1 //===--- HexagonBranchRelaxation.cpp - Identify and relax long jumps ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "Hexagon.h"
10 #include "HexagonInstrInfo.h"
11 #include "HexagonSubtarget.h"
12 #include "llvm/ADT/DenseMap.h"
13 #include "llvm/ADT/SmallVector.h"
14 #include "llvm/ADT/StringRef.h"
15 #include "llvm/CodeGen/MachineBasicBlock.h"
16 #include "llvm/CodeGen/MachineFunction.h"
17 #include "llvm/CodeGen/MachineFunctionPass.h"
18 #include "llvm/CodeGen/MachineInstr.h"
19 #include "llvm/CodeGen/MachineOperand.h"
20 #include "llvm/CodeGen/Passes.h"
21 #include "llvm/Pass.h"
22 #include "llvm/Support/CommandLine.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/raw_ostream.h"
25 #include <cassert>
26 #include <cstdint>
27 #include <cstdlib>
28 #include <iterator>
29 
30 #define DEBUG_TYPE "hexagon-brelax"
31 
32 using namespace llvm;
33 
34 // Since we have no exact knowledge of code layout, allow some safety buffer
35 // for jump target. This is measured in bytes.
36 static cl::opt<uint32_t>
37     BranchRelaxSafetyBuffer("branch-relax-safety-buffer", cl::init(200),
38                             cl::Hidden, cl::desc("safety buffer size"));
39 
40 namespace llvm {
41 
42   FunctionPass *createHexagonBranchRelaxation();
43   void initializeHexagonBranchRelaxationPass(PassRegistry&);
44 
45 } // end namespace llvm
46 
47 namespace {
48 
49   struct HexagonBranchRelaxation : public MachineFunctionPass {
50   public:
51     static char ID;
52 
HexagonBranchRelaxation__anonaca0bef60111::HexagonBranchRelaxation53     HexagonBranchRelaxation() : MachineFunctionPass(ID) {
54       initializeHexagonBranchRelaxationPass(*PassRegistry::getPassRegistry());
55     }
56 
57     bool runOnMachineFunction(MachineFunction &MF) override;
58 
getPassName__anonaca0bef60111::HexagonBranchRelaxation59     StringRef getPassName() const override {
60       return "Hexagon Branch Relaxation";
61     }
62 
getAnalysisUsage__anonaca0bef60111::HexagonBranchRelaxation63     void getAnalysisUsage(AnalysisUsage &AU) const override {
64       AU.setPreservesCFG();
65       MachineFunctionPass::getAnalysisUsage(AU);
66     }
67 
68   private:
69     const HexagonInstrInfo *HII;
70     const HexagonRegisterInfo *HRI;
71 
72     bool relaxBranches(MachineFunction &MF);
73     void computeOffset(MachineFunction &MF,
74           DenseMap<MachineBasicBlock*, unsigned> &BlockToInstOffset);
75     bool reGenerateBranch(MachineFunction &MF,
76           DenseMap<MachineBasicBlock*, unsigned> &BlockToInstOffset);
77     bool isJumpOutOfRange(MachineInstr &MI,
78           DenseMap<MachineBasicBlock*, unsigned> &BlockToInstOffset);
79   };
80 
81   char HexagonBranchRelaxation::ID = 0;
82 
83 } // end anonymous namespace
84 
85 INITIALIZE_PASS(HexagonBranchRelaxation, "hexagon-brelax",
86                 "Hexagon Branch Relaxation", false, false)
87 
createHexagonBranchRelaxation()88 FunctionPass *llvm::createHexagonBranchRelaxation() {
89   return new HexagonBranchRelaxation();
90 }
91 
runOnMachineFunction(MachineFunction & MF)92 bool HexagonBranchRelaxation::runOnMachineFunction(MachineFunction &MF) {
93   LLVM_DEBUG(dbgs() << "****** Hexagon Branch Relaxation ******\n");
94 
95   auto &HST = MF.getSubtarget<HexagonSubtarget>();
96   HII = HST.getInstrInfo();
97   HRI = HST.getRegisterInfo();
98 
99   bool Changed = false;
100   Changed = relaxBranches(MF);
101   return Changed;
102 }
103 
computeOffset(MachineFunction & MF,DenseMap<MachineBasicBlock *,unsigned> & OffsetMap)104 void HexagonBranchRelaxation::computeOffset(MachineFunction &MF,
105       DenseMap<MachineBasicBlock*, unsigned> &OffsetMap) {
106   // offset of the current instruction from the start.
107   unsigned InstOffset = 0;
108   for (auto &B : MF) {
109     if (B.getAlignment() != Align(1)) {
110       // Although we don't know the exact layout of the final code, we need
111       // to account for alignment padding somehow. This heuristic pads each
112       // aligned basic block according to the alignment value.
113       InstOffset = alignTo(InstOffset, B.getAlignment());
114     }
115     OffsetMap[&B] = InstOffset;
116     for (auto &MI : B.instrs()) {
117       InstOffset += HII->getSize(MI);
118       // Assume that all extendable branches will be extended.
