1//===-- ARMRegisterInfo.td - ARM Register defs -------------*- tablegen -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9include "ARMSystemRegister.td"
10
11//===----------------------------------------------------------------------===//
12//  Declarations that describe the ARM register file
13//===----------------------------------------------------------------------===//
14
15// Registers are identified with 4-bit ID numbers.
16class ARMReg<bits<16> Enc, string n, list<Register> subregs = [],
17             list<string> altNames = []> : Register<n, altNames> {
18  let HWEncoding = Enc;
19  let Namespace = "ARM";
20  let SubRegs = subregs;
21  // All bits of ARM registers with sub-registers are covered by sub-registers.
22  let CoveredBySubRegs = 1;
23}
24
25class ARMFReg<bits<16> Enc, string n> : Register<n> {
26  let HWEncoding = Enc;
27  let Namespace = "ARM";
28}
29
30let Namespace = "ARM",
31    FallbackRegAltNameIndex = NoRegAltName in {
32  def RegNamesRaw : RegAltNameIndex;
33}
34
35// Subregister indices.
36let Namespace = "ARM" in {
37def qqsub_0 : SubRegIndex<256>;
38def qqsub_1 : SubRegIndex<256, 256>;
39
40// Note: Code depends on these having consecutive numbers.
41def qsub_0 : SubRegIndex<128>;
42def qsub_1 : SubRegIndex<128, 128>;
43def qsub_2 : ComposedSubRegIndex<qqsub_1, qsub_0>;
44def qsub_3 : ComposedSubRegIndex<qqsub_1, qsub_1>;
45
46def dsub_0 : SubRegIndex<64>;
47def dsub_1 : SubRegIndex<64, 64>;
48def dsub_2 : ComposedSubRegIndex<qsub_1, dsub_0>;
49def dsub_3 : ComposedSubRegIndex<qsub_1, dsub_1>;
50def dsub_4 : ComposedSubRegIndex<qsub_2, dsub_0>;
51def dsub_5 : ComposedSubRegIndex<qsub_2, dsub_1>;
52def dsub_6 : ComposedSubRegIndex<qsub_3, dsub_0>;
53def dsub_7 : ComposedSubRegIndex<qsub_3, dsub_1>;
54
55def ssub_0  : SubRegIndex<32>;
56def ssub_1  : SubRegIndex<32, 32>;
57def ssub_2  : ComposedSubRegIndex<dsub_1, ssub_0>;
58def ssub_3  : ComposedSubRegIndex<dsub_1, ssub_1>;
59def ssub_4  : ComposedSubRegIndex<dsub_2, ssub_0>;
60def ssub_5  : ComposedSubRegIndex<dsub_2, ssub_1>;
61def ssub_6  : ComposedSubRegIndex<dsub_3, ssub_0>;
62def ssub_7  : ComposedSubRegIndex<dsub_3, ssub_1>;
63def ssub_8  : ComposedSubRegIndex<dsub_4, ssub_0>;
64def ssub_9  : ComposedSubRegIndex<dsub_4, ssub_1>;
65def ssub_10 : ComposedSubRegIndex<dsub_5, ssub_0>;
66def ssub_11 : ComposedSubRegIndex<dsub_5, ssub_1>;
67def ssub_12 : ComposedSubRegIndex<dsub_6, ssub_0>;
68def ssub_13 : ComposedSubRegIndex<dsub_6, ssub_1>;
69
70def gsub_0 : SubRegIndex<32>;
71def gsub_1 : SubRegIndex<32, 32>;
72// Let TableGen synthesize the remaining 12 ssub_* indices.
73// We don't need to name them.
74}
75
76// Integer registers
77def R0  : ARMReg< 0, "r0">,  DwarfRegNum<[0]>;
78def R1  : ARMReg< 1, "r1">,  DwarfRegNum<[1]>;
79def R2  : ARMReg< 2, "r2">,  DwarfRegNum<[2]>;
80def R3  : ARMReg< 3, "r3">,  DwarfRegNum<[3]>;
81def R4  : ARMReg< 4, "r4">,  DwarfRegNum<[4]>;
82def R5  : ARMReg< 5, "r5">,  DwarfRegNum<[5]>;
83def R6  : ARMReg< 6, "r6">,  DwarfRegNum<[6]>;
84def R7  : ARMReg< 7, "r7">,  DwarfRegNum<[7]>;
85// These require 32-bit instructions.
