1 //===- HexagonBitSimplify.cpp ---------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "BitTracker.h"
10 #include "HexagonBitTracker.h"
11 #include "HexagonInstrInfo.h"
12 #include "HexagonRegisterInfo.h"
13 #include "HexagonSubtarget.h"
14 #include "llvm/ADT/BitVector.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/GraphTraits.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/CodeGen/MachineBasicBlock.h"
21 #include "llvm/CodeGen/MachineDominators.h"
22 #include "llvm/CodeGen/MachineFunction.h"
23 #include "llvm/CodeGen/MachineFunctionPass.h"
24 #include "llvm/CodeGen/MachineInstr.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineOperand.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/TargetRegisterInfo.h"
29 #include "llvm/IR/DebugLoc.h"
30 #include "llvm/InitializePasses.h"
31 #include "llvm/MC/MCInstrDesc.h"
32 #include "llvm/Pass.h"
33 #include "llvm/Support/CommandLine.h"
34 #include "llvm/Support/Compiler.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/MathExtras.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include <algorithm>
40 #include <cassert>
41 #include <cstdint>
42 #include <iterator>
43 #include <limits>
44 #include <utility>
45 #include <vector>
46 
47 #define DEBUG_TYPE "hexbit"
48 
49 using namespace llvm;
50 
51 static cl::opt<bool> PreserveTiedOps("hexbit-keep-tied", cl::Hidden,
52   cl::init(true), cl::desc("Preserve subregisters in tied operands"));
53 static cl::opt<bool> GenExtract("hexbit-extract", cl::Hidden,
54   cl::init(true), cl::desc("Generate extract instructions"));
55 static cl::opt<bool> GenBitSplit("hexbit-bitsplit", cl::Hidden,
56   cl::init(true), cl::desc("Generate bitsplit instructions"));
57 
58 static cl::opt<unsigned> MaxExtract("hexbit-max-extract", cl::Hidden,
59   cl::init(std::numeric_limits<unsigned>::max()));
60 static unsigned CountExtract = 0;
61 static cl::opt<unsigned> MaxBitSplit("hexbit-max-bitsplit", cl::Hidden,
62   cl::init(std::numeric_limits<unsigned>::max()));
63 static unsigned CountBitSplit = 0;
64 
65 namespace llvm {
66 
67   void initializeHexagonBitSimplifyPass(PassRegistry& Registry);
68   FunctionPass *createHexagonBitSimplify();
69 
70 } // end namespace llvm
71 
72 namespace {
73 
74   // Set of virtual registers, based on BitVector.
75   struct RegisterSet : private BitVector {
76     RegisterSet() = default;
77     explicit RegisterSet(unsigned s, bool t = false) : BitVector(s, t) {}
78     RegisterSet(const RegisterSet &RS) = default;
79 
80     using BitVector::clear;
81     using BitVector::count;
82 
83     unsigned find_first() const {
84       int First = BitVector::find_first();
85       if (First < 0)
86         return 0;
87       return x2v(First);
88     }
89 
90     unsigned find_next(unsigned Prev) const {
91       int Next = BitVector::find_next(v2x(Prev));
92       if (Next < 0)
93         return 0;
94       return x2v(Next);
95     }
96 
97     RegisterSet &insert(unsigned R) {
98       unsigned Idx = v2x(R);
99       ensure(Idx);
100       return static_cast<RegisterSet&>(BitVector::set(Idx));
101     }
102     RegisterSet &remove(unsigned R) {
103       unsigned Idx = v2x(R);
104       if (Idx >= size())
105         return *this;
106       return static_cast<RegisterSet&>(BitVector::reset(Idx));
107     }
108 
109     RegisterSet &insert(const RegisterSet &Rs) {
110       return static_cast<RegisterSet&>(BitVector::operator|=(Rs));
111     }
112     RegisterSet &remove(const RegisterSet &Rs) {
113       return static_cast<RegisterSet&>(BitVector::reset(Rs));
114     }
115 
116     reference operator[](unsigned R) {
117       unsigned Idx = v2x(R);
118       ensure(Idx);
119       return BitVector::operator[](Idx);
120     }
121     bool operator[](unsigned R) const {
122       unsigned Idx = v2x(R);
123       assert(Idx < size());
124       return BitVector::operator[](Idx);
125     }
126     bool has(unsigned R) const {
127       unsigned Idx = v2x(R);
128       if (Idx >= size())
129         return false;
130       return BitVector::test(Idx);
131     }
132 
133     bool empty() const {
134       return !BitVector::any();
135     }
136     bool includes(const RegisterSet &Rs) const {
137       // A.BitVector::test(B)  <=>  A-B != {}
138       return !Rs.BitVector::test(*this);
139     }
140     bool intersects(const RegisterSet &Rs) const {
141       return BitVector::anyCommon(Rs);
142     }
143 
144   private:
145     void ensure(unsigned Idx) {
146       if (size() <= Idx)
147         resize(std::max(Idx+1, 32U));
148     }
149 
150     static inline unsigned v2x(unsigned v) {
151       return Register::virtReg2Index(v);
152     }
153 
154     static inline unsigned x2v(unsigned x) {
155       return Register::index2VirtReg(x);
156     }
157   };
158 
159   struct PrintRegSet {
160     PrintRegSet(const RegisterSet &S, const TargetRegisterInfo *RI)
161       : RS(S), TRI(RI) {}
162 
163     friend raw_ostream &operator<< (raw_ostream &OS,
164           const PrintRegSet &P);
165 
166   private:
167     const RegisterSet &RS;
168     const TargetRegisterInfo *TRI;
169   };
170 
171   raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P)
172     LLVM_ATTRIBUTE_UNUSED;
173   raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P) {
174     OS << '{';
175     for (unsigned R = P.RS.find_first(); R; R = P.RS.find_next(R))
176       OS << ' ' << printReg(R, P.TRI);
177     OS << " }";
178     return OS;
179   }
180 
181   class Transformation;
182 
183   class HexagonBitSimplify : public MachineFunctionPass {
184   public:
185     static char ID;
186 
187     HexagonBitSimplify() : MachineFunctionPass(ID) {}
188 
189     StringRef getPassName() const override {
190       return "Hexagon bit simplification";
191     }
192 
193     void getAnalysisUsage(AnalysisUsage &AU) const override {
194       AU.addRequired<MachineDominatorTree>();
195       AU.addPreserved<MachineDominatorTree>();
196       MachineFunctionPass::getAnalysisUsage(AU);
197     }
198 
199     bool runOnMachineFunction(MachineFunction &MF) override;
200 
201     static void getInstrDefs(const MachineInstr &MI, RegisterSet &Defs);
202     static void getInstrUses(const MachineInstr &MI, RegisterSet &Uses);
203     static bool isEqual(const BitTracker::RegisterCell &RC1, uint16_t B1,
204         const BitTracker::RegisterCell &RC2, uint16_t B2, uint16_t W);
205     static bool isZero(const BitTracker::RegisterCell &RC, uint16_t B,
206         uint16_t W);
207     static bool getConst(const BitTracker::RegisterCell &RC, uint16_t B,
208         uint16_t W, uint64_t &U);
209     static bool replaceReg(unsigned OldR, unsigned NewR,
210         MachineRegisterInfo &MRI);
211     static bool getSubregMask(const BitTracker::RegisterRef &RR,
212         unsigned &Begin, unsigned &Width, MachineRegisterInfo &MRI);
213     static bool replaceRegWithSub(unsigned OldR, unsigned NewR,
214         unsigned NewSR, MachineRegisterInfo &MRI);
215     static bool replaceSubWithSub(unsigned OldR, unsigned OldSR,
216         unsigned NewR, unsigned NewSR, MachineRegisterInfo &MRI);
217     static bool parseRegSequence(const MachineInstr &I,
218         BitTracker::RegisterRef &SL, BitTracker::RegisterRef &SH,
219         const MachineRegisterInfo &MRI);
220 
221     static bool getUsedBitsInStore(unsigned Opc, BitVector &Bits,
222         uint16_t Begin);
223     static bool getUsedBits(unsigned Opc, unsigned OpN, BitVector &Bits,
224         uint16_t Begin, const HexagonInstrInfo &HII);
225 
226     static const TargetRegisterClass *getFinalVRegClass(
227         const BitTracker::RegisterRef &RR, MachineRegisterInfo &MRI);
228     static bool isTransparentCopy(const BitTracker::RegisterRef &RD,
229         const BitTracker::RegisterRef &RS, MachineRegisterInfo &MRI);
230 
231   private:
232     MachineDominatorTree *MDT = nullptr;
233 
234     bool visitBlock(MachineBasicBlock &B, Transformation &T, RegisterSet &AVs);
235     static bool hasTiedUse(unsigned Reg, MachineRegisterInfo &MRI,
236         unsigned NewSub = Hexagon::NoSubRegister);
237   };
238 
239   using HBS = HexagonBitSimplify;
240 
241   // The purpose of this class is to provide a common facility to traverse
242   // the function top-down or bottom-up via the dominator tree, and keep
243   // track of the available registers.
244   class Transformation {
245   public:
246     bool TopDown;
247 
248     Transformation(bool TD) : TopDown(TD) {}
249     virtual ~Transformation() = default;
250 
251     virtual bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) = 0;
252   };
253 
254 } // end anonymous namespace
255 
256 char HexagonBitSimplify::ID = 0;
257 
258 INITIALIZE_PASS_BEGIN(HexagonBitSimplify, "hexagon-bit-simplify",
259       "Hexagon bit simplification", false, false)
260 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
261 INITIALIZE_PASS_END(HexagonBitSimplify, "hexagon-bit-simplify",
262       "Hexagon bit simplification", false, false)
263 
264 bool HexagonBitSimplify::visitBlock(MachineBasicBlock &B, Transformation &T,
265       RegisterSet &AVs) {
266   bool Changed = false;
267 
268   if (T.TopDown)
269     Changed = T.processBlock(B, AVs);
270 
271   RegisterSet Defs;
272   for (auto &I : B)
273     getInstrDefs(I, Defs);
274   RegisterSet NewAVs = AVs;
275   NewAVs.insert(Defs);
276 
277   for (auto *DTN : children<MachineDomTreeNode*>(MDT->getNode(&B)))
278     Changed |= visitBlock(*(DTN->getBlock()), T, NewAVs);
279 
280   if (!T.TopDown)
281     Changed |= T.processBlock(B, AVs);
282 
283   return Changed;
284 }
285 
286 //
287 // Utility functions:
288 //
289 void HexagonBitSimplify::getInstrDefs(const MachineInstr &MI,
290       RegisterSet &Defs) {
291   for (auto &Op : MI.operands()) {
292     if (!Op.isReg() || !Op.isDef())
293       continue;
294     Register R = Op.getReg();
295     if (!Register::isVirtualRegister(R))
296       continue;
297     Defs.insert(R);
298   }
299 }
300 
301 void HexagonBitSimplify::getInstrUses(const MachineInstr &MI,
302       RegisterSet &Uses) {
303   for (auto &Op : MI.operands()) {
304     if (!Op.isReg() || !Op.isUse())
305       continue;
306     Register R = Op.getReg();
307     if (!Register::isVirtualRegister(R))
308       continue;
309     Uses.insert(R);
310   }
311 }
312 
313 // Check if all the bits in range [B, E) in both cells are equal.
314 bool HexagonBitSimplify::isEqual(const BitTracker::RegisterCell &RC1,
315       uint16_t B1, const BitTracker::RegisterCell &RC2, uint16_t B2,
316       uint16_t W) {
317   for (uint16_t i = 0; i < W; ++i) {
318     // If RC1[i] is "bottom", it cannot be proven equal to RC2[i].
319     if (RC1[B1+i].Type == BitTracker::BitValue::Ref && RC1[B1+i].RefI.Reg == 0)
320       return false;
321     // Same for RC2[i].
322     if (RC2[B2+i].Type == BitTracker::BitValue::Ref && RC2[B2+i].RefI.Reg == 0)
323       return false;
324     if (RC1[B1+i] != RC2[B2+i])
325       return false;
326   }
327   return true;
328 }
329 
330 bool HexagonBitSimplify::isZero(const BitTracker::RegisterCell &RC,
331       uint16_t B, uint16_t W) {
332   assert(B < RC.width() && B+W <= RC.width());
333   for (uint16_t i = B; i < B+W; ++i)
334     if (!RC[i].is(0))
335       return false;
336   return true;
337 }
338 
339 bool HexagonBitSimplify::getConst(const BitTracker::RegisterCell &RC,
340         uint16_t B, uint16_t W, uint64_t &U) {
341   assert(B < RC.width() && B+W <= RC.width());
342   int64_t T = 0;
343   for (uint16_t i = B+W; i > B; --i) {
344     const BitTracker::BitValue &BV = RC[i-1];
345     T <<= 1;
346     if (BV.is(1))
347       T |= 1;
348     else if (!BV.is(0))
349       return false;
350   }
351   U = T;
352   return true;
353 }
354 
355 bool HexagonBitSimplify::replaceReg(unsigned OldR, unsigned NewR,
356       MachineRegisterInfo &MRI) {
357   if (!Register::isVirtualRegister(OldR) || !Register::isVirtualRegister(NewR))
358     return false;
359   auto Begin = MRI.use_begin(OldR), End = MRI.use_end();
360   decltype(End) NextI;
361   for (auto I = Begin; I != End; I = NextI) {
362     NextI = std::next(I);
363     I->setReg(NewR);
364   }
365   return Begin != End;
366 }
367 
368 bool HexagonBitSimplify::replaceRegWithSub(unsigned OldR, unsigned NewR,
369       unsigned NewSR, MachineRegisterInfo &MRI) {
370   if (!Register::isVirtualRegister(OldR) || !Register::isVirtualRegister(NewR))
371     return false;
372   if (hasTiedUse(OldR, MRI, NewSR))
373     return false;
374   auto Begin = MRI.use_begin(OldR), End = MRI.use_end();
375   decltype(End) NextI;
376   for (auto I = Begin; I != End; I = NextI) {
377     NextI = std::next(I);
378     I->setReg(NewR);
379     I->setSubReg(NewSR);
380   }
381   return Begin != End;
382 }
383 
384 bool HexagonBitSimplify::replaceSubWithSub(unsigned OldR, unsigned OldSR,
385       unsigned NewR, unsigned NewSR, MachineRegisterInfo &MRI) {
386   if (!Register::isVirtualRegister(OldR) || !Register::isVirtualRegister(NewR))
387     return false;
388   if (OldSR != NewSR && hasTiedUse(OldR, MRI, NewSR))
389     return false;
390   auto Begin = MRI.use_begin(OldR), End = MRI.use_end();
391   decltype(End) NextI;
392   for (auto I = Begin; I != End; I = NextI) {
393     NextI = std::next(I);
394     if (I->getSubReg() != OldSR)
395       continue;
396     I->setReg(NewR);
397     I->setSubReg(NewSR);
398   }
399   return Begin != End;
400 }
401 
402 // For a register ref (pair Reg:Sub), set Begin to the position of the LSB
403 // of Sub in Reg, and set Width to the size of Sub in bits. Return true,
404 // if this succeeded, otherwise return false.
405 bool HexagonBitSimplify::getSubregMask(const BitTracker::RegisterRef &RR,
406       unsigned &Begin, unsigned &Width, MachineRegisterInfo &MRI) {
407   const TargetRegisterClass *RC = MRI.getRegClass(RR.Reg);
408   if (RR.Sub == 0) {
409     Begin = 0;
410     Width = MRI.getTargetRegisterInfo()->getRegSizeInBits(*RC);
411     return true;
412   }
413 
414   Begin = 0;
415 
416   switch (RC->getID()) {
417     case Hexagon::DoubleRegsRegClassID:
418     case Hexagon::HvxWRRegClassID:
419       Width = MRI.getTargetRegisterInfo()->getRegSizeInBits(*RC) / 2;
420       if (RR.Sub == Hexagon::isub_hi || RR.Sub == Hexagon::vsub_hi)
421         Begin = Width;
422       break;
423     default:
424       return false;
425   }
426   return true;
427 }
428 
429 
430 // For a REG_SEQUENCE, set SL to the low subregister and SH to the high
431 // subregister.
432 bool HexagonBitSimplify::parseRegSequence(const MachineInstr &I,
433       BitTracker::RegisterRef &SL, BitTracker::RegisterRef &SH,
434       const MachineRegisterInfo &MRI) {
435   assert(I.getOpcode() == TargetOpcode::REG_SEQUENCE);
436   unsigned Sub1 = I.getOperand(2).getImm(), Sub2 = I.getOperand(4).getImm();
437   auto &DstRC = *MRI.getRegClass(I.getOperand(0).getReg());
438   auto &HRI = static_cast<const HexagonRegisterInfo&>(
439                   *MRI.getTargetRegisterInfo());
440   unsigned SubLo = HRI.getHexagonSubRegIndex(DstRC, Hexagon::ps_sub_lo);
441   unsigned SubHi = HRI.getHexagonSubRegIndex(DstRC, Hexagon::ps_sub_hi);
442   assert((Sub1 == SubLo && Sub2 == SubHi) || (Sub1 == SubHi && Sub2 == SubLo));
443   if (Sub1 == SubLo && Sub2 == SubHi) {
444     SL = I.getOperand(1);
445     SH = I.getOperand(3);
446     return true;
447   }
448   if (Sub1 == SubHi && Sub2 == SubLo) {
449     SH = I.getOperand(1);
450     SL = I.getOperand(3);
451     return true;
452   }
453   return false;
454 }
455 
456 // All stores (except 64-bit stores) take a 32-bit register as the source
457 // of the value to be stored. If the instruction stores into a location
458 // that is shorter than 32 bits, some bits of the source register are not
459 // used. For each store instruction, calculate the set of used bits in
460 // the source register, and set appropriate bits in Bits. Return true if
461 // the bits are calculated, false otherwise.
