1 //===-- ARMAsmBackend.cpp - ARM Assembler Backend -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "MCTargetDesc/ARMAsmBackend.h"
10 #include "MCTargetDesc/ARMAddressingModes.h"
11 #include "MCTargetDesc/ARMAsmBackendDarwin.h"
12 #include "MCTargetDesc/ARMAsmBackendELF.h"
13 #include "MCTargetDesc/ARMAsmBackendWinCOFF.h"
14 #include "MCTargetDesc/ARMFixupKinds.h"
15 #include "MCTargetDesc/ARMMCTargetDesc.h"
16 #include "llvm/ADT/StringSwitch.h"
17 #include "llvm/BinaryFormat/ELF.h"
18 #include "llvm/BinaryFormat/MachO.h"
19 #include "llvm/MC/MCAsmBackend.h"
20 #include "llvm/MC/MCAsmLayout.h"
21 #include "llvm/MC/MCAssembler.h"
22 #include "llvm/MC/MCContext.h"
23 #include "llvm/MC/MCDirectives.h"
24 #include "llvm/MC/MCELFObjectWriter.h"
25 #include "llvm/MC/MCExpr.h"
26 #include "llvm/MC/MCFixupKindInfo.h"
27 #include "llvm/MC/MCObjectWriter.h"
28 #include "llvm/MC/MCRegisterInfo.h"
29 #include "llvm/MC/MCSectionELF.h"
30 #include "llvm/MC/MCSectionMachO.h"
31 #include "llvm/MC/MCSubtargetInfo.h"
32 #include "llvm/MC/MCValue.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/EndianStream.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/Format.h"
37 #include "llvm/Support/raw_ostream.h"
38 using namespace llvm;
39 
40 namespace {
41 class ARMELFObjectWriter : public MCELFObjectTargetWriter {
42 public:
43   ARMELFObjectWriter(uint8_t OSABI)
44       : MCELFObjectTargetWriter(/*Is64Bit*/ false, OSABI, ELF::EM_ARM,
45                                 /*HasRelocationAddend*/ false) {}
46 };
47 } // end anonymous namespace
48 
49 std::optional<MCFixupKind> ARMAsmBackend::getFixupKind(StringRef Name) const {
50   return std::nullopt;
51 }
52 
53 std::optional<MCFixupKind>
54 ARMAsmBackendELF::getFixupKind(StringRef Name) const {
55   unsigned Type = llvm::StringSwitch<unsigned>(Name)
56 #define ELF_RELOC(X, Y) .Case(#X, Y)
57 #include "llvm/BinaryFormat/ELFRelocs/ARM.def"
58 #undef ELF_RELOC
59                       .Case("BFD_RELOC_NONE", ELF::R_ARM_NONE)
60                       .Case("BFD_RELOC_8", ELF::R_ARM_ABS8)
61                       .Case("BFD_RELOC_16", ELF::R_ARM_ABS16)
62                       .Case("BFD_RELOC_32", ELF::R_ARM_ABS32)
63                       .Default(-1u);
64   if (Type == -1u)
65     return std::nullopt;
66   return static_cast<MCFixupKind>(FirstLiteralRelocationKind + Type);
67 }
68 
69 const MCFixupKindInfo &ARMAsmBackend::getFixupKindInfo(MCFixupKind Kind) const {
70   unsigned IsPCRelConstant =
71       MCFixupKindInfo::FKF_IsPCRel | MCFixupKindInfo::FKF_Constant;
72   const static MCFixupKindInfo InfosLE[ARM::NumTargetFixupKinds] = {
73       // This table *must* be in the order that the fixup_* kinds are defined in
74       // ARMFixupKinds.h.
75       //
76       // Name                      Offset (bits) Size (bits)     Flags
77       {"fixup_arm_ldst_pcrel_12", 0, 32, IsPCRelConstant},
78       {"fixup_t2_ldst_pcrel_12", 0, 32,
79        IsPCRelConstant | MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
80       {"fixup_arm_pcrel_10_unscaled", 0, 32, IsPCRelConstant},
81       {"fixup_arm_pcrel_10", 0, 32, IsPCRelConstant},
82       {"fixup_t2_pcrel_10", 0, 32,
83        MCFixupKindInfo::FKF_IsPCRel |
84            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
85       {"fixup_arm_pcrel_9", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
86       {"fixup_t2_pcrel_9", 0, 32,
87        IsPCRelConstant | MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
88       {"fixup_arm_ldst_abs_12", 0, 32, 0},
89       {"fixup_thumb_adr_pcrel_10", 0, 8,
90        IsPCRelConstant | MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
91       {"fixup_arm_adr_pcrel_12", 0, 32, IsPCRelConstant},
92       {"fixup_t2_adr_pcrel_12", 0, 32,
93        IsPCRelConstant | MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
94       {"fixup_arm_condbranch", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
95       {"fixup_arm_uncondbranch", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
96       {"fixup_t2_condbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
97       {"fixup_t2_uncondbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
98       {"fixup_arm_thumb_br", 0, 16, MCFixupKindInfo::FKF_IsPCRel},
99       {"fixup_arm_uncondbl", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
100       {"fixup_arm_condbl", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
101       {"fixup_arm_blx", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
102       {"fixup_arm_thumb_bl", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
103       {"fixup_arm_thumb_blx", 0, 32,
104        MCFixupKindInfo::FKF_IsPCRel |
105            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
106       {"fixup_arm_thumb_cb", 0, 16, MCFixupKindInfo::FKF_IsPCRel},
107       {"fixup_arm_thumb_cp", 0, 8,
108        MCFixupKindInfo::FKF_IsPCRel |
109            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
110       {"fixup_arm_thumb_bcc", 0, 8, MCFixupKindInfo::FKF_IsPCRel},
111       // movw / movt: 16-bits immediate but scattered into two chunks 0 - 12, 16
112       // - 19.
113       {"fixup_arm_movt_hi16", 0, 20, 0},
114       {"fixup_arm_movw_lo16", 0, 20, 0},
115       {"fixup_t2_movt_hi16", 0, 20, 0},
116       {"fixup_t2_movw_lo16", 0, 20, 0},
117       {"fixup_arm_thumb_upper_8_15", 0, 8, 0},
118       {"fixup_arm_thumb_upper_0_7", 0, 8, 0},
119       {"fixup_arm_thumb_lower_8_15", 0, 8, 0},
120       {"fixup_arm_thumb_lower_0_7", 0, 8, 0},
121       {"fixup_arm_mod_imm", 0, 12, 0},
122       {"fixup_t2_so_imm", 0, 26, 0},
123       {"fixup_bf_branch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
124       {"fixup_bf_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
125       {"fixup_bfl_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
126       {"fixup_bfc_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
127       {"fixup_bfcsel_else_target", 0, 32, 0},
128       {"fixup_wls", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
129       {"fixup_le", 0, 32, MCFixupKindInfo::FKF_IsPCRel}};
130   const static MCFixupKindInfo InfosBE[ARM::NumTargetFixupKinds] = {
131       // This table *must* be in the order that the fixup_* kinds are defined in
132       // ARMFixupKinds.h.