86let CostPerUse = [1] in {
87def R8  : ARMReg< 8, "r8">,  DwarfRegNum<[8]>;
88def R9  : ARMReg< 9, "r9">,  DwarfRegNum<[9]>;
89def R10 : ARMReg<10, "r10">, DwarfRegNum<[10]>;
90def R11 : ARMReg<11, "r11">, DwarfRegNum<[11]>;
91def R12 : ARMReg<12, "r12">, DwarfRegNum<[12]>;
92let RegAltNameIndices = [RegNamesRaw] in {
93def SP  : ARMReg<13, "sp", [], ["r13"]>,  DwarfRegNum<[13]>;
94def LR  : ARMReg<14, "lr", [], ["r14"]>,  DwarfRegNum<[14]>;
95def PC  : ARMReg<15, "pc", [], ["r15"]>,  DwarfRegNum<[15]>;
96}
97}
98
99// Float registers
100def S0  : ARMFReg< 0, "s0">;  def S1  : ARMFReg< 1, "s1">;
101def S2  : ARMFReg< 2, "s2">;  def S3  : ARMFReg< 3, "s3">;
102def S4  : ARMFReg< 4, "s4">;  def S5  : ARMFReg< 5, "s5">;
103def S6  : ARMFReg< 6, "s6">;  def S7  : ARMFReg< 7, "s7">;
104def S8  : ARMFReg< 8, "s8">;  def S9  : ARMFReg< 9, "s9">;
105def S10 : ARMFReg<10, "s10">; def S11 : ARMFReg<11, "s11">;
106def S12 : ARMFReg<12, "s12">; def S13 : ARMFReg<13, "s13">;
107def S14 : ARMFReg<14, "s14">; def S15 : ARMFReg<15, "s15">;
108def S16 : ARMFReg<16, "s16">; def S17 : ARMFReg<17, "s17">;
109def S18 : ARMFReg<18, "s18">; def S19 : ARMFReg<19, "s19">;
110def S20 : ARMFReg<20, "s20">; def S21 : ARMFReg<21, "s21">;
111def S22 : ARMFReg<22, "s22">; def S23 : ARMFReg<23, "s23">;
112def S24 : ARMFReg<24, "s24">; def S25 : ARMFReg<25, "s25">;
113def S26 : ARMFReg<26, "s26">; def S27 : ARMFReg<27, "s27">;
114def S28 : ARMFReg<28, "s28">; def S29 : ARMFReg<29, "s29">;
115def S30 : ARMFReg<30, "s30">; def S31 : ARMFReg<31, "s31">;
116
117// Aliases of the F* registers used to hold 64-bit fp values (doubles)
118let SubRegIndices = [ssub_0, ssub_1] in {
119def D0  : ARMReg< 0,  "d0", [S0,   S1]>, DwarfRegNum<[256]>;
120def D1  : ARMReg< 1,  "d1", [S2,   S3]>, DwarfRegNum<[257]>;
121def D2  : ARMReg< 2,  "d2", [S4,   S5]>, DwarfRegNum<[258]>;
122def D3  : ARMReg< 3,  "d3", [S6,   S7]>, DwarfRegNum<[259]>;
123def D4  : ARMReg< 4,  "d4", [S8,   S9]>, DwarfRegNum<[260]>;
124def D5  : ARMReg< 5,  "d5", [S10, S11]>, DwarfRegNum<[261]>;
125def D6  : ARMReg< 6,  "d6", [S12, S13]>, DwarfRegNum<[262]>;
126def D7  : ARMReg< 7,  "d7", [S14, S15]>, DwarfRegNum<[263]>;
127def D8  : ARMReg< 8,  "d8", [S16, S17]>, DwarfRegNum<[264]>;
128def D9  : ARMReg< 9,  "d9", [S18, S19]>, DwarfRegNum<[265]>;
129def D10 : ARMReg<10, "d10", [S20, S21]>, DwarfRegNum<[266]>;
130def D11 : ARMReg<11, "d11", [S22, S23]>, DwarfRegNum<[267]>;
131def D12 : ARMReg<12, "d12", [S24, S25]>, DwarfRegNum<[268]>;
132def D13 : ARMReg<13, "d13", [S26, S27]>, DwarfRegNum<[269]>;
