1 //===- HexagonFrameLowering.cpp - Define frame lowering -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "HexagonFrameLowering.h"
11 #include "HexagonBlockRanges.h"
12 #include "HexagonInstrInfo.h"
13 #include "HexagonMachineFunctionInfo.h"
14 #include "HexagonRegisterInfo.h"
15 #include "HexagonSubtarget.h"
16 #include "HexagonTargetMachine.h"
17 #include "MCTargetDesc/HexagonBaseInfo.h"
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/PostOrderIterator.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/CodeGen/LivePhysRegs.h"
25 #include "llvm/CodeGen/MachineBasicBlock.h"
26 #include "llvm/CodeGen/MachineDominators.h"
27 #include "llvm/CodeGen/MachineFrameInfo.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineFunctionPass.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineInstrBuilder.h"
32 #include "llvm/CodeGen/MachineMemOperand.h"
33 #include "llvm/CodeGen/MachineModuleInfo.h"
34 #include "llvm/CodeGen/MachineOperand.h"
35 #include "llvm/CodeGen/MachinePostDominators.h"
36 #include "llvm/CodeGen/MachineRegisterInfo.h"
37 #include "llvm/CodeGen/PseudoSourceValue.h"
38 #include "llvm/CodeGen/RegisterScavenging.h"
39 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 #include "llvm/IR/Attributes.h"
41 #include "llvm/IR/DebugLoc.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/MC/MCDwarf.h"
44 #include "llvm/MC/MCRegisterInfo.h"
45 #include "llvm/Pass.h"
46 #include "llvm/Support/CodeGen.h"
47 #include "llvm/Support/CommandLine.h"
48 #include "llvm/Support/Compiler.h"
49 #include "llvm/Support/Debug.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Support/MathExtras.h"
52 #include "llvm/Support/raw_ostream.h"
53 #include "llvm/Target/TargetMachine.h"
54 #include "llvm/Target/TargetOptions.h"
55 #include <algorithm>
56 #include <cassert>
57 #include <cstdint>
58 #include <iterator>
59 #include <limits>
60 #include <map>
61 #include <optional>
62 #include <utility>
63 #include <vector>
64 
65 #define DEBUG_TYPE "hexagon-pei"
66 
67 // Hexagon stack frame layout as defined by the ABI:
68 //
69 //                                                       Incoming arguments
70 //                                                       passed via stack
71 //                                                                      |
72 //                                                                      |
73 //        SP during function's                 FP during function's     |
74 //    +-- runtime (top of stack)               runtime (bottom) --+     |
75 //    |                                                           |     |
76 // --++---------------------+------------------+-----------------++-+-------
77 //   |  parameter area for  |  variable-size   |   fixed-size    |LR|  arg
78 //   |   called functions   |  local objects   |  local objects  |FP|
79 // --+----------------------+------------------+-----------------+--+-------
80 //    <-    size known    -> <- size unknown -> <- size known  ->
81 //
82 // Low address                                                 High address
83 //
84 // <--- stack growth
85 //
86 //
87 // - In any circumstances, the outgoing function arguments are always accessi-
88 //   ble using the SP, and the incoming arguments are accessible using the FP.
89 // - If the local objects are not aligned, they can always be accessed using
90 //   the FP.
91 // - If there are no variable-sized objects, the local objects can always be
92 //   accessed using the SP, regardless whether they are aligned or not. (The
93 //   alignment padding will be at the bottom of the stack (highest address),
94 //   and so the offset with respect to the SP will be known at the compile-
95 //   -time.)
96 //
97 // The only complication occurs if there are both, local aligned objects, and
98 // dynamically allocated (variable-sized) objects. The alignment pad will be
99 // placed between the FP and the local objects, thus preventing the use of the
100 // FP to access the local objects. At the same time, the variable-sized objects
101 // will be between the SP and the local objects, thus introducing an unknown
102 // distance from the SP to the locals.
103 //
104 // To avoid this problem, a new register is created that holds the aligned
105 // address of the bottom of the stack, referred in the sources as AP (aligned
106 // pointer). The AP will be equal to "FP-p", where "p" is the smallest pad
107 // that aligns AP to the required boundary (a maximum of the alignments of
108 // all stack objects, fixed- and variable-sized). All local objects[1] will
109 // then use AP as the base pointer.
110 // [1] The exception is with "fixed" stack objects. "Fixed" stack objects get
111 // their name from being allocated at fixed locations on the stack, relative
112 // to the FP. In the presence of dynamic allocation and local alignment, such
113 // objects can only be accessed through the FP.
114 //
115 // Illustration of the AP:
116 //                                                                FP --+
117 //                                                                     |
118 // ---------------+---------------------+-----+-----------------------++-+--
119 //   Rest of the  | Local stack objects | Pad |  Fixed stack objects  |LR|
120 //   stack frame  | (aligned)           |     |  (CSR, spills, etc.)  |FP|
121 // ---------------+---------------------+-----+-----------------+-----+--+--
122 //                                      |<-- Multiple of the -->|
123 //                                           stack alignment    +-- AP
124 //
125 // The AP is set up at the beginning of the function. Since it is not a dedi-
126 // cated (reserved) register, it needs to be kept live throughout the function
127 // to be available as the base register for local object accesses.
128 // Normally, an address of a stack objects is obtained by a pseudo-instruction
129 // PS_fi. To access local objects with the AP register present, a different
130 // pseudo-instruction needs to be used: PS_fia. The PS_fia takes one extra
131 // argument compared to PS_fi: the first input register is the AP register.
132 // This keeps the register live between its definition and its uses.
133 
134 // The AP register is originally set up using pseudo-instruction PS_aligna:
135 //   AP = PS_aligna A
136 // where
137 //   A  - required stack alignment
138 // The alignment value must be the maximum of all alignments required by
139 // any stack object.
140 
141 // The dynamic allocation uses a pseudo-instruction PS_alloca:
142 //   Rd = PS_alloca Rs, A
143 // where
144 //   Rd - address of the allocated space
145 //   Rs - minimum size (the actual allocated can be larger to accommodate
146 //        alignment)
147 //   A  - required alignment
148 
149 using namespace llvm;
150 
151 static cl::opt<bool> DisableDeallocRet("disable-hexagon-dealloc-ret",
152     cl::Hidden, cl::desc("Disable Dealloc Return for Hexagon target"));
153 
154 static cl::opt<unsigned>
155     NumberScavengerSlots("number-scavenger-slots", cl::Hidden,
156                          cl::desc("Set the number of scavenger slots"),
157                          cl::init(2));
158 
159 static cl::opt<int>
160     SpillFuncThreshold("spill-func-threshold", cl::Hidden,
161                        cl::desc("Specify O2(not Os) spill func threshold"),
162                        cl::init(6));
163 
164 static cl::opt<int>
165     SpillFuncThresholdOs("spill-func-threshold-Os", cl::Hidden,
166                          cl::desc("Specify Os spill func threshold"),
167                          cl::init(1));
168 
169 static cl::opt<bool> EnableStackOVFSanitizer(
170     "enable-stackovf-sanitizer", cl::Hidden,
171     cl::desc("Enable runtime checks for stack overflow."), cl::init(false));
172 
173 static cl::opt<bool>
174     EnableShrinkWrapping("hexagon-shrink-frame", cl::init(true), cl::Hidden,
175                          cl::desc("Enable stack frame shrink wrapping"));
176 
177 static cl::opt<unsigned>
178     ShrinkLimit("shrink-frame-limit",
179                 cl::init(std::numeric_limits<unsigned>::max()), cl::Hidden,
180                 cl::desc("Max count of stack frame shrink-wraps"));
181 
182 static cl::opt<bool>
183     EnableSaveRestoreLong("enable-save-restore-long", cl::Hidden,
184                           cl::desc("Enable long calls for save-restore stubs."),
185                           cl::init(false));
186 
187 static cl::opt<bool> EliminateFramePointer("hexagon-fp-elim", cl::init(true),
188     cl::Hidden, cl::desc("Refrain from using FP whenever possible"));
189 
190 static cl::opt<bool> OptimizeSpillSlots("hexagon-opt-spill", cl::Hidden,
191     cl::init(true), cl::desc("Optimize spill slots"));
192 
193 #ifndef NDEBUG
194 static cl::opt<unsigned> SpillOptMax("spill-opt-max", cl::Hidden,
195     cl::init(std::numeric_limits<unsigned>::max()));
196 static unsigned SpillOptCount = 0;
197 #endif
198 
199 namespace llvm {
200 
201   void initializeHexagonCallFrameInformationPass(PassRegistry&);
202   FunctionPass *createHexagonCallFrameInformation();
203 
204 } // end namespace llvm
205 
206 namespace {
207 
208   class HexagonCallFrameInformation : public MachineFunctionPass {
209   public:
210     static char ID;
211 
212     HexagonCallFrameInformation() : MachineFunctionPass(ID) {
213       PassRegistry &PR = *PassRegistry::getPassRegistry();
214       initializeHexagonCallFrameInformationPass(PR);
215     }
216 
217     bool runOnMachineFunction(MachineFunction &MF) override;
218 
219     MachineFunctionProperties getRequiredProperties() const override {
220       return MachineFunctionProperties().set(
221           MachineFunctionProperties::Property::NoVRegs);
222     }
223   };
224 
225   char HexagonCallFrameInformation::ID = 0;
226 
227 } // end anonymous namespace
228 
229 bool HexagonCallFrameInformation::runOnMachineFunction(MachineFunction &MF) {
230   auto &HFI = *MF.getSubtarget<HexagonSubtarget>().getFrameLowering();
231   bool NeedCFI = MF.needsFrameMoves();
232 
233   if (!NeedCFI)
234     return false;
235   HFI.insertCFIInstructions(MF);
236   return true;
237 }
238 
239 INITIALIZE_PASS(HexagonCallFrameInformation, "hexagon-cfi",
240                 "Hexagon call frame information", false, false)
241 
242 FunctionPass *llvm::createHexagonCallFrameInformation() {
243   return new HexagonCallFrameInformation();
244 }
245 
246 /// Map a register pair Reg to the subregister that has the greater "number",
247 /// i.e. D3 (aka R7:6) will be mapped to R7, etc.
248 static Register getMax32BitSubRegister(Register Reg,
249                                        const TargetRegisterInfo &TRI,
250                                        bool hireg = true) {
251     if (Reg < Hexagon::D0 || Reg > Hexagon::D15)
252       return Reg;
253 
254     Register RegNo = 0;
255     for (MCPhysReg SubReg : TRI.subregs(Reg)) {
256       if (hireg) {
257         if (SubReg > RegNo)
258           RegNo = SubReg;
259       } else {
260         if (!RegNo || SubReg < RegNo)
261           RegNo = SubReg;
262       }
263     }
264     return RegNo;
265 }
266 
267 /// Returns the callee saved register with the largest id in the vector.
268 static Register getMaxCalleeSavedReg(ArrayRef<CalleeSavedInfo> CSI,
269                                      const TargetRegisterInfo &TRI) {
270   static_assert(Hexagon::R1 > 0,
271                 "Assume physical registers are encoded as positive integers");
272   if (CSI.empty())
273     return 0;
274 
275   Register Max = getMax32BitSubRegister(CSI[0].getReg(), TRI);
276   for (unsigned I = 1, E = CSI.size(); I < E; ++I) {
277     Register Reg = getMax32BitSubRegister(CSI[I].getReg(), TRI);
278     if (Reg > Max)
279       Max = Reg;
280   }
281   return Max;
282 }
283 
284 /// Checks if the basic block contains any instruction that needs a stack
285 /// frame to be already in place.
286 static bool needsStackFrame(const MachineBasicBlock &MBB, const BitVector &CSR,
287                             const HexagonRegisterInfo &HRI) {
288     for (const MachineInstr &MI : MBB) {
289       if (MI.isCall())
290         return true;
291       unsigned Opc = MI.getOpcode();
292       switch (Opc) {
293         case Hexagon::PS_alloca:
294         case Hexagon::PS_aligna:
295           return true;
296         default:
297           break;
298       }
299       // Check individual operands.
300       for (const MachineOperand &MO : MI.operands()) {
301         // While the presence of a frame index does not prove that a stack
302         // frame will be required, all frame indexes should be within alloc-
303         // frame/deallocframe. Otherwise, the code that translates a frame
304         // index into an offset would have to be aware of the placement of
305         // the frame creation/destruction instructions.
306         if (MO.isFI())
307           return true;
308         if (MO.isReg()) {
309           Register R = MO.getReg();
310           // Debug instructions may refer to $noreg.
311           if (!R)
312             continue;
313           // Virtual registers will need scavenging, which then may require
314           // a stack slot.
315           if (R.isVirtual())
316             return true;
317           for (MCPhysReg S : HRI.subregs_inclusive(R))
318             if (CSR[S])
319               return true;
320           continue;
321         }
322         if (MO.isRegMask()) {
323           // A regmask would normally have all callee-saved registers marked
324           // as preserved, so this check would not be needed, but in case of
325           // ever having other regmasks (for other calling conventions),
326           // make sure they would be processed correctly.
327           const uint32_t *BM = MO.getRegMask();
328           for (int x = CSR.find_first(); x >= 0; x = CSR.find_next(x)) {
329             unsigned R = x;
330             // If this regmask does not preserve a CSR, a frame will be needed.
331             if (!(BM[R/32] & (1u << (R%32))))
332               return true;
333           }
334         }
335       }
336     }
337     return false;
338 }
339 
340   /// Returns true if MBB has a machine instructions that indicates a tail call
341   /// in the block.
342 static bool hasTailCall(const MachineBasicBlock &MBB) {
343     MachineBasicBlock::const_iterator I = MBB.getLastNonDebugInstr();
344     if (I == MBB.end())
345       return false;
346     unsigned RetOpc = I->getOpcode();
347     return RetOpc == Hexagon::PS_tailcall_i || RetOpc == Hexagon::PS_tailcall_r;
348 }
349 
350 /// Returns true if MBB contains an instruction that returns.
351 static bool hasReturn(const MachineBasicBlock &MBB) {
352     for (const MachineInstr &MI : MBB.terminators())
353       if (MI.isReturn())
354         return true;
355     return false;
356 }
357 
358 /// Returns the "return" instruction from this block, or nullptr if there
359 /// isn't any.