462 bool HexagonBitSimplify::getUsedBitsInStore(unsigned Opc, BitVector &Bits,
463       uint16_t Begin) {
464   using namespace Hexagon;
465 
466   switch (Opc) {
467     // Store byte
468     case S2_storerb_io:           // memb(Rs32+#s11:0)=Rt32
469     case S2_storerbnew_io:        // memb(Rs32+#s11:0)=Nt8.new
470     case S2_pstorerbt_io:         // if (Pv4) memb(Rs32+#u6:0)=Rt32
471     case S2_pstorerbf_io:         // if (!Pv4) memb(Rs32+#u6:0)=Rt32
472     case S4_pstorerbtnew_io:      // if (Pv4.new) memb(Rs32+#u6:0)=Rt32
473     case S4_pstorerbfnew_io:      // if (!Pv4.new) memb(Rs32+#u6:0)=Rt32
474     case S2_pstorerbnewt_io:      // if (Pv4) memb(Rs32+#u6:0)=Nt8.new
475     case S2_pstorerbnewf_io:      // if (!Pv4) memb(Rs32+#u6:0)=Nt8.new
476     case S4_pstorerbnewtnew_io:   // if (Pv4.new) memb(Rs32+#u6:0)=Nt8.new
477     case S4_pstorerbnewfnew_io:   // if (!Pv4.new) memb(Rs32+#u6:0)=Nt8.new
478     case S2_storerb_pi:           // memb(Rx32++#s4:0)=Rt32
479     case S2_storerbnew_pi:        // memb(Rx32++#s4:0)=Nt8.new
480     case S2_pstorerbt_pi:         // if (Pv4) memb(Rx32++#s4:0)=Rt32
481     case S2_pstorerbf_pi:         // if (!Pv4) memb(Rx32++#s4:0)=Rt32
482     case S2_pstorerbtnew_pi:      // if (Pv4.new) memb(Rx32++#s4:0)=Rt32
483     case S2_pstorerbfnew_pi:      // if (!Pv4.new) memb(Rx32++#s4:0)=Rt32
484     case S2_pstorerbnewt_pi:      // if (Pv4) memb(Rx32++#s4:0)=Nt8.new
485     case S2_pstorerbnewf_pi:      // if (!Pv4) memb(Rx32++#s4:0)=Nt8.new
486     case S2_pstorerbnewtnew_pi:   // if (Pv4.new) memb(Rx32++#s4:0)=Nt8.new
487     case S2_pstorerbnewfnew_pi:   // if (!Pv4.new) memb(Rx32++#s4:0)=Nt8.new
488     case S4_storerb_ap:           // memb(Re32=#U6)=Rt32
489     case S4_storerbnew_ap:        // memb(Re32=#U6)=Nt8.new
490     case S2_storerb_pr:           // memb(Rx32++Mu2)=Rt32
491     case S2_storerbnew_pr:        // memb(Rx32++Mu2)=Nt8.new
492     case S4_storerb_ur:           // memb(Ru32<<#u2+#U6)=Rt32
493     case S4_storerbnew_ur:        // memb(Ru32<<#u2+#U6)=Nt8.new
494     case S2_storerb_pbr:          // memb(Rx32++Mu2:brev)=Rt32
495     case S2_storerbnew_pbr:       // memb(Rx32++Mu2:brev)=Nt8.new
496     case S2_storerb_pci:          // memb(Rx32++#s4:0:circ(Mu2))=Rt32
497     case S2_storerbnew_pci:       // memb(Rx32++#s4:0:circ(Mu2))=Nt8.new
498     case S2_storerb_pcr:          // memb(Rx32++I:circ(Mu2))=Rt32
499     case S2_storerbnew_pcr:       // memb(Rx32++I:circ(Mu2))=Nt8.new
500     case S4_storerb_rr:           // memb(Rs32+Ru32<<#u2)=Rt32
501     case S4_storerbnew_rr:        // memb(Rs32+Ru32<<#u2)=Nt8.new
502     case S4_pstorerbt_rr:         // if (Pv4) memb(Rs32+Ru32<<#u2)=Rt32
503     case S4_pstorerbf_rr:         // if (!Pv4) memb(Rs32+Ru32<<#u2)=Rt32
504     case S4_pstorerbtnew_rr:      // if (Pv4.new) memb(Rs32+Ru32<<#u2)=Rt32
505     case S4_pstorerbfnew_rr:      // if (!Pv4.new) memb(Rs32+Ru32<<#u2)=Rt32
506     case S4_pstorerbnewt_rr:      // if (Pv4) memb(Rs32+Ru32<<#u2)=Nt8.new
507     case S4_pstorerbnewf_rr:      // if (!Pv4) memb(Rs32+Ru32<<#u2)=Nt8.new
508     case S4_pstorerbnewtnew_rr:   // if (Pv4.new) memb(Rs32+Ru32<<#u2)=Nt8.new
509     case S4_pstorerbnewfnew_rr:   // if (!Pv4.new) memb(Rs32+Ru32<<#u2)=Nt8.new
510     case S2_storerbgp:            // memb(gp+#u16:0)=Rt32
511     case S2_storerbnewgp:         // memb(gp+#u16:0)=Nt8.new
512     case S4_pstorerbt_abs:        // if (Pv4) memb(#u6)=Rt32
513     case S4_pstorerbf_abs:        // if (!Pv4) memb(#u6)=Rt32
514     case S4_pstorerbtnew_abs:     // if (Pv4.new) memb(#u6)=Rt32
515     case S4_pstorerbfnew_abs:     // if (!Pv4.new) memb(#u6)=Rt32
516     case S4_pstorerbnewt_abs:     // if (Pv4) memb(#u6)=Nt8.new
517     case S4_pstorerbnewf_abs:     // if (!Pv4) memb(#u6)=Nt8.new
518     case S4_pstorerbnewtnew_abs:  // if (Pv4.new) memb(#u6)=Nt8.new
519     case S4_pstorerbnewfnew_abs:  // if (!Pv4.new) memb(#u6)=Nt8.new
520       Bits.set(Begin, Begin+8);
521       return true;
522 
523     // Store low half
524     case S2_storerh_io:           // memh(Rs32+#s11:1)=Rt32
525     case S2_storerhnew_io:        // memh(Rs32+#s11:1)=Nt8.new
526     case S2_pstorerht_io:         // if (Pv4) memh(Rs32+#u6:1)=Rt32
527     case S2_pstorerhf_io:         // if (!Pv4) memh(Rs32+#u6:1)=Rt32
528     case S4_pstorerhtnew_io:      // if (Pv4.new) memh(Rs32+#u6:1)=Rt32
529     case S4_pstorerhfnew_io:      // if (!Pv4.new) memh(Rs32+#u6:1)=Rt32
530     case S2_pstorerhnewt_io:      // if (Pv4) memh(Rs32+#u6:1)=Nt8.new
531     case S2_pstorerhnewf_io:      // if (!Pv4) memh(Rs32+#u6:1)=Nt8.new
532     case S4_pstorerhnewtnew_io:   // if (Pv4.new) memh(Rs32+#u6:1)=Nt8.new
533     case S4_pstorerhnewfnew_io:   // if (!Pv4.new) memh(Rs32+#u6:1)=Nt8.new
534     case S2_storerh_pi:           // memh(Rx32++#s4:1)=Rt32
535     case S2_storerhnew_pi:        // memh(Rx32++#s4:1)=Nt8.new
536     case S2_pstorerht_pi:         // if (Pv4) memh(Rx32++#s4:1)=Rt32
537     case S2_pstorerhf_pi:         // if (!Pv4) memh(Rx32++#s4:1)=Rt32
538     case S2_pstorerhtnew_pi:      // if (Pv4.new) memh(Rx32++#s4:1)=Rt32
539     case S2_pstorerhfnew_pi:      // if (!Pv4.new) memh(Rx32++#s4:1)=Rt32
540     case S2_pstorerhnewt_pi:      // if (Pv4) memh(Rx32++#s4:1)=Nt8.new
541     case S2_pstorerhnewf_pi:      // if (!Pv4) memh(Rx32++#s4:1)=Nt8.new
542     case S2_pstorerhnewtnew_pi:   // if (Pv4.new) memh(Rx32++#s4:1)=Nt8.new
543     case S2_pstorerhnewfnew_pi:   // if (!Pv4.new) memh(Rx32++#s4:1)=Nt8.new
544     case S4_storerh_ap:           // memh(Re32=#U6)=Rt32
545     case S4_storerhnew_ap:        // memh(Re32=#U6)=Nt8.new
546     case S2_storerh_pr:           // memh(Rx32++Mu2)=Rt32
547     case S2_storerhnew_pr:        // memh(Rx32++Mu2)=Nt8.new
548     case S4_storerh_ur:           // memh(Ru32<<#u2+#U6)=Rt32
549     case S4_storerhnew_ur:        // memh(Ru32<<#u2+#U6)=Nt8.new
550     case S2_storerh_pbr:          // memh(Rx32++Mu2:brev)=Rt32
551     case S2_storerhnew_pbr:       // memh(Rx32++Mu2:brev)=Nt8.new
552     case S2_storerh_pci:          // memh(Rx32++#s4:1:circ(Mu2))=Rt32
553     case S2_storerhnew_pci:       // memh(Rx32++#s4:1:circ(Mu2))=Nt8.new
554     case S2_storerh_pcr:          // memh(Rx32++I:circ(Mu2))=Rt32
555     case S2_storerhnew_pcr:       // memh(Rx32++I:circ(Mu2))=Nt8.new
556     case S4_storerh_rr:           // memh(Rs32+Ru32<<#u2)=Rt32
557     case S4_pstorerht_rr:         // if (Pv4) memh(Rs32+Ru32<<#u2)=Rt32
558     case S4_pstorerhf_rr:         // if (!Pv4) memh(Rs32+Ru32<<#u2)=Rt32
559     case S4_pstorerhtnew_rr:      // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Rt32
560     case S4_pstorerhfnew_rr:      // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Rt32
561     case S4_storerhnew_rr:        // memh(Rs32+Ru32<<#u2)=Nt8.new
562     case S4_pstorerhnewt_rr:      // if (Pv4) memh(Rs32+Ru32<<#u2)=Nt8.new
563     case S4_pstorerhnewf_rr:      // if (!Pv4) memh(Rs32+Ru32<<#u2)=Nt8.new
564     case S4_pstorerhnewtnew_rr:   // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Nt8.new
565     case S4_pstorerhnewfnew_rr:   // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Nt8.new
566     case S2_storerhgp:            // memh(gp+#u16:1)=Rt32
567     case S2_storerhnewgp:         // memh(gp+#u16:1)=Nt8.new
568     case S4_pstorerht_abs:        // if (Pv4) memh(#u6)=Rt32
569     case S4_pstorerhf_abs:        // if (!Pv4) memh(#u6)=Rt32
570     case S4_pstorerhtnew_abs:     // if (Pv4.new) memh(#u6)=Rt32
571     case S4_pstorerhfnew_abs:     // if (!Pv4.new) memh(#u6)=Rt32
572     case S4_pstorerhnewt_abs:     // if (Pv4) memh(#u6)=Nt8.new
573     case S4_pstorerhnewf_abs:     // if (!Pv4) memh(#u6)=Nt8.new
574     case S4_pstorerhnewtnew_abs:  // if (Pv4.new) memh(#u6)=Nt8.new
575     case S4_pstorerhnewfnew_abs:  // if (!Pv4.new) memh(#u6)=Nt8.new
576       Bits.set(Begin, Begin+16);
577       return true;
578 
579     // Store high half
580     case S2_storerf_io:           // memh(Rs32+#s11:1)=Rt.H32
581     case S2_pstorerft_io:         // if (Pv4) memh(Rs32+#u6:1)=Rt.H32
582     case S2_pstorerff_io:         // if (!Pv4) memh(Rs32+#u6:1)=Rt.H32
583     case S4_pstorerftnew_io:      // if (Pv4.new) memh(Rs32+#u6:1)=Rt.H32
584     case S4_pstorerffnew_io:      // if (!Pv4.new) memh(Rs32+#u6:1)=Rt.H32
585     case S2_storerf_pi:           // memh(Rx32++#s4:1)=Rt.H32
586     case S2_pstorerft_pi:         // if (Pv4) memh(Rx32++#s4:1)=Rt.H32
587     case S2_pstorerff_pi:         // if (!Pv4) memh(Rx32++#s4:1)=Rt.H32
588     case S2_pstorerftnew_pi:      // if (Pv4.new) memh(Rx32++#s4:1)=Rt.H32
589     case S2_pstorerffnew_pi:      // if (!Pv4.new) memh(Rx32++#s4:1)=Rt.H32
590     case S4_storerf_ap:           // memh(Re32=#U6)=Rt.H32
591     case S2_storerf_pr:           // memh(Rx32++Mu2)=Rt.H32
592     case S4_storerf_ur:           // memh(Ru32<<#u2+#U6)=Rt.H32
593     case S2_storerf_pbr:          // memh(Rx32++Mu2:brev)=Rt.H32
594     case S2_storerf_pci:          // memh(Rx32++#s4:1:circ(Mu2))=Rt.H32
595     case S2_storerf_pcr:          // memh(Rx32++I:circ(Mu2))=Rt.H32
596     case S4_storerf_rr:           // memh(Rs32+Ru32<<#u2)=Rt.H32
597     case S4_pstorerft_rr:         // if (Pv4) memh(Rs32+Ru32<<#u2)=Rt.H32
598     case S4_pstorerff_rr:         // if (!Pv4) memh(Rs32+Ru32<<#u2)=Rt.H32
599     case S4_pstorerftnew_rr:      // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Rt.H32
600     case S4_pstorerffnew_rr:      // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Rt.H32
601     case S2_storerfgp:            // memh(gp+#u16:1)=Rt.H32
602     case S4_pstorerft_abs:        // if (Pv4) memh(#u6)=Rt.H32
603     case S4_pstorerff_abs:        // if (!Pv4) memh(#u6)=Rt.H32
604     case S4_pstorerftnew_abs:     // if (Pv4.new) memh(#u6)=Rt.H32
605     case S4_pstorerffnew_abs:     // if (!Pv4.new) memh(#u6)=Rt.H32
606       Bits.set(Begin+16, Begin+32);
607       return true;
608   }
609 
610   return false;
611 }
612 
613 // For an instruction with opcode Opc, calculate the set of bits that it
614 // uses in a register in operand OpN. This only calculates the set of used
615 // bits for cases where it does not depend on any operands (as is the case
616 // in shifts, for example). For concrete instructions from a program, the
617 // operand may be a subregister of a larger register, while Bits would
618 // correspond to the larger register in its entirety. Because of that,
619 // the parameter Begin can be used to indicate which bit of Bits should be
620 // considered the LSB of the operand.
621 bool HexagonBitSimplify::getUsedBits(unsigned Opc, unsigned OpN,
622       BitVector &Bits, uint16_t Begin, const HexagonInstrInfo &HII) {
623   using namespace Hexagon;
624 
625   const MCInstrDesc &D = HII.get(Opc);
626   if (D.mayStore()) {
627     if (OpN == D.getNumOperands()-1)
628       return getUsedBitsInStore(Opc, Bits, Begin);
629     return false;
630   }
631 
632   switch (Opc) {
633     // One register source. Used bits: R1[0-7].
634     case A2_sxtb:
635     case A2_zxtb:
636     case A4_cmpbeqi:
637     case A4_cmpbgti:
638     case A4_cmpbgtui:
639       if (OpN == 1) {
640         Bits.set(Begin, Begin+8);
641         return true;
642       }
643       break;
644 
645     // One register source. Used bits: R1[0-15].
646     case A2_aslh:
647     case A2_sxth:
648     case A2_zxth:
649     case A4_cmpheqi:
650     case A4_cmphgti:
651     case A4_cmphgtui:
652       if (OpN == 1) {
653         Bits.set(Begin, Begin+16);
654         return true;
655       }
656       break;
657 
658     // One register source. Used bits: R1[16-31].
659     case A2_asrh:
660       if (OpN == 1) {
661         Bits.set(Begin+16, Begin+32);
662         return true;
663       }
664       break;
665 
666     // Two register sources. Used bits: R1[0-7], R2[0-7].
667     case A4_cmpbeq:
668     case A4_cmpbgt:
669     case A4_cmpbgtu:
670       if (OpN == 1) {
671         Bits.set(Begin, Begin+8);
672         return true;
673       }
674       break;
675 
676     // Two register sources. Used bits: R1[0-15], R2[0-15].
677     case A4_cmpheq:
678     case A4_cmphgt:
679     case A4_cmphgtu:
680     case A2_addh_h16_ll:
681     case A2_addh_h16_sat_ll:
682     case A2_addh_l16_ll:
683     case A2_addh_l16_sat_ll:
684     case A2_combine_ll:
685     case A2_subh_h16_ll:
686     case A2_subh_h16_sat_ll:
687     case A2_subh_l16_ll:
688     case A2_subh_l16_sat_ll:
689     case M2_mpy_acc_ll_s0:
690     case M2_mpy_acc_ll_s1:
691     case M2_mpy_acc_sat_ll_s0:
692     case M2_mpy_acc_sat_ll_s1:
693     case M2_mpy_ll_s0:
694     case M2_mpy_ll_s1:
695     case M2_mpy_nac_ll_s0:
696     case M2_mpy_nac_ll_s1:
697     case M2_mpy_nac_sat_ll_s0:
698     case M2_mpy_nac_sat_ll_s1:
699     case M2_mpy_rnd_ll_s0:
700     case M2_mpy_rnd_ll_s1:
701     case M2_mpy_sat_ll_s0:
702     case M2_mpy_sat_ll_s1:
703     case M2_mpy_sat_rnd_ll_s0:
704     case M2_mpy_sat_rnd_ll_s1:
705     case M2_mpyd_acc_ll_s0:
706     case M2_mpyd_acc_ll_s1:
707     case M2_mpyd_ll_s0:
708     case M2_mpyd_ll_s1:
709     case M2_mpyd_nac_ll_s0:
710     case M2_mpyd_nac_ll_s1:
711     case M2_mpyd_rnd_ll_s0:
712     case M2_mpyd_rnd_ll_s1:
713     case M2_mpyu_acc_ll_s0:
714     case M2_mpyu_acc_ll_s1:
715     case M2_mpyu_ll_s0:
716     case M2_mpyu_ll_s1:
717     case M2_mpyu_nac_ll_s0:
718     case M2_mpyu_nac_ll_s1:
719     case M2_mpyud_acc_ll_s0:
720     case M2_mpyud_acc_ll_s1:
721     case M2_mpyud_ll_s0:
722     case M2_mpyud_ll_s1:
723     case M2_mpyud_nac_ll_s0:
724     case M2_mpyud_nac_ll_s1:
725       if (OpN == 1 || OpN == 2) {
726         Bits.set(Begin, Begin+16);
727         return true;
728       }
729       break;
730 
731     // Two register sources. Used bits: R1[0-15], R2[16-31].
