1 //===- BTFDebug.cpp - BTF Generator ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains support for writing BTF debug info.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "BTFDebug.h"
14 #include "BPF.h"
15 #include "BPFCORE.h"
16 #include "MCTargetDesc/BPFMCTargetDesc.h"
17 #include "llvm/BinaryFormat/ELF.h"
18 #include "llvm/CodeGen/AsmPrinter.h"
19 #include "llvm/CodeGen/MachineModuleInfo.h"
20 #include "llvm/MC/MCContext.h"
21 #include "llvm/MC/MCObjectFileInfo.h"
22 #include "llvm/MC/MCSectionELF.h"
23 #include "llvm/MC/MCStreamer.h"
24 #include "llvm/Support/LineIterator.h"
25 #include "llvm/Support/MemoryBuffer.h"
26 #include "llvm/Target/TargetLoweringObjectFile.h"
27 #include <optional>
28 
29 using namespace llvm;
30 
31 static const char *BTFKindStr[] = {
32 #define HANDLE_BTF_KIND(ID, NAME) "BTF_KIND_" #NAME,
33 #include "llvm/DebugInfo/BTF/BTF.def"
34 };
35 
36 /// Emit a BTF common type.
37 void BTFTypeBase::emitType(MCStreamer &OS) {
38   OS.AddComment(std::string(BTFKindStr[Kind]) + "(id = " + std::to_string(Id) +
39                 ")");
40   OS.emitInt32(BTFType.NameOff);
41   OS.AddComment("0x" + Twine::utohexstr(BTFType.Info));
42   OS.emitInt32(BTFType.Info);
43   OS.emitInt32(BTFType.Size);
44 }
45 
46 BTFTypeDerived::BTFTypeDerived(const DIDerivedType *DTy, unsigned Tag,
47                                bool NeedsFixup)
48     : DTy(DTy), NeedsFixup(NeedsFixup), Name(DTy->getName()) {
49   switch (Tag) {
50   case dwarf::DW_TAG_pointer_type:
51     Kind = BTF::BTF_KIND_PTR;
52     break;
53   case dwarf::DW_TAG_const_type:
54     Kind = BTF::BTF_KIND_CONST;
55     break;
56   case dwarf::DW_TAG_volatile_type:
57     Kind = BTF::BTF_KIND_VOLATILE;
58     break;
59   case dwarf::DW_TAG_typedef:
60     Kind = BTF::BTF_KIND_TYPEDEF;
61     break;
62   case dwarf::DW_TAG_restrict_type:
63     Kind = BTF::BTF_KIND_RESTRICT;
64     break;
65   default:
66     llvm_unreachable("Unknown DIDerivedType Tag");
67   }
68   BTFType.Info = Kind << 24;
69 }
70 
71 /// Used by DW_TAG_pointer_type only.
72 BTFTypeDerived::BTFTypeDerived(unsigned NextTypeId, unsigned Tag,
73                                StringRef Name)
74     : DTy(nullptr), NeedsFixup(false), Name(Name) {
75   Kind = BTF::BTF_KIND_PTR;
76   BTFType.Info = Kind << 24;
77   BTFType.Type = NextTypeId;
78 }
79 
80 void BTFTypeDerived::completeType(BTFDebug &BDebug) {
81   if (IsCompleted)
82     return;
83   IsCompleted = true;
84 
85   BTFType.NameOff = BDebug.addString(Name);
86 
87   if (NeedsFixup || !DTy)
88     return;
89 
90   // The base type for PTR/CONST/VOLATILE could be void.
91   const DIType *ResolvedType = DTy->getBaseType();
92   if (!ResolvedType) {
93     assert((Kind == BTF::BTF_KIND_PTR || Kind == BTF::BTF_KIND_CONST ||
94             Kind == BTF::BTF_KIND_VOLATILE) &&
95            "Invalid null basetype");
96     BTFType.Type = 0;
97   } else {
98     BTFType.Type = BDebug.getTypeId(ResolvedType);
99   }
100 }
101 
102 void BTFTypeDerived::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); }
103 
104 void BTFTypeDerived::setPointeeType(uint32_t PointeeType) {
105   BTFType.Type = PointeeType;
106 }
107 
108 /// Represent a struct/union forward declaration.
109 BTFTypeFwd::BTFTypeFwd(StringRef Name, bool IsUnion) : Name(Name) {
110   Kind = BTF::BTF_KIND_FWD;
111   BTFType.Info = IsUnion << 31 | Kind << 24;
112   BTFType.Type = 0;
113 }
114 
115 void BTFTypeFwd::completeType(BTFDebug &BDebug) {
116   if (IsCompleted)
117     return;
118   IsCompleted = true;
119 
120   BTFType.NameOff = BDebug.addString(Name);
121 }
122 
123 void BTFTypeFwd::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); }
124 
125 BTFTypeInt::BTFTypeInt(uint32_t Encoding, uint32_t SizeInBits,
126                        uint32_t OffsetInBits, StringRef TypeName)
127     : Name(TypeName) {
128   // Translate IR int encoding to BTF int encoding.
129   uint8_t BTFEncoding;
130   switch (Encoding) {
131   case dwarf::DW_ATE_boolean:
132     BTFEncoding = BTF::INT_BOOL;
133     break;
134   case dwarf::DW_ATE_signed:
135   case dwarf::DW_ATE_signed_char:
136     BTFEncoding = BTF::INT_SIGNED;
137     break;
138   case dwarf::DW_ATE_unsigned:
139   case dwarf::DW_ATE_unsigned_char:
140     BTFEncoding = 0;
141     break;
142   default:
143     llvm_unreachable("Unknown BTFTypeInt Encoding");
144   }
145 
146   Kind = BTF::BTF_KIND_INT;
147   BTFType.Info = Kind << 24;
148   BTFType.Size = roundupToBytes(SizeInBits);
149   IntVal = (BTFEncoding << 24) | OffsetInBits << 16 | SizeInBits;
150 }
151 
152 void BTFTypeInt::completeType(BTFDebug &BDebug) {
153   if (IsCompleted)
154     return;
155   IsCompleted = true;
156 
157   BTFType.NameOff = BDebug.addString(Name);
158 }
159 
160 void BTFTypeInt::emitType(MCStreamer &OS) {
161   BTFTypeBase::emitType(OS);
162   OS.AddComment("0x" + Twine::utohexstr(IntVal));
163   OS.emitInt32(IntVal);
164 }
165 
166 BTFTypeEnum::BTFTypeEnum(const DICompositeType *ETy, uint32_t VLen,
167     bool IsSigned) : ETy(ETy) {
168   Kind = BTF::BTF_KIND_ENUM;
169   BTFType.Info = IsSigned << 31 | Kind << 24 | VLen;
170   BTFType.Size = roundupToBytes(ETy->getSizeInBits());
171 }
172 
173 void BTFTypeEnum::completeType(BTFDebug &BDebug) {
174   if (IsCompleted)
175     return;
176   IsCompleted = true;
177 
178   BTFType.NameOff = BDebug.addString(ETy->getName());
179 
180   DINodeArray Elements = ETy->getElements();
181   for (const auto Element : Elements) {
182     const auto *Enum = cast<DIEnumerator>(Element);
183 
184     struct BTF::BTFEnum BTFEnum;
185     BTFEnum.NameOff = BDebug.addString(Enum->getName());
186     // BTF enum value is 32bit, enforce it.
187     uint32_t Value;
188     if (Enum->isUnsigned())
189       Value = static_cast<uint32_t>(Enum->getValue().getZExtValue());
190     else
191       Value = static_cast<uint32_t>(Enum->getValue().getSExtValue());
192     BTFEnum.Val = Value;
193     EnumValues.push_back(BTFEnum);
194   }
195 }
196 
197 void BTFTypeEnum::emitType(MCStreamer &OS) {
198   BTFTypeBase::emitType(OS);
199   for (const auto &Enum : EnumValues) {
200     OS.emitInt32(Enum.NameOff);
201     OS.emitInt32(Enum.Val);
202   }
203 }
204 
205 BTFTypeEnum64::BTFTypeEnum64(const DICompositeType *ETy, uint32_t VLen,
206     bool IsSigned) : ETy(ETy) {
207   Kind = BTF::BTF_KIND_ENUM64;
208   BTFType.Info = IsSigned << 31 | Kind << 24 | VLen;
209   BTFType.Size = roundupToBytes(ETy->getSizeInBits());
210 }
211 
212 void BTFTypeEnum64::completeType(BTFDebug &BDebug) {
213   if (IsCompleted)
214     return;
215   IsCompleted = true;
216 
217   BTFType.NameOff = BDebug.addString(ETy->getName());
218 
219   DINodeArray Elements = ETy->getElements();
220   for (const auto Element : Elements) {
221     const auto *Enum = cast<DIEnumerator>(Element);
222 
223     struct BTF::BTFEnum64 BTFEnum;
224     BTFEnum.NameOff = BDebug.addString(Enum->getName());
225     uint64_t Value;
226     if (Enum->isUnsigned())
227       Value = static_cast<uint64_t>(Enum->getValue().getZExtValue());
228     else
229       Value = static_cast<uint64_t>(Enum->getValue().getSExtValue());
230     BTFEnum.Val_Lo32 = Value;
231     BTFEnum.Val_Hi32 = Value >> 32;
232     EnumValues.push_back(BTFEnum);
233   }
234 }
235 
236 void BTFTypeEnum64::emitType(MCStreamer &OS) {
237   BTFTypeBase::emitType(OS);
238   for (const auto &Enum : EnumValues) {
239     OS.emitInt32(Enum.NameOff);
240     OS.AddComment("0x" + Twine::utohexstr(Enum.Val_Lo32));
241     OS.emitInt32(Enum.Val_Lo32);
242     OS.AddComment("0x" + Twine::utohexstr(Enum.Val_Hi32));
243     OS.emitInt32(Enum.Val_Hi32);
244   }
245 }
246 
247 BTFTypeArray::BTFTypeArray(uint32_t ElemTypeId, uint32_t NumElems) {
248   Kind = BTF::BTF_KIND_ARRAY;
249   BTFType.NameOff = 0;
250   BTFType.Info = Kind << 24;
251   BTFType.Size = 0;
252 
253   ArrayInfo.ElemType = ElemTypeId;
254   ArrayInfo.Nelems = NumElems;
255 }
256 
257 /// Represent a BTF array.