360 static MachineInstr *getReturn(MachineBasicBlock &MBB) {
361     for (auto &I : MBB)
362       if (I.isReturn())
363         return &I;
364     return nullptr;
365 }
366 
367 static bool isRestoreCall(unsigned Opc) {
368     switch (Opc) {
369       case Hexagon::RESTORE_DEALLOC_RET_JMP_V4:
370       case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC:
371       case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT:
372       case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT_PIC:
373       case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT:
374       case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT_PIC:
375       case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4:
376       case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC:
377         return true;
378     }
379     return false;
380 }
381 
382 static inline bool isOptNone(const MachineFunction &MF) {
383     return MF.getFunction().hasOptNone() ||
384            MF.getTarget().getOptLevel() == CodeGenOptLevel::None;
385 }
386 
387 static inline bool isOptSize(const MachineFunction &MF) {
388     const Function &F = MF.getFunction();
389     return F.hasOptSize() && !F.hasMinSize();
390 }
391 
392 static inline bool isMinSize(const MachineFunction &MF) {
393     return MF.getFunction().hasMinSize();
394 }
395 
396 /// Implements shrink-wrapping of the stack frame. By default, stack frame
397 /// is created in the function entry block, and is cleaned up in every block
398 /// that returns. This function finds alternate blocks: one for the frame
399 /// setup (prolog) and one for the cleanup (epilog).
400 void HexagonFrameLowering::findShrunkPrologEpilog(MachineFunction &MF,
401       MachineBasicBlock *&PrologB, MachineBasicBlock *&EpilogB) const {
402   static unsigned ShrinkCounter = 0;
403 
404   if (MF.getSubtarget<HexagonSubtarget>().isEnvironmentMusl() &&
405       MF.getFunction().isVarArg())
406     return;
407   if (ShrinkLimit.getPosition()) {
408     if (ShrinkCounter >= ShrinkLimit)
409       return;
410     ShrinkCounter++;
411   }
412 
413   auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
414 
415   MachineDominatorTree MDT;
416   MDT.runOnMachineFunction(MF);
417   MachinePostDominatorTree MPT;
418   MPT.runOnMachineFunction(MF);
419 
420   using UnsignedMap = DenseMap<unsigned, unsigned>;
421   using RPOTType = ReversePostOrderTraversal<const MachineFunction *>;
422 
423   UnsignedMap RPO;
424   RPOTType RPOT(&MF);
425   unsigned RPON = 0;
426   for (auto &I : RPOT)
427     RPO[I->getNumber()] = RPON++;
428 
429   // Don't process functions that have loops, at least for now. Placement
430   // of prolog and epilog must take loop structure into account. For simpli-
431   // city don't do it right now.
432   for (auto &I : MF) {
433     unsigned BN = RPO[I.getNumber()];
434     for (MachineBasicBlock *Succ : I.successors())
435       // If found a back-edge, return.
436       if (RPO[Succ->getNumber()] <= BN)
437         return;
438   }
439 
440   // Collect the set of blocks that need a stack frame to execute. Scan
441   // each block for uses/defs of callee-saved registers, calls, etc.
442   SmallVector<MachineBasicBlock*,16> SFBlocks;
443   BitVector CSR(Hexagon::NUM_TARGET_REGS);
444   for (const MCPhysReg *P = HRI.getCalleeSavedRegs(&MF); *P; ++P)
445     for (MCPhysReg S : HRI.subregs_inclusive(*P))
446       CSR[S] = true;
447 
448   for (auto &I : MF)
449     if (needsStackFrame(I, CSR, HRI))
450       SFBlocks.push_back(&I);
451 
452   LLVM_DEBUG({
453     dbgs() << "Blocks needing SF: {";
454     for (auto &B : SFBlocks)
455       dbgs() << " " << printMBBReference(*B);
456     dbgs() << " }\n";
457   });
458   // No frame needed?
459   if (SFBlocks.empty())
460     return;
461 
462   // Pick a common dominator and a common post-dominator.
463   MachineBasicBlock *DomB = SFBlocks[0];
464   for (unsigned i = 1, n = SFBlocks.size(); i < n; ++i) {
465     DomB = MDT.findNearestCommonDominator(DomB, SFBlocks[i]);
466     if (!DomB)
467       break;
468   }
469   MachineBasicBlock *PDomB = SFBlocks[0];
470   for (unsigned i = 1, n = SFBlocks.size(); i < n; ++i) {
471     PDomB = MPT.findNearestCommonDominator(PDomB, SFBlocks[i]);
472     if (!PDomB)
473       break;
474   }
475   LLVM_DEBUG({
476     dbgs() << "Computed dom block: ";
477     if (DomB)
478       dbgs() << printMBBReference(*DomB);
479     else
480       dbgs() << "<null>";
481     dbgs() << ", computed pdom block: ";
482     if (PDomB)
483       dbgs() << printMBBReference(*PDomB);
484     else
485       dbgs() << "<null>";
486     dbgs() << "\n";
487   });
488   if (!DomB || !PDomB)
489     return;
490 
491   // Make sure that DomB dominates PDomB and PDomB post-dominates DomB.
492   if (!MDT.dominates(DomB, PDomB)) {
493     LLVM_DEBUG(dbgs() << "Dom block does not dominate pdom block\n");
494     return;
495   }
496   if (!MPT.dominates(PDomB, DomB)) {
497     LLVM_DEBUG(dbgs() << "PDom block does not post-dominate dom block\n");
498     return;
499   }
500 
501   // Finally, everything seems right.
502   PrologB = DomB;
503   EpilogB = PDomB;
504 }
505 
506 /// Perform most of the PEI work here:
507 /// - saving/restoring of the callee-saved registers,
508 /// - stack frame creation and destruction.
509 /// Normally, this work is distributed among various functions, but doing it
510 /// in one place allows shrink-wrapping of the stack frame.
511 void HexagonFrameLowering::emitPrologue(MachineFunction &MF,
512                                         MachineBasicBlock &MBB) const {
513   auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
514 
515   MachineFrameInfo &MFI = MF.getFrameInfo();
516   const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
517 
518   MachineBasicBlock *PrologB = &MF.front(), *EpilogB = nullptr;
519   if (EnableShrinkWrapping)
520     findShrunkPrologEpilog(MF, PrologB, EpilogB);
521 
522   bool PrologueStubs = false;
523   insertCSRSpillsInBlock(*PrologB, CSI, HRI, PrologueStubs);
524   insertPrologueInBlock(*PrologB, PrologueStubs);
525   updateEntryPaths(MF, *PrologB);
526 
527   if (EpilogB) {
528     insertCSRRestoresInBlock(*EpilogB, CSI, HRI);
529     insertEpilogueInBlock(*EpilogB);
530   } else {
531     for (auto &B : MF)
532       if (B.isReturnBlock())
533         insertCSRRestoresInBlock(B, CSI, HRI);
534 
535     for (auto &B : MF)
536       if (B.isReturnBlock())
537         insertEpilogueInBlock(B);
538 
539     for (auto &B : MF) {
540       if (B.empty())
541         continue;
542       MachineInstr *RetI = getReturn(B);
543       if (!RetI || isRestoreCall(RetI->getOpcode()))
544         continue;
545       for (auto &R : CSI)
546         RetI->addOperand(MachineOperand::CreateReg(R.getReg(), false, true));
547     }
548   }
549 
550   if (EpilogB) {
551     // If there is an epilog block, it may not have a return instruction.
552     // In such case, we need to add the callee-saved registers as live-ins
553     // in all blocks on all paths from the epilog to any return block.
554     unsigned MaxBN = MF.getNumBlockIDs();
555     BitVector DoneT(MaxBN+1), DoneF(MaxBN+1), Path(MaxBN+1);
556     updateExitPaths(*EpilogB, *EpilogB, DoneT, DoneF, Path);
557   }
558 }
559 
560 /// Returns true if the target can safely skip saving callee-saved registers
561 /// for noreturn nounwind functions.
562 bool HexagonFrameLowering::enableCalleeSaveSkip(
563     const MachineFunction &MF) const {
564   const auto &F = MF.getFunction();
565   assert(F.hasFnAttribute(Attribute::NoReturn) &&
566          F.getFunction().hasFnAttribute(Attribute::NoUnwind) &&
567          !F.getFunction().hasFnAttribute(Attribute::UWTable));
568   (void)F;
569 
570   // No need to save callee saved registers if the function does not return.
571   return MF.getSubtarget<HexagonSubtarget>().noreturnStackElim();
572 }
573 
574 // Helper function used to determine when to eliminate the stack frame for
575 // functions marked as noreturn and when the noreturn-stack-elim options are
576 // specified. When both these conditions are true, then a FP may not be needed
577 // if the function makes a call. It is very similar to enableCalleeSaveSkip,
578 // but it used to check if the allocframe can be eliminated as well.
579 static bool enableAllocFrameElim(const MachineFunction &MF) {
580   const auto &F = MF.getFunction();
581   const auto &MFI = MF.getFrameInfo();
582   const auto &HST = MF.getSubtarget<HexagonSubtarget>();
583   assert(!MFI.hasVarSizedObjects() &&
584          !HST.getRegisterInfo()->hasStackRealignment(MF));
585   return F.hasFnAttribute(Attribute::NoReturn) &&
586     F.hasFnAttribute(Attribute::NoUnwind) &&
587     !F.hasFnAttribute(Attribute::UWTable) && HST.noreturnStackElim() &&
588     MFI.getStackSize() == 0;
589 }
590 
591 void HexagonFrameLowering::insertPrologueInBlock(MachineBasicBlock &MBB,
592       bool PrologueStubs) const {
593   MachineFunction &MF = *MBB.getParent();
594   MachineFrameInfo &MFI = MF.getFrameInfo();
595   auto &HST = MF.getSubtarget<HexagonSubtarget>();
596   auto &HII = *HST.getInstrInfo();
597   auto &HRI = *HST.getRegisterInfo();
598 
599   Align MaxAlign = std::max(MFI.getMaxAlign(), getStackAlign());
600 
601   // Calculate the total stack frame size.
602   // Get the number of bytes to allocate from the FrameInfo.
603   unsigned FrameSize = MFI.getStackSize();
604   // Round up the max call frame size to the max alignment on the stack.
605   unsigned MaxCFA = alignTo(MFI.getMaxCallFrameSize(), MaxAlign);
606   MFI.setMaxCallFrameSize(MaxCFA);
607 
608   FrameSize = MaxCFA + alignTo(FrameSize, MaxAlign);
609   MFI.setStackSize(FrameSize);
610 
611   bool AlignStack = (MaxAlign > getStackAlign());
612 
613   // Get the number of bytes to allocate from the FrameInfo.
614   unsigned NumBytes = MFI.getStackSize();
615   Register SP = HRI.getStackRegister();
616   unsigned MaxCF = MFI.getMaxCallFrameSize();
617   MachineBasicBlock::iterator InsertPt = MBB.begin();
618 
619   SmallVector<MachineInstr *, 4> AdjustRegs;
620   for (auto &MBB : MF)
621     for (auto &MI : MBB)
622       if (MI.getOpcode() == Hexagon::PS_alloca)
623         AdjustRegs.push_back(&MI);
624 
625   for (auto *MI : AdjustRegs) {
626     assert((MI->getOpcode() == Hexagon::PS_alloca) && "Expected alloca");
627     expandAlloca(MI, HII, SP, MaxCF);
628     MI->eraseFromParent();
629   }
630 
631   DebugLoc dl = MBB.findDebugLoc(InsertPt);
632 
633   if (MF.getFunction().isVarArg() &&
634       MF.getSubtarget<HexagonSubtarget>().isEnvironmentMusl()) {
635     // Calculate the size of register saved area.
636     int NumVarArgRegs = 6 - FirstVarArgSavedReg;
637     int RegisterSavedAreaSizePlusPadding = (NumVarArgRegs % 2 == 0)
638                                               ? NumVarArgRegs * 4
639                                               : NumVarArgRegs * 4 + 4;
640     if (RegisterSavedAreaSizePlusPadding > 0) {
641       // Decrement the stack pointer by size of register saved area plus
642       // padding if any.
643       BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_addi), SP)
644         .addReg(SP)
645         .addImm(-RegisterSavedAreaSizePlusPadding)
646         .setMIFlag(MachineInstr::FrameSetup);
647 
648       int NumBytes = 0;
649       // Copy all the named arguments below register saved area.
650       auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>();
651       for (int i = HMFI.getFirstNamedArgFrameIndex(),
652                e = HMFI.getLastNamedArgFrameIndex(); i >= e; --i) {
653         uint64_t ObjSize = MFI.getObjectSize(i);
654         Align ObjAlign = MFI.getObjectAlign(i);
655 
656         // Determine the kind of load/store that should be used.
657         unsigned LDOpc, STOpc;
658         uint64_t OpcodeChecker = ObjAlign.value();
659 
660         // Handle cases where alignment of an object is > its size.
661         if (ObjAlign > ObjSize) {
662           if (ObjSize <= 1)
663             OpcodeChecker = 1;
664           else if (ObjSize <= 2)
665             OpcodeChecker = 2;
666           else if (ObjSize <= 4)
667             OpcodeChecker = 4;
668           else if (ObjSize > 4)
669             OpcodeChecker = 8;
670         }
671 
672         switch (OpcodeChecker) {
673           case 1:
674             LDOpc = Hexagon::L2_loadrb_io;
675             STOpc = Hexagon::S2_storerb_io;
676             break;
677           case 2:
678             LDOpc = Hexagon::L2_loadrh_io;
679             STOpc = Hexagon::S2_storerh_io;
680             break;
681           case 4:
682             LDOpc = Hexagon::L2_loadri_io;
683             STOpc = Hexagon::S2_storeri_io;
684             break;
685           case 8:
686           default:
687             LDOpc = Hexagon::L2_loadrd_io;
688             STOpc = Hexagon::S2_storerd_io;
689             break;
690         }
691 
692         Register RegUsed = LDOpc == Hexagon::L2_loadrd_io ? Hexagon::D3
693                                                           : Hexagon::R6;
694         int LoadStoreCount = ObjSize / OpcodeChecker;
695 
696         if (ObjSize % OpcodeChecker)
697           ++LoadStoreCount;
698 
699         // Get the start location of the load. NumBytes is basically the
700         // offset from the stack pointer of previous function, which would be
701         // the caller in this case, as this function has variable argument
702         // list.
703         if (NumBytes != 0)
704           NumBytes = alignTo(NumBytes, ObjAlign);
705 
706         int Count = 0;
707         while (Count < LoadStoreCount) {
708           // Load the value of the named argument on stack.
709           BuildMI(MBB, InsertPt, dl, HII.get(LDOpc), RegUsed)
710               .addReg(SP)
711               .addImm(RegisterSavedAreaSizePlusPadding +
712                       ObjAlign.value() * Count + NumBytes)
713               .setMIFlag(MachineInstr::FrameSetup);
714 
715           // Store it below the register saved area plus padding.
716           BuildMI(MBB, InsertPt, dl, HII.get(STOpc))
717               .addReg(SP)
718               .addImm(ObjAlign.value() * Count + NumBytes)
719               .addReg(RegUsed)
720               .setMIFlag(MachineInstr::FrameSetup);
721 
722           Count++;
723         }
724         NumBytes += MFI.getObjectSize(i);
725       }
726 
727       // Make NumBytes 8 byte aligned
728       NumBytes = alignTo(NumBytes, 8);
729 
730       // If the number of registers having variable arguments is odd,
731       // leave 4 bytes of padding to get to the location where first
732       // variable argument which was passed through register was copied.
