1 //===- HexagonFrameLowering.cpp - Define frame lowering -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "HexagonFrameLowering.h"
11 #include "HexagonBlockRanges.h"
12 #include "HexagonInstrInfo.h"
13 #include "HexagonMachineFunctionInfo.h"
14 #include "HexagonRegisterInfo.h"
15 #include "HexagonSubtarget.h"
16 #include "HexagonTargetMachine.h"
17 #include "MCTargetDesc/HexagonBaseInfo.h"
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/PostOrderIterator.h"
23 #include "llvm/ADT/SetVector.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/CodeGen/LivePhysRegs.h"
27 #include "llvm/CodeGen/MachineBasicBlock.h"
28 #include "llvm/CodeGen/MachineDominators.h"
29 #include "llvm/CodeGen/MachineFrameInfo.h"
30 #include "llvm/CodeGen/MachineFunction.h"
31 #include "llvm/CodeGen/MachineFunctionPass.h"
32 #include "llvm/CodeGen/MachineInstr.h"
33 #include "llvm/CodeGen/MachineInstrBuilder.h"
34 #include "llvm/CodeGen/MachineMemOperand.h"
35 #include "llvm/CodeGen/MachineModuleInfo.h"
36 #include "llvm/CodeGen/MachineOperand.h"
37 #include "llvm/CodeGen/MachinePostDominators.h"
38 #include "llvm/CodeGen/MachineRegisterInfo.h"
39 #include "llvm/CodeGen/PseudoSourceValue.h"
40 #include "llvm/CodeGen/RegisterScavenging.h"
41 #include "llvm/CodeGen/TargetRegisterInfo.h"
42 #include "llvm/IR/Attributes.h"
43 #include "llvm/IR/DebugLoc.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/MC/MCDwarf.h"
46 #include "llvm/MC/MCRegisterInfo.h"
47 #include "llvm/Pass.h"
48 #include "llvm/Support/CodeGen.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Compiler.h"
51 #include "llvm/Support/Debug.h"
52 #include "llvm/Support/ErrorHandling.h"
53 #include "llvm/Support/MathExtras.h"
54 #include "llvm/Support/raw_ostream.h"
55 #include "llvm/Target/TargetMachine.h"
56 #include "llvm/Target/TargetOptions.h"
57 #include <algorithm>
58 #include <cassert>
59 #include <cstdint>
60 #include <iterator>
61 #include <limits>
62 #include <map>
63 #include <utility>
64 #include <vector>
65 
66 #define DEBUG_TYPE "hexagon-pei"
67 
68 // Hexagon stack frame layout as defined by the ABI:
69 //
70 //                                                       Incoming arguments
71 //                                                       passed via stack
72 //                                                                      |
73 //                                                                      |
74 //        SP during function's                 FP during function's     |
75 //    +-- runtime (top of stack)               runtime (bottom) --+     |
76 //    |                                                           |     |
77 // --++---------------------+------------------+-----------------++-+-------
78 //   |  parameter area for  |  variable-size   |   fixed-size    |LR|  arg
79 //   |   called functions   |  local objects   |  local objects  |FP|
80 // --+----------------------+------------------+-----------------+--+-------
81 //    <-    size known    -> <- size unknown -> <- size known  ->
82 //
83 // Low address                                                 High address
84 //
85 // <--- stack growth
86 //
87 //
88 // - In any circumstances, the outgoing function arguments are always accessi-
89 //   ble using the SP, and the incoming arguments are accessible using the FP.
90 // - If the local objects are not aligned, they can always be accessed using
91 //   the FP.
92 // - If there are no variable-sized objects, the local objects can always be
93 //   accessed using the SP, regardless whether they are aligned or not. (The
94 //   alignment padding will be at the bottom of the stack (highest address),
95 //   and so the offset with respect to the SP will be known at the compile-
96 //   -time.)
97 //
98 // The only complication occurs if there are both, local aligned objects, and
99 // dynamically allocated (variable-sized) objects. The alignment pad will be
100 // placed between the FP and the local objects, thus preventing the use of the
101 // FP to access the local objects. At the same time, the variable-sized objects
102 // will be between the SP and the local objects, thus introducing an unknown
103 // distance from the SP to the locals.
104 //
105 // To avoid this problem, a new register is created that holds the aligned
106 // address of the bottom of the stack, referred in the sources as AP (aligned
107 // pointer). The AP will be equal to "FP-p", where "p" is the smallest pad
108 // that aligns AP to the required boundary (a maximum of the alignments of
109 // all stack objects, fixed- and variable-sized). All local objects[1] will
110 // then use AP as the base pointer.
111 // [1] The exception is with "fixed" stack objects. "Fixed" stack objects get
112 // their name from being allocated at fixed locations on the stack, relative
113 // to the FP. In the presence of dynamic allocation and local alignment, such
114 // objects can only be accessed through the FP.
115 //
116 // Illustration of the AP:
117 //                                                                FP --+
118 //                                                                     |
119 // ---------------+---------------------+-----+-----------------------++-+--
120 //   Rest of the  | Local stack objects | Pad |  Fixed stack objects  |LR|
121 //   stack frame  | (aligned)           |     |  (CSR, spills, etc.)  |FP|
122 // ---------------+---------------------+-----+-----------------+-----+--+--
123 //                                      |<-- Multiple of the -->|
124 //                                           stack alignment    +-- AP
125 //
126 // The AP is set up at the beginning of the function. Since it is not a dedi-
127 // cated (reserved) register, it needs to be kept live throughout the function
128 // to be available as the base register for local object accesses.
129 // Normally, an address of a stack objects is obtained by a pseudo-instruction
130 // PS_fi. To access local objects with the AP register present, a different
131 // pseudo-instruction needs to be used: PS_fia. The PS_fia takes one extra
132 // argument compared to PS_fi: the first input register is the AP register.
133 // This keeps the register live between its definition and its uses.
134 
135 // The AP register is originally set up using pseudo-instruction PS_aligna:
136 //   AP = PS_aligna A
137 // where
138 //   A  - required stack alignment
139 // The alignment value must be the maximum of all alignments required by
140 // any stack object.
141 
142 // The dynamic allocation uses a pseudo-instruction PS_alloca:
143 //   Rd = PS_alloca Rs, A
144 // where
145 //   Rd - address of the allocated space
146 //   Rs - minimum size (the actual allocated can be larger to accommodate
147 //        alignment)
148 //   A  - required alignment
149 
150 using namespace llvm;
151 
152 static cl::opt<bool> DisableDeallocRet("disable-hexagon-dealloc-ret",
153     cl::Hidden, cl::desc("Disable Dealloc Return for Hexagon target"));
154 
155 static cl::opt<unsigned>
156     NumberScavengerSlots("number-scavenger-slots", cl::Hidden,
157                          cl::desc("Set the number of scavenger slots"),
158                          cl::init(2));
159 
160 static cl::opt<int>
161     SpillFuncThreshold("spill-func-threshold", cl::Hidden,
162                        cl::desc("Specify O2(not Os) spill func threshold"),
163                        cl::init(6));
164 
165 static cl::opt<int>
166     SpillFuncThresholdOs("spill-func-threshold-Os", cl::Hidden,
167                          cl::desc("Specify Os spill func threshold"),
168                          cl::init(1));
169 
170 static cl::opt<bool> EnableStackOVFSanitizer(
171     "enable-stackovf-sanitizer", cl::Hidden,
172     cl::desc("Enable runtime checks for stack overflow."), cl::init(false));
173 
174 static cl::opt<bool>
175     EnableShrinkWrapping("hexagon-shrink-frame", cl::init(true), cl::Hidden,
176                          cl::desc("Enable stack frame shrink wrapping"));
177 
178 static cl::opt<unsigned>
179     ShrinkLimit("shrink-frame-limit",
180                 cl::init(std::numeric_limits<unsigned>::max()), cl::Hidden,
181                 cl::desc("Max count of stack frame shrink-wraps"));
182 
183 static cl::opt<bool>
184     EnableSaveRestoreLong("enable-save-restore-long", cl::Hidden,
185                           cl::desc("Enable long calls for save-restore stubs."),
186                           cl::init(false));
187 
188 static cl::opt<bool> EliminateFramePointer("hexagon-fp-elim", cl::init(true),
189     cl::Hidden, cl::desc("Refrain from using FP whenever possible"));
190 
191 static cl::opt<bool> OptimizeSpillSlots("hexagon-opt-spill", cl::Hidden,
192     cl::init(true), cl::desc("Optimize spill slots"));
193 
194 #ifndef NDEBUG
195 static cl::opt<unsigned> SpillOptMax("spill-opt-max", cl::Hidden,
196     cl::init(std::numeric_limits<unsigned>::max()));
197 static unsigned SpillOptCount = 0;
198 #endif
199 
200 namespace llvm {
201 
202   void initializeHexagonCallFrameInformationPass(PassRegistry&);
203   FunctionPass *createHexagonCallFrameInformation();
204 
205 } // end namespace llvm
206 
207 namespace {
208 
209   class HexagonCallFrameInformation : public MachineFunctionPass {
210   public:
211     static char ID;
212 
213     HexagonCallFrameInformation() : MachineFunctionPass(ID) {
214       PassRegistry &PR = *PassRegistry::getPassRegistry();
215       initializeHexagonCallFrameInformationPass(PR);
216     }
217 
218     bool runOnMachineFunction(MachineFunction &MF) override;
219 
220     MachineFunctionProperties getRequiredProperties() const override {
221       return MachineFunctionProperties().set(
222           MachineFunctionProperties::Property::NoVRegs);
223     }
224   };
225 
226   char HexagonCallFrameInformation::ID = 0;
227 
228 } // end anonymous namespace
229 
230 bool HexagonCallFrameInformation::runOnMachineFunction(MachineFunction &MF) {
231   auto &HFI = *MF.getSubtarget<HexagonSubtarget>().getFrameLowering();
232   bool NeedCFI = MF.needsFrameMoves();
233 
234   if (!NeedCFI)
235     return false;
236   HFI.insertCFIInstructions(MF);
237   return true;
238 }
239 
240 INITIALIZE_PASS(HexagonCallFrameInformation, "hexagon-cfi",
241                 "Hexagon call frame information", false, false)
242 
243 FunctionPass *llvm::createHexagonCallFrameInformation() {
244   return new HexagonCallFrameInformation();
245 }
246 
247 /// Map a register pair Reg to the subregister that has the greater "number",
248 /// i.e. D3 (aka R7:6) will be mapped to R7, etc.
249 static unsigned getMax32BitSubRegister(unsigned Reg,
250                                        const TargetRegisterInfo &TRI,
251                                        bool hireg = true) {
252     if (Reg < Hexagon::D0 || Reg > Hexagon::D15)
253       return Reg;
254 
255     unsigned RegNo = 0;
256     for (MCSubRegIterator SubRegs(Reg, &TRI); SubRegs.isValid(); ++SubRegs) {
257       if (hireg) {
258         if (*SubRegs > RegNo)
259           RegNo = *SubRegs;
260       } else {
261         if (!RegNo || *SubRegs < RegNo)
262           RegNo = *SubRegs;
263       }
264     }
265     return RegNo;
266 }
267 
268 /// Returns the callee saved register with the largest id in the vector.
269 static unsigned getMaxCalleeSavedReg(ArrayRef<CalleeSavedInfo> CSI,
270                                      const TargetRegisterInfo &TRI) {
271   static_assert(Hexagon::R1 > 0,
272                 "Assume physical registers are encoded as positive integers");
273   if (CSI.empty())
274     return 0;
275 
276   unsigned Max = getMax32BitSubRegister(CSI[0].getReg(), TRI);
277   for (unsigned I = 1, E = CSI.size(); I < E; ++I) {
278     unsigned Reg = getMax32BitSubRegister(CSI[I].getReg(), TRI);
279     if (Reg > Max)
280       Max = Reg;
281   }
282   return Max;
283 }
284 
285 /// Checks if the basic block contains any instruction that needs a stack
286 /// frame to be already in place.
287 static bool needsStackFrame(const MachineBasicBlock &MBB, const BitVector &CSR,
288                             const HexagonRegisterInfo &HRI) {
289     for (const MachineInstr &MI : MBB) {
290       if (MI.isCall())
291         return true;
292       unsigned Opc = MI.getOpcode();
293       switch (Opc) {
294         case Hexagon::PS_alloca:
295         case Hexagon::PS_aligna:
296           return true;
297         default:
298           break;
299       }
300       // Check individual operands.
301       for (const MachineOperand &MO : MI.operands()) {
302         // While the presence of a frame index does not prove that a stack
303         // frame will be required, all frame indexes should be within alloc-
304         // frame/deallocframe. Otherwise, the code that translates a frame
305         // index into an offset would have to be aware of the placement of
306         // the frame creation/destruction instructions.
307         if (MO.isFI())
308           return true;
309         if (MO.isReg()) {
310           Register R = MO.getReg();
311           // Virtual registers will need scavenging, which then may require
312           // a stack slot.
313           if (R.isVirtual())
314             return true;
315           for (MCSubRegIterator S(R, &HRI, true); S.isValid(); ++S)
316             if (CSR[*S])
317               return true;
318           continue;
319         }
320         if (MO.isRegMask()) {
321           // A regmask would normally have all callee-saved registers marked
322           // as preserved, so this check would not be needed, but in case of
323           // ever having other regmasks (for other calling conventions),
324           // make sure they would be processed correctly.
325           const uint32_t *BM = MO.getRegMask();
326           for (int x = CSR.find_first(); x >= 0; x = CSR.find_next(x)) {
327             unsigned R = x;
328             // If this regmask does not preserve a CSR, a frame will be needed.
329             if (!(BM[R/32] & (1u << (R%32))))
330               return true;
331           }
332         }
333       }
334     }
335     return false;
336 }
337 
338   /// Returns true if MBB has a machine instructions that indicates a tail call
339   /// in the block.
340 static bool hasTailCall(const MachineBasicBlock &MBB) {
341     MachineBasicBlock::const_iterator I = MBB.getLastNonDebugInstr();
342     if (I == MBB.end())
343       return false;
344     unsigned RetOpc = I->getOpcode();
345     return RetOpc == Hexagon::PS_tailcall_i || RetOpc == Hexagon::PS_tailcall_r;
346 }
347 
348 /// Returns true if MBB contains an instruction that returns.
349 static bool hasReturn(const MachineBasicBlock &MBB) {
350     for (const MachineInstr &MI : MBB.terminators())
351       if (MI.isReturn())
352         return true;
353     return false;
354 }
355 
356 /// Returns the "return" instruction from this block, or nullptr if there
357 /// isn't any.
