1 //===-- HexagonISelLowering.cpp - Hexagon DAG Lowering Implementation -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the interfaces that Hexagon uses to lower LLVM code
10 // into a selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "HexagonISelLowering.h"
15 #include "Hexagon.h"
16 #include "HexagonMachineFunctionInfo.h"
17 #include "HexagonRegisterInfo.h"
18 #include "HexagonSubtarget.h"
19 #include "HexagonTargetMachine.h"
20 #include "HexagonTargetObjectFile.h"
21 #include "llvm/ADT/APInt.h"
22 #include "llvm/ADT/ArrayRef.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringSwitch.h"
25 #include "llvm/CodeGen/CallingConvLower.h"
26 #include "llvm/CodeGen/MachineFrameInfo.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineMemOperand.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/RuntimeLibcalls.h"
31 #include "llvm/CodeGen/SelectionDAG.h"
32 #include "llvm/CodeGen/TargetCallingConv.h"
33 #include "llvm/CodeGen/ValueTypes.h"
34 #include "llvm/IR/BasicBlock.h"
35 #include "llvm/IR/CallingConv.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/DerivedTypes.h"
38 #include "llvm/IR/DiagnosticInfo.h"
39 #include "llvm/IR/DiagnosticPrinter.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GlobalValue.h"
42 #include "llvm/IR/InlineAsm.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/IR/IntrinsicInst.h"
45 #include "llvm/IR/Intrinsics.h"
46 #include "llvm/IR/IntrinsicsHexagon.h"
47 #include "llvm/IR/IRBuilder.h"
48 #include "llvm/IR/Module.h"
49 #include "llvm/IR/Type.h"
50 #include "llvm/IR/Value.h"
51 #include "llvm/MC/MCRegisterInfo.h"
52 #include "llvm/Support/Casting.h"
53 #include "llvm/Support/CodeGen.h"
54 #include "llvm/Support/CommandLine.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/MathExtras.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include "llvm/Target/TargetMachine.h"
60 #include <algorithm>
61 #include <cassert>
62 #include <cstddef>
63 #include <cstdint>
64 #include <limits>
65 #include <utility>
66 
67 using namespace llvm;
68 
69 #define DEBUG_TYPE "hexagon-lowering"
70 
71 static cl::opt<bool> EmitJumpTables("hexagon-emit-jump-tables",
72   cl::init(true), cl::Hidden,
73   cl::desc("Control jump table emission on Hexagon target"));
74 
75 static cl::opt<bool>
76     EnableHexSDNodeSched("enable-hexagon-sdnode-sched", cl::Hidden,
77                          cl::desc("Enable Hexagon SDNode scheduling"));
78 
79 static cl::opt<bool> EnableFastMath("ffast-math", cl::Hidden,
80                                     cl::desc("Enable Fast Math processing"));
81 
82 static cl::opt<int> MinimumJumpTables("minimum-jump-tables", cl::Hidden,
83                                       cl::init(5),
84                                       cl::desc("Set minimum jump tables"));
85 
86 static cl::opt<int>
87     MaxStoresPerMemcpyCL("max-store-memcpy", cl::Hidden, cl::init(6),
88                          cl::desc("Max #stores to inline memcpy"));
89 
90 static cl::opt<int>
91     MaxStoresPerMemcpyOptSizeCL("max-store-memcpy-Os", cl::Hidden, cl::init(4),
92                                 cl::desc("Max #stores to inline memcpy"));
93 
94 static cl::opt<int>
95     MaxStoresPerMemmoveCL("max-store-memmove", cl::Hidden, cl::init(6),
96                           cl::desc("Max #stores to inline memmove"));
97 
98 static cl::opt<int>
99     MaxStoresPerMemmoveOptSizeCL("max-store-memmove-Os", cl::Hidden,
100                                  cl::init(4),
101                                  cl::desc("Max #stores to inline memmove"));
102 
103 static cl::opt<int>
104     MaxStoresPerMemsetCL("max-store-memset", cl::Hidden, cl::init(8),
105                          cl::desc("Max #stores to inline memset"));
106 
107 static cl::opt<int>
108     MaxStoresPerMemsetOptSizeCL("max-store-memset-Os", cl::Hidden, cl::init(4),
109                                 cl::desc("Max #stores to inline memset"));
110 
111 static cl::opt<bool> AlignLoads("hexagon-align-loads",
112   cl::Hidden, cl::init(false),
113   cl::desc("Rewrite unaligned loads as a pair of aligned loads"));
114 
115 static cl::opt<bool>
116     DisableArgsMinAlignment("hexagon-disable-args-min-alignment", cl::Hidden,
117                             cl::init(false),
118                             cl::desc("Disable minimum alignment of 1 for "
119                                      "arguments passed by value on stack"));
120 
121 namespace {
122 
123   class HexagonCCState : public CCState {
124     unsigned NumNamedVarArgParams = 0;
125 
126   public:
127     HexagonCCState(CallingConv::ID CC, bool IsVarArg, MachineFunction &MF,
128                    SmallVectorImpl<CCValAssign> &locs, LLVMContext &C,
129                    unsigned NumNamedArgs)
130         : CCState(CC, IsVarArg, MF, locs, C),
131           NumNamedVarArgParams(NumNamedArgs) {}
132     unsigned getNumNamedVarArgParams() const { return NumNamedVarArgParams; }
133   };
134 
135 } // end anonymous namespace
136 
137 
138 // Implement calling convention for Hexagon.
139 
140 static bool CC_SkipOdd(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
141                        CCValAssign::LocInfo &LocInfo,
142                        ISD::ArgFlagsTy &ArgFlags, CCState &State) {
143   static const MCPhysReg ArgRegs[] = {
144     Hexagon::R0, Hexagon::R1, Hexagon::R2,
145     Hexagon::R3, Hexagon::R4, Hexagon::R5
146   };
147   const unsigned NumArgRegs = std::size(ArgRegs);
148   unsigned RegNum = State.getFirstUnallocated(ArgRegs);
149 
150   // RegNum is an index into ArgRegs: skip a register if RegNum is odd.
151   if (RegNum != NumArgRegs && RegNum % 2 == 1)
152     State.AllocateReg(ArgRegs[RegNum]);
153 
154   // Always return false here, as this function only makes sure that the first
155   // unallocated register has an even register number and does not actually
156   // allocate a register for the current argument.
157   return false;
158 }
159 
160 #include "HexagonGenCallingConv.inc"
161 
162 
163 SDValue
164 HexagonTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG)
165       const {
166   return SDValue();
167 }
168 
169 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
170 /// by "Src" to address "Dst" of size "Size".  Alignment information is
171 /// specified by the specific parameter attribute. The copy will be passed as
172 /// a byval function parameter.  Sometimes what we are copying is the end of a
173 /// larger object, the part that does not fit in registers.
174 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
175                                          SDValue Chain, ISD::ArgFlagsTy Flags,
176                                          SelectionDAG &DAG, const SDLoc &dl) {
177   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
178   return DAG.getMemcpy(
179       Chain, dl, Dst, Src, SizeNode, Flags.getNonZeroByValAlign(),
180       /*isVolatile=*/false, /*AlwaysInline=*/false,
181       /*isTailCall=*/false, MachinePointerInfo(), MachinePointerInfo());
182 }
183 
184 bool
185 HexagonTargetLowering::CanLowerReturn(
186     CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
187     const SmallVectorImpl<ISD::OutputArg> &Outs,
188     LLVMContext &Context) const {
189   SmallVector<CCValAssign, 16> RVLocs;
190   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
191 
192   if (MF.getSubtarget<HexagonSubtarget>().useHVXOps())
193     return CCInfo.CheckReturn(Outs, RetCC_Hexagon_HVX);
194   return CCInfo.CheckReturn(Outs, RetCC_Hexagon);
195 }
196 
197 // LowerReturn - Lower ISD::RET. If a struct is larger than 8 bytes and is
198 // passed by value, the function prototype is modified to return void and
199 // the value is stored in memory pointed by a pointer passed by caller.
