1 //===- MVETailPredication.cpp - MVE Tail Predication ------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// Armv8.1m introduced MVE, M-Profile Vector Extension, and low-overhead
11 /// branches to help accelerate DSP applications. These two extensions,
12 /// combined with a new form of predication called tail-predication, can be used
13 /// to provide implicit vector predication within a low-overhead loop.
14 /// This is implicit because the predicate of active/inactive lanes is
15 /// calculated by hardware, and thus does not need to be explicitly passed
16 /// to vector instructions. The instructions responsible for this are the
17 /// DLSTP and WLSTP instructions, which setup a tail-predicated loop and the
18 /// the total number of data elements processed by the loop. The loop-end
19 /// LETP instruction is responsible for decrementing and setting the remaining
20 /// elements to be processed and generating the mask of active lanes.
21 ///
22 /// The HardwareLoops pass inserts intrinsics identifying loops that the
23 /// backend will attempt to convert into a low-overhead loop. The vectorizer is
24 /// responsible for generating a vectorized loop in which the lanes are
25 /// predicated upon an get.active.lane.mask intrinsic. This pass looks at these
26 /// get.active.lane.mask intrinsic and attempts to convert them to VCTP
27 /// instructions. This will be picked up by the ARM Low-overhead loop pass later
28 /// in the backend, which performs the final transformation to a DLSTP or WLSTP
29 /// tail-predicated loop.
30 //
31 //===----------------------------------------------------------------------===//
32 
33 #include "ARM.h"
34 #include "ARMSubtarget.h"
35 #include "ARMTargetTransformInfo.h"
36 #include "llvm/Analysis/LoopInfo.h"
37 #include "llvm/Analysis/LoopPass.h"
38 #include "llvm/Analysis/ScalarEvolution.h"
39 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
40 #include "llvm/Analysis/TargetLibraryInfo.h"
41 #include "llvm/Analysis/TargetTransformInfo.h"
42 #include "llvm/CodeGen/TargetPassConfig.h"
43 #include "llvm/IR/IRBuilder.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/IntrinsicsARM.h"
46 #include "llvm/IR/PatternMatch.h"
47 #include "llvm/InitializePasses.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
50 #include "llvm/Transforms/Utils/Local.h"
51 #include "llvm/Transforms/Utils/LoopUtils.h"
52 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
53 
54 using namespace llvm;
55 
56 #define DEBUG_TYPE "mve-tail-predication"
57 #define DESC "Transform predicated vector loops to use MVE tail predication"
58 
59 cl::opt<TailPredication::Mode> EnableTailPredication(
60    "tail-predication", cl::desc("MVE tail-predication pass options"),
61    cl::init(TailPredication::Enabled),
62    cl::values(clEnumValN(TailPredication::Disabled, "disabled",
63                          "Don't tail-predicate loops"),
64               clEnumValN(TailPredication::EnabledNoReductions,
65                          "enabled-no-reductions",
66                          "Enable tail-predication, but not for reduction loops"),
67               clEnumValN(TailPredication::Enabled,
68                          "enabled",
69                          "Enable tail-predication, including reduction loops"),
70               clEnumValN(TailPredication::ForceEnabledNoReductions,
71                          "force-enabled-no-reductions",
72                          "Enable tail-predication, but not for reduction loops, "
73                          "and force this which might be unsafe"),
74               clEnumValN(TailPredication::ForceEnabled,
75                          "force-enabled",
76                          "Enable tail-predication, including reduction loops, "
77                          "and force this which might be unsafe")));
78 
79 
80 namespace {
81 
82 class MVETailPredication : public LoopPass {
83   SmallVector<IntrinsicInst*, 4> MaskedInsts;
84   Loop *L = nullptr;
85   ScalarEvolution *SE = nullptr;
86   TargetTransformInfo *TTI = nullptr;
87   const ARMSubtarget *ST = nullptr;
88 
89 public:
90   static char ID;
91 
92   MVETailPredication() : LoopPass(ID) { }
93 
94   void getAnalysisUsage(AnalysisUsage &AU) const override {
95     AU.addRequired<ScalarEvolutionWrapperPass>();
96     AU.addRequired<LoopInfoWrapperPass>();
97     AU.addRequired<TargetPassConfig>();
98     AU.addRequired<TargetTransformInfoWrapperPass>();
99     AU.addPreserved<LoopInfoWrapperPass>();
100     AU.setPreservesCFG();
101   }
102 
103   bool runOnLoop(Loop *L, LPPassManager&) override;
104 
105 private:
106   /// Perform the relevant checks on the loop and convert active lane masks if
107   /// possible.