133       //
134       // Name                      Offset (bits) Size (bits)     Flags
135       {"fixup_arm_ldst_pcrel_12", 0, 32, IsPCRelConstant},
136       {"fixup_t2_ldst_pcrel_12", 0, 32,
137        IsPCRelConstant | MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
138       {"fixup_arm_pcrel_10_unscaled", 0, 32, IsPCRelConstant},
139       {"fixup_arm_pcrel_10", 0, 32, IsPCRelConstant},
140       {"fixup_t2_pcrel_10", 0, 32,
141        MCFixupKindInfo::FKF_IsPCRel |
142            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
143       {"fixup_arm_pcrel_9", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
144       {"fixup_t2_pcrel_9", 0, 32,
145        IsPCRelConstant | MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
146       {"fixup_arm_ldst_abs_12", 0, 32, 0},
147       {"fixup_thumb_adr_pcrel_10", 8, 8,
148        IsPCRelConstant | MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
149       {"fixup_arm_adr_pcrel_12", 0, 32, IsPCRelConstant},
150       {"fixup_t2_adr_pcrel_12", 0, 32,
151        IsPCRelConstant | MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
152       {"fixup_arm_condbranch", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
153       {"fixup_arm_uncondbranch", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
154       {"fixup_t2_condbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
155       {"fixup_t2_uncondbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
156       {"fixup_arm_thumb_br", 0, 16, MCFixupKindInfo::FKF_IsPCRel},
157       {"fixup_arm_uncondbl", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
158       {"fixup_arm_condbl", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
159       {"fixup_arm_blx", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
160       {"fixup_arm_thumb_bl", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
161       {"fixup_arm_thumb_blx", 0, 32,
162        MCFixupKindInfo::FKF_IsPCRel |
163            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
164       {"fixup_arm_thumb_cb", 0, 16, MCFixupKindInfo::FKF_IsPCRel},
165       {"fixup_arm_thumb_cp", 8, 8,
166        MCFixupKindInfo::FKF_IsPCRel |
167            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
168       {"fixup_arm_thumb_bcc", 8, 8, MCFixupKindInfo::FKF_IsPCRel},
169       // movw / movt: 16-bits immediate but scattered into two chunks 0 - 12, 16
170       // - 19.
171       {"fixup_arm_movt_hi16", 12, 20, 0},
172       {"fixup_arm_movw_lo16", 12, 20, 0},
173       {"fixup_t2_movt_hi16", 12, 20, 0},
174       {"fixup_t2_movw_lo16", 12, 20, 0},
175       {"fixup_arm_thumb_upper_8_15", 24, 8, 0},
176       {"fixup_arm_thumb_upper_0_7", 24, 8, 0},
177       {"fixup_arm_thumb_lower_8_15", 24, 8, 0},
178       {"fixup_arm_thumb_lower_0_7", 24, 8, 0},
179       {"fixup_arm_mod_imm", 20, 12, 0},
180       {"fixup_t2_so_imm", 26, 6, 0},
181       {"fixup_bf_branch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
182       {"fixup_bf_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
183       {"fixup_bfl_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
184       {"fixup_bfc_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
185       {"fixup_bfcsel_else_target", 0, 32, 0},
186       {"fixup_wls", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
187       {"fixup_le", 0, 32, MCFixupKindInfo::FKF_IsPCRel}};
188 
189   // Fixup kinds from .reloc directive are like R_ARM_NONE. They do not require
190   // any extra processing.
191   if (Kind >= FirstLiteralRelocationKind)
192     return MCAsmBackend::getFixupKindInfo(FK_NONE);
193 
194   if (Kind < FirstTargetFixupKind)
195     return MCAsmBackend::getFixupKindInfo(Kind);
196 
197   assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
198          "Invalid kind!");
199   return (Endian == support::little ? InfosLE
200                                     : InfosBE)[Kind - FirstTargetFixupKind];
201 }
202 
203 void ARMAsmBackend::handleAssemblerFlag(MCAssemblerFlag Flag) {
204   switch (Flag) {
205   default:
206     break;
207   case MCAF_Code16:
208     setIsThumb(true);
209     break;
210   case MCAF_Code32:
211     setIsThumb(false);
212     break;
213   }
214 }
215 
216 unsigned ARMAsmBackend::getRelaxedOpcode(unsigned Op,
217                                          const MCSubtargetInfo &STI) const {
218   bool HasThumb2 = STI.hasFeature(ARM::FeatureThumb2);
219   bool HasV8MBaselineOps = STI.hasFeature(ARM::HasV8MBaselineOps);
220 
221   switch (Op) {
222   default:
223     return Op;
224   case ARM::tBcc:
225     return HasThumb2 ? (unsigned)ARM::t2Bcc : Op;
226   case ARM::tLDRpci:
227     return HasThumb2 ? (unsigned)ARM::t2LDRpci : Op;
228   case ARM::tADR:
229     return HasThumb2 ? (unsigned)ARM::t2ADR : Op;
230   case ARM::tB:
231     return HasV8MBaselineOps ? (unsigned)ARM::t2B : Op;
232   case ARM::tCBZ:
233     return ARM::tHINT;
234   case ARM::tCBNZ:
235     return ARM::tHINT;
236   }
237 }
238 
239 bool ARMAsmBackend::mayNeedRelaxation(const MCInst &Inst,
240                                       const MCSubtargetInfo &STI) const {
241   if (getRelaxedOpcode(Inst.getOpcode(), STI) != Inst.getOpcode())
242     return true;
243   return false;
244 }
245 
246 static const char *checkPCRelOffset(uint64_t Value, int64_t Min, int64_t Max) {
247   int64_t Offset = int64_t(Value) - 4;
248   if (Offset < Min || Offset > Max)
249     return "out of range pc-relative fixup value";
250   return nullptr;
251 }
252 
253 const char *ARMAsmBackend::reasonForFixupRelaxation(const MCFixup &Fixup,
254                                                     uint64_t Value) const {
255   switch (Fixup.getTargetKind()) {
256   case ARM::fixup_arm_thumb_br: {
257     // Relaxing tB to t2B. tB has a signed 12-bit displacement with the
258     // low bit being an implied zero. There's an implied +4 offset for the
259     // branch, so we adjust the other way here to determine what's
260     // encodable.
261     //
262     // Relax if the value is too big for a (signed) i8.
263     int64_t Offset = int64_t(Value) - 4;
264     if (Offset > 2046 || Offset < -2048)
265       return "out of range pc-relative fixup value";
266     break;
267   }
268   case ARM::fixup_arm_thumb_bcc: {
269     // Relaxing tBcc to t2Bcc. tBcc has a signed 9-bit displacement with the
270     // low bit being an implied zero. There's an implied +4 offset for the
271     // branch, so we adjust the other way here to determine what's
272     // encodable.
273     //
274     // Relax if the value is too big for a (signed) i8.
275     int64_t Offset = int64_t(Value) - 4;
276     if (Offset > 254 || Offset < -256)
277       return "out of range pc-relative fixup value";
278     break;
279   }
280   case ARM::fixup_thumb_adr_pcrel_10:
281   case ARM::fixup_arm_thumb_cp: {
282     // If the immediate is negative, greater than 1020, or not a multiple
283     // of four, the wide version of the instruction must be used.
284     int64_t Offset = int64_t(Value) - 4;
285     if (Offset & 3)
286       return "misaligned pc-relative fixup value";
287     else if (Offset > 1020 || Offset < 0)
288       return "out of range pc-relative fixup value";
289     break;
290   }
291   case ARM::fixup_arm_thumb_cb: {
292     // If we have a Thumb CBZ or CBNZ instruction and its target is the next
293     // instruction it is actually out of range for the instruction.
294     // It will be changed to a NOP.
295     int64_t Offset = (Value & ~1);
296     if (Offset == 2)
297       return "will be converted to nop";
298     break;
299   }
300   case ARM::fixup_bf_branch:
301     return checkPCRelOffset(Value, 0, 30);
302   case ARM::fixup_bf_target:
303     return checkPCRelOffset(Value, -0x10000, +0xfffe);
304   case ARM::fixup_bfl_target:
305     return checkPCRelOffset(Value, -0x40000, +0x3fffe);
306   case ARM::fixup_bfc_target:
307     return checkPCRelOffset(Value, -0x1000, +0xffe);
308   case ARM::fixup_wls:
309     return checkPCRelOffset(Value, 0, +0xffe);
310   case ARM::fixup_le:
311     // The offset field in the LE and LETP instructions is an 11-bit
312     // value shifted left by 2 (i.e. 0,2,4,...,4094), and it is
313     // interpreted as a negative offset from the value read from pc,
314     // i.e. from instruction_address+4.
315     //
316     // So an LE instruction can in principle address the instruction
317     // immediately after itself, or (not very usefully) the address
318     // half way through the 4-byte LE.
