1 //===------ BPFAbstractMemberAccess.cpp - Abstracting Member Accesses -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass abstracted struct/union member accesses in order to support
10 // compile-once run-everywhere (CO-RE). The CO-RE intends to compile the program
11 // which can run on different kernels. In particular, if bpf program tries to
12 // access a particular kernel data structure member, the details of the
13 // intermediate member access will be remembered so bpf loader can do
14 // necessary adjustment right before program loading.
15 //
16 // For example,
17 //
18 //   struct s {
19 //     int a;
20 //     int b;
21 //   };
22 //   struct t {
23 //     struct s c;
24 //     int d;
25 //   };
26 //   struct t e;
27 //
28 // For the member access e.c.b, the compiler will generate code
29 //   &e + 4
30 //
31 // The compile-once run-everywhere instead generates the following code
32 //   r = 4
33 //   &e + r
34 // The "4" in "r = 4" can be changed based on a particular kernel version.
35 // For example, on a particular kernel version, if struct s is changed to
36 //
37 //   struct s {
38 //     int new_field;
39 //     int a;
40 //     int b;
41 //   }
42 //
43 // By repeating the member access on the host, the bpf loader can
44 // adjust "r = 4" as "r = 8".
45 //
46 // This feature relies on the following three intrinsic calls:
47 //   addr = preserve_array_access_index(base, dimension, index)
48 //   addr = preserve_union_access_index(base, di_index)
49 //          !llvm.preserve.access.index <union_ditype>
50 //   addr = preserve_struct_access_index(base, gep_index, di_index)
51 //          !llvm.preserve.access.index <struct_ditype>
52 //
53 // Bitfield member access needs special attention. User cannot take the
54 // address of a bitfield acceess. To facilitate kernel verifier
55 // for easy bitfield code optimization, a new clang intrinsic is introduced:
56 //   uint32_t __builtin_preserve_field_info(member_access, info_kind)
57 // In IR, a chain with two (or more) intrinsic calls will be generated:
58 //   ...
59 //   addr = preserve_struct_access_index(base, 1, 1) !struct s
60 //   uint32_t result = bpf_preserve_field_info(addr, info_kind)
61 //
62 // Suppose the info_kind is FIELD_SIGNEDNESS,
63 // The above two IR intrinsics will be replaced with
64 // a relocatable insn:
65 //   signness = /* signness of member_access */
66 // and signness can be changed by bpf loader based on the
67 // types on the host.
68 //
69 // User can also test whether a field exists or not with
70 //   uint32_t result = bpf_preserve_field_info(member_access, FIELD_EXISTENCE)
71 // The field will be always available (result = 1) during initial
72 // compilation, but bpf loader can patch with the correct value
73 // on the target host where the member_access may or may not be available
74 //
75 //===----------------------------------------------------------------------===//
76 
77 #include "BPF.h"
78 #include "BPFCORE.h"
79 #include "BPFTargetMachine.h"
80 #include "llvm/IR/DebugInfoMetadata.h"
81 #include "llvm/IR/GlobalVariable.h"
82 #include "llvm/IR/Instruction.h"
83 #include "llvm/IR/Instructions.h"
84 #include "llvm/IR/IntrinsicsBPF.h"
85 #include "llvm/IR/Module.h"
86 #include "llvm/IR/PassManager.h"
87 #include "llvm/IR/Type.h"
88 #include "llvm/IR/User.h"
89 #include "llvm/IR/Value.h"
90 #include "llvm/Pass.h"
91 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
92 #include <stack>
93 
94 #define DEBUG_TYPE "bpf-abstract-member-access"
95 
96 namespace llvm {
97 constexpr StringRef BPFCoreSharedInfo::AmaAttr;
98 uint32_t BPFCoreSharedInfo::SeqNum;
99 
100 Instruction *BPFCoreSharedInfo::insertPassThrough(Module *M, BasicBlock *BB,
101                                                   Instruction *Input,
102                                                   Instruction *Before) {
103   Function *Fn = Intrinsic::getDeclaration(
104       M, Intrinsic::bpf_passthrough, {Input->getType(), Input->getType()});
105   Constant *SeqNumVal = ConstantInt::get(Type::getInt32Ty(BB->getContext()),
106                                          BPFCoreSharedInfo::SeqNum++);
107 
108   auto *NewInst = CallInst::Create(Fn, {SeqNumVal, Input});
109   BB->getInstList().insert(Before->getIterator(), NewInst);
110   return NewInst;
111 }
112 } // namespace llvm
113 
114 using namespace llvm;
115 
116 namespace {
117 class BPFAbstractMemberAccess final {
118 public:
119   BPFAbstractMemberAccess(BPFTargetMachine *TM) : TM(TM) {}
120 
121   bool run(Function &F);
122 
123   struct CallInfo {
124     uint32_t Kind;
125     uint32_t AccessIndex;
126     Align RecordAlignment;
127     MDNode *Metadata;
128     Value *Base;
129   };
130   typedef std::stack<std::pair<CallInst *, CallInfo>> CallInfoStack;
131 
132 private:
133   enum : uint32_t {
134     BPFPreserveArrayAI = 1,
135     BPFPreserveUnionAI = 2,
136     BPFPreserveStructAI = 3,
137     BPFPreserveFieldInfoAI = 4,
138   };
139 
140   TargetMachine *TM;
141   const DataLayout *DL = nullptr;
142   Module *M = nullptr;
143 
144   static std::map<std::string, GlobalVariable *> GEPGlobals;
145   // A map to link preserve_*_access_index instrinsic calls.
146   std::map<CallInst *, std::pair<CallInst *, CallInfo>> AIChain;
147   // A map to hold all the base preserve_*_access_index instrinsic calls.
148   // The base call is not an input of any other preserve_*
149   // intrinsics.