732     case A2_addh_h16_lh:
733     case A2_addh_h16_sat_lh:
734     case A2_combine_lh:
735     case A2_subh_h16_lh:
736     case A2_subh_h16_sat_lh:
737     case M2_mpy_acc_lh_s0:
738     case M2_mpy_acc_lh_s1:
739     case M2_mpy_acc_sat_lh_s0:
740     case M2_mpy_acc_sat_lh_s1:
741     case M2_mpy_lh_s0:
742     case M2_mpy_lh_s1:
743     case M2_mpy_nac_lh_s0:
744     case M2_mpy_nac_lh_s1:
745     case M2_mpy_nac_sat_lh_s0:
746     case M2_mpy_nac_sat_lh_s1:
747     case M2_mpy_rnd_lh_s0:
748     case M2_mpy_rnd_lh_s1:
749     case M2_mpy_sat_lh_s0:
750     case M2_mpy_sat_lh_s1:
751     case M2_mpy_sat_rnd_lh_s0:
752     case M2_mpy_sat_rnd_lh_s1:
753     case M2_mpyd_acc_lh_s0:
754     case M2_mpyd_acc_lh_s1:
755     case M2_mpyd_lh_s0:
756     case M2_mpyd_lh_s1:
757     case M2_mpyd_nac_lh_s0:
758     case M2_mpyd_nac_lh_s1:
759     case M2_mpyd_rnd_lh_s0:
760     case M2_mpyd_rnd_lh_s1:
761     case M2_mpyu_acc_lh_s0:
762     case M2_mpyu_acc_lh_s1:
763     case M2_mpyu_lh_s0:
764     case M2_mpyu_lh_s1:
765     case M2_mpyu_nac_lh_s0:
766     case M2_mpyu_nac_lh_s1:
767     case M2_mpyud_acc_lh_s0:
768     case M2_mpyud_acc_lh_s1:
769     case M2_mpyud_lh_s0:
770     case M2_mpyud_lh_s1:
771     case M2_mpyud_nac_lh_s0:
772     case M2_mpyud_nac_lh_s1:
773     // These four are actually LH.
774     case A2_addh_l16_hl:
775     case A2_addh_l16_sat_hl:
776     case A2_subh_l16_hl:
777     case A2_subh_l16_sat_hl:
778       if (OpN == 1) {
779         Bits.set(Begin, Begin+16);
780         return true;
781       }
782       if (OpN == 2) {
783         Bits.set(Begin+16, Begin+32);
784         return true;
785       }
786       break;
787 
788     // Two register sources, used bits: R1[16-31], R2[0-15].
789     case A2_addh_h16_hl:
790     case A2_addh_h16_sat_hl:
791     case A2_combine_hl:
792     case A2_subh_h16_hl:
793     case A2_subh_h16_sat_hl:
794     case M2_mpy_acc_hl_s0:
795     case M2_mpy_acc_hl_s1:
796     case M2_mpy_acc_sat_hl_s0:
797     case M2_mpy_acc_sat_hl_s1:
798     case M2_mpy_hl_s0:
799     case M2_mpy_hl_s1:
800     case M2_mpy_nac_hl_s0:
801     case M2_mpy_nac_hl_s1:
802     case M2_mpy_nac_sat_hl_s0:
803     case M2_mpy_nac_sat_hl_s1:
804     case M2_mpy_rnd_hl_s0:
805     case M2_mpy_rnd_hl_s1:
806     case M2_mpy_sat_hl_s0:
807     case M2_mpy_sat_hl_s1:
808     case M2_mpy_sat_rnd_hl_s0:
809     case M2_mpy_sat_rnd_hl_s1:
810     case M2_mpyd_acc_hl_s0:
811     case M2_mpyd_acc_hl_s1:
812     case M2_mpyd_hl_s0:
813     case M2_mpyd_hl_s1:
814     case M2_mpyd_nac_hl_s0:
815     case M2_mpyd_nac_hl_s1:
816     case M2_mpyd_rnd_hl_s0:
817     case M2_mpyd_rnd_hl_s1:
818     case M2_mpyu_acc_hl_s0:
819     case M2_mpyu_acc_hl_s1:
820     case M2_mpyu_hl_s0:
821     case M2_mpyu_hl_s1:
822     case M2_mpyu_nac_hl_s0:
823     case M2_mpyu_nac_hl_s1:
824     case M2_mpyud_acc_hl_s0:
825     case M2_mpyud_acc_hl_s1:
826     case M2_mpyud_hl_s0:
827     case M2_mpyud_hl_s1:
828     case M2_mpyud_nac_hl_s0:
829     case M2_mpyud_nac_hl_s1:
830       if (OpN == 1) {
831         Bits.set(Begin+16, Begin+32);
832         return true;
833       }
834       if (OpN == 2) {
835         Bits.set(Begin, Begin+16);
836         return true;
837       }
838       break;
839 
840     // Two register sources, used bits: R1[16-31], R2[16-31].
841     case A2_addh_h16_hh:
842     case A2_addh_h16_sat_hh:
843     case A2_combine_hh:
844     case A2_subh_h16_hh:
845     case A2_subh_h16_sat_hh:
846     case M2_mpy_acc_hh_s0:
847     case M2_mpy_acc_hh_s1:
848     case M2_mpy_acc_sat_hh_s0:
849     case M2_mpy_acc_sat_hh_s1:
850     case M2_mpy_hh_s0:
851     case M2_mpy_hh_s1:
852     case M2_mpy_nac_hh_s0:
853     case M2_mpy_nac_hh_s1:
854     case M2_mpy_nac_sat_hh_s0:
855     case M2_mpy_nac_sat_hh_s1:
856     case M2_mpy_rnd_hh_s0:
857     case M2_mpy_rnd_hh_s1:
858     case M2_mpy_sat_hh_s0:
859     case M2_mpy_sat_hh_s1:
860     case M2_mpy_sat_rnd_hh_s0:
861     case M2_mpy_sat_rnd_hh_s1:
862     case M2_mpyd_acc_hh_s0:
863     case M2_mpyd_acc_hh_s1:
864     case M2_mpyd_hh_s0:
865     case M2_mpyd_hh_s1:
866     case M2_mpyd_nac_hh_s0:
867     case M2_mpyd_nac_hh_s1:
868     case M2_mpyd_rnd_hh_s0:
869     case M2_mpyd_rnd_hh_s1:
870     case M2_mpyu_acc_hh_s0:
871     case M2_mpyu_acc_hh_s1:
872     case M2_mpyu_hh_s0:
873     case M2_mpyu_hh_s1:
874     case M2_mpyu_nac_hh_s0:
875     case M2_mpyu_nac_hh_s1:
876     case M2_mpyud_acc_hh_s0:
877     case M2_mpyud_acc_hh_s1:
878     case M2_mpyud_hh_s0:
879     case M2_mpyud_hh_s1:
880     case M2_mpyud_nac_hh_s0:
881     case M2_mpyud_nac_hh_s1:
882       if (OpN == 1 || OpN == 2) {
883         Bits.set(Begin+16, Begin+32);
884         return true;
885       }
886       break;
887   }
888 
889   return false;
890 }
891 
892 // Calculate the register class that matches Reg:Sub. For example, if
893 // %1 is a double register, then %1:isub_hi would match the "int"
894 // register class.
895 const TargetRegisterClass *HexagonBitSimplify::getFinalVRegClass(
896       const BitTracker::RegisterRef &RR, MachineRegisterInfo &MRI) {
897   if (!Register::isVirtualRegister(RR.Reg))
898     return nullptr;
899   auto *RC = MRI.getRegClass(RR.Reg);
900   if (RR.Sub == 0)
901     return RC;
902   auto &HRI = static_cast<const HexagonRegisterInfo&>(
903                   *MRI.getTargetRegisterInfo());
904 
905   auto VerifySR = [&HRI] (const TargetRegisterClass *RC, unsigned Sub) -> void {
906     (void)HRI;
907     assert(Sub == HRI.getHexagonSubRegIndex(*RC, Hexagon::ps_sub_lo) ||
908            Sub == HRI.getHexagonSubRegIndex(*RC, Hexagon::ps_sub_hi));
909   };
910 
911   switch (RC->getID()) {
912     case Hexagon::DoubleRegsRegClassID:
913       VerifySR(RC, RR.Sub);
914       return &Hexagon::IntRegsRegClass;
915     case Hexagon::HvxWRRegClassID:
916       VerifySR(RC, RR.Sub);
917       return &Hexagon::HvxVRRegClass;
918   }
919   return nullptr;
920 }
921 
922 // Check if RD could be replaced with RS at any possible use of RD.
923 // For example a predicate register cannot be replaced with a integer
924 // register, but a 64-bit register with a subregister can be replaced
925 // with a 32-bit register.
926 bool HexagonBitSimplify::isTransparentCopy(const BitTracker::RegisterRef &RD,
927       const BitTracker::RegisterRef &RS, MachineRegisterInfo &MRI) {
928   if (!Register::isVirtualRegister(RD.Reg) ||
929       !Register::isVirtualRegister(RS.Reg))
930     return false;
931   // Return false if one (or both) classes are nullptr.
932   auto *DRC = getFinalVRegClass(RD, MRI);
933   if (!DRC)
934     return false;
935 
936   return DRC == getFinalVRegClass(RS, MRI);
937 }
938 
939 bool HexagonBitSimplify::hasTiedUse(unsigned Reg, MachineRegisterInfo &MRI,
940       unsigned NewSub) {
941   if (!PreserveTiedOps)
942     return false;
943   return llvm::any_of(MRI.use_operands(Reg),
944                       [NewSub] (const MachineOperand &Op) -> bool {
945                         return Op.getSubReg() != NewSub && Op.isTied();
946                       });
947 }
948 
949 namespace {
950 
951   class DeadCodeElimination {
952   public:
953     DeadCodeElimination(MachineFunction &mf, MachineDominatorTree &mdt)
954       : MF(mf), HII(*MF.getSubtarget<HexagonSubtarget>().getInstrInfo()),
955         MDT(mdt), MRI(mf.getRegInfo()) {}
956 
957     bool run() {
958       return runOnNode(MDT.getRootNode());
959     }
960 
961   private:
962     bool isDead(unsigned R) const;
963     bool runOnNode(MachineDomTreeNode *N);
964 
965     MachineFunction &MF;
966     const HexagonInstrInfo &HII;
967     MachineDominatorTree &MDT;
968     MachineRegisterInfo &MRI;
969   };
970 
971 } // end anonymous namespace
972 
973 bool DeadCodeElimination::isDead(unsigned R) const {
974   for (auto I = MRI.use_begin(R), E = MRI.use_end(); I != E; ++I) {
975     MachineInstr *UseI = I->getParent();
976     if (UseI->isDebugValue())
977       continue;
978     if (UseI->isPHI()) {
979       assert(!UseI->getOperand(0).getSubReg());
980       Register DR = UseI->getOperand(0).getReg();
981       if (DR == R)
982         continue;
983     }
984     return false;
985   }
986   return true;
987 }
988 
989 bool DeadCodeElimination::runOnNode(MachineDomTreeNode *N) {
990   bool Changed = false;
991 
992   for (auto *DTN : children<MachineDomTreeNode*>(N))
993     Changed |= runOnNode(DTN);
994 
995   MachineBasicBlock *B = N->getBlock();
996   std::vector<MachineInstr*> Instrs;
997   for (auto I = B->rbegin(), E = B->rend(); I != E; ++I)
998     Instrs.push_back(&*I);
999 
1000   for (auto MI : Instrs) {
1001     unsigned Opc = MI->getOpcode();
1002     // Do not touch lifetime markers. This is why the target-independent DCE
1003     // cannot be used.
1004     if (Opc == TargetOpcode::LIFETIME_START ||
1005         Opc == TargetOpcode::LIFETIME_END)
1006       continue;
1007     bool Store = false;
1008     if (MI->isInlineAsm())
1009       continue;
1010     // Delete PHIs if possible.
1011     if (!MI->isPHI() && !MI->isSafeToMove(nullptr, Store))
1012       continue;
1013 
1014     bool AllDead = true;
1015     SmallVector<unsigned,2> Regs;
1016     for (auto &Op : MI->operands()) {
1017       if (!Op.isReg() || !Op.isDef())
1018         continue;
1019       Register R = Op.getReg();
1020       if (!Register::isVirtualRegister(R) || !isDead(R)) {
1021         AllDead = false;
1022         break;
1023       }
1024       Regs.push_back(R);
1025     }
1026     if (!AllDead)
1027       continue;
1028 
1029     B->erase(MI);
1030     for (unsigned i = 0, n = Regs.size(); i != n; ++i)
1031       MRI.markUsesInDebugValueAsUndef(Regs[i]);
1032     Changed = true;
1033   }
1034 
1035   return Changed;
1036 }
1037 
1038 namespace {
1039 
1040 // Eliminate redundant instructions
1041 //
1042 // This transformation will identify instructions where the output register
1043 // is the same as one of its input registers. This only works on instructions
1044 // that define a single register (unlike post-increment loads, for example).
1045 // The equality check is actually more detailed: the code calculates which
1046 // bits of the output are used, and only compares these bits with the input
1047 // registers.
1048 // If the output matches an input, the instruction is replaced with COPY.
1049 // The copies will be removed by another transformation.
1050   class RedundantInstrElimination : public Transformation {
1051   public:
1052     RedundantInstrElimination(BitTracker &bt, const HexagonInstrInfo &hii,
1053           const HexagonRegisterInfo &hri, MachineRegisterInfo &mri)
1054         : Transformation(true), HII(hii), HRI(hri), MRI(mri), BT(bt) {}
1055 
1056     bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
1057 
1058   private:
1059     bool isLossyShiftLeft(const MachineInstr &MI, unsigned OpN,
1060           unsigned &LostB, unsigned &LostE);
1061     bool isLossyShiftRight(const MachineInstr &MI, unsigned OpN,
1062           unsigned &LostB, unsigned &LostE);
1063     bool computeUsedBits(unsigned Reg, BitVector &Bits);
1064     bool computeUsedBits(const MachineInstr &MI, unsigned OpN, BitVector &Bits,
1065           uint16_t Begin);
1066     bool usedBitsEqual(BitTracker::RegisterRef RD, BitTracker::RegisterRef RS);
1067 
1068     const HexagonInstrInfo &HII;
1069     const HexagonRegisterInfo &HRI;
1070     MachineRegisterInfo &MRI;
1071     BitTracker &BT;
1072   };
1073 
1074 } // end anonymous namespace
1075 
1076 // Check if the instruction is a lossy shift left, where the input being
1077 // shifted is the operand OpN of MI. If true, [LostB, LostE) is the range
1078 // of bit indices that are lost.
1079 bool RedundantInstrElimination::isLossyShiftLeft(const MachineInstr &MI,
1080       unsigned OpN, unsigned &LostB, unsigned &LostE) {
1081   using namespace Hexagon;
1082 
1083   unsigned Opc = MI.getOpcode();
1084   unsigned ImN, RegN, Width;
1085   switch (Opc) {
1086     case S2_asl_i_p:
1087       ImN = 2;
1088       RegN = 1;
1089       Width = 64;
1090       break;
1091     case S2_asl_i_p_acc:
1092     case S2_asl_i_p_and:
1093     case S2_asl_i_p_nac:
1094     case S2_asl_i_p_or:
1095     case S2_asl_i_p_xacc:
1096       ImN = 3;
1097       RegN = 2;
1098       Width = 64;
1099       break;
1100     case S2_asl_i_r:
1101       ImN = 2;
1102       RegN = 1;
1103       Width = 32;
1104       break;
1105     case S2_addasl_rrri:
1106     case S4_andi_asl_ri:
1107     case S4_ori_asl_ri:
1108     case S4_addi_asl_ri:
1109     case S4_subi_asl_ri:
1110     case S2_asl_i_r_acc:
1111     case S2_asl_i_r_and:
1112     case S2_asl_i_r_nac:
1113     case S2_asl_i_r_or:
1114     case S2_asl_i_r_sat:
1115     case S2_asl_i_r_xacc:
1116       ImN = 3;
1117       RegN = 2;
1118       Width = 32;
1119       break;
1120     default:
1121       return false;
1122   }
1123 
1124   if (RegN != OpN)
1125     return false;
1126 
1127   assert(MI.getOperand(ImN).isImm());
1128   unsigned S = MI.getOperand(ImN).getImm();
1129   if (S == 0)
1130     return false;
1131   LostB = Width-S;
1132   LostE = Width;
1133   return true;
1134 }
1135 
1136 // Check if the instruction is a lossy shift right, where the input being
1137 // shifted is the operand OpN of MI. If true, [LostB, LostE) is the range
1138 // of bit indices that are lost.
1139 bool RedundantInstrElimination::isLossyShiftRight(const MachineInstr &MI,
1140       unsigned OpN, unsigned &LostB, unsigned &LostE) {
1141   using namespace Hexagon;
1142 
1143   unsigned Opc = MI.getOpcode();
1144   unsigned ImN, RegN;
1145   switch (Opc) {
1146     case S2_asr_i_p:
1147     case S2_lsr_i_p:
1148       ImN = 2;
1149       RegN = 1;
1150       break;
1151     case S2_asr_i_p_acc:
1152     case S2_asr_i_p_and:
1153     case S2_asr_i_p_nac:
1154     case S2_asr_i_p_or:
1155     case S2_lsr_i_p_acc:
1156     case S2_lsr_i_p_and:
1157     case S2_lsr_i_p_nac:
1158     case S2_lsr_i_p_or:
1159     case S2_lsr_i_p_xacc:
1160       ImN = 3;
1161       RegN = 2;
1162       break;
1163     case S2_asr_i_r:
1164     case S2_lsr_i_r:
1165       ImN = 2;
1166       RegN = 1;
1167       break;
1168     case S4_andi_lsr_ri:
1169     case S4_ori_lsr_ri:
1170     case S4_addi_lsr_ri:
1171     case S4_subi_lsr_ri:
1172     case S2_asr_i_r_acc:
1173     case S2_asr_i_r_and:
1174     case S2_asr_i_r_nac:
1175     case S2_asr_i_r_or:
1176     case S2_lsr_i_r_acc:
1177     case S2_lsr_i_r_and:
1178     case S2_lsr_i_r_nac:
1179     case S2_lsr_i_r_or:
1180     case S2_lsr_i_r_xacc:
1181       ImN = 3;
1182       RegN = 2;
1183       break;
1184 
1185     default:
1186       return false;
1187   }
1188 
1189   if (RegN != OpN)
1190     return false;
1191 
1192   assert(MI.getOperand(ImN).isImm());
1193   unsigned S = MI.getOperand(ImN).getImm();
1194   LostB = 0;
1195   LostE = S;
1196   return true;
1197 }
1198 
1199 // Calculate the bit vector that corresponds to the used bits of register Reg.
1200 // The vector Bits has the same size, as the size of Reg in bits. If the cal-
1201 // culation fails (i.e. the used bits are unknown), it returns false. Other-
1202 // wise, it returns true and sets the corresponding bits in Bits.