319     return checkPCRelOffset(Value, -0xffe, 0);
320   case ARM::fixup_bfcsel_else_target: {
321     if (Value != 2 && Value != 4)
322       return "out of range label-relative fixup value";
323     break;
324   }
325 
326   default:
327     llvm_unreachable("Unexpected fixup kind in reasonForFixupRelaxation()!");
328   }
329   return nullptr;
330 }
331 
332 bool ARMAsmBackend::fixupNeedsRelaxation(const MCFixup &Fixup, uint64_t Value,
333                                          const MCRelaxableFragment *DF,
334                                          const MCAsmLayout &Layout) const {
335   return reasonForFixupRelaxation(Fixup, Value);
336 }
337 
338 void ARMAsmBackend::relaxInstruction(MCInst &Inst,
339                                      const MCSubtargetInfo &STI) const {
340   unsigned RelaxedOp = getRelaxedOpcode(Inst.getOpcode(), STI);
341 
342   // Return a diagnostic if we get here w/ a bogus instruction.
343   if (RelaxedOp == Inst.getOpcode()) {
344     SmallString<256> Tmp;
345     raw_svector_ostream OS(Tmp);
346     Inst.dump_pretty(OS);
347     OS << "\n";
348     report_fatal_error("unexpected instruction to relax: " + OS.str());
349   }
350 
351   // If we are changing Thumb CBZ or CBNZ instruction to a NOP, aka tHINT, we
352   // have to change the operands too.
353   if ((Inst.getOpcode() == ARM::tCBZ || Inst.getOpcode() == ARM::tCBNZ) &&
354       RelaxedOp == ARM::tHINT) {
355     MCInst Res;
356     Res.setOpcode(RelaxedOp);
357     Res.addOperand(MCOperand::createImm(0));
358     Res.addOperand(MCOperand::createImm(14));
359     Res.addOperand(MCOperand::createReg(0));
360     Inst = std::move(Res);
361     return;
362   }
363 
364   // The rest of instructions we're relaxing have the same operands.
365   // We just need to update to the proper opcode.
366   Inst.setOpcode(RelaxedOp);
367 }
368 
369 bool ARMAsmBackend::writeNopData(raw_ostream &OS, uint64_t Count,
370                                  const MCSubtargetInfo *STI) const {
371   const uint16_t Thumb1_16bitNopEncoding = 0x46c0; // using MOV r8,r8
372   const uint16_t Thumb2_16bitNopEncoding = 0xbf00; // NOP
373   const uint32_t ARMv4_NopEncoding = 0xe1a00000;   // using MOV r0,r0
374   const uint32_t ARMv6T2_NopEncoding = 0xe320f000; // NOP
375   if (isThumb()) {
376     const uint16_t nopEncoding =
377         hasNOP(STI) ? Thumb2_16bitNopEncoding : Thumb1_16bitNopEncoding;
378     uint64_t NumNops = Count / 2;
379     for (uint64_t i = 0; i != NumNops; ++i)
380       support::endian::write(OS, nopEncoding, Endian);
381     if (Count & 1)
382       OS << '\0';
383     return true;
384   }
385   // ARM mode
386   const uint32_t nopEncoding =
387       hasNOP(STI) ? ARMv6T2_NopEncoding : ARMv4_NopEncoding;
388   uint64_t NumNops = Count / 4;
389   for (uint64_t i = 0; i != NumNops; ++i)
390     support::endian::write(OS, nopEncoding, Endian);
391   // FIXME: should this function return false when unable to write exactly
392   // 'Count' bytes with NOP encodings?
393   switch (Count % 4) {
394   default:
395     break; // No leftover bytes to write
396   case 1:
397     OS << '\0';
398     break;
399   case 2:
400     OS.write("\0\0", 2);
401     break;
402   case 3:
403     OS.write("\0\0\xa0", 3);
404     break;
405   }
406 
407   return true;
408 }
409 
410 static uint32_t swapHalfWords(uint32_t Value, bool IsLittleEndian) {
411   if (IsLittleEndian) {
412     // Note that the halfwords are stored high first and low second in thumb;
413     // so we need to swap the fixup value here to map properly.
414     uint32_t Swapped = (Value & 0xFFFF0000) >> 16;
415     Swapped |= (Value & 0x0000FFFF) << 16;
416     return Swapped;
417   } else
418     return Value;
419 }
420 
421 static uint32_t joinHalfWords(uint32_t FirstHalf, uint32_t SecondHalf,
422                               bool IsLittleEndian) {
423   uint32_t Value;
424 
425   if (IsLittleEndian) {
426     Value = (SecondHalf & 0xFFFF) << 16;
427     Value |= (FirstHalf & 0xFFFF);
428   } else {
429     Value = (SecondHalf & 0xFFFF);
430     Value |= (FirstHalf & 0xFFFF) << 16;
431   }
432 
433   return Value;
434 }
435 
436 unsigned ARMAsmBackend::adjustFixupValue(const MCAssembler &Asm,
437                                          const MCFixup &Fixup,
438                                          const MCValue &Target, uint64_t Value,
439                                          bool IsResolved, MCContext &Ctx,
440                                          const MCSubtargetInfo* STI) const {
441   unsigned Kind = Fixup.getKind();
442 
443   // MachO tries to make .o files that look vaguely pre-linked, so for MOVW/MOVT
444   // and .word relocations they put the Thumb bit into the addend if possible.
445   // Other relocation types don't want this bit though (branches couldn't encode
446   // it if it *was* present, and no other relocations exist) and it can
447   // interfere with checking valid expressions.
448   if (const MCSymbolRefExpr *A = Target.getSymA()) {
449     if (A->hasSubsectionsViaSymbols() && Asm.isThumbFunc(&A->getSymbol()) &&
450         A->getSymbol().isExternal() &&
451         (Kind == FK_Data_4 || Kind == ARM::fixup_arm_movw_lo16 ||
452          Kind == ARM::fixup_arm_movt_hi16 || Kind == ARM::fixup_t2_movw_lo16 ||
453          Kind == ARM::fixup_t2_movt_hi16))
454       Value |= 1;
455   }
456 
457   switch (Kind) {
458   default:
459     return 0;
460   case FK_Data_1:
461   case FK_Data_2:
462   case FK_Data_4:
463     return Value;
464   case FK_SecRel_2:
465     return Value;
466   case FK_SecRel_4:
467     return Value;
468   case ARM::fixup_arm_movt_hi16:
469     assert(STI != nullptr);
470     if (IsResolved || !STI->getTargetTriple().isOSBinFormatELF())
471       Value >>= 16;
472     [[fallthrough]];
473   case ARM::fixup_arm_movw_lo16: {
474     unsigned Hi4 = (Value & 0xF000) >> 12;
475     unsigned Lo12 = Value & 0x0FFF;
476     // inst{19-16} = Hi4;
477     // inst{11-0} = Lo12;
478     Value = (Hi4 << 16) | (Lo12);
479     return Value;
480   }
481   case ARM::fixup_t2_movt_hi16:
482     assert(STI != nullptr);
483     if (IsResolved || !STI->getTargetTriple().isOSBinFormatELF())
484       Value >>= 16;
485     [[fallthrough]];
486   case ARM::fixup_t2_movw_lo16: {
487     unsigned Hi4 = (Value & 0xF000) >> 12;
488     unsigned i = (Value & 0x800) >> 11;
489     unsigned Mid3 = (Value & 0x700) >> 8;
490     unsigned Lo8 = Value & 0x0FF;
491     // inst{19-16} = Hi4;
492     // inst{26} = i;
493     // inst{14-12} = Mid3;
494     // inst{7-0} = Lo8;
495     Value = (Hi4 << 16) | (i << 26) | (Mid3 << 12) | (Lo8);
496     return swapHalfWords(Value, Endian == support::little);
497   }
498   case ARM::fixup_arm_thumb_upper_8_15:
499     if (IsResolved || !STI->getTargetTriple().isOSBinFormatELF())
500       return (Value & 0xff000000) >> 24;
501     return Value & 0xff;
502   case ARM::fixup_arm_thumb_upper_0_7:
503     if (IsResolved || !STI->getTargetTriple().isOSBinFormatELF())
504       return (Value & 0x00ff0000) >> 16;
505     return Value & 0xff;
506   case ARM::fixup_arm_thumb_lower_8_15:
507     if (IsResolved || !STI->getTargetTriple().isOSBinFormatELF())
508       return (Value & 0x0000ff00) >> 8;
509     return Value & 0xff;
510   case ARM::fixup_arm_thumb_lower_0_7:
511     return Value & 0x000000ff;
512   case ARM::fixup_arm_ldst_pcrel_12:
513     // ARM PC-relative values are offset by 8.