150   std::map<CallInst *, CallInfo> BaseAICalls;
151 
152   bool doTransformation(Function &F);
153 
154   void traceAICall(CallInst *Call, CallInfo &ParentInfo);
155   void traceBitCast(BitCastInst *BitCast, CallInst *Parent,
156                     CallInfo &ParentInfo);
157   void traceGEP(GetElementPtrInst *GEP, CallInst *Parent,
158                 CallInfo &ParentInfo);
159   void collectAICallChains(Function &F);
160 
161   bool IsPreserveDIAccessIndexCall(const CallInst *Call, CallInfo &Cinfo);
162   bool IsValidAIChain(const MDNode *ParentMeta, uint32_t ParentAI,
163                       const MDNode *ChildMeta);
164   bool removePreserveAccessIndexIntrinsic(Function &F);
165   void replaceWithGEP(std::vector<CallInst *> &CallList,
166                       uint32_t NumOfZerosIndex, uint32_t DIIndex);
167   bool HasPreserveFieldInfoCall(CallInfoStack &CallStack);
168   void GetStorageBitRange(DIDerivedType *MemberTy, Align RecordAlignment,
169                           uint32_t &StartBitOffset, uint32_t &EndBitOffset);
170   uint32_t GetFieldInfo(uint32_t InfoKind, DICompositeType *CTy,
171                         uint32_t AccessIndex, uint32_t PatchImm,
172                         Align RecordAlignment);
173 
174   Value *computeBaseAndAccessKey(CallInst *Call, CallInfo &CInfo,
175                                  std::string &AccessKey, MDNode *&BaseMeta);
176   MDNode *computeAccessKey(CallInst *Call, CallInfo &CInfo,
177                            std::string &AccessKey, bool &IsInt32Ret);
178   uint64_t getConstant(const Value *IndexValue);
179   bool transformGEPChain(CallInst *Call, CallInfo &CInfo);
180 };
181 
182 std::map<std::string, GlobalVariable *> BPFAbstractMemberAccess::GEPGlobals;
183 
184 class BPFAbstractMemberAccessLegacyPass final : public FunctionPass {
185   BPFTargetMachine *TM;
186 
187   bool runOnFunction(Function &F) override {
188     return BPFAbstractMemberAccess(TM).run(F);
189   }
190 
191 public:
192   static char ID;
193 
194   // Add optional BPFTargetMachine parameter so that BPF backend can add the
195   // phase with target machine to find out the endianness. The default
196   // constructor (without parameters) is used by the pass manager for managing
197   // purposes.
198   BPFAbstractMemberAccessLegacyPass(BPFTargetMachine *TM = nullptr)
199       : FunctionPass(ID), TM(TM) {}
200 };
201 
202 } // End anonymous namespace
203 
204 char BPFAbstractMemberAccessLegacyPass::ID = 0;
205 INITIALIZE_PASS(BPFAbstractMemberAccessLegacyPass, DEBUG_TYPE,
206                 "BPF Abstract Member Access", false, false)
207 
208 FunctionPass *llvm::createBPFAbstractMemberAccess(BPFTargetMachine *TM) {
209   return new BPFAbstractMemberAccessLegacyPass(TM);
210 }
211 
212 bool BPFAbstractMemberAccess::run(Function &F) {
213   LLVM_DEBUG(dbgs() << "********** Abstract Member Accesses **********\n");
214 
215   M = F.getParent();
216   if (!M)
217     return false;
218 
219   // Bail out if no debug info.
220   if (M->debug_compile_units().empty())
221     return false;
222 
223   DL = &M->getDataLayout();
224   return doTransformation(F);
225 }
226 
227 static bool SkipDIDerivedTag(unsigned Tag, bool skipTypedef) {
228   if (Tag != dwarf::DW_TAG_typedef && Tag != dwarf::DW_TAG_const_type &&
229       Tag != dwarf::DW_TAG_volatile_type &&
230       Tag != dwarf::DW_TAG_restrict_type &&
231       Tag != dwarf::DW_TAG_member)
232     return false;
233   if (Tag == dwarf::DW_TAG_typedef && !skipTypedef)
234     return false;
235   return true;
236 }
237 
238 static DIType * stripQualifiers(DIType *Ty, bool skipTypedef = true) {
239   while (auto *DTy = dyn_cast<DIDerivedType>(Ty)) {
240     if (!SkipDIDerivedTag(DTy->getTag(), skipTypedef))
241       break;
242     Ty = DTy->getBaseType();
243   }
244   return Ty;
245 }
246 
247 static const DIType * stripQualifiers(const DIType *Ty) {
248   while (auto *DTy = dyn_cast<DIDerivedType>(Ty)) {
249     if (!SkipDIDerivedTag(DTy->getTag(), true))
250       break;
251     Ty = DTy->getBaseType();
252   }
253   return Ty;
254 }
255 
256 static uint32_t calcArraySize(const DICompositeType *CTy, uint32_t StartDim) {
257   DINodeArray Elements = CTy->getElements();
258   uint32_t DimSize = 1;
259   for (uint32_t I = StartDim; I < Elements.size(); ++I) {
260     if (auto *Element = dyn_cast_or_null<DINode>(Elements[I]))
261       if (Element->getTag() == dwarf::DW_TAG_subrange_type) {
262         const DISubrange *SR = cast<DISubrange>(Element);
263         auto *CI = SR->getCount().dyn_cast<ConstantInt *>();
264         DimSize *= CI->getSExtValue();
265       }
266   }
267 
268   return DimSize;
269 }
270 
271 static Type *getBaseElementType(const CallInst *Call) {
272   // Element type is stored in an elementtype() attribute on the first param.
273   return Call->getAttributes().getParamElementType(0);
274 }
275 
276 /// Check whether a call is a preserve_*_access_index intrinsic call or not.
277 bool BPFAbstractMemberAccess::IsPreserveDIAccessIndexCall(const CallInst *Call,
278                                                           CallInfo &CInfo) {
279   if (!Call)
280     return false;
281 
282   const auto *GV = dyn_cast<GlobalValue>(Call->getCalledOperand());
283   if (!GV)
284     return false;
285   if (GV->getName().startswith("llvm.preserve.array.access.index")) {
286     CInfo.Kind = BPFPreserveArrayAI;
287     CInfo.Metadata = Call->getMetadata(LLVMContext::MD_preserve_access_index);
288     if (!CInfo.Metadata)
289       report_fatal_error("Missing metadata for llvm.preserve.array.access.index intrinsic");
290     CInfo.AccessIndex = getConstant(Call->getArgOperand(2));
291     CInfo.Base = Call->getArgOperand(0);
292     CInfo.RecordAlignment = DL->getABITypeAlign(getBaseElementType(Call));
293     return true;
294   }
295   if (GV->getName().startswith("llvm.preserve.union.access.index")) {
296     CInfo.Kind = BPFPreserveUnionAI;
297     CInfo.Metadata = Call->getMetadata(LLVMContext::MD_preserve_access_index);
298     if (!CInfo.Metadata)
299       report_fatal_error("Missing metadata for llvm.preserve.union.access.index intrinsic");
300     CInfo.AccessIndex = getConstant(Call->getArgOperand(1));
301     CInfo.Base = Call->getArgOperand(0);
302     CInfo.RecordAlignment =
303         DL->getABITypeAlign(CInfo.Base->getType()->getPointerElementType());
304     return true;
305   }
306   if (GV->getName().startswith("llvm.preserve.struct.access.index")) {
307     CInfo.Kind = BPFPreserveStructAI;
308     CInfo.Metadata = Call->getMetadata(LLVMContext::MD_preserve_access_index);
309     if (!CInfo.Metadata)
310       report_fatal_error("Missing metadata for llvm.preserve.struct.access.index intrinsic");
311     CInfo.AccessIndex = getConstant(Call->getArgOperand(2));
312     CInfo.Base = Call->getArgOperand(0);
313     CInfo.RecordAlignment = DL->getABITypeAlign(getBaseElementType(Call));
314     return true;
315   }
316   if (GV->getName().startswith("llvm.bpf.preserve.field.info")) {
317     CInfo.Kind = BPFPreserveFieldInfoAI;
318     CInfo.Metadata = nullptr;
319     // Check validity of info_kind as clang did not check this.