733       NumBytes = (NumVarArgRegs % 2 == 0) ? NumBytes : NumBytes + 4;
734 
735       for (int j = FirstVarArgSavedReg, i = 0; j < 6; ++j, ++i) {
736         BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::S2_storeri_io))
737           .addReg(SP)
738           .addImm(NumBytes + 4 * i)
739           .addReg(Hexagon::R0 + j)
740           .setMIFlag(MachineInstr::FrameSetup);
741       }
742     }
743   }
744 
745   if (hasFP(MF)) {
746     insertAllocframe(MBB, InsertPt, NumBytes);
747     if (AlignStack) {
748       BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_andir), SP)
749           .addReg(SP)
750           .addImm(-int64_t(MaxAlign.value()));
751     }
752     // If the stack-checking is enabled, and we spilled the callee-saved
753     // registers inline (i.e. did not use a spill function), then call
754     // the stack checker directly.
755     if (EnableStackOVFSanitizer && !PrologueStubs)
756       BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::PS_call_stk))
757              .addExternalSymbol("__runtime_stack_check");
758   } else if (NumBytes > 0) {
759     assert(alignTo(NumBytes, 8) == NumBytes);
760     BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_addi), SP)
761       .addReg(SP)
762       .addImm(-int(NumBytes));
763   }
764 }
765 
766 void HexagonFrameLowering::insertEpilogueInBlock(MachineBasicBlock &MBB) const {
767   MachineFunction &MF = *MBB.getParent();
768   auto &HST = MF.getSubtarget<HexagonSubtarget>();
769   auto &HII = *HST.getInstrInfo();
770   auto &HRI = *HST.getRegisterInfo();
771   Register SP = HRI.getStackRegister();
772 
773   MachineBasicBlock::iterator InsertPt = MBB.getFirstTerminator();
774   DebugLoc dl = MBB.findDebugLoc(InsertPt);
775 
776   if (!hasFP(MF)) {
777     MachineFrameInfo &MFI = MF.getFrameInfo();
778     unsigned NumBytes = MFI.getStackSize();
779     if (MF.getFunction().isVarArg() &&
780         MF.getSubtarget<HexagonSubtarget>().isEnvironmentMusl()) {
781       // On Hexagon Linux, deallocate the stack for the register saved area.
782       int NumVarArgRegs = 6 - FirstVarArgSavedReg;
783       int RegisterSavedAreaSizePlusPadding = (NumVarArgRegs % 2 == 0) ?
784         (NumVarArgRegs * 4) : (NumVarArgRegs * 4 + 4);
785       NumBytes += RegisterSavedAreaSizePlusPadding;
786     }
787     if (NumBytes) {
788       BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_addi), SP)
789         .addReg(SP)
790         .addImm(NumBytes);
791     }
792     return;
793   }
794 
795   MachineInstr *RetI = getReturn(MBB);
796   unsigned RetOpc = RetI ? RetI->getOpcode() : 0;
797 
798   // Handle EH_RETURN.
799   if (RetOpc == Hexagon::EH_RETURN_JMPR) {
800     BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::L2_deallocframe))
801         .addDef(Hexagon::D15)
802         .addReg(Hexagon::R30);
803     BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_add), SP)
804         .addReg(SP)
805         .addReg(Hexagon::R28);
806     return;
807   }
808 
809   // Check for RESTORE_DEALLOC_RET* tail call. Don't emit an extra dealloc-
810   // frame instruction if we encounter it.
811   if (RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4 ||
812       RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC ||
813       RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT ||
814       RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT_PIC) {
815     MachineBasicBlock::iterator It = RetI;
816     ++It;
817     // Delete all instructions after the RESTORE (except labels).
818     while (It != MBB.end()) {
819       if (!It->isLabel())
820         It = MBB.erase(It);
821       else
822         ++It;
823     }
824     return;
825   }
826 
827   // It is possible that the restoring code is a call to a library function.
828   // All of the restore* functions include "deallocframe", so we need to make
829   // sure that we don't add an extra one.
830   bool NeedsDeallocframe = true;
831   if (!MBB.empty() && InsertPt != MBB.begin()) {
832     MachineBasicBlock::iterator PrevIt = std::prev(InsertPt);
833     unsigned COpc = PrevIt->getOpcode();
834     if (COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4 ||
835         COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC ||
836         COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT ||
837         COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT_PIC ||
838         COpc == Hexagon::PS_call_nr || COpc == Hexagon::PS_callr_nr)
839       NeedsDeallocframe = false;
840   }
841 
842   if (!MF.getSubtarget<HexagonSubtarget>().isEnvironmentMusl() ||
843       !MF.getFunction().isVarArg()) {
844     if (!NeedsDeallocframe)
845       return;
846     // If the returning instruction is PS_jmpret, replace it with
847     // dealloc_return, otherwise just add deallocframe. The function
848     // could be returning via a tail call.
849     if (RetOpc != Hexagon::PS_jmpret || DisableDeallocRet) {
850       BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::L2_deallocframe))
851       .addDef(Hexagon::D15)
852       .addReg(Hexagon::R30);
853       return;
854     }
855     unsigned NewOpc = Hexagon::L4_return;
856     MachineInstr *NewI = BuildMI(MBB, RetI, dl, HII.get(NewOpc))
857       .addDef(Hexagon::D15)
858       .addReg(Hexagon::R30);
859     // Transfer the function live-out registers.
860     NewI->copyImplicitOps(MF, *RetI);
861     MBB.erase(RetI);
862   } else {
863     // L2_deallocframe instruction after it.
864     // Calculate the size of register saved area.
865     int NumVarArgRegs = 6 - FirstVarArgSavedReg;
866     int RegisterSavedAreaSizePlusPadding = (NumVarArgRegs % 2 == 0) ?
867       (NumVarArgRegs * 4) : (NumVarArgRegs * 4 + 4);
868 
869     MachineBasicBlock::iterator Term = MBB.getFirstTerminator();
870     MachineBasicBlock::iterator I = (Term == MBB.begin()) ? MBB.end()
871                                                           : std::prev(Term);
872     if (I == MBB.end() ||
873        (I->getOpcode() != Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT &&
874         I->getOpcode() != Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT_PIC &&
875         I->getOpcode() != Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4 &&
876         I->getOpcode() != Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC))
877       BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::L2_deallocframe))
878         .addDef(Hexagon::D15)
879         .addReg(Hexagon::R30);
880     if (RegisterSavedAreaSizePlusPadding != 0)
881       BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_addi), SP)
882         .addReg(SP)
883         .addImm(RegisterSavedAreaSizePlusPadding);
884   }
885 }
886 
887 void HexagonFrameLowering::insertAllocframe(MachineBasicBlock &MBB,
888       MachineBasicBlock::iterator InsertPt, unsigned NumBytes) const {
889   MachineFunction &MF = *MBB.getParent();
890   auto &HST = MF.getSubtarget<HexagonSubtarget>();
891   auto &HII = *HST.getInstrInfo();
892   auto &HRI = *HST.getRegisterInfo();
893 
894   // Check for overflow.
895   // Hexagon_TODO: Ugh! hardcoding. Is there an API that can be used?
896   const unsigned int ALLOCFRAME_MAX = 16384;
897 
898   // Create a dummy memory operand to avoid allocframe from being treated as
899   // a volatile memory reference.
900   auto *MMO = MF.getMachineMemOperand(MachinePointerInfo::getStack(MF, 0),
901                                       MachineMemOperand::MOStore, 4, Align(4));
902 
903   DebugLoc dl = MBB.findDebugLoc(InsertPt);
904   Register SP = HRI.getStackRegister();
905 
906   if (NumBytes >= ALLOCFRAME_MAX) {
907     // Emit allocframe(#0).
908     BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::S2_allocframe))
909       .addDef(SP)
910       .addReg(SP)
911       .addImm(0)
912       .addMemOperand(MMO);
913 
914     // Subtract the size from the stack pointer.
915     Register SP = HRI.getStackRegister();
916     BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_addi), SP)
917       .addReg(SP)
918       .addImm(-int(NumBytes));
919   } else {
920     BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::S2_allocframe))
921       .addDef(SP)
922       .addReg(SP)
923       .addImm(NumBytes)
924       .addMemOperand(MMO);
925   }
926 }
927 
928 void HexagonFrameLowering::updateEntryPaths(MachineFunction &MF,
929       MachineBasicBlock &SaveB) const {
930   SetVector<unsigned> Worklist;
931 
932   MachineBasicBlock &EntryB = MF.front();
933   Worklist.insert(EntryB.getNumber());
934 
935   unsigned SaveN = SaveB.getNumber();
936   auto &CSI = MF.getFrameInfo().getCalleeSavedInfo();
937 
938   for (unsigned i = 0; i < Worklist.size(); ++i) {
939     unsigned BN = Worklist[i];
940     MachineBasicBlock &MBB = *MF.getBlockNumbered(BN);
941     for (auto &R : CSI)
942       if (!MBB.isLiveIn(R.getReg()))
943         MBB.addLiveIn(R.getReg());
944     if (BN != SaveN)
945       for (auto &SB : MBB.successors())
946         Worklist.insert(SB->getNumber());
947   }
948 }
949 
950 bool HexagonFrameLowering::updateExitPaths(MachineBasicBlock &MBB,
951       MachineBasicBlock &RestoreB, BitVector &DoneT, BitVector &DoneF,
952       BitVector &Path) const {
953   assert(MBB.getNumber() >= 0);
954   unsigned BN = MBB.getNumber();
955   if (Path[BN] || DoneF[BN])
956     return false;
957   if (DoneT[BN])
958     return true;
959 
960   auto &CSI = MBB.getParent()->getFrameInfo().getCalleeSavedInfo();
961 
962   Path[BN] = true;
963   bool ReachedExit = false;
964   for (auto &SB : MBB.successors())
965     ReachedExit |= updateExitPaths(*SB, RestoreB, DoneT, DoneF, Path);
966 
967   if (!MBB.empty() && MBB.back().isReturn()) {
968     // Add implicit uses of all callee-saved registers to the reached
969     // return instructions. This is to prevent the anti-dependency breaker
970     // from renaming these registers.
971     MachineInstr &RetI = MBB.back();
972     if (!isRestoreCall(RetI.getOpcode()))
973       for (auto &R : CSI)
974         RetI.addOperand(MachineOperand::CreateReg(R.getReg(), false, true));
975     ReachedExit = true;
976   }
977 
978   // We don't want to add unnecessary live-ins to the restore block: since
979   // the callee-saved registers are being defined in it, the entry of the
980   // restore block cannot be on the path from the definitions to any exit.
981   if (ReachedExit && &MBB != &RestoreB) {
982     for (auto &R : CSI)
983       if (!MBB.isLiveIn(R.getReg()))
984         MBB.addLiveIn(R.getReg());
985     DoneT[BN] = true;
986   }
987   if (!ReachedExit)
988     DoneF[BN] = true;
989 
990   Path[BN] = false;
991   return ReachedExit;
992 }
993 
994 static std::optional<MachineBasicBlock::iterator>
995 findCFILocation(MachineBasicBlock &B) {
996     // The CFI instructions need to be inserted right after allocframe.
997     // An exception to this is a situation where allocframe is bundled
998     // with a call: then the CFI instructions need to be inserted before
999     // the packet with the allocframe+call (in case the call throws an
1000     // exception).
1001     auto End = B.instr_end();
1002 
1003     for (MachineInstr &I : B) {
1004       MachineBasicBlock::iterator It = I.getIterator();
1005       if (!I.isBundle()) {
1006         if (I.getOpcode() == Hexagon::S2_allocframe)
1007           return std::next(It);
1008         continue;
1009       }
1010       // I is a bundle.
1011       bool HasCall = false, HasAllocFrame = false;
1012       auto T = It.getInstrIterator();
1013       while (++T != End && T->isBundled()) {
1014         if (T->getOpcode() == Hexagon::S2_allocframe)
1015           HasAllocFrame = true;
1016         else if (T->isCall())
1017           HasCall = true;
1018       }
1019       if (HasAllocFrame)
1020         return HasCall ? It : std::next(It);
1021     }
1022     return std::nullopt;
1023 }
1024 
1025 void HexagonFrameLowering::insertCFIInstructions(MachineFunction &MF) const {
1026     for (auto &B : MF)
1027       if (auto At = findCFILocation(B))
1028         insertCFIInstructionsAt(B, *At);
1029 }
1030 
1031 void HexagonFrameLowering::insertCFIInstructionsAt(MachineBasicBlock &MBB,
1032       MachineBasicBlock::iterator At) const {
1033   MachineFunction &MF = *MBB.getParent();
1034   MachineFrameInfo &MFI = MF.getFrameInfo();
1035   MachineModuleInfo &MMI = MF.getMMI();
1036   auto &HST = MF.getSubtarget<HexagonSubtarget>();
1037   auto &HII = *HST.getInstrInfo();
1038   auto &HRI = *HST.getRegisterInfo();
1039 
1040   // If CFI instructions have debug information attached, something goes
1041   // wrong with the final assembly generation: the prolog_end is placed
1042   // in a wrong location.
1043   DebugLoc DL;
1044   const MCInstrDesc &CFID = HII.get(TargetOpcode::CFI_INSTRUCTION);
1045 
1046   MCSymbol *FrameLabel = MMI.getContext().createTempSymbol();
1047   bool HasFP = hasFP(MF);
1048 
1049   if (HasFP) {
1050     unsigned DwFPReg = HRI.getDwarfRegNum(HRI.getFrameRegister(), true);
1051     unsigned DwRAReg = HRI.getDwarfRegNum(HRI.getRARegister(), true);
1052 
1053     // Define CFA via an offset from the value of FP.
1054     //
1055     //  -8   -4    0 (SP)
1056     // --+----+----+---------------------
1057     //   | FP | LR |          increasing addresses -->
1058     // --+----+----+---------------------
1059     //   |         +-- Old SP (before allocframe)
1060     //   +-- New FP (after allocframe)
1061     //
1062     // MCCFIInstruction::cfiDefCfa adds the offset from the register.
1063     // MCCFIInstruction::createOffset takes the offset without sign change.
