1 //===-- ARMSubtarget.cpp - ARM Subtarget Information ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the ARM specific subclass of TargetSubtargetInfo.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "ARM.h"
14 
15 #include "ARMCallLowering.h"
16 #include "ARMFrameLowering.h"
17 #include "ARMInstrInfo.h"
18 #include "ARMLegalizerInfo.h"
19 #include "ARMRegisterBankInfo.h"
20 #include "ARMSubtarget.h"
21 #include "ARMTargetMachine.h"
22 #include "MCTargetDesc/ARMMCTargetDesc.h"
23 #include "Thumb1FrameLowering.h"
24 #include "Thumb1InstrInfo.h"
25 #include "Thumb2InstrInfo.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/Twine.h"
28 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
29 #include "llvm/CodeGen/MachineFrameInfo.h"
30 #include "llvm/CodeGen/MachineFunction.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/GlobalValue.h"
33 #include "llvm/MC/MCAsmInfo.h"
34 #include "llvm/MC/MCTargetOptions.h"
35 #include "llvm/Support/CodeGen.h"
36 #include "llvm/Support/CommandLine.h"
37 #include "llvm/Target/TargetOptions.h"
38 #include "llvm/TargetParser/ARMTargetParser.h"
39 #include "llvm/TargetParser/Triple.h"
40 
41 using namespace llvm;
42 
43 #define DEBUG_TYPE "arm-subtarget"
44 
45 #define GET_SUBTARGETINFO_TARGET_DESC
46 #define GET_SUBTARGETINFO_CTOR
47 #include "ARMGenSubtargetInfo.inc"
48 
49 static cl::opt<bool>
50 UseFusedMulOps("arm-use-mulops",
51                cl::init(true), cl::Hidden);
52 
53 enum ITMode {
54   DefaultIT,
55   RestrictedIT
56 };
57 
58 static cl::opt<ITMode>
59     IT(cl::desc("IT block support"), cl::Hidden, cl::init(DefaultIT),
60        cl::values(clEnumValN(DefaultIT, "arm-default-it",
61                              "Generate any type of IT block"),
62                   clEnumValN(RestrictedIT, "arm-restrict-it",
63                              "Disallow complex IT blocks")));
64 
65 /// ForceFastISel - Use the fast-isel, even for subtargets where it is not
66 /// currently supported (for testing only).
67 static cl::opt<bool>
68 ForceFastISel("arm-force-fast-isel",
69                cl::init(false), cl::Hidden);
70 
71 static cl::opt<bool> EnableSubRegLiveness("arm-enable-subreg-liveness",
72                                           cl::init(false), cl::Hidden);
73 
74 /// initializeSubtargetDependencies - Initializes using a CPU and feature string
75 /// so that we can use initializer lists for subtarget initialization.
76 ARMSubtarget &ARMSubtarget::initializeSubtargetDependencies(StringRef CPU,
77                                                             StringRef FS) {
78   initializeEnvironment();
79   initSubtargetFeatures(CPU, FS);
80   return *this;
81 }
82 
83 ARMFrameLowering *ARMSubtarget::initializeFrameLowering(StringRef CPU,
84                                                         StringRef FS) {
85   ARMSubtarget &STI = initializeSubtargetDependencies(CPU, FS);
86   if (STI.isThumb1Only())
87     return (ARMFrameLowering *)new Thumb1FrameLowering(STI);
88 
89   return new ARMFrameLowering(STI);
90 }
91 
92 ARMSubtarget::ARMSubtarget(const Triple &TT, const std::string &CPU,
93                            const std::string &FS,
94                            const ARMBaseTargetMachine &TM, bool IsLittle,
95                            bool MinSize)
96     : ARMGenSubtargetInfo(TT, CPU, /*TuneCPU*/ CPU, FS),
97       UseMulOps(UseFusedMulOps), CPUString(CPU), OptMinSize(MinSize),
98       IsLittle(IsLittle), TargetTriple(TT), Options(TM.Options), TM(TM),
99       FrameLowering(initializeFrameLowering(CPU, FS)),
100       // At this point initializeSubtargetDependencies has been called so
101       // we can query directly.
