1 //===------ BPFAbstractMemberAccess.cpp - Abstracting Member Accesses -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass abstracted struct/union member accesses in order to support
10 // compile-once run-everywhere (CO-RE). The CO-RE intends to compile the program
11 // which can run on different kernels. In particular, if bpf program tries to
12 // access a particular kernel data structure member, the details of the
13 // intermediate member access will be remembered so bpf loader can do
14 // necessary adjustment right before program loading.
15 //
16 // For example,
17 //
18 //   struct s {
19 //     int a;
20 //     int b;
21 //   };
22 //   struct t {
23 //     struct s c;
24 //     int d;
25 //   };
26 //   struct t e;
27 //
28 // For the member access e.c.b, the compiler will generate code
29 //   &e + 4
30 //
31 // The compile-once run-everywhere instead generates the following code
32 //   r = 4
33 //   &e + r
34 // The "4" in "r = 4" can be changed based on a particular kernel version.
35 // For example, on a particular kernel version, if struct s is changed to
36 //
37 //   struct s {
38 //     int new_field;
39 //     int a;
40 //     int b;
41 //   }
42 //
43 // By repeating the member access on the host, the bpf loader can
44 // adjust "r = 4" as "r = 8".
45 //
46 // This feature relies on the following three intrinsic calls:
47 //   addr = preserve_array_access_index(base, dimension, index)
48 //   addr = preserve_union_access_index(base, di_index)
49 //          !llvm.preserve.access.index <union_ditype>
50 //   addr = preserve_struct_access_index(base, gep_index, di_index)
51 //          !llvm.preserve.access.index <struct_ditype>
52 //
53 // Bitfield member access needs special attention. User cannot take the
54 // address of a bitfield acceess. To facilitate kernel verifier
55 // for easy bitfield code optimization, a new clang intrinsic is introduced:
56 //   uint32_t __builtin_preserve_field_info(member_access, info_kind)
57 // In IR, a chain with two (or more) intrinsic calls will be generated:
58 //   ...
59 //   addr = preserve_struct_access_index(base, 1, 1) !struct s
60 //   uint32_t result = bpf_preserve_field_info(addr, info_kind)
61 //
62 // Suppose the info_kind is FIELD_SIGNEDNESS,
63 // The above two IR intrinsics will be replaced with
64 // a relocatable insn:
65 //   signness = /* signness of member_access */
66 // and signness can be changed by bpf loader based on the
67 // types on the host.
68 //
69 // User can also test whether a field exists or not with
70 //   uint32_t result = bpf_preserve_field_info(member_access, FIELD_EXISTENCE)
71 // The field will be always available (result = 1) during initial
72 // compilation, but bpf loader can patch with the correct value
73 // on the target host where the member_access may or may not be available
74 //
75 //===----------------------------------------------------------------------===//
76 
77 #include "BPF.h"
78 #include "BPFCORE.h"
79 #include "BPFTargetMachine.h"
80 #include "llvm/BinaryFormat/Dwarf.h"
81 #include "llvm/IR/DebugInfoMetadata.h"
82 #include "llvm/IR/GlobalVariable.h"
83 #include "llvm/IR/Instruction.h"
84 #include "llvm/IR/Instructions.h"
85 #include "llvm/IR/IntrinsicsBPF.h"
86 #include "llvm/IR/Module.h"
87 #include "llvm/IR/PassManager.h"
88 #include "llvm/IR/Type.h"
89 #include "llvm/IR/User.h"
90 #include "llvm/IR/Value.h"
91 #include "llvm/Pass.h"
92 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
93 #include <stack>
94 
95 #define DEBUG_TYPE "bpf-abstract-member-access"
96 
97 namespace llvm {
98 constexpr StringRef BPFCoreSharedInfo::AmaAttr;
99 uint32_t BPFCoreSharedInfo::SeqNum;
100 
101 Instruction *BPFCoreSharedInfo::insertPassThrough(Module *M, BasicBlock *BB,
102                                                   Instruction *Input,
103                                                   Instruction *Before) {
104   Function *Fn = Intrinsic::getDeclaration(
105       M, Intrinsic::bpf_passthrough, {Input->getType(), Input->getType()});
106   Constant *SeqNumVal = ConstantInt::get(Type::getInt32Ty(BB->getContext()),
107                                          BPFCoreSharedInfo::SeqNum++);
108 
109   auto *NewInst = CallInst::Create(Fn, {SeqNumVal, Input});
110   NewInst->insertBefore(Before);
111   return NewInst;
112 }
113 } // namespace llvm
114 
115 using namespace llvm;
116 
117 namespace {
118 class BPFAbstractMemberAccess final {
119 public:
120   BPFAbstractMemberAccess(BPFTargetMachine *TM) : TM(TM) {}
121 
122   bool run(Function &F);
123 
124   struct CallInfo {
125     uint32_t Kind;
126     uint32_t AccessIndex;
127     MaybeAlign RecordAlignment;
128     MDNode *Metadata;
129     WeakTrackingVH Base;
130   };
131   typedef std::stack<std::pair<CallInst *, CallInfo>> CallInfoStack;
132 
133 private:
134   enum : uint32_t {
135     BPFPreserveArrayAI = 1,
136     BPFPreserveUnionAI = 2,
137     BPFPreserveStructAI = 3,
138     BPFPreserveFieldInfoAI = 4,
139   };
140 
141   TargetMachine *TM;
142   const DataLayout *DL = nullptr;
143   Module *M = nullptr;
144 
145   static std::map<std::string, GlobalVariable *> GEPGlobals;
146   // A map to link preserve_*_access_index intrinsic calls.
147   std::map<CallInst *, std::pair<CallInst *, CallInfo>> AIChain;
148   // A map to hold all the base preserve_*_access_index intrinsic calls.
149   // The base call is not an input of any other preserve_*
150   // intrinsics.