1064     auto DefCfa = MCCFIInstruction::cfiDefCfa(FrameLabel, DwFPReg, 8);
1065     BuildMI(MBB, At, DL, CFID)
1066         .addCFIIndex(MF.addFrameInst(DefCfa));
1067     // R31 (return addr) = CFA - 4
1068     auto OffR31 = MCCFIInstruction::createOffset(FrameLabel, DwRAReg, -4);
1069     BuildMI(MBB, At, DL, CFID)
1070         .addCFIIndex(MF.addFrameInst(OffR31));
1071     // R30 (frame ptr) = CFA - 8
1072     auto OffR30 = MCCFIInstruction::createOffset(FrameLabel, DwFPReg, -8);
1073     BuildMI(MBB, At, DL, CFID)
1074         .addCFIIndex(MF.addFrameInst(OffR30));
1075   }
1076 
1077   static Register RegsToMove[] = {
1078     Hexagon::R1,  Hexagon::R0,  Hexagon::R3,  Hexagon::R2,
1079     Hexagon::R17, Hexagon::R16, Hexagon::R19, Hexagon::R18,
1080     Hexagon::R21, Hexagon::R20, Hexagon::R23, Hexagon::R22,
1081     Hexagon::R25, Hexagon::R24, Hexagon::R27, Hexagon::R26,
1082     Hexagon::D0,  Hexagon::D1,  Hexagon::D8,  Hexagon::D9,
1083     Hexagon::D10, Hexagon::D11, Hexagon::D12, Hexagon::D13,
1084     Hexagon::NoRegister
1085   };
1086 
1087   const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
1088 
1089   for (unsigned i = 0; RegsToMove[i] != Hexagon::NoRegister; ++i) {
1090     Register Reg = RegsToMove[i];
1091     auto IfR = [Reg] (const CalleeSavedInfo &C) -> bool {
1092       return C.getReg() == Reg;
1093     };
1094     auto F = find_if(CSI, IfR);
1095     if (F == CSI.end())
1096       continue;
1097 
1098     int64_t Offset;
1099     if (HasFP) {
1100       // If the function has a frame pointer (i.e. has an allocframe),
1101       // then the CFA has been defined in terms of FP. Any offsets in
1102       // the following CFI instructions have to be defined relative
1103       // to FP, which points to the bottom of the stack frame.
1104       // The function getFrameIndexReference can still choose to use SP
1105       // for the offset calculation, so we cannot simply call it here.
1106       // Instead, get the offset (relative to the FP) directly.
1107       Offset = MFI.getObjectOffset(F->getFrameIdx());
1108     } else {
1109       Register FrameReg;
1110       Offset =
1111           getFrameIndexReference(MF, F->getFrameIdx(), FrameReg).getFixed();
1112     }
1113     // Subtract 8 to make room for R30 and R31, which are added above.
1114     Offset -= 8;
1115 
1116     if (Reg < Hexagon::D0 || Reg > Hexagon::D15) {
1117       unsigned DwarfReg = HRI.getDwarfRegNum(Reg, true);
1118       auto OffReg = MCCFIInstruction::createOffset(FrameLabel, DwarfReg,
1119                                                    Offset);
1120       BuildMI(MBB, At, DL, CFID)
1121           .addCFIIndex(MF.addFrameInst(OffReg));
1122     } else {
1123       // Split the double regs into subregs, and generate appropriate
1124       // cfi_offsets.
1125       // The only reason, we are split double regs is, llvm-mc does not
1126       // understand paired registers for cfi_offset.
1127       // Eg .cfi_offset r1:0, -64
1128 
1129       Register HiReg = HRI.getSubReg(Reg, Hexagon::isub_hi);
1130       Register LoReg = HRI.getSubReg(Reg, Hexagon::isub_lo);
1131       unsigned HiDwarfReg = HRI.getDwarfRegNum(HiReg, true);
1132       unsigned LoDwarfReg = HRI.getDwarfRegNum(LoReg, true);
1133       auto OffHi = MCCFIInstruction::createOffset(FrameLabel, HiDwarfReg,
1134                                                   Offset+4);
1135       BuildMI(MBB, At, DL, CFID)
1136           .addCFIIndex(MF.addFrameInst(OffHi));
1137       auto OffLo = MCCFIInstruction::createOffset(FrameLabel, LoDwarfReg,
1138                                                   Offset);
1139       BuildMI(MBB, At, DL, CFID)
1140           .addCFIIndex(MF.addFrameInst(OffLo));
1141     }
1142   }
1143 }
1144 
1145 bool HexagonFrameLowering::hasFP(const MachineFunction &MF) const {
1146   if (MF.getFunction().hasFnAttribute(Attribute::Naked))
1147     return false;
1148 
1149   auto &MFI = MF.getFrameInfo();
1150   auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
1151   bool HasExtraAlign = HRI.hasStackRealignment(MF);
1152   bool HasAlloca = MFI.hasVarSizedObjects();
1153 
1154   // Insert ALLOCFRAME if we need to or at -O0 for the debugger.  Think
1155   // that this shouldn't be required, but doing so now because gcc does and
1156   // gdb can't break at the start of the function without it.  Will remove if
1157   // this turns out to be a gdb bug.
1158   //
1159   if (MF.getTarget().getOptLevel() == CodeGenOptLevel::None)
1160     return true;
1161 
1162   // By default we want to use SP (since it's always there). FP requires
1163   // some setup (i.e. ALLOCFRAME).
1164   // Both, alloca and stack alignment modify the stack pointer by an
1165   // undetermined value, so we need to save it at the entry to the function
1166   // (i.e. use allocframe).
1167   if (HasAlloca || HasExtraAlign)
1168     return true;
1169 
1170   if (MFI.getStackSize() > 0) {
1171     // If FP-elimination is disabled, we have to use FP at this point.
1172     const TargetMachine &TM = MF.getTarget();
1173     if (TM.Options.DisableFramePointerElim(MF) || !EliminateFramePointer)
1174       return true;
1175     if (EnableStackOVFSanitizer)
1176       return true;
1177   }
1178 
1179   const auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>();
1180   if ((MFI.hasCalls() && !enableAllocFrameElim(MF)) || HMFI.hasClobberLR())
1181     return true;
1182 
1183   return false;
1184 }
1185 
1186 enum SpillKind {
1187   SK_ToMem,
1188   SK_FromMem,
1189   SK_FromMemTailcall
1190 };
1191 
1192 static const char *getSpillFunctionFor(Register MaxReg, SpillKind SpillType,
1193       bool Stkchk = false) {
1194   const char * V4SpillToMemoryFunctions[] = {
1195     "__save_r16_through_r17",
1196     "__save_r16_through_r19",
1197     "__save_r16_through_r21",
1198     "__save_r16_through_r23",
1199     "__save_r16_through_r25",
1200     "__save_r16_through_r27" };
1201 
1202   const char * V4SpillToMemoryStkchkFunctions[] = {
1203     "__save_r16_through_r17_stkchk",
1204     "__save_r16_through_r19_stkchk",
1205     "__save_r16_through_r21_stkchk",
1206     "__save_r16_through_r23_stkchk",
1207     "__save_r16_through_r25_stkchk",
1208     "__save_r16_through_r27_stkchk" };
1209 
1210   const char * V4SpillFromMemoryFunctions[] = {
1211     "__restore_r16_through_r17_and_deallocframe",
1212     "__restore_r16_through_r19_and_deallocframe",
1213     "__restore_r16_through_r21_and_deallocframe",
1214     "__restore_r16_through_r23_and_deallocframe",
1215     "__restore_r16_through_r25_and_deallocframe",
1216     "__restore_r16_through_r27_and_deallocframe" };
1217 
1218   const char * V4SpillFromMemoryTailcallFunctions[] = {
1219     "__restore_r16_through_r17_and_deallocframe_before_tailcall",
1220     "__restore_r16_through_r19_and_deallocframe_before_tailcall",
1221     "__restore_r16_through_r21_and_deallocframe_before_tailcall",
1222     "__restore_r16_through_r23_and_deallocframe_before_tailcall",
1223     "__restore_r16_through_r25_and_deallocframe_before_tailcall",
1224     "__restore_r16_through_r27_and_deallocframe_before_tailcall"
1225   };
1226 
1227   const char **SpillFunc = nullptr;
1228 
1229   switch(SpillType) {
1230   case SK_ToMem:
1231     SpillFunc = Stkchk ? V4SpillToMemoryStkchkFunctions
1232                        : V4SpillToMemoryFunctions;
1233     break;
1234   case SK_FromMem:
1235     SpillFunc = V4SpillFromMemoryFunctions;
1236     break;
1237   case SK_FromMemTailcall:
1238     SpillFunc = V4SpillFromMemoryTailcallFunctions;
1239     break;
1240   }
1241   assert(SpillFunc && "Unknown spill kind");
1242 
1243   // Spill all callee-saved registers up to the highest register used.
1244   switch (MaxReg) {
1245   case Hexagon::R17:
1246     return SpillFunc[0];
1247   case Hexagon::R19:
1248     return SpillFunc[1];
1249   case Hexagon::R21:
1250     return SpillFunc[2];
1251   case Hexagon::R23:
1252     return SpillFunc[3];
1253   case Hexagon::R25:
1254     return SpillFunc[4];
1255   case Hexagon::R27:
1256     return SpillFunc[5];
1257   default:
1258     llvm_unreachable("Unhandled maximum callee save register");
1259   }
1260   return nullptr;
1261 }
1262 
1263 StackOffset
1264 HexagonFrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI,
1265                                              Register &FrameReg) const {
1266   auto &MFI = MF.getFrameInfo();
1267   auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
1268 
1269   int Offset = MFI.getObjectOffset(FI);
1270   bool HasAlloca = MFI.hasVarSizedObjects();
1271   bool HasExtraAlign = HRI.hasStackRealignment(MF);
1272   bool NoOpt = MF.getTarget().getOptLevel() == CodeGenOptLevel::None;
1273 
1274   auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>();
1275   unsigned FrameSize = MFI.getStackSize();
1276   Register SP = HRI.getStackRegister();
1277   Register FP = HRI.getFrameRegister();
1278   Register AP = HMFI.getStackAlignBaseReg();
1279   // It may happen that AP will be absent even HasAlloca && HasExtraAlign
1280   // is true. HasExtraAlign may be set because of vector spills, without
1281   // aligned locals or aligned outgoing function arguments. Since vector
1282   // spills will ultimately be "unaligned", it is safe to use FP as the
1283   // base register.
1284   // In fact, in such a scenario the stack is actually not required to be
1285   // aligned, although it may end up being aligned anyway, since this
1286   // particular case is not easily detectable. The alignment will be
1287   // unnecessary, but not incorrect.
1288   // Unfortunately there is no quick way to verify that the above is
1289   // indeed the case (and that it's not a result of an error), so just
1290   // assume that missing AP will be replaced by FP.
1291   // (A better fix would be to rematerialize AP from FP and always align
1292   // vector spills.)
1293   bool UseFP = false, UseAP = false;  // Default: use SP (except at -O0).
1294   // Use FP at -O0, except when there are objects with extra alignment.
1295   // That additional alignment requirement may cause a pad to be inserted,
1296   // which will make it impossible to use FP to access objects located
1297   // past the pad.
1298   if (NoOpt && !HasExtraAlign)
1299     UseFP = true;
1300   if (MFI.isFixedObjectIndex(FI) || MFI.isObjectPreAllocated(FI)) {
1301     // Fixed and preallocated objects will be located before any padding
1302     // so FP must be used to access them.
1303     UseFP |= (HasAlloca || HasExtraAlign);
1304   } else {
1305     if (HasAlloca) {
1306       if (HasExtraAlign)
1307         UseAP = true;
1308       else
1309         UseFP = true;
1310     }
1311   }
1312 
1313   // If FP was picked, then there had better be FP.
1314   bool HasFP = hasFP(MF);
1315   assert((HasFP || !UseFP) && "This function must have frame pointer");
1316 
1317   // Having FP implies allocframe. Allocframe will store extra 8 bytes:
1318   // FP/LR. If the base register is used to access an object across these
1319   // 8 bytes, then the offset will need to be adjusted by 8.
1320   //
1321   // After allocframe:
1322   //                    HexagonISelLowering adds 8 to ---+
1323   //                    the offsets of all stack-based   |
1324   //                    arguments (*)                    |
1325   //                                                     |
1326   //   getObjectOffset < 0   0     8  getObjectOffset >= 8
1327   // ------------------------+-----+------------------------> increasing
1328   //     <local objects>     |FP/LR|    <input arguments>     addresses
1329   // -----------------+------+-----+------------------------>
1330   //                  |      |
1331   //    SP/AP point --+      +-- FP points here (**)
1332   //    somewhere on
1333   //    this side of FP/LR
1334   //
1335   // (*) See LowerFormalArguments. The FP/LR is assumed to be present.
1336   // (**) *FP == old-FP. FP+0..7 are the bytes of FP/LR.
1337 
1338   // The lowering assumes that FP/LR is present, and so the offsets of
1339   // the formal arguments start at 8. If FP/LR is not there we need to
1340   // reduce the offset by 8.
1341   if (Offset > 0 && !HasFP)
1342     Offset -= 8;
1343 
1344   if (UseFP)
1345     FrameReg = FP;
1346   else if (UseAP)
1347     FrameReg = AP;
1348   else
1349     FrameReg = SP;
1350 
1351   // Calculate the actual offset in the instruction. If there is no FP
1352   // (in other words, no allocframe), then SP will not be adjusted (i.e.
1353   // there will be no SP -= FrameSize), so the frame size should not be
1354   // added to the calculated offset.
1355   int RealOffset = Offset;
1356   if (!UseFP && !UseAP)
1357     RealOffset = FrameSize+Offset;
1358   return StackOffset::getFixed(RealOffset);
1359 }
1360 
1361 bool HexagonFrameLowering::insertCSRSpillsInBlock(MachineBasicBlock &MBB,
1362       const CSIVect &CSI, const HexagonRegisterInfo &HRI,
1363       bool &PrologueStubs) const {
1364   if (CSI.empty())
1365     return true;
1366 
1367   MachineBasicBlock::iterator MI = MBB.begin();
1368   PrologueStubs = false;
1369   MachineFunction &MF = *MBB.getParent();
1370   auto &HST = MF.getSubtarget<HexagonSubtarget>();
1371   auto &HII = *HST.getInstrInfo();
1372 
1373   if (useSpillFunction(MF, CSI)) {
1374     PrologueStubs = true;
1375     Register MaxReg = getMaxCalleeSavedReg(CSI, HRI);
1376     bool StkOvrFlowEnabled = EnableStackOVFSanitizer;
1377     const char *SpillFun = getSpillFunctionFor(MaxReg, SK_ToMem,
1378                                                StkOvrFlowEnabled);
1379     auto &HTM = static_cast<const HexagonTargetMachine&>(MF.getTarget());
1380     bool IsPIC = HTM.isPositionIndependent();
1381     bool LongCalls = HST.useLongCalls() || EnableSaveRestoreLong;
1382 
1383     // Call spill function.