200 SDValue
201 HexagonTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
202                                    bool IsVarArg,
203                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
204                                    const SmallVectorImpl<SDValue> &OutVals,
205                                    const SDLoc &dl, SelectionDAG &DAG) const {
206   // CCValAssign - represent the assignment of the return value to locations.
207   SmallVector<CCValAssign, 16> RVLocs;
208 
209   // CCState - Info about the registers and stack slot.
210   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
211                  *DAG.getContext());
212 
213   // Analyze return values of ISD::RET
214   if (Subtarget.useHVXOps())
215     CCInfo.AnalyzeReturn(Outs, RetCC_Hexagon_HVX);
216   else
217     CCInfo.AnalyzeReturn(Outs, RetCC_Hexagon);
218 
219   SDValue Flag;
220   SmallVector<SDValue, 4> RetOps(1, Chain);
221 
222   // Copy the result values into the output registers.
223   for (unsigned i = 0; i != RVLocs.size(); ++i) {
224     CCValAssign &VA = RVLocs[i];
225     SDValue Val = OutVals[i];
226 
227     switch (VA.getLocInfo()) {
228       default:
229         // Loc info must be one of Full, BCvt, SExt, ZExt, or AExt.
230         llvm_unreachable("Unknown loc info!");
231       case CCValAssign::Full:
232         break;
233       case CCValAssign::BCvt:
234         Val = DAG.getBitcast(VA.getLocVT(), Val);
235         break;
236       case CCValAssign::SExt:
237         Val = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Val);
238         break;
239       case CCValAssign::ZExt:
240         Val = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Val);
241         break;
242       case CCValAssign::AExt:
243         Val = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Val);
244         break;
245     }
246 
247     Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Val, Flag);
248 
249     // Guarantee that all emitted copies are stuck together with flags.
250     Flag = Chain.getValue(1);
251     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
252   }
253 
254   RetOps[0] = Chain;  // Update chain.
255 
256   // Add the flag if we have it.
257   if (Flag.getNode())
258     RetOps.push_back(Flag);
259 
260   return DAG.getNode(HexagonISD::RET_FLAG, dl, MVT::Other, RetOps);
261 }
262 
263 bool HexagonTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
264   // If either no tail call or told not to tail call at all, don't.
265   return CI->isTailCall();
266 }
267 
268 Register HexagonTargetLowering::getRegisterByName(
269       const char* RegName, LLT VT, const MachineFunction &) const {
270   // Just support r19, the linux kernel uses it.
271   Register Reg = StringSwitch<Register>(RegName)
272                      .Case("r0", Hexagon::R0)
273                      .Case("r1", Hexagon::R1)
274                      .Case("r2", Hexagon::R2)
275                      .Case("r3", Hexagon::R3)
276                      .Case("r4", Hexagon::R4)
277                      .Case("r5", Hexagon::R5)
278                      .Case("r6", Hexagon::R6)
279                      .Case("r7", Hexagon::R7)
280                      .Case("r8", Hexagon::R8)
281                      .Case("r9", Hexagon::R9)
282                      .Case("r10", Hexagon::R10)
283                      .Case("r11", Hexagon::R11)
284                      .Case("r12", Hexagon::R12)
285                      .Case("r13", Hexagon::R13)
286                      .Case("r14", Hexagon::R14)
287                      .Case("r15", Hexagon::R15)
288                      .Case("r16", Hexagon::R16)
289                      .Case("r17", Hexagon::R17)
290                      .Case("r18", Hexagon::R18)
291                      .Case("r19", Hexagon::R19)
292                      .Case("r20", Hexagon::R20)
293                      .Case("r21", Hexagon::R21)
294                      .Case("r22", Hexagon::R22)
295                      .Case("r23", Hexagon::R23)
296                      .Case("r24", Hexagon::R24)
297                      .Case("r25", Hexagon::R25)
298                      .Case("r26", Hexagon::R26)
299                      .Case("r27", Hexagon::R27)
300                      .Case("r28", Hexagon::R28)
301                      .Case("r29", Hexagon::R29)
302                      .Case("r30", Hexagon::R30)
303                      .Case("r31", Hexagon::R31)
304                      .Case("r1:0", Hexagon::D0)
305                      .Case("r3:2", Hexagon::D1)
306                      .Case("r5:4", Hexagon::D2)
307                      .Case("r7:6", Hexagon::D3)
308                      .Case("r9:8", Hexagon::D4)
309                      .Case("r11:10", Hexagon::D5)
310                      .Case("r13:12", Hexagon::D6)
311                      .Case("r15:14", Hexagon::D7)
312                      .Case("r17:16", Hexagon::D8)
313                      .Case("r19:18", Hexagon::D9)
314                      .Case("r21:20", Hexagon::D10)
315                      .Case("r23:22", Hexagon::D11)
316                      .Case("r25:24", Hexagon::D12)
317                      .Case("r27:26", Hexagon::D13)
318                      .Case("r29:28", Hexagon::D14)
319                      .Case("r31:30", Hexagon::D15)
320                      .Case("sp", Hexagon::R29)
321                      .Case("fp", Hexagon::R30)
322                      .Case("lr", Hexagon::R31)
323                      .Case("p0", Hexagon::P0)
324                      .Case("p1", Hexagon::P1)
325                      .Case("p2", Hexagon::P2)
326                      .Case("p3", Hexagon::P3)
327                      .Case("sa0", Hexagon::SA0)
328                      .Case("lc0", Hexagon::LC0)
329                      .Case("sa1", Hexagon::SA1)
330                      .Case("lc1", Hexagon::LC1)
331                      .Case("m0", Hexagon::M0)
332                      .Case("m1", Hexagon::M1)
333                      .Case("usr", Hexagon::USR)
334                      .Case("ugp", Hexagon::UGP)
335                      .Case("cs0", Hexagon::CS0)
336                      .Case("cs1", Hexagon::CS1)
337                      .Default(Register());
338   if (Reg)
339     return Reg;
340 
341   report_fatal_error("Invalid register name global variable");
342 }
343 
344 /// LowerCallResult - Lower the result values of an ISD::CALL into the
345 /// appropriate copies out of appropriate physical registers.  This assumes that
346 /// Chain/Glue are the input chain/glue to use, and that TheCall is the call
347 /// being lowered. Returns a SDNode with the same number of values as the
348 /// ISD::CALL.
349 SDValue HexagonTargetLowering::LowerCallResult(
350     SDValue Chain, SDValue Glue, CallingConv::ID CallConv, bool IsVarArg,
351     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
352     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
353     const SmallVectorImpl<SDValue> &OutVals, SDValue Callee) const {
354   // Assign locations to each value returned by this call.
355   SmallVector<CCValAssign, 16> RVLocs;
356 
357   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
358                  *DAG.getContext());
359 
360   if (Subtarget.useHVXOps())
361     CCInfo.AnalyzeCallResult(Ins, RetCC_Hexagon_HVX);
362   else
363     CCInfo.AnalyzeCallResult(Ins, RetCC_Hexagon);
364 
365   // Copy all of the result registers out of their specified physreg.
366   for (unsigned i = 0; i != RVLocs.size(); ++i) {
367     SDValue RetVal;
368     if (RVLocs[i].getValVT() == MVT::i1) {
369       // Return values of type MVT::i1 require special handling. The reason
370       // is that MVT::i1 is associated with the PredRegs register class, but
371       // values of that type are still returned in R0. Generate an explicit
372       // copy into a predicate register from R0, and treat the value of the
373       // predicate register as the call result.
374       auto &MRI = DAG.getMachineFunction().getRegInfo();
375       SDValue FR0 = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
376                                        MVT::i32, Glue);
377       // FR0 = (Value, Chain, Glue)
378       Register PredR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass);
379       SDValue TPR = DAG.getCopyToReg(FR0.getValue(1), dl, PredR,
380                                      FR0.getValue(0), FR0.getValue(2));
381       // TPR = (Chain, Glue)
382       // Don't glue this CopyFromReg, because it copies from a virtual
383       // register. If it is glued to the call, InstrEmitter will add it
384       // as an implicit def to the call (EmitMachineNode).