151   std::map<CallInst *, CallInfo> BaseAICalls;
152   // A map to hold <AnonRecord, TypeDef> relationships
153   std::map<DICompositeType *, DIDerivedType *> AnonRecords;
154 
155   void CheckAnonRecordType(DIDerivedType *ParentTy, DIType *Ty);
156   void CheckCompositeType(DIDerivedType *ParentTy, DICompositeType *CTy);
157   void CheckDerivedType(DIDerivedType *ParentTy, DIDerivedType *DTy);
158   void ResetMetadata(struct CallInfo &CInfo);
159 
160   bool doTransformation(Function &F);
161 
162   void traceAICall(CallInst *Call, CallInfo &ParentInfo);
163   void traceBitCast(BitCastInst *BitCast, CallInst *Parent,
164                     CallInfo &ParentInfo);
165   void traceGEP(GetElementPtrInst *GEP, CallInst *Parent,
166                 CallInfo &ParentInfo);
167   void collectAICallChains(Function &F);
168 
169   bool IsPreserveDIAccessIndexCall(const CallInst *Call, CallInfo &Cinfo);
170   bool IsValidAIChain(const MDNode *ParentMeta, uint32_t ParentAI,
171                       const MDNode *ChildMeta);
172   bool removePreserveAccessIndexIntrinsic(Function &F);
173   void replaceWithGEP(std::vector<CallInst *> &CallList,
174                       uint32_t NumOfZerosIndex, uint32_t DIIndex);
175   bool HasPreserveFieldInfoCall(CallInfoStack &CallStack);
176   void GetStorageBitRange(DIDerivedType *MemberTy, Align RecordAlignment,
177                           uint32_t &StartBitOffset, uint32_t &EndBitOffset);
178   uint32_t GetFieldInfo(uint32_t InfoKind, DICompositeType *CTy,
179                         uint32_t AccessIndex, uint32_t PatchImm,
180                         MaybeAlign RecordAlignment);
181 
182   Value *computeBaseAndAccessKey(CallInst *Call, CallInfo &CInfo,
183                                  std::string &AccessKey, MDNode *&BaseMeta);
184   MDNode *computeAccessKey(CallInst *Call, CallInfo &CInfo,
185                            std::string &AccessKey, bool &IsInt32Ret);
186   uint64_t getConstant(const Value *IndexValue);
187   bool transformGEPChain(CallInst *Call, CallInfo &CInfo);
188 };
189 
190 std::map<std::string, GlobalVariable *> BPFAbstractMemberAccess::GEPGlobals;
191 } // End anonymous namespace
192 
193 bool BPFAbstractMemberAccess::run(Function &F) {
194   LLVM_DEBUG(dbgs() << "********** Abstract Member Accesses **********\n");
195 
196   M = F.getParent();
197   if (!M)
198     return false;
199 
200   // Bail out if no debug info.
201   if (M->debug_compile_units().empty())
202     return false;
203 
204   // For each argument/return/local_variable type, trace the type
205   // pattern like '[derived_type]* [composite_type]' to check
206   // and remember (anon record -> typedef) relations where the
207   // anon record is defined as
208   //   typedef [const/volatile/restrict]* [anon record]
209   DISubprogram *SP = F.getSubprogram();
210   if (SP && SP->isDefinition()) {
211     for (DIType *Ty: SP->getType()->getTypeArray())
212       CheckAnonRecordType(nullptr, Ty);
213     for (const DINode *DN : SP->getRetainedNodes()) {
214       if (const auto *DV = dyn_cast<DILocalVariable>(DN))
215         CheckAnonRecordType(nullptr, DV->getType());
216     }
217   }
218 
219   DL = &M->getDataLayout();
220   return doTransformation(F);
221 }
222 
223 void BPFAbstractMemberAccess::ResetMetadata(struct CallInfo &CInfo) {
224   if (auto Ty = dyn_cast<DICompositeType>(CInfo.Metadata)) {
225     if (AnonRecords.find(Ty) != AnonRecords.end()) {
226       if (AnonRecords[Ty] != nullptr)
227         CInfo.Metadata = AnonRecords[Ty];
228     }
229   }
230 }
231 
232 void BPFAbstractMemberAccess::CheckCompositeType(DIDerivedType *ParentTy,
233                                                  DICompositeType *CTy) {
234   if (!CTy->getName().empty() || !ParentTy ||
235       ParentTy->getTag() != dwarf::DW_TAG_typedef)
236     return;
237 
238   if (AnonRecords.find(CTy) == AnonRecords.end()) {
239     AnonRecords[CTy] = ParentTy;
240     return;
241   }
242 
243   // Two or more typedef's may point to the same anon record.
244   // If this is the case, set the typedef DIType to be nullptr
245   // to indicate the duplication case.
246   DIDerivedType *CurrTy = AnonRecords[CTy];
247   if (CurrTy == ParentTy)
248     return;
249   AnonRecords[CTy] = nullptr;
250 }
251 
252 void BPFAbstractMemberAccess::CheckDerivedType(DIDerivedType *ParentTy,
253                                                DIDerivedType *DTy) {
254   DIType *BaseType = DTy->getBaseType();
255   if (!BaseType)
256     return;
257 
258   unsigned Tag = DTy->getTag();
259   if (Tag == dwarf::DW_TAG_pointer_type)
260     CheckAnonRecordType(nullptr, BaseType);
261   else if (Tag == dwarf::DW_TAG_typedef)
262     CheckAnonRecordType(DTy, BaseType);
263   else
264     CheckAnonRecordType(ParentTy, BaseType);
265 }
266 
267 void BPFAbstractMemberAccess::CheckAnonRecordType(DIDerivedType *ParentTy,
268                                                   DIType *Ty) {
269   if (!Ty)
270     return;
271 
272   if (auto *CTy = dyn_cast<DICompositeType>(Ty))
273     return CheckCompositeType(ParentTy, CTy);
274   else if (auto *DTy = dyn_cast<DIDerivedType>(Ty))
275     return CheckDerivedType(ParentTy, DTy);
276 }
277 
278 static bool SkipDIDerivedTag(unsigned Tag, bool skipTypedef) {
279   if (Tag != dwarf::DW_TAG_typedef && Tag != dwarf::DW_TAG_const_type &&
280       Tag != dwarf::DW_TAG_volatile_type &&
281       Tag != dwarf::DW_TAG_restrict_type &&
282       Tag != dwarf::DW_TAG_member)
283     return false;
284   if (Tag == dwarf::DW_TAG_typedef && !skipTypedef)
285     return false;
286   return true;
287 }
288 
289 static DIType * stripQualifiers(DIType *Ty, bool skipTypedef = true) {
290   while (auto *DTy = dyn_cast<DIDerivedType>(Ty)) {
291     if (!SkipDIDerivedTag(DTy->getTag(), skipTypedef))
292       break;
293     Ty = DTy->getBaseType();
294   }
295   return Ty;
296 }
297 
298 static const DIType * stripQualifiers(const DIType *Ty) {
299   while (auto *DTy = dyn_cast<DIDerivedType>(Ty)) {
300     if (!SkipDIDerivedTag(DTy->getTag(), true))
301       break;
302     Ty = DTy->getBaseType();
303   }
304   return Ty;
305 }
306 
307 static uint32_t calcArraySize(const DICompositeType *CTy, uint32_t StartDim) {
308   DINodeArray Elements = CTy->getElements();
309   uint32_t DimSize = 1;
310   for (uint32_t I = StartDim; I < Elements.size(); ++I) {
311     if (auto *Element = dyn_cast_or_null<DINode>(Elements[I]))
312       if (Element->getTag() == dwarf::DW_TAG_subrange_type) {
313         const DISubrange *SR = cast<DISubrange>(Element);
314         auto *CI = SR->getCount().dyn_cast<ConstantInt *>();
315         DimSize *= CI->getSExtValue();
316       }
317   }
318 
319   return DimSize;
320 }
321 
322 static Type *getBaseElementType(const CallInst *Call) {
323   // Element type is stored in an elementtype() attribute on the first param.