320     uint64_t InfoKind = getConstant(Call->getArgOperand(1));
321     if (InfoKind >= BPFCoreSharedInfo::MAX_FIELD_RELOC_KIND)
322       report_fatal_error("Incorrect info_kind for llvm.bpf.preserve.field.info intrinsic");
323     CInfo.AccessIndex = InfoKind;
324     return true;
325   }
326   if (GV->getName().startswith("llvm.bpf.preserve.type.info")) {
327     CInfo.Kind = BPFPreserveFieldInfoAI;
328     CInfo.Metadata = Call->getMetadata(LLVMContext::MD_preserve_access_index);
329     if (!CInfo.Metadata)
330       report_fatal_error("Missing metadata for llvm.preserve.type.info intrinsic");
331     uint64_t Flag = getConstant(Call->getArgOperand(1));
332     if (Flag >= BPFCoreSharedInfo::MAX_PRESERVE_TYPE_INFO_FLAG)
333       report_fatal_error("Incorrect flag for llvm.bpf.preserve.type.info intrinsic");
334     if (Flag == BPFCoreSharedInfo::PRESERVE_TYPE_INFO_EXISTENCE)
335       CInfo.AccessIndex = BPFCoreSharedInfo::TYPE_EXISTENCE;
336     else
337       CInfo.AccessIndex = BPFCoreSharedInfo::TYPE_SIZE;
338     return true;
339   }
340   if (GV->getName().startswith("llvm.bpf.preserve.enum.value")) {
341     CInfo.Kind = BPFPreserveFieldInfoAI;
342     CInfo.Metadata = Call->getMetadata(LLVMContext::MD_preserve_access_index);
343     if (!CInfo.Metadata)
344       report_fatal_error("Missing metadata for llvm.preserve.enum.value intrinsic");
345     uint64_t Flag = getConstant(Call->getArgOperand(2));
346     if (Flag >= BPFCoreSharedInfo::MAX_PRESERVE_ENUM_VALUE_FLAG)
347       report_fatal_error("Incorrect flag for llvm.bpf.preserve.enum.value intrinsic");
348     if (Flag == BPFCoreSharedInfo::PRESERVE_ENUM_VALUE_EXISTENCE)
349       CInfo.AccessIndex = BPFCoreSharedInfo::ENUM_VALUE_EXISTENCE;
350     else
351       CInfo.AccessIndex = BPFCoreSharedInfo::ENUM_VALUE;
352     return true;
353   }
354 
355   return false;
356 }
357 
358 void BPFAbstractMemberAccess::replaceWithGEP(std::vector<CallInst *> &CallList,
359                                              uint32_t DimensionIndex,
360                                              uint32_t GEPIndex) {
361   for (auto Call : CallList) {
362     uint32_t Dimension = 1;
363     if (DimensionIndex > 0)
364       Dimension = getConstant(Call->getArgOperand(DimensionIndex));
365 
366     Constant *Zero =
367         ConstantInt::get(Type::getInt32Ty(Call->getParent()->getContext()), 0);
368     SmallVector<Value *, 4> IdxList;
369     for (unsigned I = 0; I < Dimension; ++I)
370       IdxList.push_back(Zero);
371     IdxList.push_back(Call->getArgOperand(GEPIndex));
372 
373     auto *GEP = GetElementPtrInst::CreateInBounds(
374         getBaseElementType(Call), Call->getArgOperand(0), IdxList, "", Call);
375     Call->replaceAllUsesWith(GEP);
376     Call->eraseFromParent();
377   }
378 }
379 
380 bool BPFAbstractMemberAccess::removePreserveAccessIndexIntrinsic(Function &F) {
381   std::vector<CallInst *> PreserveArrayIndexCalls;
382   std::vector<CallInst *> PreserveUnionIndexCalls;
383   std::vector<CallInst *> PreserveStructIndexCalls;
384   bool Found = false;
385 
386   for (auto &BB : F)
387     for (auto &I : BB) {
388       auto *Call = dyn_cast<CallInst>(&I);
389       CallInfo CInfo;
390       if (!IsPreserveDIAccessIndexCall(Call, CInfo))
391         continue;
392 
393       Found = true;
394       if (CInfo.Kind == BPFPreserveArrayAI)
395         PreserveArrayIndexCalls.push_back(Call);
396       else if (CInfo.Kind == BPFPreserveUnionAI)
397         PreserveUnionIndexCalls.push_back(Call);
398       else
399         PreserveStructIndexCalls.push_back(Call);
400     }
401 
402   // do the following transformation:
403   // . addr = preserve_array_access_index(base, dimension, index)
404   //   is transformed to
405   //     addr = GEP(base, dimenion's zero's, index)
406   // . addr = preserve_union_access_index(base, di_index)
407   //   is transformed to
408   //     addr = base, i.e., all usages of "addr" are replaced by "base".
409   // . addr = preserve_struct_access_index(base, gep_index, di_index)
410   //   is transformed to
411   //     addr = GEP(base, 0, gep_index)
412   replaceWithGEP(PreserveArrayIndexCalls, 1, 2);
413   replaceWithGEP(PreserveStructIndexCalls, 0, 1);
414   for (auto Call : PreserveUnionIndexCalls) {
415     Call->replaceAllUsesWith(Call->getArgOperand(0));
416     Call->eraseFromParent();
417   }
418 
419   return Found;
420 }
421 
422 /// Check whether the access index chain is valid. We check
423 /// here because there may be type casts between two
424 /// access indexes. We want to ensure memory access still valid.
