands())
761         MoveBefore(Op, Source);
762     };
763 
764   // Insert the load at the point of the original dominating load.
765   LoadInst *DomLoad = DT->dominates(Base, Offset) ? Base : Offset;
766   IRBuilder<NoFolder> IRB(DomLoad->getParent(),
767                           ++BasicBlock::iterator(DomLoad));
768 
769   // Bitcast the pointer to a wider type and create the wide load, while making
770   // sure to maintain the original alignment as this prevents ldrd from being
771   // generated when it could be illegal due to memory alignment.
772   const unsigned AddrSpace = DomLoad->getPointerAddressSpace();
773   Value *VecPtr = IRB.CreateBitCast(Base->getPointerOperand(),
774                                     LoadTy->getPointerTo(AddrSpace));
775   LoadInst *WideLoad = IRB.CreateAlignedLoad(LoadTy, VecPtr, Base->getAlign());
776 
777   // Make sure everything is in the correct order in the basic block.
778   MoveBefore(Base->getPointerOperand(), VecPtr);
779   MoveBefore(VecPtr, WideLoad);
780 
781   // From the wide load, create two values that equal the original two loads.
782   // Loads[0] needs trunc while Loads[1] needs a lshr and trunc.
783   // TODO: Support big-endian as well.
784   Value *Bottom = IRB.CreateTrunc(WideLoad, Base->getType());
785   Value *NewBaseSExt = IRB.CreateSExt(Bottom, BaseSExt->getType());
786   BaseSExt->replaceAllUsesWith(NewBaseSExt);
787 
788   IntegerType *OffsetTy = cast<IntegerType>(Offset->getType());
789   Value *ShiftVal = ConstantInt::get(LoadTy, OffsetTy->getBitWidth());
790   Value *Top = IRB.CreateLShr(WideLoad, ShiftVal);
791   Value *Trunc = IRB.CreateTrunc(Top, OffsetTy);
792   Value *NewOffsetSExt = IRB.CreateSExt(Trunc, OffsetSExt->getType());
793   OffsetSExt->replaceAllUsesWith(NewOffsetSExt);
794 
795   LLVM_DEBUG(dbgs() << "From Base and Offset:\n"
796              << *Base << "\n" << *Offset << "\n"
797              << "Created Wide Load:\n"
798              << *WideLoad << "\n"
799              << *Bottom << "\n"
800              << *NewBaseSExt << "\n"
801              << *Top << "\n"
802              << *Trunc << "\n"
803              << *NewOffsetSExt << "\n");
804   WideLoads.emplace(std::make_pair(Base,
805                                    std::make_unique<WidenedLoad>(Loads, WideLoad)));
806   return WideLoad;
807 }
808 
809 Pass *llvm::createARMParallelDSPPass() {
810   return new ARMParallelDSP();
811 }
812 
813 char ARMParallelDSP::ID = 0;
814 
815 INITIALIZE_PASS_BEGIN(ARMParallelDSP, "arm-parallel-dsp",
816                 "Transform functions to use DSP intrinsics", false, false)
817 INITIALIZE_PASS_END(ARMParallelDSP, "arm-parallel-dsp",
818                 "Transform functions to use DSP intrinsics", false, false)
819