1384     DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc();
1385     unsigned SpillOpc;
1386     if (StkOvrFlowEnabled) {
1387       if (LongCalls)
1388         SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4STK_EXT_PIC
1389                          : Hexagon::SAVE_REGISTERS_CALL_V4STK_EXT;
1390       else
1391         SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4STK_PIC
1392                          : Hexagon::SAVE_REGISTERS_CALL_V4STK;
1393     } else {
1394       if (LongCalls)
1395         SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4_EXT_PIC
1396                          : Hexagon::SAVE_REGISTERS_CALL_V4_EXT;
1397       else
1398         SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4_PIC
1399                          : Hexagon::SAVE_REGISTERS_CALL_V4;
1400     }
1401 
1402     MachineInstr *SaveRegsCall =
1403         BuildMI(MBB, MI, DL, HII.get(SpillOpc))
1404           .addExternalSymbol(SpillFun);
1405 
1406     // Add callee-saved registers as use.
1407     addCalleeSaveRegistersAsImpOperand(SaveRegsCall, CSI, false, true);
1408     // Add live in registers.
1409     for (const CalleeSavedInfo &I : CSI)
1410       MBB.addLiveIn(I.getReg());
1411     return true;
1412   }
1413 
1414   for (const CalleeSavedInfo &I : CSI) {
1415     Register Reg = I.getReg();
1416     // Add live in registers. We treat eh_return callee saved register r0 - r3
1417     // specially. They are not really callee saved registers as they are not
1418     // supposed to be killed.
1419     bool IsKill = !HRI.isEHReturnCalleeSaveReg(Reg);
1420     int FI = I.getFrameIdx();
1421     const TargetRegisterClass *RC = HRI.getMinimalPhysRegClass(Reg);
1422     HII.storeRegToStackSlot(MBB, MI, Reg, IsKill, FI, RC, &HRI, Register());
1423     if (IsKill)
1424       MBB.addLiveIn(Reg);
1425   }
1426   return true;
1427 }
1428 
1429 bool HexagonFrameLowering::insertCSRRestoresInBlock(MachineBasicBlock &MBB,
1430       const CSIVect &CSI, const HexagonRegisterInfo &HRI) const {
1431   if (CSI.empty())
1432     return false;
1433 
1434   MachineBasicBlock::iterator MI = MBB.getFirstTerminator();
1435   MachineFunction &MF = *MBB.getParent();
1436   auto &HST = MF.getSubtarget<HexagonSubtarget>();
1437   auto &HII = *HST.getInstrInfo();
1438 
1439   if (useRestoreFunction(MF, CSI)) {
1440     bool HasTC = hasTailCall(MBB) || !hasReturn(MBB);
1441     Register MaxR = getMaxCalleeSavedReg(CSI, HRI);
1442     SpillKind Kind = HasTC ? SK_FromMemTailcall : SK_FromMem;
1443     const char *RestoreFn = getSpillFunctionFor(MaxR, Kind);
1444     auto &HTM = static_cast<const HexagonTargetMachine&>(MF.getTarget());
1445     bool IsPIC = HTM.isPositionIndependent();
1446     bool LongCalls = HST.useLongCalls() || EnableSaveRestoreLong;
1447 
1448     // Call spill function.
1449     DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc()
1450                                   : MBB.findDebugLoc(MBB.end());
1451     MachineInstr *DeallocCall = nullptr;
1452 
1453     if (HasTC) {
1454       unsigned RetOpc;
1455       if (LongCalls)
1456         RetOpc = IsPIC ? Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT_PIC
1457                        : Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT;
1458       else
1459         RetOpc = IsPIC ? Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC
1460                        : Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4;
1461       DeallocCall = BuildMI(MBB, MI, DL, HII.get(RetOpc))
1462           .addExternalSymbol(RestoreFn);
1463     } else {
1464       // The block has a return.
1465       MachineBasicBlock::iterator It = MBB.getFirstTerminator();
1466       assert(It->isReturn() && std::next(It) == MBB.end());
1467       unsigned RetOpc;
1468       if (LongCalls)
1469         RetOpc = IsPIC ? Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT_PIC
1470                        : Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT;
1471       else
1472         RetOpc = IsPIC ? Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC
1473                        : Hexagon::RESTORE_DEALLOC_RET_JMP_V4;
1474       DeallocCall = BuildMI(MBB, It, DL, HII.get(RetOpc))
1475           .addExternalSymbol(RestoreFn);
1476       // Transfer the function live-out registers.
1477       DeallocCall->copyImplicitOps(MF, *It);
1478     }
1479     addCalleeSaveRegistersAsImpOperand(DeallocCall, CSI, true, false);
1480     return true;
1481   }
1482 
1483   for (const CalleeSavedInfo &I : CSI) {
1484     Register Reg = I.getReg();
1485     const TargetRegisterClass *RC = HRI.getMinimalPhysRegClass(Reg);
1486     int FI = I.getFrameIdx();
1487     HII.loadRegFromStackSlot(MBB, MI, Reg, FI, RC, &HRI, Register());
1488   }
1489 
1490   return true;
1491 }
1492 
1493 MachineBasicBlock::iterator HexagonFrameLowering::eliminateCallFramePseudoInstr(
1494     MachineFunction &MF, MachineBasicBlock &MBB,
1495     MachineBasicBlock::iterator I) const {
1496   MachineInstr &MI = *I;
1497   unsigned Opc = MI.getOpcode();
1498   (void)Opc; // Silence compiler warning.
1499   assert((Opc == Hexagon::ADJCALLSTACKDOWN || Opc == Hexagon::ADJCALLSTACKUP) &&
1500          "Cannot handle this call frame pseudo instruction");
1501   return MBB.erase(I);
1502 }
1503 
1504 void HexagonFrameLowering::processFunctionBeforeFrameFinalized(
1505     MachineFunction &MF, RegScavenger *RS) const {
1506   // If this function has uses aligned stack and also has variable sized stack
1507   // objects, then we need to map all spill slots to fixed positions, so that
1508   // they can be accessed through FP. Otherwise they would have to be accessed
1509   // via AP, which may not be available at the particular place in the program.
1510   MachineFrameInfo &MFI = MF.getFrameInfo();
1511   bool HasAlloca = MFI.hasVarSizedObjects();
1512   bool NeedsAlign = (MFI.getMaxAlign() > getStackAlign());
1513 
1514   if (!HasAlloca || !NeedsAlign)
1515     return;
1516 
1517   // Set the physical aligned-stack base address register.
1518   Register AP = 0;
1519   if (const MachineInstr *AI = getAlignaInstr(MF))
1520     AP = AI->getOperand(0).getReg();
1521   auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>();
1522   assert(!AP.isValid() || AP.isPhysical());
1523   HMFI.setStackAlignBaseReg(AP);
1524 }
1525 
1526 /// Returns true if there are no caller-saved registers available in class RC.
1527 static bool needToReserveScavengingSpillSlots(MachineFunction &MF,
1528       const HexagonRegisterInfo &HRI, const TargetRegisterClass *RC) {
1529   MachineRegisterInfo &MRI = MF.getRegInfo();
1530 
1531   auto IsUsed = [&HRI,&MRI] (Register Reg) -> bool {
1532     for (MCRegAliasIterator AI(Reg, &HRI, true); AI.isValid(); ++AI)
1533       if (MRI.isPhysRegUsed(*AI))
1534         return true;
1535     return false;
1536   };
1537 
1538   // Check for an unused caller-saved register. Callee-saved registers
1539   // have become pristine by now.
1540   for (const MCPhysReg *P = HRI.getCallerSavedRegs(&MF, RC); *P; ++P)
1541     if (!IsUsed(*P))
1542       return false;
1543 
1544   // All caller-saved registers are used.
1545   return true;
1546 }
1547 
1548 #ifndef NDEBUG
1549 static void dump_registers(BitVector &Regs, const TargetRegisterInfo &TRI) {
1550   dbgs() << '{';
1551   for (int x = Regs.find_first(); x >= 0; x = Regs.find_next(x)) {
1552     Register R = x;
1553     dbgs() << ' ' << printReg(R, &TRI);
1554   }
1555   dbgs() << " }";
1556 }
1557 #endif
1558 
1559 bool HexagonFrameLowering::assignCalleeSavedSpillSlots(MachineFunction &MF,
1560       const TargetRegisterInfo *TRI, std::vector<CalleeSavedInfo> &CSI) const {
1561   LLVM_DEBUG(dbgs() << __func__ << " on " << MF.getName() << '\n');
1562   MachineFrameInfo &MFI = MF.getFrameInfo();
1563   BitVector SRegs(Hexagon::NUM_TARGET_REGS);
1564 
1565   // Generate a set of unique, callee-saved registers (SRegs), where each
1566   // register in the set is maximal in terms of sub-/super-register relation,
1567   // i.e. for each R in SRegs, no proper super-register of R is also in SRegs.
1568 
1569   // (1) For each callee-saved register, add that register and all of its
1570   // sub-registers to SRegs.
1571   LLVM_DEBUG(dbgs() << "Initial CS registers: {");
1572   for (const CalleeSavedInfo &I : CSI) {
1573     Register R = I.getReg();
1574     LLVM_DEBUG(dbgs() << ' ' << printReg(R, TRI));
1575     for (MCPhysReg SR : TRI->subregs_inclusive(R))
1576       SRegs[SR] = true;
1577   }
1578   LLVM_DEBUG(dbgs() << " }\n");
1579   LLVM_DEBUG(dbgs() << "SRegs.1: "; dump_registers(SRegs, *TRI);
1580              dbgs() << "\n");
1581 
1582   // (2) For each reserved register, remove that register and all of its
1583   // sub- and super-registers from SRegs.
1584   BitVector Reserved = TRI->getReservedRegs(MF);
1585   // Unreserve the stack align register: it is reserved for this function
1586   // only, it still needs to be saved/restored.
1587   Register AP =
1588       MF.getInfo<HexagonMachineFunctionInfo>()->getStackAlignBaseReg();
1589   if (AP.isValid()) {
1590     Reserved[AP] = false;
1591     // Unreserve super-regs if no other subregisters are reserved.
1592     for (MCPhysReg SP : TRI->superregs(AP)) {
1593       bool HasResSub = false;
1594       for (MCPhysReg SB : TRI->subregs(SP)) {
1595         if (!Reserved[SB])
1596           continue;
1597         HasResSub = true;
1598         break;
1599       }
1600       if (!HasResSub)
1601         Reserved[SP] = false;
1602     }
1603   }
1604 
1605   for (int x = Reserved.find_first(); x >= 0; x = Reserved.find_next(x)) {
1606     Register R = x;
1607     for (MCPhysReg SR : TRI->superregs_inclusive(R))
1608       SRegs[SR] = false;
1609   }
1610   LLVM_DEBUG(dbgs() << "Res:     "; dump_registers(Reserved, *TRI);
1611              dbgs() << "\n");
1612   LLVM_DEBUG(dbgs() << "SRegs.2: "; dump_registers(SRegs, *TRI);
1613              dbgs() << "\n");
1614 
1615   // (3) Collect all registers that have at least one sub-register in SRegs,
1616   // and also have no sub-registers that are reserved. These will be the can-
1617   // didates for saving as a whole instead of their individual sub-registers.
1618   // (Saving R17:16 instead of R16 is fine, but only if R17 was not reserved.)
1619   BitVector TmpSup(Hexagon::NUM_TARGET_REGS);
1620   for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) {
1621     Register R = x;
1622     for (MCPhysReg SR : TRI->superregs(R))
1623       TmpSup[SR] = true;
1624   }
1625   for (int x = TmpSup.find_first(); x >= 0; x = TmpSup.find_next(x)) {
1626     Register R = x;
1627     for (MCPhysReg SR : TRI->subregs_inclusive(R)) {
1628       if (!Reserved[SR])
1629         continue;
1630       TmpSup[R] = false;
1631       break;
1632     }
1633   }
1634   LLVM_DEBUG(dbgs() << "TmpSup:  "; dump_registers(TmpSup, *TRI);
1635              dbgs() << "\n");
1636 
1637   // (4) Include all super-registers found in (3) into SRegs.
1638   SRegs |= TmpSup;
1639   LLVM_DEBUG(dbgs() << "SRegs.4: "; dump_registers(SRegs, *TRI);
1640              dbgs() << "\n");
1641 
1642   // (5) For each register R in SRegs, if any super-register of R is in SRegs,
1643   // remove R from SRegs.
1644   for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) {
1645     Register R = x;
1646     for (MCPhysReg SR : TRI->superregs(R)) {
1647       if (!SRegs[SR])
1648         continue;
1649       SRegs[R] = false;
1650       break;
1651     }
1652   }
1653   LLVM_DEBUG(dbgs() << "SRegs.5: "; dump_registers(SRegs, *TRI);
1654              dbgs() << "\n");
1655 
1656   // Now, for each register that has a fixed stack slot, create the stack
1657   // object for it.
1658   CSI.clear();
1659 
1660   using SpillSlot = TargetFrameLowering::SpillSlot;
1661 
1662   unsigned NumFixed;
1663   int MinOffset = 0;  // CS offsets are negative.
1664   const SpillSlot *FixedSlots = getCalleeSavedSpillSlots(NumFixed);
1665   for (const SpillSlot *S = FixedSlots; S != FixedSlots+NumFixed; ++S) {
1666     if (!SRegs[S->Reg])
1667       continue;
1668     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(S->Reg);
1669     int FI = MFI.CreateFixedSpillStackObject(TRI->getSpillSize(*RC), S->Offset);
1670     MinOffset = std::min(MinOffset, S->Offset);
1671     CSI.push_back(CalleeSavedInfo(S->Reg, FI));
1672     SRegs[S->Reg] = false;
1673   }
1674 
1675   // There can be some registers that don't have fixed slots. For example,
1676   // we need to store R0-R3 in functions with exception handling. For each
1677   // such register, create a non-fixed stack object.
1678   for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) {
1679     Register R = x;
1680     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(R);
1681     unsigned Size = TRI->getSpillSize(*RC);
1682     int Off = MinOffset - Size;
1683     Align Alignment = std::min(TRI->getSpillAlign(*RC), getStackAlign());
1684     Off &= -Alignment.value();
1685     int FI = MFI.CreateFixedSpillStackObject(Size, Off);
1686     MinOffset = std::min(MinOffset, Off);
1687     CSI.push_back(CalleeSavedInfo(R, FI));
1688     SRegs[R] = false;
1689   }
1690 
1691   LLVM_DEBUG({
1692     dbgs() << "CS information: {";
1693     for (const CalleeSavedInfo &I : CSI) {
1694       int FI = I.getFrameIdx();
1695       int Off = MFI.getObjectOffset(FI);
1696       dbgs() << ' ' << printReg(I.getReg(), TRI) << ":fi#" << FI << ":sp";
1697       if (Off >= 0)
1698         dbgs() << '+';
1699       dbgs() << Off;
1700     }
1701     dbgs() << " }\n";
1702   });
1703 
1704 #ifndef NDEBUG
1705   // Verify that all registers were handled.