119       if (MI.isBranch() && HII->isExtendable(MI))
120         InstOffset += HEXAGON_INSTR_SIZE;
121     }
122   }
123 }
124 
125 /// relaxBranches - For Hexagon, if the jump target/loop label is too far from
126 /// the jump/loop instruction then, we need to make sure that we have constant
127 /// extenders set for jumps and loops.
128 
129 /// There are six iterations in this phase. It's self explanatory below.
relaxBranches(MachineFunction & MF)130 bool HexagonBranchRelaxation::relaxBranches(MachineFunction &MF) {
131   // Compute the offset of each basic block
132   // offset of the current instruction from the start.
133   // map for each instruction to the beginning of the function
134   DenseMap<MachineBasicBlock*, unsigned> BlockToInstOffset;
135   computeOffset(MF, BlockToInstOffset);
136 
137   return reGenerateBranch(MF, BlockToInstOffset);
138 }
139 
140 /// Check if a given instruction is:
141 /// - a jump to a distant target
142 /// - that exceeds its immediate range
143 /// If both conditions are true, it requires constant extension.
isJumpOutOfRange(MachineInstr & MI,DenseMap<MachineBasicBlock *,unsigned> & BlockToInstOffset)144 bool HexagonBranchRelaxation::isJumpOutOfRange(MachineInstr &MI,
145       DenseMap<MachineBasicBlock*, unsigned> &BlockToInstOffset) {
146   MachineBasicBlock &B = *MI.getParent();
147   auto FirstTerm = B.getFirstInstrTerminator();
148   if (FirstTerm == B.instr_end())
149     return false;
150 
151   if (HII->isExtended(MI))
152     return false;
153 
154   unsigned InstOffset = BlockToInstOffset[&B];
155   unsigned Distance = 0;
156 
157   // To save time, estimate exact position of a branch instruction
158   // as one at the end of the MBB.
159   // Number of instructions times typical instruction size.
160   InstOffset += HII->nonDbgBBSize(&B) * HEXAGON_INSTR_SIZE;
161 
162   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
163   SmallVector<MachineOperand, 4> Cond;
164 
165   // Try to analyze this branch.
166   if (HII->analyzeBranch(B, TBB, FBB, Cond, false)) {
167     // Could not analyze it. See if this is something we can recognize.
168     // If it is a NVJ, it should always have its target in
169     // a fixed location.
170     if (HII->isNewValueJump(*FirstTerm))
171       TBB = FirstTerm->getOperand(HII->getCExtOpNum(*FirstTerm)).getMBB();
172   }
173   if (TBB && &MI == &*FirstTerm) {
174     Distance = std::abs((long long)InstOffset - BlockToInstOffset[TBB])
175                 + BranchRelaxSafetyBuffer;
176     return !HII->isJumpWithinBranchRange(*FirstTerm, Distance);
177   }
178   if (FBB) {
179     // Look for second terminator.
180     auto SecondTerm = std::next(FirstTerm);
181     assert(SecondTerm != B.instr_end() &&
182           (SecondTerm->isBranch() || SecondTerm->isCall()) &&
183           "Bad second terminator");
184     if (&MI != &*SecondTerm)
185       return false;
186     // Analyze the second branch in the BB.
187     Distance = std::abs((long long)InstOffset - BlockToInstOffset[FBB])
188                 + BranchRelaxSafetyBuffer;
189     return !HII->isJumpWithinBranchRange(*SecondTerm, Distance);
190   }
191   return false;
192 }
193 
reGenerateBranch(MachineFunction & MF,DenseMap<MachineBasicBlock *,unsigned> & BlockToInstOffset)194 bool HexagonBranchRelaxation::reGenerateBranch(MachineFunction &MF,
195       DenseMap<MachineBasicBlock*, unsigned> &BlockToInstOffset) {
196   bool Changed = false;
197 
198   for (auto &B : MF) {
199     for (auto &MI : B) {
200       if (!MI.isBranch() || !isJumpOutOfRange(MI, BlockToInstOffset))
201         continue;
202       LLVM_DEBUG(dbgs() << "Long distance jump. isExtendable("
203                         << HII->isExtendable(MI) << ") isConstExtended("
204                         << HII->isConstExtended(MI) << ") " << MI);
205 
206       // Since we have not merged HW loops relaxation into
207       // this code (yet), soften our approach for the moment.
208       if (!HII->isExtendable(MI) && !HII->isExtended(MI)) {
209         LLVM_DEBUG(dbgs() << "\tUnderimplemented relax branch instruction.\n");
210       } else {
211         // Find which operand is expandable.
212         int ExtOpNum = HII->getCExtOpNum(MI);
213         MachineOperand &MO = MI.getOperand(ExtOpNum);
214         // This need to be something we understand. So far we assume all
215         // branches have only MBB address as expandable field.
216         // If it changes, this will need to be expanded.
217         assert(MO.isMBB() && "Branch with unknown expandable field type");
218         // Mark given operand as extended.
219         MO.addTargetFlag(HexagonII::HMOTF_ConstExtended);
220         Changed = true;
221       }
222     }
223   }
224   return Changed;
225 }
226