358 static MachineInstr *getReturn(MachineBasicBlock &MBB) {
359     for (auto &I : MBB)
360       if (I.isReturn())
361         return &I;
362     return nullptr;
363 }
364 
365 static bool isRestoreCall(unsigned Opc) {
366     switch (Opc) {
367       case Hexagon::RESTORE_DEALLOC_RET_JMP_V4:
368       case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC:
369       case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT:
370       case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT_PIC:
371       case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT:
372       case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT_PIC:
373       case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4:
374       case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC:
375         return true;
376     }
377     return false;
378 }
379 
380 static inline bool isOptNone(const MachineFunction &MF) {
381     return MF.getFunction().hasOptNone() ||
382            MF.getTarget().getOptLevel() == CodeGenOpt::None;
383 }
384 
385 static inline bool isOptSize(const MachineFunction &MF) {
386     const Function &F = MF.getFunction();
387     return F.hasOptSize() && !F.hasMinSize();
388 }
389 
390 static inline bool isMinSize(const MachineFunction &MF) {
391     return MF.getFunction().hasMinSize();
392 }
393 
394 /// Implements shrink-wrapping of the stack frame. By default, stack frame
395 /// is created in the function entry block, and is cleaned up in every block
396 /// that returns. This function finds alternate blocks: one for the frame
397 /// setup (prolog) and one for the cleanup (epilog).
398 void HexagonFrameLowering::findShrunkPrologEpilog(MachineFunction &MF,
399       MachineBasicBlock *&PrologB, MachineBasicBlock *&EpilogB) const {
400   static unsigned ShrinkCounter = 0;
401 
402   if (MF.getSubtarget<HexagonSubtarget>().isEnvironmentMusl() &&
403       MF.getFunction().isVarArg())
404     return;
405   if (ShrinkLimit.getPosition()) {
406     if (ShrinkCounter >= ShrinkLimit)
407       return;
408     ShrinkCounter++;
409   }
410 
411   auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
412 
413   MachineDominatorTree MDT;
414   MDT.runOnMachineFunction(MF);
415   MachinePostDominatorTree MPT;
416   MPT.runOnMachineFunction(MF);
417 
418   using UnsignedMap = DenseMap<unsigned, unsigned>;
419   using RPOTType = ReversePostOrderTraversal<const MachineFunction *>;
420 
421   UnsignedMap RPO;
422   RPOTType RPOT(&MF);
423   unsigned RPON = 0;
424   for (auto &I : RPOT)
425     RPO[I->getNumber()] = RPON++;
426 
427   // Don't process functions that have loops, at least for now. Placement
428   // of prolog and epilog must take loop structure into account. For simpli-
429   // city don't do it right now.
430   for (auto &I : MF) {
431     unsigned BN = RPO[I.getNumber()];
432     for (MachineBasicBlock *Succ : I.successors())
433       // If found a back-edge, return.
434       if (RPO[Succ->getNumber()] <= BN)
435         return;
436   }
437 
438   // Collect the set of blocks that need a stack frame to execute. Scan
439   // each block for uses/defs of callee-saved registers, calls, etc.
440   SmallVector<MachineBasicBlock*,16> SFBlocks;
441   BitVector CSR(Hexagon::NUM_TARGET_REGS);
442   for (const MCPhysReg *P = HRI.getCalleeSavedRegs(&MF); *P; ++P)
443     for (MCSubRegIterator S(*P, &HRI, true); S.isValid(); ++S)
444       CSR[*S] = true;
445 
446   for (auto &I : MF)
447     if (needsStackFrame(I, CSR, HRI))
448       SFBlocks.push_back(&I);
449 
450   LLVM_DEBUG({
451     dbgs() << "Blocks needing SF: {";
452     for (auto &B : SFBlocks)
453       dbgs() << " " << printMBBReference(*B);
454     dbgs() << " }\n";
455   });
456   // No frame needed?
457   if (SFBlocks.empty())
458     return;
459 
460   // Pick a common dominator and a common post-dominator.
461   MachineBasicBlock *DomB = SFBlocks[0];
462   for (unsigned i = 1, n = SFBlocks.size(); i < n; ++i) {
463     DomB = MDT.findNearestCommonDominator(DomB, SFBlocks[i]);
464     if (!DomB)
465       break;
466   }
467   MachineBasicBlock *PDomB = SFBlocks[0];
468   for (unsigned i = 1, n = SFBlocks.size(); i < n; ++i) {
469     PDomB = MPT.findNearestCommonDominator(PDomB, SFBlocks[i]);
470     if (!PDomB)
471       break;
472   }
473   LLVM_DEBUG({
474     dbgs() << "Computed dom block: ";
475     if (DomB)
476       dbgs() << printMBBReference(*DomB);
477     else
478       dbgs() << "<null>";
479     dbgs() << ", computed pdom block: ";
480     if (PDomB)
481       dbgs() << printMBBReference(*PDomB);
482     else
483       dbgs() << "<null>";
484     dbgs() << "\n";
485   });
486   if (!DomB || !PDomB)
487     return;
488 
489   // Make sure that DomB dominates PDomB and PDomB post-dominates DomB.
490   if (!MDT.dominates(DomB, PDomB)) {
491     LLVM_DEBUG(dbgs() << "Dom block does not dominate pdom block\n");
492     return;
493   }
494   if (!MPT.dominates(PDomB, DomB)) {
495     LLVM_DEBUG(dbgs() << "PDom block does not post-dominate dom block\n");
496     return;
497   }
498 
499   // Finally, everything seems right.
500   PrologB = DomB;
501   EpilogB = PDomB;
502 }
503 
504 /// Perform most of the PEI work here:
505 /// - saving/restoring of the callee-saved registers,
506 /// - stack frame creation and destruction.
507 /// Normally, this work is distributed among various functions, but doing it
508 /// in one place allows shrink-wrapping of the stack frame.
509 void HexagonFrameLowering::emitPrologue(MachineFunction &MF,
510                                         MachineBasicBlock &MBB) const {
511   auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
512 
513   MachineFrameInfo &MFI = MF.getFrameInfo();
514   const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
515 
516   MachineBasicBlock *PrologB = &MF.front(), *EpilogB = nullptr;
517   if (EnableShrinkWrapping)
518     findShrunkPrologEpilog(MF, PrologB, EpilogB);
519 
520   bool PrologueStubs = false;
521   insertCSRSpillsInBlock(*PrologB, CSI, HRI, PrologueStubs);
522   insertPrologueInBlock(*PrologB, PrologueStubs);
523   updateEntryPaths(MF, *PrologB);
524 
525   if (EpilogB) {
526     insertCSRRestoresInBlock(*EpilogB, CSI, HRI);
527     insertEpilogueInBlock(*EpilogB);
528   } else {
529     for (auto &B : MF)
530       if (B.isReturnBlock())
531         insertCSRRestoresInBlock(B, CSI, HRI);
532 
533     for (auto &B : MF)
534       if (B.isReturnBlock())
535         insertEpilogueInBlock(B);
536 
537     for (auto &B : MF) {
538       if (B.empty())
539         continue;
540       MachineInstr *RetI = getReturn(B);
541       if (!RetI || isRestoreCall(RetI->getOpcode()))
542         continue;
543       for (auto &R : CSI)
544         RetI->addOperand(MachineOperand::CreateReg(R.getReg(), false, true));
545     }
546   }
547 
548   if (EpilogB) {
549     // If there is an epilog block, it may not have a return instruction.
550     // In such case, we need to add the callee-saved registers as live-ins
551     // in all blocks on all paths from the epilog to any return block.
552     unsigned MaxBN = MF.getNumBlockIDs();
553     BitVector DoneT(MaxBN+1), DoneF(MaxBN+1), Path(MaxBN+1);
554     updateExitPaths(*EpilogB, *EpilogB, DoneT, DoneF, Path);
555   }
556 }
557 
558 /// Returns true if the target can safely skip saving callee-saved registers
559 /// for noreturn nounwind functions.
560 bool HexagonFrameLowering::enableCalleeSaveSkip(
561     const MachineFunction &MF) const {
562   const auto &F = MF.getFunction();
563   assert(F.hasFnAttribute(Attribute::NoReturn) &&
564          F.getFunction().hasFnAttribute(Attribute::NoUnwind) &&
565          !F.getFunction().hasFnAttribute(Attribute::UWTable));
566   (void)F;
567 
568   // No need to save callee saved registers if the function does not return.
569   return MF.getSubtarget<HexagonSubtarget>().noreturnStackElim();
570 }
571 
572 // Helper function used to determine when to eliminate the stack frame for
573 // functions marked as noreturn and when the noreturn-stack-elim options are
574 // specified. When both these conditions are true, then a FP may not be needed
575 // if the function makes a call. It is very similar to enableCalleeSaveSkip,
576 // but it used to check if the allocframe can be eliminated as well.
577 static bool enableAllocFrameElim(const MachineFunction &MF) {
578   const auto &F = MF.getFunction();
579   const auto &MFI = MF.getFrameInfo();
580   const auto &HST = MF.getSubtarget<HexagonSubtarget>();
581   assert(!MFI.hasVarSizedObjects() &&
582          !HST.getRegisterInfo()->hasStackRealignment(MF));
583   return F.hasFnAttribute(Attribute::NoReturn) &&
584     F.hasFnAttribute(Attribute::NoUnwind) &&
585     !F.hasFnAttribute(Attribute::UWTable) && HST.noreturnStackElim() &&
586     MFI.getStackSize() == 0;
587 }
588 
589 void HexagonFrameLowering::insertPrologueInBlock(MachineBasicBlock &MBB,
590       bool PrologueStubs) const {
591   MachineFunction &MF = *MBB.getParent();
592   MachineFrameInfo &MFI = MF.getFrameInfo();
593   auto &HST = MF.getSubtarget<HexagonSubtarget>();
594   auto &HII = *HST.getInstrInfo();
595   auto &HRI = *HST.getRegisterInfo();
596 
597   Align MaxAlign = std::max(MFI.getMaxAlign(), getStackAlign());
598 
599   // Calculate the total stack frame size.
600   // Get the number of bytes to allocate from the FrameInfo.
601   unsigned FrameSize = MFI.getStackSize();
602   // Round up the max call frame size to the max alignment on the stack.
603   unsigned MaxCFA = alignTo(MFI.getMaxCallFrameSize(), MaxAlign);
604   MFI.setMaxCallFrameSize(MaxCFA);
605 
606   FrameSize = MaxCFA + alignTo(FrameSize, MaxAlign);
607   MFI.setStackSize(FrameSize);
608 
609   bool AlignStack = (MaxAlign > getStackAlign());
610 
611   // Get the number of bytes to allocate from the FrameInfo.
612   unsigned NumBytes = MFI.getStackSize();
613   unsigned SP = HRI.getStackRegister();
614   unsigned MaxCF = MFI.getMaxCallFrameSize();
615   MachineBasicBlock::iterator InsertPt = MBB.begin();
616 
617   SmallVector<MachineInstr *, 4> AdjustRegs;
618   for (auto &MBB : MF)
619     for (auto &MI : MBB)
620       if (MI.getOpcode() == Hexagon::PS_alloca)
621         AdjustRegs.push_back(&MI);
622 
623   for (auto MI : AdjustRegs) {
624     assert((MI->getOpcode() == Hexagon::PS_alloca) && "Expected alloca");
625     expandAlloca(MI, HII, SP, MaxCF);
626     MI->eraseFromParent();
627   }
628 
629   DebugLoc dl = MBB.findDebugLoc(InsertPt);
630 
631   if (MF.getFunction().isVarArg() &&
632       MF.getSubtarget<HexagonSubtarget>().isEnvironmentMusl()) {
633     // Calculate the size of register saved area.
634     int NumVarArgRegs = 6 - FirstVarArgSavedReg;
635     int RegisterSavedAreaSizePlusPadding = (NumVarArgRegs % 2 == 0)
636                                               ? NumVarArgRegs * 4
637                                               : NumVarArgRegs * 4 + 4;
638     if (RegisterSavedAreaSizePlusPadding > 0) {
639       // Decrement the stack pointer by size of register saved area plus
640       // padding if any.
641       BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_addi), SP)
642         .addReg(SP)
643         .addImm(-RegisterSavedAreaSizePlusPadding)
644         .setMIFlag(MachineInstr::FrameSetup);
645 
646       int NumBytes = 0;
647       // Copy all the named arguments below register saved area.
648       auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>();
649       for (int i = HMFI.getFirstNamedArgFrameIndex(),
650                e = HMFI.getLastNamedArgFrameIndex(); i >= e; --i) {
651         uint64_t ObjSize = MFI.getObjectSize(i);
652         Align ObjAlign = MFI.getObjectAlign(i);
653 
654         // Determine the kind of load/store that should be used.
655         unsigned LDOpc, STOpc;
656         uint64_t OpcodeChecker = ObjAlign.value();
657 
658         // Handle cases where alignment of an object is > its size.
659         if (ObjAlign > ObjSize) {
660           if (ObjSize <= 1)
661             OpcodeChecker = 1;
662           else if (ObjSize <= 2)
663             OpcodeChecker = 2;
664           else if (ObjSize <= 4)
665             OpcodeChecker = 4;
666           else if (ObjSize > 4)
667             OpcodeChecker = 8;
668         }
669 
670         switch (OpcodeChecker) {
671           case 1:
672             LDOpc = Hexagon::L2_loadrb_io;
673             STOpc = Hexagon::S2_storerb_io;
674             break;
675           case 2:
676             LDOpc = Hexagon::L2_loadrh_io;
677             STOpc = Hexagon::S2_storerh_io;
678             break;
679           case 4:
680             LDOpc = Hexagon::L2_loadri_io;
681             STOpc = Hexagon::S2_storeri_io;
682             break;
683           case 8:
684           default:
685             LDOpc = Hexagon::L2_loadrd_io;
686             STOpc = Hexagon::S2_storerd_io;
687             break;
688         }
689 
690         unsigned RegUsed = LDOpc == Hexagon::L2_loadrd_io ? Hexagon::D3
691                                                           : Hexagon::R6;
692         int LoadStoreCount = ObjSize / OpcodeChecker;
693 
694         if (ObjSize % OpcodeChecker)
695           ++LoadStoreCount;
696 
697         // Get the start location of the load. NumBytes is basically the
698         // offset from the stack pointer of previous function, which would be
699         // the caller in this case, as this function has variable argument
700         // list.
701         if (NumBytes != 0)
702           NumBytes = alignTo(NumBytes, ObjAlign);
703 
704         int Count = 0;
705         while (Count < LoadStoreCount) {
706           // Load the value of the named argument on stack.
707           BuildMI(MBB, InsertPt, dl, HII.get(LDOpc), RegUsed)
708               .addReg(SP)
709               .addImm(RegisterSavedAreaSizePlusPadding +
710                       ObjAlign.value() * Count + NumBytes)
711               .setMIFlag(MachineInstr::FrameSetup);
712 
713           // Store it below the register saved area plus padding.
714           BuildMI(MBB, InsertPt, dl, HII.get(STOpc))
715               .addReg(SP)
716               .addImm(ObjAlign.value() * Count + NumBytes)
717               .addReg(RegUsed)
718               .setMIFlag(MachineInstr::FrameSetup);
719 
720           Count++;
721         }
722         NumBytes += MFI.getObjectSize(i);
723       }
724 
725       // Make NumBytes 8 byte aligned
726       NumBytes = alignTo(NumBytes, 8);
727 
728       // If the number of registers having variable arguments is odd,
729       // leave 4 bytes of padding to get to the location where first
730       // variable argument which was passed through register was copied.