1706   bool MissedReg = false;
1707   for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) {
1708     Register R = x;
1709     dbgs() << printReg(R, TRI) << ' ';
1710     MissedReg = true;
1711   }
1712   if (MissedReg)
1713     llvm_unreachable("...there are unhandled callee-saved registers!");
1714 #endif
1715 
1716   return true;
1717 }
1718 
1719 bool HexagonFrameLowering::expandCopy(MachineBasicBlock &B,
1720       MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
1721       const HexagonInstrInfo &HII, SmallVectorImpl<Register> &NewRegs) const {
1722   MachineInstr *MI = &*It;
1723   DebugLoc DL = MI->getDebugLoc();
1724   Register DstR = MI->getOperand(0).getReg();
1725   Register SrcR = MI->getOperand(1).getReg();
1726   if (!Hexagon::ModRegsRegClass.contains(DstR) ||
1727       !Hexagon::ModRegsRegClass.contains(SrcR))
1728     return false;
1729 
1730   Register TmpR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
1731   BuildMI(B, It, DL, HII.get(TargetOpcode::COPY), TmpR).add(MI->getOperand(1));
1732   BuildMI(B, It, DL, HII.get(TargetOpcode::COPY), DstR)
1733     .addReg(TmpR, RegState::Kill);
1734 
1735   NewRegs.push_back(TmpR);
1736   B.erase(It);
1737   return true;
1738 }
1739 
1740 bool HexagonFrameLowering::expandStoreInt(MachineBasicBlock &B,
1741       MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
1742       const HexagonInstrInfo &HII, SmallVectorImpl<Register> &NewRegs) const {
1743   MachineInstr *MI = &*It;
1744   if (!MI->getOperand(0).isFI())
1745     return false;
1746 
1747   DebugLoc DL = MI->getDebugLoc();
1748   unsigned Opc = MI->getOpcode();
1749   Register SrcR = MI->getOperand(2).getReg();
1750   bool IsKill = MI->getOperand(2).isKill();
1751   int FI = MI->getOperand(0).getIndex();
1752 
1753   // TmpR = C2_tfrpr SrcR   if SrcR is a predicate register
1754   // TmpR = A2_tfrcrr SrcR  if SrcR is a modifier register
1755   Register TmpR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
1756   unsigned TfrOpc = (Opc == Hexagon::STriw_pred) ? Hexagon::C2_tfrpr
1757                                                  : Hexagon::A2_tfrcrr;
1758   BuildMI(B, It, DL, HII.get(TfrOpc), TmpR)
1759     .addReg(SrcR, getKillRegState(IsKill));
1760 
1761   // S2_storeri_io FI, 0, TmpR
1762   BuildMI(B, It, DL, HII.get(Hexagon::S2_storeri_io))
1763       .addFrameIndex(FI)
1764       .addImm(0)
1765       .addReg(TmpR, RegState::Kill)
1766       .cloneMemRefs(*MI);
1767 
1768   NewRegs.push_back(TmpR);
1769   B.erase(It);
1770   return true;
1771 }
1772 
1773 bool HexagonFrameLowering::expandLoadInt(MachineBasicBlock &B,
1774       MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
1775       const HexagonInstrInfo &HII, SmallVectorImpl<Register> &NewRegs) const {
1776   MachineInstr *MI = &*It;
1777   if (!MI->getOperand(1).isFI())
1778     return false;
1779 
1780   DebugLoc DL = MI->getDebugLoc();
1781   unsigned Opc = MI->getOpcode();
1782   Register DstR = MI->getOperand(0).getReg();
1783   int FI = MI->getOperand(1).getIndex();
1784 
1785   // TmpR = L2_loadri_io FI, 0
1786   Register TmpR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
1787   BuildMI(B, It, DL, HII.get(Hexagon::L2_loadri_io), TmpR)
1788       .addFrameIndex(FI)
1789       .addImm(0)
1790       .cloneMemRefs(*MI);
1791 
1792   // DstR = C2_tfrrp TmpR   if DstR is a predicate register
1793   // DstR = A2_tfrrcr TmpR  if DstR is a modifier register
1794   unsigned TfrOpc = (Opc == Hexagon::LDriw_pred) ? Hexagon::C2_tfrrp
1795                                                  : Hexagon::A2_tfrrcr;
1796   BuildMI(B, It, DL, HII.get(TfrOpc), DstR)
1797     .addReg(TmpR, RegState::Kill);
1798 
1799   NewRegs.push_back(TmpR);
1800   B.erase(It);
1801   return true;
1802 }
1803 
1804 bool HexagonFrameLowering::expandStoreVecPred(MachineBasicBlock &B,
1805       MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
1806       const HexagonInstrInfo &HII, SmallVectorImpl<Register> &NewRegs) const {
1807   MachineInstr *MI = &*It;
1808   if (!MI->getOperand(0).isFI())
1809     return false;
1810 
1811   DebugLoc DL = MI->getDebugLoc();
1812   Register SrcR = MI->getOperand(2).getReg();
1813   bool IsKill = MI->getOperand(2).isKill();
1814   int FI = MI->getOperand(0).getIndex();
1815   auto *RC = &Hexagon::HvxVRRegClass;
1816 
1817   // Insert transfer to general vector register.
1818   //   TmpR0 = A2_tfrsi 0x01010101
1819   //   TmpR1 = V6_vandqrt Qx, TmpR0
1820   //   store FI, 0, TmpR1
1821   Register TmpR0 = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
1822   Register TmpR1 = MRI.createVirtualRegister(RC);
1823 
1824   BuildMI(B, It, DL, HII.get(Hexagon::A2_tfrsi), TmpR0)
1825     .addImm(0x01010101);
1826 
1827   BuildMI(B, It, DL, HII.get(Hexagon::V6_vandqrt), TmpR1)
1828     .addReg(SrcR, getKillRegState(IsKill))
1829     .addReg(TmpR0, RegState::Kill);
1830 
1831   auto *HRI = B.getParent()->getSubtarget<HexagonSubtarget>().getRegisterInfo();
1832   HII.storeRegToStackSlot(B, It, TmpR1, true, FI, RC, HRI, Register());
1833   expandStoreVec(B, std::prev(It), MRI, HII, NewRegs);
1834 
1835   NewRegs.push_back(TmpR0);
1836   NewRegs.push_back(TmpR1);
1837   B.erase(It);
1838   return true;
1839 }
1840 
1841 bool HexagonFrameLowering::expandLoadVecPred(MachineBasicBlock &B,
1842       MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
1843       const HexagonInstrInfo &HII, SmallVectorImpl<Register> &NewRegs) const {
1844   MachineInstr *MI = &*It;
1845   if (!MI->getOperand(1).isFI())
1846     return false;
1847 
1848   DebugLoc DL = MI->getDebugLoc();
1849   Register DstR = MI->getOperand(0).getReg();
1850   int FI = MI->getOperand(1).getIndex();
1851   auto *RC = &Hexagon::HvxVRRegClass;
1852 
1853   // TmpR0 = A2_tfrsi 0x01010101
1854   // TmpR1 = load FI, 0
1855   // DstR = V6_vandvrt TmpR1, TmpR0
1856   Register TmpR0 = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
1857   Register TmpR1 = MRI.createVirtualRegister(RC);
1858 
1859   BuildMI(B, It, DL, HII.get(Hexagon::A2_tfrsi), TmpR0)
1860     .addImm(0x01010101);
1861   MachineFunction &MF = *B.getParent();
1862   auto *HRI = MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
1863   HII.loadRegFromStackSlot(B, It, TmpR1, FI, RC, HRI, Register());
1864   expandLoadVec(B, std::prev(It), MRI, HII, NewRegs);
1865 
1866   BuildMI(B, It, DL, HII.get(Hexagon::V6_vandvrt), DstR)
1867     .addReg(TmpR1, RegState::Kill)
1868     .addReg(TmpR0, RegState::Kill);
1869 
1870   NewRegs.push_back(TmpR0);
1871   NewRegs.push_back(TmpR1);
1872   B.erase(It);
1873   return true;
1874 }
1875 
1876 bool HexagonFrameLowering::expandStoreVec2(MachineBasicBlock &B,
1877       MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
1878       const HexagonInstrInfo &HII, SmallVectorImpl<Register> &NewRegs) const {
1879   MachineFunction &MF = *B.getParent();
1880   auto &MFI = MF.getFrameInfo();
1881   auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
1882   MachineInstr *MI = &*It;
1883   if (!MI->getOperand(0).isFI())
1884     return false;
1885 
1886   // It is possible that the double vector being stored is only partially
1887   // defined. From the point of view of the liveness tracking, it is ok to
1888   // store it as a whole, but if we break it up we may end up storing a
1889   // register that is entirely undefined.
1890   LivePhysRegs LPR(HRI);
1891   LPR.addLiveIns(B);
1892   SmallVector<std::pair<MCPhysReg, const MachineOperand*>,2> Clobbers;
1893   for (auto R = B.begin(); R != It; ++R) {
1894     Clobbers.clear();
1895     LPR.stepForward(*R, Clobbers);
1896   }
1897 
1898   DebugLoc DL = MI->getDebugLoc();
1899   Register SrcR = MI->getOperand(2).getReg();
1900   Register SrcLo = HRI.getSubReg(SrcR, Hexagon::vsub_lo);
1901   Register SrcHi = HRI.getSubReg(SrcR, Hexagon::vsub_hi);
1902   bool IsKill = MI->getOperand(2).isKill();
1903   int FI = MI->getOperand(0).getIndex();
1904 
1905   unsigned Size = HRI.getSpillSize(Hexagon::HvxVRRegClass);
1906   Align NeedAlign = HRI.getSpillAlign(Hexagon::HvxVRRegClass);
1907   Align HasAlign = MFI.getObjectAlign(FI);
1908   unsigned StoreOpc;
1909 
1910   // Store low part.
1911   if (LPR.contains(SrcLo)) {
1912     StoreOpc = NeedAlign <= HasAlign ? Hexagon::V6_vS32b_ai
1913                                      : Hexagon::V6_vS32Ub_ai;
1914     BuildMI(B, It, DL, HII.get(StoreOpc))
1915         .addFrameIndex(FI)
1916         .addImm(0)
1917         .addReg(SrcLo, getKillRegState(IsKill))
1918         .cloneMemRefs(*MI);
1919   }
1920 
1921   // Store high part.
1922   if (LPR.contains(SrcHi)) {
1923     StoreOpc = NeedAlign <= HasAlign ? Hexagon::V6_vS32b_ai
1924                                      : Hexagon::V6_vS32Ub_ai;
1925     BuildMI(B, It, DL, HII.get(StoreOpc))
1926         .addFrameIndex(FI)
1927         .addImm(Size)
1928         .addReg(SrcHi, getKillRegState(IsKill))
1929         .cloneMemRefs(*MI);
1930   }
1931 
1932   B.erase(It);
1933   return true;
1934 }
1935 
1936 bool HexagonFrameLowering::expandLoadVec2(MachineBasicBlock &B,
1937       MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
1938       const HexagonInstrInfo &HII, SmallVectorImpl<Register> &NewRegs) const {
1939   MachineFunction &MF = *B.getParent();
1940   auto &MFI = MF.getFrameInfo();
1941   auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
1942   MachineInstr *MI = &*It;
1943   if (!MI->getOperand(1).isFI())
1944     return false;
1945 
1946   DebugLoc DL = MI->getDebugLoc();
1947   Register DstR = MI->getOperand(0).getReg();
1948   Register DstHi = HRI.getSubReg(DstR, Hexagon::vsub_hi);
1949   Register DstLo = HRI.getSubReg(DstR, Hexagon::vsub_lo);
1950   int FI = MI->getOperand(1).getIndex();
1951 
1952   unsigned Size = HRI.getSpillSize(Hexagon::HvxVRRegClass);
1953   Align NeedAlign = HRI.getSpillAlign(Hexagon::HvxVRRegClass);
1954   Align HasAlign = MFI.getObjectAlign(FI);
1955   unsigned LoadOpc;
1956 
1957   // Load low part.
1958   LoadOpc = NeedAlign <= HasAlign ? Hexagon::V6_vL32b_ai
1959                                   : Hexagon::V6_vL32Ub_ai;
1960   BuildMI(B, It, DL, HII.get(LoadOpc), DstLo)
1961       .addFrameIndex(FI)
1962       .addImm(0)
1963       .cloneMemRefs(*MI);
1964 
1965   // Load high part.
1966   LoadOpc = NeedAlign <= HasAlign ? Hexagon::V6_vL32b_ai
1967                                   : Hexagon::V6_vL32Ub_ai;
1968   BuildMI(B, It, DL, HII.get(LoadOpc), DstHi)
1969       .addFrameIndex(FI)
1970       .addImm(Size)
1971       .cloneMemRefs(*MI);
1972 
1973   B.erase(It);
1974   return true;
1975 }
1976 
1977 bool HexagonFrameLowering::expandStoreVec(MachineBasicBlock &B,
1978       MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
1979       const HexagonInstrInfo &HII, SmallVectorImpl<Register> &NewRegs) const {
1980   MachineFunction &MF = *B.getParent();
1981   auto &MFI = MF.getFrameInfo();
1982   MachineInstr *MI = &*It;
1983   if (!MI->getOperand(0).isFI())
1984     return false;
1985 
1986   auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
1987   DebugLoc DL = MI->getDebugLoc();
1988   Register SrcR = MI->getOperand(2).getReg();
1989   bool IsKill = MI->getOperand(2).isKill();
1990   int FI = MI->getOperand(0).getIndex();
1991 
1992   Align NeedAlign = HRI.getSpillAlign(Hexagon::HvxVRRegClass);
1993   Align HasAlign = MFI.getObjectAlign(FI);
1994   unsigned StoreOpc = NeedAlign <= HasAlign ? Hexagon::V6_vS32b_ai
1995                                             : Hexagon::V6_vS32Ub_ai;
1996   BuildMI(B, It, DL, HII.get(StoreOpc))
1997       .addFrameIndex(FI)
1998       .addImm(0)
1999       .addReg(SrcR, getKillRegState(IsKill))
2000       .cloneMemRefs(*MI);
2001 
2002   B.erase(It);
2003   return true;
2004 }
2005 
2006 bool HexagonFrameLowering::expandLoadVec(MachineBasicBlock &B,
2007       MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
2008       const HexagonInstrInfo &HII, SmallVectorImpl<Register> &NewRegs) const {
2009   MachineFunction &MF = *B.getParent();
2010   auto &MFI = MF.getFrameInfo();
2011   MachineInstr *MI = &*It;
2012   if (!MI->getOperand(1).isFI())
2013     return false;
2014 
2015   auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
2016   DebugLoc DL = MI->getDebugLoc();
2017   Register DstR = MI->getOperand(0).getReg();
2018   int FI = MI->getOperand(1).getIndex();
2019 
2020   Align NeedAlign = HRI.getSpillAlign(Hexagon::HvxVRRegClass);
2021   Align HasAlign = MFI.getObjectAlign(FI);
2022   unsigned LoadOpc = NeedAlign <= HasAlign ? Hexagon::V6_vL32b_ai
2023                                            : Hexagon::V6_vL32Ub_ai;
2024   BuildMI(B, It, DL, HII.get(LoadOpc), DstR)
2025       .addFrameIndex(FI)
2026       .addImm(0)
2027       .cloneMemRefs(*MI);
2028 
2029   B.erase(It);
2030   return true;
2031 }
2032 
2033 bool HexagonFrameLowering::expandSpillMacros(MachineFunction &MF,
2034       SmallVectorImpl<Register> &NewRegs) const {
2035   auto &HII = *MF.getSubtarget<HexagonSubtarget>().getInstrInfo();
2036   MachineRegisterInfo &MRI = MF.getRegInfo();
2037   bool Changed = false;
2038 
2039   for (auto &B : MF) {
2040     // Traverse the basic block.