102       InstrInfo(isThumb1Only()
103                     ? (ARMBaseInstrInfo *)new Thumb1InstrInfo(*this)
104                     : !isThumb()
105                           ? (ARMBaseInstrInfo *)new ARMInstrInfo(*this)
106                           : (ARMBaseInstrInfo *)new Thumb2InstrInfo(*this)),
107       TLInfo(TM, *this) {
108 
109   CallLoweringInfo.reset(new ARMCallLowering(*getTargetLowering()));
110   Legalizer.reset(new ARMLegalizerInfo(*this));
111 
112   auto *RBI = new ARMRegisterBankInfo(*getRegisterInfo());
113 
114   // FIXME: At this point, we can't rely on Subtarget having RBI.
115   // It's awkward to mix passing RBI and the Subtarget; should we pass
116   // TII/TRI as well?
117   InstSelector.reset(createARMInstructionSelector(
118       *static_cast<const ARMBaseTargetMachine *>(&TM), *this, *RBI));
119 
120   RegBankInfo.reset(RBI);
121 }
122 
123 const CallLowering *ARMSubtarget::getCallLowering() const {
124   return CallLoweringInfo.get();
125 }
126 
127 InstructionSelector *ARMSubtarget::getInstructionSelector() const {
128   return InstSelector.get();
129 }
130 
131 const LegalizerInfo *ARMSubtarget::getLegalizerInfo() const {
132   return Legalizer.get();
133 }
134 
135 const RegisterBankInfo *ARMSubtarget::getRegBankInfo() const {
136   return RegBankInfo.get();
137 }
138 
139 bool ARMSubtarget::isXRaySupported() const {
140   // We don't currently suppport Thumb, but Windows requires Thumb.
141   return hasV6Ops() && hasARMOps() && !isTargetWindows();
142 }
143 
144 void ARMSubtarget::initializeEnvironment() {
145   // MCAsmInfo isn't always present (e.g. in opt) so we can't initialize this
146   // directly from it, but we can try to make sure they're consistent when both
147   // available.
148   UseSjLjEH = (isTargetDarwin() && !isTargetWatchABI() &&
149                Options.ExceptionModel == ExceptionHandling::None) ||
150               Options.ExceptionModel == ExceptionHandling::SjLj;
151   assert((!TM.getMCAsmInfo() ||
152           (TM.getMCAsmInfo()->getExceptionHandlingType() ==
153            ExceptionHandling::SjLj) == UseSjLjEH) &&
154          "inconsistent sjlj choice between CodeGen and MC");
155 }
156 
157 void ARMSubtarget::initSubtargetFeatures(StringRef CPU, StringRef FS) {
158   if (CPUString.empty()) {
159     CPUString = "generic";
160 
161     if (isTargetDarwin()) {
162       StringRef ArchName = TargetTriple.getArchName();
163       ARM::ArchKind AK = ARM::parseArch(ArchName);
164       if (AK == ARM::ArchKind::ARMV7S)
165         // Default to the Swift CPU when targeting armv7s/thumbv7s.
166         CPUString = "swift";
167       else if (AK == ARM::ArchKind::ARMV7K)
168         // Default to the Cortex-a7 CPU when targeting armv7k/thumbv7k.
169         // ARMv7k does not use SjLj exception handling.
170         CPUString = "cortex-a7";
171     }
172   }
173 
174   // Insert the architecture feature derived from the target triple into the
175   // feature string. This is important for setting features that are implied
176   // based on the architecture version.
177   std::string ArchFS = ARM_MC::ParseARMTriple(TargetTriple, CPUString);
178   if (!FS.empty()) {
179     if (!ArchFS.empty())
180       ArchFS = (Twine(ArchFS) + "," + FS).str();
181     else
182       ArchFS = std::string(FS);
183   }
184   ParseSubtargetFeatures(CPUString, /*TuneCPU*/ CPUString, ArchFS);
185 
186   // FIXME: This used enable V6T2 support implicitly for Thumb2 mode.
187   // Assert this for now to make the change obvious.
188   assert(hasV6T2Ops() || !hasThumb2());
189 
190   if (genExecuteOnly()) {
191     // Execute only support for >= v8-M Baseline requires movt support
192     if (hasV8MBaselineOps())
193       NoMovt = false;
194     if (!hasV6MOps())
195       report_fatal_error("Cannot generate execute-only code for this target");
196   }
197 
198   // Keep a pointer to static instruction cost data for the specified CPU.