731       NumBytes = (NumVarArgRegs % 2 == 0) ? NumBytes : NumBytes + 4;
732 
733       for (int j = FirstVarArgSavedReg, i = 0; j < 6; ++j, ++i) {
734         BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::S2_storeri_io))
735           .addReg(SP)
736           .addImm(NumBytes + 4 * i)
737           .addReg(Hexagon::R0 + j)
738           .setMIFlag(MachineInstr::FrameSetup);
739       }
740     }
741   }
742 
743   if (hasFP(MF)) {
744     insertAllocframe(MBB, InsertPt, NumBytes);
745     if (AlignStack) {
746       BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_andir), SP)
747           .addReg(SP)
748           .addImm(-int64_t(MaxAlign.value()));
749     }
750     // If the stack-checking is enabled, and we spilled the callee-saved
751     // registers inline (i.e. did not use a spill function), then call
752     // the stack checker directly.
753     if (EnableStackOVFSanitizer && !PrologueStubs)
754       BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::PS_call_stk))
755              .addExternalSymbol("__runtime_stack_check");
756   } else if (NumBytes > 0) {
757     assert(alignTo(NumBytes, 8) == NumBytes);
758     BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_addi), SP)
759       .addReg(SP)
760       .addImm(-int(NumBytes));
761   }
762 }
763 
764 void HexagonFrameLowering::insertEpilogueInBlock(MachineBasicBlock &MBB) const {
765   MachineFunction &MF = *MBB.getParent();
766   auto &HST = MF.getSubtarget<HexagonSubtarget>();
767   auto &HII = *HST.getInstrInfo();
768   auto &HRI = *HST.getRegisterInfo();
769   unsigned SP = HRI.getStackRegister();
770 
771   MachineBasicBlock::iterator InsertPt = MBB.getFirstTerminator();
772   DebugLoc dl = MBB.findDebugLoc(InsertPt);
773 
774   if (!hasFP(MF)) {
775     MachineFrameInfo &MFI = MF.getFrameInfo();
776     unsigned NumBytes = MFI.getStackSize();
777     if (MF.getFunction().isVarArg() &&
778         MF.getSubtarget<HexagonSubtarget>().isEnvironmentMusl()) {
779       // On Hexagon Linux, deallocate the stack for the register saved area.
780       int NumVarArgRegs = 6 - FirstVarArgSavedReg;
781       int RegisterSavedAreaSizePlusPadding = (NumVarArgRegs % 2 == 0) ?
782         (NumVarArgRegs * 4) : (NumVarArgRegs * 4 + 4);
783       NumBytes += RegisterSavedAreaSizePlusPadding;
784     }
785     if (NumBytes) {
786       BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_addi), SP)
787         .addReg(SP)
788         .addImm(NumBytes);
789     }
790     return;
791   }
792 
793   MachineInstr *RetI = getReturn(MBB);
794   unsigned RetOpc = RetI ? RetI->getOpcode() : 0;
795 
796   // Handle EH_RETURN.
797   if (RetOpc == Hexagon::EH_RETURN_JMPR) {
798     BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::L2_deallocframe))
799         .addDef(Hexagon::D15)
800         .addReg(Hexagon::R30);
801     BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_add), SP)
802         .addReg(SP)
803         .addReg(Hexagon::R28);
804     return;
805   }
806 
807   // Check for RESTORE_DEALLOC_RET* tail call. Don't emit an extra dealloc-
808   // frame instruction if we encounter it.
809   if (RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4 ||
810       RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC ||
811       RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT ||
812       RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT_PIC) {
813     MachineBasicBlock::iterator It = RetI;
814     ++It;
815     // Delete all instructions after the RESTORE (except labels).
816     while (It != MBB.end()) {
817       if (!It->isLabel())
818         It = MBB.erase(It);
819       else
820         ++It;
821     }
822     return;
823   }
824 
825   // It is possible that the restoring code is a call to a library function.
826   // All of the restore* functions include "deallocframe", so we need to make
827   // sure that we don't add an extra one.
828   bool NeedsDeallocframe = true;
829   if (!MBB.empty() && InsertPt != MBB.begin()) {
830     MachineBasicBlock::iterator PrevIt = std::prev(InsertPt);
831     unsigned COpc = PrevIt->getOpcode();
832     if (COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4 ||
833         COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC ||
834         COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT ||
835         COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT_PIC ||
836         COpc == Hexagon::PS_call_nr || COpc == Hexagon::PS_callr_nr)
837       NeedsDeallocframe = false;
838   }
839 
840   if (!MF.getSubtarget<HexagonSubtarget>().isEnvironmentMusl() ||
841       !MF.getFunction().isVarArg()) {
842     if (!NeedsDeallocframe)
843       return;
844     // If the returning instruction is PS_jmpret, replace it with
845     // dealloc_return, otherwise just add deallocframe. The function
846     // could be returning via a tail call.
847     if (RetOpc != Hexagon::PS_jmpret || DisableDeallocRet) {
848       BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::L2_deallocframe))
849       .addDef(Hexagon::D15)
850       .addReg(Hexagon::R30);
851       return;
852     }
853     unsigned NewOpc = Hexagon::L4_return;
854     MachineInstr *NewI = BuildMI(MBB, RetI, dl, HII.get(NewOpc))
855       .addDef(Hexagon::D15)
856       .addReg(Hexagon::R30);
857     // Transfer the function live-out registers.
858     NewI->copyImplicitOps(MF, *RetI);
859     MBB.erase(RetI);
860   } else {
861     // L2_deallocframe instruction after it.
862     // Calculate the size of register saved area.
863     int NumVarArgRegs = 6 - FirstVarArgSavedReg;
864     int RegisterSavedAreaSizePlusPadding = (NumVarArgRegs % 2 == 0) ?
865       (NumVarArgRegs * 4) : (NumVarArgRegs * 4 + 4);
866 
867     MachineBasicBlock::iterator Term = MBB.getFirstTerminator();
868     MachineBasicBlock::iterator I = (Term == MBB.begin()) ? MBB.end()
869                                                           : std::prev(Term);
870     if (I == MBB.end() ||
871        (I->getOpcode() != Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT &&
872         I->getOpcode() != Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT_PIC &&
873         I->getOpcode() != Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4 &&
874         I->getOpcode() != Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC))
875       BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::L2_deallocframe))
876         .addDef(Hexagon::D15)
877         .addReg(Hexagon::R30);
878     if (RegisterSavedAreaSizePlusPadding != 0)
879       BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_addi), SP)
880         .addReg(SP)
881         .addImm(RegisterSavedAreaSizePlusPadding);
882   }
883 }
884 
885 void HexagonFrameLowering::insertAllocframe(MachineBasicBlock &MBB,
886       MachineBasicBlock::iterator InsertPt, unsigned NumBytes) const {
887   MachineFunction &MF = *MBB.getParent();
888   auto &HST = MF.getSubtarget<HexagonSubtarget>();
889   auto &HII = *HST.getInstrInfo();
890   auto &HRI = *HST.getRegisterInfo();
891 
892   // Check for overflow.
893   // Hexagon_TODO: Ugh! hardcoding. Is there an API that can be used?
894   const unsigned int ALLOCFRAME_MAX = 16384;
895 
896   // Create a dummy memory operand to avoid allocframe from being treated as
897   // a volatile memory reference.
898   auto *MMO = MF.getMachineMemOperand(MachinePointerInfo::getStack(MF, 0),
899                                       MachineMemOperand::MOStore, 4, Align(4));
900 
901   DebugLoc dl = MBB.findDebugLoc(InsertPt);
902   unsigned SP = HRI.getStackRegister();
903 
904   if (NumBytes >= ALLOCFRAME_MAX) {
905     // Emit allocframe(#0).
906     BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::S2_allocframe))
907       .addDef(SP)
908       .addReg(SP)
909       .addImm(0)
910       .addMemOperand(MMO);
911 
912     // Subtract the size from the stack pointer.
913     unsigned SP = HRI.getStackRegister();
914     BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_addi), SP)
915       .addReg(SP)
916       .addImm(-int(NumBytes));
917   } else {
918     BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::S2_allocframe))
919       .addDef(SP)
920       .addReg(SP)
921       .addImm(NumBytes)
922       .addMemOperand(MMO);
923   }
924 }
925 
926 void HexagonFrameLowering::updateEntryPaths(MachineFunction &MF,
927       MachineBasicBlock &SaveB) const {
928   SetVector<unsigned> Worklist;
929 
930   MachineBasicBlock &EntryB = MF.front();
931   Worklist.insert(EntryB.getNumber());
932 
933   unsigned SaveN = SaveB.getNumber();
934   auto &CSI = MF.getFrameInfo().getCalleeSavedInfo();
935 
936   for (unsigned i = 0; i < Worklist.size(); ++i) {
937     unsigned BN = Worklist[i];
938     MachineBasicBlock &MBB = *MF.getBlockNumbered(BN);
939     for (auto &R : CSI)
940       if (!MBB.isLiveIn(R.getReg()))
941         MBB.addLiveIn(R.getReg());
942     if (BN != SaveN)
943       for (auto &SB : MBB.successors())
944         Worklist.insert(SB->getNumber());
945   }
946 }
947 
948 bool HexagonFrameLowering::updateExitPaths(MachineBasicBlock &MBB,
949       MachineBasicBlock &RestoreB, BitVector &DoneT, BitVector &DoneF,
950       BitVector &Path) const {
951   assert(MBB.getNumber() >= 0);
952   unsigned BN = MBB.getNumber();
953   if (Path[BN] || DoneF[BN])
954     return false;
955   if (DoneT[BN])
956     return true;
957 
958   auto &CSI = MBB.getParent()->getFrameInfo().getCalleeSavedInfo();
959 
960   Path[BN] = true;
961   bool ReachedExit = false;
962   for (auto &SB : MBB.successors())
963     ReachedExit |= updateExitPaths(*SB, RestoreB, DoneT, DoneF, Path);
964 
965   if (!MBB.empty() && MBB.back().isReturn()) {
966     // Add implicit uses of all callee-saved registers to the reached
967     // return instructions. This is to prevent the anti-dependency breaker
968     // from renaming these registers.
969     MachineInstr &RetI = MBB.back();
970     if (!isRestoreCall(RetI.getOpcode()))
971       for (auto &R : CSI)
972         RetI.addOperand(MachineOperand::CreateReg(R.getReg(), false, true));
973     ReachedExit = true;
974   }
975 
976   // We don't want to add unnecessary live-ins to the restore block: since
977   // the callee-saved registers are being defined in it, the entry of the
978   // restore block cannot be on the path from the definitions to any exit.
979   if (ReachedExit && &MBB != &RestoreB) {
980     for (auto &R : CSI)
981       if (!MBB.isLiveIn(R.getReg()))
982         MBB.addLiveIn(R.getReg());
983     DoneT[BN] = true;
984   }
985   if (!ReachedExit)
986     DoneF[BN] = true;
987 
988   Path[BN] = false;
989   return ReachedExit;
990 }
991 
992 static Optional<MachineBasicBlock::iterator>
993 findCFILocation(MachineBasicBlock &B) {
994     // The CFI instructions need to be inserted right after allocframe.
995     // An exception to this is a situation where allocframe is bundled
996     // with a call: then the CFI instructions need to be inserted before
997     // the packet with the allocframe+call (in case the call throws an
998     // exception).
999     auto End = B.instr_end();
1000 
1001     for (MachineInstr &I : B) {
1002       MachineBasicBlock::iterator It = I.getIterator();
1003       if (!I.isBundle()) {
1004         if (I.getOpcode() == Hexagon::S2_allocframe)
1005           return std::next(It);
1006         continue;
1007       }
1008       // I is a bundle.
1009       bool HasCall = false, HasAllocFrame = false;
1010       auto T = It.getInstrIterator();
1011       while (++T != End && T->isBundled()) {
1012         if (T->getOpcode() == Hexagon::S2_allocframe)
1013           HasAllocFrame = true;
1014         else if (T->isCall())
1015           HasCall = true;
1016       }
1017       if (HasAllocFrame)
1018         return HasCall ? It : std::next(It);
1019     }
1020     return None;
1021 }
1022 
1023 void HexagonFrameLowering::insertCFIInstructions(MachineFunction &MF) const {
1024   for (auto &B : MF) {
1025     auto At = findCFILocation(B);
1026     if (At)
1027       insertCFIInstructionsAt(B, At.value());
1028   }
1029 }
1030 
1031 void HexagonFrameLowering::insertCFIInstructionsAt(MachineBasicBlock &MBB,
1032       MachineBasicBlock::iterator At) const {
1033   MachineFunction &MF = *MBB.getParent();
1034   MachineFrameInfo &MFI = MF.getFrameInfo();
1035   MachineModuleInfo &MMI = MF.getMMI();
1036   auto &HST = MF.getSubtarget<HexagonSubtarget>();
1037   auto &HII = *HST.getInstrInfo();
1038   auto &HRI = *HST.getRegisterInfo();
1039 
1040   // If CFI instructions have debug information attached, something goes
1041   // wrong with the final assembly generation: the prolog_end is placed
1042   // in a wrong location.
1043   DebugLoc DL;
1044   const MCInstrDesc &CFID = HII.get(TargetOpcode::CFI_INSTRUCTION);
1045 
1046   MCSymbol *FrameLabel = MMI.getContext().createTempSymbol();
1047   bool HasFP = hasFP(MF);
1048 
1049   if (HasFP) {
1050     unsigned DwFPReg = HRI.getDwarfRegNum(HRI.getFrameRegister(), true);
1051     unsigned DwRAReg = HRI.getDwarfRegNum(HRI.getRARegister(), true);
1052 
1053     // Define CFA via an offset from the value of FP.
1054     //
1055     //  -8   -4    0 (SP)
1056     // --+----+----+---------------------
1057     //   | FP | LR |          increasing addresses -->
1058     // --+----+----+---------------------
1059     //   |         +-- Old SP (before allocframe)
1060     //   +-- New FP (after allocframe)
1061     //
1062     // MCCFIInstruction::cfiDefCfa adds the offset from the register.
1063     // MCCFIInstruction::createOffset takes the offset without sign change.