425 bool BPFAbstractMemberAccess::IsValidAIChain(const MDNode *ParentType,
426                                              uint32_t ParentAI,
427                                              const MDNode *ChildType) {
428   if (!ChildType)
429     return true; // preserve_field_info, no type comparison needed.
430 
431   const DIType *PType = stripQualifiers(cast<DIType>(ParentType));
432   const DIType *CType = stripQualifiers(cast<DIType>(ChildType));
433 
434   // Child is a derived/pointer type, which is due to type casting.
435   // Pointer type cannot be in the middle of chain.
436   if (isa<DIDerivedType>(CType))
437     return false;
438 
439   // Parent is a pointer type.
440   if (const auto *PtrTy = dyn_cast<DIDerivedType>(PType)) {
441     if (PtrTy->getTag() != dwarf::DW_TAG_pointer_type)
442       return false;
443     return stripQualifiers(PtrTy->getBaseType()) == CType;
444   }
445 
446   // Otherwise, struct/union/array types
447   const auto *PTy = dyn_cast<DICompositeType>(PType);
448   const auto *CTy = dyn_cast<DICompositeType>(CType);
449   assert(PTy && CTy && "ParentType or ChildType is null or not composite");
450 
451   uint32_t PTyTag = PTy->getTag();
452   assert(PTyTag == dwarf::DW_TAG_array_type ||
453          PTyTag == dwarf::DW_TAG_structure_type ||
454          PTyTag == dwarf::DW_TAG_union_type);
455 
456   uint32_t CTyTag = CTy->getTag();
457   assert(CTyTag == dwarf::DW_TAG_array_type ||
458          CTyTag == dwarf::DW_TAG_structure_type ||
459          CTyTag == dwarf::DW_TAG_union_type);
460 
461   // Multi dimensional arrays, base element should be the same
462   if (PTyTag == dwarf::DW_TAG_array_type && PTyTag == CTyTag)
463     return PTy->getBaseType() == CTy->getBaseType();
464 
465   DIType *Ty;
466   if (PTyTag == dwarf::DW_TAG_array_type)
467     Ty = PTy->getBaseType();
468   else
469     Ty = dyn_cast<DIType>(PTy->getElements()[ParentAI]);
470 
471   return dyn_cast<DICompositeType>(stripQualifiers(Ty)) == CTy;
472 }
473 
474 void BPFAbstractMemberAccess::traceAICall(CallInst *Call,
475                                           CallInfo &ParentInfo) {
476   for (User *U : Call->users()) {
477     Instruction *Inst = dyn_cast<Instruction>(U);
478     if (!Inst)
479       continue;
480 
481     if (auto *BI = dyn_cast<BitCastInst>(Inst)) {
482       traceBitCast(BI, Call, ParentInfo);
483     } else if (auto *CI = dyn_cast<CallInst>(Inst)) {
484       CallInfo ChildInfo;
485 
486       if (IsPreserveDIAccessIndexCall(CI, ChildInfo) &&
487           IsValidAIChain(ParentInfo.Metadata, ParentInfo.AccessIndex,
488                          ChildInfo.Metadata)) {
489         AIChain[CI] = std::make_pair(Call, ParentInfo);
490         traceAICall(CI, ChildInfo);
491       } else {
492         BaseAICalls[Call] = ParentInfo;
493       }
494     } else if (auto *GI = dyn_cast<GetElementPtrInst>(Inst)) {
495       if (GI->hasAllZeroIndices())
496         traceGEP(GI, Call, ParentInfo);
497       else
498         BaseAICalls[Call] = ParentInfo;
499     } else {
500       BaseAICalls[Call] = ParentInfo;
501     }
502   }
503 }
504 
505 void BPFAbstractMemberAccess::traceBitCast(BitCastInst *BitCast,
506                                            CallInst *Parent,
507                                            CallInfo &ParentInfo) {
508   for (User *U : BitCast->users()) {
509     Instruction *Inst = dyn_cast<Instruction>(U);
510     if (!Inst)
511       continue;
512 
513     if (auto *BI = dyn_cast<BitCastInst>(Inst)) {
514       traceBitCast(BI, Parent, ParentInfo);
515     } else if (auto *CI = dyn_cast<CallInst>(Inst)) {
516       CallInfo ChildInfo;
517       if (IsPreserveDIAccessIndexCall(CI, ChildInfo) &&
518           IsValidAIChain(ParentInfo.Metadata, ParentInfo.AccessIndex,
519                          ChildInfo.Metadata)) {
520         AIChain[CI] = std::make_pair(Parent, ParentInfo);
521         traceAICall(CI, ChildInfo);
522       } else {
523         BaseAICalls[Parent] = ParentInfo;
524       }
525     } else if (auto *GI = dyn_cast<GetElementPtrInst>(Inst)) {
526       if (GI->hasAllZeroIndices())
527         traceGEP(GI, Parent, ParentInfo);
528       else
529         BaseAICalls[Parent] = ParentInfo;
530     } else {
531       BaseAICalls[Parent] = ParentInfo;
532     }
533   }
534 }
535 
536 void BPFAbstractMemberAccess::traceGEP(GetElementPtrInst *GEP, CallInst *Parent,
537                                        CallInfo &ParentInfo) {
538   for (User *U : GEP->users()) {
539     Instruction *Inst = dyn_cast<Instruction>(U);
540     if (!Inst)
541       continue;
542 
543     if (auto *BI = dyn_cast<BitCastInst>(Inst)) {
544       traceBitCast(BI, Parent, ParentInfo);
545     } else if (auto *CI = dyn_cast<CallInst>(Inst)) {
546       CallInfo ChildInfo;
547       if (IsPreserveDIAccessIndexCall(CI, ChildInfo) &&
548           IsValidAIChain(ParentInfo.Metadata, ParentInfo.AccessIndex,
549                          ChildInfo.Metadata)) {
550         AIChain[CI] = std::make_pair(Parent, ParentInfo);
551         traceAICall(CI, ChildInfo);
552       } else {
553         BaseAICalls[Parent] = ParentInfo;
554       }
555     } else if (auto *GI = dyn_cast<GetElementPtrInst>(Inst)) {
556       if (GI->hasAllZeroIndices())
557         traceGEP(GI, Parent, ParentInfo);
558       else
559         BaseAICalls[Parent] = ParentInfo;
560     } else {
561       BaseAICalls[Parent] = ParentInfo;
562     }
563   }
564 }
565 
566 void BPFAbstractMemberAccess::collectAICallChains(Function &F) {
567   AIChain.clear();
568   BaseAICalls.clear();
569 
570   for (auto &BB : F)
571     for (auto &I : BB) {
572       CallInfo CInfo;
573       auto *Call = dyn_cast<CallInst>(&I);
574       if (!IsPreserveDIAccessIndexCall(Call, CInfo) ||
575           AIChain.find(Call) != AIChain.end())
576         continue;
577 
578       traceAICall(Call, CInfo);
579     }
580 }
581 
582 uint64_t BPFAbstractMemberAccess::getConstant(const Value *IndexValue) {
583   const ConstantInt *CV = dyn_cast<ConstantInt>(IndexValue);
584   assert(CV);
585   return CV->getValue().getZExtValue();
586 }
587 
588 /// Get the start and the end of storage offset for \p MemberTy.