324   return Call->getParamElementType(0);
325 }
326 
327 /// Check whether a call is a preserve_*_access_index intrinsic call or not.
328 bool BPFAbstractMemberAccess::IsPreserveDIAccessIndexCall(const CallInst *Call,
329                                                           CallInfo &CInfo) {
330   if (!Call)
331     return false;
332 
333   const auto *GV = dyn_cast<GlobalValue>(Call->getCalledOperand());
334   if (!GV)
335     return false;
336   if (GV->getName().startswith("llvm.preserve.array.access.index")) {
337     CInfo.Kind = BPFPreserveArrayAI;
338     CInfo.Metadata = Call->getMetadata(LLVMContext::MD_preserve_access_index);
339     if (!CInfo.Metadata)
340       report_fatal_error("Missing metadata for llvm.preserve.array.access.index intrinsic");
341     CInfo.AccessIndex = getConstant(Call->getArgOperand(2));
342     CInfo.Base = Call->getArgOperand(0);
343     CInfo.RecordAlignment = DL->getABITypeAlign(getBaseElementType(Call));
344     return true;
345   }
346   if (GV->getName().startswith("llvm.preserve.union.access.index")) {
347     CInfo.Kind = BPFPreserveUnionAI;
348     CInfo.Metadata = Call->getMetadata(LLVMContext::MD_preserve_access_index);
349     if (!CInfo.Metadata)
350       report_fatal_error("Missing metadata for llvm.preserve.union.access.index intrinsic");
351     ResetMetadata(CInfo);
352     CInfo.AccessIndex = getConstant(Call->getArgOperand(1));
353     CInfo.Base = Call->getArgOperand(0);
354     return true;
355   }
356   if (GV->getName().startswith("llvm.preserve.struct.access.index")) {
357     CInfo.Kind = BPFPreserveStructAI;
358     CInfo.Metadata = Call->getMetadata(LLVMContext::MD_preserve_access_index);
359     if (!CInfo.Metadata)
360       report_fatal_error("Missing metadata for llvm.preserve.struct.access.index intrinsic");
361     ResetMetadata(CInfo);
362     CInfo.AccessIndex = getConstant(Call->getArgOperand(2));
363     CInfo.Base = Call->getArgOperand(0);
364     CInfo.RecordAlignment = DL->getABITypeAlign(getBaseElementType(Call));
365     return true;
366   }
367   if (GV->getName().startswith("llvm.bpf.preserve.field.info")) {
368     CInfo.Kind = BPFPreserveFieldInfoAI;
369     CInfo.Metadata = nullptr;
370     // Check validity of info_kind as clang did not check this.
371     uint64_t InfoKind = getConstant(Call->getArgOperand(1));
372     if (InfoKind >= BPFCoreSharedInfo::MAX_FIELD_RELOC_KIND)
373       report_fatal_error("Incorrect info_kind for llvm.bpf.preserve.field.info intrinsic");
374     CInfo.AccessIndex = InfoKind;
375     return true;
376   }
377   if (GV->getName().startswith("llvm.bpf.preserve.type.info")) {
378     CInfo.Kind = BPFPreserveFieldInfoAI;
379     CInfo.Metadata = Call->getMetadata(LLVMContext::MD_preserve_access_index);
380     if (!CInfo.Metadata)
381       report_fatal_error("Missing metadata for llvm.preserve.type.info intrinsic");
382     uint64_t Flag = getConstant(Call->getArgOperand(1));
383     if (Flag >= BPFCoreSharedInfo::MAX_PRESERVE_TYPE_INFO_FLAG)
384       report_fatal_error("Incorrect flag for llvm.bpf.preserve.type.info intrinsic");
385     if (Flag == BPFCoreSharedInfo::PRESERVE_TYPE_INFO_EXISTENCE)
386       CInfo.AccessIndex = BPFCoreSharedInfo::TYPE_EXISTENCE;
387     else if (Flag == BPFCoreSharedInfo::PRESERVE_TYPE_INFO_MATCH)
388       CInfo.AccessIndex = BPFCoreSharedInfo::TYPE_MATCH;
389     else
390       CInfo.AccessIndex = BPFCoreSharedInfo::TYPE_SIZE;
391     return true;
392   }
393   if (GV->getName().startswith("llvm.bpf.preserve.enum.value")) {
394     CInfo.Kind = BPFPreserveFieldInfoAI;
395     CInfo.Metadata = Call->getMetadata(LLVMContext::MD_preserve_access_index);
396     if (!CInfo.Metadata)
397       report_fatal_error("Missing metadata for llvm.preserve.enum.value intrinsic");
398     uint64_t Flag = getConstant(Call->getArgOperand(2));
399     if (Flag >= BPFCoreSharedInfo::MAX_PRESERVE_ENUM_VALUE_FLAG)
400       report_fatal_error("Incorrect flag for llvm.bpf.preserve.enum.value intrinsic");
401     if (Flag == BPFCoreSharedInfo::PRESERVE_ENUM_VALUE_EXISTENCE)
402       CInfo.AccessIndex = BPFCoreSharedInfo::ENUM_VALUE_EXISTENCE;
403     else
404       CInfo.AccessIndex = BPFCoreSharedInfo::ENUM_VALUE;
405     return true;
406   }
407 
408   return false;
409 }
410 
411 void BPFAbstractMemberAccess::replaceWithGEP(std::vector<CallInst *> &CallList,
412                                              uint32_t DimensionIndex,
413                                              uint32_t GEPIndex) {
414   for (auto *Call : CallList) {
415     uint32_t Dimension = 1;
416     if (DimensionIndex > 0)
417       Dimension = getConstant(Call->getArgOperand(DimensionIndex));
418 
419     Constant *Zero =
420         ConstantInt::get(Type::getInt32Ty(Call->getParent()->getContext()), 0);
421     SmallVector<Value *, 4> IdxList;
422     for (unsigned I = 0; I < Dimension; ++I)
423       IdxList.push_back(Zero);
424     IdxList.push_back(Call->getArgOperand(GEPIndex));
425 
426     auto *GEP = GetElementPtrInst::CreateInBounds(
427         getBaseElementType(Call), Call->getArgOperand(0), IdxList, "", Call);
428     Call->replaceAllUsesWith(GEP);
429     Call->eraseFromParent();
430   }
431 }
432 
433 bool BPFAbstractMemberAccess::removePreserveAccessIndexIntrinsic(Function &F) {
434   std::vector<CallInst *> PreserveArrayIndexCalls;
435   std::vector<CallInst *> PreserveUnionIndexCalls;
436   std::vector<CallInst *> PreserveStructIndexCalls;
437   bool Found = false;
438 
439   for (auto &BB : F)
440     for (auto &I : BB) {
441       auto *Call = dyn_cast<CallInst>(&I);
442       CallInfo CInfo;
443       if (!IsPreserveDIAccessIndexCall(Call, CInfo))
444         continue;
445 
446       Found = true;
447       if (CInfo.Kind == BPFPreserveArrayAI)
448         PreserveArrayIndexCalls.push_back(Call);
449       else if (CInfo.Kind == BPFPreserveUnionAI)
450         PreserveUnionIndexCalls.push_back(Call);
451       else
452         PreserveStructIndexCalls.push_back(Call);
453     }
454 
455   // do the following transformation:
456   // . addr = preserve_array_access_index(base, dimension, index)
457   //   is transformed to
458   //     addr = GEP(base, dimenion's zero's, index)
459   // . addr = preserve_union_access_index(base, di_index)
460   //   is transformed to
461   //     addr = base, i.e., all usages of "addr" are replaced by "base".