1064     auto DefCfa = MCCFIInstruction::cfiDefCfa(FrameLabel, DwFPReg, 8);
1065     BuildMI(MBB, At, DL, CFID)
1066         .addCFIIndex(MF.addFrameInst(DefCfa));
1067     // R31 (return addr) = CFA - 4
1068     auto OffR31 = MCCFIInstruction::createOffset(FrameLabel, DwRAReg, -4);
1069     BuildMI(MBB, At, DL, CFID)
1070         .addCFIIndex(MF.addFrameInst(OffR31));
1071     // R30 (frame ptr) = CFA - 8
1072     auto OffR30 = MCCFIInstruction::createOffset(FrameLabel, DwFPReg, -8);
1073     BuildMI(MBB, At, DL, CFID)
1074         .addCFIIndex(MF.addFrameInst(OffR30));
1075   }
1076 
1077   static unsigned int RegsToMove[] = {
1078     Hexagon::R1,  Hexagon::R0,  Hexagon::R3,  Hexagon::R2,
1079     Hexagon::R17, Hexagon::R16, Hexagon::R19, Hexagon::R18,
1080     Hexagon::R21, Hexagon::R20, Hexagon::R23, Hexagon::R22,
1081     Hexagon::R25, Hexagon::R24, Hexagon::R27, Hexagon::R26,
1082     Hexagon::D0,  Hexagon::D1,  Hexagon::D8,  Hexagon::D9,
1083     Hexagon::D10, Hexagon::D11, Hexagon::D12, Hexagon::D13,
1084     Hexagon::NoRegister
1085   };
1086 
1087   const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
1088 
1089   for (unsigned i = 0; RegsToMove[i] != Hexagon::NoRegister; ++i) {
1090     unsigned Reg = RegsToMove[i];
1091     auto IfR = [Reg] (const CalleeSavedInfo &C) -> bool {
1092       return C.getReg() == Reg;
1093     };
1094     auto F = find_if(CSI, IfR);
1095     if (F == CSI.end())
1096       continue;
1097 
1098     int64_t Offset;
1099     if (HasFP) {
1100       // If the function has a frame pointer (i.e. has an allocframe),
1101       // then the CFA has been defined in terms of FP. Any offsets in
1102       // the following CFI instructions have to be defined relative
1103       // to FP, which points to the bottom of the stack frame.
1104       // The function getFrameIndexReference can still choose to use SP
1105       // for the offset calculation, so we cannot simply call it here.
1106       // Instead, get the offset (relative to the FP) directly.
1107       Offset = MFI.getObjectOffset(F->getFrameIdx());
1108     } else {
1109       Register FrameReg;
1110       Offset =
1111           getFrameIndexReference(MF, F->getFrameIdx(), FrameReg).getFixed();
1112     }
1113     // Subtract 8 to make room for R30 and R31, which are added above.
1114     Offset -= 8;
1115 
1116     if (Reg < Hexagon::D0 || Reg > Hexagon::D15) {
1117       unsigned DwarfReg = HRI.getDwarfRegNum(Reg, true);
1118       auto OffReg = MCCFIInstruction::createOffset(FrameLabel, DwarfReg,
1119                                                    Offset);
1120       BuildMI(MBB, At, DL, CFID)
1121           .addCFIIndex(MF.addFrameInst(OffReg));
1122     } else {
1123       // Split the double regs into subregs, and generate appropriate
1124       // cfi_offsets.
1125       // The only reason, we are split double regs is, llvm-mc does not
1126       // understand paired registers for cfi_offset.
1127       // Eg .cfi_offset r1:0, -64
1128 
1129       Register HiReg = HRI.getSubReg(Reg, Hexagon::isub_hi);
1130       Register LoReg = HRI.getSubReg(Reg, Hexagon::isub_lo);
1131       unsigned HiDwarfReg = HRI.getDwarfRegNum(HiReg, true);
1132       unsigned LoDwarfReg = HRI.getDwarfRegNum(LoReg, true);
1133       auto OffHi = MCCFIInstruction::createOffset(FrameLabel, HiDwarfReg,
1134                                                   Offset+4);
1135       BuildMI(MBB, At, DL, CFID)
1136           .addCFIIndex(MF.addFrameInst(OffHi));
1137       auto OffLo = MCCFIInstruction::createOffset(FrameLabel, LoDwarfReg,
1138                                                   Offset);
1139       BuildMI(MBB, At, DL, CFID)
1140           .addCFIIndex(MF.addFrameInst(OffLo));
1141     }
1142   }
1143 }
1144 
1145 bool HexagonFrameLowering::hasFP(const MachineFunction &MF) const {
1146   if (MF.getFunction().hasFnAttribute(Attribute::Naked))
1147     return false;
1148 
1149   auto &MFI = MF.getFrameInfo();
1150   auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
1151   bool HasExtraAlign = HRI.hasStackRealignment(MF);
1152   bool HasAlloca = MFI.hasVarSizedObjects();
1153 
1154   // Insert ALLOCFRAME if we need to or at -O0 for the debugger.  Think
1155   // that this shouldn't be required, but doing so now because gcc does and
1156   // gdb can't break at the start of the function without it.  Will remove if
1157   // this turns out to be a gdb bug.
1158   //
1159   if (MF.getTarget().getOptLevel() == CodeGenOpt::None)
1160     return true;
1161 
1162   // By default we want to use SP (since it's always there). FP requires
1163   // some setup (i.e. ALLOCFRAME).
1164   // Both, alloca and stack alignment modify the stack pointer by an
1165   // undetermined value, so we need to save it at the entry to the function
1166   // (i.e. use allocframe).
1167   if (HasAlloca || HasExtraAlign)
1168     return true;
1169 
1170   if (MFI.getStackSize() > 0) {
1171     // If FP-elimination is disabled, we have to use FP at this point.
1172     const TargetMachine &TM = MF.getTarget();
1173     if (TM.Options.DisableFramePointerElim(MF) || !EliminateFramePointer)
1174       return true;
1175     if (EnableStackOVFSanitizer)
1176       return true;
1177   }
1178 
1179   const auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>();
1180   if ((MFI.hasCalls() && !enableAllocFrameElim(MF)) || HMFI.hasClobberLR())
1181     return true;
1182 
1183   return false;
1184 }
1185 
1186 enum SpillKind {
1187   SK_ToMem,
1188   SK_FromMem,
1189   SK_FromMemTailcall
1190 };
1191 
1192 static const char *getSpillFunctionFor(unsigned MaxReg, SpillKind SpillType,
1193       bool Stkchk = false) {
1194   const char * V4SpillToMemoryFunctions[] = {
1195     "__save_r16_through_r17",
1196     "__save_r16_through_r19",
1197     "__save_r16_through_r21",
1198     "__save_r16_through_r23",
1199     "__save_r16_through_r25",
1200     "__save_r16_through_r27" };
1201 
1202   const char * V4SpillToMemoryStkchkFunctions[] = {
1203     "__save_r16_through_r17_stkchk",
1204     "__save_r16_through_r19_stkchk",
1205     "__save_r16_through_r21_stkchk",
1206     "__save_r16_through_r23_stkchk",
1207     "__save_r16_through_r25_stkchk",
1208     "__save_r16_through_r27_stkchk" };
1209 
1210   const char * V4SpillFromMemoryFunctions[] = {
1211     "__restore_r16_through_r17_and_deallocframe",
1212     "__restore_r16_through_r19_and_deallocframe",
1213     "__restore_r16_through_r21_and_deallocframe",
1214     "__restore_r16_through_r23_and_deallocframe",
1215     "__restore_r16_through_r25_and_deallocframe",
1216     "__restore_r16_through_r27_and_deallocframe" };
1217 
1218   const char * V4SpillFromMemoryTailcallFunctions[] = {
1219     "__restore_r16_through_r17_and_deallocframe_before_tailcall",
1220     "__restore_r16_through_r19_and_deallocframe_before_tailcall",
1221     "__restore_r16_through_r21_and_deallocframe_before_tailcall",
1222     "__restore_r16_through_r23_and_deallocframe_before_tailcall",
1223     "__restore_r16_through_r25_and_deallocframe_before_tailcall",
1224     "__restore_r16_through_r27_and_deallocframe_before_tailcall"
1225   };
1226 
1227   const char **SpillFunc = nullptr;
1228 
1229   switch(SpillType) {
1230   case SK_ToMem:
1231     SpillFunc = Stkchk ? V4SpillToMemoryStkchkFunctions
1232                        : V4SpillToMemoryFunctions;
1233     break;
1234   case SK_FromMem:
1235     SpillFunc = V4SpillFromMemoryFunctions;
1236     break;
1237   case SK_FromMemTailcall:
1238     SpillFunc = V4SpillFromMemoryTailcallFunctions;
1239     break;
1240   }
1241   assert(SpillFunc && "Unknown spill kind");
1242 
1243   // Spill all callee-saved registers up to the highest register used.
1244   switch (MaxReg) {
1245   case Hexagon::R17:
1246     return SpillFunc[0];
1247   case Hexagon::R19:
1248     return SpillFunc[1];
1249   case Hexagon::R21:
1250     return SpillFunc[2];
1251   case Hexagon::R23:
1252     return SpillFunc[3];
1253   case Hexagon::R25:
1254     return SpillFunc[4];
1255   case Hexagon::R27:
1256     return SpillFunc[5];
1257   default:
1258     llvm_unreachable("Unhandled maximum callee save register");
1259   }
1260   return nullptr;
1261 }
1262 
1263 StackOffset
1264 HexagonFrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI,
1265                                              Register &FrameReg) const {
1266   auto &MFI = MF.getFrameInfo();
1267   auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
1268 
1269   int Offset = MFI.getObjectOffset(FI);
1270   bool HasAlloca = MFI.hasVarSizedObjects();
1271   bool HasExtraAlign = HRI.hasStackRealignment(MF);
1272   bool NoOpt = MF.getTarget().getOptLevel() == CodeGenOpt::None;
1273 
1274   auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>();
1275   unsigned FrameSize = MFI.getStackSize();
1276   Register SP = HRI.getStackRegister();
1277   Register FP = HRI.getFrameRegister();
1278   Register AP = HMFI.getStackAlignBasePhysReg();
1279   // It may happen that AP will be absent even HasAlloca && HasExtraAlign
1280   // is true. HasExtraAlign may be set because of vector spills, without
1281   // aligned locals or aligned outgoing function arguments. Since vector
1282   // spills will ultimately be "unaligned", it is safe to use FP as the
1283   // base register.
1284   // In fact, in such a scenario the stack is actually not required to be
1285   // aligned, although it may end up being aligned anyway, since this
1286   // particular case is not easily detectable. The alignment will be
1287   // unnecessary, but not incorrect.
1288   // Unfortunately there is no quick way to verify that the above is
1289   // indeed the case (and that it's not a result of an error), so just
1290   // assume that missing AP will be replaced by FP.
1291   // (A better fix would be to rematerialize AP from FP and always align
1292   // vector spills.)
1293   if (AP == 0)
1294     AP = FP;
1295 
1296   bool UseFP = false, UseAP = false;  // Default: use SP (except at -O0).
1297   // Use FP at -O0, except when there are objects with extra alignment.
1298   // That additional alignment requirement may cause a pad to be inserted,
1299   // which will make it impossible to use FP to access objects located
1300   // past the pad.
1301   if (NoOpt && !HasExtraAlign)
1302     UseFP = true;
1303   if (MFI.isFixedObjectIndex(FI) || MFI.isObjectPreAllocated(FI)) {
1304     // Fixed and preallocated objects will be located before any padding
1305     // so FP must be used to access them.
1306     UseFP |= (HasAlloca || HasExtraAlign);
1307   } else {
1308     if (HasAlloca) {
1309       if (HasExtraAlign)
1310         UseAP = true;
1311       else
1312         UseFP = true;
1313     }
1314   }
1315 
1316   // If FP was picked, then there had better be FP.
1317   bool HasFP = hasFP(MF);
1318   assert((HasFP || !UseFP) && "This function must have frame pointer");
1319 
1320   // Having FP implies allocframe. Allocframe will store extra 8 bytes:
1321   // FP/LR. If the base register is used to access an object across these
1322   // 8 bytes, then the offset will need to be adjusted by 8.
1323   //
1324   // After allocframe:
1325   //                    HexagonISelLowering adds 8 to ---+
1326   //                    the offsets of all stack-based   |
1327   //                    arguments (*)                    |
1328   //                                                     |
1329   //   getObjectOffset < 0   0     8  getObjectOffset >= 8
1330   // ------------------------+-----+------------------------> increasing
1331   //     <local objects>     |FP/LR|    <input arguments>     addresses
1332   // -----------------+------+-----+------------------------>
1333   //                  |      |
1334   //    SP/AP point --+      +-- FP points here (**)
1335   //    somewhere on
1336   //    this side of FP/LR
1337   //
1338   // (*) See LowerFormalArguments. The FP/LR is assumed to be present.
1339   // (**) *FP == old-FP. FP+0..7 are the bytes of FP/LR.
1340 
1341   // The lowering assumes that FP/LR is present, and so the offsets of
1342   // the formal arguments start at 8. If FP/LR is not there we need to
1343   // reduce the offset by 8.
1344   if (Offset > 0 && !HasFP)
1345     Offset -= 8;
1346 
1347   if (UseFP)
1348     FrameReg = FP;
1349   else if (UseAP)
1350     FrameReg = AP;
1351   else
1352     FrameReg = SP;
1353 
1354   // Calculate the actual offset in the instruction. If there is no FP
1355   // (in other words, no allocframe), then SP will not be adjusted (i.e.
1356   // there will be no SP -= FrameSize), so the frame size should not be
1357   // added to the calculated offset.
1358   int RealOffset = Offset;
1359   if (!UseFP && !UseAP)
1360     RealOffset = FrameSize+Offset;
1361   return StackOffset::getFixed(RealOffset);
1362 }
1363 
1364 bool HexagonFrameLowering::insertCSRSpillsInBlock(MachineBasicBlock &MBB,
1365       const CSIVect &CSI, const HexagonRegisterInfo &HRI,
1366       bool &PrologueStubs) const {
1367   if (CSI.empty())
1368     return true;
1369 
1370   MachineBasicBlock::iterator MI = MBB.begin();
1371   PrologueStubs = false;
1372   MachineFunction &MF = *MBB.getParent();
1373   auto &HST = MF.getSubtarget<HexagonSubtarget>();
1374   auto &HII = *HST.getInstrInfo();
1375 
1376   if (useSpillFunction(MF, CSI)) {
1377     PrologueStubs = true;
1378     unsigned MaxReg = getMaxCalleeSavedReg(CSI, HRI);
1379     bool StkOvrFlowEnabled = EnableStackOVFSanitizer;
1380     const char *SpillFun = getSpillFunctionFor(MaxReg, SK_ToMem,
1381                                                StkOvrFlowEnabled);
1382     auto &HTM = static_cast<const HexagonTargetMachine&>(MF.getTarget());
1383     bool IsPIC = HTM.isPositionIndependent();
1384     bool LongCalls = HST.useLongCalls() || EnableSaveRestoreLong;
1385 
1386     // Call spill function.
1387     DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc();
1388     unsigned SpillOpc;
1389     if (StkOvrFlowEnabled) {
1390       if (LongCalls)
1391         SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4STK_EXT_PIC
1392                          : Hexagon::SAVE_REGISTERS_CALL_V4STK_EXT;
1393       else
1394         SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4STK_PIC
1395                          : Hexagon::SAVE_REGISTERS_CALL_V4STK;
1396     } else {
1397       if (LongCalls)
1398         SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4_EXT_PIC
1399                          : Hexagon::SAVE_REGISTERS_CALL_V4_EXT;
1400       else
1401         SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4_PIC
1402                          : Hexagon::SAVE_REGISTERS_CALL_V4;
1403     }
1404 
1405     MachineInstr *SaveRegsCall =
1406         BuildMI(MBB, MI, DL, HII.get(SpillOpc))
1407           .addExternalSymbol(SpillFun);
1408 
1409     // Add callee-saved registers as use.
1410     addCalleeSaveRegistersAsImpOperand(SaveRegsCall, CSI, false, true);
1411     // Add live in registers.