589 void BPFAbstractMemberAccess::GetStorageBitRange(DIDerivedType *MemberTy,
590                                                  Align RecordAlignment,
591                                                  uint32_t &StartBitOffset,
592                                                  uint32_t &EndBitOffset) {
593   uint32_t MemberBitSize = MemberTy->getSizeInBits();
594   uint32_t MemberBitOffset = MemberTy->getOffsetInBits();
595   uint32_t AlignBits = RecordAlignment.value() * 8;
596   if (RecordAlignment > 8 || MemberBitSize > AlignBits)
597     report_fatal_error("Unsupported field expression for llvm.bpf.preserve.field.info, "
598                        "requiring too big alignment");
599 
600   StartBitOffset = MemberBitOffset & ~(AlignBits - 1);
601   if ((StartBitOffset + AlignBits) < (MemberBitOffset + MemberBitSize))
602     report_fatal_error("Unsupported field expression for llvm.bpf.preserve.field.info, "
603                        "cross alignment boundary");
604   EndBitOffset = StartBitOffset + AlignBits;
605 }
606 
607 uint32_t BPFAbstractMemberAccess::GetFieldInfo(uint32_t InfoKind,
608                                                DICompositeType *CTy,
609                                                uint32_t AccessIndex,
610                                                uint32_t PatchImm,
611                                                Align RecordAlignment) {
612   if (InfoKind == BPFCoreSharedInfo::FIELD_EXISTENCE)
613       return 1;
614 
615   uint32_t Tag = CTy->getTag();
616   if (InfoKind == BPFCoreSharedInfo::FIELD_BYTE_OFFSET) {
617     if (Tag == dwarf::DW_TAG_array_type) {
618       auto *EltTy = stripQualifiers(CTy->getBaseType());
619       PatchImm += AccessIndex * calcArraySize(CTy, 1) *
620                   (EltTy->getSizeInBits() >> 3);
621     } else if (Tag == dwarf::DW_TAG_structure_type) {
622       auto *MemberTy = cast<DIDerivedType>(CTy->getElements()[AccessIndex]);
623       if (!MemberTy->isBitField()) {
624         PatchImm += MemberTy->getOffsetInBits() >> 3;
625       } else {
626         unsigned SBitOffset, NextSBitOffset;
627         GetStorageBitRange(MemberTy, RecordAlignment, SBitOffset,
628                            NextSBitOffset);
629         PatchImm += SBitOffset >> 3;
630       }
631     }
632     return PatchImm;
633   }
634 
635   if (InfoKind == BPFCoreSharedInfo::FIELD_BYTE_SIZE) {
636     if (Tag == dwarf::DW_TAG_array_type) {
637       auto *EltTy = stripQualifiers(CTy->getBaseType());
638       return calcArraySize(CTy, 1) * (EltTy->getSizeInBits() >> 3);
639     } else {
640       auto *MemberTy = cast<DIDerivedType>(CTy->getElements()[AccessIndex]);
641       uint32_t SizeInBits = MemberTy->getSizeInBits();
642       if (!MemberTy->isBitField())
643         return SizeInBits >> 3;
644 
645       unsigned SBitOffset, NextSBitOffset;
646       GetStorageBitRange(MemberTy, RecordAlignment, SBitOffset, NextSBitOffset);
647       SizeInBits = NextSBitOffset - SBitOffset;
648       if (SizeInBits & (SizeInBits - 1))
649         report_fatal_error("Unsupported field expression for llvm.bpf.preserve.field.info");
650       return SizeInBits >> 3;
651     }
652   }
653 
654   if (InfoKind == BPFCoreSharedInfo::FIELD_SIGNEDNESS) {
655     const DIType *BaseTy;
656     if (Tag == dwarf::DW_TAG_array_type) {
657       // Signedness only checked when final array elements are accessed.
658       if (CTy->getElements().size() != 1)
659         report_fatal_error("Invalid array expression for llvm.bpf.preserve.field.info");
660       BaseTy = stripQualifiers(CTy->getBaseType());
661     } else {
662       auto *MemberTy = cast<DIDerivedType>(CTy->getElements()[AccessIndex]);
663       BaseTy = stripQualifiers(MemberTy->getBaseType());
664     }
665 
666     // Only basic types and enum types have signedness.
667     const auto *BTy = dyn_cast<DIBasicType>(BaseTy);
668     while (!BTy) {
669       const auto *CompTy = dyn_cast<DICompositeType>(BaseTy);
670       // Report an error if the field expression does not have signedness.
671       if (!CompTy || CompTy->getTag() != dwarf::DW_TAG_enumeration_type)
672         report_fatal_error("Invalid field expression for llvm.bpf.preserve.field.info");
673       BaseTy = stripQualifiers(CompTy->getBaseType());
674       BTy = dyn_cast<DIBasicType>(BaseTy);
675     }
676     uint32_t Encoding = BTy->getEncoding();
677     return (Encoding == dwarf::DW_ATE_signed || Encoding == dwarf::DW_ATE_signed_char);
678   }
679 
680   if (InfoKind == BPFCoreSharedInfo::FIELD_LSHIFT_U64) {
681     // The value is loaded into a value with FIELD_BYTE_SIZE size,
682     // and then zero or sign extended to U64.
683     // FIELD_LSHIFT_U64 and FIELD_RSHIFT_U64 are operations
684     // to extract the original value.
