1 //===- Bitcode/Writer/DXILBitcodeWriter.cpp - DXIL Bitcode Writer ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Bitcode writer implementation.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "DXILBitcodeWriter.h"
14 #include "DXILValueEnumerator.h"
15 #include "PointerTypeAnalysis.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/Triple.h"
18 #include "llvm/Bitcode/BitcodeCommon.h"
19 #include "llvm/Bitcode/BitcodeReader.h"
20 #include "llvm/Bitcode/LLVMBitCodes.h"
21 #include "llvm/Bitstream/BitCodes.h"
22 #include "llvm/Bitstream/BitstreamWriter.h"
23 #include "llvm/IR/Attributes.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/Comdat.h"
26 #include "llvm/IR/Constant.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DebugInfoMetadata.h"
29 #include "llvm/IR/DebugLoc.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/GlobalAlias.h"
33 #include "llvm/IR/GlobalIFunc.h"
34 #include "llvm/IR/GlobalObject.h"
35 #include "llvm/IR/GlobalValue.h"
36 #include "llvm/IR/GlobalVariable.h"
37 #include "llvm/IR/InlineAsm.h"
38 #include "llvm/IR/InstrTypes.h"
39 #include "llvm/IR/Instruction.h"
40 #include "llvm/IR/Instructions.h"
41 #include "llvm/IR/LLVMContext.h"
42 #include "llvm/IR/Metadata.h"
43 #include "llvm/IR/Module.h"
44 #include "llvm/IR/ModuleSummaryIndex.h"
45 #include "llvm/IR/Operator.h"
46 #include "llvm/IR/Type.h"
47 #include "llvm/IR/UseListOrder.h"
48 #include "llvm/IR/Value.h"
49 #include "llvm/IR/ValueSymbolTable.h"
50 #include "llvm/Object/IRSymtab.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Support/SHA1.h"
53 
54 namespace llvm {
55 namespace dxil {
56 
57 // Generates an enum to use as an index in the Abbrev array of Metadata record.
58 enum MetadataAbbrev : unsigned {
59 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID,
60 #include "llvm/IR/Metadata.def"
61   LastPlusOne
62 };
63 
64 class DXILBitcodeWriter {
65 
66   /// These are manifest constants used by the bitcode writer. They do not need
67   /// to be kept in sync with the reader, but need to be consistent within this
68   /// file.
69   enum {
70     // VALUE_SYMTAB_BLOCK abbrev id's.
71     VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
72     VST_ENTRY_7_ABBREV,
73     VST_ENTRY_6_ABBREV,
74     VST_BBENTRY_6_ABBREV,
75 
76     // CONSTANTS_BLOCK abbrev id's.
77     CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
78     CONSTANTS_INTEGER_ABBREV,
79     CONSTANTS_CE_CAST_Abbrev,
80     CONSTANTS_NULL_Abbrev,
81 
82     // FUNCTION_BLOCK abbrev id's.
83     FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
84     FUNCTION_INST_BINOP_ABBREV,
85     FUNCTION_INST_BINOP_FLAGS_ABBREV,
86     FUNCTION_INST_CAST_ABBREV,
87     FUNCTION_INST_RET_VOID_ABBREV,
88     FUNCTION_INST_RET_VAL_ABBREV,
89     FUNCTION_INST_UNREACHABLE_ABBREV,
90     FUNCTION_INST_GEP_ABBREV,
91   };
92 
93   // Cache some types
94   Type *I8Ty;
95   Type *I8PtrTy;
96 
97   /// The stream created and owned by the client.
98   BitstreamWriter &Stream;
99 
100   StringTableBuilder &StrtabBuilder;
101 
102   /// The Module to write to bitcode.
103   const Module &M;
104 
105   /// Enumerates ids for all values in the module.
106   ValueEnumerator VE;
107 
108   /// Map that holds the correspondence between GUIDs in the summary index,
109   /// that came from indirect call profiles, and a value id generated by this
110   /// class to use in the VST and summary block records.
111   std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
112 
113   /// Tracks the last value id recorded in the GUIDToValueMap.
114   unsigned GlobalValueId;
115 
116   /// Saves the offset of the VSTOffset record that must eventually be
117   /// backpatched with the offset of the actual VST.
118   uint64_t VSTOffsetPlaceholder = 0;
119 
120   /// Pointer to the buffer allocated by caller for bitcode writing.
121   const SmallVectorImpl<char> &Buffer;
122 
123   /// The start bit of the identification block.
124   uint64_t BitcodeStartBit;
125 
126   /// This maps values to their typed pointers
127   PointerTypeMap PointerMap;
128 
129 public:
130   /// Constructs a ModuleBitcodeWriter object for the given Module,
131   /// writing to the provided \p Buffer.
132   DXILBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer,
133                     StringTableBuilder &StrtabBuilder, BitstreamWriter &Stream)
134       : I8Ty(Type::getInt8Ty(M.getContext())),
135         I8PtrTy(TypedPointerType::get(I8Ty, 0)), Stream(Stream),
136         StrtabBuilder(StrtabBuilder), M(M), VE(M, I8PtrTy), Buffer(Buffer),
137         BitcodeStartBit(Stream.GetCurrentBitNo()),
138         PointerMap(PointerTypeAnalysis::run(M)) {
139     GlobalValueId = VE.getValues().size();
140     // Enumerate the typed pointers
141     for (auto El : PointerMap)
142       VE.EnumerateType(El.second);
143   }
144 
145   /// Emit the current module to the bitstream.
146   void write();
147 
148   static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind);
149   static void writeStringRecord(BitstreamWriter &Stream, unsigned Code,
150                                 StringRef Str, unsigned AbbrevToUse);
151   static void writeIdentificationBlock(BitstreamWriter &Stream);
152   static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V);
153   static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A);
154 
155   static unsigned getEncodedComdatSelectionKind(const Comdat &C);
156   static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage);
157   static unsigned getEncodedLinkage(const GlobalValue &GV);
158   static unsigned getEncodedVisibility(const GlobalValue &GV);
159   static unsigned getEncodedThreadLocalMode(const GlobalValue &GV);
160   static unsigned getEncodedDLLStorageClass(const GlobalValue &GV);
161   static unsigned getEncodedCastOpcode(unsigned Opcode);
162   static unsigned getEncodedUnaryOpcode(unsigned Opcode);
163   static unsigned getEncodedBinaryOpcode(unsigned Opcode);
164   static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op);
165   static unsigned getEncodedOrdering(AtomicOrdering Ordering);
166   static uint64_t getOptimizationFlags(const Value *V);
167 
168 private:
169   void writeModuleVersion();
170   void writePerModuleGlobalValueSummary();
171 
172   void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals,
173                                            GlobalValueSummary *Summary,
174                                            unsigned ValueID,
175                                            unsigned FSCallsAbbrev,
176                                            unsigned FSCallsProfileAbbrev,
177                                            const Function &F);
178   void writeModuleLevelReferences(const GlobalVariable &V,
179                                   SmallVector<uint64_t, 64> &NameVals,
180                                   unsigned FSModRefsAbbrev,
181                                   unsigned FSModVTableRefsAbbrev);
182 
183   void assignValueId(GlobalValue::GUID ValGUID) {
184     GUIDToValueIdMap[ValGUID] = ++GlobalValueId;
185   }
186 
187   unsigned getValueId(GlobalValue::GUID ValGUID) {
188     const auto &VMI = GUIDToValueIdMap.find(ValGUID);
189     // Expect that any GUID value had a value Id assigned by an
190     // earlier call to assignValueId.
191     assert(VMI != GUIDToValueIdMap.end() &&
192            "GUID does not have assigned value Id");
193     return VMI->second;
194   }
195 
196   // Helper to get the valueId for the type of value recorded in VI.
197   unsigned getValueId(ValueInfo VI) {
198     if (!VI.haveGVs() || !VI.getValue())
199       return getValueId(VI.getGUID());
200     return VE.getValueID(VI.getValue());
201   }
202 
203   std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
204 
205   uint64_t bitcodeStartBit() { return BitcodeStartBit; }
206 
207   size_t addToStrtab(StringRef Str);
208 
209   unsigned createDILocationAbbrev();
210   unsigned createGenericDINodeAbbrev();
211 
212   void writeAttributeGroupTable();
213   void writeAttributeTable();
214   void writeTypeTable();
215   void writeComdats();
216   void writeValueSymbolTableForwardDecl();
217   void writeModuleInfo();
218   void writeValueAsMetadata(const ValueAsMetadata *MD,
219                             SmallVectorImpl<uint64_t> &Record);
220   void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record,
221                     unsigned Abbrev);
222   void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record,
223                        unsigned &Abbrev);
224   void writeGenericDINode(const GenericDINode *N,
225                           SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev) {
226     llvm_unreachable("DXIL cannot contain GenericDI Nodes");
227   }
228   void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record,
229                        unsigned Abbrev);
230   void writeDIGenericSubrange(const DIGenericSubrange *N,
231                               SmallVectorImpl<uint64_t> &Record,
232                               unsigned Abbrev) {
233     llvm_unreachable("DXIL cannot contain DIGenericSubrange Nodes");
234   }
235   void writeDIEnumerator(const DIEnumerator *N,
236                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
237   void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record,
238                         unsigned Abbrev);
239   void writeDIStringType(const DIStringType *N,
240                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) {
241     llvm_unreachable("DXIL cannot contain DIStringType Nodes");
242   }
243   void writeDIDerivedType(const DIDerivedType *N,
244                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
245   void writeDICompositeType(const DICompositeType *N,
246                             SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
247   void writeDISubroutineType(const DISubroutineType *N,
248                              SmallVectorImpl<uint64_t> &Record,
249                              unsigned Abbrev);
250   void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record,
251                    unsigned Abbrev);
252   void writeDICompileUnit(const DICompileUnit *N,
253                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
254   void writeDISubprogram(const DISubprogram *N,
255                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
256   void writeDILexicalBlock(const DILexicalBlock *N,
257                            SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
258   void writeDILexicalBlockFile(const DILexicalBlockFile *N,
259                                SmallVectorImpl<uint64_t> &Record,
260                                unsigned Abbrev);
261   void writeDICommonBlock(const DICommonBlock *N,
262                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) {
263     llvm_unreachable("DXIL cannot contain DICommonBlock Nodes");
264   }
265   void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record,
266                         unsigned Abbrev);
267   void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record,
268                     unsigned Abbrev) {
269     llvm_unreachable("DXIL cannot contain DIMacro Nodes");
270   }
271   void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record,
272                         unsigned Abbrev) {
273     llvm_unreachable("DXIL cannot contain DIMacroFile Nodes");
274   }
275   void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record,
276                       unsigned Abbrev) {
277     llvm_unreachable("DXIL cannot contain DIArgList Nodes");
278   }
279   void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record,
280                      unsigned Abbrev);
281   void writeDITemplateTypeParameter(const DITemplateTypeParameter *N,
282                                     SmallVectorImpl<uint64_t> &Record,
283                                     unsigned Abbrev);
284   void writeDITemplateValueParameter(const DITemplateValueParameter *N,
285                                      SmallVectorImpl<uint64_t> &Record,
286                                      unsigned Abbrev);
287   void writeDIGlobalVariable(const DIGlobalVariable *N,
288                              SmallVectorImpl<uint64_t> &Record,
289                              unsigned Abbrev);
290   void writeDILocalVariable(const DILocalVariable *N,
291                             SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
292   void writeDILabel(const DILabel *N, SmallVectorImpl<uint64_t> &Record,
293                     unsigned Abbrev) {
294     llvm_unreachable("DXIL cannot contain DILabel Nodes");
295   }
296   void writeDIExpression(const DIExpression *N,
297                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
298   void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N,
299                                        SmallVectorImpl<uint64_t> &Record,
300                                        unsigned Abbrev) {
301     llvm_unreachable("DXIL cannot contain GlobalVariableExpression Nodes");
302   }
303   void writeDIObjCProperty(const DIObjCProperty *N,
304                            SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
305   void writeDIImportedEntity(const DIImportedEntity *N,
306                              SmallVectorImpl<uint64_t> &Record,
307                              unsigned Abbrev);
308   unsigned createNamedMetadataAbbrev();
309   void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record);
310   unsigned createMetadataStringsAbbrev();
311   void writeMetadataStrings(ArrayRef<const Metadata *> Strings,
312                             SmallVectorImpl<uint64_t> &Record);
313   void writeMetadataRecords(ArrayRef<const Metadata *> MDs,
314                             SmallVectorImpl<uint64_t> &Record,
315                             std::vector<unsigned> *MDAbbrevs = nullptr,
316                             std::vector<uint64_t> *IndexPos = nullptr);
317   void writeModuleMetadata();
318   void writeFunctionMetadata(const Function &F);
319   void writeFunctionMetadataAttachment(const Function &F);
320   void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record,
321                                     const GlobalObject &GO);
322   void writeModuleMetadataKinds();
323   void writeOperandBundleTags();
324   void writeSyncScopeNames();
325   void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal);
326   void writeModuleConstants();
327   bool pushValueAndType(const Value *V, unsigned InstID,
328                         SmallVectorImpl<unsigned> &Vals);
329   void writeOperandBundles(const CallBase &CB, unsigned InstID);
330   void pushValue(const Value *V, unsigned InstID,
331                  SmallVectorImpl<unsigned> &Vals);
332   void pushValueSigned(const Value *V, unsigned InstID,
333                        SmallVectorImpl<uint64_t> &Vals);
334   void writeInstruction(const Instruction &I, unsigned InstID,
335                         SmallVectorImpl<unsigned> &Vals);
336   void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST);
337   void writeGlobalValueSymbolTable(
338       DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
339   void writeUseList(UseListOrder &&Order);
340   void writeUseListBlock(const Function *F);
341   void writeFunction(const Function &F);
342   void writeBlockInfo();
343 
344   unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { return unsigned(SSID); }
345 
346   unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); }
347 
348   unsigned getTypeID(Type *T, const Value *V = nullptr);
349   unsigned getTypeID(Type *T, const Function *F);
350 };
351 
352 } // namespace dxil
353 } // namespace llvm
354 
355 using namespace llvm;
356 using namespace llvm::dxil;
357 
358 ////////////////////////////////////////////////////////////////////////////////
359 /// Begin dxil::BitcodeWriter Implementation
360 ////////////////////////////////////////////////////////////////////////////////
361 
362 dxil::BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer,
363                                    raw_fd_stream *FS)
364     : Buffer(Buffer), Stream(new BitstreamWriter(Buffer, FS, 512)) {
365   // Emit the file header.