1412     for (const CalleeSavedInfo &I : CSI)
1413       MBB.addLiveIn(I.getReg());
1414     return true;
1415   }
1416 
1417   for (const CalleeSavedInfo &I : CSI) {
1418     Register Reg = I.getReg();
1419     // Add live in registers. We treat eh_return callee saved register r0 - r3
1420     // specially. They are not really callee saved registers as they are not
1421     // supposed to be killed.
1422     bool IsKill = !HRI.isEHReturnCalleeSaveReg(Reg);
1423     int FI = I.getFrameIdx();
1424     const TargetRegisterClass *RC = HRI.getMinimalPhysRegClass(Reg);
1425     HII.storeRegToStackSlot(MBB, MI, Reg, IsKill, FI, RC, &HRI);
1426     if (IsKill)
1427       MBB.addLiveIn(Reg);
1428   }
1429   return true;
1430 }
1431 
1432 bool HexagonFrameLowering::insertCSRRestoresInBlock(MachineBasicBlock &MBB,
1433       const CSIVect &CSI, const HexagonRegisterInfo &HRI) const {
1434   if (CSI.empty())
1435     return false;
1436 
1437   MachineBasicBlock::iterator MI = MBB.getFirstTerminator();
1438   MachineFunction &MF = *MBB.getParent();
1439   auto &HST = MF.getSubtarget<HexagonSubtarget>();
1440   auto &HII = *HST.getInstrInfo();
1441 
1442   if (useRestoreFunction(MF, CSI)) {
1443     bool HasTC = hasTailCall(MBB) || !hasReturn(MBB);
1444     unsigned MaxR = getMaxCalleeSavedReg(CSI, HRI);
1445     SpillKind Kind = HasTC ? SK_FromMemTailcall : SK_FromMem;
1446     const char *RestoreFn = getSpillFunctionFor(MaxR, Kind);
1447     auto &HTM = static_cast<const HexagonTargetMachine&>(MF.getTarget());
1448     bool IsPIC = HTM.isPositionIndependent();
1449     bool LongCalls = HST.useLongCalls() || EnableSaveRestoreLong;
1450 
1451     // Call spill function.
1452     DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc()
1453                                   : MBB.findDebugLoc(MBB.end());
1454     MachineInstr *DeallocCall = nullptr;
1455 
1456     if (HasTC) {
1457       unsigned RetOpc;
1458       if (LongCalls)
1459         RetOpc = IsPIC ? Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT_PIC
1460                        : Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT;
1461       else
1462         RetOpc = IsPIC ? Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC
1463                        : Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4;
1464       DeallocCall = BuildMI(MBB, MI, DL, HII.get(RetOpc))
1465           .addExternalSymbol(RestoreFn);
1466     } else {
1467       // The block has a return.
1468       MachineBasicBlock::iterator It = MBB.getFirstTerminator();
1469       assert(It->isReturn() && std::next(It) == MBB.end());
1470       unsigned RetOpc;
1471       if (LongCalls)
1472         RetOpc = IsPIC ? Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT_PIC
1473                        : Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT;
1474       else
1475         RetOpc = IsPIC ? Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC
1476                        : Hexagon::RESTORE_DEALLOC_RET_JMP_V4;
1477       DeallocCall = BuildMI(MBB, It, DL, HII.get(RetOpc))
1478           .addExternalSymbol(RestoreFn);
1479       // Transfer the function live-out registers.
1480       DeallocCall->copyImplicitOps(MF, *It);
1481     }
1482     addCalleeSaveRegistersAsImpOperand(DeallocCall, CSI, true, false);
1483     return true;
1484   }
1485 
1486   for (const CalleeSavedInfo &I : CSI) {
1487     Register Reg = I.getReg();
1488     const TargetRegisterClass *RC = HRI.getMinimalPhysRegClass(Reg);
1489     int FI = I.getFrameIdx();
1490     HII.loadRegFromStackSlot(MBB, MI, Reg, FI, RC, &HRI);
1491   }
1492 
1493   return true;
1494 }
1495 
1496 MachineBasicBlock::iterator HexagonFrameLowering::eliminateCallFramePseudoInstr(
1497     MachineFunction &MF, MachineBasicBlock &MBB,
1498     MachineBasicBlock::iterator I) const {
1499   MachineInstr &MI = *I;
1500   unsigned Opc = MI.getOpcode();
1501   (void)Opc; // Silence compiler warning.
1502   assert((Opc == Hexagon::ADJCALLSTACKDOWN || Opc == Hexagon::ADJCALLSTACKUP) &&
1503          "Cannot handle this call frame pseudo instruction");
1504   return MBB.erase(I);
1505 }
1506 
1507 void HexagonFrameLowering::processFunctionBeforeFrameFinalized(
1508     MachineFunction &MF, RegScavenger *RS) const {
1509   // If this function has uses aligned stack and also has variable sized stack
1510   // objects, then we need to map all spill slots to fixed positions, so that
1511   // they can be accessed through FP. Otherwise they would have to be accessed
1512   // via AP, which may not be available at the particular place in the program.
1513   MachineFrameInfo &MFI = MF.getFrameInfo();
1514   bool HasAlloca = MFI.hasVarSizedObjects();
1515   bool NeedsAlign = (MFI.getMaxAlign() > getStackAlign());
1516 
1517   if (!HasAlloca || !NeedsAlign)
1518     return;
1519 
1520   SmallSet<int, 4> DealignSlots;
1521   unsigned LFS = MFI.getLocalFrameSize();
1522   for (int i = 0, e = MFI.getObjectIndexEnd(); i != e; ++i) {
1523     if (!MFI.isSpillSlotObjectIndex(i) || MFI.isDeadObjectIndex(i))
1524       continue;
1525     unsigned S = MFI.getObjectSize(i);
1526     // Reduce the alignment to at most 8. This will require unaligned vector
1527     // stores if they happen here.
1528     Align A = std::max(MFI.getObjectAlign(i), Align(8));
1529     MFI.setObjectAlignment(i, Align(8));
1530     LFS = alignTo(LFS+S, A);
1531     MFI.mapLocalFrameObject(i, -static_cast<int64_t>(LFS));
1532     DealignSlots.insert(i);
1533   }
1534 
1535   MFI.setLocalFrameSize(LFS);
1536   Align A = MFI.getLocalFrameMaxAlign();
1537   assert(A <= 8 && "Unexpected local frame alignment");
1538   if (A == 1)
1539     MFI.setLocalFrameMaxAlign(Align(8));
1540   MFI.setUseLocalStackAllocationBlock(true);
1541 
1542   // Go over all MachineMemOperands in the code, and change the ones that
1543   // refer to the dealigned stack slots to reflect the new alignment.
1544   if (!DealignSlots.empty()) {
1545     for (MachineBasicBlock &BB : MF) {
1546       for (MachineInstr &MI : BB) {
1547         bool KeepOld = true;
1548         ArrayRef<MachineMemOperand*> memops = MI.memoperands();
1549         SmallVector<MachineMemOperand*,1> new_memops;
1550         for (MachineMemOperand *MMO : memops) {
1551           auto *PV = MMO->getPseudoValue();
1552           if (auto *FS = dyn_cast_or_null<FixedStackPseudoSourceValue>(PV)) {
1553             int FI = FS->getFrameIndex();
1554             if (DealignSlots.count(FI)) {
1555               auto *NewMMO = MF.getMachineMemOperand(
1556                   MMO->getPointerInfo(), MMO->getFlags(), MMO->getSize(),
1557                   MFI.getObjectAlign(FI), MMO->getAAInfo(), MMO->getRanges(),
1558                   MMO->getSyncScopeID(), MMO->getSuccessOrdering(),
1559                   MMO->getFailureOrdering());
1560               new_memops.push_back(NewMMO);
1561               KeepOld = false;
1562               continue;
1563             }
1564           }
1565           new_memops.push_back(MMO);
1566         }
1567         if (!KeepOld)
1568           MI.setMemRefs(MF, new_memops);
1569       }
1570     }
1571   }
1572 
1573   // Set the physical aligned-stack base address register.
1574   unsigned AP = 0;
1575   if (const MachineInstr *AI = getAlignaInstr(MF))
1576     AP = AI->getOperand(0).getReg();
1577   auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>();
1578   HMFI.setStackAlignBasePhysReg(AP);
1579 }
1580 
1581 /// Returns true if there are no caller-saved registers available in class RC.
1582 static bool needToReserveScavengingSpillSlots(MachineFunction &MF,
1583       const HexagonRegisterInfo &HRI, const TargetRegisterClass *RC) {
1584   MachineRegisterInfo &MRI = MF.getRegInfo();
1585 
1586   auto IsUsed = [&HRI,&MRI] (unsigned Reg) -> bool {
1587     for (MCRegAliasIterator AI(Reg, &HRI, true); AI.isValid(); ++AI)
1588       if (MRI.isPhysRegUsed(*AI))
1589         return true;
1590     return false;
1591   };
1592 
1593   // Check for an unused caller-saved register. Callee-saved registers
1594   // have become pristine by now.
1595   for (const MCPhysReg *P = HRI.getCallerSavedRegs(&MF, RC); *P; ++P)
1596     if (!IsUsed(*P))
1597       return false;
1598 
1599   // All caller-saved registers are used.
1600   return true;
1601 }
1602 
1603 #ifndef NDEBUG
1604 static void dump_registers(BitVector &Regs, const TargetRegisterInfo &TRI) {
1605   dbgs() << '{';
1606   for (int x = Regs.find_first(); x >= 0; x = Regs.find_next(x)) {
1607     unsigned R = x;
1608     dbgs() << ' ' << printReg(R, &TRI);
1609   }
1610   dbgs() << " }";
1611 }
1612 #endif
1613 
1614 bool HexagonFrameLowering::assignCalleeSavedSpillSlots(MachineFunction &MF,
1615       const TargetRegisterInfo *TRI, std::vector<CalleeSavedInfo> &CSI) const {
1616   LLVM_DEBUG(dbgs() << __func__ << " on " << MF.getName() << '\n');
1617   MachineFrameInfo &MFI = MF.getFrameInfo();
1618   BitVector SRegs(Hexagon::NUM_TARGET_REGS);
1619 
1620   // Generate a set of unique, callee-saved registers (SRegs), where each
1621   // register in the set is maximal in terms of sub-/super-register relation,
1622   // i.e. for each R in SRegs, no proper super-register of R is also in SRegs.
1623 
1624   // (1) For each callee-saved register, add that register and all of its
1625   // sub-registers to SRegs.
1626   LLVM_DEBUG(dbgs() << "Initial CS registers: {");
1627   for (const CalleeSavedInfo &I : CSI) {
1628     Register R = I.getReg();
1629     LLVM_DEBUG(dbgs() << ' ' << printReg(R, TRI));
1630     for (MCSubRegIterator SR(R, TRI, true); SR.isValid(); ++SR)
1631       SRegs[*SR] = true;
1632   }
1633   LLVM_DEBUG(dbgs() << " }\n");
1634   LLVM_DEBUG(dbgs() << "SRegs.1: "; dump_registers(SRegs, *TRI);
1635              dbgs() << "\n");
1636 
1637   // (2) For each reserved register, remove that register and all of its
1638   // sub- and super-registers from SRegs.
1639   BitVector Reserved = TRI->getReservedRegs(MF);
1640   for (int x = Reserved.find_first(); x >= 0; x = Reserved.find_next(x)) {
1641     unsigned R = x;
1642     for (MCSuperRegIterator SR(R, TRI, true); SR.isValid(); ++SR)
1643       SRegs[*SR] = false;
1644   }
1645   LLVM_DEBUG(dbgs() << "Res:     "; dump_registers(Reserved, *TRI);
1646              dbgs() << "\n");
1647   LLVM_DEBUG(dbgs() << "SRegs.2: "; dump_registers(SRegs, *TRI);
1648              dbgs() << "\n");
1649 
1650   // (3) Collect all registers that have at least one sub-register in SRegs,
1651   // and also have no sub-registers that are reserved. These will be the can-
1652   // didates for saving as a whole instead of their individual sub-registers.
1653   // (Saving R17:16 instead of R16 is fine, but only if R17 was not reserved.)
1654   BitVector TmpSup(Hexagon::NUM_TARGET_REGS);
1655   for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) {
1656     unsigned R = x;
1657     for (MCSuperRegIterator SR(R, TRI); SR.isValid(); ++SR)
1658       TmpSup[*SR] = true;
1659   }
1660   for (int x = TmpSup.find_first(); x >= 0; x = TmpSup.find_next(x)) {
1661     unsigned R = x;
1662     for (MCSubRegIterator SR(R, TRI, true); SR.isValid(); ++SR) {
1663       if (!Reserved[*SR])
1664         continue;
1665       TmpSup[R] = false;
1666       break;
1667     }
1668   }
1669   LLVM_DEBUG(dbgs() << "TmpSup:  "; dump_registers(TmpSup, *TRI);
1670              dbgs() << "\n");
1671 
1672   // (4) Include all super-registers found in (3) into SRegs.
1673   SRegs |= TmpSup;
1674   LLVM_DEBUG(dbgs() << "SRegs.4: "; dump_registers(SRegs, *TRI);
1675              dbgs() << "\n");
1676 
1677   // (5) For each register R in SRegs, if any super-register of R is in SRegs,
1678   // remove R from SRegs.
1679   for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) {
1680     unsigned R = x;
1681     for (MCSuperRegIterator SR(R, TRI); SR.isValid(); ++SR) {
1682       if (!SRegs[*SR])
1683         continue;
1684       SRegs[R] = false;
1685       break;
1686     }
1687   }
1688   LLVM_DEBUG(dbgs() << "SRegs.5: "; dump_registers(SRegs, *TRI);
1689              dbgs() << "\n");
1690 
1691   // Now, for each register that has a fixed stack slot, create the stack
1692   // object for it.
1693   CSI.clear();
1694 
1695   using SpillSlot = TargetFrameLowering::SpillSlot;
1696 
1697   unsigned NumFixed;
1698   int MinOffset = 0;  // CS offsets are negative.
1699   const SpillSlot *FixedSlots = getCalleeSavedSpillSlots(NumFixed);
1700   for (const SpillSlot *S = FixedSlots; S != FixedSlots+NumFixed; ++S) {
1701     if (!SRegs[S->Reg])
1702       continue;
1703     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(S->Reg);
1704     int FI = MFI.CreateFixedSpillStackObject(TRI->getSpillSize(*RC), S->Offset);
1705     MinOffset = std::min(MinOffset, S->Offset);
1706     CSI.push_back(CalleeSavedInfo(S->Reg, FI));
1707     SRegs[S->Reg] = false;
1708   }
1709 
1710   // There can be some registers that don't have fixed slots. For example,
1711   // we need to store R0-R3 in functions with exception handling. For each
1712   // such register, create a non-fixed stack object.