514     Value -= 4;
515     [[fallthrough]];
516   case ARM::fixup_t2_ldst_pcrel_12:
517     // Offset by 4, adjusted by two due to the half-word ordering of thumb.
518     Value -= 4;
519     [[fallthrough]];
520   case ARM::fixup_arm_ldst_abs_12: {
521     bool isAdd = true;
522     if ((int64_t)Value < 0) {
523       Value = -Value;
524       isAdd = false;
525     }
526     if (Value >= 4096) {
527       Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
528       return 0;
529     }
530     Value |= isAdd << 23;
531 
532     // Same addressing mode as fixup_arm_pcrel_10,
533     // but with 16-bit halfwords swapped.
534     if (Kind == ARM::fixup_t2_ldst_pcrel_12)
535       return swapHalfWords(Value, Endian == support::little);
536 
537     return Value;
538   }
539   case ARM::fixup_arm_adr_pcrel_12: {
540     // ARM PC-relative values are offset by 8.
541     Value -= 8;
542     unsigned opc = 4; // bits {24-21}. Default to add: 0b0100
543     if ((int64_t)Value < 0) {
544       Value = -Value;
545       opc = 2; // 0b0010
546     }
547     if (ARM_AM::getSOImmVal(Value) == -1) {
548       Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
549       return 0;
550     }
551     // Encode the immediate and shift the opcode into place.
552     return ARM_AM::getSOImmVal(Value) | (opc << 21);
553   }
554 
555   case ARM::fixup_t2_adr_pcrel_12: {
556     Value -= 4;
557     unsigned opc = 0;
558     if ((int64_t)Value < 0) {
559       Value = -Value;
560       opc = 5;
561     }
562 
563     uint32_t out = (opc << 21);
564     out |= (Value & 0x800) << 15;
565     out |= (Value & 0x700) << 4;
566     out |= (Value & 0x0FF);
567 
568     return swapHalfWords(out, Endian == support::little);
569   }
570 
571   case ARM::fixup_arm_condbranch:
572   case ARM::fixup_arm_uncondbranch:
573   case ARM::fixup_arm_uncondbl:
574   case ARM::fixup_arm_condbl:
575   case ARM::fixup_arm_blx:
576     // These values don't encode the low two bits since they're always zero.
577     // Offset by 8 just as above.
578     if (const MCSymbolRefExpr *SRE =
579             dyn_cast<MCSymbolRefExpr>(Fixup.getValue()))
580       if (SRE->getKind() == MCSymbolRefExpr::VK_TLSCALL)
581         return 0;
582     return 0xffffff & ((Value - 8) >> 2);
583   case ARM::fixup_t2_uncondbranch: {
584     Value = Value - 4;
585     if (!isInt<25>(Value)) {
586       Ctx.reportError(Fixup.getLoc(), "Relocation out of range");
587       return 0;
588     }
589 
590     Value >>= 1; // Low bit is not encoded.
591 
592     uint32_t out = 0;
593     bool I = Value & 0x800000;
594     bool J1 = Value & 0x400000;
595     bool J2 = Value & 0x200000;
596     J1 ^= I;
597     J2 ^= I;
598 
599     out |= I << 26;                 // S bit
600     out |= !J1 << 13;               // J1 bit
601     out |= !J2 << 11;               // J2 bit
602     out |= (Value & 0x1FF800) << 5; // imm6 field
603     out |= (Value & 0x0007FF);      // imm11 field
604 
605     return swapHalfWords(out, Endian == support::little);
606   }
607   case ARM::fixup_t2_condbranch: {
608     Value = Value - 4;
609     if (!isInt<21>(Value)) {
610       Ctx.reportError(Fixup.getLoc(), "Relocation out of range");
611       return 0;
612     }
613 
614     Value >>= 1; // Low bit is not encoded.
615 
616     uint64_t out = 0;
617     out |= (Value & 0x80000) << 7; // S bit
618     out |= (Value & 0x40000) >> 7; // J2 bit
619     out |= (Value & 0x20000) >> 4; // J1 bit
620     out |= (Value & 0x1F800) << 5; // imm6 field
621     out |= (Value & 0x007FF);      // imm11 field
622 
623     return swapHalfWords(out, Endian == support::little);
624   }
625   case ARM::fixup_arm_thumb_bl: {
626     if (!isInt<25>(Value - 4) ||
627         (!STI->hasFeature(ARM::FeatureThumb2) &&
628          !STI->hasFeature(ARM::HasV8MBaselineOps) &&
629          !STI->hasFeature(ARM::HasV6MOps) &&
630          !isInt<23>(Value - 4))) {
631       Ctx.reportError(Fixup.getLoc(), "Relocation out of range");
632       return 0;
633     }
634 
635     // The value doesn't encode the low bit (always zero) and is offset by
636     // four. The 32-bit immediate value is encoded as
637     //   imm32 = SignExtend(S:I1:I2:imm10:imm11:0)
638     // where I1 = NOT(J1 ^ S) and I2 = NOT(J2 ^ S).
639     // The value is encoded into disjoint bit positions in the destination
640     // opcode. x = unchanged, I = immediate value bit, S = sign extension bit,
641     // J = either J1 or J2 bit
642     //
643     //   BL:  xxxxxSIIIIIIIIII xxJxJIIIIIIIIIII
644     //
645     // Note that the halfwords are stored high first, low second; so we need
646     // to transpose the fixup value here to map properly.
647     uint32_t offset = (Value - 4) >> 1;
648     uint32_t signBit = (offset & 0x800000) >> 23;
649     uint32_t I1Bit = (offset & 0x400000) >> 22;
650     uint32_t J1Bit = (I1Bit ^ 0x1) ^ signBit;
651     uint32_t I2Bit = (offset & 0x200000) >> 21;
652     uint32_t J2Bit = (I2Bit ^ 0x1) ^ signBit;
653     uint32_t imm10Bits = (offset & 0x1FF800) >> 11;
654     uint32_t imm11Bits = (offset & 0x000007FF);
655 
656     uint32_t FirstHalf = (((uint16_t)signBit << 10) | (uint16_t)imm10Bits);
657     uint32_t SecondHalf = (((uint16_t)J1Bit << 13) | ((uint16_t)J2Bit << 11) |
658                            (uint16_t)imm11Bits);
659     return joinHalfWords(FirstHalf, SecondHalf, Endian == support::little);
660   }
661   case ARM::fixup_arm_thumb_blx: {
662     // The value doesn't encode the low two bits (always zero) and is offset by
663     // four (see fixup_arm_thumb_cp). The 32-bit immediate value is encoded as
664     //   imm32 = SignExtend(S:I1:I2:imm10H:imm10L:00)
665     // where I1 = NOT(J1 ^ S) and I2 = NOT(J2 ^ S).
666     // The value is encoded into disjoint bit positions in the destination
667     // opcode. x = unchanged, I = immediate value bit, S = sign extension bit,
668     // J = either J1 or J2 bit, 0 = zero.
669     //
670     //   BLX: xxxxxSIIIIIIIIII xxJxJIIIIIIIIII0
671     //
672     // Note that the halfwords are stored high first, low second; so we need
673     // to transpose the fixup value here to map properly.