385       RetVal = DAG.getCopyFromReg(TPR.getValue(0), dl, PredR, MVT::i1);
386       Glue = TPR.getValue(1);
387       Chain = TPR.getValue(0);
388     } else {
389       RetVal = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
390                                   RVLocs[i].getValVT(), Glue);
391       Glue = RetVal.getValue(2);
392       Chain = RetVal.getValue(1);
393     }
394     InVals.push_back(RetVal.getValue(0));
395   }
396 
397   return Chain;
398 }
399 
400 /// LowerCall - Functions arguments are copied from virtual regs to
401 /// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
402 SDValue
403 HexagonTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
404                                  SmallVectorImpl<SDValue> &InVals) const {
405   SelectionDAG &DAG                     = CLI.DAG;
406   SDLoc &dl                             = CLI.DL;
407   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
408   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
409   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
410   SDValue Chain                         = CLI.Chain;
411   SDValue Callee                        = CLI.Callee;
412   CallingConv::ID CallConv              = CLI.CallConv;
413   bool IsVarArg                         = CLI.IsVarArg;
414   bool DoesNotReturn                    = CLI.DoesNotReturn;
415 
416   bool IsStructRet    = Outs.empty() ? false : Outs[0].Flags.isSRet();
417   MachineFunction &MF = DAG.getMachineFunction();
418   MachineFrameInfo &MFI = MF.getFrameInfo();
419   auto PtrVT = getPointerTy(MF.getDataLayout());
420 
421   unsigned NumParams = CLI.CB ? CLI.CB->getFunctionType()->getNumParams() : 0;
422   if (GlobalAddressSDNode *GAN = dyn_cast<GlobalAddressSDNode>(Callee))
423     Callee = DAG.getTargetGlobalAddress(GAN->getGlobal(), dl, MVT::i32);
424 
425   // Linux ABI treats var-arg calls the same way as regular ones.
426   bool TreatAsVarArg = !Subtarget.isEnvironmentMusl() && IsVarArg;
427 
428   // Analyze operands of the call, assigning locations to each operand.
429   SmallVector<CCValAssign, 16> ArgLocs;
430   HexagonCCState CCInfo(CallConv, TreatAsVarArg, MF, ArgLocs, *DAG.getContext(),
431                         NumParams);
432 
433   if (Subtarget.useHVXOps())
434     CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon_HVX);
435   else if (DisableArgsMinAlignment)
436     CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon_Legacy);
437   else
438     CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon);
439 
440   if (CLI.IsTailCall) {
441     bool StructAttrFlag = MF.getFunction().hasStructRetAttr();
442     CLI.IsTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
443                         IsVarArg, IsStructRet, StructAttrFlag, Outs,
444                         OutVals, Ins, DAG);
445     for (const CCValAssign &VA : ArgLocs) {
446       if (VA.isMemLoc()) {
447         CLI.IsTailCall = false;
448         break;
449       }
450     }
451     LLVM_DEBUG(dbgs() << (CLI.IsTailCall ? "Eligible for Tail Call\n"
452                                          : "Argument must be passed on stack. "
453                                            "Not eligible for Tail Call\n"));
454   }
455   // Get a count of how many bytes are to be pushed on the stack.
456   unsigned NumBytes = CCInfo.getNextStackOffset();
457   SmallVector<std::pair<unsigned, SDValue>, 16> RegsToPass;
458   SmallVector<SDValue, 8> MemOpChains;
459 
460   const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
461   SDValue StackPtr =
462       DAG.getCopyFromReg(Chain, dl, HRI.getStackRegister(), PtrVT);
463 
464   bool NeedsArgAlign = false;
465   Align LargestAlignSeen;
466   // Walk the register/memloc assignments, inserting copies/loads.
467   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
468     CCValAssign &VA = ArgLocs[i];
469     SDValue Arg = OutVals[i];
470     ISD::ArgFlagsTy Flags = Outs[i].Flags;
471     // Record if we need > 8 byte alignment on an argument.
472     bool ArgAlign = Subtarget.isHVXVectorType(VA.getValVT());
473     NeedsArgAlign |= ArgAlign;
474 
475     // Promote the value if needed.
476     switch (VA.getLocInfo()) {
477       default:
478         // Loc info must be one of Full, BCvt, SExt, ZExt, or AExt.
479         llvm_unreachable("Unknown loc info!");
480       case CCValAssign::Full:
481         break;
482       case CCValAssign::BCvt:
483         Arg = DAG.getBitcast(VA.getLocVT(), Arg);
484         break;
485       case CCValAssign::SExt:
486         Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
487         break;
488       case CCValAssign::ZExt:
489         Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
490         break;
491       case CCValAssign::AExt:
492         Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
493         break;
494     }
495 
496     if (VA.isMemLoc()) {
497       unsigned LocMemOffset = VA.getLocMemOffset();
498       SDValue MemAddr = DAG.getConstant(LocMemOffset, dl,
499                                         StackPtr.getValueType());
500       MemAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, MemAddr);
501       if (ArgAlign)
502         LargestAlignSeen = std::max(
503             LargestAlignSeen, Align(VA.getLocVT().getStoreSizeInBits() / 8));
504       if (Flags.isByVal()) {
505         // The argument is a struct passed by value. According to LLVM, "Arg"
506         // is a pointer.
507         MemOpChains.push_back(CreateCopyOfByValArgument(Arg, MemAddr, Chain,
508                                                         Flags, DAG, dl));
509       } else {
510         MachinePointerInfo LocPI = MachinePointerInfo::getStack(
511             DAG.getMachineFunction(), LocMemOffset);
512         SDValue S = DAG.getStore(Chain, dl, Arg, MemAddr, LocPI);
513         MemOpChains.push_back(S);
514       }
515       continue;
516     }
517 
518     // Arguments that can be passed on register must be kept at RegsToPass
519     // vector.
520     if (VA.isRegLoc())
521       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
522   }
523 
524   if (NeedsArgAlign && Subtarget.hasV60Ops()) {
525     LLVM_DEBUG(dbgs() << "Function needs byte stack align due to call args\n");
526     Align VecAlign = HRI.getSpillAlign(Hexagon::HvxVRRegClass);
527     LargestAlignSeen = std::max(LargestAlignSeen, VecAlign);
528     MFI.ensureMaxAlignment(LargestAlignSeen);
529   }
530   // Transform all store nodes into one single node because all store
531   // nodes are independent of each other.
532   if (!MemOpChains.empty())
533     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
534 
535   SDValue Glue;
536   if (!CLI.IsTailCall) {
537     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
538     Glue = Chain.getValue(1);
539   }
540 
541   // Build a sequence of copy-to-reg nodes chained together with token
542   // chain and flag operands which copy the outgoing args into registers.
543   // The Glue is necessary since all emitted instructions must be
544   // stuck together.
545   if (!CLI.IsTailCall) {
546     for (const auto &R : RegsToPass) {
547       Chain = DAG.getCopyToReg(Chain, dl, R.first, R.second, Glue);
548       Glue = Chain.getValue(1);
549     }
550   } else {
551     // For tail calls lower the arguments to the 'real' stack slot.
552     //
553     // Force all the incoming stack arguments to be loaded from the stack
554     // before any new outgoing arguments are stored to the stack, because the
555     // outgoing stack slots may alias the incoming argument stack slots, and
556     // the alias isn't otherwise explicit. This is slightly more conservative
557     // than necessary, because it means that each store effectively depends
558     // on every argument instead of just those arguments it would clobber.
559     //
560     // Do not flag preceding copytoreg stuff together with the following stuff.
561     Glue = SDValue();
562     for (const auto &R : RegsToPass) {
563       Chain = DAG.getCopyToReg(Chain, dl, R.first, R.second, Glue);
564       Glue = Chain.getValue(1);
565     }
566     Glue = SDValue();
567   }
568 
569   bool LongCalls = MF.getSubtarget<HexagonSubtarget>().useLongCalls();
570   unsigned Flags = LongCalls ? HexagonII::HMOTF_ConstExtended : 0;
571 
572   // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
573   // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
574   // node so that legalize doesn't hack it.