108   bool TryConvertActiveLaneMask(Value *TripCount);
109 
110   /// Perform several checks on the arguments of @llvm.get.active.lane.mask
111   /// intrinsic. E.g., check that the loop induction variable and the element
112   /// count are of the form we expect, and also perform overflow checks for
113   /// the new expressions that are created.
114   bool IsSafeActiveMask(IntrinsicInst *ActiveLaneMask, Value *TripCount);
115 
116   /// Insert the intrinsic to represent the effect of tail predication.
117   void InsertVCTPIntrinsic(IntrinsicInst *ActiveLaneMask, Value *TripCount);
118 
119   /// Rematerialize the iteration count in exit blocks, which enables
120   /// ARMLowOverheadLoops to better optimise away loop update statements inside
121   /// hardware-loops.
122   void RematerializeIterCount();
123 };
124 
125 } // end namespace
126 
127 bool MVETailPredication::runOnLoop(Loop *L, LPPassManager&) {
128   if (skipLoop(L) || !EnableTailPredication)
129     return false;
130 
131   MaskedInsts.clear();
132   Function &F = *L->getHeader()->getParent();
133   auto &TPC = getAnalysis<TargetPassConfig>();
134   auto &TM = TPC.getTM<TargetMachine>();
135   ST = &TM.getSubtarget<ARMSubtarget>(F);
136   TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
137   SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
138   this->L = L;
139 
140   // The MVE and LOB extensions are combined to enable tail-predication, but
141   // there's nothing preventing us from generating VCTP instructions for v8.1m.
142   if (!ST->hasMVEIntegerOps() || !ST->hasV8_1MMainlineOps()) {
143     LLVM_DEBUG(dbgs() << "ARM TP: Not a v8.1m.main+mve target.\n");
144     return false;
145   }
146 
147   BasicBlock *Preheader = L->getLoopPreheader();
148   if (!Preheader)
149     return false;
150 
151   auto FindLoopIterations = [](BasicBlock *BB) -> IntrinsicInst* {
152     for (auto &I : *BB) {
153       auto *Call = dyn_cast<IntrinsicInst>(&I);
154       if (!Call)
155         continue;
156 
157       Intrinsic::ID ID = Call->getIntrinsicID();
158       if (ID == Intrinsic::start_loop_iterations ||
159           ID == Intrinsic::test_start_loop_iterations)
160         return cast<IntrinsicInst>(&I);
161     }
162     return nullptr;
163   };
164 
165   // Look for the hardware loop intrinsic that sets the iteration count.
166   IntrinsicInst *Setup = FindLoopIterations(Preheader);
167 
168   // The test.set iteration could live in the pre-preheader.
169   if (!Setup) {
170     if (!Preheader->getSinglePredecessor())
171       return false;
172     Setup = FindLoopIterations(Preheader->getSinglePredecessor());
173     if (!Setup)
174       return false;
175   }
176 
177   LLVM_DEBUG(dbgs() << "ARM TP: Running on Loop: " << *L << *Setup << "\n");
178 
179   bool Changed = TryConvertActiveLaneMask(Setup->getArgOperand(0));
180 
181   return Changed;
182 }
183 
184 // The active lane intrinsic has this form:
185 //
186 //    @llvm.get.active.lane.mask(IV, TC)
187 //
188 // Here we perform checks that this intrinsic behaves as expected,
189 // which means:
190 //
191 // 1) Check that the TripCount (TC) belongs to this loop (originally).