366   Stream->Emit((unsigned)'B', 8);
367   Stream->Emit((unsigned)'C', 8);
368   Stream->Emit(0x0, 4);
369   Stream->Emit(0xC, 4);
370   Stream->Emit(0xE, 4);
371   Stream->Emit(0xD, 4);
372 }
373 
374 dxil::BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); }
375 
376 /// Write the specified module to the specified output stream.
377 void dxil::WriteDXILToFile(const Module &M, raw_ostream &Out) {
378   SmallVector<char, 0> Buffer;
379   Buffer.reserve(256 * 1024);
380 
381   // If this is darwin or another generic macho target, reserve space for the
382   // header.
383   Triple TT(M.getTargetTriple());
384   if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
385     Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0);
386 
387   BitcodeWriter Writer(Buffer, dyn_cast<raw_fd_stream>(&Out));
388   Writer.writeModule(M);
389   Writer.writeSymtab();
390   Writer.writeStrtab();
391 
392   // Write the generated bitstream to "Out".
393   if (!Buffer.empty())
394     Out.write((char *)&Buffer.front(), Buffer.size());
395 }
396 
397 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) {
398   Stream->EnterSubblock(Block, 3);
399 
400   auto Abbv = std::make_shared<BitCodeAbbrev>();
401   Abbv->Add(BitCodeAbbrevOp(Record));
402   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
403   auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv));
404 
405   Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob);
406 
407   Stream->ExitBlock();
408 }
409 
410 void BitcodeWriter::writeSymtab() {
411   assert(!WroteStrtab && !WroteSymtab);
412 
413   // If any module has module-level inline asm, we will require a registered asm
414   // parser for the target so that we can create an accurate symbol table for
415   // the module.
416   for (Module *M : Mods) {
417     if (M->getModuleInlineAsm().empty())
418       continue;
419   }
420 
421   WroteSymtab = true;
422   SmallVector<char, 0> Symtab;
423   // The irsymtab::build function may be unable to create a symbol table if the
424   // module is malformed (e.g. it contains an invalid alias). Writing a symbol
425   // table is not required for correctness, but we still want to be able to
426   // write malformed modules to bitcode files, so swallow the error.
427   if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) {
428     consumeError(std::move(E));
429     return;
430   }
431 
432   writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB,
433             {Symtab.data(), Symtab.size()});
434 }
435 
436 void BitcodeWriter::writeStrtab() {
437   assert(!WroteStrtab);
438 
439   std::vector<char> Strtab;
440   StrtabBuilder.finalizeInOrder();
441   Strtab.resize(StrtabBuilder.getSize());
442   StrtabBuilder.write((uint8_t *)Strtab.data());
443 
444   writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB,
445             {Strtab.data(), Strtab.size()});
446 
447   WroteStrtab = true;
448 }
449 
450 void BitcodeWriter::copyStrtab(StringRef Strtab) {
451   writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab);
452   WroteStrtab = true;
453 }
454 
455 void BitcodeWriter::writeModule(const Module &M) {
456   assert(!WroteStrtab);
457 
458   // The Mods vector is used by irsymtab::build, which requires non-const
459   // Modules in case it needs to materialize metadata. But the bitcode writer
460   // requires that the module is materialized, so we can cast to non-const here,
461   // after checking that it is in fact materialized.
462   assert(M.isMaterialized());
463   Mods.push_back(const_cast<Module *>(&M));
464 
465   DXILBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream);
466   ModuleWriter.write();
467 }
468 
469 ////////////////////////////////////////////////////////////////////////////////
470 /// Begin dxil::BitcodeWriterBase Implementation
471 ////////////////////////////////////////////////////////////////////////////////
472 
473 unsigned DXILBitcodeWriter::getEncodedCastOpcode(unsigned Opcode) {
474   switch (Opcode) {
475   default:
476     llvm_unreachable("Unknown cast instruction!");
477   case Instruction::Trunc:
478     return bitc::CAST_TRUNC;
479   case Instruction::ZExt:
480     return bitc::CAST_ZEXT;
481   case Instruction::SExt:
482     return bitc::CAST_SEXT;
483   case Instruction::FPToUI:
484     return bitc::CAST_FPTOUI;
485   case Instruction::FPToSI:
486     return bitc::CAST_FPTOSI;
487   case Instruction::UIToFP:
488     return bitc::CAST_UITOFP;
489   case Instruction::SIToFP:
490     return bitc::CAST_SITOFP;
491   case Instruction::FPTrunc:
492     return bitc::CAST_FPTRUNC;
493   case Instruction::FPExt:
494     return bitc::CAST_FPEXT;
495   case Instruction::PtrToInt:
496     return bitc::CAST_PTRTOINT;
497   case Instruction::IntToPtr:
498     return bitc::CAST_INTTOPTR;
499   case Instruction::BitCast:
500     return bitc::CAST_BITCAST;
501   case Instruction::AddrSpaceCast:
502     return bitc::CAST_ADDRSPACECAST;
503   }
504 }
505 
506 unsigned DXILBitcodeWriter::getEncodedUnaryOpcode(unsigned Opcode) {
507   switch (Opcode) {
508   default:
509     llvm_unreachable("Unknown binary instruction!");
510   case Instruction::FNeg:
511     return bitc::UNOP_FNEG;
512   }
513 }
514 
515 unsigned DXILBitcodeWriter::getEncodedBinaryOpcode(unsigned Opcode) {
516   switch (Opcode) {
517   default:
518     llvm_unreachable("Unknown binary instruction!");
519   case Instruction::Add:
520   case Instruction::FAdd:
521     return bitc::BINOP_ADD;
522   case Instruction::Sub:
523   case Instruction::FSub:
524     return bitc::BINOP_SUB;
525   case Instruction::Mul:
526   case Instruction::FMul:
527     return bitc::BINOP_MUL;
528   case Instruction::UDiv:
529     return bitc::BINOP_UDIV;
530   case Instruction::FDiv:
531   case Instruction::SDiv:
532     return bitc::BINOP_SDIV;
533   case Instruction::URem:
534     return bitc::BINOP_UREM;
535   case Instruction::FRem:
536   case Instruction::SRem:
537     return bitc::BINOP_SREM;
538   case Instruction::Shl:
539     return bitc::BINOP_SHL;
540   case Instruction::LShr:
541     return bitc::BINOP_LSHR;
542   case Instruction::AShr:
543     return bitc::BINOP_ASHR;
544   case Instruction::And:
545     return bitc::BINOP_AND;
546   case Instruction::Or:
547     return bitc::BINOP_OR;
548   case Instruction::Xor:
549     return bitc::BINOP_XOR;
550   }
551 }
552 
553 unsigned DXILBitcodeWriter::getTypeID(Type *T, const Value *V) {
554   if (!T->isOpaquePointerTy())
555     return VE.getTypeID(T);
556   auto It = PointerMap.find(V);
557   if (It != PointerMap.end())
558     return VE.getTypeID(It->second);
559   return VE.getTypeID(I8PtrTy);
560 }
561 
562 unsigned DXILBitcodeWriter::getTypeID(Type *T, const Function *F) {
563   auto It = PointerMap.find(F);
564   if (It != PointerMap.end())
565     return VE.getTypeID(It->second);
566   return VE.getTypeID(T);
567 }
568 
569 unsigned DXILBitcodeWriter::getEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
570   switch (Op) {
571   default:
572     llvm_unreachable("Unknown RMW operation!");
573   case AtomicRMWInst::Xchg:
574     return bitc::RMW_XCHG;
575   case AtomicRMWInst::Add:
576     return bitc::RMW_ADD;
577   case AtomicRMWInst::Sub:
578     return bitc::RMW_SUB;
579   case AtomicRMWInst::And:
580     return bitc::RMW_AND;
581   case AtomicRMWInst::Nand:
582     return bitc::RMW_NAND;
583   case AtomicRMWInst::Or:
584     return bitc::RMW_OR;
585   case AtomicRMWInst::Xor:
586     return bitc::RMW_XOR;
587   case AtomicRMWInst::Max:
588     return bitc::RMW_MAX;
589   case AtomicRMWInst::Min:
590     return bitc::RMW_MIN;
591   case AtomicRMWInst::UMax:
592     return bitc::RMW_UMAX;
593   case AtomicRMWInst::UMin:
594     return bitc::RMW_UMIN;
595   case AtomicRMWInst::FAdd:
596     return bitc::RMW_FADD;
597   case AtomicRMWInst::FSub:
598     return bitc::RMW_FSUB;
599   case AtomicRMWInst::FMax:
600     return bitc::RMW_FMAX;
601   case AtomicRMWInst::FMin:
602     return bitc::RMW_FMIN;
603   }
604 }
605 
606 unsigned DXILBitcodeWriter::getEncodedOrdering(AtomicOrdering Ordering) {
607   switch (Ordering) {
608   case AtomicOrdering::NotAtomic:
609     return bitc::ORDERING_NOTATOMIC;
610   case AtomicOrdering::Unordered:
611     return bitc::ORDERING_UNORDERED;
612   case AtomicOrdering::Monotonic:
613     return bitc::ORDERING_MONOTONIC;
614   case AtomicOrdering::Acquire:
615     return bitc::ORDERING_ACQUIRE;
616   case AtomicOrdering::Release:
617     return bitc::ORDERING_RELEASE;
618   case AtomicOrdering::AcquireRelease:
619     return bitc::ORDERING_ACQREL;
620   case AtomicOrdering::SequentiallyConsistent:
621     return bitc::ORDERING_SEQCST;
622   }
623   llvm_unreachable("Invalid ordering");
624 }
625 
626 void DXILBitcodeWriter::writeStringRecord(BitstreamWriter &Stream,
627                                           unsigned Code, StringRef Str,
628                                           unsigned AbbrevToUse) {
629   SmallVector<unsigned, 64> Vals;
630 
631   // Code: [strchar x N]
632   for (char C : Str) {
633     if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(C))
634       AbbrevToUse = 0;
635     Vals.push_back(C);
636   }
637 
638   // Emit the finished record.
639   Stream.EmitRecord(Code, Vals, AbbrevToUse);
640 }
641 
642 uint64_t DXILBitcodeWriter::getAttrKindEncoding(Attribute::AttrKind Kind) {
643   switch (Kind) {
644   case Attribute::Alignment:
645     return bitc::ATTR_KIND_ALIGNMENT;
646   case Attribute::AlwaysInline:
647     return bitc::ATTR_KIND_ALWAYS_INLINE;
648   case Attribute::ArgMemOnly:
649     return bitc::ATTR_KIND_ARGMEMONLY;
650   case Attribute::Builtin:
651     return bitc::ATTR_KIND_BUILTIN;
652   case Attribute::ByVal:
653     return bitc::ATTR_KIND_BY_VAL;
654   case Attribute::Convergent:
655     return bitc::ATTR_KIND_CONVERGENT;
656   case Attribute::InAlloca:
657     return bitc::ATTR_KIND_IN_ALLOCA;
658   case Attribute::Cold:
659     return bitc::ATTR_KIND_COLD;
660   case Attribute::InlineHint:
661     return bitc::ATTR_KIND_INLINE_HINT;
662   case Attribute::InReg:
663     return bitc::ATTR_KIND_IN_REG;
664   case Attribute::JumpTable:
665     return bitc::ATTR_KIND_JUMP_TABLE;
666   case Attribute::MinSize:
667     return bitc::ATTR_KIND_MIN_SIZE;
668   case Attribute::Naked:
669     return bitc::ATTR_KIND_NAKED;
670   case Attribute::Nest:
671     return bitc::ATTR_KIND_NEST;
672   case Attribute::NoAlias:
673     return bitc::ATTR_KIND_NO_ALIAS;
674   case Attribute::NoBuiltin:
675     return bitc::ATTR_KIND_NO_BUILTIN;
676   case Attribute::NoCapture:
677     return bitc::ATTR_KIND_NO_CAPTURE;
678   case Attribute::NoDuplicate:
679     return bitc::ATTR_KIND_NO_DUPLICATE;
680   case Attribute::NoImplicitFloat:
681     return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
682   case Attribute::NoInline:
683     return bitc::ATTR_KIND_NO_INLINE;
684   case Attribute::NonLazyBind:
685     return bitc::ATTR_KIND_NON_LAZY_BIND;
686   case Attribute::NonNull:
687     return bitc::ATTR_KIND_NON_NULL;
688   case Attribute::Dereferenceable:
689     return bitc::ATTR_KIND_DEREFERENCEABLE;
690   case Attribute::DereferenceableOrNull:
691     return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL;
692   case Attribute::NoRedZone:
693     return bitc::ATTR_KIND_NO_RED_ZONE;
694   case Attribute::NoReturn:
695     return bitc::ATTR_KIND_NO_RETURN;
696   case Attribute::NoUnwind:
697     return bitc::ATTR_KIND_NO_UNWIND;
698   case Attribute::OptimizeForSize:
699     return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
700   case Attribute::OptimizeNone:
701     return bitc::ATTR_KIND_OPTIMIZE_NONE;
702   case Attribute::ReadNone:
703     return bitc::ATTR_KIND_READ_NONE;
704   case Attribute::ReadOnly:
705     return bitc::ATTR_KIND_READ_ONLY;
706   case Attribute::Returned:
707     return bitc::ATTR_KIND_RETURNED;
708   case Attribute::ReturnsTwice:
709     return bitc::ATTR_KIND_RETURNS_TWICE;
710   case Attribute::SExt:
711     return bitc::ATTR_KIND_S_EXT;
712   case Attribute::StackAlignment:
713     return bitc::ATTR_KIND_STACK_ALIGNMENT;
714   case Attribute::StackProtect:
715     return bitc::ATTR_KIND_STACK_PROTECT;
716   case Attribute::StackProtectReq:
717     return bitc::ATTR_KIND_STACK_PROTECT_REQ;
718   case Attribute::StackProtectStrong:
719     return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
720   case Attribute::SafeStack:
721     return bitc::ATTR_KIND_SAFESTACK;
722   case Attribute::StructRet:
723     return bitc::ATTR_KIND_STRUCT_RET;
724   case Attribute::SanitizeAddress:
725     return bitc::ATTR_KIND_SANITIZE_ADDRESS;
726   case Attribute::SanitizeThread:
727     return bitc::ATTR_KIND_SANITIZE_THREAD;
728   case Attribute::SanitizeMemory:
729     return bitc::ATTR_KIND_SANITIZE_MEMORY;
730   case Attribute::UWTable:
731     return bitc::ATTR_KIND_UW_TABLE;
732   case Attribute::ZExt:
733     return bitc::ATTR_KIND_Z_EXT;
734   case Attribute::EndAttrKinds:
735     llvm_unreachable("Can not encode end-attribute kinds marker.");
736   case Attribute::None:
737     llvm_unreachable("Can not encode none-attribute.");
738   case Attribute::EmptyKey:
739   case Attribute::TombstoneKey:
740     llvm_unreachable("Trying to encode EmptyKey/TombstoneKey");
741   default:
742     llvm_unreachable("Trying to encode attribute not supported by DXIL. These "
743                      "should be stripped in DXILPrepare");
744   }
745 
746   llvm_unreachable("Trying to encode unknown attribute");
747 }
748 
749 void DXILBitcodeWriter::emitSignedInt64(SmallVectorImpl<uint64_t> &Vals,
750                                         uint64_t V) {
751   if ((int64_t)V >= 0)
752     Vals.push_back(V << 1);
753   else
754     Vals.push_back((-V << 1) | 1);
755 }
756 
757 void DXILBitcodeWriter::emitWideAPInt(SmallVectorImpl<uint64_t> &Vals,
758                                       const APInt &A) {
759   // We have an arbitrary precision integer value to write whose
760   // bit width is > 64. However, in canonical unsigned integer
761   // format it is likely that the high bits are going to be zero.