462   // . addr = preserve_struct_access_index(base, gep_index, di_index)
463   //   is transformed to
464   //     addr = GEP(base, 0, gep_index)
465   replaceWithGEP(PreserveArrayIndexCalls, 1, 2);
466   replaceWithGEP(PreserveStructIndexCalls, 0, 1);
467   for (auto *Call : PreserveUnionIndexCalls) {
468     Call->replaceAllUsesWith(Call->getArgOperand(0));
469     Call->eraseFromParent();
470   }
471 
472   return Found;
473 }
474 
475 /// Check whether the access index chain is valid. We check
476 /// here because there may be type casts between two
477 /// access indexes. We want to ensure memory access still valid.
478 bool BPFAbstractMemberAccess::IsValidAIChain(const MDNode *ParentType,
479                                              uint32_t ParentAI,
480                                              const MDNode *ChildType) {
481   if (!ChildType)
482     return true; // preserve_field_info, no type comparison needed.
483 
484   const DIType *PType = stripQualifiers(cast<DIType>(ParentType));
485   const DIType *CType = stripQualifiers(cast<DIType>(ChildType));
486 
487   // Child is a derived/pointer type, which is due to type casting.
488   // Pointer type cannot be in the middle of chain.
489   if (isa<DIDerivedType>(CType))
490     return false;
491 
492   // Parent is a pointer type.
493   if (const auto *PtrTy = dyn_cast<DIDerivedType>(PType)) {
494     if (PtrTy->getTag() != dwarf::DW_TAG_pointer_type)
495       return false;
496     return stripQualifiers(PtrTy->getBaseType()) == CType;
497   }
498 
499   // Otherwise, struct/union/array types
500   const auto *PTy = dyn_cast<DICompositeType>(PType);
501   const auto *CTy = dyn_cast<DICompositeType>(CType);
502   assert(PTy && CTy && "ParentType or ChildType is null or not composite");
503 
504   uint32_t PTyTag = PTy->getTag();
505   assert(PTyTag == dwarf::DW_TAG_array_type ||
506          PTyTag == dwarf::DW_TAG_structure_type ||
507          PTyTag == dwarf::DW_TAG_union_type);
508 
509   uint32_t CTyTag = CTy->getTag();
510   assert(CTyTag == dwarf::DW_TAG_array_type ||
511          CTyTag == dwarf::DW_TAG_structure_type ||
512          CTyTag == dwarf::DW_TAG_union_type);
513 
514   // Multi dimensional arrays, base element should be the same
515   if (PTyTag == dwarf::DW_TAG_array_type && PTyTag == CTyTag)
516     return PTy->getBaseType() == CTy->getBaseType();
517 
518   DIType *Ty;
519   if (PTyTag == dwarf::DW_TAG_array_type)
520     Ty = PTy->getBaseType();
521   else
522     Ty = dyn_cast<DIType>(PTy->getElements()[ParentAI]);
523 
524   return dyn_cast<DICompositeType>(stripQualifiers(Ty)) == CTy;
525 }
526 
527 void BPFAbstractMemberAccess::traceAICall(CallInst *Call,
528                                           CallInfo &ParentInfo) {
529   for (User *U : Call->users()) {
530     Instruction *Inst = dyn_cast<Instruction>(U);
531     if (!Inst)
532       continue;
533 
534     if (auto *BI = dyn_cast<BitCastInst>(Inst)) {
535       traceBitCast(BI, Call, ParentInfo);
536     } else if (auto *CI = dyn_cast<CallInst>(Inst)) {
537       CallInfo ChildInfo;
538 
539       if (IsPreserveDIAccessIndexCall(CI, ChildInfo) &&
540           IsValidAIChain(ParentInfo.Metadata, ParentInfo.AccessIndex,
541                          ChildInfo.Metadata)) {
542         AIChain[CI] = std::make_pair(Call, ParentInfo);
543         traceAICall(CI, ChildInfo);
544       } else {
545         BaseAICalls[Call] = ParentInfo;
546       }
547     } else if (auto *GI = dyn_cast<GetElementPtrInst>(Inst)) {
548       if (GI->hasAllZeroIndices())
549         traceGEP(GI, Call, ParentInfo);
550       else
551         BaseAICalls[Call] = ParentInfo;
552     } else {
553       BaseAICalls[Call] = ParentInfo;
554     }
555   }
556 }
557 
558 void BPFAbstractMemberAccess::traceBitCast(BitCastInst *BitCast,
559                                            CallInst *Parent,
560                                            CallInfo &ParentInfo) {
561   for (User *U : BitCast->users()) {
562     Instruction *Inst = dyn_cast<Instruction>(U);
563     if (!Inst)
564       continue;
565 
566     if (auto *BI = dyn_cast<BitCastInst>(Inst)) {
567       traceBitCast(BI, Parent, ParentInfo);
568     } else if (auto *CI = dyn_cast<CallInst>(Inst)) {
569       CallInfo ChildInfo;
570       if (IsPreserveDIAccessIndexCall(CI, ChildInfo) &&
571           IsValidAIChain(ParentInfo.Metadata, ParentInfo.AccessIndex,
572                          ChildInfo.Metadata)) {
573         AIChain[CI] = std::make_pair(Parent, ParentInfo);
574         traceAICall(CI, ChildInfo);
575       } else {
576         BaseAICalls[Parent] = ParentInfo;
577       }
578     } else if (auto *GI = dyn_cast<GetElementPtrInst>(Inst)) {
579       if (GI->hasAllZeroIndices())
580         traceGEP(GI, Parent, ParentInfo);
581       else
582         BaseAICalls[Parent] = ParentInfo;
583     } else {
584       BaseAICalls[Parent] = ParentInfo;
585     }
586   }
587 }
588 
589 void BPFAbstractMemberAccess::traceGEP(GetElementPtrInst *GEP, CallInst *Parent,
590                                        CallInfo &ParentInfo) {
591   for (User *U : GEP->users()) {
592     Instruction *Inst = dyn_cast<Instruction>(U);
593     if (!Inst)
594       continue;
595 
596     if (auto *BI = dyn_cast<BitCastInst>(Inst)) {
597       traceBitCast(BI, Parent, ParentInfo);
598     } else if (auto *CI = dyn_cast<CallInst>(Inst)) {
599       CallInfo ChildInfo;
600       if (IsPreserveDIAccessIndexCall(CI, ChildInfo) &&
601           IsValidAIChain(ParentInfo.Metadata, ParentInfo.AccessIndex,
602                          ChildInfo.Metadata)) {
603         AIChain[CI] = std::make_pair(Parent, ParentInfo);
604         traceAICall(CI, ChildInfo);
605       } else {
606         BaseAICalls[Parent] = ParentInfo;
607       }
608     } else if (auto *GI = dyn_cast<GetElementPtrInst>(Inst)) {
609       if (GI->hasAllZeroIndices())
610         traceGEP(GI, Parent, ParentInfo);
611       else
612         BaseAICalls[Parent] = ParentInfo;
613     } else {
614       BaseAICalls[Parent] = ParentInfo;
615     }
616   }
617 }
618 
619 void BPFAbstractMemberAccess::collectAICallChains(Function &F) {
620   AIChain.clear();
621   BaseAICalls.clear();
622 
623   for (auto &BB : F)
624     for (auto &I : BB) {
625       CallInfo CInfo;
626       auto *Call = dyn_cast<CallInst>(&I);
627       if (!IsPreserveDIAccessIndexCall(Call, CInfo) ||
628           AIChain.find(Call) != AIChain.end())
629         continue;
630 
631       traceAICall(Call, CInfo);
632     }
633 }
634 
635 uint64_t BPFAbstractMemberAccess::getConstant(const Value *IndexValue) {
636   const ConstantInt *CV = dyn_cast<ConstantInt>(IndexValue);
637   assert(CV);
638   return CV->getValue().getZExtValue();
639 }
640 
641 /// Get the start and the end of storage offset for \p MemberTy.