192 // 2) The element count (TC) needs to be sufficiently large that the decrement
193 //    of element counter doesn't overflow, which means that we need to prove:
194 //        ceil(ElementCount / VectorWidth) >= TripCount
195 //    by rounding up ElementCount up:
196 //        ((ElementCount + (VectorWidth - 1)) / VectorWidth
197 //    and evaluate if expression isKnownNonNegative:
198 //        (((ElementCount + (VectorWidth - 1)) / VectorWidth) - TripCount
199 // 3) The IV must be an induction phi with an increment equal to the
200 //    vector width.
201 bool MVETailPredication::IsSafeActiveMask(IntrinsicInst *ActiveLaneMask,
202                                           Value *TripCount) {
203   bool ForceTailPredication =
204     EnableTailPredication == TailPredication::ForceEnabledNoReductions ||
205     EnableTailPredication == TailPredication::ForceEnabled;
206 
207   Value *ElemCount = ActiveLaneMask->getOperand(1);
208   bool Changed = false;
209   if (!L->makeLoopInvariant(ElemCount, Changed))
210     return false;
211 
212   auto *EC= SE->getSCEV(ElemCount);
213   auto *TC = SE->getSCEV(TripCount);
214   int VectorWidth =
215       cast<FixedVectorType>(ActiveLaneMask->getType())->getNumElements();
216   if (VectorWidth != 4 && VectorWidth != 8 && VectorWidth != 16)
217     return false;
218   ConstantInt *ConstElemCount = nullptr;
219 
220   // 1) Smoke tests that the original scalar loop TripCount (TC) belongs to
221   // this loop.  The scalar tripcount corresponds the number of elements
222   // processed by the loop, so we will refer to that from this point on.
223   if (!SE->isLoopInvariant(EC, L)) {
224     LLVM_DEBUG(dbgs() << "ARM TP: element count must be loop invariant.\n");
225     return false;
226   }
227 
228   if ((ConstElemCount = dyn_cast<ConstantInt>(ElemCount))) {
229     ConstantInt *TC = dyn_cast<ConstantInt>(TripCount);
230     if (!TC) {
231       LLVM_DEBUG(dbgs() << "ARM TP: Constant tripcount expected in "
232                            "set.loop.iterations\n");
233       return false;
234     }
235 
236     // Calculate 2 tripcount values and check that they are consistent with
237     // each other. The TripCount for a predicated vector loop body is
238     // ceil(ElementCount/Width), or floor((ElementCount+Width-1)/Width) as we
239     // work it out here.
240     uint64_t TC1 = TC->getZExtValue();
241     uint64_t TC2 =
242         (ConstElemCount->getZExtValue() + VectorWidth - 1) / VectorWidth;
243 
244     // If the tripcount values are inconsistent, we can't insert the VCTP and
245     // trigger tail-predication; keep the intrinsic as a get.active.lane.mask
246     // and legalize this.
247     if (TC1 != TC2) {
248       LLVM_DEBUG(dbgs() << "ARM TP: inconsistent constant tripcount values: "
249                  << TC1 << " from set.loop.iterations, and "
250                  << TC2 << " from get.active.lane.mask\n");
251       return false;
252     }
253   } else if (!ForceTailPredication) {
254     // 2) We need to prove that the sub expression that we create in the
255     // tail-predicated loop body, which calculates the remaining elements to be
256     // processed, is non-negative, i.e. it doesn't overflow:
257     //
258     //   ((ElementCount + VectorWidth - 1) / VectorWidth) - TripCount >= 0
259     //
260     // This is true if:
261     //
262     //    TripCount == (ElementCount + VectorWidth - 1) / VectorWidth
263     //
264     // which what we will be using here.