762   // So, we only write the number of active words.
763   unsigned NumWords = A.getActiveWords();
764   const uint64_t *RawData = A.getRawData();
765   for (unsigned i = 0; i < NumWords; i++)
766     emitSignedInt64(Vals, RawData[i]);
767 }
768 
769 uint64_t DXILBitcodeWriter::getOptimizationFlags(const Value *V) {
770   uint64_t Flags = 0;
771 
772   if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
773     if (OBO->hasNoSignedWrap())
774       Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
775     if (OBO->hasNoUnsignedWrap())
776       Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
777   } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
778     if (PEO->isExact())
779       Flags |= 1 << bitc::PEO_EXACT;
780   } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) {
781     if (FPMO->hasAllowReassoc())
782       Flags |= bitc::AllowReassoc;
783     if (FPMO->hasNoNaNs())
784       Flags |= bitc::NoNaNs;
785     if (FPMO->hasNoInfs())
786       Flags |= bitc::NoInfs;
787     if (FPMO->hasNoSignedZeros())
788       Flags |= bitc::NoSignedZeros;
789     if (FPMO->hasAllowReciprocal())
790       Flags |= bitc::AllowReciprocal;
791     if (FPMO->hasAllowContract())
792       Flags |= bitc::AllowContract;
793     if (FPMO->hasApproxFunc())
794       Flags |= bitc::ApproxFunc;
795   }
796 
797   return Flags;
798 }
799 
800 unsigned
801 DXILBitcodeWriter::getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) {
802   switch (Linkage) {
803   case GlobalValue::ExternalLinkage:
804     return 0;
805   case GlobalValue::WeakAnyLinkage:
806     return 16;
807   case GlobalValue::AppendingLinkage:
808     return 2;
809   case GlobalValue::InternalLinkage:
810     return 3;
811   case GlobalValue::LinkOnceAnyLinkage:
812     return 18;
813   case GlobalValue::ExternalWeakLinkage:
814     return 7;
815   case GlobalValue::CommonLinkage:
816     return 8;
817   case GlobalValue::PrivateLinkage:
818     return 9;
819   case GlobalValue::WeakODRLinkage:
820     return 17;
821   case GlobalValue::LinkOnceODRLinkage:
822     return 19;
823   case GlobalValue::AvailableExternallyLinkage:
824     return 12;
825   }
826   llvm_unreachable("Invalid linkage");
827 }
828 
829 unsigned DXILBitcodeWriter::getEncodedLinkage(const GlobalValue &GV) {
830   return getEncodedLinkage(GV.getLinkage());
831 }
832 
833 unsigned DXILBitcodeWriter::getEncodedVisibility(const GlobalValue &GV) {
834   switch (GV.getVisibility()) {
835   case GlobalValue::DefaultVisibility:
836     return 0;
837   case GlobalValue::HiddenVisibility:
838     return 1;
839   case GlobalValue::ProtectedVisibility:
840     return 2;
841   }
842   llvm_unreachable("Invalid visibility");
843 }
844 
845 unsigned DXILBitcodeWriter::getEncodedDLLStorageClass(const GlobalValue &GV) {
846   switch (GV.getDLLStorageClass()) {
847   case GlobalValue::DefaultStorageClass:
848     return 0;
849   case GlobalValue::DLLImportStorageClass:
850     return 1;
851   case GlobalValue::DLLExportStorageClass:
852     return 2;
853   }
854   llvm_unreachable("Invalid DLL storage class");
855 }
856 
857 unsigned DXILBitcodeWriter::getEncodedThreadLocalMode(const GlobalValue &GV) {
858   switch (GV.getThreadLocalMode()) {
859   case GlobalVariable::NotThreadLocal:
860     return 0;
861   case GlobalVariable::GeneralDynamicTLSModel:
862     return 1;
863   case GlobalVariable::LocalDynamicTLSModel:
864     return 2;
865   case GlobalVariable::InitialExecTLSModel:
866     return 3;
867   case GlobalVariable::LocalExecTLSModel:
868     return 4;
869   }
870   llvm_unreachable("Invalid TLS model");
871 }
872 
873 unsigned DXILBitcodeWriter::getEncodedComdatSelectionKind(const Comdat &C) {
874   switch (C.getSelectionKind()) {
875   case Comdat::Any:
876     return bitc::COMDAT_SELECTION_KIND_ANY;
877   case Comdat::ExactMatch:
878     return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH;
879   case Comdat::Largest:
880     return bitc::COMDAT_SELECTION_KIND_LARGEST;
881   case Comdat::NoDeduplicate:
882     return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES;
883   case Comdat::SameSize:
884     return bitc::COMDAT_SELECTION_KIND_SAME_SIZE;
885   }
886   llvm_unreachable("Invalid selection kind");
887 }
888 
889 ////////////////////////////////////////////////////////////////////////////////
890 /// Begin DXILBitcodeWriter Implementation
891 ////////////////////////////////////////////////////////////////////////////////
892 
893 void DXILBitcodeWriter::writeAttributeGroupTable() {
894   const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps =
895       VE.getAttributeGroups();
896   if (AttrGrps.empty())
897     return;
898 
899   Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
900 
901   SmallVector<uint64_t, 64> Record;
902   for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) {
903     unsigned AttrListIndex = Pair.first;
904     AttributeSet AS = Pair.second;
905     Record.push_back(VE.getAttributeGroupID(Pair));
906     Record.push_back(AttrListIndex);
907 
908     for (Attribute Attr : AS) {
909       if (Attr.isEnumAttribute()) {
910         uint64_t Val = getAttrKindEncoding(Attr.getKindAsEnum());
911         assert(Val <= bitc::ATTR_KIND_ARGMEMONLY &&
912                "DXIL does not support attributes above ATTR_KIND_ARGMEMONLY");
913         Record.push_back(0);
914         Record.push_back(Val);
915       } else if (Attr.isIntAttribute()) {
916         uint64_t Val = getAttrKindEncoding(Attr.getKindAsEnum());
917         assert(Val <= bitc::ATTR_KIND_ARGMEMONLY &&
918                "DXIL does not support attributes above ATTR_KIND_ARGMEMONLY");
919         Record.push_back(1);
920         Record.push_back(Val);
921         Record.push_back(Attr.getValueAsInt());
922       } else {
923         StringRef Kind = Attr.getKindAsString();
924         StringRef Val = Attr.getValueAsString();
925 
926         Record.push_back(Val.empty() ? 3 : 4);
927         Record.append(Kind.begin(), Kind.end());
928         Record.push_back(0);
929         if (!Val.empty()) {
930           Record.append(Val.begin(), Val.end());
931           Record.push_back(0);
932         }
933       }
934     }
935 
936     Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
937     Record.clear();
938   }
939 
940   Stream.ExitBlock();
941 }
942 
943 void DXILBitcodeWriter::writeAttributeTable() {
944   const std::vector<AttributeList> &Attrs = VE.getAttributeLists();
945   if (Attrs.empty())
946     return;
947 
948   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
949 
950   SmallVector<uint64_t, 64> Record;
951   for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
952     AttributeList AL = Attrs[i];
953     for (unsigned i : AL.indexes()) {
954       AttributeSet AS = AL.getAttributes(i);
955       if (AS.hasAttributes())
956         Record.push_back(VE.getAttributeGroupID({i, AS}));
957     }
958 
959     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
960     Record.clear();
961   }
962 
963   Stream.ExitBlock();
964 }
965 
966 /// WriteTypeTable - Write out the type table for a module.
967 void DXILBitcodeWriter::writeTypeTable() {
968   const ValueEnumerator::TypeList &TypeList = VE.getTypes();
969 
970   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
971   SmallVector<uint64_t, 64> TypeVals;
972 
973   uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies();
974 
975   // Abbrev for TYPE_CODE_POINTER.
976   auto Abbv = std::make_shared<BitCodeAbbrev>();
977   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
978   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
979   Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0
980   unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv));
981 
982   // Abbrev for TYPE_CODE_FUNCTION.
983   Abbv = std::make_shared<BitCodeAbbrev>();
984   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
985   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg
986   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
987   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
988   unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv));
989 
990   // Abbrev for TYPE_CODE_STRUCT_ANON.
991   Abbv = std::make_shared<BitCodeAbbrev>();
992   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
993   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
994   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
995   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
996   unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv));
997 
998   // Abbrev for TYPE_CODE_STRUCT_NAME.
999   Abbv = std::make_shared<BitCodeAbbrev>();
1000   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
1001   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1002   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1003   unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1004 
1005   // Abbrev for TYPE_CODE_STRUCT_NAMED.
1006   Abbv = std::make_shared<BitCodeAbbrev>();
1007   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
1008   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
1009   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1010   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
1011   unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1012 
1013   // Abbrev for TYPE_CODE_ARRAY.
1014   Abbv = std::make_shared<BitCodeAbbrev>();
1015   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
1016   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size
1017   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
1018   unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1019 
1020   // Emit an entry count so the reader can reserve space.
1021   TypeVals.push_back(TypeList.size());
1022   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
1023   TypeVals.clear();
1024 
1025   // Loop over all of the types, emitting each in turn.
1026   for (Type *T : TypeList) {
1027     int AbbrevToUse = 0;
1028     unsigned Code = 0;
1029 
1030     switch (T->getTypeID()) {
1031     case Type::BFloatTyID:
1032     case Type::X86_AMXTyID:
1033     case Type::TokenTyID:
1034       llvm_unreachable("These should never be used!!!");
1035       break;
1036     case Type::VoidTyID:
1037       Code = bitc::TYPE_CODE_VOID;
1038       break;
1039     case Type::HalfTyID:
1040       Code = bitc::TYPE_CODE_HALF;
1041       break;
1042     case Type::FloatTyID:
1043       Code = bitc::TYPE_CODE_FLOAT;
1044       break;
1045     case Type::DoubleTyID:
1046       Code = bitc::TYPE_CODE_DOUBLE;
1047       break;
1048     case Type::X86_FP80TyID:
1049       Code = bitc::TYPE_CODE_X86_FP80;
1050       break;
1051     case Type::FP128TyID:
1052       Code = bitc::TYPE_CODE_FP128;
1053       break;
1054     case Type::PPC_FP128TyID:
1055       Code = bitc::TYPE_CODE_PPC_FP128;
1056       break;
1057     case Type::LabelTyID:
1058       Code = bitc::TYPE_CODE_LABEL;
1059       break;
1060     case Type::MetadataTyID:
1061       Code = bitc::TYPE_CODE_METADATA;
1062       break;
1063     case Type::X86_MMXTyID:
1064       Code = bitc::TYPE_CODE_X86_MMX;
1065       break;
1066     case Type::IntegerTyID:
1067       // INTEGER: [width]
1068       Code = bitc::TYPE_CODE_INTEGER;
1069       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
1070       break;
1071     case Type::DXILPointerTyID: {
1072       TypedPointerType *PTy = cast<TypedPointerType>(T);
1073       // POINTER: [pointee type, address space]
1074       Code = bitc::TYPE_CODE_POINTER;
1075       TypeVals.push_back(getTypeID(PTy->getElementType()));
1076       unsigned AddressSpace = PTy->getAddressSpace();
1077       TypeVals.push_back(AddressSpace);
1078       if (AddressSpace == 0)
1079         AbbrevToUse = PtrAbbrev;
1080       break;
1081     }
1082     case Type::PointerTyID: {
1083       PointerType *PTy = cast<PointerType>(T);
1084       // POINTER: [pointee type, address space]
1085       Code = bitc::TYPE_CODE_POINTER;
1086       // Emitting an empty struct type for the opaque pointer's type allows
1087       // this to be order-independent. Non-struct types must be emitted in
1088       // bitcode before they can be referenced.
1089       if (PTy->isOpaquePointerTy()) {
1090         TypeVals.push_back(false);
1091         Code = bitc::TYPE_CODE_OPAQUE;
1092         writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME,
1093                           "dxilOpaquePtrReservedName", StructNameAbbrev);
1094       } else {
1095         TypeVals.push_back(getTypeID(PTy->getNonOpaquePointerElementType()));
1096         unsigned AddressSpace = PTy->getAddressSpace();
1097         TypeVals.push_back(AddressSpace);
1098         if (AddressSpace == 0)
1099           AbbrevToUse = PtrAbbrev;
1100       }
1101       break;
1102     }
1103     case Type::FunctionTyID: {
1104       FunctionType *FT = cast<FunctionType>(T);
1105       // FUNCTION: [isvararg, retty, paramty x N]
1106       Code = bitc::TYPE_CODE_FUNCTION;
1107       TypeVals.push_back(FT->isVarArg());
1108       TypeVals.push_back(getTypeID(FT->getReturnType()));
1109       for (Type *PTy : FT->params())
1110         TypeVals.push_back(getTypeID(PTy));
1111       AbbrevToUse = FunctionAbbrev;
1112       break;
1113     }
1114     case Type::StructTyID: {
1115       StructType *ST = cast<StructType>(T);
1116       // STRUCT: [ispacked, eltty x N]
1117       TypeVals.push_back(ST->isPacked());
1118       // Output all of the element types.