674     if (Value % 4 != 0) {
675       Ctx.reportError(Fixup.getLoc(), "misaligned ARM call destination");
676       return 0;
677     }
678 
679     uint32_t offset = (Value - 4) >> 2;
680     if (const MCSymbolRefExpr *SRE =
681             dyn_cast<MCSymbolRefExpr>(Fixup.getValue()))
682       if (SRE->getKind() == MCSymbolRefExpr::VK_TLSCALL)
683         offset = 0;
684     uint32_t signBit = (offset & 0x400000) >> 22;
685     uint32_t I1Bit = (offset & 0x200000) >> 21;
686     uint32_t J1Bit = (I1Bit ^ 0x1) ^ signBit;
687     uint32_t I2Bit = (offset & 0x100000) >> 20;
688     uint32_t J2Bit = (I2Bit ^ 0x1) ^ signBit;
689     uint32_t imm10HBits = (offset & 0xFFC00) >> 10;
690     uint32_t imm10LBits = (offset & 0x3FF);
691 
692     uint32_t FirstHalf = (((uint16_t)signBit << 10) | (uint16_t)imm10HBits);
693     uint32_t SecondHalf = (((uint16_t)J1Bit << 13) | ((uint16_t)J2Bit << 11) |
694                            ((uint16_t)imm10LBits) << 1);
695     return joinHalfWords(FirstHalf, SecondHalf, Endian == support::little);
696   }
697   case ARM::fixup_thumb_adr_pcrel_10:
698   case ARM::fixup_arm_thumb_cp:
699     // On CPUs supporting Thumb2, this will be relaxed to an ldr.w, otherwise we
700     // could have an error on our hands.
701     assert(STI != nullptr);
702     if (!STI->hasFeature(ARM::FeatureThumb2) && IsResolved) {
703       const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value);
704       if (FixupDiagnostic) {
705         Ctx.reportError(Fixup.getLoc(), FixupDiagnostic);
706         return 0;
707       }
708     }
709     // Offset by 4, and don't encode the low two bits.
710     return ((Value - 4) >> 2) & 0xff;
711   case ARM::fixup_arm_thumb_cb: {
712     // CB instructions can only branch to offsets in [4, 126] in multiples of 2
713     // so ensure that the raw value LSB is zero and it lies in [2, 130].
714     // An offset of 2 will be relaxed to a NOP.
715     if ((int64_t)Value < 2 || Value > 0x82 || Value & 1) {
716       Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
717       return 0;
718     }
719     // Offset by 4 and don't encode the lower bit, which is always 0.
720     // FIXME: diagnose if no Thumb2
721     uint32_t Binary = (Value - 4) >> 1;
722     return ((Binary & 0x20) << 4) | ((Binary & 0x1f) << 3);
723   }
724   case ARM::fixup_arm_thumb_br:
725     // Offset by 4 and don't encode the lower bit, which is always 0.
726     assert(STI != nullptr);
727     if (!STI->hasFeature(ARM::FeatureThumb2) &&
728         !STI->hasFeature(ARM::HasV8MBaselineOps)) {
729       const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value);
730       if (FixupDiagnostic) {
731         Ctx.reportError(Fixup.getLoc(), FixupDiagnostic);
732         return 0;
733       }
734     }
735     return ((Value - 4) >> 1) & 0x7ff;
736   case ARM::fixup_arm_thumb_bcc:
737     // Offset by 4 and don't encode the lower bit, which is always 0.
738     assert(STI != nullptr);
739     if (!STI->hasFeature(ARM::FeatureThumb2)) {
740       const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value);
741       if (FixupDiagnostic) {
742         Ctx.reportError(Fixup.getLoc(), FixupDiagnostic);
743         return 0;
744       }
745     }
746     return ((Value - 4) >> 1) & 0xff;
747   case ARM::fixup_arm_pcrel_10_unscaled: {
748     Value = Value - 8; // ARM fixups offset by an additional word and don't
749                        // need to adjust for the half-word ordering.
750     bool isAdd = true;
751     if ((int64_t)Value < 0) {
752       Value = -Value;
753       isAdd = false;
754     }
755     // The value has the low 4 bits encoded in [3:0] and the high 4 in [11:8].
756     if (Value >= 256) {
757       Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
758       return 0;
759     }
760     Value = (Value & 0xf) | ((Value & 0xf0) << 4);
761     return Value | (isAdd << 23);
762   }
763   case ARM::fixup_arm_pcrel_10:
764     Value = Value - 4; // ARM fixups offset by an additional word and don't
765                        // need to adjust for the half-word ordering.
766     [[fallthrough]];
767   case ARM::fixup_t2_pcrel_10: {
768     // Offset by 4, adjusted by two due to the half-word ordering of thumb.
769     Value = Value - 4;
770     bool isAdd = true;
771     if ((int64_t)Value < 0) {
772       Value = -Value;
773       isAdd = false;
774     }
775     // These values don't encode the low two bits since they're always zero.
776     Value >>= 2;
777     if (Value >= 256) {
778       Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
779       return 0;
780     }
781     Value |= isAdd << 23;
782 
783     // Same addressing mode as fixup_arm_pcrel_10, but with 16-bit halfwords
784     // swapped.
785     if (Kind == ARM::fixup_t2_pcrel_10)
786       return swapHalfWords(Value, Endian == support::little);
787 
788     return Value;
789   }
790   case ARM::fixup_arm_pcrel_9:
791     Value = Value - 4; // ARM fixups offset by an additional word and don't
792                        // need to adjust for the half-word ordering.
793     [[fallthrough]];
794   case ARM::fixup_t2_pcrel_9: {
795     // Offset by 4, adjusted by two due to the half-word ordering of thumb.
796     Value = Value - 4;
797     bool isAdd = true;
798     if ((int64_t)Value < 0) {
799       Value = -Value;
800       isAdd = false;
801     }
802     // These values don't encode the low bit since it's always zero.
803     if (Value & 1) {
804       Ctx.reportError(Fixup.getLoc(), "invalid value for this fixup");
805       return 0;
806     }
807     Value >>= 1;
808     if (Value >= 256) {
809       Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
810       return 0;
811     }
812     Value |= isAdd << 23;
813 
814     // Same addressing mode as fixup_arm_pcrel_9, but with 16-bit halfwords
815     // swapped.
816     if (Kind == ARM::fixup_t2_pcrel_9)
817       return swapHalfWords(Value, Endian == support::little);
818 
819     return Value;
820   }
821   case ARM::fixup_arm_mod_imm:
822     Value = ARM_AM::getSOImmVal(Value);
823     if (Value >> 12) {
824       Ctx.reportError(Fixup.getLoc(), "out of range immediate fixup value");
825       return 0;
826     }
827     return Value;
828   case ARM::fixup_t2_so_imm: {
829     Value = ARM_AM::getT2SOImmVal(Value);
830     if ((int64_t)Value < 0) {
831       Ctx.reportError(Fixup.getLoc(), "out of range immediate fixup value");
832       return 0;
833     }
834     // Value will contain a 12-bit value broken up into a 4-bit shift in bits
835     // 11:8 and the 8-bit immediate in 0:7. The instruction has the immediate
836     // in 0:7. The 4-bit shift is split up into i:imm3 where i is placed at bit
837     // 10 of the upper half-word and imm3 is placed at 14:12 of the lower
838     // half-word.
839     uint64_t EncValue = 0;
840     EncValue |= (Value & 0x800) << 15;
841     EncValue |= (Value & 0x700) << 4;
842     EncValue |= (Value & 0xff);
843     return swapHalfWords(EncValue, Endian == support::little);
844   }
845   case ARM::fixup_bf_branch: {
846     const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value);
847     if (FixupDiagnostic) {
848       Ctx.reportError(Fixup.getLoc(), FixupDiagnostic);
849       return 0;
850     }
851     uint32_t out = (((Value - 4) >> 1) & 0xf) << 23;
852     return swapHalfWords(out, Endian == support::little);
853   }
854   case ARM::fixup_bf_target:
855   case ARM::fixup_bfl_target:
856   case ARM::fixup_bfc_target: {
857     const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value);
858     if (FixupDiagnostic) {
859       Ctx.reportError(Fixup.getLoc(), FixupDiagnostic);
860       return 0;
861     }
862     uint32_t out = 0;
863     uint32_t HighBitMask = (Kind == ARM::fixup_bf_target ? 0xf800 :
864                             Kind == ARM::fixup_bfl_target ? 0x3f800 : 0x800);
865     out |= (((Value - 4) >> 1) & 0x1) << 11;
866     out |= (((Value - 4) >> 1) & 0x7fe);
867     out |= (((Value - 4) >> 1) & HighBitMask) << 5;
868     return swapHalfWords(out, Endian == support::little);
869   }
870   case ARM::fixup_bfcsel_else_target: {
871     // If this is a fixup of a branch future's else target then it should be a
872     // constant MCExpr representing the distance between the branch targetted
873     // and the instruction after that same branch.