1713   for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) {
1714     unsigned R = x;
1715     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(R);
1716     unsigned Size = TRI->getSpillSize(*RC);
1717     int Off = MinOffset - Size;
1718     Align Alignment = std::min(TRI->getSpillAlign(*RC), getStackAlign());
1719     Off &= -Alignment.value();
1720     int FI = MFI.CreateFixedSpillStackObject(Size, Off);
1721     MinOffset = std::min(MinOffset, Off);
1722     CSI.push_back(CalleeSavedInfo(R, FI));
1723     SRegs[R] = false;
1724   }
1725 
1726   LLVM_DEBUG({
1727     dbgs() << "CS information: {";
1728     for (const CalleeSavedInfo &I : CSI) {
1729       int FI = I.getFrameIdx();
1730       int Off = MFI.getObjectOffset(FI);
1731       dbgs() << ' ' << printReg(I.getReg(), TRI) << ":fi#" << FI << ":sp";
1732       if (Off >= 0)
1733         dbgs() << '+';
1734       dbgs() << Off;
1735     }
1736     dbgs() << " }\n";
1737   });
1738 
1739 #ifndef NDEBUG
1740   // Verify that all registers were handled.
1741   bool MissedReg = false;
1742   for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) {
1743     unsigned R = x;
1744     dbgs() << printReg(R, TRI) << ' ';
1745     MissedReg = true;
1746   }
1747   if (MissedReg)
1748     llvm_unreachable("...there are unhandled callee-saved registers!");
1749 #endif
1750 
1751   return true;
1752 }
1753 
1754 bool HexagonFrameLowering::expandCopy(MachineBasicBlock &B,
1755       MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
1756       const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
1757   MachineInstr *MI = &*It;
1758   DebugLoc DL = MI->getDebugLoc();
1759   Register DstR = MI->getOperand(0).getReg();
1760   Register SrcR = MI->getOperand(1).getReg();
1761   if (!Hexagon::ModRegsRegClass.contains(DstR) ||
1762       !Hexagon::ModRegsRegClass.contains(SrcR))
1763     return false;
1764 
1765   Register TmpR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
1766   BuildMI(B, It, DL, HII.get(TargetOpcode::COPY), TmpR).add(MI->getOperand(1));
1767   BuildMI(B, It, DL, HII.get(TargetOpcode::COPY), DstR)
1768     .addReg(TmpR, RegState::Kill);
1769 
1770   NewRegs.push_back(TmpR);
1771   B.erase(It);
1772   return true;
1773 }
1774 
1775 bool HexagonFrameLowering::expandStoreInt(MachineBasicBlock &B,
1776       MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
1777       const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
1778   MachineInstr *MI = &*It;
1779   if (!MI->getOperand(0).isFI())
1780     return false;
1781 
1782   DebugLoc DL = MI->getDebugLoc();
1783   unsigned Opc = MI->getOpcode();
1784   Register SrcR = MI->getOperand(2).getReg();
1785   bool IsKill = MI->getOperand(2).isKill();
1786   int FI = MI->getOperand(0).getIndex();
1787 
1788   // TmpR = C2_tfrpr SrcR   if SrcR is a predicate register
1789   // TmpR = A2_tfrcrr SrcR  if SrcR is a modifier register
1790   Register TmpR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
1791   unsigned TfrOpc = (Opc == Hexagon::STriw_pred) ? Hexagon::C2_tfrpr
1792                                                  : Hexagon::A2_tfrcrr;
1793   BuildMI(B, It, DL, HII.get(TfrOpc), TmpR)
1794     .addReg(SrcR, getKillRegState(IsKill));
1795 
1796   // S2_storeri_io FI, 0, TmpR
1797   BuildMI(B, It, DL, HII.get(Hexagon::S2_storeri_io))
1798       .addFrameIndex(FI)
1799       .addImm(0)
1800       .addReg(TmpR, RegState::Kill)
1801       .cloneMemRefs(*MI);
1802 
1803   NewRegs.push_back(TmpR);
1804   B.erase(It);
1805   return true;
1806 }
1807 
1808 bool HexagonFrameLowering::expandLoadInt(MachineBasicBlock &B,
1809       MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
1810       const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
1811   MachineInstr *MI = &*It;
1812   if (!MI->getOperand(1).isFI())
1813     return false;
1814 
1815   DebugLoc DL = MI->getDebugLoc();
1816   unsigned Opc = MI->getOpcode();
1817   Register DstR = MI->getOperand(0).getReg();
1818   int FI = MI->getOperand(1).getIndex();
1819 
1820   // TmpR = L2_loadri_io FI, 0
1821   Register TmpR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
1822   BuildMI(B, It, DL, HII.get(Hexagon::L2_loadri_io), TmpR)
1823       .addFrameIndex(FI)
1824       .addImm(0)
1825       .cloneMemRefs(*MI);
1826 
1827   // DstR = C2_tfrrp TmpR   if DstR is a predicate register
1828   // DstR = A2_tfrrcr TmpR  if DstR is a modifier register
1829   unsigned TfrOpc = (Opc == Hexagon::LDriw_pred) ? Hexagon::C2_tfrrp
1830                                                  : Hexagon::A2_tfrrcr;
1831   BuildMI(B, It, DL, HII.get(TfrOpc), DstR)
1832     .addReg(TmpR, RegState::Kill);
1833 
1834   NewRegs.push_back(TmpR);
1835   B.erase(It);
1836   return true;
1837 }
1838 
1839 bool HexagonFrameLowering::expandStoreVecPred(MachineBasicBlock &B,
1840       MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
1841       const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
1842   MachineInstr *MI = &*It;
1843   if (!MI->getOperand(0).isFI())
1844     return false;
1845 
1846   DebugLoc DL = MI->getDebugLoc();
1847   Register SrcR = MI->getOperand(2).getReg();
1848   bool IsKill = MI->getOperand(2).isKill();
1849   int FI = MI->getOperand(0).getIndex();
1850   auto *RC = &Hexagon::HvxVRRegClass;
1851 
1852   // Insert transfer to general vector register.
1853   //   TmpR0 = A2_tfrsi 0x01010101
1854   //   TmpR1 = V6_vandqrt Qx, TmpR0
1855   //   store FI, 0, TmpR1
1856   Register TmpR0 = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
1857   Register TmpR1 = MRI.createVirtualRegister(RC);
1858 
1859   BuildMI(B, It, DL, HII.get(Hexagon::A2_tfrsi), TmpR0)
1860     .addImm(0x01010101);
1861 
1862   BuildMI(B, It, DL, HII.get(Hexagon::V6_vandqrt), TmpR1)
1863     .addReg(SrcR, getKillRegState(IsKill))
1864     .addReg(TmpR0, RegState::Kill);
1865 
1866   auto *HRI = B.getParent()->getSubtarget<HexagonSubtarget>().getRegisterInfo();
1867   HII.storeRegToStackSlot(B, It, TmpR1, true, FI, RC, HRI);
1868   expandStoreVec(B, std::prev(It), MRI, HII, NewRegs);
1869 
1870   NewRegs.push_back(TmpR0);
1871   NewRegs.push_back(TmpR1);
1872   B.erase(It);
1873   return true;
1874 }
1875 
1876 bool HexagonFrameLowering::expandLoadVecPred(MachineBasicBlock &B,
1877       MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
1878       const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
1879   MachineInstr *MI = &*It;
1880   if (!MI->getOperand(1).isFI())
1881     return false;
1882 
1883   DebugLoc DL = MI->getDebugLoc();
1884   Register DstR = MI->getOperand(0).getReg();
1885   int FI = MI->getOperand(1).getIndex();
1886   auto *RC = &Hexagon::HvxVRRegClass;
1887 
1888   // TmpR0 = A2_tfrsi 0x01010101
1889   // TmpR1 = load FI, 0
1890   // DstR = V6_vandvrt TmpR1, TmpR0
1891   Register TmpR0 = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
1892   Register TmpR1 = MRI.createVirtualRegister(RC);
1893 
1894   BuildMI(B, It, DL, HII.get(Hexagon::A2_tfrsi), TmpR0)
1895     .addImm(0x01010101);
1896   MachineFunction &MF = *B.getParent();
1897   auto *HRI = MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
1898   HII.loadRegFromStackSlot(B, It, TmpR1, FI, RC, HRI);
1899   expandLoadVec(B, std::prev(It), MRI, HII, NewRegs);
1900 
1901   BuildMI(B, It, DL, HII.get(Hexagon::V6_vandvrt), DstR)
1902     .addReg(TmpR1, RegState::Kill)
1903     .addReg(TmpR0, RegState::Kill);
1904 
1905   NewRegs.push_back(TmpR0);
1906   NewRegs.push_back(TmpR1);
1907   B.erase(It);
1908   return true;
1909 }
1910 
1911 bool HexagonFrameLowering::expandStoreVec2(MachineBasicBlock &B,
1912       MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
1913       const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
1914   MachineFunction &MF = *B.getParent();
1915   auto &MFI = MF.getFrameInfo();
1916   auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
1917   MachineInstr *MI = &*It;
1918   if (!MI->getOperand(0).isFI())
1919     return false;
1920 
1921   // It is possible that the double vector being stored is only partially
1922   // defined. From the point of view of the liveness tracking, it is ok to
1923   // store it as a whole, but if we break it up we may end up storing a
1924   // register that is entirely undefined.
1925   LivePhysRegs LPR(HRI);
1926   LPR.addLiveIns(B);
1927   SmallVector<std::pair<MCPhysReg, const MachineOperand*>,2> Clobbers;
1928   for (auto R = B.begin(); R != It; ++R) {
1929     Clobbers.clear();
1930     LPR.stepForward(*R, Clobbers);
1931   }
1932 
1933   DebugLoc DL = MI->getDebugLoc();
1934   Register SrcR = MI->getOperand(2).getReg();
1935   Register SrcLo = HRI.getSubReg(SrcR, Hexagon::vsub_lo);
1936   Register SrcHi = HRI.getSubReg(SrcR, Hexagon::vsub_hi);
1937   bool IsKill = MI->getOperand(2).isKill();
1938   int FI = MI->getOperand(0).getIndex();
1939   bool NeedsAligna = needsAligna(MF);
1940 
1941   unsigned Size = HRI.getSpillSize(Hexagon::HvxVRRegClass);
1942   Align NeedAlign = HRI.getSpillAlign(Hexagon::HvxVRRegClass);
1943   Align HasAlign = MFI.getObjectAlign(FI);
1944   unsigned StoreOpc;
1945 
1946   auto UseAligned = [&](Align NeedAlign, Align HasAlign) {
1947     return !NeedsAligna && (NeedAlign <= HasAlign);
1948   };
1949 
1950   // Store low part.
1951   if (LPR.contains(SrcLo)) {
1952     StoreOpc = UseAligned(NeedAlign, HasAlign) ? Hexagon::V6_vS32b_ai
1953                                                : Hexagon::V6_vS32Ub_ai;
1954     BuildMI(B, It, DL, HII.get(StoreOpc))
1955         .addFrameIndex(FI)
1956         .addImm(0)
1957         .addReg(SrcLo, getKillRegState(IsKill))
1958         .cloneMemRefs(*MI);
1959   }
1960 
1961   // Store high part.
1962   if (LPR.contains(SrcHi)) {
1963     StoreOpc = UseAligned(NeedAlign, HasAlign) ? Hexagon::V6_vS32b_ai
1964                                                : Hexagon::V6_vS32Ub_ai;
1965     BuildMI(B, It, DL, HII.get(StoreOpc))
1966         .addFrameIndex(FI)
1967         .addImm(Size)
1968         .addReg(SrcHi, getKillRegState(IsKill))
1969         .cloneMemRefs(*MI);
1970   }
1971 
1972   B.erase(It);
1973   return true;
1974 }
1975 
1976 bool HexagonFrameLowering::expandLoadVec2(MachineBasicBlock &B,
1977       MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
1978       const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
1979   MachineFunction &MF = *B.getParent();
1980   auto &MFI = MF.getFrameInfo();
1981   auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
1982   MachineInstr *MI = &*It;
1983   if (!MI->getOperand(1).isFI())
1984     return false;
1985 
1986   DebugLoc DL = MI->getDebugLoc();
1987   Register DstR = MI->getOperand(0).getReg();
1988   Register DstHi = HRI.getSubReg(DstR, Hexagon::vsub_hi);
1989   Register DstLo = HRI.getSubReg(DstR, Hexagon::vsub_lo);
1990   int FI = MI->getOperand(1).getIndex();
1991   bool NeedsAligna = needsAligna(MF);
1992 
1993   unsigned Size = HRI.getSpillSize(Hexagon::HvxVRRegClass);
1994   Align NeedAlign = HRI.getSpillAlign(Hexagon::HvxVRRegClass);
1995   Align HasAlign = MFI.getObjectAlign(FI);
1996   unsigned LoadOpc;
1997 
1998   auto UseAligned = [&](Align NeedAlign, Align HasAlign) {
1999     return !NeedsAligna && (NeedAlign <= HasAlign);
2000   };
2001 
2002   // Load low part.
2003   LoadOpc = UseAligned(NeedAlign, HasAlign) ? Hexagon::V6_vL32b_ai
2004                                             : Hexagon::V6_vL32Ub_ai;
2005   BuildMI(B, It, DL, HII.get(LoadOpc), DstLo)
2006       .addFrameIndex(FI)
2007       .addImm(0)
2008       .cloneMemRefs(*MI);
2009 
2010   // Load high part.
2011   LoadOpc = UseAligned(NeedAlign, HasAlign) ? Hexagon::V6_vL32b_ai
2012                                             : Hexagon::V6_vL32Ub_ai;
2013   BuildMI(B, It, DL, HII.get(LoadOpc), DstHi)
2014       .addFrameIndex(FI)
2015       .addImm(Size)
2016       .cloneMemRefs(*MI);
2017 
2018   B.erase(It);
2019   return true;
2020 }
2021 
2022 bool HexagonFrameLowering::expandStoreVec(MachineBasicBlock &B,
2023       MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
2024       const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
2025   MachineFunction &MF = *B.getParent();
2026   auto &MFI = MF.getFrameInfo();
2027   MachineInstr *MI = &*It;
2028   if (!MI->getOperand(0).isFI())
2029     return false;
2030 
2031   bool NeedsAligna = needsAligna(MF);
2032   auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
2033   DebugLoc DL = MI->getDebugLoc();
2034   Register SrcR = MI->getOperand(2).getReg();
2035   bool IsKill = MI->getOperand(2).isKill();
2036   int FI = MI->getOperand(0).getIndex();
2037 
2038   Align NeedAlign = HRI.getSpillAlign(Hexagon::HvxVRRegClass);
2039   Align HasAlign = MFI.getObjectAlign(FI);
2040   bool UseAligned = !NeedsAligna && (NeedAlign <= HasAlign);
2041   unsigned StoreOpc = UseAligned ? Hexagon::V6_vS32b_ai
2042                                  : Hexagon::V6_vS32Ub_ai;
2043   BuildMI(B, It, DL, HII.get(StoreOpc))
2044       .addFrameIndex(FI)
2045       .addImm(0)
2046       .addReg(SrcR, getKillRegState(IsKill))
2047       .cloneMemRefs(*MI);
2048 
2049   B.erase(It);
2050   return true;
2051 }
2052 
2053 bool HexagonFrameLowering::expandLoadVec(MachineBasicBlock &B,
2054       MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
2055       const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
2056   MachineFunction &MF = *B.getParent();
2057   auto &MFI = MF.getFrameInfo();
2058   MachineInstr *MI = &*It;
2059   if (!MI->getOperand(1).isFI())
2060     return false;
2061 
2062   bool NeedsAligna = needsAligna(MF);
2063   auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
2064   DebugLoc DL = MI->getDebugLoc();
2065   Register DstR = MI->getOperand(0).getReg();
2066   int FI = MI->getOperand(1).getIndex();
2067 
2068   Align NeedAlign = HRI.getSpillAlign(Hexagon::HvxVRRegClass);
2069   Align HasAlign = MFI.getObjectAlign(FI);
2070   bool UseAligned = !NeedsAligna && (NeedAlign <= HasAlign);
2071   unsigned LoadOpc = UseAligned ? Hexagon::V6_vL32b_ai
2072                                 : Hexagon::V6_vL32Ub_ai;
2073   BuildMI(B, It, DL, HII.get(LoadOpc), DstR)
2074       .addFrameIndex(FI)
2075       .addImm(0)
2076       .cloneMemRefs(*MI);
2077 
2078   B.erase(It);
2079   return true;
2080 }
2081 
2082 bool HexagonFrameLowering::expandSpillMacros(MachineFunction &MF,
2083       SmallVectorImpl<unsigned> &NewRegs) const {
2084   auto &HII = *MF.getSubtarget<HexagonSubtarget>().getInstrInfo();
2085   MachineRegisterInfo &MRI = MF.getRegInfo();
2086   bool Changed = false;
2087 
2088   for (auto &B : MF) {
2089     // Traverse the basic block.