642 void BPFAbstractMemberAccess::GetStorageBitRange(DIDerivedType *MemberTy,
643                                                  Align RecordAlignment,
644                                                  uint32_t &StartBitOffset,
645                                                  uint32_t &EndBitOffset) {
646   uint32_t MemberBitSize = MemberTy->getSizeInBits();
647   uint32_t MemberBitOffset = MemberTy->getOffsetInBits();
648 
649   if (RecordAlignment > 8) {
650     // If the Bits are within an aligned 8-byte, set the RecordAlignment
651     // to 8, other report the fatal error.
652     if (MemberBitOffset / 64 != (MemberBitOffset + MemberBitSize) / 64)
653       report_fatal_error("Unsupported field expression for llvm.bpf.preserve.field.info, "
654                          "requiring too big alignment");
655     RecordAlignment = Align(8);
656   }
657 
658   uint32_t AlignBits = RecordAlignment.value() * 8;
659   if (MemberBitSize > AlignBits)
660     report_fatal_error("Unsupported field expression for llvm.bpf.preserve.field.info, "
661                        "bitfield size greater than record alignment");
662 
663   StartBitOffset = MemberBitOffset & ~(AlignBits - 1);
664   if ((StartBitOffset + AlignBits) < (MemberBitOffset + MemberBitSize))
665     report_fatal_error("Unsupported field expression for llvm.bpf.preserve.field.info, "
666                        "cross alignment boundary");
667   EndBitOffset = StartBitOffset + AlignBits;
668 }
669 
670 uint32_t BPFAbstractMemberAccess::GetFieldInfo(uint32_t InfoKind,
671                                                DICompositeType *CTy,
672                                                uint32_t AccessIndex,
673                                                uint32_t PatchImm,
674                                                MaybeAlign RecordAlignment) {
675   if (InfoKind == BPFCoreSharedInfo::FIELD_EXISTENCE)
676       return 1;
677 
678   uint32_t Tag = CTy->getTag();
679   if (InfoKind == BPFCoreSharedInfo::FIELD_BYTE_OFFSET) {
680     if (Tag == dwarf::DW_TAG_array_type) {
681       auto *EltTy = stripQualifiers(CTy->getBaseType());
682       PatchImm += AccessIndex * calcArraySize(CTy, 1) *
683                   (EltTy->getSizeInBits() >> 3);
684     } else if (Tag == dwarf::DW_TAG_structure_type) {
685       auto *MemberTy = cast<DIDerivedType>(CTy->getElements()[AccessIndex]);
686       if (!MemberTy->isBitField()) {
687         PatchImm += MemberTy->getOffsetInBits() >> 3;
688       } else {
689         unsigned SBitOffset, NextSBitOffset;
690         GetStorageBitRange(MemberTy, *RecordAlignment, SBitOffset,
691                            NextSBitOffset);
692         PatchImm += SBitOffset >> 3;
693       }
694     }
695     return PatchImm;
696   }
697 
698   if (InfoKind == BPFCoreSharedInfo::FIELD_BYTE_SIZE) {
699     if (Tag == dwarf::DW_TAG_array_type) {
700       auto *EltTy = stripQualifiers(CTy->getBaseType());
701       return calcArraySize(CTy, 1) * (EltTy->getSizeInBits() >> 3);
702     } else {
703       auto *MemberTy = cast<DIDerivedType>(CTy->getElements()[AccessIndex]);
704       uint32_t SizeInBits = MemberTy->getSizeInBits();
705       if (!MemberTy->isBitField())
706         return SizeInBits >> 3;
707 
708       unsigned SBitOffset, NextSBitOffset;
709       GetStorageBitRange(MemberTy, *RecordAlignment, SBitOffset,
710                          NextSBitOffset);
711       SizeInBits = NextSBitOffset - SBitOffset;
712       if (SizeInBits & (SizeInBits - 1))
713         report_fatal_error("Unsupported field expression for llvm.bpf.preserve.field.info");
714       return SizeInBits >> 3;
715     }
716   }
717 
718   if (InfoKind == BPFCoreSharedInfo::FIELD_SIGNEDNESS) {
719     const DIType *BaseTy;
720     if (Tag == dwarf::DW_TAG_array_type) {
721       // Signedness only checked when final array elements are accessed.
722       if (CTy->getElements().size() != 1)
723         report_fatal_error("Invalid array expression for llvm.bpf.preserve.field.info");
724       BaseTy = stripQualifiers(CTy->getBaseType());
725     } else {
726       auto *MemberTy = cast<DIDerivedType>(CTy->getElements()[AccessIndex]);
727       BaseTy = stripQualifiers(MemberTy->getBaseType());
728     }
729 
730     // Only basic types and enum types have signedness.
731     const auto *BTy = dyn_cast<DIBasicType>(BaseTy);
732     while (!BTy) {
733       const auto *CompTy = dyn_cast<DICompositeType>(BaseTy);
734       // Report an error if the field expression does not have signedness.