1119       for (Type *ElTy : ST->elements())
1120         TypeVals.push_back(getTypeID(ElTy));
1121 
1122       if (ST->isLiteral()) {
1123         Code = bitc::TYPE_CODE_STRUCT_ANON;
1124         AbbrevToUse = StructAnonAbbrev;
1125       } else {
1126         if (ST->isOpaque()) {
1127           Code = bitc::TYPE_CODE_OPAQUE;
1128         } else {
1129           Code = bitc::TYPE_CODE_STRUCT_NAMED;
1130           AbbrevToUse = StructNamedAbbrev;
1131         }
1132 
1133         // Emit the name if it is present.
1134         if (!ST->getName().empty())
1135           writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
1136                             StructNameAbbrev);
1137       }
1138       break;
1139     }
1140     case Type::ArrayTyID: {
1141       ArrayType *AT = cast<ArrayType>(T);
1142       // ARRAY: [numelts, eltty]
1143       Code = bitc::TYPE_CODE_ARRAY;
1144       TypeVals.push_back(AT->getNumElements());
1145       TypeVals.push_back(getTypeID(AT->getElementType()));
1146       AbbrevToUse = ArrayAbbrev;
1147       break;
1148     }
1149     case Type::FixedVectorTyID:
1150     case Type::ScalableVectorTyID: {
1151       VectorType *VT = cast<VectorType>(T);
1152       // VECTOR [numelts, eltty]
1153       Code = bitc::TYPE_CODE_VECTOR;
1154       TypeVals.push_back(VT->getElementCount().getKnownMinValue());
1155       TypeVals.push_back(getTypeID(VT->getElementType()));
1156       break;
1157     }
1158     }
1159 
1160     // Emit the finished record.
1161     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
1162     TypeVals.clear();
1163   }
1164 
1165   Stream.ExitBlock();
1166 }
1167 
1168 void DXILBitcodeWriter::writeComdats() {
1169   SmallVector<uint16_t, 64> Vals;
1170   for (const Comdat *C : VE.getComdats()) {
1171     // COMDAT: [selection_kind, name]
1172     Vals.push_back(getEncodedComdatSelectionKind(*C));
1173     size_t Size = C->getName().size();
1174     assert(isUInt<16>(Size));
1175     Vals.push_back(Size);
1176     for (char Chr : C->getName())
1177       Vals.push_back((unsigned char)Chr);
1178     Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0);
1179     Vals.clear();
1180   }
1181 }
1182 
1183 void DXILBitcodeWriter::writeValueSymbolTableForwardDecl() {}
1184 
1185 /// Emit top-level description of module, including target triple, inline asm,
1186 /// descriptors for global variables, and function prototype info.
1187 /// Returns the bit offset to backpatch with the location of the real VST.
1188 void DXILBitcodeWriter::writeModuleInfo() {
1189   // Emit various pieces of data attached to a module.
1190   if (!M.getTargetTriple().empty())
1191     writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(),
1192                       0 /*TODO*/);
1193   const std::string &DL = M.getDataLayoutStr();
1194   if (!DL.empty())
1195     writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/);
1196   if (!M.getModuleInlineAsm().empty())
1197     writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(),
1198                       0 /*TODO*/);
1199 
1200   // Emit information about sections and GC, computing how many there are. Also
1201   // compute the maximum alignment value.
1202   std::map<std::string, unsigned> SectionMap;
1203   std::map<std::string, unsigned> GCMap;
1204   MaybeAlign MaxAlignment;
1205   unsigned MaxGlobalType = 0;
1206   const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) {
1207     if (A)
1208       MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A);
1209   };
1210   for (const GlobalVariable &GV : M.globals()) {
1211     UpdateMaxAlignment(GV.getAlign());
1212     MaxGlobalType = std::max(MaxGlobalType, getTypeID(GV.getValueType(), &GV));
1213     if (GV.hasSection()) {
1214       // Give section names unique ID's.
1215       unsigned &Entry = SectionMap[std::string(GV.getSection())];
1216       if (!Entry) {
1217         writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME,
1218                           GV.getSection(), 0 /*TODO*/);
1219         Entry = SectionMap.size();
1220       }
1221     }
1222   }
1223   for (const Function &F : M) {
1224     UpdateMaxAlignment(F.getAlign());
1225     if (F.hasSection()) {
1226       // Give section names unique ID's.
1227       unsigned &Entry = SectionMap[std::string(F.getSection())];
1228       if (!Entry) {
1229         writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
1230                           0 /*TODO*/);
1231         Entry = SectionMap.size();
1232       }
1233     }
1234     if (F.hasGC()) {
1235       // Same for GC names.
1236       unsigned &Entry = GCMap[F.getGC()];
1237       if (!Entry) {
1238         writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(),
1239                           0 /*TODO*/);
1240         Entry = GCMap.size();
1241       }
1242     }
1243   }
1244 
1245   // Emit abbrev for globals, now that we know # sections and max alignment.
1246   unsigned SimpleGVarAbbrev = 0;
1247   if (!M.global_empty()) {
1248     // Add an abbrev for common globals with no visibility or thread
1249     // localness.
1250     auto Abbv = std::make_shared<BitCodeAbbrev>();
1251     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
1252     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1253                               Log2_32_Ceil(MaxGlobalType + 1)));
1254     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // AddrSpace << 2
1255                                                            //| explicitType << 1
1256                                                            //| constant
1257     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // Initializer.
1258     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage.
1259     if (!MaxAlignment)                                     // Alignment.
1260       Abbv->Add(BitCodeAbbrevOp(0));
1261     else {
1262       unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment);
1263       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1264                                 Log2_32_Ceil(MaxEncAlignment + 1)));
1265     }
1266     if (SectionMap.empty()) // Section.
1267       Abbv->Add(BitCodeAbbrevOp(0));
1268     else
1269       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1270                                 Log2_32_Ceil(SectionMap.size() + 1)));
1271     // Don't bother emitting vis + thread local.
1272     SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1273   }
1274 
1275   // Emit the global variable information.
1276   SmallVector<unsigned, 64> Vals;
1277   for (const GlobalVariable &GV : M.globals()) {
1278     unsigned AbbrevToUse = 0;
1279 
1280     // GLOBALVAR: [type, isconst, initid,
1281     //             linkage, alignment, section, visibility, threadlocal,
1282     //             unnamed_addr, externally_initialized, dllstorageclass,
1283     //             comdat]
1284     Vals.push_back(getTypeID(GV.getValueType(), &GV));
1285     Vals.push_back(
1286         GV.getType()->getAddressSpace() << 2 | 2 |
1287         (GV.isConstant() ? 1 : 0)); // HLSL Change - bitwise | was used with
1288                                     // unsigned int and bool
1289     Vals.push_back(
1290         GV.isDeclaration() ? 0 : (VE.getValueID(GV.getInitializer()) + 1));
1291     Vals.push_back(getEncodedLinkage(GV));
1292     Vals.push_back(getEncodedAlign(GV.getAlign()));
1293     Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())]
1294                                    : 0);
1295     if (GV.isThreadLocal() ||
1296         GV.getVisibility() != GlobalValue::DefaultVisibility ||
1297         GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None ||
1298         GV.isExternallyInitialized() ||
1299         GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass ||
1300         GV.hasComdat()) {
1301       Vals.push_back(getEncodedVisibility(GV));
1302       Vals.push_back(getEncodedThreadLocalMode(GV));
1303       Vals.push_back(GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None);
1304       Vals.push_back(GV.isExternallyInitialized());
1305       Vals.push_back(getEncodedDLLStorageClass(GV));
1306       Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0);
1307     } else {
1308       AbbrevToUse = SimpleGVarAbbrev;
1309     }
1310 
1311     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
1312     Vals.clear();
1313   }
1314 
1315   // Emit the function proto information.
1316   for (const Function &F : M) {
1317     // FUNCTION:  [type, callingconv, isproto, linkage, paramattrs, alignment,
1318     //             section, visibility, gc, unnamed_addr, prologuedata,
1319     //             dllstorageclass, comdat, prefixdata, personalityfn]
1320     Vals.push_back(getTypeID(F.getFunctionType(), &F));
1321     Vals.push_back(F.getCallingConv());
1322     Vals.push_back(F.isDeclaration());
1323     Vals.push_back(getEncodedLinkage(F));
1324     Vals.push_back(VE.getAttributeListID(F.getAttributes()));
1325     Vals.push_back(getEncodedAlign(F.getAlign()));
1326     Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())]
1327                                   : 0);
1328     Vals.push_back(getEncodedVisibility(F));
1329     Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
1330     Vals.push_back(F.getUnnamedAddr() != GlobalValue::UnnamedAddr::None);
1331     Vals.push_back(
1332         F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) : 0);
1333     Vals.push_back(getEncodedDLLStorageClass(F));
1334     Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0);
1335     Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
1336                                      : 0);
1337     Vals.push_back(
1338         F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0);
1339 
1340     unsigned AbbrevToUse = 0;
1341     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
1342     Vals.clear();
1343   }
1344 
1345   // Emit the alias information.
1346   for (const GlobalAlias &A : M.aliases()) {
1347     // ALIAS: [alias type, aliasee val#, linkage, visibility]
1348     Vals.push_back(getTypeID(A.getValueType(), &A));
1349     Vals.push_back(VE.getValueID(A.getAliasee()));
1350     Vals.push_back(getEncodedLinkage(A));
1351     Vals.push_back(getEncodedVisibility(A));
1352     Vals.push_back(getEncodedDLLStorageClass(A));
1353     Vals.push_back(getEncodedThreadLocalMode(A));
1354     Vals.push_back(A.getUnnamedAddr() != GlobalValue::UnnamedAddr::None);
1355     unsigned AbbrevToUse = 0;
1356     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS_OLD, Vals, AbbrevToUse);
1357     Vals.clear();
1358   }
1359 }
1360 
1361 void DXILBitcodeWriter::writeValueAsMetadata(
1362     const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) {
1363   // Mimic an MDNode with a value as one operand.