133def D14 : ARMReg<14, "d14", [S28, S29]>, DwarfRegNum<[270]>;
134def D15 : ARMReg<15, "d15", [S30, S31]>, DwarfRegNum<[271]>;
135}
136
137// VFP3 defines 16 additional double registers
138def D16 : ARMFReg<16, "d16">, DwarfRegNum<[272]>;
139def D17 : ARMFReg<17, "d17">, DwarfRegNum<[273]>;
140def D18 : ARMFReg<18, "d18">, DwarfRegNum<[274]>;
141def D19 : ARMFReg<19, "d19">, DwarfRegNum<[275]>;
142def D20 : ARMFReg<20, "d20">, DwarfRegNum<[276]>;
143def D21 : ARMFReg<21, "d21">, DwarfRegNum<[277]>;
144def D22 : ARMFReg<22, "d22">, DwarfRegNum<[278]>;
145def D23 : ARMFReg<23, "d23">, DwarfRegNum<[279]>;
146def D24 : ARMFReg<24, "d24">, DwarfRegNum<[280]>;
147def D25 : ARMFReg<25, "d25">, DwarfRegNum<[281]>;
148def D26 : ARMFReg<26, "d26">, DwarfRegNum<[282]>;
149def D27 : ARMFReg<27, "d27">, DwarfRegNum<[283]>;
150def D28 : ARMFReg<28, "d28">, DwarfRegNum<[284]>;
151def D29 : ARMFReg<29, "d29">, DwarfRegNum<[285]>;
152def D30 : ARMFReg<30, "d30">, DwarfRegNum<[286]>;
153def D31 : ARMFReg<31, "d31">, DwarfRegNum<[287]>;
154
155// Advanced SIMD (NEON) defines 16 quad-word aliases
156let SubRegIndices = [dsub_0, dsub_1] in {
157def Q0  : ARMReg< 0,  "q0", [D0,   D1]>;
158def Q1  : ARMReg< 1,  "q1", [D2,   D3]>;
159def Q2  : ARMReg< 2,  "q2", [D4,   D5]>;
160def Q3  : ARMReg< 3,  "q3", [D6,   D7]>;
161def Q4  : ARMReg< 4,  "q4", [D8,   D9]>;
162def Q5  : ARMReg< 5,  "q5", [D10, D11]>;
163def Q6  : ARMReg< 6,  "q6", [D12, D13]>;
164def Q7  : ARMReg< 7,  "q7", [D14, D15]>;
165}
166let SubRegIndices = [dsub_0, dsub_1] in {
167def Q8  : ARMReg< 8,  "q8", [D16, D17]>;
168def Q9  : ARMReg< 9,  "q9", [D18, D19]>;
169def Q10 : ARMReg<10, "q10", [D20, D21]>;
170def Q11 : ARMReg<11, "q11", [D22, D23]>;
171def Q12 : ARMReg<12, "q12", [D24, D25]>;
172def Q13 : ARMReg<13, "q13", [D26, D27]>;
173def Q14 : ARMReg<14, "q14", [D28, D29]>;
174def Q15 : ARMReg<15, "q15", [D30, D31]>;
175}
176
177// Current Program Status Register.
178// We model fpscr with two registers: FPSCR models the control bits and will be
179// reserved. FPSCR_NZCV models the flag bits and will be unreserved. APSR_NZCV
180// models the APSR when it's accessed by some special instructions. In such cases
181// it has the same encoding as PC.
182def CPSR       : ARMReg<0,  "cpsr">;
183def APSR       : ARMReg<15, "apsr">;
184def APSR_NZCV  : ARMReg<15, "apsr_nzcv">;
185def SPSR       : ARMReg<2,  "spsr">;
186def FPSCR      : ARMReg<3,  "fpscr">;
187def FPSCR_NZCV : ARMReg<3,  "fpscr_nzcv"> {
188  let Aliases = [FPSCR];
189}
190def ITSTATE    : ARMReg<4, "itstate">;
191
192// Special Registers - only available in privileged mode.