199   SchedModel = getSchedModelForCPU(CPUString);
200 
201   // Initialize scheduling itinerary for the specified CPU.
202   InstrItins = getInstrItineraryForCPU(CPUString);
203 
204   // FIXME: this is invalid for WindowsCE
205   if (isTargetWindows())
206     NoARM = true;
207 
208   if (isAAPCS_ABI())
209     stackAlignment = Align(8);
210   if (isTargetNaCl() || isAAPCS16_ABI())
211     stackAlignment = Align(16);
212 
213   // FIXME: Completely disable sibcall for Thumb1 since ThumbRegisterInfo::
214   // emitEpilogue is not ready for them. Thumb tail calls also use t2B, as
215   // the Thumb1 16-bit unconditional branch doesn't have sufficient relocation
216   // support in the assembler and linker to be used. This would need to be
217   // fixed to fully support tail calls in Thumb1.
218   //
219   // For ARMv8-M, we /do/ implement tail calls.  Doing this is tricky for v8-M
220   // baseline, since the LDM/POP instruction on Thumb doesn't take LR.  This
221   // means if we need to reload LR, it takes extra instructions, which outweighs
222   // the value of the tail call; but here we don't know yet whether LR is going
223   // to be used. We take the optimistic approach of generating the tail call and
224   // perhaps taking a hit if we need to restore the LR.
225 
226   // Thumb1 PIC calls to external symbols use BX, so they can be tail calls,
227   // but we need to make sure there are enough registers; the only valid
228   // registers are the 4 used for parameters.  We don't currently do this
229   // case.
230 
231   SupportsTailCall = !isThumb1Only() || hasV8MBaselineOps();
232 
233   if (isTargetMachO() && isTargetIOS() && getTargetTriple().isOSVersionLT(5, 0))
234     SupportsTailCall = false;
235 
236   switch (IT) {
237   case DefaultIT:
238     RestrictIT = false;
239     break;
240   case RestrictedIT:
241     RestrictIT = true;
242     break;
243   }
244 
245   // NEON f32 ops are non-IEEE 754 compliant. Darwin is ok with it by default.
246   const FeatureBitset &Bits = getFeatureBits();
247   if ((Bits[ARM::ProcA5] || Bits[ARM::ProcA8]) && // Where this matters
248       (Options.UnsafeFPMath || isTargetDarwin()))
249     HasNEONForFP = true;
250 
251   if (isRWPI())
252     ReserveR9 = true;
253 
254   // If MVEVectorCostFactor is still 0 (has not been set to anything else), default it to 2
255   if (MVEVectorCostFactor == 0)
256     MVEVectorCostFactor = 2;
257 
258   // FIXME: Teach TableGen to deal with these instead of doing it manually here.
259   switch (ARMProcFamily) {
260   case Others:
261   case CortexA5:
262     break;
263   case CortexA7:
264     LdStMultipleTiming = DoubleIssue;
265     break;
266   case CortexA8:
267     LdStMultipleTiming = DoubleIssue;
268     break;
269   case CortexA9:
270     LdStMultipleTiming = DoubleIssueCheckUnalignedAccess;
271     PreISelOperandLatencyAdjustment = 1;
272     break;
273   case CortexA12:
274     break;
275   case CortexA15:
276     MaxInterleaveFactor = 2;
277     PreISelOperandLatencyAdjustment = 1;
278     PartialUpdateClearance = 12;
279     break;
280   case CortexA17:
281   case CortexA32:
282   case CortexA35:
283   case CortexA53:
284   case CortexA55:
285   case CortexA57:
286   case CortexA72:
287   case CortexA73:
288   case CortexA75:
289   case CortexA76:
290   case CortexA77:
291   case CortexA78:
292   case CortexA78C:
293   case CortexA710:
294   case CortexR4:
295   case CortexR4F:
296   case CortexR5:
297   case CortexR7:
298   case CortexM3:
299   case CortexM7:
300   case CortexR52:
301   case CortexX1:
302   case CortexX1C:
303     break;
304   case Exynos:
305     LdStMultipleTiming = SingleIssuePlusExtras;
306     MaxInterleaveFactor = 4;
307     if (!isThumb())
308       PrefLoopLogAlignment = 3;