685     const Triple &Triple = TM->getTargetTriple();
686     DIDerivedType *MemberTy = nullptr;
687     bool IsBitField = false;
688     uint32_t SizeInBits;
689 
690     if (Tag == dwarf::DW_TAG_array_type) {
691       auto *EltTy = stripQualifiers(CTy->getBaseType());
692       SizeInBits = calcArraySize(CTy, 1) * EltTy->getSizeInBits();
693     } else {
694       MemberTy = cast<DIDerivedType>(CTy->getElements()[AccessIndex]);
695       SizeInBits = MemberTy->getSizeInBits();
696       IsBitField = MemberTy->isBitField();
697     }
698 
699     if (!IsBitField) {
700       if (SizeInBits > 64)
701         report_fatal_error("too big field size for llvm.bpf.preserve.field.info");
702       return 64 - SizeInBits;
703     }
704 
705     unsigned SBitOffset, NextSBitOffset;
706     GetStorageBitRange(MemberTy, RecordAlignment, SBitOffset, NextSBitOffset);
707     if (NextSBitOffset - SBitOffset > 64)
708       report_fatal_error("too big field size for llvm.bpf.preserve.field.info");
709 
710     unsigned OffsetInBits = MemberTy->getOffsetInBits();
711     if (Triple.getArch() == Triple::bpfel)
712       return SBitOffset + 64 - OffsetInBits - SizeInBits;
713     else
714       return OffsetInBits + 64 - NextSBitOffset;
715   }
716 
717   if (InfoKind == BPFCoreSharedInfo::FIELD_RSHIFT_U64) {
718     DIDerivedType *MemberTy = nullptr;
719     bool IsBitField = false;
720     uint32_t SizeInBits;
721     if (Tag == dwarf::DW_TAG_array_type) {
722       auto *EltTy = stripQualifiers(CTy->getBaseType());
723       SizeInBits = calcArraySize(CTy, 1) * EltTy->getSizeInBits();
724     } else {
725       MemberTy = cast<DIDerivedType>(CTy->getElements()[AccessIndex]);
726       SizeInBits = MemberTy->getSizeInBits();
727       IsBitField = MemberTy->isBitField();
728     }
729 
730     if (!IsBitField) {
731       if (SizeInBits > 64)
732         report_fatal_error("too big field size for llvm.bpf.preserve.field.info");
733       return 64 - SizeInBits;
734     }
735 
736     unsigned SBitOffset, NextSBitOffset;
737     GetStorageBitRange(MemberTy, RecordAlignment, SBitOffset, NextSBitOffset);
738     if (NextSBitOffset - SBitOffset > 64)
739       report_fatal_error("too big field size for llvm.bpf.preserve.field.info");
740 
741     return 64 - SizeInBits;
742   }
743 
744   llvm_unreachable("Unknown llvm.bpf.preserve.field.info info kind");
745 }
746 
747 bool BPFAbstractMemberAccess::HasPreserveFieldInfoCall(CallInfoStack &CallStack) {
748   // This is called in error return path, no need to maintain CallStack.
749   while (CallStack.size()) {
750     auto StackElem = CallStack.top();
751     if (StackElem.second.Kind == BPFPreserveFieldInfoAI)
752       return true;
753     CallStack.pop();
754   }
755   return false;
756 }
757 
758 /// Compute the base of the whole preserve_* intrinsics chains, i.e., the base
759 /// pointer of the first preserve_*_access_index call, and construct the access
760 /// string, which will be the name of a global variable.
761 Value *BPFAbstractMemberAccess::computeBaseAndAccessKey(CallInst *Call,
762                                                         CallInfo &CInfo,
763                                                         std::string &AccessKey,
764                                                         MDNode *&TypeMeta) {
765   Value *Base = nullptr;
766   std::string TypeName;
767   CallInfoStack CallStack;
768 
769   // Put the access chain into a stack with the top as the head of the chain.
770   while (Call) {
771     CallStack.push(std::make_pair(Call, CInfo));
772     CInfo = AIChain[Call].second;
773     Call = AIChain[Call].first;
774   }
775 
776   // The access offset from the base of the head of chain is also
777   // calculated here as all debuginfo types are available.
778 
779   // Get type name and calculate the first index.
780   // We only want to get type name from typedef, structure or union.
781   // If user wants a relocation like
782   //    int *p; ... __builtin_preserve_access_index(&p[4]) ...
783   // or
784   //    int a[10][20]; ... __builtin_preserve_access_index(&a[2][3]) ...
785   // we will skip them.
786   uint32_t FirstIndex = 0;
787   uint32_t PatchImm = 0; // AccessOffset or the requested field info
788   uint32_t InfoKind = BPFCoreSharedInfo::FIELD_BYTE_OFFSET;
789   while (CallStack.size()) {
790     auto StackElem = CallStack.top();
791     Call = StackElem.first;
792     CInfo = StackElem.second;
793 
794     if (!Base)
795       Base = CInfo.Base;
796 
797     DIType *PossibleTypeDef = stripQualifiers(cast<DIType>(CInfo.Metadata),
798                                               false);
799     DIType *Ty = stripQualifiers(PossibleTypeDef);
800     if (CInfo.Kind == BPFPreserveUnionAI ||
801         CInfo.Kind == BPFPreserveStructAI) {
802       // struct or union type. If the typedef is in the metadata, always
803       // use the typedef.
804       TypeName = std::string(PossibleTypeDef->getName());
805       TypeMeta = PossibleTypeDef;
806       PatchImm += FirstIndex * (Ty->getSizeInBits() >> 3);
807       break;
808     }
809 
810     assert(CInfo.Kind == BPFPreserveArrayAI);
811 
812     // Array entries will always be consumed for accumulative initial index.