575   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
576     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, PtrVT, 0, Flags);
577   } else if (ExternalSymbolSDNode *S =
578              dyn_cast<ExternalSymbolSDNode>(Callee)) {
579     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, Flags);
580   }
581 
582   // Returns a chain & a flag for retval copy to use.
583   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
584   SmallVector<SDValue, 8> Ops;
585   Ops.push_back(Chain);
586   Ops.push_back(Callee);
587 
588   // Add argument registers to the end of the list so that they are
589   // known live into the call.
590   for (const auto &R : RegsToPass)
591     Ops.push_back(DAG.getRegister(R.first, R.second.getValueType()));
592 
593   const uint32_t *Mask = HRI.getCallPreservedMask(MF, CallConv);
594   assert(Mask && "Missing call preserved mask for calling convention");
595   Ops.push_back(DAG.getRegisterMask(Mask));
596 
597   if (Glue.getNode())
598     Ops.push_back(Glue);
599 
600   if (CLI.IsTailCall) {
601     MFI.setHasTailCall();
602     return DAG.getNode(HexagonISD::TC_RETURN, dl, NodeTys, Ops);
603   }
604 
605   // Set this here because we need to know this for "hasFP" in frame lowering.
606   // The target-independent code calls getFrameRegister before setting it, and
607   // getFrameRegister uses hasFP to determine whether the function has FP.
608   MFI.setHasCalls(true);
609 
610   unsigned OpCode = DoesNotReturn ? HexagonISD::CALLnr : HexagonISD::CALL;
611   Chain = DAG.getNode(OpCode, dl, NodeTys, Ops);
612   Glue = Chain.getValue(1);
613 
614   // Create the CALLSEQ_END node.
615   Chain = DAG.getCALLSEQ_END(Chain, NumBytes, 0, Glue, dl);
616   Glue = Chain.getValue(1);
617 
618   // Handle result values, copying them out of physregs into vregs that we
619   // return.
620   return LowerCallResult(Chain, Glue, CallConv, IsVarArg, Ins, dl, DAG,
621                          InVals, OutVals, Callee);
622 }
623 
624 /// Returns true by value, base pointer and offset pointer and addressing
625 /// mode by reference if this node can be combined with a load / store to
626 /// form a post-indexed load / store.
627 bool HexagonTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
628       SDValue &Base, SDValue &Offset, ISD::MemIndexedMode &AM,
629       SelectionDAG &DAG) const {
630   LSBaseSDNode *LSN = dyn_cast<LSBaseSDNode>(N);
631   if (!LSN)
632     return false;
633   EVT VT = LSN->getMemoryVT();
634   if (!VT.isSimple())
635     return false;
636   bool IsLegalType = VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32 ||
637                      VT == MVT::i64 || VT == MVT::f32 || VT == MVT::f64 ||
638                      VT == MVT::v2i16 || VT == MVT::v2i32 || VT == MVT::v4i8 ||
639                      VT == MVT::v4i16 || VT == MVT::v8i8 ||
640                      Subtarget.isHVXVectorType(VT.getSimpleVT());
641   if (!IsLegalType)
642     return false;
643 
644   if (Op->getOpcode() != ISD::ADD)
645     return false;
646   Base = Op->getOperand(0);
647   Offset = Op->getOperand(1);
648   if (!isa<ConstantSDNode>(Offset.getNode()))
649     return false;
650   AM = ISD::POST_INC;
651 
652   int32_t V = cast<ConstantSDNode>(Offset.getNode())->getSExtValue();
653   return Subtarget.getInstrInfo()->isValidAutoIncImm(VT, V);
654 }
655 
656 SDValue
657 HexagonTargetLowering::LowerINLINEASM(SDValue Op, SelectionDAG &DAG) const {
658   MachineFunction &MF = DAG.getMachineFunction();
659   auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>();
660   const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
661   unsigned LR = HRI.getRARegister();
662 
663   if ((Op.getOpcode() != ISD::INLINEASM &&
664        Op.getOpcode() != ISD::INLINEASM_BR) || HMFI.hasClobberLR())
665     return Op;
666 
667   unsigned NumOps = Op.getNumOperands();
668   if (Op.getOperand(NumOps-1).getValueType() == MVT::Glue)
669     --NumOps;  // Ignore the flag operand.
670 
671   for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
672     unsigned Flags = cast<ConstantSDNode>(Op.getOperand(i))->getZExtValue();
673     unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
674     ++i;  // Skip the ID value.
675 
676     switch (InlineAsm::getKind(Flags)) {
677       default:
678         llvm_unreachable("Bad flags!");
679       case InlineAsm::Kind_RegUse:
680       case InlineAsm::Kind_Imm:
681       case InlineAsm::Kind_Mem:
682         i += NumVals;
683         break;
684       case InlineAsm::Kind_Clobber:
685       case InlineAsm::Kind_RegDef:
686       case InlineAsm::Kind_RegDefEarlyClobber: {
687         for (; NumVals; --NumVals, ++i) {
688           Register Reg = cast<RegisterSDNode>(Op.getOperand(i))->getReg();
689           if (Reg != LR)
690             continue;
691           HMFI.setHasClobberLR(true);
692           return Op;
693         }
694         break;
695       }
696     }
697   }
698 
699   return Op;
700 }
701 
702 // Need to transform ISD::PREFETCH into something that doesn't inherit
703 // all of the properties of ISD::PREFETCH, specifically SDNPMayLoad and
704 // SDNPMayStore.
705 SDValue HexagonTargetLowering::LowerPREFETCH(SDValue Op,
706                                              SelectionDAG &DAG) const {
707   SDValue Chain = Op.getOperand(0);
708   SDValue Addr = Op.getOperand(1);
709   // Lower it to DCFETCH($reg, #0).  A "pat" will try to merge the offset in,
710   // if the "reg" is fed by an "add".
711   SDLoc DL(Op);
712   SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
713   return DAG.getNode(HexagonISD::DCFETCH, DL, MVT::Other, Chain, Addr, Zero);
714 }
715 
716 // Custom-handle ISD::READCYCLECOUNTER because the target-independent SDNode
717 // is marked as having side-effects, while the register read on Hexagon does
718 // not have any. TableGen refuses to accept the direct pattern from that node
719 // to the A4_tfrcpp.
720 SDValue HexagonTargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
721                                                      SelectionDAG &DAG) const {
722   SDValue Chain = Op.getOperand(0);
723   SDLoc dl(Op);
724   SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other);
725   return DAG.getNode(HexagonISD::READCYCLE, dl, VTs, Chain);
726 }
727 
728 SDValue HexagonTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
729       SelectionDAG &DAG) const {
730   SDValue Chain = Op.getOperand(0);
731   unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
732   // Lower the hexagon_prefetch builtin to DCFETCH, as above.
733   if (IntNo == Intrinsic::hexagon_prefetch) {
734     SDValue Addr = Op.getOperand(2);
735     SDLoc DL(Op);
736     SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
737     return DAG.getNode(HexagonISD::DCFETCH, DL, MVT::Other, Chain, Addr, Zero);
738   }
739   return SDValue();
740 }
741 
742 SDValue
743 HexagonTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
744                                                SelectionDAG &DAG) const {
745   SDValue Chain = Op.getOperand(0);
746   SDValue Size = Op.getOperand(1);
747   SDValue Align = Op.getOperand(2);
748   SDLoc dl(Op);
749 
750   ConstantSDNode *AlignConst = dyn_cast<ConstantSDNode>(Align);
751   assert(AlignConst && "Non-constant Align in LowerDYNAMIC_STACKALLOC");
752 
753   unsigned A = AlignConst->getSExtValue();
754   auto &HFI = *Subtarget.getFrameLowering();
755   // "Zero" means natural stack alignment.