258 void BTFTypeArray::completeType(BTFDebug &BDebug) {
259   if (IsCompleted)
260     return;
261   IsCompleted = true;
262 
263   // The IR does not really have a type for the index.
264   // A special type for array index should have been
265   // created during initial type traversal. Just
266   // retrieve that type id.
267   ArrayInfo.IndexType = BDebug.getArrayIndexTypeId();
268 }
269 
270 void BTFTypeArray::emitType(MCStreamer &OS) {
271   BTFTypeBase::emitType(OS);
272   OS.emitInt32(ArrayInfo.ElemType);
273   OS.emitInt32(ArrayInfo.IndexType);
274   OS.emitInt32(ArrayInfo.Nelems);
275 }
276 
277 /// Represent either a struct or a union.
278 BTFTypeStruct::BTFTypeStruct(const DICompositeType *STy, bool IsStruct,
279                              bool HasBitField, uint32_t Vlen)
280     : STy(STy), HasBitField(HasBitField) {
281   Kind = IsStruct ? BTF::BTF_KIND_STRUCT : BTF::BTF_KIND_UNION;
282   BTFType.Size = roundupToBytes(STy->getSizeInBits());
283   BTFType.Info = (HasBitField << 31) | (Kind << 24) | Vlen;
284 }
285 
286 void BTFTypeStruct::completeType(BTFDebug &BDebug) {
287   if (IsCompleted)
288     return;
289   IsCompleted = true;
290 
291   BTFType.NameOff = BDebug.addString(STy->getName());
292 
293   // Add struct/union members.
294   const DINodeArray Elements = STy->getElements();
295   for (const auto *Element : Elements) {
296     struct BTF::BTFMember BTFMember;
297     const auto *DDTy = cast<DIDerivedType>(Element);
298 
299     BTFMember.NameOff = BDebug.addString(DDTy->getName());
300     if (HasBitField) {
301       uint8_t BitFieldSize = DDTy->isBitField() ? DDTy->getSizeInBits() : 0;
302       BTFMember.Offset = BitFieldSize << 24 | DDTy->getOffsetInBits();
303     } else {
304       BTFMember.Offset = DDTy->getOffsetInBits();
305     }
306     const auto *BaseTy = DDTy->getBaseType();
307     BTFMember.Type = BDebug.getTypeId(BaseTy);
308     Members.push_back(BTFMember);
309   }
310 }
311 
312 void BTFTypeStruct::emitType(MCStreamer &OS) {
313   BTFTypeBase::emitType(OS);
314   for (const auto &Member : Members) {
315     OS.emitInt32(Member.NameOff);
316     OS.emitInt32(Member.Type);
317     OS.AddComment("0x" + Twine::utohexstr(Member.Offset));
318     OS.emitInt32(Member.Offset);
319   }
320 }
321 
322 std::string BTFTypeStruct::getName() { return std::string(STy->getName()); }
323 
324 /// The Func kind represents both subprogram and pointee of function
325 /// pointers. If the FuncName is empty, it represents a pointee of function
326 /// pointer. Otherwise, it represents a subprogram. The func arg names
327 /// are empty for pointee of function pointer case, and are valid names
328 /// for subprogram.
329 BTFTypeFuncProto::BTFTypeFuncProto(
330     const DISubroutineType *STy, uint32_t VLen,
331     const std::unordered_map<uint32_t, StringRef> &FuncArgNames)
332     : STy(STy), FuncArgNames(FuncArgNames) {
333   Kind = BTF::BTF_KIND_FUNC_PROTO;
334   BTFType.Info = (Kind << 24) | VLen;
335 }
336 
337 void BTFTypeFuncProto::completeType(BTFDebug &BDebug) {
338   if (IsCompleted)
339     return;
340   IsCompleted = true;
341 
342   DITypeRefArray Elements = STy->getTypeArray();
343   auto RetType = Elements[0];
344   BTFType.Type = RetType ? BDebug.getTypeId(RetType) : 0;
345   BTFType.NameOff = 0;
346 
347   // For null parameter which is typically the last one
348   // to represent the vararg, encode the NameOff/Type to be 0.
349   for (unsigned I = 1, N = Elements.size(); I < N; ++I) {
350     struct BTF::BTFParam Param;
351     auto Element = Elements[I];
352     if (Element) {
353       Param.NameOff = BDebug.addString(FuncArgNames[I]);
354       Param.Type = BDebug.getTypeId(Element);
355     } else {
356       Param.NameOff = 0;
357       Param.Type = 0;
358     }
359     Parameters.push_back(Param);
360   }
361 }
362 
363 void BTFTypeFuncProto::emitType(MCStreamer &OS) {
364   BTFTypeBase::emitType(OS);
365   for (const auto &Param : Parameters) {
366     OS.emitInt32(Param.NameOff);
367     OS.emitInt32(Param.Type);
368   }
369 }
370 
371 BTFTypeFunc::BTFTypeFunc(StringRef FuncName, uint32_t ProtoTypeId,
372     uint32_t Scope)
373     : Name(FuncName) {
374   Kind = BTF::BTF_KIND_FUNC;
375   BTFType.Info = (Kind << 24) | Scope;
376   BTFType.Type = ProtoTypeId;
377 }
378 
379 void BTFTypeFunc::completeType(BTFDebug &BDebug) {
380   if (IsCompleted)
381     return;
382   IsCompleted = true;
383 
384   BTFType.NameOff = BDebug.addString(Name);
385 }
386 
387 void BTFTypeFunc::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); }
388 
389 BTFKindVar::BTFKindVar(StringRef VarName, uint32_t TypeId, uint32_t VarInfo)
390     : Name(VarName) {
391   Kind = BTF::BTF_KIND_VAR;
392   BTFType.Info = Kind << 24;
393   BTFType.Type = TypeId;
394   Info = VarInfo;
395 }
396 
397 void BTFKindVar::completeType(BTFDebug &BDebug) {
398   BTFType.NameOff = BDebug.addString(Name);
399 }
400 
401 void BTFKindVar::emitType(MCStreamer &OS) {
402   BTFTypeBase::emitType(OS);
403   OS.emitInt32(Info);
404 }
405 
406 BTFKindDataSec::BTFKindDataSec(AsmPrinter *AsmPrt, std::string SecName)
407     : Asm(AsmPrt), Name(SecName) {
408   Kind = BTF::BTF_KIND_DATASEC;
409   BTFType.Info = Kind << 24;
410   BTFType.Size = 0;
411 }
412 
413 void BTFKindDataSec::completeType(BTFDebug &BDebug) {
414   BTFType.NameOff = BDebug.addString(Name);
415   BTFType.Info |= Vars.size();
416 }
417 
418 void BTFKindDataSec::emitType(MCStreamer &OS) {
419   BTFTypeBase::emitType(OS);
420 
421   for (const auto &V : Vars) {
422     OS.emitInt32(std::get<0>(V));
423     Asm->emitLabelReference(std::get<1>(V), 4);
424     OS.emitInt32(std::get<2>(V));
425   }
426 }
427 
428 BTFTypeFloat::BTFTypeFloat(uint32_t SizeInBits, StringRef TypeName)
429     : Name(TypeName) {
430   Kind = BTF::BTF_KIND_FLOAT;
431   BTFType.Info = Kind << 24;
432   BTFType.Size = roundupToBytes(SizeInBits);
433 }
434 
435 void BTFTypeFloat::completeType(BTFDebug &BDebug) {
436   if (IsCompleted)
437     return;
438   IsCompleted = true;
439 
440   BTFType.NameOff = BDebug.addString(Name);
441 }
442 
443 BTFTypeDeclTag::BTFTypeDeclTag(uint32_t BaseTypeId, int ComponentIdx,
444                                StringRef Tag)
445     : Tag(Tag) {
446   Kind = BTF::BTF_KIND_DECL_TAG;
447   BTFType.Info = Kind << 24;
448   BTFType.Type = BaseTypeId;
449   Info = ComponentIdx;
450 }
451 
452 void BTFTypeDeclTag::completeType(BTFDebug &BDebug) {
453   if (IsCompleted)
454     return;
455   IsCompleted = true;
456 
457   BTFType.NameOff = BDebug.addString(Tag);
458 }
459 
460 void BTFTypeDeclTag::emitType(MCStreamer &OS) {
461   BTFTypeBase::emitType(OS);
462   OS.emitInt32(Info);
463 }
464 
465 BTFTypeTypeTag::BTFTypeTypeTag(uint32_t NextTypeId, StringRef Tag)
466     : DTy(nullptr), Tag(Tag) {
467   Kind = BTF::BTF_KIND_TYPE_TAG;
468   BTFType.Info = Kind << 24;
469   BTFType.Type = NextTypeId;
470 }
471 
472 BTFTypeTypeTag::BTFTypeTypeTag(const DIDerivedType *DTy, StringRef Tag)
473     : DTy(DTy), Tag(Tag) {
474   Kind = BTF::BTF_KIND_TYPE_TAG;
475   BTFType.Info = Kind << 24;
476 }
477 
478 void BTFTypeTypeTag::completeType(BTFDebug &BDebug) {
479   if (IsCompleted)
480     return;
481   IsCompleted = true;
482   BTFType.NameOff = BDebug.addString(Tag);
483   if (DTy) {
484     const DIType *ResolvedType = DTy->getBaseType();
485     if (!ResolvedType)
486       BTFType.Type = 0;
487     else
488       BTFType.Type = BDebug.getTypeId(ResolvedType);
489   }
490 }
491 
492 uint32_t BTFStringTable::addString(StringRef S) {
493   // Check whether the string already exists.