874     Value = Target.getConstant();
875 
876     const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value);
877     if (FixupDiagnostic) {
878       Ctx.reportError(Fixup.getLoc(), FixupDiagnostic);
879       return 0;
880     }
881     uint32_t out = ((Value >> 2) & 1) << 17;
882     return swapHalfWords(out, Endian == support::little);
883   }
884   case ARM::fixup_wls:
885   case ARM::fixup_le: {
886     const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value);
887     if (FixupDiagnostic) {
888       Ctx.reportError(Fixup.getLoc(), FixupDiagnostic);
889       return 0;
890     }
891     uint64_t real_value = Value - 4;
892     uint32_t out = 0;
893     if (Kind == ARM::fixup_le)
894       real_value = -real_value;
895     out |= ((real_value >> 1) & 0x1) << 11;
896     out |= ((real_value >> 1) & 0x7fe);
897     return swapHalfWords(out, Endian == support::little);
898   }
899   }
900 }
901 
902 bool ARMAsmBackend::shouldForceRelocation(const MCAssembler &Asm,
903                                           const MCFixup &Fixup,
904                                           const MCValue &Target) {
905   const MCSymbolRefExpr *A = Target.getSymA();
906   const MCSymbol *Sym = A ? &A->getSymbol() : nullptr;
907   const unsigned FixupKind = Fixup.getKind();
908   if (FixupKind >= FirstLiteralRelocationKind)
909     return true;
910   if (FixupKind == ARM::fixup_arm_thumb_bl) {
911     assert(Sym && "How did we resolve this?");
912 
913     // If the symbol is external the linker will handle it.
914     // FIXME: Should we handle it as an optimization?
915 
916     // If the symbol is out of range, produce a relocation and hope the
917     // linker can handle it. GNU AS produces an error in this case.
918     if (Sym->isExternal())
919       return true;
920   }
921   // Create relocations for unconditional branches to function symbols with
922   // different execution mode in ELF binaries.
923   if (Sym && Sym->isELF()) {
924     unsigned Type = cast<MCSymbolELF>(Sym)->getType();
925     if ((Type == ELF::STT_FUNC || Type == ELF::STT_GNU_IFUNC)) {
926       if (Asm.isThumbFunc(Sym) && (FixupKind == ARM::fixup_arm_uncondbranch))
927         return true;
928       if (!Asm.isThumbFunc(Sym) && (FixupKind == ARM::fixup_arm_thumb_br ||
929                                     FixupKind == ARM::fixup_arm_thumb_bl ||
930                                     FixupKind == ARM::fixup_t2_condbranch ||
931                                     FixupKind == ARM::fixup_t2_uncondbranch))
932         return true;
933     }
934   }
935   // We must always generate a relocation for BL/BLX instructions if we have
936   // a symbol to reference, as the linker relies on knowing the destination
937   // symbol's thumb-ness to get interworking right.
938   if (A && (FixupKind == ARM::fixup_arm_thumb_blx ||
939             FixupKind == ARM::fixup_arm_blx ||
940             FixupKind == ARM::fixup_arm_uncondbl ||
941             FixupKind == ARM::fixup_arm_condbl))
942     return true;
943   return false;
944 }
945 
946 /// getFixupKindNumBytes - The number of bytes the fixup may change.
947 static unsigned getFixupKindNumBytes(unsigned Kind) {
948   switch (Kind) {
949   default:
950     llvm_unreachable("Unknown fixup kind!");
951 
952   case FK_Data_1:
953   case ARM::fixup_arm_thumb_bcc:
954   case ARM::fixup_arm_thumb_cp:
955   case ARM::fixup_thumb_adr_pcrel_10:
956   case ARM::fixup_arm_thumb_upper_8_15:
957   case ARM::fixup_arm_thumb_upper_0_7:
958   case ARM::fixup_arm_thumb_lower_8_15:
959   case ARM::fixup_arm_thumb_lower_0_7:
960     return 1;
961 
962   case FK_Data_2:
963   case ARM::fixup_arm_thumb_br:
964   case ARM::fixup_arm_thumb_cb:
965   case ARM::fixup_arm_mod_imm:
966     return 2;
967 
968   case ARM::fixup_arm_pcrel_10_unscaled:
969   case ARM::fixup_arm_ldst_pcrel_12:
970   case ARM::fixup_arm_pcrel_10:
971   case ARM::fixup_arm_pcrel_9:
972   case ARM::fixup_arm_ldst_abs_12:
973   case ARM::fixup_arm_adr_pcrel_12:
974   case ARM::fixup_arm_uncondbl:
975   case ARM::fixup_arm_condbl:
976   case ARM::fixup_arm_blx:
977   case ARM::fixup_arm_condbranch:
978   case ARM::fixup_arm_uncondbranch:
979     return 3;
980 
981   case FK_Data_4:
982   case ARM::fixup_t2_ldst_pcrel_12:
983   case ARM::fixup_t2_condbranch:
984   case ARM::fixup_t2_uncondbranch:
985   case ARM::fixup_t2_pcrel_10:
986   case ARM::fixup_t2_pcrel_9:
987   case ARM::fixup_t2_adr_pcrel_12:
988   case ARM::fixup_arm_thumb_bl:
989   case ARM::fixup_arm_thumb_blx:
990   case ARM::fixup_arm_movt_hi16:
991   case ARM::fixup_arm_movw_lo16:
992   case ARM::fixup_t2_movt_hi16:
993   case ARM::fixup_t2_movw_lo16:
994   case ARM::fixup_t2_so_imm:
995   case ARM::fixup_bf_branch:
996   case ARM::fixup_bf_target:
997   case ARM::fixup_bfl_target:
998   case ARM::fixup_bfc_target:
999   case ARM::fixup_bfcsel_else_target:
1000   case ARM::fixup_wls:
1001   case ARM::fixup_le:
1002     return 4;
1003 
1004   case FK_SecRel_2:
1005     return 2;
1006   case FK_SecRel_4:
1007     return 4;
1008   }
1009 }
1010 
1011 /// getFixupKindContainerSizeBytes - The number of bytes of the
1012 /// container involved in big endian.
1013 static unsigned getFixupKindContainerSizeBytes(unsigned Kind) {
1014   switch (Kind) {
1015   default:
1016     llvm_unreachable("Unknown fixup kind!");
1017 
1018   case FK_Data_1:
1019     return 1;
1020   case FK_Data_2:
1021     return 2;
1022   case FK_Data_4:
1023     return 4;
1024 
1025   case ARM::fixup_arm_thumb_bcc:
1026   case ARM::fixup_arm_thumb_cp:
1027   case ARM::fixup_thumb_adr_pcrel_10:
1028   case ARM::fixup_arm_thumb_br:
1029   case ARM::fixup_arm_thumb_cb:
1030   case ARM::fixup_arm_thumb_upper_8_15:
1031   case ARM::fixup_arm_thumb_upper_0_7:
1032   case ARM::fixup_arm_thumb_lower_8_15:
1033   case ARM::fixup_arm_thumb_lower_0_7:
1034     // Instruction size is 2 bytes.