265     //
266     auto *VW = SE->getSCEV(ConstantInt::get(TripCount->getType(), VectorWidth));
267     // ElementCount + (VW-1):
268     auto *ECPlusVWMinus1 = SE->getAddExpr(EC,
269         SE->getSCEV(ConstantInt::get(TripCount->getType(), VectorWidth - 1)));
270 
271     // Ceil = ElementCount + (VW-1) / VW
272     auto *Ceil = SE->getUDivExpr(ECPlusVWMinus1, VW);
273 
274     // Prevent unused variable warnings with TC
275     (void)TC;
276     LLVM_DEBUG(
277       dbgs() << "ARM TP: Analysing overflow behaviour for:\n";
278       dbgs() << "ARM TP: - TripCount = "; TC->dump();
279       dbgs() << "ARM TP: - ElemCount = "; EC->dump();
280       dbgs() << "ARM TP: - VecWidth =  " << VectorWidth << "\n";
281       dbgs() << "ARM TP: - (ElemCount+VW-1) / VW = "; Ceil->dump();
282     );
283 
284     // As an example, almost all the tripcount expressions (produced by the
285     // vectoriser) look like this:
286     //
287     //   TC = ((-4 + (4 * ((3 + %N) /u 4))<nuw>) /u 4)
288     //
289     // and "ElementCount + (VW-1) / VW":
290     //
291     //   Ceil = ((3 + %N) /u 4)
292     //
293     // Check for equality of TC and Ceil by calculating SCEV expression
294     // TC - Ceil and test it for zero.
295     //
296     bool Zero = SE->getMinusSCEV(
297                       SE->getBackedgeTakenCount(L),
298                       SE->getUDivExpr(SE->getAddExpr(SE->getMulExpr(Ceil, VW),
299                                                      SE->getNegativeSCEV(VW)),
300                                       VW))
301                     ->isZero();
302 
303     if (!Zero) {
304       LLVM_DEBUG(dbgs() << "ARM TP: possible overflow in sub expression.\n");
305       return false;
306     }
307   }
308 
309   // 3) Find out if IV is an induction phi. Note that we can't use Loop
310   // helpers here to get the induction variable, because the hardware loop is
311   // no longer in loopsimplify form, and also the hwloop intrinsic uses a
312   // different counter. Using SCEV, we check that the induction is of the
313   // form i = i + 4, where the increment must be equal to the VectorWidth.
314   auto *IV = ActiveLaneMask->getOperand(0);
315   auto *IVExpr = SE->getSCEV(IV);
316   auto *AddExpr = dyn_cast<SCEVAddRecExpr>(IVExpr);
317 
318   if (!AddExpr) {
319     LLVM_DEBUG(dbgs() << "ARM TP: induction not an add expr: "; IVExpr->dump());
320     return false;
321   }
322   // Check that this AddRec is associated with this loop.
323   if (AddExpr->getLoop() != L) {
324     LLVM_DEBUG(dbgs() << "ARM TP: phi not part of this loop\n");
325     return false;
326   }
327   auto *Base = dyn_cast<SCEVConstant>(AddExpr->getOperand(0));
328   if (!Base || !Base->isZero()) {
329     LLVM_DEBUG(dbgs() << "ARM TP: induction base is not 0\n");
330     return false;
331   }
332   auto *Step = dyn_cast<SCEVConstant>(AddExpr->getOperand(1));
333   if (!Step) {
334     LLVM_DEBUG(dbgs() << "ARM TP: induction step is not a constant: ";
335                AddExpr->getOperand(1)->dump());
336     return false;
337   }
338   auto StepValue = Step->getValue()->getSExtValue();
339   if (VectorWidth == StepValue)
340     return true;
341 
342   LLVM_DEBUG(dbgs() << "ARM TP: Step value " << StepValue
343                     << " doesn't match vector width " << VectorWidth << "\n");
344 
345   return false;
346 }
347 
348 void MVETailPredication::InsertVCTPIntrinsic(IntrinsicInst *ActiveLaneMask,
349                                              Value *TripCount) {
350   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
351   Module *M = L->getHeader()->getModule();
352   Type *Ty = IntegerType::get(M->getContext(), 32);
353   unsigned VectorWidth =
354       cast<FixedVectorType>(ActiveLaneMask->getType())->getNumElements();
355 
356   // Insert a phi to count the number of elements processed by the loop.