2090     MachineBasicBlock::iterator NextI;
2091     for (auto I = B.begin(), E = B.end(); I != E; I = NextI) {
2092       MachineInstr *MI = &*I;
2093       NextI = std::next(I);
2094       unsigned Opc = MI->getOpcode();
2095 
2096       switch (Opc) {
2097         case TargetOpcode::COPY:
2098           Changed |= expandCopy(B, I, MRI, HII, NewRegs);
2099           break;
2100         case Hexagon::STriw_pred:
2101         case Hexagon::STriw_ctr:
2102           Changed |= expandStoreInt(B, I, MRI, HII, NewRegs);
2103           break;
2104         case Hexagon::LDriw_pred:
2105         case Hexagon::LDriw_ctr:
2106           Changed |= expandLoadInt(B, I, MRI, HII, NewRegs);
2107           break;
2108         case Hexagon::PS_vstorerq_ai:
2109           Changed |= expandStoreVecPred(B, I, MRI, HII, NewRegs);
2110           break;
2111         case Hexagon::PS_vloadrq_ai:
2112           Changed |= expandLoadVecPred(B, I, MRI, HII, NewRegs);
2113           break;
2114         case Hexagon::PS_vloadrw_ai:
2115           Changed |= expandLoadVec2(B, I, MRI, HII, NewRegs);
2116           break;
2117         case Hexagon::PS_vstorerw_ai:
2118           Changed |= expandStoreVec2(B, I, MRI, HII, NewRegs);
2119           break;
2120       }
2121     }
2122   }
2123 
2124   return Changed;
2125 }
2126 
2127 void HexagonFrameLowering::determineCalleeSaves(MachineFunction &MF,
2128                                                 BitVector &SavedRegs,
2129                                                 RegScavenger *RS) const {
2130   auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
2131 
2132   SavedRegs.resize(HRI.getNumRegs());
2133 
2134   // If we have a function containing __builtin_eh_return we want to spill and
2135   // restore all callee saved registers. Pretend that they are used.
2136   if (MF.getInfo<HexagonMachineFunctionInfo>()->hasEHReturn())
2137     for (const MCPhysReg *R = HRI.getCalleeSavedRegs(&MF); *R; ++R)
2138       SavedRegs.set(*R);
2139 
2140   // Replace predicate register pseudo spill code.
2141   SmallVector<unsigned,8> NewRegs;
2142   expandSpillMacros(MF, NewRegs);
2143   if (OptimizeSpillSlots && !isOptNone(MF))
2144     optimizeSpillSlots(MF, NewRegs);
2145 
2146   // We need to reserve a spill slot if scavenging could potentially require
2147   // spilling a scavenged register.
2148   if (!NewRegs.empty() || mayOverflowFrameOffset(MF)) {
2149     MachineFrameInfo &MFI = MF.getFrameInfo();
2150     MachineRegisterInfo &MRI = MF.getRegInfo();
2151     SetVector<const TargetRegisterClass*> SpillRCs;
2152     // Reserve an int register in any case, because it could be used to hold
2153     // the stack offset in case it does not fit into a spill instruction.
2154     SpillRCs.insert(&Hexagon::IntRegsRegClass);
2155 
2156     for (unsigned VR : NewRegs)
2157       SpillRCs.insert(MRI.getRegClass(VR));
2158 
2159     for (auto *RC : SpillRCs) {
2160       if (!needToReserveScavengingSpillSlots(MF, HRI, RC))
2161         continue;
2162       unsigned Num = 1;
2163       switch (RC->getID()) {
2164         case Hexagon::IntRegsRegClassID:
2165           Num = NumberScavengerSlots;
2166           break;
2167         case Hexagon::HvxQRRegClassID:
2168           Num = 2; // Vector predicate spills also need a vector register.
2169           break;
2170       }
2171       unsigned S = HRI.getSpillSize(*RC);
2172       Align A = HRI.getSpillAlign(*RC);
2173       for (unsigned i = 0; i < Num; i++) {
2174         int NewFI = MFI.CreateSpillStackObject(S, A);
2175         RS->addScavengingFrameIndex(NewFI);
2176       }
2177     }
2178   }
2179 
2180   TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
2181 }
2182 
2183 unsigned HexagonFrameLowering::findPhysReg(MachineFunction &MF,
2184       HexagonBlockRanges::IndexRange &FIR,
2185       HexagonBlockRanges::InstrIndexMap &IndexMap,
2186       HexagonBlockRanges::RegToRangeMap &DeadMap,
2187       const TargetRegisterClass *RC) const {
2188   auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
2189   auto &MRI = MF.getRegInfo();
2190 
2191   auto isDead = [&FIR,&DeadMap] (unsigned Reg) -> bool {
2192     auto F = DeadMap.find({Reg,0});
2193     if (F == DeadMap.end())
2194       return false;
2195     for (auto &DR : F->second)
2196       if (DR.contains(FIR))
2197         return true;
2198     return false;
2199   };
2200 
2201   for (unsigned Reg : RC->getRawAllocationOrder(MF)) {
2202     bool Dead = true;
2203     for (auto R : HexagonBlockRanges::expandToSubRegs({Reg,0}, MRI, HRI)) {
2204       if (isDead(R.Reg))
2205         continue;
2206       Dead = false;
2207       break;
2208     }
2209     if (Dead)
2210       return Reg;
2211   }
2212   return 0;
2213 }
2214 
2215 void HexagonFrameLowering::optimizeSpillSlots(MachineFunction &MF,
2216       SmallVectorImpl<unsigned> &VRegs) const {
2217   auto &HST = MF.getSubtarget<HexagonSubtarget>();
2218   auto &HII = *HST.getInstrInfo();
2219   auto &HRI = *HST.getRegisterInfo();
2220   auto &MRI = MF.getRegInfo();
2221   HexagonBlockRanges HBR(MF);
2222 
2223   using BlockIndexMap =
2224       std::map<MachineBasicBlock *, HexagonBlockRanges::InstrIndexMap>;
2225   using BlockRangeMap =
2226       std::map<MachineBasicBlock *, HexagonBlockRanges::RangeList>;
2227   using IndexType = HexagonBlockRanges::IndexType;
2228 
2229   struct SlotInfo {
2230     BlockRangeMap Map;
2231     unsigned Size = 0;
2232     const TargetRegisterClass *RC = nullptr;
2233 
2234     SlotInfo() = default;
2235   };
2236 
2237   BlockIndexMap BlockIndexes;
2238   SmallSet<int,4> BadFIs;
2239   std::map<int,SlotInfo> FIRangeMap;
2240 
2241   // Accumulate register classes: get a common class for a pre-existing
2242   // class HaveRC and a new class NewRC. Return nullptr if a common class
2243   // cannot be found, otherwise return the resulting class. If HaveRC is
2244   // nullptr, assume that it is still unset.
2245   auto getCommonRC =
2246       [](const TargetRegisterClass *HaveRC,
2247          const TargetRegisterClass *NewRC) -> const TargetRegisterClass * {
2248     if (HaveRC == nullptr || HaveRC == NewRC)
2249       return NewRC;
2250     // Different classes, both non-null. Pick the more general one.
2251     if (HaveRC->hasSubClassEq(NewRC))
2252       return HaveRC;
2253     if (NewRC->hasSubClassEq(HaveRC))
2254       return NewRC;
2255     return nullptr;
2256   };
2257 
2258   // Scan all blocks in the function. Check all occurrences of frame indexes,
2259   // and collect relevant information.
2260   for (auto &B : MF) {
2261     std::map<int,IndexType> LastStore, LastLoad;
2262     // Emplace appears not to be supported in gcc 4.7.2-4.
2263     //auto P = BlockIndexes.emplace(&B, HexagonBlockRanges::InstrIndexMap(B));
2264     auto P = BlockIndexes.insert(
2265                 std::make_pair(&B, HexagonBlockRanges::InstrIndexMap(B)));
2266     auto &IndexMap = P.first->second;
2267     LLVM_DEBUG(dbgs() << "Index map for " << printMBBReference(B) << "\n"
2268                       << IndexMap << '\n');
2269 
2270     for (auto &In : B) {
2271       int LFI, SFI;
2272       bool Load = HII.isLoadFromStackSlot(In, LFI) && !HII.isPredicated(In);
2273       bool Store = HII.isStoreToStackSlot(In, SFI) && !HII.isPredicated(In);
2274       if (Load && Store) {
2275         // If it's both a load and a store, then we won't handle it.
2276         BadFIs.insert(LFI);
2277         BadFIs.insert(SFI);
2278         continue;
2279       }
2280       // Check for register classes of the register used as the source for
2281       // the store, and the register used as the destination for the load.
2282       // Also, only accept base+imm_offset addressing modes. Other addressing
2283       // modes can have side-effects (post-increments, etc.). For stack
2284       // slots they are very unlikely, so there is not much loss due to
2285       // this restriction.
2286       if (Load || Store) {
2287         int TFI = Load ? LFI : SFI;
2288         unsigned AM = HII.getAddrMode(In);
2289         SlotInfo &SI = FIRangeMap[TFI];
2290         bool Bad = (AM != HexagonII::BaseImmOffset);
2291         if (!Bad) {
2292           // If the addressing mode is ok, check the register class.
2293           unsigned OpNum = Load ? 0 : 2;
2294           auto *RC = HII.getRegClass(In.getDesc(), OpNum, &HRI, MF);
2295           RC = getCommonRC(SI.RC, RC);
2296           if (RC == nullptr)
2297             Bad = true;
2298           else
2299             SI.RC = RC;
2300         }
2301         if (!Bad) {
2302           // Check sizes.
2303           unsigned S = HII.getMemAccessSize(In);
2304           if (SI.Size != 0 && SI.Size != S)
2305             Bad = true;
2306           else
2307             SI.Size = S;
2308         }
2309         if (!Bad) {
2310           for (auto *Mo : In.memoperands()) {
2311             if (!Mo->isVolatile() && !Mo->isAtomic())
2312               continue;
2313             Bad = true;
2314             break;
2315           }
2316         }
2317         if (Bad)
2318           BadFIs.insert(TFI);
2319       }
2320 
2321       // Locate uses of frame indices.
2322       for (unsigned i = 0, n = In.getNumOperands(); i < n; ++i) {
2323         const MachineOperand &Op = In.getOperand(i);
2324         if (!Op.isFI())
2325           continue;
2326         int FI = Op.getIndex();
2327         // Make sure that the following operand is an immediate and that
2328         // it is 0. This is the offset in the stack object.
2329         if (i+1 >= n || !In.getOperand(i+1).isImm() ||
2330             In.getOperand(i+1).getImm() != 0)
2331           BadFIs.insert(FI);
2332         if (BadFIs.count(FI))
2333           continue;
2334 
2335         IndexType Index = IndexMap.getIndex(&In);
2336         if (Load) {
2337           if (LastStore[FI] == IndexType::None)
2338             LastStore[FI] = IndexType::Entry;
2339           LastLoad[FI] = Index;
2340         } else if (Store) {
2341           HexagonBlockRanges::RangeList &RL = FIRangeMap[FI].Map[&B];
2342           if (LastStore[FI] != IndexType::None)
2343             RL.add(LastStore[FI], LastLoad[FI], false, false);
2344           else if (LastLoad[FI] != IndexType::None)
2345             RL.add(IndexType::Entry, LastLoad[FI], false, false);
2346           LastLoad[FI] = IndexType::None;
2347           LastStore[FI] = Index;
2348         } else {
2349           BadFIs.insert(FI);
2350         }
2351       }
2352     }
2353 
2354     for (auto &I : LastLoad) {
2355       IndexType LL = I.second;
2356       if (LL == IndexType::None)
2357         continue;
2358       auto &RL = FIRangeMap[I.first].Map[&B];
2359       IndexType &LS = LastStore[I.first];
2360       if (LS != IndexType::None)
2361         RL.add(LS, LL, false, false);
2362       else
2363         RL.add(IndexType::Entry, LL, false, false);
2364       LS = IndexType::None;
2365     }
2366     for (auto &I : LastStore) {
2367       IndexType LS = I.second;
2368       if (LS == IndexType::None)
2369         continue;
2370       auto &RL = FIRangeMap[I.first].Map[&B];
2371       RL.add(LS, IndexType::None, false, false);
2372     }
2373   }
2374 
2375   LLVM_DEBUG({
2376     for (auto &P : FIRangeMap) {
2377       dbgs() << "fi#" << P.first;
2378       if (BadFIs.count(P.first))
2379         dbgs() << " (bad)";
2380       dbgs() << "  RC: ";
2381       if (P.second.RC != nullptr)
2382         dbgs() << HRI.getRegClassName(P.second.RC) << '\n';
2383       else
2384         dbgs() << "<null>\n";
2385       for (auto &R : P.second.Map)
2386         dbgs() << "  " << printMBBReference(*R.first) << " { " << R.second
2387                << "}\n";
2388     }
2389   });
2390 
2391   // When a slot is loaded from in a block without being stored to in the
2392   // same block, it is live-on-entry to this block. To avoid CFG analysis,
2393   // consider this slot to be live-on-exit from all blocks.