1035     return 2;
1036 
1037   case ARM::fixup_arm_pcrel_10_unscaled:
1038   case ARM::fixup_arm_ldst_pcrel_12:
1039   case ARM::fixup_arm_pcrel_10:
1040   case ARM::fixup_arm_pcrel_9:
1041   case ARM::fixup_arm_adr_pcrel_12:
1042   case ARM::fixup_arm_uncondbl:
1043   case ARM::fixup_arm_condbl:
1044   case ARM::fixup_arm_blx:
1045   case ARM::fixup_arm_condbranch:
1046   case ARM::fixup_arm_uncondbranch:
1047   case ARM::fixup_t2_ldst_pcrel_12:
1048   case ARM::fixup_t2_condbranch:
1049   case ARM::fixup_t2_uncondbranch:
1050   case ARM::fixup_t2_pcrel_10:
1051   case ARM::fixup_t2_pcrel_9:
1052   case ARM::fixup_t2_adr_pcrel_12:
1053   case ARM::fixup_arm_thumb_bl:
1054   case ARM::fixup_arm_thumb_blx:
1055   case ARM::fixup_arm_movt_hi16:
1056   case ARM::fixup_arm_movw_lo16:
1057   case ARM::fixup_t2_movt_hi16:
1058   case ARM::fixup_t2_movw_lo16:
1059   case ARM::fixup_arm_mod_imm:
1060   case ARM::fixup_t2_so_imm:
1061   case ARM::fixup_bf_branch:
1062   case ARM::fixup_bf_target:
1063   case ARM::fixup_bfl_target:
1064   case ARM::fixup_bfc_target:
1065   case ARM::fixup_bfcsel_else_target:
1066   case ARM::fixup_wls:
1067   case ARM::fixup_le:
1068     // Instruction size is 4 bytes.
1069     return 4;
1070   }
1071 }
1072 
1073 void ARMAsmBackend::applyFixup(const MCAssembler &Asm, const MCFixup &Fixup,
1074                                const MCValue &Target,
1075                                MutableArrayRef<char> Data, uint64_t Value,
1076                                bool IsResolved,
1077                                const MCSubtargetInfo* STI) const {
1078   unsigned Kind = Fixup.getKind();
1079   if (Kind >= FirstLiteralRelocationKind)
1080     return;
1081   MCContext &Ctx = Asm.getContext();
1082   Value = adjustFixupValue(Asm, Fixup, Target, Value, IsResolved, Ctx, STI);
1083   if (!Value)
1084     return; // Doesn't change encoding.
1085   const unsigned NumBytes = getFixupKindNumBytes(Kind);
1086 
1087   unsigned Offset = Fixup.getOffset();
1088   assert(Offset + NumBytes <= Data.size() && "Invalid fixup offset!");
1089 
1090   // Used to point to big endian bytes.
1091   unsigned FullSizeBytes;
1092   if (Endian == support::big) {
1093     FullSizeBytes = getFixupKindContainerSizeBytes(Kind);
1094     assert((Offset + FullSizeBytes) <= Data.size() && "Invalid fixup size!");
1095     assert(NumBytes <= FullSizeBytes && "Invalid fixup size!");
1096   }
1097 
1098   // For each byte of the fragment that the fixup touches, mask in the bits from
1099   // the fixup value. The Value has been "split up" into the appropriate
1100   // bitfields above.
1101   for (unsigned i = 0; i != NumBytes; ++i) {
1102     unsigned Idx = Endian == support::little ? i : (FullSizeBytes - 1 - i);
1103     Data[Offset + Idx] |= uint8_t((Value >> (i * 8)) & 0xff);
1104   }
1105 }
1106 
1107 namespace CU {
1108 
1109 /// Compact unwind encoding values.
1110 enum CompactUnwindEncodings {
1111   UNWIND_ARM_MODE_MASK                         = 0x0F000000,
1112   UNWIND_ARM_MODE_FRAME                        = 0x01000000,
1113   UNWIND_ARM_MODE_FRAME_D                      = 0x02000000,
1114   UNWIND_ARM_MODE_DWARF                        = 0x04000000,
1115 
1116   UNWIND_ARM_FRAME_STACK_ADJUST_MASK           = 0x00C00000,
1117 
1118   UNWIND_ARM_FRAME_FIRST_PUSH_R4               = 0x00000001,
1119   UNWIND_ARM_FRAME_FIRST_PUSH_R5               = 0x00000002,
1120   UNWIND_ARM_FRAME_FIRST_PUSH_R6               = 0x00000004,
1121 
1122   UNWIND_ARM_FRAME_SECOND_PUSH_R8              = 0x00000008,
1123   UNWIND_ARM_FRAME_SECOND_PUSH_R9              = 0x00000010,
1124   UNWIND_ARM_FRAME_SECOND_PUSH_R10             = 0x00000020,
1125   UNWIND_ARM_FRAME_SECOND_PUSH_R11             = 0x00000040,
1126   UNWIND_ARM_FRAME_SECOND_PUSH_R12             = 0x00000080,
1127 
1128   UNWIND_ARM_FRAME_D_REG_COUNT_MASK            = 0x00000F00,
1129 
1130   UNWIND_ARM_DWARF_SECTION_OFFSET              = 0x00FFFFFF
1131 };
1132 
1133 } // end CU namespace
1134 
1135 /// Generate compact unwind encoding for the function based on the CFI
1136 /// instructions. If the CFI instructions describe a frame that cannot be
1137 /// encoded in compact unwind, the method returns UNWIND_ARM_MODE_DWARF which
1138 /// tells the runtime to fallback and unwind using dwarf.
1139 uint32_t ARMAsmBackendDarwin::generateCompactUnwindEncoding(
1140     const MCDwarfFrameInfo *FI, const MCContext *Ctxt) const {
1141   DEBUG_WITH_TYPE("compact-unwind", llvm::dbgs() << "generateCU()\n");
1142   // Only armv7k uses CFI based unwinding.
1143   if (Subtype != MachO::CPU_SUBTYPE_ARM_V7K)
1144     return 0;
1145   // No .cfi directives means no frame.
1146   ArrayRef<MCCFIInstruction> Instrs = FI->Instructions;
1147   if (Instrs.empty())
1148     return 0;
1149   if (!isDarwinCanonicalPersonality(FI->Personality) &&
1150       !Ctxt->emitCompactUnwindNonCanonical())
1151     return CU::UNWIND_ARM_MODE_DWARF;
1152 
1153   // Start off assuming CFA is at SP+0.
1154   unsigned CFARegister = ARM::SP;
1155   int CFARegisterOffset = 0;
1156   // Mark savable registers as initially unsaved
1157   DenseMap<unsigned, int> RegOffsets;
1158   int FloatRegCount = 0;
1159   // Process each .cfi directive and build up compact unwind info.
1160   for (const MCCFIInstruction &Inst : Instrs) {
1161     unsigned Reg;
1162     switch (Inst.getOperation()) {
1163     case MCCFIInstruction::OpDefCfa: // DW_CFA_def_cfa
1164       CFARegisterOffset = Inst.getOffset();
1165       CFARegister = *MRI.getLLVMRegNum(Inst.getRegister(), true);
1166       break;
1167     case MCCFIInstruction::OpDefCfaOffset: // DW_CFA_def_cfa_offset
1168       CFARegisterOffset = Inst.getOffset();
1169       break;
1170     case MCCFIInstruction::OpDefCfaRegister: // DW_CFA_def_cfa_register
1171       CFARegister = *MRI.getLLVMRegNum(Inst.getRegister(), true);
1172       break;
1173     case MCCFIInstruction::OpOffset: // DW_CFA_offset
1174       Reg = *MRI.getLLVMRegNum(Inst.getRegister(), true);
1175       if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
1176         RegOffsets[Reg] = Inst.getOffset();
1177       else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) {
1178         RegOffsets[Reg] = Inst.getOffset();
1179         ++FloatRegCount;
1180       } else {
1181         DEBUG_WITH_TYPE("compact-unwind",
1182                         llvm::dbgs() << ".cfi_offset on unknown register="
1183                                      << Inst.getRegister() << "\n");
1184         return CU::UNWIND_ARM_MODE_DWARF;
1185       }
1186       break;
1187     case MCCFIInstruction::OpRelOffset: // DW_CFA_advance_loc
1188       // Ignore
1189       break;
1190     default:
1191       // Directive not convertable to compact unwind, bail out.