735       if (!CompTy || CompTy->getTag() != dwarf::DW_TAG_enumeration_type)
736         report_fatal_error("Invalid field expression for llvm.bpf.preserve.field.info");
737       BaseTy = stripQualifiers(CompTy->getBaseType());
738       BTy = dyn_cast<DIBasicType>(BaseTy);
739     }
740     uint32_t Encoding = BTy->getEncoding();
741     return (Encoding == dwarf::DW_ATE_signed || Encoding == dwarf::DW_ATE_signed_char);
742   }
743 
744   if (InfoKind == BPFCoreSharedInfo::FIELD_LSHIFT_U64) {
745     // The value is loaded into a value with FIELD_BYTE_SIZE size,
746     // and then zero or sign extended to U64.
747     // FIELD_LSHIFT_U64 and FIELD_RSHIFT_U64 are operations
748     // to extract the original value.
749     const Triple &Triple = TM->getTargetTriple();
750     DIDerivedType *MemberTy = nullptr;
751     bool IsBitField = false;
752     uint32_t SizeInBits;
753 
754     if (Tag == dwarf::DW_TAG_array_type) {
755       auto *EltTy = stripQualifiers(CTy->getBaseType());
756       SizeInBits = calcArraySize(CTy, 1) * EltTy->getSizeInBits();
757     } else {
758       MemberTy = cast<DIDerivedType>(CTy->getElements()[AccessIndex]);
759       SizeInBits = MemberTy->getSizeInBits();
760       IsBitField = MemberTy->isBitField();
761     }
762 
763     if (!IsBitField) {
764       if (SizeInBits > 64)
765         report_fatal_error("too big field size for llvm.bpf.preserve.field.info");
766       return 64 - SizeInBits;
767     }
768 
769     unsigned SBitOffset, NextSBitOffset;
770     GetStorageBitRange(MemberTy, *RecordAlignment, SBitOffset, NextSBitOffset);
771     if (NextSBitOffset - SBitOffset > 64)
772       report_fatal_error("too big field size for llvm.bpf.preserve.field.info");
773 
774     unsigned OffsetInBits = MemberTy->getOffsetInBits();
775     if (Triple.getArch() == Triple::bpfel)
776       return SBitOffset + 64 - OffsetInBits - SizeInBits;
777     else
778       return OffsetInBits + 64 - NextSBitOffset;
779   }
780 
781   if (InfoKind == BPFCoreSharedInfo::FIELD_RSHIFT_U64) {
782     DIDerivedType *MemberTy = nullptr;
783     bool IsBitField = false;
784     uint32_t SizeInBits;
785     if (Tag == dwarf::DW_TAG_array_type) {
786       auto *EltTy = stripQualifiers(CTy->getBaseType());
787       SizeInBits = calcArraySize(CTy, 1) * EltTy->getSizeInBits();
788     } else {
789       MemberTy = cast<DIDerivedType>(CTy->getElements()[AccessIndex]);
790       SizeInBits = MemberTy->getSizeInBits();
791       IsBitField = MemberTy->isBitField();
792     }
793 
794     if (!IsBitField) {
795       if (SizeInBits > 64)
796         report_fatal_error("too big field size for llvm.bpf.preserve.field.info");
797       return 64 - SizeInBits;
798     }
799 
800     unsigned SBitOffset, NextSBitOffset;
801     GetStorageBitRange(MemberTy, *RecordAlignment, SBitOffset, NextSBitOffset);
802     if (NextSBitOffset - SBitOffset > 64)
803       report_fatal_error("too big field size for llvm.bpf.preserve.field.info");
804 
805     return 64 - SizeInBits;
806   }
807 
808   llvm_unreachable("Unknown llvm.bpf.preserve.field.info info kind");
809 }
810 
811 bool BPFAbstractMemberAccess::HasPreserveFieldInfoCall(CallInfoStack &CallStack) {
812   // This is called in error return path, no need to maintain CallStack.
813   while (CallStack.size()) {
814     auto StackElem = CallStack.top();
815     if (StackElem.second.Kind == BPFPreserveFieldInfoAI)
816       return true;
817     CallStack.pop();
818   }
819   return false;
820 }
821 
822 /// Compute the base of the whole preserve_* intrinsics chains, i.e., the base
823 /// pointer of the first preserve_*_access_index call, and construct the access
824 /// string, which will be the name of a global variable.
825 Value *BPFAbstractMemberAccess::computeBaseAndAccessKey(CallInst *Call,
826                                                         CallInfo &CInfo,
827                                                         std::string &AccessKey,
828                                                         MDNode *&TypeMeta) {
829   Value *Base = nullptr;
830   std::string TypeName;
831   CallInfoStack CallStack;
832 
833   // Put the access chain into a stack with the top as the head of the chain.
834   while (Call) {
835     CallStack.push(std::make_pair(Call, CInfo));
836     CInfo = AIChain[Call].second;
837     Call = AIChain[Call].first;
838   }
839 
840   // The access offset from the base of the head of chain is also
841   // calculated here as all debuginfo types are available.
842 
843   // Get type name and calculate the first index.
844   // We only want to get type name from typedef, structure or union.
845   // If user wants a relocation like
846   //    int *p; ... __builtin_preserve_access_index(&p[4]) ...
847   // or
848   //    int a[10][20]; ... __builtin_preserve_access_index(&a[2][3]) ...
849   // we will skip them.
850   uint32_t FirstIndex = 0;
851   uint32_t PatchImm = 0; // AccessOffset or the requested field info
852   uint32_t InfoKind = BPFCoreSharedInfo::FIELD_BYTE_OFFSET;
853   while (CallStack.size()) {
854     auto StackElem = CallStack.top();
855     Call = StackElem.first;
856     CInfo = StackElem.second;
857 
858     if (!Base)
859       Base = CInfo.Base;
860 
861     DIType *PossibleTypeDef = stripQualifiers(cast<DIType>(CInfo.Metadata),
862                                               false);
863     DIType *Ty = stripQualifiers(PossibleTypeDef);
864     if (CInfo.Kind == BPFPreserveUnionAI ||
865         CInfo.Kind == BPFPreserveStructAI) {
866       // struct or union type. If the typedef is in the metadata, always
867       // use the typedef.
868       TypeName = std::string(PossibleTypeDef->getName());
869       TypeMeta = PossibleTypeDef;
870       PatchImm += FirstIndex * (Ty->getSizeInBits() >> 3);
871       break;
872     }
873 
874     assert(CInfo.Kind == BPFPreserveArrayAI);
875 
876     // Array entries will always be consumed for accumulative initial index.