2041     MachineBasicBlock::iterator NextI;
2042     for (auto I = B.begin(), E = B.end(); I != E; I = NextI) {
2043       MachineInstr *MI = &*I;
2044       NextI = std::next(I);
2045       unsigned Opc = MI->getOpcode();
2046 
2047       switch (Opc) {
2048         case TargetOpcode::COPY:
2049           Changed |= expandCopy(B, I, MRI, HII, NewRegs);
2050           break;
2051         case Hexagon::STriw_pred:
2052         case Hexagon::STriw_ctr:
2053           Changed |= expandStoreInt(B, I, MRI, HII, NewRegs);
2054           break;
2055         case Hexagon::LDriw_pred:
2056         case Hexagon::LDriw_ctr:
2057           Changed |= expandLoadInt(B, I, MRI, HII, NewRegs);
2058           break;
2059         case Hexagon::PS_vstorerq_ai:
2060           Changed |= expandStoreVecPred(B, I, MRI, HII, NewRegs);
2061           break;
2062         case Hexagon::PS_vloadrq_ai:
2063           Changed |= expandLoadVecPred(B, I, MRI, HII, NewRegs);
2064           break;
2065         case Hexagon::PS_vloadrw_ai:
2066           Changed |= expandLoadVec2(B, I, MRI, HII, NewRegs);
2067           break;
2068         case Hexagon::PS_vstorerw_ai:
2069           Changed |= expandStoreVec2(B, I, MRI, HII, NewRegs);
2070           break;
2071       }
2072     }
2073   }
2074 
2075   return Changed;
2076 }
2077 
2078 void HexagonFrameLowering::determineCalleeSaves(MachineFunction &MF,
2079                                                 BitVector &SavedRegs,
2080                                                 RegScavenger *RS) const {
2081   auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
2082 
2083   SavedRegs.resize(HRI.getNumRegs());
2084 
2085   // If we have a function containing __builtin_eh_return we want to spill and
2086   // restore all callee saved registers. Pretend that they are used.
2087   if (MF.getInfo<HexagonMachineFunctionInfo>()->hasEHReturn())
2088     for (const MCPhysReg *R = HRI.getCalleeSavedRegs(&MF); *R; ++R)
2089       SavedRegs.set(*R);
2090 
2091   // Replace predicate register pseudo spill code.
2092   SmallVector<Register,8> NewRegs;
2093   expandSpillMacros(MF, NewRegs);
2094   if (OptimizeSpillSlots && !isOptNone(MF))
2095     optimizeSpillSlots(MF, NewRegs);
2096 
2097   // We need to reserve a spill slot if scavenging could potentially require
2098   // spilling a scavenged register.
2099   if (!NewRegs.empty() || mayOverflowFrameOffset(MF)) {
2100     MachineFrameInfo &MFI = MF.getFrameInfo();
2101     MachineRegisterInfo &MRI = MF.getRegInfo();
2102     SetVector<const TargetRegisterClass*> SpillRCs;
2103     // Reserve an int register in any case, because it could be used to hold
2104     // the stack offset in case it does not fit into a spill instruction.
2105     SpillRCs.insert(&Hexagon::IntRegsRegClass);
2106 
2107     for (Register VR : NewRegs)
2108       SpillRCs.insert(MRI.getRegClass(VR));
2109 
2110     for (const auto *RC : SpillRCs) {
2111       if (!needToReserveScavengingSpillSlots(MF, HRI, RC))
2112         continue;
2113       unsigned Num = 1;
2114       switch (RC->getID()) {
2115         case Hexagon::IntRegsRegClassID:
2116           Num = NumberScavengerSlots;
2117           break;
2118         case Hexagon::HvxQRRegClassID:
2119           Num = 2; // Vector predicate spills also need a vector register.
2120           break;
2121       }
2122       unsigned S = HRI.getSpillSize(*RC);
2123       Align A = HRI.getSpillAlign(*RC);
2124       for (unsigned i = 0; i < Num; i++) {
2125         int NewFI = MFI.CreateSpillStackObject(S, A);
2126         RS->addScavengingFrameIndex(NewFI);
2127       }
2128     }
2129   }
2130 
2131   TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
2132 }
2133 
2134 Register HexagonFrameLowering::findPhysReg(MachineFunction &MF,
2135       HexagonBlockRanges::IndexRange &FIR,
2136       HexagonBlockRanges::InstrIndexMap &IndexMap,
2137       HexagonBlockRanges::RegToRangeMap &DeadMap,
2138       const TargetRegisterClass *RC) const {
2139   auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
2140   auto &MRI = MF.getRegInfo();
2141 
2142   auto isDead = [&FIR,&DeadMap] (Register Reg) -> bool {
2143     auto F = DeadMap.find({Reg,0});
2144     if (F == DeadMap.end())
2145       return false;
2146     for (auto &DR : F->second)
2147       if (DR.contains(FIR))
2148         return true;
2149     return false;
2150   };
2151 
2152   for (Register Reg : RC->getRawAllocationOrder(MF)) {
2153     bool Dead = true;
2154     for (auto R : HexagonBlockRanges::expandToSubRegs({Reg,0}, MRI, HRI)) {
2155       if (isDead(R.Reg))
2156         continue;
2157       Dead = false;
2158       break;
2159     }
2160     if (Dead)
2161       return Reg;
2162   }
2163   return 0;
2164 }
2165 
2166 void HexagonFrameLowering::optimizeSpillSlots(MachineFunction &MF,
2167       SmallVectorImpl<Register> &VRegs) const {
2168   auto &HST = MF.getSubtarget<HexagonSubtarget>();
2169   auto &HII = *HST.getInstrInfo();
2170   auto &HRI = *HST.getRegisterInfo();
2171   auto &MRI = MF.getRegInfo();
2172   HexagonBlockRanges HBR(MF);
2173 
2174   using BlockIndexMap =
2175       std::map<MachineBasicBlock *, HexagonBlockRanges::InstrIndexMap>;
2176   using BlockRangeMap =
2177       std::map<MachineBasicBlock *, HexagonBlockRanges::RangeList>;
2178   using IndexType = HexagonBlockRanges::IndexType;
2179 
2180   struct SlotInfo {
2181     BlockRangeMap Map;
2182     unsigned Size = 0;
2183     const TargetRegisterClass *RC = nullptr;
2184 
2185     SlotInfo() = default;
2186   };
2187 
2188   BlockIndexMap BlockIndexes;
2189   SmallSet<int,4> BadFIs;
2190   std::map<int,SlotInfo> FIRangeMap;
2191 
2192   // Accumulate register classes: get a common class for a pre-existing
2193   // class HaveRC and a new class NewRC. Return nullptr if a common class
2194   // cannot be found, otherwise return the resulting class. If HaveRC is
2195   // nullptr, assume that it is still unset.
2196   auto getCommonRC =
2197       [](const TargetRegisterClass *HaveRC,
2198          const TargetRegisterClass *NewRC) -> const TargetRegisterClass * {
2199     if (HaveRC == nullptr || HaveRC == NewRC)
2200       return NewRC;
2201     // Different classes, both non-null. Pick the more general one.
2202     if (HaveRC->hasSubClassEq(NewRC))
2203       return HaveRC;
2204     if (NewRC->hasSubClassEq(HaveRC))
2205       return NewRC;
2206     return nullptr;
2207   };
2208 
2209   // Scan all blocks in the function. Check all occurrences of frame indexes,
2210   // and collect relevant information.
2211   for (auto &B : MF) {
2212     std::map<int,IndexType> LastStore, LastLoad;
2213     // Emplace appears not to be supported in gcc 4.7.2-4.
2214     //auto P = BlockIndexes.emplace(&B, HexagonBlockRanges::InstrIndexMap(B));
2215     auto P = BlockIndexes.insert(
2216                 std::make_pair(&B, HexagonBlockRanges::InstrIndexMap(B)));
2217     auto &IndexMap = P.first->second;
2218     LLVM_DEBUG(dbgs() << "Index map for " << printMBBReference(B) << "\n"
2219                       << IndexMap << '\n');
2220 
2221     for (auto &In : B) {
2222       int LFI, SFI;
2223       bool Load = HII.isLoadFromStackSlot(In, LFI) && !HII.isPredicated(In);
2224       bool Store = HII.isStoreToStackSlot(In, SFI) && !HII.isPredicated(In);
2225       if (Load && Store) {
2226         // If it's both a load and a store, then we won't handle it.
2227         BadFIs.insert(LFI);
2228         BadFIs.insert(SFI);
2229         continue;
2230       }
2231       // Check for register classes of the register used as the source for
2232       // the store, and the register used as the destination for the load.
2233       // Also, only accept base+imm_offset addressing modes. Other addressing
2234       // modes can have side-effects (post-increments, etc.). For stack
2235       // slots they are very unlikely, so there is not much loss due to
2236       // this restriction.
2237       if (Load || Store) {
2238         int TFI = Load ? LFI : SFI;
2239         unsigned AM = HII.getAddrMode(In);
2240         SlotInfo &SI = FIRangeMap[TFI];
2241         bool Bad = (AM != HexagonII::BaseImmOffset);
2242         if (!Bad) {
2243           // If the addressing mode is ok, check the register class.
2244           unsigned OpNum = Load ? 0 : 2;
2245           auto *RC = HII.getRegClass(In.getDesc(), OpNum, &HRI, MF);
2246           RC = getCommonRC(SI.RC, RC);
2247           if (RC == nullptr)
2248             Bad = true;
2249           else
2250             SI.RC = RC;
2251         }
2252         if (!Bad) {
2253           // Check sizes.
2254           unsigned S = HII.getMemAccessSize(In);
2255           if (SI.Size != 0 && SI.Size != S)
2256             Bad = true;
2257           else
2258             SI.Size = S;
2259         }
2260         if (!Bad) {
2261           for (auto *Mo : In.memoperands()) {
2262             if (!Mo->isVolatile() && !Mo->isAtomic())
2263               continue;
2264             Bad = true;
2265             break;
2266           }
2267         }
2268         if (Bad)
2269           BadFIs.insert(TFI);
2270       }
2271 
2272       // Locate uses of frame indices.
2273       for (unsigned i = 0, n = In.getNumOperands(); i < n; ++i) {
2274         const MachineOperand &Op = In.getOperand(i);
2275         if (!Op.isFI())
2276           continue;
2277         int FI = Op.getIndex();
2278         // Make sure that the following operand is an immediate and that
2279         // it is 0. This is the offset in the stack object.
2280         if (i+1 >= n || !In.getOperand(i+1).isImm() ||
2281             In.getOperand(i+1).getImm() != 0)
2282           BadFIs.insert(FI);
2283         if (BadFIs.count(FI))
2284           continue;
2285 
2286         IndexType Index = IndexMap.getIndex(&In);
2287         if (Load) {
2288           if (LastStore[FI] == IndexType::None)
2289             LastStore[FI] = IndexType::Entry;
2290           LastLoad[FI] = Index;
2291         } else if (Store) {
2292           HexagonBlockRanges::RangeList &RL = FIRangeMap[FI].Map[&B];
2293           if (LastStore[FI] != IndexType::None)
2294             RL.add(LastStore[FI], LastLoad[FI], false, false);
2295           else if (LastLoad[FI] != IndexType::None)
2296             RL.add(IndexType::Entry, LastLoad[FI], false, false);
2297           LastLoad[FI] = IndexType::None;
2298           LastStore[FI] = Index;
2299         } else {
2300           BadFIs.insert(FI);
2301         }
2302       }
2303     }
2304 
2305     for (auto &I : LastLoad) {
2306       IndexType LL = I.second;
2307       if (LL == IndexType::None)
2308         continue;
2309       auto &RL = FIRangeMap[I.first].Map[&B];
2310       IndexType &LS = LastStore[I.first];
2311       if (LS != IndexType::None)
2312         RL.add(LS, LL, false, false);
2313       else
2314         RL.add(IndexType::Entry, LL, false, false);
2315       LS = IndexType::None;
2316     }
2317     for (auto &I : LastStore) {
2318       IndexType LS = I.second;
2319       if (LS == IndexType::None)
2320         continue;
2321       auto &RL = FIRangeMap[I.first].Map[&B];
2322       RL.add(LS, IndexType::None, false, false);
2323     }
2324   }
2325 
2326   LLVM_DEBUG({
2327     for (auto &P : FIRangeMap) {
2328       dbgs() << "fi#" << P.first;
2329       if (BadFIs.count(P.first))
2330         dbgs() << " (bad)";
2331       dbgs() << "  RC: ";
2332       if (P.second.RC != nullptr)
2333         dbgs() << HRI.getRegClassName(P.second.RC) << '\n';
2334       else
2335         dbgs() << "<null>\n";
2336       for (auto &R : P.second.Map)
2337         dbgs() << "  " << printMBBReference(*R.first) << " { " << R.second
2338                << "}\n";
2339     }
2340   });
2341 
2342   // When a slot is loaded from in a block without being stored to in the
2343   // same block, it is live-on-entry to this block. To avoid CFG analysis,
2344   // consider this slot to be live-on-exit from all blocks.
2345   SmallSet<int,4> LoxFIs;
2346 
2347   std::map<MachineBasicBlock*,std::vector<int>> BlockFIMap;
2348 
2349   for (auto &P : FIRangeMap) {
2350     // P = pair(FI, map: BB->RangeList)
2351     if (BadFIs.count(P.first))
2352       continue;
2353     for (auto &B : MF) {
2354       auto F = P.second.Map.find(&B);
2355       // F = pair(BB, RangeList)
2356       if (F == P.second.Map.end() || F->second.empty())
2357         continue;
2358       HexagonBlockRanges::IndexRange &IR = F->second.front();
2359       if (IR.start() == IndexType::Entry)
2360         LoxFIs.insert(P.first);
2361       BlockFIMap[&B].push_back(P.first);
2362     }
2363   }
2364 
2365   LLVM_DEBUG({
2366     dbgs() << "Block-to-FI map (* -- live-on-exit):\n";
2367     for (auto &P : BlockFIMap) {
2368       auto &FIs = P.second;
2369       if (FIs.empty())
2370         continue;
2371       dbgs() << "  " << printMBBReference(*P.first) << ": {";
2372       for (auto I : FIs) {
2373         dbgs() << " fi#" << I;
2374         if (LoxFIs.count(I))
2375           dbgs() << '*';
2376       }
2377       dbgs() << " }\n";
2378     }
2379   });
2380 
2381 #ifndef NDEBUG
2382   bool HasOptLimit = SpillOptMax.getPosition();
2383 #endif
2384 
2385   // eliminate loads, when all loads eliminated, eliminate all stores.