494   for (auto &OffsetM : OffsetToIdMap) {
495     if (Table[OffsetM.second] == S)
496       return OffsetM.first;
497   }
498   // Not find, add to the string table.
499   uint32_t Offset = Size;
500   OffsetToIdMap[Offset] = Table.size();
501   Table.push_back(std::string(S));
502   Size += S.size() + 1;
503   return Offset;
504 }
505 
506 BTFDebug::BTFDebug(AsmPrinter *AP)
507     : DebugHandlerBase(AP), OS(*Asm->OutStreamer), SkipInstruction(false),
508       LineInfoGenerated(false), SecNameOff(0), ArrayIndexTypeId(0),
509       MapDefNotCollected(true) {
510   addString("\0");
511 }
512 
513 uint32_t BTFDebug::addType(std::unique_ptr<BTFTypeBase> TypeEntry,
514                            const DIType *Ty) {
515   TypeEntry->setId(TypeEntries.size() + 1);
516   uint32_t Id = TypeEntry->getId();
517   DIToIdMap[Ty] = Id;
518   TypeEntries.push_back(std::move(TypeEntry));
519   return Id;
520 }
521 
522 uint32_t BTFDebug::addType(std::unique_ptr<BTFTypeBase> TypeEntry) {
523   TypeEntry->setId(TypeEntries.size() + 1);
524   uint32_t Id = TypeEntry->getId();
525   TypeEntries.push_back(std::move(TypeEntry));
526   return Id;
527 }
528 
529 void BTFDebug::visitBasicType(const DIBasicType *BTy, uint32_t &TypeId) {
530   // Only int and binary floating point types are supported in BTF.
531   uint32_t Encoding = BTy->getEncoding();
532   std::unique_ptr<BTFTypeBase> TypeEntry;
533   switch (Encoding) {
534   case dwarf::DW_ATE_boolean:
535   case dwarf::DW_ATE_signed:
536   case dwarf::DW_ATE_signed_char:
537   case dwarf::DW_ATE_unsigned:
538   case dwarf::DW_ATE_unsigned_char:
539     // Create a BTF type instance for this DIBasicType and put it into
540     // DIToIdMap for cross-type reference check.
541     TypeEntry = std::make_unique<BTFTypeInt>(
542         Encoding, BTy->getSizeInBits(), BTy->getOffsetInBits(), BTy->getName());
543     break;
544   case dwarf::DW_ATE_float:
545     TypeEntry =
546         std::make_unique<BTFTypeFloat>(BTy->getSizeInBits(), BTy->getName());
547     break;
548   default:
549     return;
550   }
551 
552   TypeId = addType(std::move(TypeEntry), BTy);
553 }
554 
555 /// Handle subprogram or subroutine types.
556 void BTFDebug::visitSubroutineType(
557     const DISubroutineType *STy, bool ForSubprog,
558     const std::unordered_map<uint32_t, StringRef> &FuncArgNames,
559     uint32_t &TypeId) {
560   DITypeRefArray Elements = STy->getTypeArray();
561   uint32_t VLen = Elements.size() - 1;
562   if (VLen > BTF::MAX_VLEN)
563     return;
564 
565   // Subprogram has a valid non-zero-length name, and the pointee of
566   // a function pointer has an empty name. The subprogram type will
567   // not be added to DIToIdMap as it should not be referenced by
568   // any other types.
569   auto TypeEntry = std::make_unique<BTFTypeFuncProto>(STy, VLen, FuncArgNames);
570   if (ForSubprog)
571     TypeId = addType(std::move(TypeEntry)); // For subprogram
572   else
573     TypeId = addType(std::move(TypeEntry), STy); // For func ptr
574 
575   // Visit return type and func arg types.
576   for (const auto Element : Elements) {
577     visitTypeEntry(Element);
578   }
579 }
580 
581 void BTFDebug::processDeclAnnotations(DINodeArray Annotations,
582                                       uint32_t BaseTypeId,
583                                       int ComponentIdx) {
584   if (!Annotations)
585      return;
586 
587   for (const Metadata *Annotation : Annotations->operands()) {
588     const MDNode *MD = cast<MDNode>(Annotation);
589     const MDString *Name = cast<MDString>(MD->getOperand(0));
590     if (!Name->getString().equals("btf_decl_tag"))
591       continue;
592 
593     const MDString *Value = cast<MDString>(MD->getOperand(1));
594     auto TypeEntry = std::make_unique<BTFTypeDeclTag>(BaseTypeId, ComponentIdx,
595                                                       Value->getString());
596     addType(std::move(TypeEntry));
597   }
598 }
599 
600 uint32_t BTFDebug::processDISubprogram(const DISubprogram *SP,
601                                        uint32_t ProtoTypeId, uint8_t Scope) {
602   auto FuncTypeEntry =
603       std::make_unique<BTFTypeFunc>(SP->getName(), ProtoTypeId, Scope);
604   uint32_t FuncId = addType(std::move(FuncTypeEntry));
605 
606   // Process argument annotations.
607   for (const DINode *DN : SP->getRetainedNodes()) {
608     if (const auto *DV = dyn_cast<DILocalVariable>(DN)) {
609       uint32_t Arg = DV->getArg();
610       if (Arg)
611         processDeclAnnotations(DV->getAnnotations(), FuncId, Arg - 1);
612     }
613   }
614   processDeclAnnotations(SP->getAnnotations(), FuncId, -1);
615 
616   return FuncId;
617 }
618 
619 /// Generate btf_type_tag chains.
620 int BTFDebug::genBTFTypeTags(const DIDerivedType *DTy, int BaseTypeId) {
621   SmallVector<const MDString *, 4> MDStrs;
622   DINodeArray Annots = DTy->getAnnotations();
623   if (Annots) {
624     // For type with "int __tag1 __tag2 *p", the MDStrs will have
625     // content: [__tag1, __tag2].
626     for (const Metadata *Annotations : Annots->operands()) {
627       const MDNode *MD = cast<MDNode>(Annotations);
628       const MDString *Name = cast<MDString>(MD->getOperand(0));
629       if (!Name->getString().equals("btf_type_tag"))
630         continue;
631       MDStrs.push_back(cast<MDString>(MD->getOperand(1)));
632     }
633   }
634 
635   if (MDStrs.size() == 0)
636     return -1;
637 
638   // With MDStrs [__tag1, __tag2], the output type chain looks like
639   //   PTR -> __tag2 -> __tag1 -> BaseType
640   // In the below, we construct BTF types with the order of __tag1, __tag2
641   // and PTR.