1364   Value *V = MD->getValue();
1365   Type *Ty = V->getType();
1366   if (Function *F = dyn_cast<Function>(V))
1367     Ty = TypedPointerType::get(F->getFunctionType(), F->getAddressSpace());
1368   else if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
1369     Ty = TypedPointerType::get(GV->getValueType(), GV->getAddressSpace());
1370   Record.push_back(getTypeID(Ty));
1371   Record.push_back(VE.getValueID(V));
1372   Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0);
1373   Record.clear();
1374 }
1375 
1376 void DXILBitcodeWriter::writeMDTuple(const MDTuple *N,
1377                                      SmallVectorImpl<uint64_t> &Record,
1378                                      unsigned Abbrev) {
1379   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1380     Metadata *MD = N->getOperand(i);
1381     assert(!(MD && isa<LocalAsMetadata>(MD)) &&
1382            "Unexpected function-local metadata");
1383     Record.push_back(VE.getMetadataOrNullID(MD));
1384   }
1385   Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE
1386                                     : bitc::METADATA_NODE,
1387                     Record, Abbrev);
1388   Record.clear();
1389 }
1390 
1391 void DXILBitcodeWriter::writeDILocation(const DILocation *N,
1392                                         SmallVectorImpl<uint64_t> &Record,
1393                                         unsigned &Abbrev) {
1394   if (!Abbrev)
1395     Abbrev = createDILocationAbbrev();
1396   Record.push_back(N->isDistinct());
1397   Record.push_back(N->getLine());
1398   Record.push_back(N->getColumn());
1399   Record.push_back(VE.getMetadataID(N->getScope()));
1400   Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt()));
1401 
1402   Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev);
1403   Record.clear();
1404 }
1405 
1406 static uint64_t rotateSign(APInt Val) {
1407   int64_t I = Val.getSExtValue();
1408   uint64_t U = I;
1409   return I < 0 ? ~(U << 1) : U << 1;
1410 }
1411 
1412 static uint64_t rotateSign(DISubrange::BoundType Val) {
1413   return rotateSign(Val.get<ConstantInt *>()->getValue());
1414 }
1415 
1416 void DXILBitcodeWriter::writeDISubrange(const DISubrange *N,
1417                                         SmallVectorImpl<uint64_t> &Record,
1418                                         unsigned Abbrev) {
1419   Record.push_back(N->isDistinct());
1420   Record.push_back(
1421       N->getCount().get<ConstantInt *>()->getValue().getSExtValue());
1422   Record.push_back(rotateSign(N->getLowerBound()));
1423 
1424   Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev);
1425   Record.clear();
1426 }
1427 
1428 void DXILBitcodeWriter::writeDIEnumerator(const DIEnumerator *N,
1429                                           SmallVectorImpl<uint64_t> &Record,
1430                                           unsigned Abbrev) {
1431   Record.push_back(N->isDistinct());
1432   Record.push_back(rotateSign(N->getValue()));
1433   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1434 
1435   Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev);
1436   Record.clear();
1437 }
1438 
1439 void DXILBitcodeWriter::writeDIBasicType(const DIBasicType *N,
1440                                          SmallVectorImpl<uint64_t> &Record,
1441                                          unsigned Abbrev) {
1442   Record.push_back(N->isDistinct());
1443   Record.push_back(N->getTag());
1444   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1445   Record.push_back(N->getSizeInBits());
1446   Record.push_back(N->getAlignInBits());
1447   Record.push_back(N->getEncoding());
1448 
1449   Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev);
1450   Record.clear();
1451 }
1452 
1453 void DXILBitcodeWriter::writeDIDerivedType(const DIDerivedType *N,
1454                                            SmallVectorImpl<uint64_t> &Record,
1455                                            unsigned Abbrev) {
1456   Record.push_back(N->isDistinct());
1457   Record.push_back(N->getTag());
1458   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1459   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1460   Record.push_back(N->getLine());
1461   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1462   Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1463   Record.push_back(N->getSizeInBits());
1464   Record.push_back(N->getAlignInBits());
1465   Record.push_back(N->getOffsetInBits());
1466   Record.push_back(N->getFlags());
1467   Record.push_back(VE.getMetadataOrNullID(N->getExtraData()));
1468 
1469   Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev);
1470   Record.clear();
1471 }
1472 
1473 void DXILBitcodeWriter::writeDICompositeType(const DICompositeType *N,
1474                                              SmallVectorImpl<uint64_t> &Record,
1475                                              unsigned Abbrev) {
1476   Record.push_back(N->isDistinct());
1477   Record.push_back(N->getTag());
1478   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1479   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1480   Record.push_back(N->getLine());
1481   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1482   Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1483   Record.push_back(N->getSizeInBits());
1484   Record.push_back(N->getAlignInBits());
1485   Record.push_back(N->getOffsetInBits());
1486   Record.push_back(N->getFlags());
1487   Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1488   Record.push_back(N->getRuntimeLang());
1489   Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder()));
1490   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1491   Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier()));
1492 
1493   Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev);
1494   Record.clear();
1495 }
1496 
1497 void DXILBitcodeWriter::writeDISubroutineType(const DISubroutineType *N,
1498                                               SmallVectorImpl<uint64_t> &Record,
1499                                               unsigned Abbrev) {
1500   Record.push_back(N->isDistinct());
1501   Record.push_back(N->getFlags());
1502   Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get()));
1503 
1504   Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev);
1505   Record.clear();
1506 }
1507 
1508 void DXILBitcodeWriter::writeDIFile(const DIFile *N,
1509                                     SmallVectorImpl<uint64_t> &Record,
1510                                     unsigned Abbrev) {
1511   Record.push_back(N->isDistinct());
1512   Record.push_back(VE.getMetadataOrNullID(N->getRawFilename()));
1513   Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory()));
1514 
1515   Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev);
1516   Record.clear();
1517 }
1518 
1519 void DXILBitcodeWriter::writeDICompileUnit(const DICompileUnit *N,
1520                                            SmallVectorImpl<uint64_t> &Record,
1521                                            unsigned Abbrev) {
1522   Record.push_back(N->isDistinct());
1523   Record.push_back(N->getSourceLanguage());
1524   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1525   Record.push_back(VE.getMetadataOrNullID(N->getRawProducer()));
1526   Record.push_back(N->isOptimized());
1527   Record.push_back(VE.getMetadataOrNullID(N->getRawFlags()));
1528   Record.push_back(N->getRuntimeVersion());
1529   Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename()));
1530   Record.push_back(N->getEmissionKind());
1531   Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get()));
1532   Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get()));
1533   Record.push_back(/* subprograms */ 0);
1534   Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get()));
1535   Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get()));
1536   Record.push_back(N->getDWOId());
1537 
1538   Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev);
1539   Record.clear();
1540 }
1541 
1542 void DXILBitcodeWriter::writeDISubprogram(const DISubprogram *N,
1543                                           SmallVectorImpl<uint64_t> &Record,
1544                                           unsigned Abbrev) {
1545   Record.push_back(N->isDistinct());
1546   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1547   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1548   Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1549   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1550   Record.push_back(N->getLine());
1551   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1552   Record.push_back(N->isLocalToUnit());
1553   Record.push_back(N->isDefinition());
1554   Record.push_back(N->getScopeLine());
1555   Record.push_back(VE.getMetadataOrNullID(N->getContainingType()));
1556   Record.push_back(N->getVirtuality());
1557   Record.push_back(N->getVirtualIndex());
1558   Record.push_back(N->getFlags());
1559   Record.push_back(N->isOptimized());
1560   Record.push_back(VE.getMetadataOrNullID(N->getRawUnit()));
1561   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1562   Record.push_back(VE.getMetadataOrNullID(N->getDeclaration()));
1563   Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get()));
1564 
1565   Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev);
1566   Record.clear();
1567 }
1568 
1569 void DXILBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N,
1570                                             SmallVectorImpl<uint64_t> &Record,
1571                                             unsigned Abbrev) {
1572   Record.push_back(N->isDistinct());
1573   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1574   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1575   Record.push_back(N->getLine());
1576   Record.push_back(N->getColumn());
1577 
1578   Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev);
1579   Record.clear();
1580 }
1581 
1582 void DXILBitcodeWriter::writeDILexicalBlockFile(
1583     const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record,
1584     unsigned Abbrev) {
1585   Record.push_back(N->isDistinct());
1586   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1587   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1588   Record.push_back(N->getDiscriminator());
1589 
1590   Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev);
1591   Record.clear();
1592 }
1593 
1594 void DXILBitcodeWriter::writeDINamespace(const DINamespace *N,
1595                                          SmallVectorImpl<uint64_t> &Record,
1596                                          unsigned Abbrev) {
1597   Record.push_back(N->isDistinct());
1598   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1599   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1600   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1601   Record.push_back(/* line number */ 0);
1602 
1603   Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev);
1604   Record.clear();
1605 }
1606 
1607 void DXILBitcodeWriter::writeDIModule(const DIModule *N,
1608                                       SmallVectorImpl<uint64_t> &Record,
1609                                       unsigned Abbrev) {
1610   Record.push_back(N->isDistinct());
1611   for (auto &I : N->operands())
1612     Record.push_back(VE.getMetadataOrNullID(I));
1613 
1614   Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev);
1615   Record.clear();
1616 }
1617 
1618 void DXILBitcodeWriter::writeDITemplateTypeParameter(
1619     const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record,
1620     unsigned Abbrev) {
1621   Record.push_back(N->isDistinct());
1622   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1623   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1624 
1625   Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev);
1626   Record.clear();
1627 }
1628 
1629 void DXILBitcodeWriter::writeDITemplateValueParameter(
1630     const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record,
1631     unsigned Abbrev) {
1632   Record.push_back(N->isDistinct());
1633   Record.push_back(N->getTag());
1634   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1635   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1636   Record.push_back(VE.getMetadataOrNullID(N->getValue()));
1637 
1638   Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev);
1639   Record.clear();
1640 }
1641 
1642 void DXILBitcodeWriter::writeDIGlobalVariable(const DIGlobalVariable *N,
1643                                               SmallVectorImpl<uint64_t> &Record,
1644                                               unsigned Abbrev) {
1645   Record.push_back(N->isDistinct());
1646   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1647   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1648   Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1649   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1650   Record.push_back(N->getLine());
1651   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1652   Record.push_back(N->isLocalToUnit());
1653   Record.push_back(N->isDefinition());
1654   Record.push_back(/* N->getRawVariable() */ 0);
1655   Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration()));
1656 
1657   Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev);
1658   Record.clear();
1659 }
1660 
1661 void DXILBitcodeWriter::writeDILocalVariable(const DILocalVariable *N,
1662                                              SmallVectorImpl<uint64_t> &Record,
1663                                              unsigned Abbrev) {
1664   Record.push_back(N->isDistinct());
1665   Record.push_back(N->getTag());
1666   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1667   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1668   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1669   Record.push_back(N->getLine());
1670   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1671   Record.push_back(N->getArg());
1672   Record.push_back(N->getFlags());
1673 
1674   Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev);
1675   Record.clear();
1676 }
1677 
1678 void DXILBitcodeWriter::writeDIExpression(const DIExpression *N,
1679                                           SmallVectorImpl<uint64_t> &Record,
1680                                           unsigned Abbrev) {
1681   Record.reserve(N->getElements().size() + 1);
1682 
1683   Record.push_back(N->isDistinct());
1684   Record.append(N->elements_begin(), N->elements_end());
1685 
1686   Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev);
1687   Record.clear();
1688 }
1689 
1690 void DXILBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N,
1691                                             SmallVectorImpl<uint64_t> &Record,
1692                                             unsigned Abbrev) {
1693   llvm_unreachable("DXIL does not support objc!!!");
1694 }
1695 
1696 void DXILBitcodeWriter::writeDIImportedEntity(const DIImportedEntity *N,
1697                                               SmallVectorImpl<uint64_t> &Record,
1698                                               unsigned Abbrev) {
1699   Record.push_back(N->isDistinct());
1700   Record.push_back(N->getTag());
1701   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1702   Record.push_back(VE.getMetadataOrNullID(N->getEntity()));
1703   Record.push_back(N->getLine());
1704   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1705 
1706   Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev);
1707   Record.clear();
1708 }
1709 
1710 unsigned DXILBitcodeWriter::createDILocationAbbrev() {
1711   // Abbrev for METADATA_LOCATION.
1712   //
1713   // Assume the column is usually under 128, and always output the inlined-at
1714   // location (it's never more expensive than building an array size 1).
1715   std::shared_ptr<BitCodeAbbrev> Abbv = std::make_shared<BitCodeAbbrev>();
1716   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION));
1717   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1718   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1719   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1720   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1721   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1722   return Stream.EmitAbbrev(std::move(Abbv));
1723 }
1724 
1725 unsigned DXILBitcodeWriter::createGenericDINodeAbbrev() {
1726   // Abbrev for METADATA_GENERIC_DEBUG.
1727   //
1728   // Assume the column is usually under 128, and always output the inlined-at
1729   // location (it's never more expensive than building an array size 1).
1730   std::shared_ptr<BitCodeAbbrev> Abbv = std::make_shared<BitCodeAbbrev>();
1731   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG));
1732   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1733   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1734   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1735   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1736   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1737   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1738   return Stream.EmitAbbrev(std::move(Abbv));
1739 }
1740 
1741 void DXILBitcodeWriter::writeMetadataRecords(ArrayRef<const Metadata *> MDs,
1742                                              SmallVectorImpl<uint64_t> &Record,
1743                                              std::vector<unsigned> *MDAbbrevs,
1744                                              std::vector<uint64_t> *IndexPos) {
1745   if (MDs.empty())
1746     return;
1747 
1748     // Initialize MDNode abbreviations.
1749 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0;
1750 #include "llvm/IR/Metadata.def"
1751 
1752   for (const Metadata *MD : MDs) {
1753     if (IndexPos)
1754       IndexPos->push_back(Stream.GetCurrentBitNo());
1755     if (const MDNode *N = dyn_cast<MDNode>(MD)) {
1756       assert(N->isResolved() && "Expected forward references to be resolved");
1757 
1758       switch (N->getMetadataID()) {
1759       default:
1760         llvm_unreachable("Invalid MDNode subclass");
1761 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
1762   case Metadata::CLASS##Kind:                                                  \
1763     if (MDAbbrevs)                                                             \
1764       write##CLASS(cast<CLASS>(N), Record,                                     \
1765                    (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]);             \
1766     else                                                                       \
1767       write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev);                     \
1768     continue;
1769 #include "llvm/IR/Metadata.def"
1770       }
1771     }
1772     writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record);
1773   }
1774 }
1775 
1776 unsigned DXILBitcodeWriter::createMetadataStringsAbbrev() {
1777   auto Abbv = std::make_shared<BitCodeAbbrev>();
1778   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING_OLD));
1779   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1780   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1781   return Stream.EmitAbbrev(std::move(Abbv));
1782 }
1783 
1784 void DXILBitcodeWriter::writeMetadataStrings(
1785     ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) {
1786   for (const Metadata *MD : Strings) {
1787     const MDString *MDS = cast<MDString>(MD);
1788     // Code: [strchar x N]
1789     Record.append(MDS->bytes_begin(), MDS->bytes_end());
1790 
1791     // Emit the finished record.
1792     Stream.EmitRecord(bitc::METADATA_STRING_OLD, Record,
1793                       createMetadataStringsAbbrev());
1794     Record.clear();
1795   }
1796 }
1797 
1798 void DXILBitcodeWriter::writeModuleMetadata() {
1799   if (!VE.hasMDs() && M.named_metadata_empty())
1800     return;
1801 
1802   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 5);
1803 
1804   // Emit all abbrevs upfront, so that the reader can jump in the middle of the
1805   // block and load any metadata.
1806   std::vector<unsigned> MDAbbrevs;
1807 
1808   MDAbbrevs.resize(MetadataAbbrev::LastPlusOne);
1809   MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev();
1810   MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] =
1811       createGenericDINodeAbbrev();
1812 
1813   unsigned NameAbbrev = 0;
1814   if (!M.named_metadata_empty()) {
1815     // Abbrev for METADATA_NAME.
1816     std::shared_ptr<BitCodeAbbrev> Abbv = std::make_shared<BitCodeAbbrev>();
1817     Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME));
1818     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1819     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1820     NameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1821   }
1822 
1823   SmallVector<uint64_t, 64> Record;
1824   writeMetadataStrings(VE.getMDStrings(), Record);
1825 
1826   std::vector<uint64_t> IndexPos;
1827   IndexPos.reserve(VE.getNonMDStrings().size());
1828   writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos);
1829 
1830   // Write named metadata.
1831   for (const NamedMDNode &NMD : M.named_metadata()) {
1832     // Write name.
1833     StringRef Str = NMD.getName();
1834     Record.append(Str.bytes_begin(), Str.bytes_end());
1835     Stream.EmitRecord(bitc::METADATA_NAME, Record, NameAbbrev);
1836     Record.clear();
1837 
1838     // Write named metadata operands.
1839     for (const MDNode *N : NMD.operands())
1840       Record.push_back(VE.getMetadataID(N));
1841     Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
1842     Record.clear();
1843   }
1844 
1845   Stream.ExitBlock();
1846 }
1847 
1848 void DXILBitcodeWriter::writeFunctionMetadata(const Function &F) {
1849   if (!VE.hasMDs())
1850     return;
1851 
1852   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4);
1853   SmallVector<uint64_t, 64> Record;
1854   writeMetadataStrings(VE.getMDStrings(), Record);
1855   writeMetadataRecords(VE.getNonMDStrings(), Record);
1856   Stream.ExitBlock();
1857 }
1858 
1859 void DXILBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) {
1860   Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
1861 
1862   SmallVector<uint64_t, 64> Record;
1863 
1864   // Write metadata attachments
1865   // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
1866   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
1867   F.getAllMetadata(MDs);
1868   if (!MDs.empty()) {
1869     for (const auto &I : MDs) {
1870       Record.push_back(I.first);
1871       Record.push_back(VE.getMetadataID(I.second));
1872     }
1873     Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
1874     Record.clear();
1875   }
1876 
1877   for (const BasicBlock &BB : F)
1878     for (const Instruction &I : BB) {
1879       MDs.clear();
1880       I.getAllMetadataOtherThanDebugLoc(MDs);
1881 
1882       // If no metadata, ignore instruction.