2386   for (auto &B : MF) {
2387     auto F = BlockIndexes.find(&B);
2388     assert(F != BlockIndexes.end());
2389     HexagonBlockRanges::InstrIndexMap &IM = F->second;
2390     HexagonBlockRanges::RegToRangeMap LM = HBR.computeLiveMap(IM);
2391     HexagonBlockRanges::RegToRangeMap DM = HBR.computeDeadMap(IM, LM);
2392     LLVM_DEBUG(dbgs() << printMBBReference(B) << " dead map\n"
2393                       << HexagonBlockRanges::PrintRangeMap(DM, HRI));
2394 
2395     for (auto FI : BlockFIMap[&B]) {
2396       if (BadFIs.count(FI))
2397         continue;
2398       LLVM_DEBUG(dbgs() << "Working on fi#" << FI << '\n');
2399       HexagonBlockRanges::RangeList &RL = FIRangeMap[FI].Map[&B];
2400       for (auto &Range : RL) {
2401         LLVM_DEBUG(dbgs() << "--Examining range:" << RL << '\n');
2402         if (!IndexType::isInstr(Range.start()) ||
2403             !IndexType::isInstr(Range.end()))
2404           continue;
2405         MachineInstr &SI = *IM.getInstr(Range.start());
2406         MachineInstr &EI = *IM.getInstr(Range.end());
2407         assert(SI.mayStore() && "Unexpected start instruction");
2408         assert(EI.mayLoad() && "Unexpected end instruction");
2409         MachineOperand &SrcOp = SI.getOperand(2);
2410 
2411         HexagonBlockRanges::RegisterRef SrcRR = { SrcOp.getReg(),
2412                                                   SrcOp.getSubReg() };
2413         auto *RC = HII.getRegClass(SI.getDesc(), 2, &HRI, MF);
2414         // The this-> is needed to unconfuse MSVC.
2415         Register FoundR = this->findPhysReg(MF, Range, IM, DM, RC);
2416         LLVM_DEBUG(dbgs() << "Replacement reg:" << printReg(FoundR, &HRI)
2417                           << '\n');
2418         if (FoundR == 0)
2419           continue;
2420 #ifndef NDEBUG
2421         if (HasOptLimit) {
2422           if (SpillOptCount >= SpillOptMax)
2423             return;
2424           SpillOptCount++;
2425         }
2426 #endif
2427 
2428         // Generate the copy-in: "FoundR = COPY SrcR" at the store location.
2429         MachineBasicBlock::iterator StartIt = SI.getIterator(), NextIt;
2430         MachineInstr *CopyIn = nullptr;
2431         if (SrcRR.Reg != FoundR || SrcRR.Sub != 0) {
2432           const DebugLoc &DL = SI.getDebugLoc();
2433           CopyIn = BuildMI(B, StartIt, DL, HII.get(TargetOpcode::COPY), FoundR)
2434                        .add(SrcOp);
2435         }
2436 
2437         ++StartIt;
2438         // Check if this is a last store and the FI is live-on-exit.
2439         if (LoxFIs.count(FI) && (&Range == &RL.back())) {
2440           // Update store's source register.
2441           if (unsigned SR = SrcOp.getSubReg())
2442             SrcOp.setReg(HRI.getSubReg(FoundR, SR));
2443           else
2444             SrcOp.setReg(FoundR);
2445           SrcOp.setSubReg(0);
2446           // We are keeping this register live.
2447           SrcOp.setIsKill(false);
2448         } else {
2449           B.erase(&SI);
2450           IM.replaceInstr(&SI, CopyIn);
2451         }
2452 
2453         auto EndIt = std::next(EI.getIterator());
2454         for (auto It = StartIt; It != EndIt; It = NextIt) {
2455           MachineInstr &MI = *It;
2456           NextIt = std::next(It);
2457           int TFI;
2458           if (!HII.isLoadFromStackSlot(MI, TFI) || TFI != FI)
2459             continue;
2460           Register DstR = MI.getOperand(0).getReg();
2461           assert(MI.getOperand(0).getSubReg() == 0);
2462           MachineInstr *CopyOut = nullptr;
2463           if (DstR != FoundR) {
2464             DebugLoc DL = MI.getDebugLoc();
2465             unsigned MemSize = HII.getMemAccessSize(MI);
2466             assert(HII.getAddrMode(MI) == HexagonII::BaseImmOffset);
2467             unsigned CopyOpc = TargetOpcode::COPY;
2468             if (HII.isSignExtendingLoad(MI))
2469               CopyOpc = (MemSize == 1) ? Hexagon::A2_sxtb : Hexagon::A2_sxth;
2470             else if (HII.isZeroExtendingLoad(MI))
2471               CopyOpc = (MemSize == 1) ? Hexagon::A2_zxtb : Hexagon::A2_zxth;
2472             CopyOut = BuildMI(B, It, DL, HII.get(CopyOpc), DstR)
2473                         .addReg(FoundR, getKillRegState(&MI == &EI));
2474           }
2475           IM.replaceInstr(&MI, CopyOut);
2476           B.erase(It);
2477         }
2478 
2479         // Update the dead map.
2480         HexagonBlockRanges::RegisterRef FoundRR = { FoundR, 0 };
2481         for (auto RR : HexagonBlockRanges::expandToSubRegs(FoundRR, MRI, HRI))
2482           DM[RR].subtract(Range);
2483       } // for Range in range list
2484     }
2485   }
2486 }
2487 
2488 void HexagonFrameLowering::expandAlloca(MachineInstr *AI,
2489       const HexagonInstrInfo &HII, Register SP, unsigned CF) const {
2490   MachineBasicBlock &MB = *AI->getParent();
2491   DebugLoc DL = AI->getDebugLoc();
2492   unsigned A = AI->getOperand(2).getImm();
2493 
2494   // Have
2495   //    Rd  = alloca Rs, #A
2496   //
2497   // If Rs and Rd are different registers, use this sequence:
2498   //    Rd  = sub(r29, Rs)
2499   //    r29 = sub(r29, Rs)
2500   //    Rd  = and(Rd, #-A)    ; if necessary
2501   //    r29 = and(r29, #-A)   ; if necessary
2502   //    Rd  = add(Rd, #CF)    ; CF size aligned to at most A
2503   // otherwise, do
2504   //    Rd  = sub(r29, Rs)
2505   //    Rd  = and(Rd, #-A)    ; if necessary
2506   //    r29 = Rd
2507   //    Rd  = add(Rd, #CF)    ; CF size aligned to at most A
2508 
2509   MachineOperand &RdOp = AI->getOperand(0);
2510   MachineOperand &RsOp = AI->getOperand(1);
2511   Register Rd = RdOp.getReg(), Rs = RsOp.getReg();
2512 
2513   // Rd = sub(r29, Rs)
2514   BuildMI(MB, AI, DL, HII.get(Hexagon::A2_sub), Rd)
2515       .addReg(SP)
2516       .addReg(Rs);
2517   if (Rs != Rd) {
2518     // r29 = sub(r29, Rs)
2519     BuildMI(MB, AI, DL, HII.get(Hexagon::A2_sub), SP)
2520         .addReg(SP)
2521         .addReg(Rs);
2522   }
2523   if (A > 8) {
2524     // Rd  = and(Rd, #-A)
2525     BuildMI(MB, AI, DL, HII.get(Hexagon::A2_andir), Rd)
2526         .addReg(Rd)
2527         .addImm(-int64_t(A));
2528     if (Rs != Rd)
2529       BuildMI(MB, AI, DL, HII.get(Hexagon::A2_andir), SP)
2530           .addReg(SP)
2531           .addImm(-int64_t(A));
2532   }
2533   if (Rs == Rd) {
2534     // r29 = Rd
2535     BuildMI(MB, AI, DL, HII.get(TargetOpcode::COPY), SP)
2536         .addReg(Rd);
2537   }
2538   if (CF > 0) {
2539     // Rd = add(Rd, #CF)
2540     BuildMI(MB, AI, DL, HII.get(Hexagon::A2_addi), Rd)
2541         .addReg(Rd)
2542         .addImm(CF);
2543   }
2544 }
2545 
2546 bool HexagonFrameLowering::needsAligna(const MachineFunction &MF) const {
2547   const MachineFrameInfo &MFI = MF.getFrameInfo();
2548   if (!MFI.hasVarSizedObjects())
2549     return false;
2550   // Do not check for max stack object alignment here, because the stack
2551   // may not be complete yet. Assume that we will need PS_aligna if there
2552   // are variable-sized objects.
2553   return true;
2554 }
2555 
2556 const MachineInstr *HexagonFrameLowering::getAlignaInstr(
2557       const MachineFunction &MF) const {
2558   for (auto &B : MF)
2559     for (auto &I : B)
2560       if (I.getOpcode() == Hexagon::PS_aligna)
2561         return &I;
2562   return nullptr;
2563 }
2564 
2565 /// Adds all callee-saved registers as implicit uses or defs to the
2566 /// instruction.
2567 void HexagonFrameLowering::addCalleeSaveRegistersAsImpOperand(MachineInstr *MI,
2568       const CSIVect &CSI, bool IsDef, bool IsKill) const {
2569   // Add the callee-saved registers as implicit uses.
2570   for (auto &R : CSI)
2571     MI->addOperand(MachineOperand::CreateReg(R.getReg(), IsDef, true, IsKill));
2572 }
2573 
2574 /// Determine whether the callee-saved register saves and restores should
2575 /// be generated via inline code. If this function returns "true", inline
2576 /// code will be generated. If this function returns "false", additional
2577 /// checks are performed, which may still lead to the inline code.
2578 bool HexagonFrameLowering::shouldInlineCSR(const MachineFunction &MF,
2579       const CSIVect &CSI) const {
2580   if (MF.getSubtarget<HexagonSubtarget>().isEnvironmentMusl())
2581     return true;
2582   if (MF.getInfo<HexagonMachineFunctionInfo>()->hasEHReturn())
2583     return true;
2584   if (!hasFP(MF))
2585     return true;
2586   if (!isOptSize(MF) && !isMinSize(MF))
2587     if (MF.getTarget().getOptLevel() > CodeGenOptLevel::Default)
2588       return true;
2589 
2590   // Check if CSI only has double registers, and if the registers form
2591   // a contiguous block starting from D8.
2592   BitVector Regs(Hexagon::NUM_TARGET_REGS);
2593   for (const CalleeSavedInfo &I : CSI) {
2594     Register R = I.getReg();
2595     if (!Hexagon::DoubleRegsRegClass.contains(R))
2596       return true;
2597     Regs[R] = true;
2598   }
2599   int F = Regs.find_first();
2600   if (F != Hexagon::D8)
2601     return true;
2602   while (F >= 0) {
2603     int N = Regs.find_next(F);
2604     if (N >= 0 && N != F+1)
2605       return true;
2606     F = N;
2607   }
2608 
2609   return false;
2610 }
2611 
2612 bool HexagonFrameLowering::useSpillFunction(const MachineFunction &MF,
2613       const CSIVect &CSI) const {
2614   if (shouldInlineCSR(MF, CSI))
2615     return false;
2616   unsigned NumCSI = CSI.size();
2617   if (NumCSI <= 1)
2618     return false;
2619 
2620   unsigned Threshold = isOptSize(MF) ? SpillFuncThresholdOs
2621                                      : SpillFuncThreshold;
2622   return Threshold < NumCSI;
2623 }
2624 
2625 bool HexagonFrameLowering::useRestoreFunction(const MachineFunction &MF,
2626       const CSIVect &CSI) const {
2627   if (shouldInlineCSR(MF, CSI))
2628     return false;
2629   // The restore functions do a bit more than just restoring registers.
2630   // The non-returning versions will go back directly to the caller's
2631   // caller, others will clean up the stack frame in preparation for
2632   // a tail call. Using them can still save code size even if only one
2633   // register is getting restores. Make the decision based on -Oz:
2634   // using -Os will use inline restore for a single register.
2635   if (isMinSize(MF))
2636     return true;
2637   unsigned NumCSI = CSI.size();
2638   if (NumCSI <= 1)
2639     return false;
2640 
2641   unsigned Threshold = isOptSize(MF) ? SpillFuncThresholdOs-1
2642                                      : SpillFuncThreshold;
2643   return Threshold < NumCSI;
2644 }
2645 
2646 bool HexagonFrameLowering::mayOverflowFrameOffset(MachineFunction &MF) const {
2647   unsigned StackSize = MF.getFrameInfo().estimateStackSize(MF);
2648   auto &HST = MF.getSubtarget<HexagonSubtarget>();
2649   // A fairly simplistic guess as to whether a potential load/store to a
2650   // stack location could require an extra register.
2651   if (HST.useHVXOps() && StackSize > 256)
2652     return true;
2653 
2654   // Check if the function has store-immediate instructions that access
2655   // the stack. Since the offset field is not extendable, if the stack
2656   // size exceeds the offset limit (6 bits, shifted), the stores will
2657   // require a new base register.
2658   bool HasImmStack = false;
2659   unsigned MinLS = ~0u;   // Log_2 of the memory access size.
2660 
2661   for (const MachineBasicBlock &B : MF) {
2662     for (const MachineInstr &MI : B) {
2663       unsigned LS = 0;
2664       switch (MI.getOpcode()) {
2665         case Hexagon::S4_storeirit_io:
2666         case Hexagon::S4_storeirif_io:
2667         case Hexagon::S4_storeiri_io:
2668           ++LS;
2669           [[fallthrough]];
2670         case Hexagon::S4_storeirht_io:
2671         case Hexagon::S4_storeirhf_io:
2672         case Hexagon::S4_storeirh_io:
2673           ++LS;
2674           [[fallthrough]];
2675         case Hexagon::S4_storeirbt_io:
2676         case Hexagon::S4_storeirbf_io:
2677         case Hexagon::S4_storeirb_io:
2678           if (MI.getOperand(0).isFI())
2679             HasImmStack = true;
2680           MinLS = std::min(MinLS, LS);
2681           break;
2682       }
2683     }
2684   }
2685 
2686   if (HasImmStack)
2687     return !isUInt<6>(StackSize >> MinLS);
2688 
2689   return false;
2690 }
2691