1203 bool RedundantInstrElimination::computeUsedBits(unsigned Reg, BitVector &Bits) {
1204   BitVector Used(Bits.size());
1205   RegisterSet Visited;
1206   std::vector<unsigned> Pending;
1207   Pending.push_back(Reg);
1208 
1209   for (unsigned i = 0; i < Pending.size(); ++i) {
1210     unsigned R = Pending[i];
1211     if (Visited.has(R))
1212       continue;
1213     Visited.insert(R);
1214     for (auto I = MRI.use_begin(R), E = MRI.use_end(); I != E; ++I) {
1215       BitTracker::RegisterRef UR = *I;
1216       unsigned B, W;
1217       if (!HBS::getSubregMask(UR, B, W, MRI))
1218         return false;
1219       MachineInstr &UseI = *I->getParent();
1220       if (UseI.isPHI() || UseI.isCopy()) {
1221         Register DefR = UseI.getOperand(0).getReg();
1222         if (!Register::isVirtualRegister(DefR))
1223           return false;
1224         Pending.push_back(DefR);
1225       } else {
1226         if (!computeUsedBits(UseI, I.getOperandNo(), Used, B))
1227           return false;
1228       }
1229     }
1230   }
1231   Bits |= Used;
1232   return true;
1233 }
1234 
1235 // Calculate the bits used by instruction MI in a register in operand OpN.
1236 // Return true/false if the calculation succeeds/fails. If is succeeds, set
1237 // used bits in Bits. This function does not reset any bits in Bits, so
1238 // subsequent calls over different instructions will result in the union
1239 // of the used bits in all these instructions.
1240 // The register in question may be used with a sub-register, whereas Bits
1241 // holds the bits for the entire register. To keep track of that, the
1242 // argument Begin indicates where in Bits is the lowest-significant bit
1243 // of the register used in operand OpN. For example, in instruction:
1244 //   %1 = S2_lsr_i_r %2:isub_hi, 10
1245 // the operand 1 is a 32-bit register, which happens to be a subregister
1246 // of the 64-bit register %2, and that subregister starts at position 32.
1247 // In this case Begin=32, since Bits[32] would be the lowest-significant bit
1248 // of %2:isub_hi.
1249 bool RedundantInstrElimination::computeUsedBits(const MachineInstr &MI,
1250       unsigned OpN, BitVector &Bits, uint16_t Begin) {
1251   unsigned Opc = MI.getOpcode();
1252   BitVector T(Bits.size());
1253   bool GotBits = HBS::getUsedBits(Opc, OpN, T, Begin, HII);
1254   // Even if we don't have bits yet, we could still provide some information
1255   // if the instruction is a lossy shift: the lost bits will be marked as
1256   // not used.
1257   unsigned LB, LE;
1258   if (isLossyShiftLeft(MI, OpN, LB, LE) || isLossyShiftRight(MI, OpN, LB, LE)) {
1259     assert(MI.getOperand(OpN).isReg());
1260     BitTracker::RegisterRef RR = MI.getOperand(OpN);
1261     const TargetRegisterClass *RC = HBS::getFinalVRegClass(RR, MRI);
1262     uint16_t Width = HRI.getRegSizeInBits(*RC);
1263 
1264     if (!GotBits)
1265       T.set(Begin, Begin+Width);
1266     assert(LB <= LE && LB < Width && LE <= Width);
1267     T.reset(Begin+LB, Begin+LE);
1268     GotBits = true;
1269   }
1270   if (GotBits)
1271     Bits |= T;
1272   return GotBits;
1273 }
1274 
1275 // Calculates the used bits in RD ("defined register"), and checks if these
1276 // bits in RS ("used register") and RD are identical.
1277 bool RedundantInstrElimination::usedBitsEqual(BitTracker::RegisterRef RD,
1278       BitTracker::RegisterRef RS) {
1279   const BitTracker::RegisterCell &DC = BT.lookup(RD.Reg);
1280   const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
1281 
1282   unsigned DB, DW;
1283   if (!HBS::getSubregMask(RD, DB, DW, MRI))
1284     return false;
1285   unsigned SB, SW;
1286   if (!HBS::getSubregMask(RS, SB, SW, MRI))
1287     return false;
1288   if (SW != DW)
1289     return false;
1290 
1291   BitVector Used(DC.width());
1292   if (!computeUsedBits(RD.Reg, Used))
1293     return false;
1294 
1295   for (unsigned i = 0; i != DW; ++i)
1296     if (Used[i+DB] && DC[DB+i] != SC[SB+i])
1297       return false;
1298   return true;
1299 }
1300 
1301 bool RedundantInstrElimination::processBlock(MachineBasicBlock &B,
1302       const RegisterSet&) {
1303   if (!BT.reached(&B))
1304     return false;
1305   bool Changed = false;
1306 
1307   for (auto I = B.begin(), E = B.end(), NextI = I; I != E; ++I) {
1308     NextI = std::next(I);
1309     MachineInstr *MI = &*I;
1310 
1311     if (MI->getOpcode() == TargetOpcode::COPY)
1312       continue;
1313     if (MI->isPHI() || MI->hasUnmodeledSideEffects() || MI->isInlineAsm())
1314       continue;
1315     unsigned NumD = MI->getDesc().getNumDefs();
1316     if (NumD != 1)
1317       continue;
1318 
1319     BitTracker::RegisterRef RD = MI->getOperand(0);
1320     if (!BT.has(RD.Reg))
1321       continue;
1322     const BitTracker::RegisterCell &DC = BT.lookup(RD.Reg);
1323     auto At = MachineBasicBlock::iterator(MI);
1324 
1325     // Find a source operand that is equal to the result.
1326     for (auto &Op : MI->uses()) {
1327       if (!Op.isReg())
1328         continue;
1329       BitTracker::RegisterRef RS = Op;
1330       if (!BT.has(RS.Reg))
1331         continue;
1332       if (!HBS::isTransparentCopy(RD, RS, MRI))
1333         continue;
1334 
1335       unsigned BN, BW;
1336       if (!HBS::getSubregMask(RS, BN, BW, MRI))
1337         continue;
1338 
1339       const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
1340       if (!usedBitsEqual(RD, RS) && !HBS::isEqual(DC, 0, SC, BN, BW))
1341         continue;
1342 
1343       // If found, replace the instruction with a COPY.
1344       const DebugLoc &DL = MI->getDebugLoc();
1345       const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI);
1346       Register NewR = MRI.createVirtualRegister(FRC);
1347       MachineInstr *CopyI =
1348           BuildMI(B, At, DL, HII.get(TargetOpcode::COPY), NewR)
1349             .addReg(RS.Reg, 0, RS.Sub);
1350       HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
1351       // This pass can create copies between registers that don't have the
1352       // exact same values. Updating the tracker has to involve updating
1353       // all dependent cells. Example:
1354       //   %1  = inst %2     ; %1 != %2, but used bits are equal
1355       //
1356       //   %3  = copy %2     ; <- inserted
1357       //   ... = %3          ; <- replaced from %2
1358       // Indirectly, we can create a "copy" between %1 and %2 even
1359       // though their exact values do not match.
1360       BT.visit(*CopyI);
1361       Changed = true;
1362       break;
1363     }
1364   }
1365 
1366   return Changed;
1367 }
1368 
1369 namespace {
1370 
1371 // Recognize instructions that produce constant values known at compile-time.
1372 // Replace them with register definitions that load these constants directly.
1373   class ConstGeneration : public Transformation {
1374   public:
1375     ConstGeneration(BitTracker &bt, const HexagonInstrInfo &hii,
1376         MachineRegisterInfo &mri)
1377       : Transformation(true), HII(hii), MRI(mri), BT(bt) {}
1378 
1379     bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
1380     static bool isTfrConst(const MachineInstr &MI);
1381 
1382   private:
1383     unsigned genTfrConst(const TargetRegisterClass *RC, int64_t C,
1384         MachineBasicBlock &B, MachineBasicBlock::iterator At, DebugLoc &DL);
1385 
1386     const HexagonInstrInfo &HII;
1387     MachineRegisterInfo &MRI;
1388     BitTracker &BT;
1389   };
1390 
1391 } // end anonymous namespace
1392 
1393 bool ConstGeneration::isTfrConst(const MachineInstr &MI) {
1394   unsigned Opc = MI.getOpcode();
1395   switch (Opc) {
1396     case Hexagon::A2_combineii:
1397     case Hexagon::A4_combineii:
1398     case Hexagon::A2_tfrsi:
1399     case Hexagon::A2_tfrpi:
1400     case Hexagon::PS_true:
1401     case Hexagon::PS_false:
1402     case Hexagon::CONST32:
1403     case Hexagon::CONST64:
1404       return true;
1405   }
1406   return false;
1407 }
1408 
1409 // Generate a transfer-immediate instruction that is appropriate for the
1410 // register class and the actual value being transferred.
1411 unsigned ConstGeneration::genTfrConst(const TargetRegisterClass *RC, int64_t C,
1412       MachineBasicBlock &B, MachineBasicBlock::iterator At, DebugLoc &DL) {
1413   Register Reg = MRI.createVirtualRegister(RC);
1414   if (RC == &Hexagon::IntRegsRegClass) {
1415     BuildMI(B, At, DL, HII.get(Hexagon::A2_tfrsi), Reg)
1416         .addImm(int32_t(C));
1417     return Reg;
1418   }
1419 
1420   if (RC == &Hexagon::DoubleRegsRegClass) {
1421     if (isInt<8>(C)) {
1422       BuildMI(B, At, DL, HII.get(Hexagon::A2_tfrpi), Reg)
1423           .addImm(C);
1424       return Reg;
1425     }
1426 
1427     unsigned Lo = Lo_32(C), Hi = Hi_32(C);
1428     if (isInt<8>(Lo) || isInt<8>(Hi)) {
1429       unsigned Opc = isInt<8>(Lo) ? Hexagon::A2_combineii
1430                                   : Hexagon::A4_combineii;
1431       BuildMI(B, At, DL, HII.get(Opc), Reg)
1432           .addImm(int32_t(Hi))
1433           .addImm(int32_t(Lo));
1434       return Reg;
1435     }
1436     MachineFunction *MF = B.getParent();
1437     auto &HST = MF->getSubtarget<HexagonSubtarget>();
1438 
1439     // Disable CONST64 for tiny core since it takes a LD resource.
1440     if (!HST.isTinyCore() ||
1441         MF->getFunction().hasOptSize()) {
1442       BuildMI(B, At, DL, HII.get(Hexagon::CONST64), Reg)
1443           .addImm(C);
1444       return Reg;
1445     }
1446   }
1447 
1448   if (RC == &Hexagon::PredRegsRegClass) {
1449     unsigned Opc;
1450     if (C == 0)
1451       Opc = Hexagon::PS_false;
1452     else if ((C & 0xFF) == 0xFF)
1453       Opc = Hexagon::PS_true;
1454     else
1455       return 0;
1456     BuildMI(B, At, DL, HII.get(Opc), Reg);
1457     return Reg;
1458   }
1459 
1460   return 0;
1461 }
1462 
1463 bool ConstGeneration::processBlock(MachineBasicBlock &B, const RegisterSet&) {
1464   if (!BT.reached(&B))
1465     return false;
1466   bool Changed = false;
1467   RegisterSet Defs;
1468 
1469   for (auto I = B.begin(), E = B.end(); I != E; ++I) {
1470     if (isTfrConst(*I))
1471       continue;
1472     Defs.clear();
1473     HBS::getInstrDefs(*I, Defs);
1474     if (Defs.count() != 1)
1475       continue;
1476     unsigned DR = Defs.find_first();
1477     if (!Register::isVirtualRegister(DR))
1478       continue;
1479     uint64_t U;
1480     const BitTracker::RegisterCell &DRC = BT.lookup(DR);
1481     if (HBS::getConst(DRC, 0, DRC.width(), U)) {
1482       int64_t C = U;
1483       DebugLoc DL = I->getDebugLoc();
1484       auto At = I->isPHI() ? B.getFirstNonPHI() : I;
1485       unsigned ImmReg = genTfrConst(MRI.getRegClass(DR), C, B, At, DL);
1486       if (ImmReg) {
1487         HBS::replaceReg(DR, ImmReg, MRI);
1488         BT.put(ImmReg, DRC);
1489         Changed = true;
1490       }
1491     }
1492   }
1493   return Changed;
1494 }
1495 
1496 namespace {
1497 
1498 // Identify pairs of available registers which hold identical values.
1499 // In such cases, only one of them needs to be calculated, the other one
1500 // will be defined as a copy of the first.
1501   class CopyGeneration : public Transformation {
1502   public:
1503     CopyGeneration(BitTracker &bt, const HexagonInstrInfo &hii,
1504         const HexagonRegisterInfo &hri, MachineRegisterInfo &mri)
1505       : Transformation(true), HII(hii), HRI(hri), MRI(mri), BT(bt) {}
1506 
1507     bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
1508 
1509   private:
1510     bool findMatch(const BitTracker::RegisterRef &Inp,
1511         BitTracker::RegisterRef &Out, const RegisterSet &AVs);
1512 
1513     const HexagonInstrInfo &HII;
1514     const HexagonRegisterInfo &HRI;
1515     MachineRegisterInfo &MRI;
1516     BitTracker &BT;
1517     RegisterSet Forbidden;
1518   };
1519 
1520 // Eliminate register copies RD = RS, by replacing the uses of RD with
1521 // with uses of RS.
1522   class CopyPropagation : public Transformation {
1523   public:
1524     CopyPropagation(const HexagonRegisterInfo &hri, MachineRegisterInfo &mri)
1525         : Transformation(false), HRI(hri), MRI(mri) {}
1526 
1527     bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
1528 
1529     static bool isCopyReg(unsigned Opc, bool NoConv);
1530 
1531   private:
1532     bool propagateRegCopy(MachineInstr &MI);
1533 
1534     const HexagonRegisterInfo &HRI;
1535     MachineRegisterInfo &MRI;
1536   };
1537 
1538 } // end anonymous namespace
1539 
1540 /// Check if there is a register in AVs that is identical to Inp. If so,
1541 /// set Out to the found register. The output may be a pair Reg:Sub.
1542 bool CopyGeneration::findMatch(const BitTracker::RegisterRef &Inp,
1543       BitTracker::RegisterRef &Out, const RegisterSet &AVs) {
1544   if (!BT.has(Inp.Reg))
1545     return false;
1546   const BitTracker::RegisterCell &InpRC = BT.lookup(Inp.Reg);
1547   auto *FRC = HBS::getFinalVRegClass(Inp, MRI);
1548   unsigned B, W;
1549   if (!HBS::getSubregMask(Inp, B, W, MRI))
1550     return false;
1551 
1552   for (unsigned R = AVs.find_first(); R; R = AVs.find_next(R)) {
1553     if (!BT.has(R) || Forbidden[R])
1554       continue;
1555     const BitTracker::RegisterCell &RC = BT.lookup(R);
1556     unsigned RW = RC.width();
1557     if (W == RW) {
1558       if (FRC != MRI.getRegClass(R))
1559         continue;
1560       if (!HBS::isTransparentCopy(R, Inp, MRI))
1561         continue;
1562       if (!HBS::isEqual(InpRC, B, RC, 0, W))
1563         continue;
1564       Out.Reg = R;
1565       Out.Sub = 0;
1566       return true;
1567     }
1568     // Check if there is a super-register, whose part (with a subregister)
1569     // is equal to the input.
1570     // Only do double registers for now.
1571     if (W*2 != RW)
1572       continue;
1573     if (MRI.getRegClass(R) != &Hexagon::DoubleRegsRegClass)
1574       continue;
1575 
1576     if (HBS::isEqual(InpRC, B, RC, 0, W))
1577       Out.Sub = Hexagon::isub_lo;
1578     else if (HBS::isEqual(InpRC, B, RC, W, W))
1579       Out.Sub = Hexagon::isub_hi;
1580     else
1581       continue;
1582     Out.Reg = R;
1583     if (HBS::isTransparentCopy(Out, Inp, MRI))
1584       return true;
1585   }
1586   return false;
1587 }
1588 
1589 bool CopyGeneration::processBlock(MachineBasicBlock &B,
1590       const RegisterSet &AVs) {
1591   if (!BT.reached(&B))
1592     return false;
1593   RegisterSet AVB(AVs);
1594   bool Changed = false;
1595   RegisterSet Defs;
1596 
1597   for (auto I = B.begin(), E = B.end(), NextI = I; I != E;
1598        ++I, AVB.insert(Defs)) {
1599     NextI = std::next(I);
1600     Defs.clear();
1601     HBS::getInstrDefs(*I, Defs);
1602 
1603     unsigned Opc = I->getOpcode();
1604     if (CopyPropagation::isCopyReg(Opc, false) ||
1605         ConstGeneration::isTfrConst(*I))
1606       continue;
1607 
1608     DebugLoc DL = I->getDebugLoc();
1609     auto At = I->isPHI() ? B.getFirstNonPHI() : I;
1610 
1611     for (unsigned R = Defs.find_first(); R; R = Defs.find_next(R)) {
1612       BitTracker::RegisterRef MR;
1613       auto *FRC = HBS::getFinalVRegClass(R, MRI);
1614 
1615       if (findMatch(R, MR, AVB)) {
1616         Register NewR = MRI.createVirtualRegister(FRC);
1617         BuildMI(B, At, DL, HII.get(TargetOpcode::COPY), NewR)
1618           .addReg(MR.Reg, 0, MR.Sub);
1619         BT.put(BitTracker::RegisterRef(NewR), BT.get(MR));
1620         HBS::replaceReg(R, NewR, MRI);
1621         Forbidden.insert(R);
1622         continue;
1623       }
1624 
1625       if (FRC == &Hexagon::DoubleRegsRegClass ||
1626           FRC == &Hexagon::HvxWRRegClass) {
1627         // Try to generate REG_SEQUENCE.