1883       if (MDs.empty())
1884         continue;
1885 
1886       Record.push_back(VE.getInstructionID(&I));
1887 
1888       for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
1889         Record.push_back(MDs[i].first);
1890         Record.push_back(VE.getMetadataID(MDs[i].second));
1891       }
1892       Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
1893       Record.clear();
1894     }
1895 
1896   Stream.ExitBlock();
1897 }
1898 
1899 void DXILBitcodeWriter::writeModuleMetadataKinds() {
1900   SmallVector<uint64_t, 64> Record;
1901 
1902   // Write metadata kinds
1903   // METADATA_KIND - [n x [id, name]]
1904   SmallVector<StringRef, 8> Names;
1905   M.getMDKindNames(Names);
1906 
1907   if (Names.empty())
1908     return;
1909 
1910   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
1911 
1912   for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
1913     Record.push_back(MDKindID);
1914     StringRef KName = Names[MDKindID];
1915     Record.append(KName.begin(), KName.end());
1916 
1917     Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
1918     Record.clear();
1919   }
1920 
1921   Stream.ExitBlock();
1922 }
1923 
1924 void DXILBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal,
1925                                        bool isGlobal) {
1926   if (FirstVal == LastVal)
1927     return;
1928 
1929   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
1930 
1931   unsigned AggregateAbbrev = 0;
1932   unsigned String8Abbrev = 0;
1933   unsigned CString7Abbrev = 0;
1934   unsigned CString6Abbrev = 0;
1935   // If this is a constant pool for the module, emit module-specific abbrevs.
1936   if (isGlobal) {
1937     // Abbrev for CST_CODE_AGGREGATE.
1938     auto Abbv = std::make_shared<BitCodeAbbrev>();
1939     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
1940     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1941     Abbv->Add(
1942         BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal + 1)));
1943     AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1944 
1945     // Abbrev for CST_CODE_STRING.
1946     Abbv = std::make_shared<BitCodeAbbrev>();
1947     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
1948     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1949     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1950     String8Abbrev = Stream.EmitAbbrev(std::move(Abbv));
1951     // Abbrev for CST_CODE_CSTRING.
1952     Abbv = std::make_shared<BitCodeAbbrev>();
1953     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
1954     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1955     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1956     CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv));
1957     // Abbrev for CST_CODE_CSTRING.
1958     Abbv = std::make_shared<BitCodeAbbrev>();
1959     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
1960     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1961     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1962     CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv));
1963   }
1964 
1965   SmallVector<uint64_t, 64> Record;
1966 
1967   const ValueEnumerator::ValueList &Vals = VE.getValues();
1968   Type *LastTy = nullptr;
1969   for (unsigned i = FirstVal; i != LastVal; ++i) {
1970     const Value *V = Vals[i].first;
1971     // If we need to switch types, do so now.
1972     if (V->getType() != LastTy) {
1973       LastTy = V->getType();
1974       Record.push_back(getTypeID(LastTy));
1975       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
1976                         CONSTANTS_SETTYPE_ABBREV);
1977       Record.clear();
1978     }
1979 
1980     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
1981       Record.push_back(unsigned(IA->hasSideEffects()) |
1982                        unsigned(IA->isAlignStack()) << 1 |
1983                        unsigned(IA->getDialect() & 1) << 2);
1984 
1985       // Add the asm string.
1986       const std::string &AsmStr = IA->getAsmString();
1987       Record.push_back(AsmStr.size());
1988       Record.append(AsmStr.begin(), AsmStr.end());
1989 
1990       // Add the constraint string.
1991       const std::string &ConstraintStr = IA->getConstraintString();
1992       Record.push_back(ConstraintStr.size());
1993       Record.append(ConstraintStr.begin(), ConstraintStr.end());
1994       Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
1995       Record.clear();
1996       continue;
1997     }
1998     const Constant *C = cast<Constant>(V);
1999     unsigned Code = -1U;
2000     unsigned AbbrevToUse = 0;
2001     if (C->isNullValue()) {
2002       Code = bitc::CST_CODE_NULL;
2003     } else if (isa<UndefValue>(C)) {
2004       Code = bitc::CST_CODE_UNDEF;
2005     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
2006       if (IV->getBitWidth() <= 64) {
2007         uint64_t V = IV->getSExtValue();
2008         emitSignedInt64(Record, V);
2009         Code = bitc::CST_CODE_INTEGER;
2010         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
2011       } else { // Wide integers, > 64 bits in size.
2012         // We have an arbitrary precision integer value to write whose
2013         // bit width is > 64. However, in canonical unsigned integer
2014         // format it is likely that the high bits are going to be zero.
2015         // So, we only write the number of active words.
2016         unsigned NWords = IV->getValue().getActiveWords();
2017         const uint64_t *RawWords = IV->getValue().getRawData();
2018         for (unsigned i = 0; i != NWords; ++i) {
2019           emitSignedInt64(Record, RawWords[i]);
2020         }
2021         Code = bitc::CST_CODE_WIDE_INTEGER;
2022       }
2023     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
2024       Code = bitc::CST_CODE_FLOAT;
2025       Type *Ty = CFP->getType();
2026       if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) {
2027         Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
2028       } else if (Ty->isX86_FP80Ty()) {
2029         // api needed to prevent premature destruction
2030         // bits are not in the same order as a normal i80 APInt, compensate.
2031         APInt api = CFP->getValueAPF().bitcastToAPInt();
2032         const uint64_t *p = api.getRawData();
2033         Record.push_back((p[1] << 48) | (p[0] >> 16));
2034         Record.push_back(p[0] & 0xffffLL);
2035       } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
2036         APInt api = CFP->getValueAPF().bitcastToAPInt();
2037         const uint64_t *p = api.getRawData();
2038         Record.push_back(p[0]);
2039         Record.push_back(p[1]);
2040       } else {
2041         assert(0 && "Unknown FP type!");
2042       }
2043     } else if (isa<ConstantDataSequential>(C) &&
2044                cast<ConstantDataSequential>(C)->isString()) {
2045       const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
2046       // Emit constant strings specially.
2047       unsigned NumElts = Str->getNumElements();
2048       // If this is a null-terminated string, use the denser CSTRING encoding.
2049       if (Str->isCString()) {
2050         Code = bitc::CST_CODE_CSTRING;
2051         --NumElts; // Don't encode the null, which isn't allowed by char6.
2052       } else {
2053         Code = bitc::CST_CODE_STRING;
2054         AbbrevToUse = String8Abbrev;
2055       }
2056       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
2057       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
2058       for (unsigned i = 0; i != NumElts; ++i) {
2059         unsigned char V = Str->getElementAsInteger(i);
2060         Record.push_back(V);
2061         isCStr7 &= (V & 128) == 0;
2062         if (isCStrChar6)
2063           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
2064       }
2065 
2066       if (isCStrChar6)
2067         AbbrevToUse = CString6Abbrev;
2068       else if (isCStr7)
2069         AbbrevToUse = CString7Abbrev;
2070     } else if (const ConstantDataSequential *CDS =
2071                    dyn_cast<ConstantDataSequential>(C)) {
2072       Code = bitc::CST_CODE_DATA;
2073       Type *EltTy = CDS->getType()->getArrayElementType();
2074       if (isa<IntegerType>(EltTy)) {
2075         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2076           Record.push_back(CDS->getElementAsInteger(i));
2077       } else if (EltTy->isFloatTy()) {
2078         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
2079           union {
2080             float F;
2081             uint32_t I;
2082           };
2083           F = CDS->getElementAsFloat(i);
2084           Record.push_back(I);
2085         }
2086       } else {
2087         assert(EltTy->isDoubleTy() && "Unknown ConstantData element type");
2088         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
2089           union {
2090             double F;
2091             uint64_t I;
2092           };
2093           F = CDS->getElementAsDouble(i);
2094           Record.push_back(I);
2095         }
2096       }
2097     } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
2098                isa<ConstantVector>(C)) {
2099       Code = bitc::CST_CODE_AGGREGATE;
2100       for (const Value *Op : C->operands())
2101         Record.push_back(VE.getValueID(Op));
2102       AbbrevToUse = AggregateAbbrev;
2103     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2104       switch (CE->getOpcode()) {
2105       default:
2106         if (Instruction::isCast(CE->getOpcode())) {
2107           Code = bitc::CST_CODE_CE_CAST;
2108           Record.push_back(getEncodedCastOpcode(CE->getOpcode()));
2109           Record.push_back(getTypeID(C->getOperand(0)->getType()));
2110           Record.push_back(VE.getValueID(C->getOperand(0)));
2111           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
2112         } else {
2113           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
2114           Code = bitc::CST_CODE_CE_BINOP;
2115           Record.push_back(getEncodedBinaryOpcode(CE->getOpcode()));
2116           Record.push_back(VE.getValueID(C->getOperand(0)));
2117           Record.push_back(VE.getValueID(C->getOperand(1)));
2118           uint64_t Flags = getOptimizationFlags(CE);
2119           if (Flags != 0)
2120             Record.push_back(Flags);
2121         }
2122         break;
2123       case Instruction::GetElementPtr: {
2124         Code = bitc::CST_CODE_CE_GEP;
2125         const auto *GO = cast<GEPOperator>(C);
2126         if (GO->isInBounds())
2127           Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
2128         Record.push_back(getTypeID(GO->getSourceElementType()));
2129         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
2130           Record.push_back(getTypeID(C->getOperand(i)->getType()));
2131           Record.push_back(VE.getValueID(C->getOperand(i)));
2132         }
2133         break;
2134       }
2135       case Instruction::Select:
2136         Code = bitc::CST_CODE_CE_SELECT;
2137         Record.push_back(VE.getValueID(C->getOperand(0)));
2138         Record.push_back(VE.getValueID(C->getOperand(1)));
2139         Record.push_back(VE.getValueID(C->getOperand(2)));
2140         break;
2141       case Instruction::ExtractElement:
2142         Code = bitc::CST_CODE_CE_EXTRACTELT;
2143         Record.push_back(getTypeID(C->getOperand(0)->getType()));
2144         Record.push_back(VE.getValueID(C->getOperand(0)));
2145         Record.push_back(getTypeID(C->getOperand(1)->getType()));
2146         Record.push_back(VE.getValueID(C->getOperand(1)));
2147         break;
2148       case Instruction::InsertElement:
2149         Code = bitc::CST_CODE_CE_INSERTELT;
2150         Record.push_back(VE.getValueID(C->getOperand(0)));
2151         Record.push_back(VE.getValueID(C->getOperand(1)));
2152         Record.push_back(getTypeID(C->getOperand(2)->getType()));
2153         Record.push_back(VE.getValueID(C->getOperand(2)));
2154         break;
2155       case Instruction::ShuffleVector:
2156         // If the return type and argument types are the same, this is a
2157         // standard shufflevector instruction.  If the types are different,
2158         // then the shuffle is widening or truncating the input vectors, and
2159         // the argument type must also be encoded.
2160         if (C->getType() == C->getOperand(0)->getType()) {
2161           Code = bitc::CST_CODE_CE_SHUFFLEVEC;
2162         } else {
2163           Code = bitc::CST_CODE_CE_SHUFVEC_EX;
2164           Record.push_back(getTypeID(C->getOperand(0)->getType()));
2165         }
2166         Record.push_back(VE.getValueID(C->getOperand(0)));
2167         Record.push_back(VE.getValueID(C->getOperand(1)));
2168         Record.push_back(VE.getValueID(C->getOperand(2)));
2169         break;
2170       case Instruction::ICmp:
2171       case Instruction::FCmp:
2172         Code = bitc::CST_CODE_CE_CMP;
2173         Record.push_back(getTypeID(C->getOperand(0)->getType()));
2174         Record.push_back(VE.getValueID(C->getOperand(0)));
2175         Record.push_back(VE.getValueID(C->getOperand(1)));
2176         Record.push_back(CE->getPredicate());
2177         break;
2178       }
2179     } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
2180       Code = bitc::CST_CODE_BLOCKADDRESS;
2181       Record.push_back(getTypeID(BA->getFunction()->getType()));
2182       Record.push_back(VE.getValueID(BA->getFunction()));
2183       Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
2184     } else {
2185 #ifndef NDEBUG
2186       C->dump();
2187 #endif
2188       llvm_unreachable("Unknown constant!");
2189     }
2190     Stream.EmitRecord(Code, Record, AbbrevToUse);
2191     Record.clear();
2192   }
2193 
2194   Stream.ExitBlock();
2195 }
2196 
2197 void DXILBitcodeWriter::writeModuleConstants() {
2198   const ValueEnumerator::ValueList &Vals = VE.getValues();
2199 
2200   // Find the first constant to emit, which is the first non-globalvalue value.
2201   // We know globalvalues have been emitted by WriteModuleInfo.
2202   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
2203     if (!isa<GlobalValue>(Vals[i].first)) {
2204       writeConstants(i, Vals.size(), true);
2205       return;
2206     }
2207   }
2208 }
2209 
2210 /// pushValueAndType - The file has to encode both the value and type id for
2211 /// many values, because we need to know what type to create for forward
2212 /// references.  However, most operands are not forward references, so this type
2213 /// field is not needed.
2214 ///
2215 /// This function adds V's value ID to Vals.  If the value ID is higher than the
2216 /// instruction ID, then it is a forward reference, and it also includes the
2217 /// type ID.  The value ID that is written is encoded relative to the InstID.
2218 bool DXILBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID,
2219                                          SmallVectorImpl<unsigned> &Vals) {
2220   unsigned ValID = VE.getValueID(V);
2221   // Make encoding relative to the InstID.
2222   Vals.push_back(InstID - ValID);
2223   if (ValID >= InstID) {
2224     Vals.push_back(getTypeID(V->getType(), V));
2225     return true;
2226   }
2227   return false;
2228 }
2229 
2230 /// pushValue - Like pushValueAndType, but where the type of the value is
2231 /// omitted (perhaps it was already encoded in an earlier operand).