756   if (A == 0)
757     A = HFI.getStackAlign().value();
758 
759   LLVM_DEBUG({
760     dbgs () << __func__ << " Align: " << A << " Size: ";
761     Size.getNode()->dump(&DAG);
762     dbgs() << "\n";
763   });
764 
765   SDValue AC = DAG.getConstant(A, dl, MVT::i32);
766   SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
767   SDValue AA = DAG.getNode(HexagonISD::ALLOCA, dl, VTs, Chain, Size, AC);
768 
769   DAG.ReplaceAllUsesOfValueWith(Op, AA);
770   return AA;
771 }
772 
773 SDValue HexagonTargetLowering::LowerFormalArguments(
774     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
775     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
776     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
777   MachineFunction &MF = DAG.getMachineFunction();
778   MachineFrameInfo &MFI = MF.getFrameInfo();
779   MachineRegisterInfo &MRI = MF.getRegInfo();
780 
781   // Linux ABI treats var-arg calls the same way as regular ones.
782   bool TreatAsVarArg = !Subtarget.isEnvironmentMusl() && IsVarArg;
783 
784   // Assign locations to all of the incoming arguments.
785   SmallVector<CCValAssign, 16> ArgLocs;
786   HexagonCCState CCInfo(CallConv, TreatAsVarArg, MF, ArgLocs,
787                         *DAG.getContext(),
788                         MF.getFunction().getFunctionType()->getNumParams());
789 
790   if (Subtarget.useHVXOps())
791     CCInfo.AnalyzeFormalArguments(Ins, CC_Hexagon_HVX);
792   else if (DisableArgsMinAlignment)
793     CCInfo.AnalyzeFormalArguments(Ins, CC_Hexagon_Legacy);
794   else
795     CCInfo.AnalyzeFormalArguments(Ins, CC_Hexagon);
796 
797   // For LLVM, in the case when returning a struct by value (>8byte),
798   // the first argument is a pointer that points to the location on caller's
799   // stack where the return value will be stored. For Hexagon, the location on
800   // caller's stack is passed only when the struct size is smaller than (and
801   // equal to) 8 bytes. If not, no address will be passed into callee and
802   // callee return the result direclty through R0/R1.
803   auto NextSingleReg = [] (const TargetRegisterClass &RC, unsigned Reg) {
804     switch (RC.getID()) {
805     case Hexagon::IntRegsRegClassID:
806       return Reg - Hexagon::R0 + 1;
807     case Hexagon::DoubleRegsRegClassID:
808       return (Reg - Hexagon::D0 + 1) * 2;
809     case Hexagon::HvxVRRegClassID:
810       return Reg - Hexagon::V0 + 1;
811     case Hexagon::HvxWRRegClassID:
812       return (Reg - Hexagon::W0 + 1) * 2;
813     }
814     llvm_unreachable("Unexpected register class");
815   };
816 
817   auto &HFL = const_cast<HexagonFrameLowering&>(*Subtarget.getFrameLowering());
818   auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>();
819   HFL.FirstVarArgSavedReg = 0;
820   HMFI.setFirstNamedArgFrameIndex(-int(MFI.getNumFixedObjects()));
821 
822   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
823     CCValAssign &VA = ArgLocs[i];
824     ISD::ArgFlagsTy Flags = Ins[i].Flags;
825     bool ByVal = Flags.isByVal();
826 
827     // Arguments passed in registers:
828     // 1. 32- and 64-bit values and HVX vectors are passed directly,
829     // 2. Large structs are passed via an address, and the address is
830     //    passed in a register.
831     if (VA.isRegLoc() && ByVal && Flags.getByValSize() <= 8)
832       llvm_unreachable("ByValSize must be bigger than 8 bytes");
833 
834     bool InReg = VA.isRegLoc() &&
835                  (!ByVal || (ByVal && Flags.getByValSize() > 8));
836 
837     if (InReg) {
838       MVT RegVT = VA.getLocVT();
839       if (VA.getLocInfo() == CCValAssign::BCvt)
840         RegVT = VA.getValVT();
841 
842       const TargetRegisterClass *RC = getRegClassFor(RegVT);
843       Register VReg = MRI.createVirtualRegister(RC);
844       SDValue Copy = DAG.getCopyFromReg(Chain, dl, VReg, RegVT);
845 
846       // Treat values of type MVT::i1 specially: they are passed in
847       // registers of type i32, but they need to remain as values of
848       // type i1 for consistency of the argument lowering.
849       if (VA.getValVT() == MVT::i1) {
850         assert(RegVT.getSizeInBits() <= 32);
851         SDValue T = DAG.getNode(ISD::AND, dl, RegVT,
852                                 Copy, DAG.getConstant(1, dl, RegVT));
853         Copy = DAG.getSetCC(dl, MVT::i1, T, DAG.getConstant(0, dl, RegVT),
854                             ISD::SETNE);
855       } else {
856 #ifndef NDEBUG
857         unsigned RegSize = RegVT.getSizeInBits();
858         assert(RegSize == 32 || RegSize == 64 ||
859                Subtarget.isHVXVectorType(RegVT));
860 #endif
861       }
862       InVals.push_back(Copy);
863       MRI.addLiveIn(VA.getLocReg(), VReg);
864       HFL.FirstVarArgSavedReg = NextSingleReg(*RC, VA.getLocReg());
865     } else {
866       assert(VA.isMemLoc() && "Argument should be passed in memory");
867 
868       // If it's a byval parameter, then we need to compute the
869       // "real" size, not the size of the pointer.
870       unsigned ObjSize = Flags.isByVal()
871                             ? Flags.getByValSize()
872                             : VA.getLocVT().getStoreSizeInBits() / 8;
873 
874       // Create the frame index object for this incoming parameter.
875       int Offset = HEXAGON_LRFP_SIZE + VA.getLocMemOffset();
876       int FI = MFI.CreateFixedObject(ObjSize, Offset, true);
877       SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
878 
879       if (Flags.isByVal()) {
880         // If it's a pass-by-value aggregate, then do not dereference the stack
881         // location. Instead, we should generate a reference to the stack
882         // location.
883         InVals.push_back(FIN);
884       } else {
885         SDValue L = DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
886                                 MachinePointerInfo::getFixedStack(MF, FI, 0));
887         InVals.push_back(L);
888       }
889     }
890   }
891 
892   if (IsVarArg && Subtarget.isEnvironmentMusl()) {
893     for (int i = HFL.FirstVarArgSavedReg; i < 6; i++)
894       MRI.addLiveIn(Hexagon::R0+i);
895   }
896 
897   if (IsVarArg && Subtarget.isEnvironmentMusl()) {
898     HMFI.setFirstNamedArgFrameIndex(HMFI.getFirstNamedArgFrameIndex() - 1);
899     HMFI.setLastNamedArgFrameIndex(-int(MFI.getNumFixedObjects()));
900 
901     // Create Frame index for the start of register saved area.
902     int NumVarArgRegs = 6 - HFL.FirstVarArgSavedReg;
903     bool RequiresPadding = (NumVarArgRegs & 1);
904     int RegSaveAreaSizePlusPadding = RequiresPadding
905                                         ? (NumVarArgRegs + 1) * 4
906                                         : NumVarArgRegs * 4;
907 
908     if (RegSaveAreaSizePlusPadding > 0) {
909       // The offset to saved register area should be 8 byte aligned.
910       int RegAreaStart = HEXAGON_LRFP_SIZE + CCInfo.getNextStackOffset();
911       if (!(RegAreaStart % 8))
912         RegAreaStart = (RegAreaStart + 7) & -8;
913 
914       int RegSaveAreaFrameIndex =
915         MFI.CreateFixedObject(RegSaveAreaSizePlusPadding, RegAreaStart, true);
916       HMFI.setRegSavedAreaStartFrameIndex(RegSaveAreaFrameIndex);
917 
918       // This will point to the next argument passed via stack.