877     CallStack.pop();
878 
879     // BPFPreserveArrayAI
880     uint64_t AccessIndex = CInfo.AccessIndex;
881 
882     DIType *BaseTy = nullptr;
883     bool CheckElemType = false;
884     if (const auto *CTy = dyn_cast<DICompositeType>(Ty)) {
885       // array type
886       assert(CTy->getTag() == dwarf::DW_TAG_array_type);
887 
888 
889       FirstIndex += AccessIndex * calcArraySize(CTy, 1);
890       BaseTy = stripQualifiers(CTy->getBaseType());
891       CheckElemType = CTy->getElements().size() == 1;
892     } else {
893       // pointer type
894       auto *DTy = cast<DIDerivedType>(Ty);
895       assert(DTy->getTag() == dwarf::DW_TAG_pointer_type);
896 
897       BaseTy = stripQualifiers(DTy->getBaseType());
898       CTy = dyn_cast<DICompositeType>(BaseTy);
899       if (!CTy) {
900         CheckElemType = true;
901       } else if (CTy->getTag() != dwarf::DW_TAG_array_type) {
902         FirstIndex += AccessIndex;
903         CheckElemType = true;
904       } else {
905         FirstIndex += AccessIndex * calcArraySize(CTy, 0);
906       }
907     }
908 
909     if (CheckElemType) {
910       auto *CTy = dyn_cast<DICompositeType>(BaseTy);
911       if (!CTy) {
912         if (HasPreserveFieldInfoCall(CallStack))
913           report_fatal_error("Invalid field access for llvm.preserve.field.info intrinsic");
914         return nullptr;
915       }
916 
917       unsigned CTag = CTy->getTag();
918       if (CTag == dwarf::DW_TAG_structure_type || CTag == dwarf::DW_TAG_union_type) {
919         TypeName = std::string(CTy->getName());
920       } else {
921         if (HasPreserveFieldInfoCall(CallStack))
922           report_fatal_error("Invalid field access for llvm.preserve.field.info intrinsic");
923         return nullptr;
924       }
925       TypeMeta = CTy;
926       PatchImm += FirstIndex * (CTy->getSizeInBits() >> 3);
927       break;
928     }
929   }
930   assert(TypeName.size());
931   AccessKey += std::to_string(FirstIndex);
932 
933   // Traverse the rest of access chain to complete offset calculation
934   // and access key construction.
935   while (CallStack.size()) {
936     auto StackElem = CallStack.top();
937     CInfo = StackElem.second;
938     CallStack.pop();
939 
940     if (CInfo.Kind == BPFPreserveFieldInfoAI) {
941       InfoKind = CInfo.AccessIndex;
942       if (InfoKind == BPFCoreSharedInfo::FIELD_EXISTENCE)
943         PatchImm = 1;
944       break;
945     }
946 
947     // If the next Call (the top of the stack) is a BPFPreserveFieldInfoAI,
948     // the action will be extracting field info.
949     if (CallStack.size()) {
950       auto StackElem2 = CallStack.top();
951       CallInfo CInfo2 = StackElem2.second;
952       if (CInfo2.Kind == BPFPreserveFieldInfoAI) {
953         InfoKind = CInfo2.AccessIndex;
954         assert(CallStack.size() == 1);
955       }
956     }
957 
958     // Access Index
959     uint64_t AccessIndex = CInfo.AccessIndex;
960     AccessKey += ":" + std::to_string(AccessIndex);
961 
962     MDNode *MDN = CInfo.Metadata;
963     // At this stage, it cannot be pointer type.
964     auto *CTy = cast<DICompositeType>(stripQualifiers(cast<DIType>(MDN)));
965     PatchImm = GetFieldInfo(InfoKind, CTy, AccessIndex, PatchImm,
966                             CInfo.RecordAlignment);
967   }
968 
969   // Access key is the
970   //   "llvm." + type name + ":" + reloc type + ":" + patched imm + "$" +
971   //   access string,
972   // uniquely identifying one relocation.
973   // The prefix "llvm." indicates this is a temporary global, which should
974   // not be emitted to ELF file.
975   AccessKey = "llvm." + TypeName + ":" + std::to_string(InfoKind) + ":" +
976               std::to_string(PatchImm) + "$" + AccessKey;
977 
978   return Base;
979 }
980 
981 MDNode *BPFAbstractMemberAccess::computeAccessKey(CallInst *Call,
982                                                   CallInfo &CInfo,
983                                                   std::string &AccessKey,
984                                                   bool &IsInt32Ret) {
985   DIType *Ty = stripQualifiers(cast<DIType>(CInfo.Metadata), false);
986   assert(!Ty->getName().empty());
987 
988   int64_t PatchImm;
989   std::string AccessStr("0");
990   if (CInfo.AccessIndex == BPFCoreSharedInfo::TYPE_EXISTENCE ||
991       CInfo.AccessIndex == BPFCoreSharedInfo::TYPE_MATCH) {
992     PatchImm = 1;
993   } else if (CInfo.AccessIndex == BPFCoreSharedInfo::TYPE_SIZE) {
994     // typedef debuginfo type has size 0, get the eventual base type.
995     DIType *BaseTy = stripQualifiers(Ty, true);
996     PatchImm = BaseTy->getSizeInBits() / 8;
997   } else {
998     // ENUM_VALUE_EXISTENCE and ENUM_VALUE
999     IsInt32Ret = false;
1000 
1001     // The argument could be a global variable or a getelementptr with base to
1002     // a global variable depending on whether the clang option `opaque-options`
1003     // is set or not.
1004     const GlobalVariable *GV =
1005         cast<GlobalVariable>(Call->getArgOperand(1)->stripPointerCasts());
1006     assert(GV->hasInitializer());
1007     const ConstantDataArray *DA = cast<ConstantDataArray>(GV->getInitializer());
1008     assert(DA->isString());
1009     StringRef ValueStr = DA->getAsString();
1010 
1011     // ValueStr format: <EnumeratorStr>:<Value>
1012     size_t Separator = ValueStr.find_first_of(':');
1013     StringRef EnumeratorStr = ValueStr.substr(0, Separator);
1014 
1015     // Find enumerator index in the debuginfo
1016     DIType *BaseTy = stripQualifiers(Ty, true);
1017     const auto *CTy = cast<DICompositeType>(BaseTy);
1018     assert(CTy->getTag() == dwarf::DW_TAG_enumeration_type);
1019     int EnumIndex = 0;
1020     for (const auto Element : CTy->getElements()) {
1021       const auto *Enum = cast<DIEnumerator>(Element);
1022       if (Enum->getName() == EnumeratorStr) {
1023         AccessStr = std::to_string(EnumIndex);
1024         break;
1025       }
1026       EnumIndex++;
1027     }
1028 
1029     if (CInfo.AccessIndex == BPFCoreSharedInfo::ENUM_VALUE) {
1030       StringRef EValueStr = ValueStr.substr(Separator + 1);
1031       PatchImm = std::stoll(std::string(EValueStr));
1032     } else {
1033       PatchImm = 1;
1034     }
1035   }
1036 
1037   AccessKey = "llvm." + Ty->getName().str() + ":" +
1038               std::to_string(CInfo.AccessIndex) + std::string(":") +
1039               std::to_string(PatchImm) + std::string("$") + AccessStr;
1040 
1041   return Ty;
1042 }
1043 
1044 /// Call/Kind is the base preserve_*_access_index() call. Attempts to do
1045 /// transformation to a chain of relocable GEPs.