1192       DEBUG_WITH_TYPE("compact-unwind",
1193                       llvm::dbgs()
1194                           << "CFI directive not compatible with compact "
1195                              "unwind encoding, opcode=" << Inst.getOperation()
1196                           << "\n");
1197       return CU::UNWIND_ARM_MODE_DWARF;
1198       break;
1199     }
1200   }
1201 
1202   // If no frame set up, return no unwind info.
1203   if ((CFARegister == ARM::SP) && (CFARegisterOffset == 0))
1204     return 0;
1205 
1206   // Verify standard frame (lr/r7) was used.
1207   if (CFARegister != ARM::R7) {
1208     DEBUG_WITH_TYPE("compact-unwind", llvm::dbgs() << "frame register is "
1209                                                    << CFARegister
1210                                                    << " instead of r7\n");
1211     return CU::UNWIND_ARM_MODE_DWARF;
1212   }
1213   int StackAdjust = CFARegisterOffset - 8;
1214   if (RegOffsets.lookup(ARM::LR) != (-4 - StackAdjust)) {
1215     DEBUG_WITH_TYPE("compact-unwind",
1216                     llvm::dbgs()
1217                         << "LR not saved as standard frame, StackAdjust="
1218                         << StackAdjust
1219                         << ", CFARegisterOffset=" << CFARegisterOffset
1220                         << ", lr save at offset=" << RegOffsets[14] << "\n");
1221     return CU::UNWIND_ARM_MODE_DWARF;
1222   }
1223   if (RegOffsets.lookup(ARM::R7) != (-8 - StackAdjust)) {
1224     DEBUG_WITH_TYPE("compact-unwind",
1225                     llvm::dbgs() << "r7 not saved as standard frame\n");
1226     return CU::UNWIND_ARM_MODE_DWARF;
1227   }
1228   uint32_t CompactUnwindEncoding = CU::UNWIND_ARM_MODE_FRAME;
1229 
1230   // If var-args are used, there may be a stack adjust required.
1231   switch (StackAdjust) {
1232   case 0:
1233     break;
1234   case 4:
1235     CompactUnwindEncoding |= 0x00400000;
1236     break;
1237   case 8:
1238     CompactUnwindEncoding |= 0x00800000;
1239     break;
1240   case 12:
1241     CompactUnwindEncoding |= 0x00C00000;
1242     break;
1243   default:
1244     DEBUG_WITH_TYPE("compact-unwind", llvm::dbgs()
1245                                           << ".cfi_def_cfa stack adjust ("
1246                                           << StackAdjust << ") out of range\n");
1247     return CU::UNWIND_ARM_MODE_DWARF;
1248   }
1249 
1250   // If r6 is saved, it must be right below r7.
1251   static struct {
1252     unsigned Reg;
1253     unsigned Encoding;
1254   } GPRCSRegs[] = {{ARM::R6, CU::UNWIND_ARM_FRAME_FIRST_PUSH_R6},
1255                    {ARM::R5, CU::UNWIND_ARM_FRAME_FIRST_PUSH_R5},
1256                    {ARM::R4, CU::UNWIND_ARM_FRAME_FIRST_PUSH_R4},
1257                    {ARM::R12, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R12},
1258                    {ARM::R11, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R11},
1259                    {ARM::R10, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R10},
1260                    {ARM::R9, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R9},
1261                    {ARM::R8, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R8}};
1262 
1263   int CurOffset = -8 - StackAdjust;
1264   for (auto CSReg : GPRCSRegs) {
1265     auto Offset = RegOffsets.find(CSReg.Reg);
1266     if (Offset == RegOffsets.end())
1267       continue;
1268 
1269     int RegOffset = Offset->second;
1270     if (RegOffset != CurOffset - 4) {
1271       DEBUG_WITH_TYPE("compact-unwind",
1272                       llvm::dbgs() << MRI.getName(CSReg.Reg) << " saved at "
1273                                    << RegOffset << " but only supported at "
1274                                    << CurOffset << "\n");
1275       return CU::UNWIND_ARM_MODE_DWARF;
1276     }
1277     CompactUnwindEncoding |= CSReg.Encoding;
1278     CurOffset -= 4;
1279   }
1280 
1281   // If no floats saved, we are done.
1282   if (FloatRegCount == 0)
1283     return CompactUnwindEncoding;
1284 
1285   // Switch mode to include D register saving.
1286   CompactUnwindEncoding &= ~CU::UNWIND_ARM_MODE_MASK;
1287   CompactUnwindEncoding |= CU::UNWIND_ARM_MODE_FRAME_D;
1288 
1289   // FIXME: supporting more than 4 saved D-registers compactly would be trivial,
1290   // but needs coordination with the linker and libunwind.
1291   if (FloatRegCount > 4) {
1292     DEBUG_WITH_TYPE("compact-unwind",
1293                     llvm::dbgs() << "unsupported number of D registers saved ("
1294                                  << FloatRegCount << ")\n");
1295       return CU::UNWIND_ARM_MODE_DWARF;
1296   }
1297 
1298   // Floating point registers must either be saved sequentially, or we defer to
1299   // DWARF. No gaps allowed here so check that each saved d-register is
1300   // precisely where it should be.
1301   static unsigned FPRCSRegs[] = { ARM::D8, ARM::D10, ARM::D12, ARM::D14 };
1302   for (int Idx = FloatRegCount - 1; Idx >= 0; --Idx) {
1303     auto Offset = RegOffsets.find(FPRCSRegs[Idx]);
1304     if (Offset == RegOffsets.end()) {
1305       DEBUG_WITH_TYPE("compact-unwind",
1306                       llvm::dbgs() << FloatRegCount << " D-regs saved, but "
1307                                    << MRI.getName(FPRCSRegs[Idx])
1308                                    << " not saved\n");
1309       return CU::UNWIND_ARM_MODE_DWARF;
1310     } else if (Offset->second != CurOffset - 8) {
1311       DEBUG_WITH_TYPE("compact-unwind",
1312                       llvm::dbgs() << FloatRegCount << " D-regs saved, but "
1313                                    << MRI.getName(FPRCSRegs[Idx])
1314                                    << " saved at " << Offset->second
1315                                    << ", expected at " << CurOffset - 8
1316                                    << "\n");
1317       return CU::UNWIND_ARM_MODE_DWARF;
1318     }
1319     CurOffset -= 8;
1320   }
1321 
1322   return CompactUnwindEncoding | ((FloatRegCount - 1) << 8);
1323 }
1324 
1325 static MCAsmBackend *createARMAsmBackend(const Target &T,
1326                                          const MCSubtargetInfo &STI,
1327                                          const MCRegisterInfo &MRI,
1328                                          const MCTargetOptions &Options,
1329                                          support::endianness Endian) {
1330   const Triple &TheTriple = STI.getTargetTriple();
1331   switch (TheTriple.getObjectFormat()) {
1332   default:
1333     llvm_unreachable("unsupported object format");
1334   case Triple::MachO:
1335     return new ARMAsmBackendDarwin(T, STI, MRI);
1336   case Triple::COFF:
1337     assert(TheTriple.isOSWindows() && "non-Windows ARM COFF is not supported");
1338     return new ARMAsmBackendWinCOFF(T, STI.getTargetTriple().isThumb());
1339   case Triple::ELF:
1340     assert(TheTriple.isOSBinFormatELF() && "using ELF for non-ELF target");
1341     uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
1342     return new ARMAsmBackendELF(T, STI.getTargetTriple().isThumb(), OSABI,
1343                                 Endian);
1344   }
1345 }
1346 
1347 MCAsmBackend *llvm::createARMLEAsmBackend(const Target &T,
1348                                           const MCSubtargetInfo &STI,
1349                                           const MCRegisterInfo &MRI,
1350                                           const MCTargetOptions &Options) {
1351   return createARMAsmBackend(T, STI, MRI, Options, support::little);
1352 }
1353 
1354 MCAsmBackend *llvm::createARMBEAsmBackend(const Target &T,
1355                                           const MCSubtargetInfo &STI,
1356                                           const MCRegisterInfo &MRI,
1357                                           const MCTargetOptions &Options) {
1358   return createARMAsmBackend(T, STI, MRI, Options, support::big);
1359 }
1360