919       int Offset = RegAreaStart + RegSaveAreaSizePlusPadding;
920       int FI = MFI.CreateFixedObject(Hexagon_PointerSize, Offset, true);
921       HMFI.setVarArgsFrameIndex(FI);
922     } else {
923       // This will point to the next argument passed via stack, when
924       // there is no saved register area.
925       int Offset = HEXAGON_LRFP_SIZE + CCInfo.getNextStackOffset();
926       int FI = MFI.CreateFixedObject(Hexagon_PointerSize, Offset, true);
927       HMFI.setRegSavedAreaStartFrameIndex(FI);
928       HMFI.setVarArgsFrameIndex(FI);
929     }
930   }
931 
932 
933   if (IsVarArg && !Subtarget.isEnvironmentMusl()) {
934     // This will point to the next argument passed via stack.
935     int Offset = HEXAGON_LRFP_SIZE + CCInfo.getNextStackOffset();
936     int FI = MFI.CreateFixedObject(Hexagon_PointerSize, Offset, true);
937     HMFI.setVarArgsFrameIndex(FI);
938   }
939 
940   return Chain;
941 }
942 
943 SDValue
944 HexagonTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
945   // VASTART stores the address of the VarArgsFrameIndex slot into the
946   // memory location argument.
947   MachineFunction &MF = DAG.getMachineFunction();
948   HexagonMachineFunctionInfo *QFI = MF.getInfo<HexagonMachineFunctionInfo>();
949   SDValue Addr = DAG.getFrameIndex(QFI->getVarArgsFrameIndex(), MVT::i32);
950   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
951 
952   if (!Subtarget.isEnvironmentMusl()) {
953     return DAG.getStore(Op.getOperand(0), SDLoc(Op), Addr, Op.getOperand(1),
954                         MachinePointerInfo(SV));
955   }
956   auto &FuncInfo = *MF.getInfo<HexagonMachineFunctionInfo>();
957   auto &HFL = *Subtarget.getFrameLowering();
958   SDLoc DL(Op);
959   SmallVector<SDValue, 8> MemOps;
960 
961   // Get frame index of va_list.
962   SDValue FIN = Op.getOperand(1);
963 
964   // If first Vararg register is odd, add 4 bytes to start of
965   // saved register area to point to the first register location.
966   // This is because the saved register area has to be 8 byte aligned.
967   // Incase of an odd start register, there will be 4 bytes of padding in
968   // the beginning of saved register area. If all registers area used up,
969   // the following condition will handle it correctly.
970   SDValue SavedRegAreaStartFrameIndex =
971     DAG.getFrameIndex(FuncInfo.getRegSavedAreaStartFrameIndex(), MVT::i32);
972 
973   auto PtrVT = getPointerTy(DAG.getDataLayout());
974 
975   if (HFL.FirstVarArgSavedReg & 1)
976     SavedRegAreaStartFrameIndex =
977       DAG.getNode(ISD::ADD, DL, PtrVT,
978                   DAG.getFrameIndex(FuncInfo.getRegSavedAreaStartFrameIndex(),
979                                     MVT::i32),
980                   DAG.getIntPtrConstant(4, DL));
981 
982   // Store the saved register area start pointer.
983   SDValue Store =
984     DAG.getStore(Op.getOperand(0), DL,
985                  SavedRegAreaStartFrameIndex,
986                  FIN, MachinePointerInfo(SV));
987   MemOps.push_back(Store);
988 
989   // Store saved register area end pointer.
990   FIN = DAG.getNode(ISD::ADD, DL, PtrVT,
991                     FIN, DAG.getIntPtrConstant(4, DL));
992   Store = DAG.getStore(Op.getOperand(0), DL,
993                        DAG.getFrameIndex(FuncInfo.getVarArgsFrameIndex(),
994                                          PtrVT),
995                        FIN, MachinePointerInfo(SV, 4));
996   MemOps.push_back(Store);
997 
998   // Store overflow area pointer.
999   FIN = DAG.getNode(ISD::ADD, DL, PtrVT,
1000                     FIN, DAG.getIntPtrConstant(4, DL));
1001   Store = DAG.getStore(Op.getOperand(0), DL,
1002                        DAG.getFrameIndex(FuncInfo.getVarArgsFrameIndex(),
1003                                          PtrVT),
1004                        FIN, MachinePointerInfo(SV, 8));
1005   MemOps.push_back(Store);
1006 
1007   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
1008 }
1009 
1010 SDValue
1011 HexagonTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
1012   // Assert that the linux ABI is enabled for the current compilation.
1013   assert(Subtarget.isEnvironmentMusl() && "Linux ABI should be enabled");
1014   SDValue Chain = Op.getOperand(0);
1015   SDValue DestPtr = Op.getOperand(1);
1016   SDValue SrcPtr = Op.getOperand(2);
1017   const Value *DestSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
1018   const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
1019   SDLoc DL(Op);
1020   // Size of the va_list is 12 bytes as it has 3 pointers. Therefore,
1021   // we need to memcopy 12 bytes from va_list to another similar list.
1022   return DAG.getMemcpy(Chain, DL, DestPtr, SrcPtr,
1023                        DAG.getIntPtrConstant(12, DL), Align(4),
1024                        /*isVolatile*/ false, false, false,
1025                        MachinePointerInfo(DestSV), MachinePointerInfo(SrcSV));
1026 }
1027 
1028 SDValue HexagonTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
1029   const SDLoc &dl(Op);
1030   SDValue LHS = Op.getOperand(0);
1031   SDValue RHS = Op.getOperand(1);
1032   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1033   MVT ResTy = ty(Op);
1034   MVT OpTy = ty(LHS);
1035 
1036   if (OpTy == MVT::v2i16 || OpTy == MVT::v4i8) {
1037     MVT ElemTy = OpTy.getVectorElementType();
1038     assert(ElemTy.isScalarInteger());
1039     MVT WideTy = MVT::getVectorVT(MVT::getIntegerVT(2*ElemTy.getSizeInBits()),
1040                                   OpTy.getVectorNumElements());
1041     return DAG.getSetCC(dl, ResTy,
1042                         DAG.getSExtOrTrunc(LHS, SDLoc(LHS), WideTy),
1043                         DAG.getSExtOrTrunc(RHS, SDLoc(RHS), WideTy), CC);
1044   }
1045 
1046   // Treat all other vector types as legal.
1047   if (ResTy.isVector())
1048     return Op;
1049 
1050   // Comparisons of short integers should use sign-extend, not zero-extend,
1051   // since we can represent small negative values in the compare instructions.
1052   // The LLVM default is to use zero-extend arbitrarily in these cases.
1053   auto isSExtFree = [this](SDValue N) {
1054     switch (N.getOpcode()) {
1055       case ISD::TRUNCATE: {
1056         // A sign-extend of a truncate of a sign-extend is free.
1057         SDValue Op = N.getOperand(0);
1058         if (Op.getOpcode() != ISD::AssertSext)
1059           return false;
1060         EVT OrigTy = cast<VTSDNode>(Op.getOperand(1))->getVT();
1061         unsigned ThisBW = ty(N).getSizeInBits();
1062         unsigned OrigBW = OrigTy.getSizeInBits();
1063         // The type that was sign-extended to get the AssertSext must be
1064         // narrower than the type of N (so that N has still the same value
1065         // as the original).
1066         return ThisBW >= OrigBW;
1067       }
1068       case ISD::LOAD:
1069         // We have sign-extended loads.