357   Builder.SetInsertPoint(L->getHeader()->getFirstNonPHI());
358   PHINode *Processed = Builder.CreatePHI(Ty, 2);
359   Processed->addIncoming(ActiveLaneMask->getOperand(1), L->getLoopPreheader());
360 
361   // Replace @llvm.get.active.mask() with the ARM specific VCTP intrinic, and
362   // thus represent the effect of tail predication.
363   Builder.SetInsertPoint(ActiveLaneMask);
364   ConstantInt *Factor = ConstantInt::get(cast<IntegerType>(Ty), VectorWidth);
365 
366   Intrinsic::ID VCTPID;
367   switch (VectorWidth) {
368   default:
369     llvm_unreachable("unexpected number of lanes");
370   case 4:  VCTPID = Intrinsic::arm_mve_vctp32; break;
371   case 8:  VCTPID = Intrinsic::arm_mve_vctp16; break;
372   case 16: VCTPID = Intrinsic::arm_mve_vctp8; break;
373 
374     // FIXME: vctp64 currently not supported because the predicate
375     // vector wants to be <2 x i1>, but v2i1 is not a legal MVE
376     // type, so problems happen at isel time.
377     // Intrinsic::arm_mve_vctp64 exists for ACLE intrinsics
378     // purposes, but takes a v4i1 instead of a v2i1.
379   }
380   Function *VCTP = Intrinsic::getDeclaration(M, VCTPID);
381   Value *VCTPCall = Builder.CreateCall(VCTP, Processed);
382   ActiveLaneMask->replaceAllUsesWith(VCTPCall);
383 
384   // Add the incoming value to the new phi.
385   // TODO: This add likely already exists in the loop.
386   Value *Remaining = Builder.CreateSub(Processed, Factor);
387   Processed->addIncoming(Remaining, L->getLoopLatch());
388   LLVM_DEBUG(dbgs() << "ARM TP: Insert processed elements phi: "
389              << *Processed << "\n"
390              << "ARM TP: Inserted VCTP: " << *VCTPCall << "\n");
391 }
392 
393 bool MVETailPredication::TryConvertActiveLaneMask(Value *TripCount) {
394   SmallVector<IntrinsicInst *, 4> ActiveLaneMasks;
395   for (auto *BB : L->getBlocks())
396     for (auto &I : *BB)
397       if (auto *Int = dyn_cast<IntrinsicInst>(&I))
398         if (Int->getIntrinsicID() == Intrinsic::get_active_lane_mask)
399           ActiveLaneMasks.push_back(Int);
400 
401   if (ActiveLaneMasks.empty())
402     return false;
403 
404   LLVM_DEBUG(dbgs() << "ARM TP: Found predicated vector loop.\n");
405 
406   for (auto *ActiveLaneMask : ActiveLaneMasks) {
407     LLVM_DEBUG(dbgs() << "ARM TP: Found active lane mask: "
408                       << *ActiveLaneMask << "\n");
409 
410     if (!IsSafeActiveMask(ActiveLaneMask, TripCount)) {
411       LLVM_DEBUG(dbgs() << "ARM TP: Not safe to insert VCTP.\n");
412       return false;
413     }
414     LLVM_DEBUG(dbgs() << "ARM TP: Safe to insert VCTP.\n");
415     InsertVCTPIntrinsic(ActiveLaneMask, TripCount);
416   }
417 
418   // Remove dead instructions and now dead phis.
419   for (auto *II : ActiveLaneMasks)
420     RecursivelyDeleteTriviallyDeadInstructions(II);
421   for (auto I : L->blocks())
422     DeleteDeadPHIs(I);
423   return true;
424 }
425 
426 Pass *llvm::createMVETailPredicationPass() {
427   return new MVETailPredication();
428 }
429 
430 char MVETailPredication::ID = 0;
431 
432 INITIALIZE_PASS_BEGIN(MVETailPredication, DEBUG_TYPE, DESC, false, false)
433 INITIALIZE_PASS_END(MVETailPredication, DEBUG_TYPE, DESC, false, false)
434