2232 void DXILBitcodeWriter::pushValue(const Value *V, unsigned InstID,
2233                                   SmallVectorImpl<unsigned> &Vals) {
2234   unsigned ValID = VE.getValueID(V);
2235   Vals.push_back(InstID - ValID);
2236 }
2237 
2238 void DXILBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID,
2239                                         SmallVectorImpl<uint64_t> &Vals) {
2240   unsigned ValID = VE.getValueID(V);
2241   int64_t diff = ((int32_t)InstID - (int32_t)ValID);
2242   emitSignedInt64(Vals, diff);
2243 }
2244 
2245 /// WriteInstruction - Emit an instruction
2246 void DXILBitcodeWriter::writeInstruction(const Instruction &I, unsigned InstID,
2247                                          SmallVectorImpl<unsigned> &Vals) {
2248   unsigned Code = 0;
2249   unsigned AbbrevToUse = 0;
2250   VE.setInstructionID(&I);
2251   switch (I.getOpcode()) {
2252   default:
2253     if (Instruction::isCast(I.getOpcode())) {
2254       Code = bitc::FUNC_CODE_INST_CAST;
2255       if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2256         AbbrevToUse = (unsigned)FUNCTION_INST_CAST_ABBREV;
2257       Vals.push_back(getTypeID(I.getType(), &I));
2258       Vals.push_back(getEncodedCastOpcode(I.getOpcode()));
2259     } else {
2260       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
2261       Code = bitc::FUNC_CODE_INST_BINOP;
2262       if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2263         AbbrevToUse = (unsigned)FUNCTION_INST_BINOP_ABBREV;
2264       pushValue(I.getOperand(1), InstID, Vals);
2265       Vals.push_back(getEncodedBinaryOpcode(I.getOpcode()));
2266       uint64_t Flags = getOptimizationFlags(&I);
2267       if (Flags != 0) {
2268         if (AbbrevToUse == (unsigned)FUNCTION_INST_BINOP_ABBREV)
2269           AbbrevToUse = (unsigned)FUNCTION_INST_BINOP_FLAGS_ABBREV;
2270         Vals.push_back(Flags);
2271       }
2272     }
2273     break;
2274 
2275   case Instruction::GetElementPtr: {
2276     Code = bitc::FUNC_CODE_INST_GEP;
2277     AbbrevToUse = (unsigned)FUNCTION_INST_GEP_ABBREV;
2278     auto &GEPInst = cast<GetElementPtrInst>(I);
2279     Vals.push_back(GEPInst.isInBounds());
2280     Vals.push_back(getTypeID(GEPInst.getSourceElementType()));
2281     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
2282       pushValueAndType(I.getOperand(i), InstID, Vals);
2283     break;
2284   }
2285   case Instruction::ExtractValue: {
2286     Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
2287     pushValueAndType(I.getOperand(0), InstID, Vals);
2288     const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
2289     Vals.append(EVI->idx_begin(), EVI->idx_end());
2290     break;
2291   }
2292   case Instruction::InsertValue: {
2293     Code = bitc::FUNC_CODE_INST_INSERTVAL;
2294     pushValueAndType(I.getOperand(0), InstID, Vals);
2295     pushValueAndType(I.getOperand(1), InstID, Vals);
2296     const InsertValueInst *IVI = cast<InsertValueInst>(&I);
2297     Vals.append(IVI->idx_begin(), IVI->idx_end());
2298     break;
2299   }
2300   case Instruction::Select:
2301     Code = bitc::FUNC_CODE_INST_VSELECT;
2302     pushValueAndType(I.getOperand(1), InstID, Vals);
2303     pushValue(I.getOperand(2), InstID, Vals);
2304     pushValueAndType(I.getOperand(0), InstID, Vals);
2305     break;
2306   case Instruction::ExtractElement:
2307     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
2308     pushValueAndType(I.getOperand(0), InstID, Vals);
2309     pushValueAndType(I.getOperand(1), InstID, Vals);
2310     break;
2311   case Instruction::InsertElement:
2312     Code = bitc::FUNC_CODE_INST_INSERTELT;
2313     pushValueAndType(I.getOperand(0), InstID, Vals);
2314     pushValue(I.getOperand(1), InstID, Vals);
2315     pushValueAndType(I.getOperand(2), InstID, Vals);
2316     break;
2317   case Instruction::ShuffleVector:
2318     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
2319     pushValueAndType(I.getOperand(0), InstID, Vals);
2320     pushValue(I.getOperand(1), InstID, Vals);
2321     pushValue(I.getOperand(2), InstID, Vals);
2322     break;
2323   case Instruction::ICmp:
2324   case Instruction::FCmp: {
2325     // compare returning Int1Ty or vector of Int1Ty
2326     Code = bitc::FUNC_CODE_INST_CMP2;
2327     pushValueAndType(I.getOperand(0), InstID, Vals);
2328     pushValue(I.getOperand(1), InstID, Vals);
2329     Vals.push_back(cast<CmpInst>(I).getPredicate());
2330     uint64_t Flags = getOptimizationFlags(&I);
2331     if (Flags != 0)
2332       Vals.push_back(Flags);
2333     break;
2334   }
2335 
2336   case Instruction::Ret: {
2337     Code = bitc::FUNC_CODE_INST_RET;
2338     unsigned NumOperands = I.getNumOperands();
2339     if (NumOperands == 0)
2340       AbbrevToUse = (unsigned)FUNCTION_INST_RET_VOID_ABBREV;
2341     else if (NumOperands == 1) {
2342       if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2343         AbbrevToUse = (unsigned)FUNCTION_INST_RET_VAL_ABBREV;
2344     } else {
2345       for (unsigned i = 0, e = NumOperands; i != e; ++i)
2346         pushValueAndType(I.getOperand(i), InstID, Vals);
2347     }
2348   } break;
2349   case Instruction::Br: {
2350     Code = bitc::FUNC_CODE_INST_BR;
2351     const BranchInst &II = cast<BranchInst>(I);
2352     Vals.push_back(VE.getValueID(II.getSuccessor(0)));
2353     if (II.isConditional()) {
2354       Vals.push_back(VE.getValueID(II.getSuccessor(1)));
2355       pushValue(II.getCondition(), InstID, Vals);
2356     }
2357   } break;
2358   case Instruction::Switch: {
2359     Code = bitc::FUNC_CODE_INST_SWITCH;
2360     const SwitchInst &SI = cast<SwitchInst>(I);
2361     Vals.push_back(getTypeID(SI.getCondition()->getType()));
2362     pushValue(SI.getCondition(), InstID, Vals);
2363     Vals.push_back(VE.getValueID(SI.getDefaultDest()));
2364     for (auto Case : SI.cases()) {
2365       Vals.push_back(VE.getValueID(Case.getCaseValue()));
2366       Vals.push_back(VE.getValueID(Case.getCaseSuccessor()));
2367     }
2368   } break;
2369   case Instruction::IndirectBr:
2370     Code = bitc::FUNC_CODE_INST_INDIRECTBR;
2371     Vals.push_back(getTypeID(I.getOperand(0)->getType()));
2372     // Encode the address operand as relative, but not the basic blocks.
2373     pushValue(I.getOperand(0), InstID, Vals);
2374     for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
2375       Vals.push_back(VE.getValueID(I.getOperand(i)));
2376     break;
2377 
2378   case Instruction::Invoke: {
2379     const InvokeInst *II = cast<InvokeInst>(&I);
2380     const Value *Callee = II->getCalledOperand();
2381     FunctionType *FTy = II->getFunctionType();
2382     Code = bitc::FUNC_CODE_INST_INVOKE;
2383 
2384     Vals.push_back(VE.getAttributeListID(II->getAttributes()));
2385     Vals.push_back(II->getCallingConv() | 1 << 13);
2386     Vals.push_back(VE.getValueID(II->getNormalDest()));
2387     Vals.push_back(VE.getValueID(II->getUnwindDest()));
2388     Vals.push_back(getTypeID(FTy));
2389     pushValueAndType(Callee, InstID, Vals);
2390 
2391     // Emit value #'s for the fixed parameters.
2392     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2393       pushValue(I.getOperand(i), InstID, Vals); // fixed param.
2394 
2395     // Emit type/value pairs for varargs params.
2396     if (FTy->isVarArg()) {
2397       for (unsigned i = FTy->getNumParams(), e = I.getNumOperands() - 3; i != e;
2398            ++i)
2399         pushValueAndType(I.getOperand(i), InstID, Vals); // vararg
2400     }
2401     break;
2402   }
2403   case Instruction::Resume:
2404     Code = bitc::FUNC_CODE_INST_RESUME;
2405     pushValueAndType(I.getOperand(0), InstID, Vals);
2406     break;
2407   case Instruction::Unreachable:
2408     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
2409     AbbrevToUse = (unsigned)FUNCTION_INST_UNREACHABLE_ABBREV;
2410     break;
2411 
2412   case Instruction::PHI: {
2413     const PHINode &PN = cast<PHINode>(I);
2414     Code = bitc::FUNC_CODE_INST_PHI;
2415     // With the newer instruction encoding, forward references could give
2416     // negative valued IDs.  This is most common for PHIs, so we use
2417     // signed VBRs.
2418     SmallVector<uint64_t, 128> Vals64;
2419     Vals64.push_back(getTypeID(PN.getType()));
2420     for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
2421       pushValueSigned(PN.getIncomingValue(i), InstID, Vals64);
2422       Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
2423     }
2424     // Emit a Vals64 vector and exit.
2425     Stream.EmitRecord(Code, Vals64, AbbrevToUse);
2426     Vals64.clear();
2427     return;
2428   }
2429 
2430   case Instruction::LandingPad: {
2431     const LandingPadInst &LP = cast<LandingPadInst>(I);
2432     Code = bitc::FUNC_CODE_INST_LANDINGPAD;
2433     Vals.push_back(getTypeID(LP.getType()));
2434     Vals.push_back(LP.isCleanup());
2435     Vals.push_back(LP.getNumClauses());
2436     for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
2437       if (LP.isCatch(I))
2438         Vals.push_back(LandingPadInst::Catch);
2439       else
2440         Vals.push_back(LandingPadInst::Filter);
2441       pushValueAndType(LP.getClause(I), InstID, Vals);
2442     }
2443     break;
2444   }
2445 
2446   case Instruction::Alloca: {
2447     Code = bitc::FUNC_CODE_INST_ALLOCA;
2448     const AllocaInst &AI = cast<AllocaInst>(I);
2449     Vals.push_back(getTypeID(AI.getAllocatedType()));
2450     Vals.push_back(getTypeID(I.getOperand(0)->getType()));
2451     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
2452     using APV = AllocaPackedValues;
2453     unsigned Record = 0;
2454     unsigned EncodedAlign = getEncodedAlign(AI.getAlign());
2455     Bitfield::set<APV::AlignLower>(
2456         Record, EncodedAlign & ((1 << APV::AlignLower::Bits) - 1));
2457     Bitfield::set<APV::AlignUpper>(Record,
2458                                    EncodedAlign >> APV::AlignLower::Bits);
2459     Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca());
2460     Vals.push_back(Record);
2461     break;
2462   }
2463 
2464   case Instruction::Load:
2465     if (cast<LoadInst>(I).isAtomic()) {
2466       Code = bitc::FUNC_CODE_INST_LOADATOMIC;
2467       pushValueAndType(I.getOperand(0), InstID, Vals);
2468     } else {
2469       Code = bitc::FUNC_CODE_INST_LOAD;
2470       if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr
2471         AbbrevToUse = (unsigned)FUNCTION_INST_LOAD_ABBREV;
2472     }
2473     Vals.push_back(getTypeID(I.getType()));
2474     Vals.push_back(Log2(cast<LoadInst>(I).getAlign()) + 1);
2475     Vals.push_back(cast<LoadInst>(I).isVolatile());
2476     if (cast<LoadInst>(I).isAtomic()) {
2477       Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering()));
2478       Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID()));
2479     }
2480     break;
2481   case Instruction::Store:
2482     if (cast<StoreInst>(I).isAtomic())
2483       Code = bitc::FUNC_CODE_INST_STOREATOMIC;
2484     else
2485       Code = bitc::FUNC_CODE_INST_STORE;
2486     pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr
2487     pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val
2488     Vals.push_back(Log2(cast<StoreInst>(I).getAlign()) + 1);
2489     Vals.push_back(cast<StoreInst>(I).isVolatile());
2490     if (cast<StoreInst>(I).isAtomic()) {
2491       Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering()));
2492       Vals.push_back(
2493           getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID()));
2494     }
2495     break;
2496   case Instruction::AtomicCmpXchg:
2497     Code = bitc::FUNC_CODE_INST_CMPXCHG;
2498     pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
2499     pushValueAndType(I.getOperand(1), InstID, Vals); // cmp.
2500     pushValue(I.getOperand(2), InstID, Vals);        // newval.
2501     Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
2502     Vals.push_back(
2503         getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
2504     Vals.push_back(
2505         getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID()));
2506     Vals.push_back(
2507         getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
2508     Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak());
2509     break;
2510   case Instruction::AtomicRMW:
2511     Code = bitc::FUNC_CODE_INST_ATOMICRMW;
2512     pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
2513     pushValue(I.getOperand(1), InstID, Vals);        // val.
2514     Vals.push_back(
2515         getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation()));
2516     Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
2517     Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
2518     Vals.push_back(
2519         getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID()));
2520     break;
2521   case Instruction::Fence:
2522     Code = bitc::FUNC_CODE_INST_FENCE;
2523     Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering()));
2524     Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID()));
2525     break;
2526   case Instruction::Call: {
2527     const CallInst &CI = cast<CallInst>(I);
2528     FunctionType *FTy = CI.getFunctionType();
2529 
2530     Code = bitc::FUNC_CODE_INST_CALL;
2531 
2532     Vals.push_back(VE.getAttributeListID(CI.getAttributes()));
2533     Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()) |
2534                    unsigned(CI.isMustTailCall()) << 14 | 1 << 15);
2535     Vals.push_back(getTypeID(FTy, CI.getCalledFunction()));
2536     pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee
2537 
2538     // Emit value #'s for the fixed parameters.
2539     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
2540       // Check for labels (can happen with asm labels).
2541       if (FTy->getParamType(i)->isLabelTy())
2542         Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
2543       else
2544         pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param.
2545     }
2546 
2547     // Emit type/value pairs for varargs params.
2548     if (FTy->isVarArg()) {
2549       for (unsigned i = FTy->getNumParams(), e = CI.arg_size(); i != e; ++i)
2550         pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs
2551     }
2552     break;
2553   }
2554   case Instruction::VAArg:
2555     Code = bitc::FUNC_CODE_INST_VAARG;
2556     Vals.push_back(getTypeID(I.getOperand(0)->getType())); // valistty
2557     pushValue(I.getOperand(0), InstID, Vals);              // valist.