813     CallStack.pop();
814 
815     // BPFPreserveArrayAI
816     uint64_t AccessIndex = CInfo.AccessIndex;
817 
818     DIType *BaseTy = nullptr;
819     bool CheckElemType = false;
820     if (const auto *CTy = dyn_cast<DICompositeType>(Ty)) {
821       // array type
822       assert(CTy->getTag() == dwarf::DW_TAG_array_type);
823 
824 
825       FirstIndex += AccessIndex * calcArraySize(CTy, 1);
826       BaseTy = stripQualifiers(CTy->getBaseType());
827       CheckElemType = CTy->getElements().size() == 1;
828     } else {
829       // pointer type
830       auto *DTy = cast<DIDerivedType>(Ty);
831       assert(DTy->getTag() == dwarf::DW_TAG_pointer_type);
832 
833       BaseTy = stripQualifiers(DTy->getBaseType());
834       CTy = dyn_cast<DICompositeType>(BaseTy);
835       if (!CTy) {
836         CheckElemType = true;
837       } else if (CTy->getTag() != dwarf::DW_TAG_array_type) {
838         FirstIndex += AccessIndex;
839         CheckElemType = true;
840       } else {
841         FirstIndex += AccessIndex * calcArraySize(CTy, 0);
842       }
843     }
844 
845     if (CheckElemType) {
846       auto *CTy = dyn_cast<DICompositeType>(BaseTy);
847       if (!CTy) {
848         if (HasPreserveFieldInfoCall(CallStack))
849           report_fatal_error("Invalid field access for llvm.preserve.field.info intrinsic");
850         return nullptr;
851       }
852 
853       unsigned CTag = CTy->getTag();
854       if (CTag == dwarf::DW_TAG_structure_type || CTag == dwarf::DW_TAG_union_type) {
855         TypeName = std::string(CTy->getName());
856       } else {
857         if (HasPreserveFieldInfoCall(CallStack))
858           report_fatal_error("Invalid field access for llvm.preserve.field.info intrinsic");
859         return nullptr;
860       }
861       TypeMeta = CTy;
862       PatchImm += FirstIndex * (CTy->getSizeInBits() >> 3);
863       break;
864     }
865   }
866   assert(TypeName.size());
867   AccessKey += std::to_string(FirstIndex);
868 
869   // Traverse the rest of access chain to complete offset calculation
870   // and access key construction.
871   while (CallStack.size()) {
872     auto StackElem = CallStack.top();
873     CInfo = StackElem.second;
874     CallStack.pop();
875 
876     if (CInfo.Kind == BPFPreserveFieldInfoAI) {
877       InfoKind = CInfo.AccessIndex;
878       if (InfoKind == BPFCoreSharedInfo::FIELD_EXISTENCE)
879         PatchImm = 1;
880       break;
881     }
882 
883     // If the next Call (the top of the stack) is a BPFPreserveFieldInfoAI,
884     // the action will be extracting field info.
885     if (CallStack.size()) {
886       auto StackElem2 = CallStack.top();
887       CallInfo CInfo2 = StackElem2.second;
888       if (CInfo2.Kind == BPFPreserveFieldInfoAI) {
889         InfoKind = CInfo2.AccessIndex;
890         assert(CallStack.size() == 1);
891       }
892     }
893 
894     // Access Index
895     uint64_t AccessIndex = CInfo.AccessIndex;
896     AccessKey += ":" + std::to_string(AccessIndex);
897 
898     MDNode *MDN = CInfo.Metadata;
899     // At this stage, it cannot be pointer type.
900     auto *CTy = cast<DICompositeType>(stripQualifiers(cast<DIType>(MDN)));
901     PatchImm = GetFieldInfo(InfoKind, CTy, AccessIndex, PatchImm,
902                             CInfo.RecordAlignment);
903   }
904 
905   // Access key is the
906   //   "llvm." + type name + ":" + reloc type + ":" + patched imm + "$" +
907   //   access string,
908   // uniquely identifying one relocation.
909   // The prefix "llvm." indicates this is a temporary global, which should
910   // not be emitted to ELF file.
911   AccessKey = "llvm." + TypeName + ":" + std::to_string(InfoKind) + ":" +
912               std::to_string(PatchImm) + "$" + AccessKey;
913 
914   return Base;
915 }
916 
917 MDNode *BPFAbstractMemberAccess::computeAccessKey(CallInst *Call,
918                                                   CallInfo &CInfo,
919                                                   std::string &AccessKey,
920                                                   bool &IsInt32Ret) {
921   DIType *Ty = stripQualifiers(cast<DIType>(CInfo.Metadata), false);
922   assert(!Ty->getName().empty());
923 
924   int64_t PatchImm;
925   std::string AccessStr("0");
926   if (CInfo.AccessIndex == BPFCoreSharedInfo::TYPE_EXISTENCE) {
927     PatchImm = 1;
928   } else if (CInfo.AccessIndex == BPFCoreSharedInfo::TYPE_SIZE) {
929     // typedef debuginfo type has size 0, get the eventual base type.
930     DIType *BaseTy = stripQualifiers(Ty, true);
931     PatchImm = BaseTy->getSizeInBits() / 8;
932   } else {
933     // ENUM_VALUE_EXISTENCE and ENUM_VALUE
934     IsInt32Ret = false;
935 
936     const auto *CE = cast<ConstantExpr>(Call->getArgOperand(1));
937     const GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
938     assert(GV->hasInitializer());
939     const ConstantDataArray *DA = cast<ConstantDataArray>(GV->getInitializer());
940     assert(DA->isString());
941     StringRef ValueStr = DA->getAsString();
942 
943     // ValueStr format: <EnumeratorStr>:<Value>
944     size_t Separator = ValueStr.find_first_of(':');
945     StringRef EnumeratorStr = ValueStr.substr(0, Separator);
946 
947     // Find enumerator index in the debuginfo
948     DIType *BaseTy = stripQualifiers(Ty, true);
949     const auto *CTy = cast<DICompositeType>(BaseTy);
950     assert(CTy->getTag() == dwarf::DW_TAG_enumeration_type);
951     int EnumIndex = 0;
952     for (const auto Element : CTy->getElements()) {
953       const auto *Enum = cast<DIEnumerator>(Element);
954       if (Enum->getName() == EnumeratorStr) {
955         AccessStr = std::to_string(EnumIndex);
956         break;
957       }
958       EnumIndex++;
959     }
960 
961     if (CInfo.AccessIndex == BPFCoreSharedInfo::ENUM_VALUE) {
962       StringRef EValueStr = ValueStr.substr(Separator + 1);
963       PatchImm = std::stoll(std::string(EValueStr));
964     } else {
965       PatchImm = 1;
966     }
967   }
968 
969   AccessKey = "llvm." + Ty->getName().str() + ":" +
970               std::to_string(CInfo.AccessIndex) + std::string(":") +
971               std::to_string(PatchImm) + std::string("$") + AccessStr;
972 
973   return Ty;
974 }
975 
976 /// Call/Kind is the base preserve_*_access_index() call. Attempts to do
977 /// transformation to a chain of relocable GEPs.