1070         return true;
1071     }
1072     return false;
1073   };
1074 
1075   if (OpTy == MVT::i8 || OpTy == MVT::i16) {
1076     ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS);
1077     bool IsNegative = C && C->getAPIntValue().isNegative();
1078     if (IsNegative || isSExtFree(LHS) || isSExtFree(RHS))
1079       return DAG.getSetCC(dl, ResTy,
1080                           DAG.getSExtOrTrunc(LHS, SDLoc(LHS), MVT::i32),
1081                           DAG.getSExtOrTrunc(RHS, SDLoc(RHS), MVT::i32), CC);
1082   }
1083 
1084   return SDValue();
1085 }
1086 
1087 SDValue
1088 HexagonTargetLowering::LowerVSELECT(SDValue Op, SelectionDAG &DAG) const {
1089   SDValue PredOp = Op.getOperand(0);
1090   SDValue Op1 = Op.getOperand(1), Op2 = Op.getOperand(2);
1091   MVT OpTy = ty(Op1);
1092   const SDLoc &dl(Op);
1093 
1094   if (OpTy == MVT::v2i16 || OpTy == MVT::v4i8) {
1095     MVT ElemTy = OpTy.getVectorElementType();
1096     assert(ElemTy.isScalarInteger());
1097     MVT WideTy = MVT::getVectorVT(MVT::getIntegerVT(2*ElemTy.getSizeInBits()),
1098                                   OpTy.getVectorNumElements());
1099     // Generate (trunc (select (_, sext, sext))).
1100     return DAG.getSExtOrTrunc(
1101               DAG.getSelect(dl, WideTy, PredOp,
1102                             DAG.getSExtOrTrunc(Op1, dl, WideTy),
1103                             DAG.getSExtOrTrunc(Op2, dl, WideTy)),
1104               dl, OpTy);
1105   }
1106 
1107   return SDValue();
1108 }
1109 
1110 SDValue
1111 HexagonTargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
1112   EVT ValTy = Op.getValueType();
1113   ConstantPoolSDNode *CPN = cast<ConstantPoolSDNode>(Op);
1114   Constant *CVal = nullptr;
1115   bool isVTi1Type = false;
1116   if (auto *CV = dyn_cast<ConstantVector>(CPN->getConstVal())) {
1117     if (cast<VectorType>(CV->getType())->getElementType()->isIntegerTy(1)) {
1118       IRBuilder<> IRB(CV->getContext());
1119       SmallVector<Constant*, 128> NewConst;
1120       unsigned VecLen = CV->getNumOperands();
1121       assert(isPowerOf2_32(VecLen) &&
1122              "conversion only supported for pow2 VectorSize");
1123       for (unsigned i = 0; i < VecLen; ++i)
1124         NewConst.push_back(IRB.getInt8(CV->getOperand(i)->isZeroValue()));
1125 
1126       CVal = ConstantVector::get(NewConst);
1127       isVTi1Type = true;
1128     }
1129   }
1130   Align Alignment = CPN->getAlign();
1131   bool IsPositionIndependent = isPositionIndependent();
1132   unsigned char TF = IsPositionIndependent ? HexagonII::MO_PCREL : 0;
1133 
1134   unsigned Offset = 0;
1135   SDValue T;
1136   if (CPN->isMachineConstantPoolEntry())
1137     T = DAG.getTargetConstantPool(CPN->getMachineCPVal(), ValTy, Alignment,
1138                                   Offset, TF);
1139   else if (isVTi1Type)
1140     T = DAG.getTargetConstantPool(CVal, ValTy, Alignment, Offset, TF);
1141   else
1142     T = DAG.getTargetConstantPool(CPN->getConstVal(), ValTy, Alignment, Offset,
1143                                   TF);
1144 
1145   assert(cast<ConstantPoolSDNode>(T)->getTargetFlags() == TF &&
1146          "Inconsistent target flag encountered");
1147 
1148   if (IsPositionIndependent)
1149     return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), ValTy, T);
1150   return DAG.getNode(HexagonISD::CP, SDLoc(Op), ValTy, T);
1151 }
1152 
1153 SDValue
1154 HexagonTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
1155   EVT VT = Op.getValueType();
1156   int Idx = cast<JumpTableSDNode>(Op)->getIndex();
1157   if (isPositionIndependent()) {
1158     SDValue T = DAG.getTargetJumpTable(Idx, VT, HexagonII::MO_PCREL);
1159     return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), VT, T);
1160   }
1161 
1162   SDValue T = DAG.getTargetJumpTable(Idx, VT);
1163   return DAG.getNode(HexagonISD::JT, SDLoc(Op), VT, T);
1164 }
1165 
1166 SDValue
1167 HexagonTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const {
1168   const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
1169   MachineFunction &MF = DAG.getMachineFunction();
1170   MachineFrameInfo &MFI = MF.getFrameInfo();
1171   MFI.setReturnAddressIsTaken(true);
1172 
1173   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
1174     return SDValue();
1175 
1176   EVT VT = Op.getValueType();
1177   SDLoc dl(Op);
1178   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1179   if (Depth) {
1180     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
1181     SDValue Offset = DAG.getConstant(4, dl, MVT::i32);
1182     return DAG.getLoad(VT, dl, DAG.getEntryNode(),
1183                        DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
1184                        MachinePointerInfo());
1185   }
1186 
1187   // Return LR, which contains the return address. Mark it an implicit live-in.
1188   Register Reg = MF.addLiveIn(HRI.getRARegister(), getRegClassFor(MVT::i32));
1189   return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
1190 }
1191 
1192 SDValue
1193 HexagonTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
1194   const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
1195   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
1196   MFI.setFrameAddressIsTaken(true);
1197 
1198   EVT VT = Op.getValueType();
1199   SDLoc dl(Op);
1200   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1201   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
1202                                          HRI.getFrameRegister(), VT);
1203   while (Depth--)
1204     FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
1205                             MachinePointerInfo());
1206   return FrameAddr;
1207 }
1208 
1209 SDValue
1210 HexagonTargetLowering::LowerATOMIC_FENCE(SDValue Op, SelectionDAG& DAG) const {
1211   SDLoc dl(Op);
1212   return DAG.getNode(HexagonISD::BARRIER, dl, MVT::Other, Op.getOperand(0));
1213 }
1214 
1215 SDValue
1216 HexagonTargetLowering::LowerGLOBALADDRESS(SDValue Op, SelectionDAG &DAG) const {
1217   SDLoc dl(Op);
1218   auto *GAN = cast<GlobalAddressSDNode>(Op);
1219   auto PtrVT = getPointerTy(DAG.getDataLayout());
1220   auto *GV = GAN->getGlobal();
1221   int64_t Offset = GAN->getOffset();
1222 
1223   auto &HLOF = *HTM.getObjFileLowering();
1224   Reloc::Model RM = HTM.getRelocationModel();
1225 
1226   if (RM == Reloc::Static) {
1227     SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, Offset);
1228     const GlobalObject *GO = GV->getAliaseeObject();
1229     if (GO && Subtarget.useSmallData() && HLOF.isGlobalInSmallSection(GO, HTM))
1230       return DAG.getNode(HexagonISD::CONST32_GP, dl, PtrVT, GA);
1231     return DAG.getNode(HexagonISD::CONST32, dl, PtrVT, GA);
1232   }
1233 
1234   bool UsePCRel = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
1235   if (UsePCRel) {
1236     SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, Offset,
1237                                             HexagonII::MO_PCREL);
1238     return DAG.getNode(HexagonISD::AT_PCREL, dl, PtrVT, GA);
1239   }
1240 
1241   // Use GOT index.
1242   SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
1243   SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, HexagonII::MO_GOT);
1244   SDValue Off = DAG.getConstant(Offset, dl, MVT::i32);
1245   return DAG.getNode(HexagonISD::AT_GOT, dl, PtrVT, GOT, GA, Off);
1246 }
1247 
1248 // Specifies that for loads and stores VT can be promoted to PromotedLdStVT.