642   unsigned TmpTypeId;
643   std::unique_ptr<BTFTypeTypeTag> TypeEntry;
644   if (BaseTypeId >= 0)
645     TypeEntry =
646         std::make_unique<BTFTypeTypeTag>(BaseTypeId, MDStrs[0]->getString());
647   else
648     TypeEntry = std::make_unique<BTFTypeTypeTag>(DTy, MDStrs[0]->getString());
649   TmpTypeId = addType(std::move(TypeEntry));
650 
651   for (unsigned I = 1; I < MDStrs.size(); I++) {
652     const MDString *Value = MDStrs[I];
653     TypeEntry = std::make_unique<BTFTypeTypeTag>(TmpTypeId, Value->getString());
654     TmpTypeId = addType(std::move(TypeEntry));
655   }
656   return TmpTypeId;
657 }
658 
659 /// Handle structure/union types.
660 void BTFDebug::visitStructType(const DICompositeType *CTy, bool IsStruct,
661                                uint32_t &TypeId) {
662   const DINodeArray Elements = CTy->getElements();
663   uint32_t VLen = Elements.size();
664   if (VLen > BTF::MAX_VLEN)
665     return;
666 
667   // Check whether we have any bitfield members or not
668   bool HasBitField = false;
669   for (const auto *Element : Elements) {
670     auto E = cast<DIDerivedType>(Element);
671     if (E->isBitField()) {
672       HasBitField = true;
673       break;
674     }
675   }
676 
677   auto TypeEntry =
678       std::make_unique<BTFTypeStruct>(CTy, IsStruct, HasBitField, VLen);
679   StructTypes.push_back(TypeEntry.get());
680   TypeId = addType(std::move(TypeEntry), CTy);
681 
682   // Check struct/union annotations
683   processDeclAnnotations(CTy->getAnnotations(), TypeId, -1);
684 
685   // Visit all struct members.
686   int FieldNo = 0;
687   for (const auto *Element : Elements) {
688     const auto Elem = cast<DIDerivedType>(Element);
689     visitTypeEntry(Elem);
690     processDeclAnnotations(Elem->getAnnotations(), TypeId, FieldNo);
691     FieldNo++;
692   }
693 }
694 
695 void BTFDebug::visitArrayType(const DICompositeType *CTy, uint32_t &TypeId) {
696   // Visit array element type.
697   uint32_t ElemTypeId;
698   const DIType *ElemType = CTy->getBaseType();
699   visitTypeEntry(ElemType, ElemTypeId, false, false);
700 
701   // Visit array dimensions.
702   DINodeArray Elements = CTy->getElements();
703   for (int I = Elements.size() - 1; I >= 0; --I) {
704     if (auto *Element = dyn_cast_or_null<DINode>(Elements[I]))
705       if (Element->getTag() == dwarf::DW_TAG_subrange_type) {
706         const DISubrange *SR = cast<DISubrange>(Element);
707         auto *CI = SR->getCount().dyn_cast<ConstantInt *>();
708         int64_t Count = CI->getSExtValue();
709 
710         // For struct s { int b; char c[]; }, the c[] will be represented
711         // as an array with Count = -1.
712         auto TypeEntry =
713             std::make_unique<BTFTypeArray>(ElemTypeId,
714                 Count >= 0 ? Count : 0);
715         if (I == 0)
716           ElemTypeId = addType(std::move(TypeEntry), CTy);
717         else
718           ElemTypeId = addType(std::move(TypeEntry));
719       }
720   }
721 
722   // The array TypeId is the type id of the outermost dimension.
723   TypeId = ElemTypeId;
724 
725   // The IR does not have a type for array index while BTF wants one.
726   // So create an array index type if there is none.
727   if (!ArrayIndexTypeId) {
728     auto TypeEntry = std::make_unique<BTFTypeInt>(dwarf::DW_ATE_unsigned, 32,
729                                                    0, "__ARRAY_SIZE_TYPE__");
730     ArrayIndexTypeId = addType(std::move(TypeEntry));
731   }
732 }
733 
734 void BTFDebug::visitEnumType(const DICompositeType *CTy, uint32_t &TypeId) {
735   DINodeArray Elements = CTy->getElements();
736   uint32_t VLen = Elements.size();
737   if (VLen > BTF::MAX_VLEN)
738     return;
739 
740   bool IsSigned = false;
741   unsigned NumBits = 32;
742   // No BaseType implies forward declaration in which case a
743   // BTFTypeEnum with Vlen = 0 is emitted.
744   if (CTy->getBaseType() != nullptr) {
745     const auto *BTy = cast<DIBasicType>(CTy->getBaseType());
746     IsSigned = BTy->getEncoding() == dwarf::DW_ATE_signed ||
747                BTy->getEncoding() == dwarf::DW_ATE_signed_char;
748     NumBits = BTy->getSizeInBits();
749   }
750 
751   if (NumBits <= 32) {
752     auto TypeEntry = std::make_unique<BTFTypeEnum>(CTy, VLen, IsSigned);
753     TypeId = addType(std::move(TypeEntry), CTy);
754   } else {
755     assert(NumBits == 64);
756     auto TypeEntry = std::make_unique<BTFTypeEnum64>(CTy, VLen, IsSigned);
757     TypeId = addType(std::move(TypeEntry), CTy);
758   }
759   // No need to visit base type as BTF does not encode it.
760 }
761 
762 /// Handle structure/union forward declarations.
763 void BTFDebug::visitFwdDeclType(const DICompositeType *CTy, bool IsUnion,
764                                 uint32_t &TypeId) {
765   auto TypeEntry = std::make_unique<BTFTypeFwd>(CTy->getName(), IsUnion);
766   TypeId = addType(std::move(TypeEntry), CTy);
767 }
768 
769 /// Handle structure, union, array and enumeration types.
770 void BTFDebug::visitCompositeType(const DICompositeType *CTy,
771                                   uint32_t &TypeId) {
772   auto Tag = CTy->getTag();
773   if (Tag == dwarf::DW_TAG_structure_type || Tag == dwarf::DW_TAG_union_type) {
774     // Handle forward declaration differently as it does not have members.
775     if (CTy->isForwardDecl())
776       visitFwdDeclType(CTy, Tag == dwarf::DW_TAG_union_type, TypeId);
777     else
778       visitStructType(CTy, Tag == dwarf::DW_TAG_structure_type, TypeId);
779   } else if (Tag == dwarf::DW_TAG_array_type)
780     visitArrayType(CTy, TypeId);
781   else if (Tag == dwarf::DW_TAG_enumeration_type)
782     visitEnumType(CTy, TypeId);
783 }
784 
785 bool BTFDebug::IsForwardDeclCandidate(const DIType *Base) {
786   if (const auto *CTy = dyn_cast<DICompositeType>(Base)) {
787     auto CTag = CTy->getTag();
788     if ((CTag == dwarf::DW_TAG_structure_type ||
789          CTag == dwarf::DW_TAG_union_type) &&
790         !CTy->getName().empty() && !CTy->isForwardDecl())
791       return true;
792   }
793   return false;
794 }
795 
796 /// Handle pointer, typedef, const, volatile, restrict and member types.
797 void BTFDebug::visitDerivedType(const DIDerivedType *DTy, uint32_t &TypeId,
798                                 bool CheckPointer, bool SeenPointer) {
799   unsigned Tag = DTy->getTag();
800 
801   /// Try to avoid chasing pointees, esp. structure pointees which may
802   /// unnecessary bring in a lot of types.
803   if (CheckPointer && !SeenPointer) {
804     SeenPointer = Tag == dwarf::DW_TAG_pointer_type;
805   }
806 
807   if (CheckPointer && SeenPointer) {
808     const DIType *Base = DTy->getBaseType();
809     if (Base) {
810       if (IsForwardDeclCandidate(Base)) {
811         /// Find a candidate, generate a fixup. Later on the struct/union
812         /// pointee type will be replaced with either a real type or
813         /// a forward declaration.
814         auto TypeEntry = std::make_unique<BTFTypeDerived>(DTy, Tag, true);
815         auto &Fixup = FixupDerivedTypes[cast<DICompositeType>(Base)];
816         Fixup.push_back(std::make_pair(DTy, TypeEntry.get()));
817         TypeId = addType(std::move(TypeEntry), DTy);
818         return;
819       }
820     }
821   }
822 
823   if (Tag == dwarf::DW_TAG_pointer_type) {
824     int TmpTypeId = genBTFTypeTags(DTy, -1);
825     if (TmpTypeId >= 0) {
826       auto TypeDEntry =
827           std::make_unique<BTFTypeDerived>(TmpTypeId, Tag, DTy->getName());
828       TypeId = addType(std::move(TypeDEntry), DTy);
829     } else {
830       auto TypeEntry = std::make_unique<BTFTypeDerived>(DTy, Tag, false);
831       TypeId = addType(std::move(TypeEntry), DTy);
832     }
833   } else if (Tag == dwarf::DW_TAG_typedef || Tag == dwarf::DW_TAG_const_type ||
834              Tag == dwarf::DW_TAG_volatile_type ||
835              Tag == dwarf::DW_TAG_restrict_type) {
836     auto TypeEntry = std::make_unique<BTFTypeDerived>(DTy, Tag, false);
837     TypeId = addType(std::move(TypeEntry), DTy);
838     if (Tag == dwarf::DW_TAG_typedef)
839       processDeclAnnotations(DTy->getAnnotations(), TypeId, -1);
840   } else if (Tag != dwarf::DW_TAG_member) {
841     return;
842   }
843 
844   // Visit base type of pointer, typedef, const, volatile, restrict or
845   // struct/union member.