193def FPSID   : ARMReg<0,  "fpsid">;
194def MVFR2   : ARMReg<5,  "mvfr2">;
195def MVFR1   : ARMReg<6,  "mvfr1">;
196def MVFR0   : ARMReg<7,  "mvfr0">;
197def FPEXC   : ARMReg<8,  "fpexc">;
198def FPINST  : ARMReg<9,  "fpinst">;
199def FPINST2 : ARMReg<10, "fpinst2">;
200// These encodings aren't actual instruction encodings, their encoding depends
201// on the instruction they are used in and for VPR 32 was chosen such that it
202// always comes last in spr_reglist_with_vpr.
203def VPR     : ARMReg<32, "vpr">;
204def FPSCR_NZCVQC
205            : ARMReg<2, "fpscr_nzcvqc">;
206def P0      : ARMReg<13, "p0">;
207def FPCXTNS : ARMReg<14, "fpcxtns">;
208def FPCXTS  : ARMReg<15, "fpcxts">;
209
210def ZR  : ARMReg<15, "zr">,  DwarfRegNum<[15]>;
211
212// Register classes.
213//
214// pc  == Program Counter
215// lr  == Link Register
216// sp  == Stack Pointer
217// r12 == ip (scratch)
218// r7  == Frame Pointer (thumb-style backtraces)
219// r9  == May be reserved as Thread Register
220// r11 == Frame Pointer (arm-style backtraces)
221// r10 == Stack Limit
222//
223def GPR : RegisterClass<"ARM", [i32], 32, (add (sequence "R%u", 0, 12),
224                                               SP, LR, PC)> {
225  // Allocate LR as the first CSR since it is always saved anyway.
226  // For Thumb1 mode, we don't want to allocate hi regs at all, as we don't
227  // know how to spill them. If we make our prologue/epilogue code smarter at
228  // some point, we can go back to using the above allocation orders for the
229  // Thumb1 instructions that know how to use hi regs.
230  let AltOrders = [(add LR, GPR), (trunc GPR, 8),
231                   (add (trunc GPR, 8), R12, LR, (shl GPR, 8))];
232  let AltOrderSelect = [{
233      return MF.getSubtarget<ARMSubtarget>().getGPRAllocationOrder(MF);
234  }];
235  let DiagnosticString = "operand must be a register in range [r0, r15]";
236}
237
238// Register set that excludes registers that are reserved for procedure calls.
239// This is used for pseudo-instructions that are actually implemented using a
240// procedure call.
241def GPRnoip : RegisterClass<"ARM", [i32], 32, (sub GPR, R12, LR)> {
242  // Allocate LR as the first CSR since it is always saved anyway.
243  // For Thumb1 mode, we don't want to allocate hi regs at all, as we don't
244  // know how to spill them. If we make our prologue/epilogue code smarter at
245  // some point, we can go back to using the above allocation orders for the
246  // Thumb1 instructions that know how to use hi regs.
247  let AltOrders = [(add GPRnoip, GPRnoip), (trunc GPRnoip, 8),
248                   (add (trunc GPRnoip, 8), (shl GPRnoip, 8))];
249  let AltOrderSelect = [{
250      return MF.getSubtarget<ARMSubtarget>().getGPRAllocationOrder(MF);
251  }];
252  let DiagnosticString = "operand must be a register in range [r0, r14]";
253}
254
255// GPRs without the PC.  Some ARM instructions do not allow the PC in
256// certain operand slots, particularly as the destination.  Primarily
257// useful for disassembly.
258def GPRnopc : RegisterClass<"ARM", [i32], 32, (sub GPR, PC)> {
259  let AltOrders = [(add LR, GPRnopc), (trunc GPRnopc, 8),
260                   (add (trunc GPRnopc, 8), R12, LR, (shl GPRnopc, 8))];
261  let AltOrderSelect = [{
262      return MF.getSubtarget<ARMSubtarget>().getGPRAllocationOrder(MF);
263  }];
264  let DiagnosticString = "operand must be a register in range [r0, r14]";
265}
266
267// GPRs without the PC but with APSR. Some instructions allow accessing the
268// APSR, while actually encoding PC in the register field. This is useful
269// for assembly and disassembly only.
270def GPRwithAPSR : RegisterClass<"ARM", [i32], 32, (add (sub GPR, PC), APSR_NZCV)> {
271  let AltOrders = [(add LR, GPRnopc), (trunc GPRnopc, 8)];
272  let AltOrderSelect = [{
273      return 1 + MF.getSubtarget<ARMSubtarget>().isThumb1Only();
274  }];
275  let DiagnosticString = "operand must be a register in range [r0, r14] or apsr_nzcv";
276}
277
278// GPRs without the PC and SP registers but with APSR. Used by CLRM instruction.