1628         unsigned SubLo = HRI.getHexagonSubRegIndex(*FRC, Hexagon::ps_sub_lo);
1629         unsigned SubHi = HRI.getHexagonSubRegIndex(*FRC, Hexagon::ps_sub_hi);
1630         BitTracker::RegisterRef TL = { R, SubLo };
1631         BitTracker::RegisterRef TH = { R, SubHi };
1632         BitTracker::RegisterRef ML, MH;
1633         if (findMatch(TL, ML, AVB) && findMatch(TH, MH, AVB)) {
1634           auto *FRC = HBS::getFinalVRegClass(R, MRI);
1635           Register NewR = MRI.createVirtualRegister(FRC);
1636           BuildMI(B, At, DL, HII.get(TargetOpcode::REG_SEQUENCE), NewR)
1637             .addReg(ML.Reg, 0, ML.Sub)
1638             .addImm(SubLo)
1639             .addReg(MH.Reg, 0, MH.Sub)
1640             .addImm(SubHi);
1641           BT.put(BitTracker::RegisterRef(NewR), BT.get(R));
1642           HBS::replaceReg(R, NewR, MRI);
1643           Forbidden.insert(R);
1644         }
1645       }
1646     }
1647   }
1648 
1649   return Changed;
1650 }
1651 
1652 bool CopyPropagation::isCopyReg(unsigned Opc, bool NoConv) {
1653   switch (Opc) {
1654     case TargetOpcode::COPY:
1655     case TargetOpcode::REG_SEQUENCE:
1656     case Hexagon::A4_combineir:
1657     case Hexagon::A4_combineri:
1658       return true;
1659     case Hexagon::A2_tfr:
1660     case Hexagon::A2_tfrp:
1661     case Hexagon::A2_combinew:
1662     case Hexagon::V6_vcombine:
1663       return NoConv;
1664     default:
1665       break;
1666   }
1667   return false;
1668 }
1669 
1670 bool CopyPropagation::propagateRegCopy(MachineInstr &MI) {
1671   bool Changed = false;
1672   unsigned Opc = MI.getOpcode();
1673   BitTracker::RegisterRef RD = MI.getOperand(0);
1674   assert(MI.getOperand(0).getSubReg() == 0);
1675 
1676   switch (Opc) {
1677     case TargetOpcode::COPY:
1678     case Hexagon::A2_tfr:
1679     case Hexagon::A2_tfrp: {
1680       BitTracker::RegisterRef RS = MI.getOperand(1);
1681       if (!HBS::isTransparentCopy(RD, RS, MRI))
1682         break;
1683       if (RS.Sub != 0)
1684         Changed = HBS::replaceRegWithSub(RD.Reg, RS.Reg, RS.Sub, MRI);
1685       else
1686         Changed = HBS::replaceReg(RD.Reg, RS.Reg, MRI);
1687       break;
1688     }
1689     case TargetOpcode::REG_SEQUENCE: {
1690       BitTracker::RegisterRef SL, SH;
1691       if (HBS::parseRegSequence(MI, SL, SH, MRI)) {
1692         const TargetRegisterClass &RC = *MRI.getRegClass(RD.Reg);
1693         unsigned SubLo = HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_lo);
1694         unsigned SubHi = HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_hi);
1695         Changed  = HBS::replaceSubWithSub(RD.Reg, SubLo, SL.Reg, SL.Sub, MRI);
1696         Changed |= HBS::replaceSubWithSub(RD.Reg, SubHi, SH.Reg, SH.Sub, MRI);
1697       }
1698       break;
1699     }
1700     case Hexagon::A2_combinew:
1701     case Hexagon::V6_vcombine: {
1702       const TargetRegisterClass &RC = *MRI.getRegClass(RD.Reg);
1703       unsigned SubLo = HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_lo);
1704       unsigned SubHi = HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_hi);
1705       BitTracker::RegisterRef RH = MI.getOperand(1), RL = MI.getOperand(2);
1706       Changed  = HBS::replaceSubWithSub(RD.Reg, SubLo, RL.Reg, RL.Sub, MRI);
1707       Changed |= HBS::replaceSubWithSub(RD.Reg, SubHi, RH.Reg, RH.Sub, MRI);
1708       break;
1709     }
1710     case Hexagon::A4_combineir:
1711     case Hexagon::A4_combineri: {
1712       unsigned SrcX = (Opc == Hexagon::A4_combineir) ? 2 : 1;
1713       unsigned Sub = (Opc == Hexagon::A4_combineir) ? Hexagon::isub_lo
1714                                                     : Hexagon::isub_hi;
1715       BitTracker::RegisterRef RS = MI.getOperand(SrcX);
1716       Changed = HBS::replaceSubWithSub(RD.Reg, Sub, RS.Reg, RS.Sub, MRI);
1717       break;
1718     }
1719   }
1720   return Changed;
1721 }
1722 
1723 bool CopyPropagation::processBlock(MachineBasicBlock &B, const RegisterSet&) {
1724   std::vector<MachineInstr*> Instrs;
1725   for (auto I = B.rbegin(), E = B.rend(); I != E; ++I)
1726     Instrs.push_back(&*I);
1727 
1728   bool Changed = false;
1729   for (auto I : Instrs) {
1730     unsigned Opc = I->getOpcode();
1731     if (!CopyPropagation::isCopyReg(Opc, true))
1732       continue;
1733     Changed |= propagateRegCopy(*I);
1734   }
1735 
1736   return Changed;
1737 }
1738 
1739 namespace {
1740 
1741 // Recognize patterns that can be simplified and replace them with the
1742 // simpler forms.
1743 // This is by no means complete
1744   class BitSimplification : public Transformation {
1745   public:
1746     BitSimplification(BitTracker &bt, const MachineDominatorTree &mdt,
1747         const HexagonInstrInfo &hii, const HexagonRegisterInfo &hri,
1748         MachineRegisterInfo &mri, MachineFunction &mf)
1749       : Transformation(true), MDT(mdt), HII(hii), HRI(hri), MRI(mri),
1750         MF(mf), BT(bt) {}
1751 
1752     bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
1753 
1754   private:
1755     struct RegHalf : public BitTracker::RegisterRef {
1756       bool Low;  // Low/High halfword.
1757     };
1758 
1759     bool matchHalf(unsigned SelfR, const BitTracker::RegisterCell &RC,
1760           unsigned B, RegHalf &RH);
1761     bool validateReg(BitTracker::RegisterRef R, unsigned Opc, unsigned OpNum);
1762 
1763     bool matchPackhl(unsigned SelfR, const BitTracker::RegisterCell &RC,
1764           BitTracker::RegisterRef &Rs, BitTracker::RegisterRef &Rt);
1765     unsigned getCombineOpcode(bool HLow, bool LLow);
1766 
1767     bool genStoreUpperHalf(MachineInstr *MI);
1768     bool genStoreImmediate(MachineInstr *MI);
1769     bool genPackhl(MachineInstr *MI, BitTracker::RegisterRef RD,
1770           const BitTracker::RegisterCell &RC);
1771     bool genExtractHalf(MachineInstr *MI, BitTracker::RegisterRef RD,
1772           const BitTracker::RegisterCell &RC);
1773     bool genCombineHalf(MachineInstr *MI, BitTracker::RegisterRef RD,
1774           const BitTracker::RegisterCell &RC);
1775     bool genExtractLow(MachineInstr *MI, BitTracker::RegisterRef RD,
1776           const BitTracker::RegisterCell &RC);
1777     bool genBitSplit(MachineInstr *MI, BitTracker::RegisterRef RD,
1778           const BitTracker::RegisterCell &RC, const RegisterSet &AVs);
1779     bool simplifyTstbit(MachineInstr *MI, BitTracker::RegisterRef RD,
1780           const BitTracker::RegisterCell &RC);
1781     bool simplifyExtractLow(MachineInstr *MI, BitTracker::RegisterRef RD,
1782           const BitTracker::RegisterCell &RC, const RegisterSet &AVs);
1783     bool simplifyRCmp0(MachineInstr *MI, BitTracker::RegisterRef RD);
1784 
1785     // Cache of created instructions to avoid creating duplicates.
1786     // XXX Currently only used by genBitSplit.
1787     std::vector<MachineInstr*> NewMIs;
1788 
1789     const MachineDominatorTree &MDT;
1790     const HexagonInstrInfo &HII;
1791     const HexagonRegisterInfo &HRI;
1792     MachineRegisterInfo &MRI;
1793     MachineFunction &MF;
1794     BitTracker &BT;
1795   };
1796 
1797 } // end anonymous namespace
1798 
1799 // Check if the bits [B..B+16) in register cell RC form a valid halfword,
1800 // i.e. [0..16), [16..32), etc. of some register. If so, return true and
1801 // set the information about the found register in RH.
1802 bool BitSimplification::matchHalf(unsigned SelfR,
1803       const BitTracker::RegisterCell &RC, unsigned B, RegHalf &RH) {
1804   // XXX This could be searching in the set of available registers, in case
1805   // the match is not exact.
1806 
1807   // Match 16-bit chunks, where the RC[B..B+15] references exactly one
1808   // register and all the bits B..B+15 match between RC and the register.
1809   // This is meant to match "v1[0-15]", where v1 = { [0]:0 [1-15]:v1... },
1810   // and RC = { [0]:0 [1-15]:v1[1-15]... }.
1811   bool Low = false;
1812   unsigned I = B;
1813   while (I < B+16 && RC[I].num())
1814     I++;
1815   if (I == B+16)
1816     return false;
1817 
1818   unsigned Reg = RC[I].RefI.Reg;
1819   unsigned P = RC[I].RefI.Pos;    // The RefI.Pos will be advanced by I-B.
1820   if (P < I-B)
1821     return false;
1822   unsigned Pos = P - (I-B);
1823 
1824   if (Reg == 0 || Reg == SelfR)    // Don't match "self".
1825     return false;
1826   if (!Register::isVirtualRegister(Reg))
1827     return false;
1828   if (!BT.has(Reg))
1829     return false;
1830 
1831   const BitTracker::RegisterCell &SC = BT.lookup(Reg);
1832   if (Pos+16 > SC.width())
1833     return false;
1834 
1835   for (unsigned i = 0; i < 16; ++i) {
1836     const BitTracker::BitValue &RV = RC[i+B];
1837     if (RV.Type == BitTracker::BitValue::Ref) {
1838       if (RV.RefI.Reg != Reg)
1839         return false;
1840       if (RV.RefI.Pos != i+Pos)
1841         return false;
1842       continue;
1843     }
1844     if (RC[i+B] != SC[i+Pos])
1845       return false;
1846   }
1847 
1848   unsigned Sub = 0;
1849   switch (Pos) {
1850     case 0:
1851       Sub = Hexagon::isub_lo;
1852       Low = true;
1853       break;
1854     case 16:
1855       Sub = Hexagon::isub_lo;
1856       Low = false;
1857       break;
1858     case 32:
1859       Sub = Hexagon::isub_hi;
1860       Low = true;
1861       break;
1862     case 48:
1863       Sub = Hexagon::isub_hi;
1864       Low = false;
1865       break;
1866     default:
1867       return false;
1868   }
1869 
1870   RH.Reg = Reg;
1871   RH.Sub = Sub;
1872   RH.Low = Low;
1873   // If the subregister is not valid with the register, set it to 0.
1874   if (!HBS::getFinalVRegClass(RH, MRI))
1875     RH.Sub = 0;
1876 
1877   return true;
1878 }
1879 
1880 bool BitSimplification::validateReg(BitTracker::RegisterRef R, unsigned Opc,
1881       unsigned OpNum) {
1882   auto *OpRC = HII.getRegClass(HII.get(Opc), OpNum, &HRI, MF);
1883   auto *RRC = HBS::getFinalVRegClass(R, MRI);
1884   return OpRC->hasSubClassEq(RRC);
1885 }
1886 
1887 // Check if RC matches the pattern of a S2_packhl. If so, return true and
1888 // set the inputs Rs and Rt.
1889 bool BitSimplification::matchPackhl(unsigned SelfR,
1890       const BitTracker::RegisterCell &RC, BitTracker::RegisterRef &Rs,
1891       BitTracker::RegisterRef &Rt) {
1892   RegHalf L1, H1, L2, H2;
1893 
1894   if (!matchHalf(SelfR, RC, 0, L2)  || !matchHalf(SelfR, RC, 16, L1))
1895     return false;
1896   if (!matchHalf(SelfR, RC, 32, H2) || !matchHalf(SelfR, RC, 48, H1))
1897     return false;
1898 
1899   // Rs = H1.L1, Rt = H2.L2
1900   if (H1.Reg != L1.Reg || H1.Sub != L1.Sub || H1.Low || !L1.Low)
1901     return false;
1902   if (H2.Reg != L2.Reg || H2.Sub != L2.Sub || H2.Low || !L2.Low)
1903     return false;
1904 
1905   Rs = H1;
1906   Rt = H2;
1907   return true;
1908 }
1909 
1910 unsigned BitSimplification::getCombineOpcode(bool HLow, bool LLow) {
1911   return HLow ? LLow ? Hexagon::A2_combine_ll
1912                      : Hexagon::A2_combine_lh
1913               : LLow ? Hexagon::A2_combine_hl
1914                      : Hexagon::A2_combine_hh;
1915 }
1916 
1917 // If MI stores the upper halfword of a register (potentially obtained via
1918 // shifts or extracts), replace it with a storerf instruction. This could
1919 // cause the "extraction" code to become dead.
1920 bool BitSimplification::genStoreUpperHalf(MachineInstr *MI) {
1921   unsigned Opc = MI->getOpcode();
1922   if (Opc != Hexagon::S2_storerh_io)
1923     return false;
1924 
1925   MachineOperand &ValOp = MI->getOperand(2);
1926   BitTracker::RegisterRef RS = ValOp;
1927   if (!BT.has(RS.Reg))
1928     return false;
1929   const BitTracker::RegisterCell &RC = BT.lookup(RS.Reg);
1930   RegHalf H;
1931   if (!matchHalf(0, RC, 0, H))
1932     return false;
1933   if (H.Low)
1934     return false;
1935   MI->setDesc(HII.get(Hexagon::S2_storerf_io));
1936   ValOp.setReg(H.Reg);
1937   ValOp.setSubReg(H.Sub);
1938   return true;
1939 }
1940 
1941 // If MI stores a value known at compile-time, and the value is within a range
1942 // that avoids using constant-extenders, replace it with a store-immediate.
1943 bool BitSimplification::genStoreImmediate(MachineInstr *MI) {
1944   unsigned Opc = MI->getOpcode();
1945   unsigned Align = 0;
1946   switch (Opc) {
1947     case Hexagon::S2_storeri_io:
1948       Align++;
1949       LLVM_FALLTHROUGH;
1950     case Hexagon::S2_storerh_io:
1951       Align++;
1952       LLVM_FALLTHROUGH;
1953     case Hexagon::S2_storerb_io:
1954       break;
1955     default:
1956       return false;
1957   }
1958 
1959   // Avoid stores to frame-indices (due to an unknown offset).
1960   if (!MI->getOperand(0).isReg())
1961     return false;
1962   MachineOperand &OffOp = MI->getOperand(1);
1963   if (!OffOp.isImm())
1964     return false;
1965 
1966   int64_t Off = OffOp.getImm();
1967   // Offset is u6:a. Sadly, there is no isShiftedUInt(n,x).
1968   if (!isUIntN(6+Align, Off) || (Off & ((1<<Align)-1)))
1969     return false;
1970   // Source register:
1971   BitTracker::RegisterRef RS = MI->getOperand(2);
1972   if (!BT.has(RS.Reg))
1973     return false;
1974   const BitTracker::RegisterCell &RC = BT.lookup(RS.Reg);
1975   uint64_t U;
1976   if (!HBS::getConst(RC, 0, RC.width(), U))
1977     return false;
1978 
1979   // Only consider 8-bit values to avoid constant-extenders.
1980   int V;
1981   switch (Opc) {
1982     case Hexagon::S2_storerb_io:
1983       V = int8_t(U);
1984       break;
1985     case Hexagon::S2_storerh_io:
1986       V = int16_t(U);
1987       break;
1988     case Hexagon::S2_storeri_io:
1989       V = int32_t(U);
1990       break;
1991     default:
1992       // Opc is already checked above to be one of the three store instructions.
1993       // This silences a -Wuninitialized false positive on GCC 5.4.
1994       llvm_unreachable("Unexpected store opcode");
1995   }
1996   if (!isInt<8>(V))
1997     return false;
1998 
1999   MI->RemoveOperand(2);
2000   switch (Opc) {
2001     case Hexagon::S2_storerb_io:
2002       MI->setDesc(HII.get(Hexagon::S4_storeirb_io));
2003       break;
2004     case Hexagon::S2_storerh_io:
2005       MI->setDesc(HII.get(Hexagon::S4_storeirh_io));
2006       break;
2007     case Hexagon::S2_storeri_io:
2008       MI->setDesc(HII.get(Hexagon::S4_storeiri_io));
2009       break;
2010   }
2011   MI->addOperand(MachineOperand::CreateImm(V));
2012   return true;
2013 }
2014 
2015 // If MI is equivalent o S2_packhl, generate the S2_packhl. MI could be the
2016 // last instruction in a sequence that results in something equivalent to
2017 // the pack-halfwords. The intent is to cause the entire sequence to become
2018 // dead.
2019 bool BitSimplification::genPackhl(MachineInstr *MI,
2020       BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
2021   unsigned Opc = MI->getOpcode();
2022   if (Opc == Hexagon::S2_packhl)
2023     return false;
2024   BitTracker::RegisterRef Rs, Rt;
2025   if (!matchPackhl(RD.Reg, RC, Rs, Rt))
2026     return false;
2027   if (!validateReg(Rs, Hexagon::S2_packhl, 1) ||
2028       !validateReg(Rt, Hexagon::S2_packhl, 2))
2029     return false;
2030 
2031   MachineBasicBlock &B = *MI->getParent();
2032   Register NewR = MRI.createVirtualRegister(&Hexagon::DoubleRegsRegClass);
2033   DebugLoc DL = MI->getDebugLoc();
2034   auto At = MI->isPHI() ? B.getFirstNonPHI()
2035                         : MachineBasicBlock::iterator(MI);
2036   BuildMI(B, At, DL, HII.get(Hexagon::S2_packhl), NewR)
2037       .addReg(Rs.Reg, 0, Rs.Sub)
2038       .addReg(Rt.Reg, 0, Rt.Sub);
2039   HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
2040   BT.put(BitTracker::RegisterRef(NewR), RC);
2041   return true;
2042 }
2043 
2044 // If MI produces halfword of the input in the low half of the output,
2045 // replace it with zero-extend or extractu.
2046 bool BitSimplification::genExtractHalf(MachineInstr *MI,
2047       BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
2048   RegHalf L;
2049   // Check for halfword in low 16 bits, zeros elsewhere.
2050   if (!matchHalf(RD.Reg, RC, 0, L) || !HBS::isZero(RC, 16, 16))
2051     return false;
2052 
2053   unsigned Opc = MI->getOpcode();
2054   MachineBasicBlock &B = *MI->getParent();
2055   DebugLoc DL = MI->getDebugLoc();
2056 
2057   // Prefer zxth, since zxth can go in any slot, while extractu only in
2058   // slots 2 and 3.