309     break;
310   case Kryo:
311     break;
312   case Krait:
313     PreISelOperandLatencyAdjustment = 1;
314     break;
315   case NeoverseN1:
316   case NeoverseN2:
317   case NeoverseV1:
318     break;
319   case Swift:
320     MaxInterleaveFactor = 2;
321     LdStMultipleTiming = SingleIssuePlusExtras;
322     PreISelOperandLatencyAdjustment = 1;
323     PartialUpdateClearance = 12;
324     break;
325   }
326 }
327 
328 bool ARMSubtarget::isTargetHardFloat() const { return TM.isTargetHardFloat(); }
329 
330 bool ARMSubtarget::isAPCS_ABI() const {
331   assert(TM.TargetABI != ARMBaseTargetMachine::ARM_ABI_UNKNOWN);
332   return TM.TargetABI == ARMBaseTargetMachine::ARM_ABI_APCS;
333 }
334 bool ARMSubtarget::isAAPCS_ABI() const {
335   assert(TM.TargetABI != ARMBaseTargetMachine::ARM_ABI_UNKNOWN);
336   return TM.TargetABI == ARMBaseTargetMachine::ARM_ABI_AAPCS ||
337          TM.TargetABI == ARMBaseTargetMachine::ARM_ABI_AAPCS16;
338 }
339 bool ARMSubtarget::isAAPCS16_ABI() const {
340   assert(TM.TargetABI != ARMBaseTargetMachine::ARM_ABI_UNKNOWN);
341   return TM.TargetABI == ARMBaseTargetMachine::ARM_ABI_AAPCS16;
342 }
343 
344 bool ARMSubtarget::isROPI() const {
345   return TM.getRelocationModel() == Reloc::ROPI ||
346          TM.getRelocationModel() == Reloc::ROPI_RWPI;
347 }
348 bool ARMSubtarget::isRWPI() const {
349   return TM.getRelocationModel() == Reloc::RWPI ||
350          TM.getRelocationModel() == Reloc::ROPI_RWPI;
351 }
352 
353 bool ARMSubtarget::isGVIndirectSymbol(const GlobalValue *GV) const {
354   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
355     return true;
356 
357   // 32 bit macho has no relocation for a-b if a is undefined, even if b is in
358   // the section that is being relocated. This means we have to use o load even
359   // for GVs that are known to be local to the dso.
360   if (isTargetMachO() && TM.isPositionIndependent() &&
361       (GV->isDeclarationForLinker() || GV->hasCommonLinkage()))
362     return true;
363 
364   return false;
365 }
366 
367 bool ARMSubtarget::isGVInGOT(const GlobalValue *GV) const {
368   return isTargetELF() && TM.isPositionIndependent() &&
369          !TM.shouldAssumeDSOLocal(*GV->getParent(), GV);
370 }
371 
372 unsigned ARMSubtarget::getMispredictionPenalty() const {
373   return SchedModel.MispredictPenalty;
374 }
375 
376 bool ARMSubtarget::enableMachineScheduler() const {
377   // The MachineScheduler can increase register usage, so we use more high
378   // registers and end up with more T2 instructions that cannot be converted to
379   // T1 instructions. At least until we do better at converting to thumb1
380   // instructions, on cortex-m at Oz where we are size-paranoid, don't use the
381   // Machine scheduler, relying on the DAG register pressure scheduler instead.
382   if (isMClass() && hasMinSize())
383     return false;
384   // Enable the MachineScheduler before register allocation for subtargets
385   // with the use-misched feature.
386   return useMachineScheduler();
387 }
388 
389 bool ARMSubtarget::enableSubRegLiveness() const {
390   if (EnableSubRegLiveness.getNumOccurrences())
391     return EnableSubRegLiveness;
392   // Enable SubRegLiveness for MVE to better optimize s subregs for mqpr regs
393   // and q subregs for qqqqpr regs.
394   return hasMVEIntegerOps();
395 }
396 
397 bool ARMSubtarget::enableMachinePipeliner() const {
398   // Enable the MachinePipeliner before register allocation for subtargets
399   // with the use-mipipeliner feature.
400   return getSchedModel().hasInstrSchedModel() && useMachinePipeliner();
401 }
402 
403 bool ARMSubtarget::useDFAforSMS() const { return false; }
404 
405 // This overrides the PostRAScheduler bit in the SchedModel for any CPU.