279def GPRwithAPSRnosp : RegisterClass<"ARM", [i32], 32, (add (sequence "R%u", 0, 12), LR, APSR)> {
280  let isAllocatable = 0;
281}
282
283def GPRwithZR : RegisterClass<"ARM", [i32], 32, (add (sub GPR, PC), ZR)> {
284  let AltOrders = [(add LR, GPRwithZR), (trunc GPRwithZR, 8)];
285  let AltOrderSelect = [{
286      return 1 + MF.getSubtarget<ARMSubtarget>().isThumb1Only();
287  }];
288  let DiagnosticString = "operand must be a register in range [r0, r14] or zr";
289}
290
291def GPRwithZRnosp : RegisterClass<"ARM", [i32], 32, (sub GPRwithZR, SP)> {
292  let AltOrders = [(add LR, GPRwithZRnosp), (trunc GPRwithZRnosp, 8)];
293  let AltOrderSelect = [{
294      return 1 + MF.getSubtarget<ARMSubtarget>().isThumb1Only();
295  }];
296  let DiagnosticString = "operand must be a register in range [r0, r12] or r14 or zr";
297}
298
299// GPRsp - Only the SP is legal. Used by Thumb1 instructions that want the
300// implied SP argument list.
301// FIXME: It would be better to not use this at all and refactor the
302// instructions to not have SP an an explicit argument. That makes
303// frame index resolution a bit trickier, though.
304def GPRsp : RegisterClass<"ARM", [i32], 32, (add SP)> {
305  let DiagnosticString = "operand must be a register sp";
306}
307
308// GPRlr - Only LR is legal. Used by ARMv8.1-M Low Overhead Loop instructions
309// where LR is the only legal loop counter register.
310def GPRlr : RegisterClass<"ARM", [i32], 32, (add LR)>;
311
312// restricted GPR register class. Many Thumb2 instructions allow the full
313// register range for operands, but have undefined behaviours when PC
314// or SP (R13 or R15) are used. The ARM ISA refers to these operands
315// via the BadReg() pseudo-code description.
316def rGPR : RegisterClass<"ARM", [i32], 32, (sub GPR, SP, PC)> {
317  let AltOrders = [(add LR, rGPR), (trunc rGPR, 8),
318                   (add (trunc rGPR, 8), R12, LR, (shl rGPR, 8))];
319  let AltOrderSelect = [{
320      return MF.getSubtarget<ARMSubtarget>().getGPRAllocationOrder(MF);
321  }];
322  let DiagnosticType = "rGPR";
323}
324
325// GPRs without the PC and SP but with APSR_NZCV.Some instructions allow
326// accessing the APSR_NZCV, while actually encoding PC in the register field.
327// This is useful for assembly and disassembly only.
328// Currently used by the CDE extension.
329def GPRwithAPSR_NZCVnosp
330  : RegisterClass<"ARM", [i32], 32, (add (sequence "R%u", 0, 12), LR, APSR_NZCV)> {
331  let isAllocatable = 0;
332  let DiagnosticString =
333    "operand must be a register in the range [r0, r12], r14 or apsr_nzcv";
334}
335
336// Thumb registers are R0-R7 normally. Some instructions can still use
337// the general GPR register class above (MOV, e.g.)
338def tGPR : RegisterClass<"ARM", [i32], 32, (trunc GPR, 8)> {
339  let DiagnosticString = "operand must be a register in range [r0, r7]";
340}
341
342// Thumb registers R0-R7 and the PC. Some instructions like TBB or THH allow
343// the PC to be used as a destination operand as well.
344def tGPRwithpc : RegisterClass<"ARM", [i32], 32, (add tGPR, PC)>;
345
346// The high registers in thumb mode, R8-R15.
347def hGPR : RegisterClass<"ARM", [i32], 32, (sub GPR, tGPR)> {
348  let DiagnosticString = "operand must be a register in range [r8, r15]";
349}
350
351// For tail calls, we can't use callee-saved registers, as they are restored
352// to the saved value before the tail call, which would clobber a call address.
353// Note, getMinimalPhysRegClass(R0) returns tGPR because of the names of
354// this class and the preceding one(!)  This is what we want.