2059   unsigned NewR = 0;
2060   auto At = MI->isPHI() ? B.getFirstNonPHI()
2061                         : MachineBasicBlock::iterator(MI);
2062   if (L.Low && Opc != Hexagon::A2_zxth) {
2063     if (validateReg(L, Hexagon::A2_zxth, 1)) {
2064       NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
2065       BuildMI(B, At, DL, HII.get(Hexagon::A2_zxth), NewR)
2066           .addReg(L.Reg, 0, L.Sub);
2067     }
2068   } else if (!L.Low && Opc != Hexagon::S2_lsr_i_r) {
2069     if (validateReg(L, Hexagon::S2_lsr_i_r, 1)) {
2070       NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
2071       BuildMI(B, MI, DL, HII.get(Hexagon::S2_lsr_i_r), NewR)
2072           .addReg(L.Reg, 0, L.Sub)
2073           .addImm(16);
2074     }
2075   }
2076   if (NewR == 0)
2077     return false;
2078   HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
2079   BT.put(BitTracker::RegisterRef(NewR), RC);
2080   return true;
2081 }
2082 
2083 // If MI is equivalent to a combine(.L/.H, .L/.H) replace with with the
2084 // combine.
2085 bool BitSimplification::genCombineHalf(MachineInstr *MI,
2086       BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
2087   RegHalf L, H;
2088   // Check for combine h/l
2089   if (!matchHalf(RD.Reg, RC, 0, L) || !matchHalf(RD.Reg, RC, 16, H))
2090     return false;
2091   // Do nothing if this is just a reg copy.
2092   if (L.Reg == H.Reg && L.Sub == H.Sub && !H.Low && L.Low)
2093     return false;
2094 
2095   unsigned Opc = MI->getOpcode();
2096   unsigned COpc = getCombineOpcode(H.Low, L.Low);
2097   if (COpc == Opc)
2098     return false;
2099   if (!validateReg(H, COpc, 1) || !validateReg(L, COpc, 2))
2100     return false;
2101 
2102   MachineBasicBlock &B = *MI->getParent();
2103   DebugLoc DL = MI->getDebugLoc();
2104   Register NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
2105   auto At = MI->isPHI() ? B.getFirstNonPHI()
2106                         : MachineBasicBlock::iterator(MI);
2107   BuildMI(B, At, DL, HII.get(COpc), NewR)
2108       .addReg(H.Reg, 0, H.Sub)
2109       .addReg(L.Reg, 0, L.Sub);
2110   HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
2111   BT.put(BitTracker::RegisterRef(NewR), RC);
2112   return true;
2113 }
2114 
2115 // If MI resets high bits of a register and keeps the lower ones, replace it
2116 // with zero-extend byte/half, and-immediate, or extractu, as appropriate.
2117 bool BitSimplification::genExtractLow(MachineInstr *MI,
2118       BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
2119   unsigned Opc = MI->getOpcode();
2120   switch (Opc) {
2121     case Hexagon::A2_zxtb:
2122     case Hexagon::A2_zxth:
2123     case Hexagon::S2_extractu:
2124       return false;
2125   }
2126   if (Opc == Hexagon::A2_andir && MI->getOperand(2).isImm()) {
2127     int32_t Imm = MI->getOperand(2).getImm();
2128     if (isInt<10>(Imm))
2129       return false;
2130   }
2131 
2132   if (MI->hasUnmodeledSideEffects() || MI->isInlineAsm())
2133     return false;
2134   unsigned W = RC.width();
2135   while (W > 0 && RC[W-1].is(0))
2136     W--;
2137   if (W == 0 || W == RC.width())
2138     return false;
2139   unsigned NewOpc = (W == 8)  ? Hexagon::A2_zxtb
2140                   : (W == 16) ? Hexagon::A2_zxth
2141                   : (W < 10)  ? Hexagon::A2_andir
2142                   : Hexagon::S2_extractu;
2143   MachineBasicBlock &B = *MI->getParent();
2144   DebugLoc DL = MI->getDebugLoc();
2145 
2146   for (auto &Op : MI->uses()) {
2147     if (!Op.isReg())
2148       continue;
2149     BitTracker::RegisterRef RS = Op;
2150     if (!BT.has(RS.Reg))
2151       continue;
2152     const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
2153     unsigned BN, BW;
2154     if (!HBS::getSubregMask(RS, BN, BW, MRI))
2155       continue;
2156     if (BW < W || !HBS::isEqual(RC, 0, SC, BN, W))
2157       continue;
2158     if (!validateReg(RS, NewOpc, 1))
2159       continue;
2160 
2161     Register NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
2162     auto At = MI->isPHI() ? B.getFirstNonPHI()
2163                           : MachineBasicBlock::iterator(MI);
2164     auto MIB = BuildMI(B, At, DL, HII.get(NewOpc), NewR)
2165                   .addReg(RS.Reg, 0, RS.Sub);
2166     if (NewOpc == Hexagon::A2_andir)
2167       MIB.addImm((1 << W) - 1);
2168     else if (NewOpc == Hexagon::S2_extractu)
2169       MIB.addImm(W).addImm(0);
2170     HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
2171     BT.put(BitTracker::RegisterRef(NewR), RC);
2172     return true;
2173   }
2174   return false;
2175 }
2176 
2177 bool BitSimplification::genBitSplit(MachineInstr *MI,
2178       BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC,
2179       const RegisterSet &AVs) {
2180   if (!GenBitSplit)
2181     return false;
2182   if (MaxBitSplit.getNumOccurrences()) {
2183     if (CountBitSplit >= MaxBitSplit)
2184       return false;
2185   }
2186 
2187   unsigned Opc = MI->getOpcode();
2188   switch (Opc) {
2189     case Hexagon::A4_bitsplit:
2190     case Hexagon::A4_bitspliti:
2191       return false;
2192   }
2193 
2194   unsigned W = RC.width();
2195   if (W != 32)
2196     return false;
2197 
2198   auto ctlz = [] (const BitTracker::RegisterCell &C) -> unsigned {
2199     unsigned Z = C.width();
2200     while (Z > 0 && C[Z-1].is(0))
2201       --Z;
2202     return C.width() - Z;
2203   };
2204 
2205   // Count the number of leading zeros in the target RC.
2206   unsigned Z = ctlz(RC);
2207   if (Z == 0 || Z == W)
2208     return false;
2209 
2210   // A simplistic analysis: assume the source register (the one being split)
2211   // is fully unknown, and that all its bits are self-references.
2212   const BitTracker::BitValue &B0 = RC[0];
2213   if (B0.Type != BitTracker::BitValue::Ref)
2214     return false;
2215 
2216   unsigned SrcR = B0.RefI.Reg;
2217   unsigned SrcSR = 0;
2218   unsigned Pos = B0.RefI.Pos;
2219 
2220   // All the non-zero bits should be consecutive bits from the same register.
2221   for (unsigned i = 1; i < W-Z; ++i) {
2222     const BitTracker::BitValue &V = RC[i];
2223     if (V.Type != BitTracker::BitValue::Ref)
2224       return false;
2225     if (V.RefI.Reg != SrcR || V.RefI.Pos != Pos+i)
2226       return false;
2227   }
2228 
2229   // Now, find the other bitfield among AVs.
2230   for (unsigned S = AVs.find_first(); S; S = AVs.find_next(S)) {
2231     // The number of leading zeros here should be the number of trailing
2232     // non-zeros in RC.
2233     unsigned SRC = MRI.getRegClass(S)->getID();
2234     if (SRC != Hexagon::IntRegsRegClassID &&
2235         SRC != Hexagon::DoubleRegsRegClassID)
2236       continue;
2237     if (!BT.has(S))
2238       continue;
2239     const BitTracker::RegisterCell &SC = BT.lookup(S);
2240     if (SC.width() != W || ctlz(SC) != W-Z)
2241       continue;
2242     // The Z lower bits should now match SrcR.
2243     const BitTracker::BitValue &S0 = SC[0];
2244     if (S0.Type != BitTracker::BitValue::Ref || S0.RefI.Reg != SrcR)
2245       continue;
2246     unsigned P = S0.RefI.Pos;
2247 
2248     if (Pos <= P && (Pos + W-Z) != P)
2249       continue;
2250     if (P < Pos && (P + Z) != Pos)
2251       continue;
2252     // The starting bitfield position must be at a subregister boundary.
2253     if (std::min(P, Pos) != 0 && std::min(P, Pos) != 32)
2254       continue;
2255 
2256     unsigned I;
2257     for (I = 1; I < Z; ++I) {
2258       const BitTracker::BitValue &V = SC[I];
2259       if (V.Type != BitTracker::BitValue::Ref)
2260         break;
2261       if (V.RefI.Reg != SrcR || V.RefI.Pos != P+I)
2262         break;
2263     }
2264     if (I != Z)
2265       continue;
2266 
2267     // Generate bitsplit where S is defined.
2268     if (MaxBitSplit.getNumOccurrences())
2269       CountBitSplit++;
2270     MachineInstr *DefS = MRI.getVRegDef(S);
2271     assert(DefS != nullptr);
2272     DebugLoc DL = DefS->getDebugLoc();
2273     MachineBasicBlock &B = *DefS->getParent();
2274     auto At = DefS->isPHI() ? B.getFirstNonPHI()
2275                             : MachineBasicBlock::iterator(DefS);
2276     if (MRI.getRegClass(SrcR)->getID() == Hexagon::DoubleRegsRegClassID)
2277       SrcSR = (std::min(Pos, P) == 32) ? Hexagon::isub_hi : Hexagon::isub_lo;
2278     if (!validateReg({SrcR,SrcSR}, Hexagon::A4_bitspliti, 1))
2279       continue;
2280     unsigned ImmOp = Pos <= P ? W-Z : Z;
2281 
2282     // Find an existing bitsplit instruction if one already exists.
2283     unsigned NewR = 0;
2284     for (MachineInstr *In : NewMIs) {
2285       if (In->getOpcode() != Hexagon::A4_bitspliti)
2286         continue;
2287       MachineOperand &Op1 = In->getOperand(1);
2288       if (Op1.getReg() != SrcR || Op1.getSubReg() != SrcSR)
2289         continue;
2290       if (In->getOperand(2).getImm() != ImmOp)
2291         continue;
2292       // Check if the target register is available here.
2293       MachineOperand &Op0 = In->getOperand(0);
2294       MachineInstr *DefI = MRI.getVRegDef(Op0.getReg());
2295       assert(DefI != nullptr);
2296       if (!MDT.dominates(DefI, &*At))
2297         continue;
2298 
2299       // Found one that can be reused.
2300       assert(Op0.getSubReg() == 0);
2301       NewR = Op0.getReg();
2302       break;
2303     }
2304     if (!NewR) {
2305       NewR = MRI.createVirtualRegister(&Hexagon::DoubleRegsRegClass);
2306       auto NewBS = BuildMI(B, At, DL, HII.get(Hexagon::A4_bitspliti), NewR)
2307                       .addReg(SrcR, 0, SrcSR)
2308                       .addImm(ImmOp);
2309       NewMIs.push_back(NewBS);
2310     }
2311     if (Pos <= P) {
2312       HBS::replaceRegWithSub(RD.Reg, NewR, Hexagon::isub_lo, MRI);
2313       HBS::replaceRegWithSub(S,      NewR, Hexagon::isub_hi, MRI);
2314     } else {
2315       HBS::replaceRegWithSub(S,      NewR, Hexagon::isub_lo, MRI);
2316       HBS::replaceRegWithSub(RD.Reg, NewR, Hexagon::isub_hi, MRI);
2317     }
2318     return true;
2319   }
2320 
2321   return false;
2322 }
2323 
2324 // Check for tstbit simplification opportunity, where the bit being checked
2325 // can be tracked back to another register. For example:
2326 //   %2 = S2_lsr_i_r  %1, 5
2327 //   %3 = S2_tstbit_i %2, 0
2328 // =>
2329 //   %3 = S2_tstbit_i %1, 5
2330 bool BitSimplification::simplifyTstbit(MachineInstr *MI,
2331       BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
2332   unsigned Opc = MI->getOpcode();
2333   if (Opc != Hexagon::S2_tstbit_i)
2334     return false;
2335 
2336   unsigned BN = MI->getOperand(2).getImm();
2337   BitTracker::RegisterRef RS = MI->getOperand(1);
2338   unsigned F, W;
2339   DebugLoc DL = MI->getDebugLoc();
2340   if (!BT.has(RS.Reg) || !HBS::getSubregMask(RS, F, W, MRI))
2341     return false;
2342   MachineBasicBlock &B = *MI->getParent();
2343   auto At = MI->isPHI() ? B.getFirstNonPHI()
2344                         : MachineBasicBlock::iterator(MI);
2345 
2346   const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
2347   const BitTracker::BitValue &V = SC[F+BN];
2348   if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg != RS.Reg) {
2349     const TargetRegisterClass *TC = MRI.getRegClass(V.RefI.Reg);
2350     // Need to map V.RefI.Reg to a 32-bit register, i.e. if it is
2351     // a double register, need to use a subregister and adjust bit
2352     // number.
2353     unsigned P = std::numeric_limits<unsigned>::max();
2354     BitTracker::RegisterRef RR(V.RefI.Reg, 0);
2355     if (TC == &Hexagon::DoubleRegsRegClass) {
2356       P = V.RefI.Pos;
2357       RR.Sub = Hexagon::isub_lo;
2358       if (P >= 32) {
2359         P -= 32;
2360         RR.Sub = Hexagon::isub_hi;
2361       }
2362     } else if (TC == &Hexagon::IntRegsRegClass) {
2363       P = V.RefI.Pos;
2364     }
2365     if (P != std::numeric_limits<unsigned>::max()) {
2366       unsigned NewR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass);
2367       BuildMI(B, At, DL, HII.get(Hexagon::S2_tstbit_i), NewR)
2368           .addReg(RR.Reg, 0, RR.Sub)
2369           .addImm(P);
2370       HBS::replaceReg(RD.Reg, NewR, MRI);
2371       BT.put(NewR, RC);
2372       return true;
2373     }
2374   } else if (V.is(0) || V.is(1)) {
2375     Register NewR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass);
2376     unsigned NewOpc = V.is(0) ? Hexagon::PS_false : Hexagon::PS_true;
2377     BuildMI(B, At, DL, HII.get(NewOpc), NewR);
2378     HBS::replaceReg(RD.Reg, NewR, MRI);
2379     return true;
2380   }
2381 
2382   return false;
2383 }
2384 
2385 // Detect whether RD is a bitfield extract (sign- or zero-extended) of
2386 // some register from the AVs set. Create a new corresponding instruction
2387 // at the location of MI. The intent is to recognize situations where
2388 // a sequence of instructions performs an operation that is equivalent to
2389 // an extract operation, such as a shift left followed by a shift right.
2390 bool BitSimplification::simplifyExtractLow(MachineInstr *MI,
2391       BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC,
2392       const RegisterSet &AVs) {
2393   if (!GenExtract)
2394     return false;
2395   if (MaxExtract.getNumOccurrences()) {
2396     if (CountExtract >= MaxExtract)
2397       return false;
2398     CountExtract++;
2399   }
2400 
2401   unsigned W = RC.width();
2402   unsigned RW = W;
2403   unsigned Len;
2404   bool Signed;
2405 
2406   // The code is mostly class-independent, except for the part that generates
2407   // the extract instruction, and establishes the source register (in case it
2408   // needs to use a subregister).
2409   const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI);
2410   if (FRC != &Hexagon::IntRegsRegClass && FRC != &Hexagon::DoubleRegsRegClass)
2411     return false;
2412   assert(RD.Sub == 0);
2413 
2414   // Observation:
2415   // If the cell has a form of 00..0xx..x with k zeros and n remaining
2416   // bits, this could be an extractu of the n bits, but it could also be
2417   // an extractu of a longer field which happens to have 0s in the top
2418   // bit positions.
2419   // The same logic applies to sign-extended fields.
2420   //
2421   // Do not check for the extended extracts, since it would expand the
2422   // search space quite a bit. The search may be expensive as it is.
2423 
2424   const BitTracker::BitValue &TopV = RC[W-1];
2425 
2426   // Eliminate candidates that have self-referential bits, since they
2427   // cannot be extracts from other registers. Also, skip registers that
2428   // have compile-time constant values.
2429   bool IsConst = true;
2430   for (unsigned I = 0; I != W; ++I) {
2431     const BitTracker::BitValue &V = RC[I];
2432     if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg == RD.Reg)
2433       return false;
2434     IsConst = IsConst && (V.is(0) || V.is(1));
2435   }
2436   if (IsConst)
2437     return false;
2438 
2439   if (TopV.is(0) || TopV.is(1)) {
2440     bool S = TopV.is(1);
2441     for (--W; W > 0 && RC[W-1].is(S); --W)
2442       ;
2443     Len = W;
2444     Signed = S;
2445     // The sign bit must be a part of the field being extended.
2446     if (Signed)
2447       ++Len;
2448   } else {
2449     // This could still be a sign-extended extract.
2450     assert(TopV.Type == BitTracker::BitValue::Ref);
2451     if (TopV.RefI.Reg == RD.Reg || TopV.RefI.Pos == W-1)
2452       return false;
2453     for (--W; W > 0 && RC[W-1] == TopV; --W)
2454       ;
2455     // The top bits of RC are copies of TopV. One occurrence of TopV will
2456     // be a part of the field.
2457     Len = W + 1;
2458     Signed = true;
2459   }
2460 
2461   // This would be just a copy. It should be handled elsewhere.
2462   if (Len == RW)
2463     return false;
2464 
2465   LLVM_DEBUG({
2466     dbgs() << __func__ << " on reg: " << printReg(RD.Reg, &HRI, RD.Sub)
2467            << ", MI: " << *MI;
2468     dbgs() << "Cell: " << RC << '\n';
2469     dbgs() << "Expected bitfield size: " << Len << " bits, "
2470            << (Signed ? "sign" : "zero") << "-extended\n";
2471   });
2472 
2473   bool Changed = false;
2474 
2475   for (unsigned R = AVs.find_first(); R != 0; R = AVs.find_next(R)) {
2476     if (!BT.has(R))
2477       continue;
2478     const BitTracker::RegisterCell &SC = BT.lookup(R);
2479     unsigned SW = SC.width();
2480 
2481     // The source can be longer than the destination, as long as its size is
2482     // a multiple of the size of the destination. Also, we would need to be
2483     // able to refer to the subregister in the source that would be of the
2484     // same size as the destination, but only check the sizes here.
2485     if (SW < RW || (SW % RW) != 0)
2486       continue;
2487 
2488     // The field can start at any offset in SC as long as it contains Len
2489     // bits and does not cross subregister boundary (if the source register
2490     // is longer than the destination).
2491     unsigned Off = 0;
2492     while (Off <= SW-Len) {
2493       unsigned OE = (Off+Len)/RW;
2494       if (OE != Off/RW) {
2495         // The assumption here is that if the source (R) is longer than the
2496         // destination, then the destination is a sequence of words of
2497         // size RW, and each such word in R can be accessed via a subregister.