1046 bool BPFAbstractMemberAccess::transformGEPChain(CallInst *Call,
1047                                                 CallInfo &CInfo) {
1048   std::string AccessKey;
1049   MDNode *TypeMeta;
1050   Value *Base = nullptr;
1051   bool IsInt32Ret;
1052 
1053   IsInt32Ret = CInfo.Kind == BPFPreserveFieldInfoAI;
1054   if (CInfo.Kind == BPFPreserveFieldInfoAI && CInfo.Metadata) {
1055     TypeMeta = computeAccessKey(Call, CInfo, AccessKey, IsInt32Ret);
1056   } else {
1057     Base = computeBaseAndAccessKey(Call, CInfo, AccessKey, TypeMeta);
1058     if (!Base)
1059       return false;
1060   }
1061 
1062   BasicBlock *BB = Call->getParent();
1063   GlobalVariable *GV;
1064 
1065   if (GEPGlobals.find(AccessKey) == GEPGlobals.end()) {
1066     IntegerType *VarType;
1067     if (IsInt32Ret)
1068       VarType = Type::getInt32Ty(BB->getContext()); // 32bit return value
1069     else
1070       VarType = Type::getInt64Ty(BB->getContext()); // 64bit ptr or enum value
1071 
1072     GV = new GlobalVariable(*M, VarType, false, GlobalVariable::ExternalLinkage,
1073                             nullptr, AccessKey);
1074     GV->addAttribute(BPFCoreSharedInfo::AmaAttr);
1075     GV->setMetadata(LLVMContext::MD_preserve_access_index, TypeMeta);
1076     GEPGlobals[AccessKey] = GV;
1077   } else {
1078     GV = GEPGlobals[AccessKey];
1079   }
1080 
1081   if (CInfo.Kind == BPFPreserveFieldInfoAI) {
1082     // Load the global variable which represents the returned field info.
1083     LoadInst *LDInst;
1084     if (IsInt32Ret)
1085       LDInst = new LoadInst(Type::getInt32Ty(BB->getContext()), GV, "", Call);
1086     else
1087       LDInst = new LoadInst(Type::getInt64Ty(BB->getContext()), GV, "", Call);
1088 
1089     Instruction *PassThroughInst =
1090         BPFCoreSharedInfo::insertPassThrough(M, BB, LDInst, Call);
1091     Call->replaceAllUsesWith(PassThroughInst);
1092     Call->eraseFromParent();
1093     return true;
1094   }
1095 
1096   // For any original GEP Call and Base %2 like
1097   //   %4 = bitcast %struct.net_device** %dev1 to i64*
1098   // it is transformed to:
1099   //   %6 = load llvm.sk_buff:0:50$0:0:0:2:0
1100   //   %7 = bitcast %struct.sk_buff* %2 to i8*
1101   //   %8 = getelementptr i8, i8* %7, %6
1102   //   %9 = bitcast i8* %8 to i64*
1103   //   using %9 instead of %4
1104   // The original Call inst is removed.
1105 
1106   // Load the global variable.
1107   auto *LDInst = new LoadInst(Type::getInt64Ty(BB->getContext()), GV, "", Call);
1108 
1109   // Generate a BitCast
1110   auto *BCInst = new BitCastInst(Base, Type::getInt8PtrTy(BB->getContext()));
1111   BCInst->insertBefore(Call);
1112 
1113   // Generate a GetElementPtr
1114   auto *GEP = GetElementPtrInst::Create(Type::getInt8Ty(BB->getContext()),
1115                                         BCInst, LDInst);
1116   GEP->insertBefore(Call);
1117 
1118   // Generate a BitCast
1119   auto *BCInst2 = new BitCastInst(GEP, Call->getType());
1120   BCInst2->insertBefore(Call);
1121 
1122   // For the following code,
1123   //    Block0:
1124   //      ...
1125   //      if (...) goto Block1 else ...
1126   //    Block1:
1127   //      %6 = load llvm.sk_buff:0:50$0:0:0:2:0
1128   //      %7 = bitcast %struct.sk_buff* %2 to i8*
1129   //      %8 = getelementptr i8, i8* %7, %6
1130   //      ...
1131   //      goto CommonExit
1132   //    Block2:
1133   //      ...
1134   //      if (...) goto Block3 else ...
1135   //    Block3:
1136   //      %6 = load llvm.bpf_map:0:40$0:0:0:2:0
1137   //      %7 = bitcast %struct.sk_buff* %2 to i8*
1138   //      %8 = getelementptr i8, i8* %7, %6
1139   //      ...
1140   //      goto CommonExit
1141   //    CommonExit
1142   // SimplifyCFG may generate:
1143   //    Block0:
1144   //      ...
1145   //      if (...) goto Block_Common else ...
1146   //     Block2:
1147   //       ...
1148   //      if (...) goto Block_Common else ...
1149   //    Block_Common:
1150   //      PHI = [llvm.sk_buff:0:50$0:0:0:2:0, llvm.bpf_map:0:40$0:0:0:2:0]
1151   //      %6 = load PHI
1152   //      %7 = bitcast %struct.sk_buff* %2 to i8*
1153   //      %8 = getelementptr i8, i8* %7, %6
1154   //      ...
1155   //      goto CommonExit
1156   //  For the above code, we cannot perform proper relocation since
1157   //  "load PHI" has two possible relocations.
1158   //
1159   // To prevent above tail merging, we use __builtin_bpf_passthrough()
1160   // where one of its parameters is a seq_num. Since two
1161   // __builtin_bpf_passthrough() funcs will always have different seq_num,
1162   // tail merging cannot happen. The __builtin_bpf_passthrough() will be
1163   // removed in the beginning of Target IR passes.
1164   //
1165   // This approach is also used in other places when global var
1166   // representing a relocation is used.
1167   Instruction *PassThroughInst =
1168       BPFCoreSharedInfo::insertPassThrough(M, BB, BCInst2, Call);
1169   Call->replaceAllUsesWith(PassThroughInst);
1170   Call->eraseFromParent();
1171 
1172   return true;
1173 }
1174 
1175 bool BPFAbstractMemberAccess::doTransformation(Function &F) {
1176   bool Transformed = false;
1177 
1178   // Collect PreserveDIAccessIndex Intrinsic call chains.
1179   // The call chains will be used to generate the access
1180   // patterns similar to GEP.
1181   collectAICallChains(F);
1182 
1183   for (auto &C : BaseAICalls)
1184     Transformed = transformGEPChain(C.first, C.second) || Transformed;
1185 
1186   return removePreserveAccessIndexIntrinsic(F) || Transformed;
1187 }
1188 
1189 PreservedAnalyses
1190 BPFAbstractMemberAccessPass::run(Function &F, FunctionAnalysisManager &AM) {
1191   return BPFAbstractMemberAccess(TM).run(F) ? PreservedAnalyses::none()
1192                                             : PreservedAnalyses::all();
1193 }
1194