406 bool ARMSubtarget::enablePostRAScheduler() const {
407   if (enableMachineScheduler())
408     return false;
409   if (disablePostRAScheduler())
410     return false;
411   // Thumb1 cores will generally not benefit from post-ra scheduling
412   return !isThumb1Only();
413 }
414 
415 bool ARMSubtarget::enablePostRAMachineScheduler() const {
416   if (!enableMachineScheduler())
417     return false;
418   if (disablePostRAScheduler())
419     return false;
420   return !isThumb1Only();
421 }
422 
423 bool ARMSubtarget::useStride4VFPs() const {
424   // For general targets, the prologue can grow when VFPs are allocated with
425   // stride 4 (more vpush instructions). But WatchOS uses a compact unwind
426   // format which it's more important to get right.
427   return isTargetWatchABI() ||
428          (useWideStrideVFP() && !OptMinSize);
429 }
430 
431 bool ARMSubtarget::useMovt() const {
432   // NOTE Windows on ARM needs to use mov.w/mov.t pairs to materialise 32-bit
433   // immediates as it is inherently position independent, and may be out of
434   // range otherwise.
435   return !NoMovt && hasV8MBaselineOps() &&
436          (isTargetWindows() || !OptMinSize || genExecuteOnly());
437 }
438 
439 bool ARMSubtarget::useFastISel() const {
440   // Enable fast-isel for any target, for testing only.
441   if (ForceFastISel)
442     return true;
443 
444   // Limit fast-isel to the targets that are or have been tested.
445   if (!hasV6Ops())
446     return false;
447 
448   // Thumb2 support on iOS; ARM support on iOS, Linux and NaCl.
449   return TM.Options.EnableFastISel &&
450          ((isTargetMachO() && !isThumb1Only()) ||
451           (isTargetLinux() && !isThumb()) || (isTargetNaCl() && !isThumb()));
452 }
453 
454 unsigned ARMSubtarget::getGPRAllocationOrder(const MachineFunction &MF) const {
455   // The GPR register class has multiple possible allocation orders, with
456   // tradeoffs preferred by different sub-architectures and optimisation goals.
457   // The allocation orders are:
458   // 0: (the default tablegen order, not used)
459   // 1: r14, r0-r13
460   // 2: r0-r7
461   // 3: r0-r7, r12, lr, r8-r11
462   // Note that the register allocator will change this order so that
463   // callee-saved registers are used later, as they require extra work in the
464   // prologue/epilogue (though we sometimes override that).
465 
466   // For thumb1-only targets, only the low registers are allocatable.
467   if (isThumb1Only())
468     return 2;
469 
470   // Allocate low registers first, so we can select more 16-bit instructions.
471   // We also (in ignoreCSRForAllocationOrder) override  the default behaviour
472   // with regards to callee-saved registers, because pushing extra registers is
473   // much cheaper (in terms of code size) than using high registers. After
474   // that, we allocate r12 (doesn't need to be saved), lr (saving it means we
475   // can return with the pop, don't need an extra "bx lr") and then the rest of
476   // the high registers.
477   if (isThumb2() && MF.getFunction().hasMinSize())
478     return 3;
479 
480   // Otherwise, allocate in the default order, using LR first because saving it
481   // allows a shorter epilogue sequence.
482   return 1;
483 }
484 
485 bool ARMSubtarget::ignoreCSRForAllocationOrder(const MachineFunction &MF,
486                                                unsigned PhysReg) const {
487   // To minimize code size in Thumb2, we prefer the usage of low regs (lower
488   // cost per use) so we can  use narrow encoding. By default, caller-saved
489   // registers (e.g. lr, r12) are always  allocated first, regardless of
490   // their cost per use. When optForMinSize, we prefer the low regs even if
491   // they are CSR because usually push/pop can be folded into existing ones.
492   return isThumb2() && MF.getFunction().hasMinSize() &&
493          ARM::GPRRegClass.contains(PhysReg);
494 }
495 
496 bool ARMSubtarget::splitFramePointerPush(const MachineFunction &MF) const {
497   const Function &F = MF.getFunction();
498   if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI() ||
499       !F.needsUnwindTableEntry())
500     return false;
501   const MachineFrameInfo &MFI = MF.getFrameInfo();
502   return MFI.hasVarSizedObjects() || getRegisterInfo()->hasStackRealignment(MF);
503 }
504