2498         //
2499         // If the beginning and the end of the field cross the subregister
2500         // boundary, advance to the next subregister.
2501         Off = OE*RW;
2502         continue;
2503       }
2504       if (HBS::isEqual(RC, 0, SC, Off, Len))
2505         break;
2506       ++Off;
2507     }
2508 
2509     if (Off > SW-Len)
2510       continue;
2511 
2512     // Found match.
2513     unsigned ExtOpc = 0;
2514     if (Off == 0) {
2515       if (Len == 8)
2516         ExtOpc = Signed ? Hexagon::A2_sxtb : Hexagon::A2_zxtb;
2517       else if (Len == 16)
2518         ExtOpc = Signed ? Hexagon::A2_sxth : Hexagon::A2_zxth;
2519       else if (Len < 10 && !Signed)
2520         ExtOpc = Hexagon::A2_andir;
2521     }
2522     if (ExtOpc == 0) {
2523       ExtOpc =
2524           Signed ? (RW == 32 ? Hexagon::S4_extract  : Hexagon::S4_extractp)
2525                  : (RW == 32 ? Hexagon::S2_extractu : Hexagon::S2_extractup);
2526     }
2527     unsigned SR = 0;
2528     // This only recognizes isub_lo and isub_hi.
2529     if (RW != SW && RW*2 != SW)
2530       continue;
2531     if (RW != SW)
2532       SR = (Off/RW == 0) ? Hexagon::isub_lo : Hexagon::isub_hi;
2533     Off = Off % RW;
2534 
2535     if (!validateReg({R,SR}, ExtOpc, 1))
2536       continue;
2537 
2538     // Don't generate the same instruction as the one being optimized.
2539     if (MI->getOpcode() == ExtOpc) {
2540       // All possible ExtOpc's have the source in operand(1).
2541       const MachineOperand &SrcOp = MI->getOperand(1);
2542       if (SrcOp.getReg() == R)
2543         continue;
2544     }
2545 
2546     DebugLoc DL = MI->getDebugLoc();
2547     MachineBasicBlock &B = *MI->getParent();
2548     Register NewR = MRI.createVirtualRegister(FRC);
2549     auto At = MI->isPHI() ? B.getFirstNonPHI()
2550                           : MachineBasicBlock::iterator(MI);
2551     auto MIB = BuildMI(B, At, DL, HII.get(ExtOpc), NewR)
2552                   .addReg(R, 0, SR);
2553     switch (ExtOpc) {
2554       case Hexagon::A2_sxtb:
2555       case Hexagon::A2_zxtb:
2556       case Hexagon::A2_sxth:
2557       case Hexagon::A2_zxth:
2558         break;
2559       case Hexagon::A2_andir:
2560         MIB.addImm((1u << Len) - 1);
2561         break;
2562       case Hexagon::S4_extract:
2563       case Hexagon::S2_extractu:
2564       case Hexagon::S4_extractp:
2565       case Hexagon::S2_extractup:
2566         MIB.addImm(Len)
2567            .addImm(Off);
2568         break;
2569       default:
2570         llvm_unreachable("Unexpected opcode");
2571     }
2572 
2573     HBS::replaceReg(RD.Reg, NewR, MRI);
2574     BT.put(BitTracker::RegisterRef(NewR), RC);
2575     Changed = true;
2576     break;
2577   }
2578 
2579   return Changed;
2580 }
2581 
2582 bool BitSimplification::simplifyRCmp0(MachineInstr *MI,
2583       BitTracker::RegisterRef RD) {
2584   unsigned Opc = MI->getOpcode();
2585   if (Opc != Hexagon::A4_rcmpeqi && Opc != Hexagon::A4_rcmpneqi)
2586     return false;
2587   MachineOperand &CmpOp = MI->getOperand(2);
2588   if (!CmpOp.isImm() || CmpOp.getImm() != 0)
2589     return false;
2590 
2591   const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI);
2592   if (FRC != &Hexagon::IntRegsRegClass && FRC != &Hexagon::DoubleRegsRegClass)
2593     return false;
2594   assert(RD.Sub == 0);
2595 
2596   MachineBasicBlock &B = *MI->getParent();
2597   const DebugLoc &DL = MI->getDebugLoc();
2598   auto At = MI->isPHI() ? B.getFirstNonPHI()
2599                         : MachineBasicBlock::iterator(MI);
2600   bool KnownZ = true;
2601   bool KnownNZ = false;
2602 
2603   BitTracker::RegisterRef SR = MI->getOperand(1);
2604   if (!BT.has(SR.Reg))
2605     return false;
2606   const BitTracker::RegisterCell &SC = BT.lookup(SR.Reg);
2607   unsigned F, W;
2608   if (!HBS::getSubregMask(SR, F, W, MRI))
2609     return false;
2610 
2611   for (uint16_t I = F; I != F+W; ++I) {
2612     const BitTracker::BitValue &V = SC[I];
2613     if (!V.is(0))
2614       KnownZ = false;
2615     if (V.is(1))
2616       KnownNZ = true;
2617   }
2618 
2619   auto ReplaceWithConst = [&](int C) {
2620     Register NewR = MRI.createVirtualRegister(FRC);
2621     BuildMI(B, At, DL, HII.get(Hexagon::A2_tfrsi), NewR)
2622       .addImm(C);
2623     HBS::replaceReg(RD.Reg, NewR, MRI);
2624     BitTracker::RegisterCell NewRC(W);
2625     for (uint16_t I = 0; I != W; ++I) {
2626       NewRC[I] = BitTracker::BitValue(C & 1);
2627       C = unsigned(C) >> 1;
2628     }
2629     BT.put(BitTracker::RegisterRef(NewR), NewRC);
2630     return true;
2631   };
2632 
2633   auto IsNonZero = [] (const MachineOperand &Op) {
2634     if (Op.isGlobal() || Op.isBlockAddress())
2635       return true;
2636     if (Op.isImm())
2637       return Op.getImm() != 0;
2638     if (Op.isCImm())
2639       return !Op.getCImm()->isZero();
2640     if (Op.isFPImm())
2641       return !Op.getFPImm()->isZero();
2642     return false;
2643   };
2644 
2645   auto IsZero = [] (const MachineOperand &Op) {
2646     if (Op.isGlobal() || Op.isBlockAddress())
2647       return false;
2648     if (Op.isImm())
2649       return Op.getImm() == 0;
2650     if (Op.isCImm())
2651       return Op.getCImm()->isZero();
2652     if (Op.isFPImm())
2653       return Op.getFPImm()->isZero();
2654     return false;
2655   };
2656 
2657   // If the source register is known to be 0 or non-0, the comparison can
2658   // be folded to a load of a constant.
2659   if (KnownZ || KnownNZ) {
2660     assert(KnownZ != KnownNZ && "Register cannot be both 0 and non-0");
2661     return ReplaceWithConst(KnownZ == (Opc == Hexagon::A4_rcmpeqi));
2662   }
2663 
2664   // Special case: if the compare comes from a C2_muxii, then we know the
2665   // two possible constants that can be the source value.
2666   MachineInstr *InpDef = MRI.getVRegDef(SR.Reg);
2667   if (!InpDef)
2668     return false;
2669   if (SR.Sub == 0 && InpDef->getOpcode() == Hexagon::C2_muxii) {
2670     MachineOperand &Src1 = InpDef->getOperand(2);
2671     MachineOperand &Src2 = InpDef->getOperand(3);
2672     // Check if both are non-zero.
2673     bool KnownNZ1 = IsNonZero(Src1), KnownNZ2 = IsNonZero(Src2);
2674     if (KnownNZ1 && KnownNZ2)
2675       return ReplaceWithConst(Opc == Hexagon::A4_rcmpneqi);
2676     // Check if both are zero.
2677     bool KnownZ1 = IsZero(Src1), KnownZ2 = IsZero(Src2);
2678     if (KnownZ1 && KnownZ2)
2679       return ReplaceWithConst(Opc == Hexagon::A4_rcmpeqi);
2680 
2681     // If for both operands we know that they are either 0 or non-0,
2682     // replace the comparison with a C2_muxii, using the same predicate
2683     // register, but with operands substituted with 0/1 accordingly.
2684     if ((KnownZ1 || KnownNZ1) && (KnownZ2 || KnownNZ2)) {
2685       Register NewR = MRI.createVirtualRegister(FRC);
2686       BuildMI(B, At, DL, HII.get(Hexagon::C2_muxii), NewR)
2687         .addReg(InpDef->getOperand(1).getReg())
2688         .addImm(KnownZ1 == (Opc == Hexagon::A4_rcmpeqi))
2689         .addImm(KnownZ2 == (Opc == Hexagon::A4_rcmpeqi));
2690       HBS::replaceReg(RD.Reg, NewR, MRI);
2691       // Create a new cell with only the least significant bit unknown.
2692       BitTracker::RegisterCell NewRC(W);
2693       NewRC[0] = BitTracker::BitValue::self();
2694       NewRC.fill(1, W, BitTracker::BitValue::Zero);
2695       BT.put(BitTracker::RegisterRef(NewR), NewRC);
2696       return true;
2697     }
2698   }
2699 
2700   return false;
2701 }
2702 
2703 bool BitSimplification::processBlock(MachineBasicBlock &B,
2704       const RegisterSet &AVs) {
2705   if (!BT.reached(&B))
2706     return false;
2707   bool Changed = false;
2708   RegisterSet AVB = AVs;
2709   RegisterSet Defs;
2710 
2711   for (auto I = B.begin(), E = B.end(); I != E; ++I, AVB.insert(Defs)) {
2712     MachineInstr *MI = &*I;
2713     Defs.clear();
2714     HBS::getInstrDefs(*MI, Defs);
2715 
2716     unsigned Opc = MI->getOpcode();
2717     if (Opc == TargetOpcode::COPY || Opc == TargetOpcode::REG_SEQUENCE)
2718       continue;
2719 
2720     if (MI->mayStore()) {
2721       bool T = genStoreUpperHalf(MI);
2722       T = T || genStoreImmediate(MI);
2723       Changed |= T;
2724       continue;
2725     }
2726 
2727     if (Defs.count() != 1)
2728       continue;
2729     const MachineOperand &Op0 = MI->getOperand(0);
2730     if (!Op0.isReg() || !Op0.isDef())
2731       continue;
2732     BitTracker::RegisterRef RD = Op0;
2733     if (!BT.has(RD.Reg))
2734       continue;
2735     const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI);
2736     const BitTracker::RegisterCell &RC = BT.lookup(RD.Reg);
2737 
2738     if (FRC->getID() == Hexagon::DoubleRegsRegClassID) {
2739       bool T = genPackhl(MI, RD, RC);
2740       T = T || simplifyExtractLow(MI, RD, RC, AVB);
2741       Changed |= T;
2742       continue;
2743     }
2744 
2745     if (FRC->getID() == Hexagon::IntRegsRegClassID) {
2746       bool T = genBitSplit(MI, RD, RC, AVB);
2747       T = T || simplifyExtractLow(MI, RD, RC, AVB);
2748       T = T || genExtractHalf(MI, RD, RC);
2749       T = T || genCombineHalf(MI, RD, RC);
2750       T = T || genExtractLow(MI, RD, RC);
2751       T = T || simplifyRCmp0(MI, RD);
2752       Changed |= T;
2753       continue;
2754     }
2755 
2756     if (FRC->getID() == Hexagon::PredRegsRegClassID) {
2757       bool T = simplifyTstbit(MI, RD, RC);
2758       Changed |= T;
2759       continue;
2760     }
2761   }
2762   return Changed;
2763 }
2764 
2765 bool HexagonBitSimplify::runOnMachineFunction(MachineFunction &MF) {
2766   if (skipFunction(MF.getFunction()))
2767     return false;
2768 
2769   auto &HST = MF.getSubtarget<HexagonSubtarget>();
2770   auto &HRI = *HST.getRegisterInfo();
2771   auto &HII = *HST.getInstrInfo();
2772 
2773   MDT = &getAnalysis<MachineDominatorTree>();
2774   MachineRegisterInfo &MRI = MF.getRegInfo();
2775   bool Changed;
2776 
2777   Changed = DeadCodeElimination(MF, *MDT).run();
2778 
2779   const HexagonEvaluator HE(HRI, MRI, HII, MF);
2780   BitTracker BT(HE, MF);
2781   LLVM_DEBUG(BT.trace(true));
2782   BT.run();
2783 
2784   MachineBasicBlock &Entry = MF.front();
2785 
2786   RegisterSet AIG;  // Available registers for IG.
2787   ConstGeneration ImmG(BT, HII, MRI);
2788   Changed |= visitBlock(Entry, ImmG, AIG);
2789 
2790   RegisterSet ARE;  // Available registers for RIE.
2791   RedundantInstrElimination RIE(BT, HII, HRI, MRI);
2792   bool Ried = visitBlock(Entry, RIE, ARE);
2793   if (Ried) {
2794     Changed = true;
2795     BT.run();
2796   }
2797 
2798   RegisterSet ACG;  // Available registers for CG.
2799   CopyGeneration CopyG(BT, HII, HRI, MRI);
2800   Changed |= visitBlock(Entry, CopyG, ACG);
2801 
2802   RegisterSet ACP;  // Available registers for CP.
2803   CopyPropagation CopyP(HRI, MRI);
2804   Changed |= visitBlock(Entry, CopyP, ACP);
2805 
2806   Changed = DeadCodeElimination(MF, *MDT).run() || Changed;
2807 
2808   BT.run();
2809   RegisterSet ABS;  // Available registers for BS.
2810   BitSimplification BitS(BT, *MDT, HII, HRI, MRI, MF);
2811   Changed |= visitBlock(Entry, BitS, ABS);
2812 
2813   Changed = DeadCodeElimination(MF, *MDT).run() || Changed;
2814 
2815   if (Changed) {
2816     for (auto &B : MF)
2817       for (auto &I : B)
2818         I.clearKillInfo();
2819     DeadCodeElimination(MF, *MDT).run();
2820   }
2821   return Changed;
2822 }
2823 
2824 // Recognize loops where the code at the end of the loop matches the code
2825 // before the entry of the loop, and the matching code is such that is can
2826 // be simplified. This pass relies on the bit simplification above and only
2827 // prepares code in a way that can be handled by the bit simplifcation.
2828 //
2829 // This is the motivating testcase (and explanation):
2830 //
2831 // {
2832 //   loop0(.LBB0_2, r1)      // %for.body.preheader
2833 //   r5:4 = memd(r0++#8)
2834 // }
2835 // {
2836 //   r3 = lsr(r4, #16)
2837 //   r7:6 = combine(r5, r5)
2838 // }
2839 // {
2840 //   r3 = insert(r5, #16, #16)
2841 //   r7:6 = vlsrw(r7:6, #16)
2842 // }
2843 // .LBB0_2:
2844 // {
2845 //   memh(r2+#4) = r5
2846 //   memh(r2+#6) = r6            # R6 is really R5.H
2847 // }
2848 // {
2849 //   r2 = add(r2, #8)
2850 //   memh(r2+#0) = r4
2851 //   memh(r2+#2) = r3            # R3 is really R4.H
2852 // }
2853 // {
2854 //   r5:4 = memd(r0++#8)
2855 // }
2856 // {                             # "Shuffling" code that sets up R3 and R6
2857 //   r3 = lsr(r4, #16)           # so that their halves can be stored in the
2858 //   r7:6 = combine(r5, r5)      # next iteration. This could be folded into
2859 // }                             # the stores if the code was at the beginning
2860 // {                             # of the loop iteration. Since the same code
2861 //   r3 = insert(r5, #16, #16)   # precedes the loop, it can actually be moved
2862 //   r7:6 = vlsrw(r7:6, #16)     # there.