355def tcGPR : RegisterClass<"ARM", [i32], 32, (add R0, R1, R2, R3, R12)> {
356  let AltOrders = [(and tcGPR, tGPR)];
357  let AltOrderSelect = [{
358      return MF.getSubtarget<ARMSubtarget>().isThumb1Only();
359  }];
360}
361
362def tGPROdd : RegisterClass<"ARM", [i32], 32, (add R1, R3, R5, R7, R9, R11)> {
363  let AltOrders = [(and tGPROdd, tGPR)];
364  let AltOrderSelect = [{
365      return MF.getSubtarget<ARMSubtarget>().isThumb1Only();
366  }];
367  let DiagnosticString =
368    "operand must be an odd-numbered register in range [r1,r11]";
369}
370
371def tGPREven : RegisterClass<"ARM", [i32], 32, (add R0, R2, R4, R6, R8, R10, R12, LR)> {
372  let AltOrders = [(and tGPREven, tGPR)];
373  let AltOrderSelect = [{
374      return MF.getSubtarget<ARMSubtarget>().isThumb1Only();
375  }];
376  let DiagnosticString = "operand must be an even-numbered register";
377}
378
379// Condition code registers.
380def CCR : RegisterClass<"ARM", [i32], 32, (add CPSR)> {
381  let CopyCost = -1;  // Don't allow copying of status registers.
382  let isAllocatable = 0;
383}
384
385// MVE Condition code register.
386def VCCR : RegisterClass<"ARM", [i32, v16i1, v8i1, v4i1], 32, (add VPR)> {
387//  let CopyCost = -1;  // Don't allow copying of status registers.
388}
389
390// FPSCR, when the flags at the top of it are used as the input or
391// output to an instruction such as MVE VADC.
392def cl_FPSCR_NZCV : RegisterClass<"ARM", [i32], 32, (add FPSCR_NZCV)>;
393
394// Scalar single precision floating point register class..
395// FIXME: Allocation order changed to s0, s2, ... or s0, s4, ... as a quick hack
396// to avoid partial-write dependencies on D or Q (depending on platform)
397// registers (S registers are renamed as portions of D/Q registers).
398def SPR : RegisterClass<"ARM", [f32], 32, (sequence "S%u", 0, 31)> {
399  let AltOrders = [(add (decimate SPR, 2), SPR),
400                   (add (decimate SPR, 4),
401                        (decimate SPR, 2),
402                        (decimate (rotl SPR, 1), 4),
403                        (decimate (rotl SPR, 1), 2))];
404  let AltOrderSelect = [{
405    return 1 + MF.getSubtarget<ARMSubtarget>().useStride4VFPs();
406  }];
407  let DiagnosticString = "operand must be a register in range [s0, s31]";
408}
409
410def HPR : RegisterClass<"ARM", [f16, bf16], 32, (sequence "S%u", 0, 31)> {
411  let AltOrders = [(add (decimate HPR, 2), SPR),
412                   (add (decimate HPR, 4),
413                        (decimate HPR, 2),
414                        (decimate (rotl HPR, 1), 4),
415                        (decimate (rotl HPR, 1), 2))];
416  let AltOrderSelect = [{
417    return 1 + MF.getSubtarget<ARMSubtarget>().useStride4VFPs();
418  }];
419  let DiagnosticString = "operand must be a register in range [s0, s31]";
420}
421
422// Subset of SPR which can be used as a source of NEON scalars for 16-bit
423// operations
424def SPR_8 : RegisterClass<"ARM", [f32], 32, (sequence "S%u", 0, 15)> {
425  let DiagnosticString = "operand must be a register in range [s0, s15]";
426}
427
428// Scalar double precision floating point / generic 64-bit vector register
429// class.
430// ARM requires only word alignment for double. It's more performant if it
431// is double-word alignment though.
432def DPR : RegisterClass<"ARM", [f64, v8i8, v4i16, v2i32, v1i64, v2f32, v4f16, v4bf16], 64,
433                        (sequence "D%u", 0, 31)> {
434  // Allocate non-VFP2 registers D16-D31 first, and prefer even registers on
435  // Darwin platforms.