2394   SmallSet<int,4> LoxFIs;
2395 
2396   std::map<MachineBasicBlock*,std::vector<int>> BlockFIMap;
2397 
2398   for (auto &P : FIRangeMap) {
2399     // P = pair(FI, map: BB->RangeList)
2400     if (BadFIs.count(P.first))
2401       continue;
2402     for (auto &B : MF) {
2403       auto F = P.second.Map.find(&B);
2404       // F = pair(BB, RangeList)
2405       if (F == P.second.Map.end() || F->second.empty())
2406         continue;
2407       HexagonBlockRanges::IndexRange &IR = F->second.front();
2408       if (IR.start() == IndexType::Entry)
2409         LoxFIs.insert(P.first);
2410       BlockFIMap[&B].push_back(P.first);
2411     }
2412   }
2413 
2414   LLVM_DEBUG({
2415     dbgs() << "Block-to-FI map (* -- live-on-exit):\n";
2416     for (auto &P : BlockFIMap) {
2417       auto &FIs = P.second;
2418       if (FIs.empty())
2419         continue;
2420       dbgs() << "  " << printMBBReference(*P.first) << ": {";
2421       for (auto I : FIs) {
2422         dbgs() << " fi#" << I;
2423         if (LoxFIs.count(I))
2424           dbgs() << '*';
2425       }
2426       dbgs() << " }\n";
2427     }
2428   });
2429 
2430 #ifndef NDEBUG
2431   bool HasOptLimit = SpillOptMax.getPosition();
2432 #endif
2433 
2434   // eliminate loads, when all loads eliminated, eliminate all stores.
2435   for (auto &B : MF) {
2436     auto F = BlockIndexes.find(&B);
2437     assert(F != BlockIndexes.end());
2438     HexagonBlockRanges::InstrIndexMap &IM = F->second;
2439     HexagonBlockRanges::RegToRangeMap LM = HBR.computeLiveMap(IM);
2440     HexagonBlockRanges::RegToRangeMap DM = HBR.computeDeadMap(IM, LM);
2441     LLVM_DEBUG(dbgs() << printMBBReference(B) << " dead map\n"
2442                       << HexagonBlockRanges::PrintRangeMap(DM, HRI));
2443 
2444     for (auto FI : BlockFIMap[&B]) {
2445       if (BadFIs.count(FI))
2446         continue;
2447       LLVM_DEBUG(dbgs() << "Working on fi#" << FI << '\n');
2448       HexagonBlockRanges::RangeList &RL = FIRangeMap[FI].Map[&B];
2449       for (auto &Range : RL) {
2450         LLVM_DEBUG(dbgs() << "--Examining range:" << RL << '\n');
2451         if (!IndexType::isInstr(Range.start()) ||
2452             !IndexType::isInstr(Range.end()))
2453           continue;
2454         MachineInstr &SI = *IM.getInstr(Range.start());
2455         MachineInstr &EI = *IM.getInstr(Range.end());
2456         assert(SI.mayStore() && "Unexpected start instruction");
2457         assert(EI.mayLoad() && "Unexpected end instruction");
2458         MachineOperand &SrcOp = SI.getOperand(2);
2459 
2460         HexagonBlockRanges::RegisterRef SrcRR = { SrcOp.getReg(),
2461                                                   SrcOp.getSubReg() };
2462         auto *RC = HII.getRegClass(SI.getDesc(), 2, &HRI, MF);
2463         // The this-> is needed to unconfuse MSVC.
2464         unsigned FoundR = this->findPhysReg(MF, Range, IM, DM, RC);
2465         LLVM_DEBUG(dbgs() << "Replacement reg:" << printReg(FoundR, &HRI)
2466                           << '\n');
2467         if (FoundR == 0)
2468           continue;
2469 #ifndef NDEBUG
2470         if (HasOptLimit) {
2471           if (SpillOptCount >= SpillOptMax)
2472             return;
2473           SpillOptCount++;
2474         }
2475 #endif
2476 
2477         // Generate the copy-in: "FoundR = COPY SrcR" at the store location.
2478         MachineBasicBlock::iterator StartIt = SI.getIterator(), NextIt;
2479         MachineInstr *CopyIn = nullptr;
2480         if (SrcRR.Reg != FoundR || SrcRR.Sub != 0) {
2481           const DebugLoc &DL = SI.getDebugLoc();
2482           CopyIn = BuildMI(B, StartIt, DL, HII.get(TargetOpcode::COPY), FoundR)
2483                        .add(SrcOp);
2484         }
2485 
2486         ++StartIt;
2487         // Check if this is a last store and the FI is live-on-exit.
2488         if (LoxFIs.count(FI) && (&Range == &RL.back())) {
2489           // Update store's source register.
2490           if (unsigned SR = SrcOp.getSubReg())
2491             SrcOp.setReg(HRI.getSubReg(FoundR, SR));
2492           else
2493             SrcOp.setReg(FoundR);
2494           SrcOp.setSubReg(0);
2495           // We are keeping this register live.
2496           SrcOp.setIsKill(false);
2497         } else {
2498           B.erase(&SI);
2499           IM.replaceInstr(&SI, CopyIn);
2500         }
2501 
2502         auto EndIt = std::next(EI.getIterator());
2503         for (auto It = StartIt; It != EndIt; It = NextIt) {
2504           MachineInstr &MI = *It;
2505           NextIt = std::next(It);
2506           int TFI;
2507           if (!HII.isLoadFromStackSlot(MI, TFI) || TFI != FI)
2508             continue;
2509           Register DstR = MI.getOperand(0).getReg();
2510           assert(MI.getOperand(0).getSubReg() == 0);
2511           MachineInstr *CopyOut = nullptr;
2512           if (DstR != FoundR) {
2513             DebugLoc DL = MI.getDebugLoc();
2514             unsigned MemSize = HII.getMemAccessSize(MI);
2515             assert(HII.getAddrMode(MI) == HexagonII::BaseImmOffset);
2516             unsigned CopyOpc = TargetOpcode::COPY;
2517             if (HII.isSignExtendingLoad(MI))
2518               CopyOpc = (MemSize == 1) ? Hexagon::A2_sxtb : Hexagon::A2_sxth;
2519             else if (HII.isZeroExtendingLoad(MI))
2520               CopyOpc = (MemSize == 1) ? Hexagon::A2_zxtb : Hexagon::A2_zxth;
2521             CopyOut = BuildMI(B, It, DL, HII.get(CopyOpc), DstR)
2522                         .addReg(FoundR, getKillRegState(&MI == &EI));
2523           }
2524           IM.replaceInstr(&MI, CopyOut);
2525           B.erase(It);
2526         }
2527 
2528         // Update the dead map.
2529         HexagonBlockRanges::RegisterRef FoundRR = { FoundR, 0 };
2530         for (auto RR : HexagonBlockRanges::expandToSubRegs(FoundRR, MRI, HRI))
2531           DM[RR].subtract(Range);
2532       } // for Range in range list
2533     }
2534   }
2535 }
2536 
2537 void HexagonFrameLowering::expandAlloca(MachineInstr *AI,
2538       const HexagonInstrInfo &HII, unsigned SP, unsigned CF) const {
2539   MachineBasicBlock &MB = *AI->getParent();
2540   DebugLoc DL = AI->getDebugLoc();
2541   unsigned A = AI->getOperand(2).getImm();
2542 
2543   // Have
2544   //    Rd  = alloca Rs, #A
2545   //
2546   // If Rs and Rd are different registers, use this sequence:
2547   //    Rd  = sub(r29, Rs)
2548   //    r29 = sub(r29, Rs)
2549   //    Rd  = and(Rd, #-A)    ; if necessary
2550   //    r29 = and(r29, #-A)   ; if necessary
2551   //    Rd  = add(Rd, #CF)    ; CF size aligned to at most A
2552   // otherwise, do
2553   //    Rd  = sub(r29, Rs)
2554   //    Rd  = and(Rd, #-A)    ; if necessary
2555   //    r29 = Rd
2556   //    Rd  = add(Rd, #CF)    ; CF size aligned to at most A
2557 
2558   MachineOperand &RdOp = AI->getOperand(0);
2559   MachineOperand &RsOp = AI->getOperand(1);
2560   unsigned Rd = RdOp.getReg(), Rs = RsOp.getReg();
2561 
2562   // Rd = sub(r29, Rs)
2563   BuildMI(MB, AI, DL, HII.get(Hexagon::A2_sub), Rd)
2564       .addReg(SP)
2565       .addReg(Rs);
2566   if (Rs != Rd) {
2567     // r29 = sub(r29, Rs)
2568     BuildMI(MB, AI, DL, HII.get(Hexagon::A2_sub), SP)
2569         .addReg(SP)
2570         .addReg(Rs);
2571   }
2572   if (A > 8) {
2573     // Rd  = and(Rd, #-A)
2574     BuildMI(MB, AI, DL, HII.get(Hexagon::A2_andir), Rd)
2575         .addReg(Rd)
2576         .addImm(-int64_t(A));
2577     if (Rs != Rd)
2578       BuildMI(MB, AI, DL, HII.get(Hexagon::A2_andir), SP)
2579           .addReg(SP)
2580           .addImm(-int64_t(A));
2581   }
2582   if (Rs == Rd) {
2583     // r29 = Rd
2584     BuildMI(MB, AI, DL, HII.get(TargetOpcode::COPY), SP)
2585         .addReg(Rd);
2586   }
2587   if (CF > 0) {
2588     // Rd = add(Rd, #CF)
2589     BuildMI(MB, AI, DL, HII.get(Hexagon::A2_addi), Rd)
2590         .addReg(Rd)
2591         .addImm(CF);
2592   }
2593 }
2594 
2595 bool HexagonFrameLowering::needsAligna(const MachineFunction &MF) const {
2596   const MachineFrameInfo &MFI = MF.getFrameInfo();
2597   if (!MFI.hasVarSizedObjects())
2598     return false;
2599   // Do not check for max stack object alignment here, because the stack
2600   // may not be complete yet. Assume that we will need PS_aligna if there
2601   // are variable-sized objects.
2602   return true;
2603 }
2604 
2605 const MachineInstr *HexagonFrameLowering::getAlignaInstr(
2606       const MachineFunction &MF) const {
2607   for (auto &B : MF)
2608     for (auto &I : B)
2609       if (I.getOpcode() == Hexagon::PS_aligna)
2610         return &I;
2611   return nullptr;
2612 }
2613 
2614 /// Adds all callee-saved registers as implicit uses or defs to the
2615 /// instruction.
2616 void HexagonFrameLowering::addCalleeSaveRegistersAsImpOperand(MachineInstr *MI,
2617       const CSIVect &CSI, bool IsDef, bool IsKill) const {
2618   // Add the callee-saved registers as implicit uses.
2619   for (auto &R : CSI)
2620     MI->addOperand(MachineOperand::CreateReg(R.getReg(), IsDef, true, IsKill));
2621 }
2622 
2623 /// Determine whether the callee-saved register saves and restores should
2624 /// be generated via inline code. If this function returns "true", inline
2625 /// code will be generated. If this function returns "false", additional
2626 /// checks are performed, which may still lead to the inline code.
2627 bool HexagonFrameLowering::shouldInlineCSR(const MachineFunction &MF,
2628       const CSIVect &CSI) const {
2629   if (MF.getSubtarget<HexagonSubtarget>().isEnvironmentMusl())
2630     return true;
2631   if (MF.getInfo<HexagonMachineFunctionInfo>()->hasEHReturn())
2632     return true;
2633   if (!hasFP(MF))
2634     return true;
2635   if (!isOptSize(MF) && !isMinSize(MF))
2636     if (MF.getTarget().getOptLevel() > CodeGenOpt::Default)
2637       return true;
2638 
2639   // Check if CSI only has double registers, and if the registers form
2640   // a contiguous block starting from D8.
2641   BitVector Regs(Hexagon::NUM_TARGET_REGS);
2642   for (const CalleeSavedInfo &I : CSI) {
2643     Register R = I.getReg();
2644     if (!Hexagon::DoubleRegsRegClass.contains(R))
2645       return true;
2646     Regs[R] = true;
2647   }
2648   int F = Regs.find_first();
2649   if (F != Hexagon::D8)
2650     return true;
2651   while (F >= 0) {
2652     int N = Regs.find_next(F);
2653     if (N >= 0 && N != F+1)
2654       return true;
2655     F = N;
2656   }
2657 
2658   return false;
2659 }
2660 
2661 bool HexagonFrameLowering::useSpillFunction(const MachineFunction &MF,
2662       const CSIVect &CSI) const {
2663   if (shouldInlineCSR(MF, CSI))
2664     return false;
2665   unsigned NumCSI = CSI.size();
2666   if (NumCSI <= 1)
2667     return false;
2668 
2669   unsigned Threshold = isOptSize(MF) ? SpillFuncThresholdOs
2670                                      : SpillFuncThreshold;
2671   return Threshold < NumCSI;
2672 }
2673 
2674 bool HexagonFrameLowering::useRestoreFunction(const MachineFunction &MF,
2675       const CSIVect &CSI) const {
2676   if (shouldInlineCSR(MF, CSI))
2677     return false;
2678   // The restore functions do a bit more than just restoring registers.
2679   // The non-returning versions will go back directly to the caller's
2680   // caller, others will clean up the stack frame in preparation for
2681   // a tail call. Using them can still save code size even if only one
2682   // register is getting restores. Make the decision based on -Oz:
2683   // using -Os will use inline restore for a single register.
2684   if (isMinSize(MF))
2685     return true;
2686   unsigned NumCSI = CSI.size();
2687   if (NumCSI <= 1)
2688     return false;
2689 
2690   unsigned Threshold = isOptSize(MF) ? SpillFuncThresholdOs-1
2691                                      : SpillFuncThreshold;
2692   return Threshold < NumCSI;
2693 }
2694 
2695 bool HexagonFrameLowering::mayOverflowFrameOffset(MachineFunction &MF) const {
2696   unsigned StackSize = MF.getFrameInfo().estimateStackSize(MF);
2697   auto &HST = MF.getSubtarget<HexagonSubtarget>();
2698   // A fairly simplistic guess as to whether a potential load/store to a
2699   // stack location could require an extra register.
2700   if (HST.useHVXOps() && StackSize > 256)
2701     return true;
2702 
2703   // Check if the function has store-immediate instructions that access
2704   // the stack. Since the offset field is not extendable, if the stack
2705   // size exceeds the offset limit (6 bits, shifted), the stores will
2706   // require a new base register.
2707   bool HasImmStack = false;
2708   unsigned MinLS = ~0u;   // Log_2 of the memory access size.
2709 
2710   for (const MachineBasicBlock &B : MF) {
2711     for (const MachineInstr &MI : B) {
2712       unsigned LS = 0;
2713       switch (MI.getOpcode()) {
2714         case Hexagon::S4_storeirit_io:
2715         case Hexagon::S4_storeirif_io:
2716         case Hexagon::S4_storeiri_io:
2717           ++LS;
2718           LLVM_FALLTHROUGH;
2719         case Hexagon::S4_storeirht_io:
2720         case Hexagon::S4_storeirhf_io:
2721         case Hexagon::S4_storeirh_io:
2722           ++LS;
2723           LLVM_FALLTHROUGH;
2724         case Hexagon::S4_storeirbt_io:
2725         case Hexagon::S4_storeirbf_io:
2726         case Hexagon::S4_storeirb_io:
2727           if (MI.getOperand(0).isFI())
2728             HasImmStack = true;
2729           MinLS = std::min(MinLS, LS);
2730           break;
2731       }
2732     }
2733   }
2734 
2735   if (HasImmStack)
2736     return !isUInt<6>(StackSize >> MinLS);
2737 
2738   return false;
2739 }
2740