2863 // }:endloop0
2864 //
2865 //
2866 // The outcome:
2867 //
2868 // {
2869 //   loop0(.LBB0_2, r1)
2870 //   r5:4 = memd(r0++#8)
2871 // }
2872 // .LBB0_2:
2873 // {
2874 //   memh(r2+#4) = r5
2875 //   memh(r2+#6) = r5.h
2876 // }
2877 // {
2878 //   r2 = add(r2, #8)
2879 //   memh(r2+#0) = r4
2880 //   memh(r2+#2) = r4.h
2881 // }
2882 // {
2883 //   r5:4 = memd(r0++#8)
2884 // }:endloop0
2885 
2886 namespace llvm {
2887 
2888   FunctionPass *createHexagonLoopRescheduling();
2889   void initializeHexagonLoopReschedulingPass(PassRegistry&);
2890 
2891 } // end namespace llvm
2892 
2893 namespace {
2894 
2895   class HexagonLoopRescheduling : public MachineFunctionPass {
2896   public:
2897     static char ID;
2898 
2899     HexagonLoopRescheduling() : MachineFunctionPass(ID) {
2900       initializeHexagonLoopReschedulingPass(*PassRegistry::getPassRegistry());
2901     }
2902 
2903     bool runOnMachineFunction(MachineFunction &MF) override;
2904 
2905   private:
2906     const HexagonInstrInfo *HII = nullptr;
2907     const HexagonRegisterInfo *HRI = nullptr;
2908     MachineRegisterInfo *MRI = nullptr;
2909     BitTracker *BTP = nullptr;
2910 
2911     struct LoopCand {
2912       LoopCand(MachineBasicBlock *lb, MachineBasicBlock *pb,
2913             MachineBasicBlock *eb) : LB(lb), PB(pb), EB(eb) {}
2914 
2915       MachineBasicBlock *LB, *PB, *EB;
2916     };
2917     using InstrList = std::vector<MachineInstr *>;
2918     struct InstrGroup {
2919       BitTracker::RegisterRef Inp, Out;
2920       InstrList Ins;
2921     };
2922     struct PhiInfo {
2923       PhiInfo(MachineInstr &P, MachineBasicBlock &B);
2924 
2925       unsigned DefR;
2926       BitTracker::RegisterRef LR, PR; // Loop Register, Preheader Register
2927       MachineBasicBlock *LB, *PB;     // Loop Block, Preheader Block
2928     };
2929 
2930     static unsigned getDefReg(const MachineInstr *MI);
2931     bool isConst(unsigned Reg) const;
2932     bool isBitShuffle(const MachineInstr *MI, unsigned DefR) const;
2933     bool isStoreInput(const MachineInstr *MI, unsigned DefR) const;
2934     bool isShuffleOf(unsigned OutR, unsigned InpR) const;
2935     bool isSameShuffle(unsigned OutR1, unsigned InpR1, unsigned OutR2,
2936         unsigned &InpR2) const;
2937     void moveGroup(InstrGroup &G, MachineBasicBlock &LB, MachineBasicBlock &PB,
2938         MachineBasicBlock::iterator At, unsigned OldPhiR, unsigned NewPredR);
2939     bool processLoop(LoopCand &C);
2940   };
2941 
2942 } // end anonymous namespace
2943 
2944 char HexagonLoopRescheduling::ID = 0;
2945 
2946 INITIALIZE_PASS(HexagonLoopRescheduling, "hexagon-loop-resched",
2947   "Hexagon Loop Rescheduling", false, false)
2948 
2949 HexagonLoopRescheduling::PhiInfo::PhiInfo(MachineInstr &P,
2950       MachineBasicBlock &B) {
2951   DefR = HexagonLoopRescheduling::getDefReg(&P);
2952   LB = &B;
2953   PB = nullptr;
2954   for (unsigned i = 1, n = P.getNumOperands(); i < n; i += 2) {
2955     const MachineOperand &OpB = P.getOperand(i+1);
2956     if (OpB.getMBB() == &B) {
2957       LR = P.getOperand(i);
2958       continue;
2959     }
2960     PB = OpB.getMBB();
2961     PR = P.getOperand(i);
2962   }
2963 }
2964 
2965 unsigned HexagonLoopRescheduling::getDefReg(const MachineInstr *MI) {
2966   RegisterSet Defs;
2967   HBS::getInstrDefs(*MI, Defs);
2968   if (Defs.count() != 1)
2969     return 0;
2970   return Defs.find_first();
2971 }
2972 
2973 bool HexagonLoopRescheduling::isConst(unsigned Reg) const {
2974   if (!BTP->has(Reg))
2975     return false;
2976   const BitTracker::RegisterCell &RC = BTP->lookup(Reg);
2977   for (unsigned i = 0, w = RC.width(); i < w; ++i) {
2978     const BitTracker::BitValue &V = RC[i];
2979     if (!V.is(0) && !V.is(1))
2980       return false;
2981   }
2982   return true;
2983 }
2984 
2985 bool HexagonLoopRescheduling::isBitShuffle(const MachineInstr *MI,
2986       unsigned DefR) const {
2987   unsigned Opc = MI->getOpcode();
2988   switch (Opc) {
2989     case TargetOpcode::COPY:
2990     case Hexagon::S2_lsr_i_r:
2991     case Hexagon::S2_asr_i_r:
2992     case Hexagon::S2_asl_i_r:
2993     case Hexagon::S2_lsr_i_p:
2994     case Hexagon::S2_asr_i_p:
2995     case Hexagon::S2_asl_i_p:
2996     case Hexagon::S2_insert:
2997     case Hexagon::A2_or:
2998     case Hexagon::A2_orp:
2999     case Hexagon::A2_and:
3000     case Hexagon::A2_andp:
3001     case Hexagon::A2_combinew:
3002     case Hexagon::A4_combineri:
3003     case Hexagon::A4_combineir:
3004     case Hexagon::A2_combineii:
3005     case Hexagon::A4_combineii:
3006     case Hexagon::A2_combine_ll:
3007     case Hexagon::A2_combine_lh:
3008     case Hexagon::A2_combine_hl:
3009     case Hexagon::A2_combine_hh:
3010       return true;
3011   }
3012   return false;
3013 }
3014 
3015 bool HexagonLoopRescheduling::isStoreInput(const MachineInstr *MI,
3016       unsigned InpR) const {
3017   for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) {
3018     const MachineOperand &Op = MI->getOperand(i);
3019     if (!Op.isReg())
3020       continue;
3021     if (Op.getReg() == InpR)
3022       return i == n-1;
3023   }
3024   return false;
3025 }
3026 
3027 bool HexagonLoopRescheduling::isShuffleOf(unsigned OutR, unsigned InpR) const {
3028   if (!BTP->has(OutR) || !BTP->has(InpR))
3029     return false;
3030   const BitTracker::RegisterCell &OutC = BTP->lookup(OutR);
3031   for (unsigned i = 0, w = OutC.width(); i < w; ++i) {
3032     const BitTracker::BitValue &V = OutC[i];
3033     if (V.Type != BitTracker::BitValue::Ref)
3034       continue;
3035     if (V.RefI.Reg != InpR)
3036       return false;
3037   }
3038   return true;
3039 }
3040 
3041 bool HexagonLoopRescheduling::isSameShuffle(unsigned OutR1, unsigned InpR1,
3042       unsigned OutR2, unsigned &InpR2) const {
3043   if (!BTP->has(OutR1) || !BTP->has(InpR1) || !BTP->has(OutR2))
3044     return false;
3045   const BitTracker::RegisterCell &OutC1 = BTP->lookup(OutR1);
3046   const BitTracker::RegisterCell &OutC2 = BTP->lookup(OutR2);
3047   unsigned W = OutC1.width();
3048   unsigned MatchR = 0;
3049   if (W != OutC2.width())
3050     return false;
3051   for (unsigned i = 0; i < W; ++i) {
3052     const BitTracker::BitValue &V1 = OutC1[i], &V2 = OutC2[i];
3053     if (V1.Type != V2.Type || V1.Type == BitTracker::BitValue::One)
3054       return false;
3055     if (V1.Type != BitTracker::BitValue::Ref)
3056       continue;
3057     if (V1.RefI.Pos != V2.RefI.Pos)
3058       return false;
3059     if (V1.RefI.Reg != InpR1)
3060       return false;
3061     if (V2.RefI.Reg == 0 || V2.RefI.Reg == OutR2)
3062       return false;
3063     if (!MatchR)
3064       MatchR = V2.RefI.Reg;
3065     else if (V2.RefI.Reg != MatchR)
3066       return false;
3067   }
3068   InpR2 = MatchR;
3069   return true;
3070 }
3071 
3072 void HexagonLoopRescheduling::moveGroup(InstrGroup &G, MachineBasicBlock &LB,
3073       MachineBasicBlock &PB, MachineBasicBlock::iterator At, unsigned OldPhiR,
3074       unsigned NewPredR) {
3075   DenseMap<unsigned,unsigned> RegMap;
3076 
3077   const TargetRegisterClass *PhiRC = MRI->getRegClass(NewPredR);
3078   Register PhiR = MRI->createVirtualRegister(PhiRC);
3079   BuildMI(LB, At, At->getDebugLoc(), HII->get(TargetOpcode::PHI), PhiR)
3080     .addReg(NewPredR)
3081     .addMBB(&PB)
3082     .addReg(G.Inp.Reg)
3083     .addMBB(&LB);
3084   RegMap.insert(std::make_pair(G.Inp.Reg, PhiR));
3085 
3086   for (unsigned i = G.Ins.size(); i > 0; --i) {
3087     const MachineInstr *SI = G.Ins[i-1];
3088     unsigned DR = getDefReg(SI);
3089     const TargetRegisterClass *RC = MRI->getRegClass(DR);
3090     Register NewDR = MRI->createVirtualRegister(RC);
3091     DebugLoc DL = SI->getDebugLoc();
3092 
3093     auto MIB = BuildMI(LB, At, DL, HII->get(SI->getOpcode()), NewDR);
3094     for (unsigned j = 0, m = SI->getNumOperands(); j < m; ++j) {
3095       const MachineOperand &Op = SI->getOperand(j);
3096       if (!Op.isReg()) {
3097         MIB.add(Op);
3098         continue;
3099       }
3100       if (!Op.isUse())
3101         continue;
3102       unsigned UseR = RegMap[Op.getReg()];
3103       MIB.addReg(UseR, 0, Op.getSubReg());
3104     }
3105     RegMap.insert(std::make_pair(DR, NewDR));
3106   }
3107 
3108   HBS::replaceReg(OldPhiR, RegMap[G.Out.Reg], *MRI);
3109 }
3110 
3111 bool HexagonLoopRescheduling::processLoop(LoopCand &C) {
3112   LLVM_DEBUG(dbgs() << "Processing loop in " << printMBBReference(*C.LB)
3113                     << "\n");
3114   std::vector<PhiInfo> Phis;
3115   for (auto &I : *C.LB) {
3116     if (!I.isPHI())
3117       break;
3118     unsigned PR = getDefReg(&I);
3119     if (isConst(PR))
3120       continue;
3121     bool BadUse = false, GoodUse = false;
3122     for (auto UI = MRI->use_begin(PR), UE = MRI->use_end(); UI != UE; ++UI) {
3123       MachineInstr *UseI = UI->getParent();
3124       if (UseI->getParent() != C.LB) {
3125         BadUse = true;
3126         break;
3127       }
3128       if (isBitShuffle(UseI, PR) || isStoreInput(UseI, PR))
3129         GoodUse = true;
3130     }
3131     if (BadUse || !GoodUse)
3132       continue;
3133 
3134     Phis.push_back(PhiInfo(I, *C.LB));
3135   }
3136 
3137   LLVM_DEBUG({
3138     dbgs() << "Phis: {";
3139     for (auto &I : Phis) {
3140       dbgs() << ' ' << printReg(I.DefR, HRI) << "=phi("
3141              << printReg(I.PR.Reg, HRI, I.PR.Sub) << ":b" << I.PB->getNumber()
3142              << ',' << printReg(I.LR.Reg, HRI, I.LR.Sub) << ":b"
3143              << I.LB->getNumber() << ')';
3144     }
3145     dbgs() << " }\n";
3146   });
3147 
3148   if (Phis.empty())
3149     return false;
3150 
3151   bool Changed = false;
3152   InstrList ShufIns;
3153 
3154   // Go backwards in the block: for each bit shuffling instruction, check
3155   // if that instruction could potentially be moved to the front of the loop:
3156   // the output of the loop cannot be used in a non-shuffling instruction
3157   // in this loop.
3158   for (auto I = C.LB->rbegin(), E = C.LB->rend(); I != E; ++I) {
3159     if (I->isTerminator())
3160       continue;
3161     if (I->isPHI())
3162       break;
3163 
3164     RegisterSet Defs;
3165     HBS::getInstrDefs(*I, Defs);
3166     if (Defs.count() != 1)
3167       continue;
3168     unsigned DefR = Defs.find_first();
3169     if (!Register::isVirtualRegister(DefR))
3170       continue;
3171     if (!isBitShuffle(&*I, DefR))
3172       continue;
3173 
3174     bool BadUse = false;
3175     for (auto UI = MRI->use_begin(DefR), UE = MRI->use_end(); UI != UE; ++UI) {
3176       MachineInstr *UseI = UI->getParent();
3177       if (UseI->getParent() == C.LB) {
3178         if (UseI->isPHI()) {
3179           // If the use is in a phi node in this loop, then it should be
3180           // the value corresponding to the back edge.
3181           unsigned Idx = UI.getOperandNo();
3182           if (UseI->getOperand(Idx+1).getMBB() != C.LB)
3183             BadUse = true;
3184         } else {
3185           auto F = find(ShufIns, UseI);
3186           if (F == ShufIns.end())
3187             BadUse = true;
3188         }
3189       } else {
3190         // There is a use outside of the loop, but there is no epilog block
3191         // suitable for a copy-out.
3192         if (C.EB == nullptr)
3193           BadUse = true;
3194       }
3195       if (BadUse)
3196         break;
3197     }
3198 
3199     if (BadUse)
3200       continue;
3201     ShufIns.push_back(&*I);
3202   }
3203 
3204   // Partition the list of shuffling instructions into instruction groups,
3205   // where each group has to be moved as a whole (i.e. a group is a chain of
3206   // dependent instructions). A group produces a single live output register,
3207   // which is meant to be the input of the loop phi node (although this is
3208   // not checked here yet). It also uses a single register as its input,
3209   // which is some value produced in the loop body. After moving the group
3210   // to the beginning of the loop, that input register would need to be
3211   // the loop-carried register (through a phi node) instead of the (currently
3212   // loop-carried) output register.
3213   using InstrGroupList = std::vector<InstrGroup>;
3214   InstrGroupList Groups;
3215 
3216   for (unsigned i = 0, n = ShufIns.size(); i < n; ++i) {
3217     MachineInstr *SI = ShufIns[i];
3218     if (SI == nullptr)
3219       continue;
3220 
3221     InstrGroup G;
3222     G.Ins.push_back(SI);
3223     G.Out.Reg = getDefReg(SI);
3224     RegisterSet Inputs;
3225     HBS::getInstrUses(*SI, Inputs);
3226 
3227     for (unsigned j = i+1; j < n; ++j) {
3228       MachineInstr *MI = ShufIns[j];
3229       if (MI == nullptr)
3230         continue;
3231       RegisterSet Defs;
3232       HBS::getInstrDefs(*MI, Defs);
3233       // If this instruction does not define any pending inputs, skip it.
3234       if (!Defs.intersects(Inputs))
3235         continue;
3236       // Otherwise, add it to the current group and remove the inputs that
3237       // are defined by MI.
3238       G.Ins.push_back(MI);
3239       Inputs.remove(Defs);
3240       // Then add all registers used by MI.
3241       HBS::getInstrUses(*MI, Inputs);
3242       ShufIns[j] = nullptr;
3243     }
3244 
3245     // Only add a group if it requires at most one register.
3246     if (Inputs.count() > 1)
3247       continue;
3248     auto LoopInpEq = [G] (const PhiInfo &P) -> bool {
3249       return G.Out.Reg == P.LR.Reg;
3250     };
3251     if (llvm::find_if(Phis, LoopInpEq) == Phis.end())
3252       continue;
3253 
3254     G.Inp.Reg = Inputs.find_first();
3255     Groups.push_back(G);
3256   }
3257 
3258   LLVM_DEBUG({
3259     for (unsigned i = 0, n = Groups.size(); i < n; ++i) {
3260       InstrGroup &G = Groups[i];
3261       dbgs() << "Group[" << i << "] inp: "
3262              << printReg(G.Inp.Reg, HRI, G.Inp.Sub)
3263              << "  out: " << printReg(G.Out.Reg, HRI, G.Out.Sub) << "\n";
3264       for (unsigned j = 0, m = G.Ins.size(); j < m; ++j)
3265         dbgs() << "  " << *G.Ins[j];
3266     }
3267   });
3268 
3269   for (unsigned i = 0, n = Groups.size(); i < n; ++i) {
3270     InstrGroup &G = Groups[i];
3271     if (!isShuffleOf(G.Out.Reg, G.Inp.Reg))
3272       continue;
3273     auto LoopInpEq = [G] (const PhiInfo &P) -> bool {
3274       return G.Out.Reg == P.LR.Reg;
3275     };
3276     auto F = llvm::find_if(Phis, LoopInpEq);
3277     if (F == Phis.end())
3278       continue;
3279     unsigned PrehR = 0;
3280     if (!isSameShuffle(G.Out.Reg, G.Inp.Reg, F->PR.Reg, PrehR)) {
3281       const MachineInstr *DefPrehR = MRI->getVRegDef(F->PR.Reg);
3282       unsigned Opc = DefPrehR->getOpcode();
3283       if (Opc != Hexagon::A2_tfrsi && Opc != Hexagon::A2_tfrpi)
3284         continue;
3285       if (!DefPrehR->getOperand(1).isImm())
3286         continue;
3287       if (DefPrehR->getOperand(1).getImm() != 0)
3288         continue;
3289       const TargetRegisterClass *RC = MRI->getRegClass(G.Inp.Reg);
3290       if (RC != MRI->getRegClass(F->PR.Reg)) {
3291         PrehR = MRI->createVirtualRegister(RC);
3292         unsigned TfrI = (RC == &Hexagon::IntRegsRegClass) ? Hexagon::A2_tfrsi
3293                                                           : Hexagon::A2_tfrpi;
3294         auto T = C.PB->getFirstTerminator();
3295         DebugLoc DL = (T != C.PB->end()) ? T->getDebugLoc() : DebugLoc();
3296         BuildMI(*C.PB, T, DL, HII->get(TfrI), PrehR)
3297           .addImm(0);
3298       } else {
3299         PrehR = F->PR.Reg;
3300       }
3301     }
3302     // isSameShuffle could match with PrehR being of a wider class than
3303     // G.Inp.Reg, for example if G shuffles the low 32 bits of its input,
3304     // it would match for the input being a 32-bit register, and PrehR
3305     // being a 64-bit register (where the low 32 bits match). This could
3306     // be handled, but for now skip these cases.
3307     if (MRI->getRegClass(PrehR) != MRI->getRegClass(G.Inp.Reg))
3308       continue;
3309     moveGroup(G, *F->LB, *F->PB, F->LB->getFirstNonPHI(), F->DefR, PrehR);
3310     Changed = true;
3311   }
3312 
3313   return Changed;
3314 }
3315 
3316 bool HexagonLoopRescheduling::runOnMachineFunction(MachineFunction &MF) {
3317   if (skipFunction(MF.getFunction()))
3318     return false;
3319 
3320   auto &HST = MF.getSubtarget<HexagonSubtarget>();
3321   HII = HST.getInstrInfo();
3322   HRI = HST.getRegisterInfo();
3323   MRI = &MF.getRegInfo();
3324   const HexagonEvaluator HE(*HRI, *MRI, *HII, MF);
3325   BitTracker BT(HE, MF);
3326   LLVM_DEBUG(BT.trace(true));
3327   BT.run();
3328   BTP = &BT;
3329 
3330   std::vector<LoopCand> Cand;
3331 
3332   for (auto &B : MF) {
3333     if (B.pred_size() != 2 || B.succ_size() != 2)
3334       continue;
3335     MachineBasicBlock *PB = nullptr;
3336     bool IsLoop = false;
3337     for (auto PI = B.pred_begin(), PE = B.pred_end(); PI != PE; ++PI) {
3338       if (*PI != &B)
3339         PB = *PI;
3340       else
3341         IsLoop = true;
3342     }
3343     if (!IsLoop)
3344       continue;
3345 
3346     MachineBasicBlock *EB = nullptr;
3347     for (auto SI = B.succ_begin(), SE = B.succ_end(); SI != SE; ++SI) {
3348       if (*SI == &B)
3349         continue;
3350       // Set EP to the epilog block, if it has only 1 predecessor (i.e. the
3351       // edge from B to EP is non-critical.
3352       if ((*SI)->pred_size() == 1)
3353         EB = *SI;
3354       break;
3355     }
3356 
3357     Cand.push_back(LoopCand(&B, PB, EB));
3358   }
3359 
3360   bool Changed = false;
3361   for (auto &C : Cand)
3362     Changed |= processLoop(C);
3363 
3364   return Changed;
3365 }
3366 
3367 //===----------------------------------------------------------------------===//
3368 //                         Public Constructor Functions
3369 //===----------------------------------------------------------------------===//
3370 
3371 FunctionPass *llvm::createHexagonLoopRescheduling() {
3372   return new HexagonLoopRescheduling();
3373 }
3374 
3375 FunctionPass *llvm::createHexagonBitSimplify() {
3376   return new HexagonBitSimplify();
3377 }
3378