846   uint32_t TempTypeId = 0;
847   if (Tag == dwarf::DW_TAG_member)
848     visitTypeEntry(DTy->getBaseType(), TempTypeId, true, false);
849   else
850     visitTypeEntry(DTy->getBaseType(), TempTypeId, CheckPointer, SeenPointer);
851 }
852 
853 /// Visit a type entry. CheckPointer is true if the type has
854 /// one of its predecessors as one struct/union member. SeenPointer
855 /// is true if CheckPointer is true and one of its predecessors
856 /// is a pointer. The goal of CheckPointer and SeenPointer is to
857 /// do pruning for struct/union types so some of these types
858 /// will not be emitted in BTF and rather forward declarations
859 /// will be generated.
860 void BTFDebug::visitTypeEntry(const DIType *Ty, uint32_t &TypeId,
861                               bool CheckPointer, bool SeenPointer) {
862   if (!Ty || DIToIdMap.find(Ty) != DIToIdMap.end()) {
863     TypeId = DIToIdMap[Ty];
864 
865     // To handle the case like the following:
866     //    struct t;
867     //    typedef struct t _t;
868     //    struct s1 { _t *c; };
869     //    int test1(struct s1 *arg) { ... }
870     //
871     //    struct t { int a; int b; };
872     //    struct s2 { _t c; }
873     //    int test2(struct s2 *arg) { ... }
874     //
875     // During traversing test1() argument, "_t" is recorded
876     // in DIToIdMap and a forward declaration fixup is created
877     // for "struct t" to avoid pointee type traversal.
878     //
879     // During traversing test2() argument, even if we see "_t" is
880     // already defined, we should keep moving to eventually
881     // bring in types for "struct t". Otherwise, the "struct s2"
882     // definition won't be correct.
883     //
884     // In the above, we have following debuginfo:
885     //  {ptr, struct_member} ->  typedef -> struct
886     // and BTF type for 'typedef' is generated while 'struct' may
887     // be in FixUp. But let us generalize the above to handle
888     //  {different types} -> [various derived types]+ -> another type.
889     // For example,
890     //  {func_param, struct_member} -> const -> ptr -> volatile -> struct
891     // We will traverse const/ptr/volatile which already have corresponding
892     // BTF types and generate type for 'struct' which might be in Fixup
893     // state.
894     if (Ty && (!CheckPointer || !SeenPointer)) {
895       if (const auto *DTy = dyn_cast<DIDerivedType>(Ty)) {
896         while (DTy) {
897           const DIType *BaseTy = DTy->getBaseType();
898           if (!BaseTy)
899             break;
900 
901           if (DIToIdMap.find(BaseTy) != DIToIdMap.end()) {
902             DTy = dyn_cast<DIDerivedType>(BaseTy);
903           } else {
904             if (CheckPointer && DTy->getTag() == dwarf::DW_TAG_pointer_type) {
905               SeenPointer = true;
906               if (IsForwardDeclCandidate(BaseTy))
907                 break;
908             }
909             uint32_t TmpTypeId;
910             visitTypeEntry(BaseTy, TmpTypeId, CheckPointer, SeenPointer);
911             break;
912           }
913         }
914       }
915     }
916 
917     return;
918   }
919 
920   if (const auto *BTy = dyn_cast<DIBasicType>(Ty))
921     visitBasicType(BTy, TypeId);
922   else if (const auto *STy = dyn_cast<DISubroutineType>(Ty))
923     visitSubroutineType(STy, false, std::unordered_map<uint32_t, StringRef>(),
924                         TypeId);
925   else if (const auto *CTy = dyn_cast<DICompositeType>(Ty))
926     visitCompositeType(CTy, TypeId);
927   else if (const auto *DTy = dyn_cast<DIDerivedType>(Ty))
928     visitDerivedType(DTy, TypeId, CheckPointer, SeenPointer);
929   else
930     llvm_unreachable("Unknown DIType");
931 }
932 
933 void BTFDebug::visitTypeEntry(const DIType *Ty) {
934   uint32_t TypeId;
935   visitTypeEntry(Ty, TypeId, false, false);
936 }
937 
938 void BTFDebug::visitMapDefType(const DIType *Ty, uint32_t &TypeId) {
939   if (!Ty || DIToIdMap.find(Ty) != DIToIdMap.end()) {
940     TypeId = DIToIdMap[Ty];
941     return;
942   }
943 
944   // MapDef type may be a struct type or a non-pointer derived type
945   const DIType *OrigTy = Ty;
946   while (auto *DTy = dyn_cast<DIDerivedType>(Ty)) {
947     auto Tag = DTy->getTag();
948     if (Tag != dwarf::DW_TAG_typedef && Tag != dwarf::DW_TAG_const_type &&
949         Tag != dwarf::DW_TAG_volatile_type &&
950         Tag != dwarf::DW_TAG_restrict_type)
951       break;
952     Ty = DTy->getBaseType();
953   }
954 
955   const auto *CTy = dyn_cast<DICompositeType>(Ty);
956   if (!CTy)
957     return;
958 
959   auto Tag = CTy->getTag();
960   if (Tag != dwarf::DW_TAG_structure_type || CTy->isForwardDecl())
961     return;
962 
963   // Visit all struct members to ensure pointee type is visited
964   const DINodeArray Elements = CTy->getElements();
965   for (const auto *Element : Elements) {
966     const auto *MemberType = cast<DIDerivedType>(Element);
967     visitTypeEntry(MemberType->getBaseType());
968   }
969 
970   // Visit this type, struct or a const/typedef/volatile/restrict type
971   visitTypeEntry(OrigTy, TypeId, false, false);
972 }
973 
974 /// Read file contents from the actual file or from the source
975 std::string BTFDebug::populateFileContent(const DISubprogram *SP) {
976   auto File = SP->getFile();
977   std::string FileName;
978 
979   if (!File->getFilename().startswith("/") && File->getDirectory().size())
980     FileName = File->getDirectory().str() + "/" + File->getFilename().str();
981   else
982     FileName = std::string(File->getFilename());
983 
984   // No need to populate the contends if it has been populated!
985   if (FileContent.contains(FileName))
986     return FileName;
987 
988   std::vector<std::string> Content;
989   std::string Line;
990   Content.push_back(Line); // Line 0 for empty string
991 
992   std::unique_ptr<MemoryBuffer> Buf;
993   auto Source = File->getSource();
994   if (Source)
995     Buf = MemoryBuffer::getMemBufferCopy(*Source);
996   else if (ErrorOr<std::unique_ptr<MemoryBuffer>> BufOrErr =
997                MemoryBuffer::getFile(FileName))
998     Buf = std::move(*BufOrErr);
999   if (Buf)
1000     for (line_iterator I(*Buf, false), E; I != E; ++I)
1001       Content.push_back(std::string(*I));
1002 
1003   FileContent[FileName] = Content;
1004   return FileName;
1005 }
1006 
1007 void BTFDebug::constructLineInfo(const DISubprogram *SP, MCSymbol *Label,
1008                                  uint32_t Line, uint32_t Column) {
1009   std::string FileName = populateFileContent(SP);
1010   BTFLineInfo LineInfo;
1011 
1012   LineInfo.Label = Label;
1013   LineInfo.FileNameOff = addString(FileName);
1014   // If file content is not available, let LineOff = 0.
1015   if (Line < FileContent[FileName].size())
1016     LineInfo.LineOff = addString(FileContent[FileName][Line]);
1017   else
1018     LineInfo.LineOff = 0;
1019   LineInfo.LineNum = Line;
1020   LineInfo.ColumnNum = Column;
1021   LineInfoTable[SecNameOff].push_back(LineInfo);
1022 }
1023 
1024 void BTFDebug::emitCommonHeader() {
1025   OS.AddComment("0x" + Twine::utohexstr(BTF::MAGIC));
1026   OS.emitIntValue(BTF::MAGIC, 2);
1027   OS.emitInt8(BTF::VERSION);
1028   OS.emitInt8(0);
1029 }
1030 
1031 void BTFDebug::emitBTFSection() {
1032   // Do not emit section if no types and only "" string.
1033   if (!TypeEntries.size() && StringTable.getSize() == 1)
1034     return;
1035 
1036   MCContext &Ctx = OS.getContext();
1037   MCSectionELF *Sec = Ctx.getELFSection(".BTF", ELF::SHT_PROGBITS, 0);
1038   Sec->setAlignment(Align(4));
1039   OS.switchSection(Sec);
1040 
1041   // Emit header.