2558     Vals.push_back(getTypeID(I.getType()));                // restype.
2559     break;
2560   }
2561 
2562   Stream.EmitRecord(Code, Vals, AbbrevToUse);
2563   Vals.clear();
2564 }
2565 
2566 // Emit names for globals/functions etc.
2567 void DXILBitcodeWriter::writeFunctionLevelValueSymbolTable(
2568     const ValueSymbolTable &VST) {
2569   if (VST.empty())
2570     return;
2571   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
2572 
2573   SmallVector<unsigned, 64> NameVals;
2574 
2575   // HLSL Change
2576   // Read the named values from a sorted list instead of the original list
2577   // to ensure the binary is the same no matter what values ever existed.
2578   SmallVector<const ValueName *, 16> SortedTable;
2579 
2580   for (auto &VI : VST) {
2581     SortedTable.push_back(VI.second->getValueName());
2582   }
2583   // The keys are unique, so there shouldn't be stability issues.
2584   llvm::sort(SortedTable, [](const ValueName *A, const ValueName *B) {
2585     return A->first() < B->first();
2586   });
2587 
2588   for (const ValueName *SI : SortedTable) {
2589     auto &Name = *SI;
2590 
2591     // Figure out the encoding to use for the name.
2592     bool is7Bit = true;
2593     bool isChar6 = true;
2594     for (const char *C = Name.getKeyData(), *E = C + Name.getKeyLength();
2595          C != E; ++C) {
2596       if (isChar6)
2597         isChar6 = BitCodeAbbrevOp::isChar6(*C);
2598       if ((unsigned char)*C & 128) {
2599         is7Bit = false;
2600         break; // don't bother scanning the rest.
2601       }
2602     }
2603 
2604     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
2605 
2606     // VST_ENTRY:   [valueid, namechar x N]
2607     // VST_BBENTRY: [bbid, namechar x N]
2608     unsigned Code;
2609     if (isa<BasicBlock>(SI->getValue())) {
2610       Code = bitc::VST_CODE_BBENTRY;
2611       if (isChar6)
2612         AbbrevToUse = VST_BBENTRY_6_ABBREV;
2613     } else {
2614       Code = bitc::VST_CODE_ENTRY;
2615       if (isChar6)
2616         AbbrevToUse = VST_ENTRY_6_ABBREV;
2617       else if (is7Bit)
2618         AbbrevToUse = VST_ENTRY_7_ABBREV;
2619     }
2620 
2621     NameVals.push_back(VE.getValueID(SI->getValue()));
2622     for (const char *P = Name.getKeyData(),
2623                     *E = Name.getKeyData() + Name.getKeyLength();
2624          P != E; ++P)
2625       NameVals.push_back((unsigned char)*P);
2626 
2627     // Emit the finished record.
2628     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
2629     NameVals.clear();
2630   }
2631   Stream.ExitBlock();
2632 }
2633 
2634 void DXILBitcodeWriter::writeUseList(UseListOrder &&Order) {
2635   assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
2636   unsigned Code;
2637   if (isa<BasicBlock>(Order.V))
2638     Code = bitc::USELIST_CODE_BB;
2639   else
2640     Code = bitc::USELIST_CODE_DEFAULT;
2641 
2642   SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end());
2643   Record.push_back(VE.getValueID(Order.V));
2644   Stream.EmitRecord(Code, Record);
2645 }
2646 
2647 void DXILBitcodeWriter::writeUseListBlock(const Function *F) {
2648   auto hasMore = [&]() {
2649     return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F;
2650   };
2651   if (!hasMore())
2652     // Nothing to do.
2653     return;
2654 
2655   Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
2656   while (hasMore()) {
2657     writeUseList(std::move(VE.UseListOrders.back()));
2658     VE.UseListOrders.pop_back();
2659   }
2660   Stream.ExitBlock();
2661 }
2662 
2663 /// Emit a function body to the module stream.
2664 void DXILBitcodeWriter::writeFunction(const Function &F) {
2665   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
2666   VE.incorporateFunction(F);
2667 
2668   SmallVector<unsigned, 64> Vals;
2669 
2670   // Emit the number of basic blocks, so the reader can create them ahead of
2671   // time.
2672   Vals.push_back(VE.getBasicBlocks().size());
2673   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
2674   Vals.clear();
2675 
2676   // If there are function-local constants, emit them now.
2677   unsigned CstStart, CstEnd;
2678   VE.getFunctionConstantRange(CstStart, CstEnd);
2679   writeConstants(CstStart, CstEnd, false);
2680 
2681   // If there is function-local metadata, emit it now.
2682   writeFunctionMetadata(F);
2683 
2684   // Keep a running idea of what the instruction ID is.
2685   unsigned InstID = CstEnd;
2686 
2687   bool NeedsMetadataAttachment = F.hasMetadata();
2688 
2689   DILocation *LastDL = nullptr;
2690 
2691   // Finally, emit all the instructions, in order.
2692   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
2693     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E;
2694          ++I) {
2695       writeInstruction(*I, InstID, Vals);
2696 
2697       if (!I->getType()->isVoidTy())
2698         ++InstID;
2699 
2700       // If the instruction has metadata, write a metadata attachment later.
2701       NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
2702 
2703       // If the instruction has a debug location, emit it.
2704       DILocation *DL = I->getDebugLoc();
2705       if (!DL)
2706         continue;
2707 
2708       if (DL == LastDL) {
2709         // Just repeat the same debug loc as last time.
2710         Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
2711         continue;
2712       }
2713 
2714       Vals.push_back(DL->getLine());
2715       Vals.push_back(DL->getColumn());
2716       Vals.push_back(VE.getMetadataOrNullID(DL->getScope()));
2717       Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt()));
2718       Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
2719       Vals.clear();
2720 
2721       LastDL = DL;
2722     }
2723 
2724   // Emit names for all the instructions etc.
2725   if (auto *Symtab = F.getValueSymbolTable())
2726     writeFunctionLevelValueSymbolTable(*Symtab);
2727 
2728   if (NeedsMetadataAttachment)
2729     writeFunctionMetadataAttachment(F);
2730 
2731   writeUseListBlock(&F);
2732   VE.purgeFunction();
2733   Stream.ExitBlock();
2734 }
2735 
2736 // Emit blockinfo, which defines the standard abbreviations etc.
2737 void DXILBitcodeWriter::writeBlockInfo() {
2738   // We only want to emit block info records for blocks that have multiple
2739   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
2740   // Other blocks can define their abbrevs inline.
2741   Stream.EnterBlockInfoBlock();
2742 
2743   { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
2744     auto Abbv = std::make_shared<BitCodeAbbrev>();
2745     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
2746     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2747     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2748     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2749     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
2750                                    std::move(Abbv)) != VST_ENTRY_8_ABBREV)
2751       assert(false && "Unexpected abbrev ordering!");
2752   }
2753 
2754   { // 7-bit fixed width VST_ENTRY strings.
2755     auto Abbv = std::make_shared<BitCodeAbbrev>();
2756     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
2757     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2758     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2759     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
2760     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
2761                                    std::move(Abbv)) != VST_ENTRY_7_ABBREV)
2762       assert(false && "Unexpected abbrev ordering!");
2763   }
2764   { // 6-bit char6 VST_ENTRY strings.
2765     auto Abbv = std::make_shared<BitCodeAbbrev>();
2766     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
2767     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2768     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2769     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2770     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
2771                                    std::move(Abbv)) != VST_ENTRY_6_ABBREV)
2772       assert(false && "Unexpected abbrev ordering!");
2773   }
2774   { // 6-bit char6 VST_BBENTRY strings.
2775     auto Abbv = std::make_shared<BitCodeAbbrev>();
2776     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
2777     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2778     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2779     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2780     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
2781                                    std::move(Abbv)) != VST_BBENTRY_6_ABBREV)
2782       assert(false && "Unexpected abbrev ordering!");
2783   }
2784 
2785   { // SETTYPE abbrev for CONSTANTS_BLOCK.
2786     auto Abbv = std::make_shared<BitCodeAbbrev>();
2787     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
2788     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
2789                               VE.computeBitsRequiredForTypeIndicies()));
2790     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) !=
2791         CONSTANTS_SETTYPE_ABBREV)
2792       assert(false && "Unexpected abbrev ordering!");
2793   }
2794 
2795   { // INTEGER abbrev for CONSTANTS_BLOCK.
2796     auto Abbv = std::make_shared<BitCodeAbbrev>();
2797     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
2798     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2799     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) !=
2800         CONSTANTS_INTEGER_ABBREV)
2801       assert(false && "Unexpected abbrev ordering!");
2802   }
2803 
2804   { // CE_CAST abbrev for CONSTANTS_BLOCK.
2805     auto Abbv = std::make_shared<BitCodeAbbrev>();
2806     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
2807     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc
2808     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,      // typeid
2809                               VE.computeBitsRequiredForTypeIndicies()));
2810     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
2811 
2812     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) !=
2813         CONSTANTS_CE_CAST_Abbrev)
2814       assert(false && "Unexpected abbrev ordering!");
2815   }
2816   { // NULL abbrev for CONSTANTS_BLOCK.
2817     auto Abbv = std::make_shared<BitCodeAbbrev>();
2818     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
2819     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) !=
2820         CONSTANTS_NULL_Abbrev)
2821       assert(false && "Unexpected abbrev ordering!");
2822   }
2823 
2824   // FIXME: This should only use space for first class types!
2825 
2826   { // INST_LOAD abbrev for FUNCTION_BLOCK.
2827     auto Abbv = std::make_shared<BitCodeAbbrev>();
2828     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
2829     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
2830     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,    // dest ty
2831                               VE.computeBitsRequiredForTypeIndicies()));
2832     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // Align
2833     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
2834     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
2835         (unsigned)FUNCTION_INST_LOAD_ABBREV)
2836       assert(false && "Unexpected abbrev ordering!");
2837   }
2838   { // INST_BINOP abbrev for FUNCTION_BLOCK.
2839     auto Abbv = std::make_shared<BitCodeAbbrev>();
2840     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
2841     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // LHS
2842     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // RHS
2843     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
2844     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
2845         (unsigned)FUNCTION_INST_BINOP_ABBREV)
2846       assert(false && "Unexpected abbrev ordering!");
2847   }
2848   { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
2849     auto Abbv = std::make_shared<BitCodeAbbrev>();
2850     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
2851     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // LHS
2852     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // RHS
2853     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
2854     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
2855     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
2856         (unsigned)FUNCTION_INST_BINOP_FLAGS_ABBREV)
2857       assert(false && "Unexpected abbrev ordering!");
2858   }
2859   { // INST_CAST abbrev for FUNCTION_BLOCK.
2860     auto Abbv = std::make_shared<BitCodeAbbrev>();
2861     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
2862     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal
2863     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,    // dest ty
2864                               VE.computeBitsRequiredForTypeIndicies()));
2865     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
2866     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
2867         (unsigned)FUNCTION_INST_CAST_ABBREV)
2868       assert(false && "Unexpected abbrev ordering!");
2869   }
2870 
2871   { // INST_RET abbrev for FUNCTION_BLOCK.
2872     auto Abbv = std::make_shared<BitCodeAbbrev>();
2873     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
2874     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
2875         (unsigned)FUNCTION_INST_RET_VOID_ABBREV)
2876       assert(false && "Unexpected abbrev ordering!");
2877   }
2878   { // INST_RET abbrev for FUNCTION_BLOCK.
2879     auto Abbv = std::make_shared<BitCodeAbbrev>();
2880     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
2881     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
2882     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
2883         (unsigned)FUNCTION_INST_RET_VAL_ABBREV)
2884       assert(false && "Unexpected abbrev ordering!");
2885   }
2886   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
2887     auto Abbv = std::make_shared<BitCodeAbbrev>();
2888     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
2889     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
2890         (unsigned)FUNCTION_INST_UNREACHABLE_ABBREV)
2891       assert(false && "Unexpected abbrev ordering!");
2892   }
2893   {
2894     auto Abbv = std::make_shared<BitCodeAbbrev>();
2895     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP));
2896     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
2897     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
2898                               Log2_32_Ceil(VE.getTypes().size() + 1)));
2899     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2900     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
2901     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
2902         (unsigned)FUNCTION_INST_GEP_ABBREV)
2903       assert(false && "Unexpected abbrev ordering!");
2904   }
2905 
2906   Stream.ExitBlock();
2907 }
2908 
2909 void DXILBitcodeWriter::writeModuleVersion() {
2910   // VERSION: [version#]
2911   Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<unsigned>{1});
2912 }
2913 
2914 /// WriteModule - Emit the specified module to the bitstream.
2915 void DXILBitcodeWriter::write() {
2916   // The identification block is new since llvm-3.7, but the old bitcode reader
2917   // will skip it.
2918   // writeIdentificationBlock(Stream);
2919 
2920   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
2921 
2922   // It is redundant to fully-specify this here, but nice to make it explicit
2923   // so that it is clear the DXIL module version is different.
2924   DXILBitcodeWriter::writeModuleVersion();
2925 
2926   // Emit blockinfo, which defines the standard abbreviations etc.
2927   writeBlockInfo();
2928 
2929   // Emit information about attribute groups.
2930   writeAttributeGroupTable();
2931 
2932   // Emit information about parameter attributes.
2933   writeAttributeTable();
2934 
2935   // Emit information describing all of the types in the module.
2936   writeTypeTable();
2937 
2938   writeComdats();
2939 
2940   // Emit top-level description of module, including target triple, inline asm,
2941   // descriptors for global variables, and function prototype info.
2942   writeModuleInfo();
2943 
2944   // Emit constants.
2945   writeModuleConstants();
2946 
2947   // Emit metadata.
2948   writeModuleMetadataKinds();
2949 
2950   // Emit metadata.
2951   writeModuleMetadata();
2952 
2953   // Emit names for globals/functions etc.
2954   // DXIL uses the same format for module-level value symbol table as for the
2955   // function level table.
2956   writeFunctionLevelValueSymbolTable(M.getValueSymbolTable());
2957 
2958   // Emit module-level use-lists.
2959   writeUseListBlock(nullptr);
2960 
2961   // Emit function bodies.
2962   for (const Function &F : M)
2963     if (!F.isDeclaration())
2964       writeFunction(F);
2965 
2966   Stream.ExitBlock();
2967 }
2968