436  let AltOrders = [(rotl DPR, 16),
437                   (add (decimate (rotl DPR, 16), 2), (rotl DPR, 16))];
438  let AltOrderSelect = [{
439    return 1 + MF.getSubtarget<ARMSubtarget>().useStride4VFPs();
440  }];
441  let DiagnosticType = "DPR";
442}
443
444// Scalar single and double precision floating point and VPR register class,
445// this is only used for parsing, don't use it anywhere else as the size and
446// types don't match!
447def FPWithVPR : RegisterClass<"ARM", [f32], 32, (add SPR, DPR, VPR)> {
448    let isAllocatable = 0;
449}
450
451// Subset of DPR that are accessible with VFP2 (and so that also have
452// 32-bit SPR subregs).
453def DPR_VFP2 : RegisterClass<"ARM", [f64, v8i8, v4i16, v2i32, v1i64, v2f32, v4f16, v4bf16], 64,
454                             (trunc DPR, 16)> {
455  let DiagnosticString = "operand must be a register in range [d0, d15]";
456}
457
458// Subset of DPR which can be used as a source of NEON scalars for 16-bit
459// operations
460def DPR_8 : RegisterClass<"ARM", [f64, v8i8, v4i16, v2i32, v1i64, v2f32, v4f16, v4bf16], 64,
461                          (trunc DPR, 8)> {
462  let DiagnosticString = "operand must be a register in range [d0, d7]";
463}
464
465// Generic 128-bit vector register class.
466def QPR : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64, v8f16, v8bf16], 128,
467                        (sequence "Q%u", 0, 15)> {
468  // Allocate non-VFP2 aliases Q8-Q15 first.
469  let AltOrders = [(rotl QPR, 8), (trunc QPR, 8)];
470  let AltOrderSelect = [{
471    return 1 + MF.getSubtarget<ARMSubtarget>().hasMVEIntegerOps();
472  }];
473  let DiagnosticString = "operand must be a register in range [q0, q15]";
474}
475
476// Subset of QPR that have 32-bit SPR subregs.
477def QPR_VFP2 : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
478                             128, (trunc QPR, 8)> {
479  let DiagnosticString = "operand must be a register in range [q0, q7]";
480}
481
482// Subset of QPR that have DPR_8 and SPR_8 subregs.
483def QPR_8 : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
484                           128, (trunc QPR, 4)> {
485  let DiagnosticString = "operand must be a register in range [q0, q3]";
486}
487
488// MVE 128-bit vector register class. This class is only really needed for
489// parsing assembly, since we still have to truncate the register set in the QPR
490// class anyway.
491def MQPR : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64, v8f16],
492                         128, (trunc QPR, 8)>;
493
494// Pseudo-registers representing odd-even pairs of D registers. The even-odd
495// pairs are already represented by the Q registers.
496// These are needed by NEON instructions requiring two consecutive D registers.
497// There is no D31_D0 register as that is always an UNPREDICTABLE encoding.
498def TuplesOE2D : RegisterTuples<[dsub_0, dsub_1],
499                                [(decimate (shl DPR, 1), 2),
500                                 (decimate (shl DPR, 2), 2)]>;
501
502// Register class representing a pair of consecutive D registers.
503// Use the Q registers for the even-odd pairs.
504def DPair : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
505                          128, (interleave QPR, TuplesOE2D)> {
506  // Allocate starting at non-VFP2 registers D16-D31 first.
507  // Prefer even-odd pairs as they are easier to copy.
508  let AltOrders = [(add (rotl QPR, 8),  (rotl DPair, 16)),
509                   (add (trunc QPR, 8), (trunc DPair, 16))];
510  let AltOrderSelect = [{
511    return 1 + MF.getSubtarget<ARMSubtarget>().hasMVEIntegerOps();
512  }];
513}
514
515// Pseudo-registers representing even-odd pairs of GPRs from R1 to R13/SP.
516// These are needed by instructions (e.g. ldrexd/strexd) requiring even-odd GPRs.
517def Tuples2Rnosp : RegisterTuples<[gsub_0, gsub_1],
518                                  [(add R0, R2, R4, R6, R8, R10),
519                                   (add R1, R3, R5, R7, R9, R11)]>;
520
521def Tuples2Rsp   : RegisterTuples<[gsub_0, gsub_1],
522                                  [(add R12), (add SP)]>;
523
524// Register class representing a pair of even-odd GPRs.