1042   emitCommonHeader();
1043   OS.emitInt32(BTF::HeaderSize);
1044 
1045   uint32_t TypeLen = 0, StrLen;
1046   for (const auto &TypeEntry : TypeEntries)
1047     TypeLen += TypeEntry->getSize();
1048   StrLen = StringTable.getSize();
1049 
1050   OS.emitInt32(0);
1051   OS.emitInt32(TypeLen);
1052   OS.emitInt32(TypeLen);
1053   OS.emitInt32(StrLen);
1054 
1055   // Emit type table.
1056   for (const auto &TypeEntry : TypeEntries)
1057     TypeEntry->emitType(OS);
1058 
1059   // Emit string table.
1060   uint32_t StringOffset = 0;
1061   for (const auto &S : StringTable.getTable()) {
1062     OS.AddComment("string offset=" + std::to_string(StringOffset));
1063     OS.emitBytes(S);
1064     OS.emitBytes(StringRef("\0", 1));
1065     StringOffset += S.size() + 1;
1066   }
1067 }
1068 
1069 void BTFDebug::emitBTFExtSection() {
1070   // Do not emit section if empty FuncInfoTable and LineInfoTable
1071   // and FieldRelocTable.
1072   if (!FuncInfoTable.size() && !LineInfoTable.size() &&
1073       !FieldRelocTable.size())
1074     return;
1075 
1076   MCContext &Ctx = OS.getContext();
1077   MCSectionELF *Sec = Ctx.getELFSection(".BTF.ext", ELF::SHT_PROGBITS, 0);
1078   Sec->setAlignment(Align(4));
1079   OS.switchSection(Sec);
1080 
1081   // Emit header.
1082   emitCommonHeader();
1083   OS.emitInt32(BTF::ExtHeaderSize);
1084 
1085   // Account for FuncInfo/LineInfo record size as well.
1086   uint32_t FuncLen = 4, LineLen = 4;
1087   // Do not account for optional FieldReloc.
1088   uint32_t FieldRelocLen = 0;
1089   for (const auto &FuncSec : FuncInfoTable) {
1090     FuncLen += BTF::SecFuncInfoSize;
1091     FuncLen += FuncSec.second.size() * BTF::BPFFuncInfoSize;
1092   }
1093   for (const auto &LineSec : LineInfoTable) {
1094     LineLen += BTF::SecLineInfoSize;
1095     LineLen += LineSec.second.size() * BTF::BPFLineInfoSize;
1096   }
1097   for (const auto &FieldRelocSec : FieldRelocTable) {
1098     FieldRelocLen += BTF::SecFieldRelocSize;
1099     FieldRelocLen += FieldRelocSec.second.size() * BTF::BPFFieldRelocSize;
1100   }
1101 
1102   if (FieldRelocLen)
1103     FieldRelocLen += 4;
1104 
1105   OS.emitInt32(0);
1106   OS.emitInt32(FuncLen);
1107   OS.emitInt32(FuncLen);
1108   OS.emitInt32(LineLen);
1109   OS.emitInt32(FuncLen + LineLen);
1110   OS.emitInt32(FieldRelocLen);
1111 
1112   // Emit func_info table.
1113   OS.AddComment("FuncInfo");
1114   OS.emitInt32(BTF::BPFFuncInfoSize);
1115   for (const auto &FuncSec : FuncInfoTable) {
1116     OS.AddComment("FuncInfo section string offset=" +
1117                   std::to_string(FuncSec.first));
1118     OS.emitInt32(FuncSec.first);
1119     OS.emitInt32(FuncSec.second.size());
1120     for (const auto &FuncInfo : FuncSec.second) {
1121       Asm->emitLabelReference(FuncInfo.Label, 4);
1122       OS.emitInt32(FuncInfo.TypeId);
1123     }
1124   }
1125 
1126   // Emit line_info table.
1127   OS.AddComment("LineInfo");
1128   OS.emitInt32(BTF::BPFLineInfoSize);
1129   for (const auto &LineSec : LineInfoTable) {
1130     OS.AddComment("LineInfo section string offset=" +
1131                   std::to_string(LineSec.first));
1132     OS.emitInt32(LineSec.first);
1133     OS.emitInt32(LineSec.second.size());
1134     for (const auto &LineInfo : LineSec.second) {
1135       Asm->emitLabelReference(LineInfo.Label, 4);
1136       OS.emitInt32(LineInfo.FileNameOff);
1137       OS.emitInt32(LineInfo.LineOff);
1138       OS.AddComment("Line " + std::to_string(LineInfo.LineNum) + " Col " +
1139                     std::to_string(LineInfo.ColumnNum));
1140       OS.emitInt32(LineInfo.LineNum << 10 | LineInfo.ColumnNum);
1141     }
1142   }
1143 
1144   // Emit field reloc table.
1145   if (FieldRelocLen) {
1146     OS.AddComment("FieldReloc");
1147     OS.emitInt32(BTF::BPFFieldRelocSize);
1148     for (const auto &FieldRelocSec : FieldRelocTable) {
1149       OS.AddComment("Field reloc section string offset=" +
1150                     std::to_string(FieldRelocSec.first));
1151       OS.emitInt32(FieldRelocSec.first);
1152       OS.emitInt32(FieldRelocSec.second.size());
1153       for (const auto &FieldRelocInfo : FieldRelocSec.second) {
1154         Asm->emitLabelReference(FieldRelocInfo.Label, 4);
1155         OS.emitInt32(FieldRelocInfo.TypeID);
1156         OS.emitInt32(FieldRelocInfo.OffsetNameOff);
1157         OS.emitInt32(FieldRelocInfo.RelocKind);
1158       }
1159     }
1160   }
1161 }
1162 
1163 void BTFDebug::beginFunctionImpl(const MachineFunction *MF) {
1164   auto *SP = MF->getFunction().getSubprogram();
1165   auto *Unit = SP->getUnit();
1166 
1167   if (Unit->getEmissionKind() == DICompileUnit::NoDebug) {
1168     SkipInstruction = true;
1169     return;
1170   }
1171   SkipInstruction = false;
1172 
1173   // Collect MapDef types. Map definition needs to collect
1174   // pointee types. Do it first. Otherwise, for the following
1175   // case:
1176   //    struct m { ...};
1177   //    struct t {
1178   //      struct m *key;
1179   //    };
1180   //    foo(struct t *arg);
1181   //
1182   //    struct mapdef {
1183   //      ...
1184   //      struct m *key;
1185   //      ...
1186   //    } __attribute__((section(".maps"))) hash_map;
1187   //
1188   // If subroutine foo is traversed first, a type chain
1189   // "ptr->struct m(fwd)" will be created and later on
1190   // when traversing mapdef, since "ptr->struct m" exists,
1191   // the traversal of "struct m" will be omitted.
1192   if (MapDefNotCollected) {
1193     processGlobals(true);
1194     MapDefNotCollected = false;
1195   }
1196 
1197   // Collect all types locally referenced in this function.
1198   // Use RetainedNodes so we can collect all argument names
1199   // even if the argument is not used.
1200   std::unordered_map<uint32_t, StringRef> FuncArgNames;
1201   for (const DINode *DN : SP->getRetainedNodes()) {
1202     if (const auto *DV = dyn_cast<DILocalVariable>(DN)) {
1203       // Collect function arguments for subprogram func type.
1204       uint32_t Arg = DV->getArg();
1205       if (Arg) {
1206         visitTypeEntry(DV->getType());
1207         FuncArgNames[Arg] = DV->getName();
1208       }
1209     }
1210   }
1211 
1212   // Construct subprogram func proto type.
1213   uint32_t ProtoTypeId;
1214   visitSubroutineType(SP->getType(), true, FuncArgNames, ProtoTypeId);
1215 
1216   // Construct subprogram func type
1217   uint8_t Scope = SP->isLocalToUnit() ? BTF::FUNC_STATIC : BTF::FUNC_GLOBAL;
1218   uint32_t FuncTypeId = processDISubprogram(SP, ProtoTypeId, Scope);
1219 
1220   for (const auto &TypeEntry : TypeEntries)
1221     TypeEntry->completeType(*this);
1222 
1223   // Construct funcinfo and the first lineinfo for the function.
1224   MCSymbol *FuncLabel = Asm->getFunctionBegin();
1225   BTFFuncInfo FuncInfo;
1226   FuncInfo.Label = FuncLabel;
1227   FuncInfo.TypeId = FuncTypeId;
1228   if (FuncLabel->isInSection()) {
1229     MCSection &Section = FuncLabel->getSection();
1230     const MCSectionELF *SectionELF = dyn_cast<MCSectionELF>(&Section);
1231     assert(SectionELF && "Null section for Function Label");
1232     SecNameOff = addString(SectionELF->getName());
1233   } else {
1234     SecNameOff = addString(".text");
1235   }
1236   FuncInfoTable[SecNameOff].push_back(FuncInfo);
1237 }
1238 
1239 void BTFDebug::endFunctionImpl(const MachineFunction *MF) {
1240   SkipInstruction = false;
1241   LineInfoGenerated = false;
1242   SecNameOff = 0;
1243 }
1244 
1245 /// On-demand populate types as requested from abstract member
1246 /// accessing or preserve debuginfo type.