978 bool BPFAbstractMemberAccess::transformGEPChain(CallInst *Call,
979                                                 CallInfo &CInfo) {
980   std::string AccessKey;
981   MDNode *TypeMeta;
982   Value *Base = nullptr;
983   bool IsInt32Ret;
984 
985   IsInt32Ret = CInfo.Kind == BPFPreserveFieldInfoAI;
986   if (CInfo.Kind == BPFPreserveFieldInfoAI && CInfo.Metadata) {
987     TypeMeta = computeAccessKey(Call, CInfo, AccessKey, IsInt32Ret);
988   } else {
989     Base = computeBaseAndAccessKey(Call, CInfo, AccessKey, TypeMeta);
990     if (!Base)
991       return false;
992   }
993 
994   BasicBlock *BB = Call->getParent();
995   GlobalVariable *GV;
996 
997   if (GEPGlobals.find(AccessKey) == GEPGlobals.end()) {
998     IntegerType *VarType;
999     if (IsInt32Ret)
1000       VarType = Type::getInt32Ty(BB->getContext()); // 32bit return value
1001     else
1002       VarType = Type::getInt64Ty(BB->getContext()); // 64bit ptr or enum value
1003 
1004     GV = new GlobalVariable(*M, VarType, false, GlobalVariable::ExternalLinkage,
1005                             nullptr, AccessKey);
1006     GV->addAttribute(BPFCoreSharedInfo::AmaAttr);
1007     GV->setMetadata(LLVMContext::MD_preserve_access_index, TypeMeta);
1008     GEPGlobals[AccessKey] = GV;
1009   } else {
1010     GV = GEPGlobals[AccessKey];
1011   }
1012 
1013   if (CInfo.Kind == BPFPreserveFieldInfoAI) {
1014     // Load the global variable which represents the returned field info.
1015     LoadInst *LDInst;
1016     if (IsInt32Ret)
1017       LDInst = new LoadInst(Type::getInt32Ty(BB->getContext()), GV, "", Call);
1018     else
1019       LDInst = new LoadInst(Type::getInt64Ty(BB->getContext()), GV, "", Call);
1020 
1021     Instruction *PassThroughInst =
1022         BPFCoreSharedInfo::insertPassThrough(M, BB, LDInst, Call);
1023     Call->replaceAllUsesWith(PassThroughInst);
1024     Call->eraseFromParent();
1025     return true;
1026   }
1027 
1028   // For any original GEP Call and Base %2 like
1029   //   %4 = bitcast %struct.net_device** %dev1 to i64*
1030   // it is transformed to:
1031   //   %6 = load llvm.sk_buff:0:50$0:0:0:2:0
1032   //   %7 = bitcast %struct.sk_buff* %2 to i8*
1033   //   %8 = getelementptr i8, i8* %7, %6
1034   //   %9 = bitcast i8* %8 to i64*
1035   //   using %9 instead of %4
1036   // The original Call inst is removed.
1037 
1038   // Load the global variable.
1039   auto *LDInst = new LoadInst(Type::getInt64Ty(BB->getContext()), GV, "", Call);
1040 
1041   // Generate a BitCast
1042   auto *BCInst = new BitCastInst(Base, Type::getInt8PtrTy(BB->getContext()));
1043   BB->getInstList().insert(Call->getIterator(), BCInst);
1044 
1045   // Generate a GetElementPtr
1046   auto *GEP = GetElementPtrInst::Create(Type::getInt8Ty(BB->getContext()),
1047                                         BCInst, LDInst);
1048   BB->getInstList().insert(Call->getIterator(), GEP);
1049 
1050   // Generate a BitCast
1051   auto *BCInst2 = new BitCastInst(GEP, Call->getType());
1052   BB->getInstList().insert(Call->getIterator(), BCInst2);
1053 
1054   // For the following code,
1055   //    Block0:
1056   //      ...
1057   //      if (...) goto Block1 else ...
1058   //    Block1:
1059   //      %6 = load llvm.sk_buff:0:50$0:0:0:2:0
1060   //      %7 = bitcast %struct.sk_buff* %2 to i8*
1061   //      %8 = getelementptr i8, i8* %7, %6
1062   //      ...
1063   //      goto CommonExit
1064   //    Block2:
1065   //      ...
1066   //      if (...) goto Block3 else ...
1067   //    Block3:
1068   //      %6 = load llvm.bpf_map:0:40$0:0:0:2:0
1069   //      %7 = bitcast %struct.sk_buff* %2 to i8*
1070   //      %8 = getelementptr i8, i8* %7, %6
1071   //      ...
1072   //      goto CommonExit
1073   //    CommonExit
1074   // SimplifyCFG may generate:
1075   //    Block0:
1076   //      ...
1077   //      if (...) goto Block_Common else ...
1078   //     Block2:
1079   //       ...
1080   //      if (...) goto Block_Common else ...
1081   //    Block_Common:
1082   //      PHI = [llvm.sk_buff:0:50$0:0:0:2:0, llvm.bpf_map:0:40$0:0:0:2:0]
1083   //      %6 = load PHI
1084   //      %7 = bitcast %struct.sk_buff* %2 to i8*
1085   //      %8 = getelementptr i8, i8* %7, %6
1086   //      ...
1087   //      goto CommonExit
1088   //  For the above code, we cannot perform proper relocation since
1089   //  "load PHI" has two possible relocations.
1090   //
1091   // To prevent above tail merging, we use __builtin_bpf_passthrough()
1092   // where one of its parameters is a seq_num. Since two
1093   // __builtin_bpf_passthrough() funcs will always have different seq_num,
1094   // tail merging cannot happen. The __builtin_bpf_passthrough() will be
1095   // removed in the beginning of Target IR passes.
1096   //
1097   // This approach is also used in other places when global var
1098   // representing a relocation is used.
1099   Instruction *PassThroughInst =
1100       BPFCoreSharedInfo::insertPassThrough(M, BB, BCInst2, Call);
1101   Call->replaceAllUsesWith(PassThroughInst);
1102   Call->eraseFromParent();
1103 
1104   return true;
1105 }
1106 
1107 bool BPFAbstractMemberAccess::doTransformation(Function &F) {
1108   bool Transformed = false;
1109 
1110   // Collect PreserveDIAccessIndex Intrinsic call chains.
1111   // The call chains will be used to generate the access
1112   // patterns similar to GEP.
1113   collectAICallChains(F);
1114 
1115   for (auto &C : BaseAICalls)
1116     Transformed = transformGEPChain(C.first, C.second) || Transformed;
1117 
1118   return removePreserveAccessIndexIntrinsic(F) || Transformed;
1119 }
1120 
1121 PreservedAnalyses
1122 BPFAbstractMemberAccessPass::run(Function &F, FunctionAnalysisManager &AM) {
1123   return BPFAbstractMemberAccess(TM).run(F) ? PreservedAnalyses::none()
1124                                             : PreservedAnalyses::all();
1125 }
1126