525def GPRPair : RegisterClass<"ARM", [untyped], 64, (add Tuples2Rnosp, Tuples2Rsp)> {
526  let Size = 64; // 2 x 32 bits, we have no predefined type of that size.
527}
528
529// Register class representing a pair of even-odd GPRs, except (R12, SP).
530def GPRPairnosp : RegisterClass<"ARM", [untyped], 64, (add Tuples2Rnosp)> {
531  let Size = 64; // 2 x 32 bits, we have no predefined type of that size.
532}
533
534// Pseudo-registers representing 3 consecutive D registers.
535def Tuples3D : RegisterTuples<[dsub_0, dsub_1, dsub_2],
536                              [(shl DPR, 0),
537                               (shl DPR, 1),
538                               (shl DPR, 2)]>;
539
540// 3 consecutive D registers.
541def DTriple : RegisterClass<"ARM", [untyped], 64, (add Tuples3D)> {
542  let Size = 192; // 3 x 64 bits, we have no predefined type of that size.
543}
544
545// Pseudo 256-bit registers to represent pairs of Q registers. These should
546// never be present in the emitted code.
547// These are used for NEON load / store instructions, e.g., vld4, vst3.
548def Tuples2Q : RegisterTuples<[qsub_0, qsub_1], [(shl QPR, 0), (shl QPR, 1)]>;
549
550// Pseudo 256-bit vector register class to model pairs of Q registers
551// (4 consecutive D registers).
552def QQPR : RegisterClass<"ARM", [v4i64], 256, (add Tuples2Q)> {
553  // Allocate non-VFP2 aliases first.
554  let AltOrders = [(rotl QQPR, 8)];
555  let AltOrderSelect = [{ return 1; }];
556}
557
558// Tuples of 4 D regs that isn't also a pair of Q regs.
559def TuplesOE4D : RegisterTuples<[dsub_0, dsub_1, dsub_2, dsub_3],
560                                [(decimate (shl DPR, 1), 2),
561                                 (decimate (shl DPR, 2), 2),
562                                 (decimate (shl DPR, 3), 2),
563                                 (decimate (shl DPR, 4), 2)]>;
564
565// 4 consecutive D registers.
566def DQuad : RegisterClass<"ARM", [v4i64], 256,
567                          (interleave Tuples2Q, TuplesOE4D)>;
568
569// Pseudo 512-bit registers to represent four consecutive Q registers.
570def Tuples2QQ : RegisterTuples<[qqsub_0, qqsub_1],
571                               [(shl QQPR, 0), (shl QQPR, 2)]>;
572
573// Pseudo 512-bit vector register class to model 4 consecutive Q registers
574// (8 consecutive D registers).
575def QQQQPR : RegisterClass<"ARM", [v8i64], 256, (add Tuples2QQ)> {
576  // Allocate non-VFP2 aliases first.
577  let AltOrders = [(rotl QQQQPR, 8)];
578  let AltOrderSelect = [{ return 1; }];
579}
580
581
582// Pseudo-registers representing 2-spaced consecutive D registers.
583def Tuples2DSpc : RegisterTuples<[dsub_0, dsub_2],
584                                 [(shl DPR, 0),
585                                  (shl DPR, 2)]>;
586
587// Spaced pairs of D registers.
588def DPairSpc : RegisterClass<"ARM", [v2i64], 64, (add Tuples2DSpc)>;
589
590def Tuples3DSpc : RegisterTuples<[dsub_0, dsub_2, dsub_4],
591                                 [(shl DPR, 0),
592                                  (shl DPR, 2),
593                                  (shl DPR, 4)]>;
594
595// Spaced triples of D registers.
596def DTripleSpc : RegisterClass<"ARM", [untyped], 64, (add Tuples3DSpc)> {
597  let Size = 192; // 3 x 64 bits, we have no predefined type of that size.
598}
599
600def Tuples4DSpc : RegisterTuples<[dsub_0, dsub_2, dsub_4, dsub_6],
601                                 [(shl DPR, 0),
602                                  (shl DPR, 2),
603                                  (shl DPR, 4),
604                                  (shl DPR, 6)]>;
605
606// Spaced quads of D registers.
607def DQuadSpc : RegisterClass<"ARM", [v4i64], 64, (add Tuples3DSpc)>;
608
609// FP context payload
610def FPCXTRegs : RegisterClass<"ARM", [i32], 32, (add FPCXTNS)>;
611