1247 unsigned BTFDebug::populateType(const DIType *Ty) {
1248   unsigned Id;
1249   visitTypeEntry(Ty, Id, false, false);
1250   for (const auto &TypeEntry : TypeEntries)
1251     TypeEntry->completeType(*this);
1252   return Id;
1253 }
1254 
1255 /// Generate a struct member field relocation.
1256 void BTFDebug::generatePatchImmReloc(const MCSymbol *ORSym, uint32_t RootId,
1257                                      const GlobalVariable *GVar, bool IsAma) {
1258   BTFFieldReloc FieldReloc;
1259   FieldReloc.Label = ORSym;
1260   FieldReloc.TypeID = RootId;
1261 
1262   StringRef AccessPattern = GVar->getName();
1263   size_t FirstDollar = AccessPattern.find_first_of('$');
1264   if (IsAma) {
1265     size_t FirstColon = AccessPattern.find_first_of(':');
1266     size_t SecondColon = AccessPattern.find_first_of(':', FirstColon + 1);
1267     StringRef IndexPattern = AccessPattern.substr(FirstDollar + 1);
1268     StringRef RelocKindStr = AccessPattern.substr(FirstColon + 1,
1269         SecondColon - FirstColon);
1270     StringRef PatchImmStr = AccessPattern.substr(SecondColon + 1,
1271         FirstDollar - SecondColon);
1272 
1273     FieldReloc.OffsetNameOff = addString(IndexPattern);
1274     FieldReloc.RelocKind = std::stoull(std::string(RelocKindStr));
1275     PatchImms[GVar] = std::make_pair(std::stoll(std::string(PatchImmStr)),
1276                                      FieldReloc.RelocKind);
1277   } else {
1278     StringRef RelocStr = AccessPattern.substr(FirstDollar + 1);
1279     FieldReloc.OffsetNameOff = addString("0");
1280     FieldReloc.RelocKind = std::stoull(std::string(RelocStr));
1281     PatchImms[GVar] = std::make_pair(RootId, FieldReloc.RelocKind);
1282   }
1283   FieldRelocTable[SecNameOff].push_back(FieldReloc);
1284 }
1285 
1286 void BTFDebug::processGlobalValue(const MachineOperand &MO) {
1287   // check whether this is a candidate or not
1288   if (MO.isGlobal()) {
1289     const GlobalValue *GVal = MO.getGlobal();
1290     auto *GVar = dyn_cast<GlobalVariable>(GVal);
1291     if (!GVar) {
1292       // Not a global variable. Maybe an extern function reference.
1293       processFuncPrototypes(dyn_cast<Function>(GVal));
1294       return;
1295     }
1296 
1297     if (!GVar->hasAttribute(BPFCoreSharedInfo::AmaAttr) &&
1298         !GVar->hasAttribute(BPFCoreSharedInfo::TypeIdAttr))
1299       return;
1300 
1301     MCSymbol *ORSym = OS.getContext().createTempSymbol();
1302     OS.emitLabel(ORSym);
1303 
1304     MDNode *MDN = GVar->getMetadata(LLVMContext::MD_preserve_access_index);
1305     uint32_t RootId = populateType(dyn_cast<DIType>(MDN));
1306     generatePatchImmReloc(ORSym, RootId, GVar,
1307                           GVar->hasAttribute(BPFCoreSharedInfo::AmaAttr));
1308   }
1309 }
1310 
1311 void BTFDebug::beginInstruction(const MachineInstr *MI) {
1312   DebugHandlerBase::beginInstruction(MI);
1313 
1314   if (SkipInstruction || MI->isMetaInstruction() ||
1315       MI->getFlag(MachineInstr::FrameSetup))
1316     return;
1317 
1318   if (MI->isInlineAsm()) {
1319     // Count the number of register definitions to find the asm string.
1320     unsigned NumDefs = 0;
1321     for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef();
1322          ++NumDefs)
1323       ;
1324 
1325     // Skip this inline asm instruction if the asmstr is empty.
1326     const char *AsmStr = MI->getOperand(NumDefs).getSymbolName();
1327     if (AsmStr[0] == 0)
1328       return;
1329   }
1330 
1331   if (MI->getOpcode() == BPF::LD_imm64) {
1332     // If the insn is "r2 = LD_imm64 @<an AmaAttr global>",
1333     // add this insn into the .BTF.ext FieldReloc subsection.
1334     // Relocation looks like:
1335     //  . SecName:
1336     //    . InstOffset
1337     //    . TypeID
1338     //    . OffSetNameOff
1339     //    . RelocType
1340     // Later, the insn is replaced with "r2 = <offset>"
1341     // where "<offset>" equals to the offset based on current
1342     // type definitions.
1343     //
1344     // If the insn is "r2 = LD_imm64 @<an TypeIdAttr global>",
1345     // The LD_imm64 result will be replaced with a btf type id.
1346     processGlobalValue(MI->getOperand(1));
1347   } else if (MI->getOpcode() == BPF::CORE_MEM ||
1348              MI->getOpcode() == BPF::CORE_ALU32_MEM ||
1349              MI->getOpcode() == BPF::CORE_SHIFT) {
1350     // relocation insn is a load, store or shift insn.
1351     processGlobalValue(MI->getOperand(3));
1352   } else if (MI->getOpcode() == BPF::JAL) {
1353     // check extern function references
1354     const MachineOperand &MO = MI->getOperand(0);
1355     if (MO.isGlobal()) {
1356       processFuncPrototypes(dyn_cast<Function>(MO.getGlobal()));
1357     }
1358   }
1359 
1360   if (!CurMI) // no debug info
1361     return;
1362 
1363   // Skip this instruction if no DebugLoc or the DebugLoc
1364   // is the same as the previous instruction.
1365   const DebugLoc &DL = MI->getDebugLoc();
1366   if (!DL || PrevInstLoc == DL) {
1367     // This instruction will be skipped, no LineInfo has
1368     // been generated, construct one based on function signature.
1369     if (LineInfoGenerated == false) {
1370       auto *S = MI->getMF()->getFunction().getSubprogram();
1371       if (!S)
1372         return;
1373       MCSymbol *FuncLabel = Asm->getFunctionBegin();
1374       constructLineInfo(S, FuncLabel, S->getLine(), 0);
1375       LineInfoGenerated = true;
1376     }
1377 
1378     return;
1379   }
1380 
1381   // Create a temporary label to remember the insn for lineinfo.
1382   MCSymbol *LineSym = OS.getContext().createTempSymbol();
1383   OS.emitLabel(LineSym);
1384 
1385   // Construct the lineinfo.
1386   auto SP = DL->getScope()->getSubprogram();
1387   constructLineInfo(SP, LineSym, DL.getLine(), DL.getCol());
1388 
1389   LineInfoGenerated = true;
1390   PrevInstLoc = DL;
1391 }
1392 
1393 void BTFDebug::processGlobals(bool ProcessingMapDef) {
1394   // Collect all types referenced by globals.
1395   const Module *M = MMI->getModule();
1396   for (const GlobalVariable &Global : M->globals()) {
1397     // Decide the section name.
1398     StringRef SecName;
1399     std::optional<SectionKind> GVKind;
1400 
1401     if (!Global.isDeclarationForLinker())
1402       GVKind = TargetLoweringObjectFile::getKindForGlobal(&Global, Asm->TM);
1403 
1404     if (Global.isDeclarationForLinker())
1405       SecName = Global.hasSection() ? Global.getSection() : "";
1406     else if (GVKind->isCommon())
1407       SecName = ".bss";
1408     else {
1409       TargetLoweringObjectFile *TLOF = Asm->TM.getObjFileLowering();
1410       MCSection *Sec = TLOF->SectionForGlobal(&Global, Asm->TM);
1411       SecName = Sec->getName();
1412     }
1413 
1414     if (ProcessingMapDef != SecName.startswith(".maps"))
1415       continue;
1416 
1417     // Create a .rodata datasec if the global variable is an initialized
1418     // constant with private linkage and if it won't be in .rodata.str<#>
1419     // and .rodata.cst<#> sections.
1420     if (SecName == ".rodata" && Global.hasPrivateLinkage() &&
1421         DataSecEntries.find(std::string(SecName)) == DataSecEntries.end()) {
1422       // skip .rodata.str<#> and .rodata.cst<#> sections
1423       if (!GVKind->isMergeableCString() && !GVKind->isMergeableConst()) {
1424         DataSecEntries[std::string(SecName)] =
1425             std::make_unique<BTFKindDataSec>(Asm, std::string(SecName));
1426       }
1427     }
1428 
1429     SmallVector<DIGlobalVariableExpression *, 1> GVs;
1430     Global.getDebugInfo(GVs);
1431 
1432     // No type information, mostly internal, skip it.
1433     if (GVs.size() == 0)
1434       continue;
1435 
1436     uint32_t GVTypeId = 0;
1437     DIGlobalVariable *DIGlobal = nullptr;
1438     for (auto *GVE : GVs) {
1439       DIGlobal = GVE->getVariable();
1440       if (SecName.startswith(".maps"))
1441         visitMapDefType(DIGlobal->getType(), GVTypeId);
1442       else
1443         visitTypeEntry(DIGlobal->getType(), GVTypeId, false, false);
1444       break;
1445     }
1446 
1447     // Only support the following globals:
1448     //  . static variables
1449     //  . non-static weak or non-weak global variables
1450     //  . weak or non-weak extern global variables
1451     // Whether DataSec is readonly or not can be found from corresponding ELF
1452     // section flags. Whether a BTF_KIND_VAR is a weak symbol or not
1453     // can be found from the corresponding ELF symbol table.
1454     auto Linkage = Global.getLinkage();
1455     if (Linkage != GlobalValue::InternalLinkage &&
1456         Linkage != GlobalValue::ExternalLinkage &&
1457         Linkage != GlobalValue::WeakAnyLinkage &&
1458         Linkage != GlobalValue::WeakODRLinkage &&
1459         Linkage != GlobalValue::ExternalWeakLinkage)
1460       continue;
1461 
1462     uint32_t GVarInfo;
1463     if (Linkage == GlobalValue::InternalLinkage) {
1464       GVarInfo = BTF::VAR_STATIC;
1465     } else if (Global.hasInitializer()) {
1466       GVarInfo = BTF::VAR_GLOBAL_ALLOCATED;
1467     } else {
1468       GVarInfo = BTF::VAR_GLOBAL_EXTERNAL;
1469     }
1470 
1471     auto VarEntry =
1472         std::make_unique<BTFKindVar>(Global.getName(), GVTypeId, GVarInfo);
1473     uint32_t VarId = addType(std::move(VarEntry));
1474 
1475     processDeclAnnotations(DIGlobal->getAnnotations(), VarId, -1);
1476 
1477     // An empty SecName means an extern variable without section attribute.
1478     if (SecName.empty())
1479       continue;
1480 
1481     // Find or create a DataSec
1482     if (DataSecEntries.find(std::string(SecName)) == DataSecEntries.end()) {
1483       DataSecEntries[std::string(SecName)] =
1484           std::make_unique<BTFKindDataSec>(Asm, std::string(SecName));
1485     }
1486 
1487     // Calculate symbol size
1488     const DataLayout &DL = Global.getParent()->getDataLayout();
1489     uint32_t Size = DL.getTypeAllocSize(Global.getValueType());
1490 
1491     DataSecEntries[std::string(SecName)]->addDataSecEntry(VarId,
1492         Asm->getSymbol(&Global), Size);
1493   }
1494 }
1495 
1496 /// Emit proper patchable instructions.
1497 bool BTFDebug::InstLower(const MachineInstr *MI, MCInst &OutMI) {
1498   if (MI->getOpcode() == BPF::LD_imm64) {
1499     const MachineOperand &MO = MI->getOperand(1);
1500     if (MO.isGlobal()) {
1501       const GlobalValue *GVal = MO.getGlobal();
1502       auto *GVar = dyn_cast<GlobalVariable>(GVal);
1503       if (GVar) {
1504         // Emit "mov ri, <imm>"
1505         int64_t Imm;
1506         uint32_t Reloc;
1507         if (GVar->hasAttribute(BPFCoreSharedInfo::AmaAttr) ||
1508             GVar->hasAttribute(BPFCoreSharedInfo::TypeIdAttr)) {
1509           Imm = PatchImms[GVar].first;
1510           Reloc = PatchImms[GVar].second;
1511         } else {
1512           return false;
1513         }
1514 
1515         if (Reloc == BPFCoreSharedInfo::ENUM_VALUE_EXISTENCE ||
1516             Reloc == BPFCoreSharedInfo::ENUM_VALUE ||
1517             Reloc == BPFCoreSharedInfo::BTF_TYPE_ID_LOCAL ||
1518             Reloc == BPFCoreSharedInfo::BTF_TYPE_ID_REMOTE)
1519           OutMI.setOpcode(BPF::LD_imm64);
1520         else
1521           OutMI.setOpcode(BPF::MOV_ri);
1522         OutMI.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
1523         OutMI.addOperand(MCOperand::createImm(Imm));
1524         return true;
1525       }
1526     }
1527   } else if (MI->getOpcode() == BPF::CORE_MEM ||
1528              MI->getOpcode() == BPF::CORE_ALU32_MEM ||
1529              MI->getOpcode() == BPF::CORE_SHIFT) {
1530     const MachineOperand &MO = MI->getOperand(3);
1531     if (MO.isGlobal()) {
1532       const GlobalValue *GVal = MO.getGlobal();
1533       auto *GVar = dyn_cast<GlobalVariable>(GVal);
1534       if (GVar && GVar->hasAttribute(BPFCoreSharedInfo::AmaAttr)) {
1535         uint32_t Imm = PatchImms[GVar].first;
1536         OutMI.setOpcode(MI->getOperand(1).getImm());
1537         if (MI->getOperand(0).isImm())
1538           OutMI.addOperand(MCOperand::createImm(MI->getOperand(0).getImm()));
1539         else
1540           OutMI.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
1541         OutMI.addOperand(MCOperand::createReg(MI->getOperand(2).getReg()));
1542         OutMI.addOperand(MCOperand::createImm(Imm));
1543         return true;
1544       }
1545     }
1546   }
1547   return false;
1548 }
1549 
1550 void BTFDebug::processFuncPrototypes(const Function *F) {
1551   if (!F)
1552     return;
1553 
1554   const DISubprogram *SP = F->getSubprogram();
1555   if (!SP || SP->isDefinition())
1556     return;
1557 
1558   // Do not emit again if already emitted.
1559   if (!ProtoFunctions.insert(F).second)
1560     return;
1561 
1562   uint32_t ProtoTypeId;
1563   const std::unordered_map<uint32_t, StringRef> FuncArgNames;
1564   visitSubroutineType(SP->getType(), false, FuncArgNames, ProtoTypeId);
1565   uint32_t FuncId = processDISubprogram(SP, ProtoTypeId, BTF::FUNC_EXTERN);
1566 
1567   if (F->hasSection()) {
1568     StringRef SecName = F->getSection();
1569 
1570     if (DataSecEntries.find(std::string(SecName)) == DataSecEntries.end()) {
1571       DataSecEntries[std::string(SecName)] =
1572           std::make_unique<BTFKindDataSec>(Asm, std::string(SecName));
1573     }
1574 
1575     // We really don't know func size, set it to 0.
1576     DataSecEntries[std::string(SecName)]->addDataSecEntry(FuncId,
1577         Asm->getSymbol(F), 0);
1578   }
1579 }
1580 
1581 void BTFDebug::endModule() {
1582   // Collect MapDef globals if not collected yet.
1583   if (MapDefNotCollected) {
1584     processGlobals(true);
1585     MapDefNotCollected = false;
1586   }
1587 
1588   // Collect global types/variables except MapDef globals.
1589   processGlobals(false);
1590 
1591   for (auto &DataSec : DataSecEntries)
1592     addType(std::move(DataSec.second));
1593 
1594   // Fixups
1595   for (auto &Fixup : FixupDerivedTypes) {
1596     const DICompositeType *CTy = Fixup.first;
1597     StringRef TypeName = CTy->getName();
1598     bool IsUnion = CTy->getTag() == dwarf::DW_TAG_union_type;
1599 
1600     // Search through struct types
1601     uint32_t StructTypeId = 0;
1602     for (const auto &StructType : StructTypes) {
1603       if (StructType->getName() == TypeName) {
1604         StructTypeId = StructType->getId();
1605         break;
1606       }
1607     }
1608 
1609     if (StructTypeId == 0) {
1610       auto FwdTypeEntry = std::make_unique<BTFTypeFwd>(TypeName, IsUnion);
1611       StructTypeId = addType(std::move(FwdTypeEntry));
1612     }
1613 
1614     for (auto &TypeInfo : Fixup.second) {
1615       const DIDerivedType *DTy = TypeInfo.first;
1616       BTFTypeDerived *BDType = TypeInfo.second;
1617 
1618       int TmpTypeId = genBTFTypeTags(DTy, StructTypeId);
1619       if (TmpTypeId >= 0)
1620         BDType->setPointeeType(TmpTypeId);
1621       else
1622         BDType->setPointeeType(StructTypeId);
1623     }
1624   }
1625 
1626   // Complete BTF type cross refereences.
1627   for (const auto &TypeEntry : TypeEntries)
1628     TypeEntry->completeType(*this);
1629 
1630   // Emit BTF sections.
1631   emitBTFSection();
1632   emitBTFExtSection();
1633 }
1634