1249 SDValue
1250 HexagonTargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
1251   const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1252   SDLoc dl(Op);
1253   EVT PtrVT = getPointerTy(DAG.getDataLayout());
1254 
1255   Reloc::Model RM = HTM.getRelocationModel();
1256   if (RM == Reloc::Static) {
1257     SDValue A = DAG.getTargetBlockAddress(BA, PtrVT);
1258     return DAG.getNode(HexagonISD::CONST32_GP, dl, PtrVT, A);
1259   }
1260 
1261   SDValue A = DAG.getTargetBlockAddress(BA, PtrVT, 0, HexagonII::MO_PCREL);
1262   return DAG.getNode(HexagonISD::AT_PCREL, dl, PtrVT, A);
1263 }
1264 
1265 SDValue
1266 HexagonTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op, SelectionDAG &DAG)
1267       const {
1268   EVT PtrVT = getPointerTy(DAG.getDataLayout());
1269   SDValue GOTSym = DAG.getTargetExternalSymbol(HEXAGON_GOT_SYM_NAME, PtrVT,
1270                                                HexagonII::MO_PCREL);
1271   return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), PtrVT, GOTSym);
1272 }
1273 
1274 SDValue
1275 HexagonTargetLowering::GetDynamicTLSAddr(SelectionDAG &DAG, SDValue Chain,
1276       GlobalAddressSDNode *GA, SDValue Glue, EVT PtrVT, unsigned ReturnReg,
1277       unsigned char OperandFlags) const {
1278   MachineFunction &MF = DAG.getMachineFunction();
1279   MachineFrameInfo &MFI = MF.getFrameInfo();
1280   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1281   SDLoc dl(GA);
1282   SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
1283                                            GA->getValueType(0),
1284                                            GA->getOffset(),
1285                                            OperandFlags);
1286   // Create Operands for the call.The Operands should have the following:
1287   // 1. Chain SDValue
1288   // 2. Callee which in this case is the Global address value.
1289   // 3. Registers live into the call.In this case its R0, as we
1290   //    have just one argument to be passed.
1291   // 4. Glue.
1292   // Note: The order is important.
1293 
1294   const auto &HRI = *Subtarget.getRegisterInfo();
1295   const uint32_t *Mask = HRI.getCallPreservedMask(MF, CallingConv::C);
1296   assert(Mask && "Missing call preserved mask for calling convention");
1297   SDValue Ops[] = { Chain, TGA, DAG.getRegister(Hexagon::R0, PtrVT),
1298                     DAG.getRegisterMask(Mask), Glue };
1299   Chain = DAG.getNode(HexagonISD::CALL, dl, NodeTys, Ops);
1300 
1301   // Inform MFI that function has calls.
1302   MFI.setAdjustsStack(true);
1303 
1304   Glue = Chain.getValue(1);
1305   return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Glue);
1306 }
1307 
1308 //
1309 // Lower using the intial executable model for TLS addresses
1310 //
1311 SDValue
1312 HexagonTargetLowering::LowerToTLSInitialExecModel(GlobalAddressSDNode *GA,
1313       SelectionDAG &DAG) const {
1314   SDLoc dl(GA);
1315   int64_t Offset = GA->getOffset();
1316   auto PtrVT = getPointerTy(DAG.getDataLayout());
1317 
1318   // Get the thread pointer.
1319   SDValue TP = DAG.getCopyFromReg(DAG.getEntryNode(), dl, Hexagon::UGP, PtrVT);
1320 
1321   bool IsPositionIndependent = isPositionIndependent();
1322   unsigned char TF =
1323       IsPositionIndependent ? HexagonII::MO_IEGOT : HexagonII::MO_IE;
1324 
1325   // First generate the TLS symbol address
1326   SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, PtrVT,
1327                                            Offset, TF);
1328 
1329   SDValue Sym = DAG.getNode(HexagonISD::CONST32, dl, PtrVT, TGA);
1330 
1331   if (IsPositionIndependent) {
1332     // Generate the GOT pointer in case of position independent code
1333     SDValue GOT = LowerGLOBAL_OFFSET_TABLE(Sym, DAG);
1334 
1335     // Add the TLS Symbol address to GOT pointer.This gives
1336     // GOT relative relocation for the symbol.
1337     Sym = DAG.getNode(ISD::ADD, dl, PtrVT, GOT, Sym);
1338   }
1339 
1340   // Load the offset value for TLS symbol.This offset is relative to
1341   // thread pointer.
1342   SDValue LoadOffset =
1343       DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Sym, MachinePointerInfo());
1344 
1345   // Address of the thread local variable is the add of thread
1346   // pointer and the offset of the variable.
1347   return DAG.getNode(ISD::ADD, dl, PtrVT, TP, LoadOffset);
1348 }
1349 
1350 //
1351 // Lower using the local executable model for TLS addresses
1352 //
1353 SDValue
1354 HexagonTargetLowering::LowerToTLSLocalExecModel(GlobalAddressSDNode *GA,
1355       SelectionDAG &DAG) const {
1356   SDLoc dl(GA);
1357   int64_t Offset = GA->getOffset();
1358   auto PtrVT = getPointerTy(DAG.getDataLayout());
1359 
1360   // Get the thread pointer.
1361   SDValue TP = DAG.getCopyFromReg(DAG.getEntryNode(), dl, Hexagon::UGP, PtrVT);
1362   // Generate the TLS symbol address
1363   SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, PtrVT, Offset,
1364                                            HexagonII::MO_TPREL);
1365   SDValue Sym = DAG.getNode(HexagonISD::CONST32, dl, PtrVT, TGA);
1366 
1367   // Address of the thread local variable is the add of thread
1368   // pointer and the offset of the variable.
1369   return DAG.getNode(ISD::ADD, dl, PtrVT, TP, Sym);
1370 }
1371 
1372 //
1373 // Lower using the general dynamic model for TLS addresses
1374 //
1375 SDValue
1376 HexagonTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
1377       SelectionDAG &DAG) const {
1378   SDLoc dl(GA);
1379   int64_t Offset = GA->getOffset();
1380   auto PtrVT = getPointerTy(DAG.getDataLayout());
1381 
1382   // First generate the TLS symbol address
1383   SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, PtrVT, Offset,
1384                                            HexagonII::MO_GDGOT);
1385 
1386   // Then, generate the GOT pointer
1387   SDValue GOT = LowerGLOBAL_OFFSET_TABLE(TGA, DAG);
1388 
1389   // Add the TLS symbol and the GOT pointer
1390   SDValue Sym = DAG.getNode(HexagonISD::CONST32, dl, PtrVT, TGA);
1391   SDValue Chain = DAG.getNode(ISD::ADD, dl, PtrVT, GOT, Sym);
1392 
1393   // Copy over the argument to R0
1394   SDValue InFlag;
1395   Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, Hexagon::R0, Chain, InFlag);
1396   InFlag = Chain.getValue(1);
1397 
1398   unsigned Flags = DAG.getSubtarget<HexagonSubtarget>().useLongCalls()
1399                        ? HexagonII::MO_GDPLT | HexagonII::HMOTF_ConstExtended
1400                        : HexagonII::MO_GDPLT;
1401 
1402   return GetDynamicTLSAddr(DAG, Chain, GA, InFlag, PtrVT,
1403                            Hexagon::R0, Flags);
1404 }
1405 
1406 //
1407 // Lower TLS addresses.
1408 //
1409 // For now for dynamic models, we only support the general dynamic model.
1410 //
1411 SDValue
1412 HexagonTargetLowering::LowerGlobalTLSAddress(SDValue Op,
1413       SelectionDAG &DAG) const {
1414   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1415 
1416   switch (HTM.getTLSModel(GA->getGlobal())) {
1417     case TLSModel::GeneralDynamic:
1418     case TLSModel::LocalDynamic:
1419       return LowerToTLSGeneralDynamicModel(GA, DAG);
1420     case TLSModel::InitialExec:
1421       return LowerToTLSInitialExecModel(GA, DAG);
1422     case TLSModel::LocalExec:
1423       return LowerToTLSLocalExecModel(GA, DAG);
1424   }
1425   llvm_unreachable("Bogus TLS model");
1426 }
1427 
1428 //===----------------------------------------------------------------------===//
1429 // TargetLowering Implementation
1430 //===----------------------------------------------------------------------===//
1431 
1432 HexagonTargetLowering::HexagonTargetLowering(const TargetMachine &TM,
1433                                              const HexagonSubtarget &ST)
1434     : TargetLowering(TM), HTM(static_cast<const HexagonTargetMachine&>(TM)),
1435       Subtarget(ST) {
1436   auto &HRI = *Subtarget.getRegisterInfo();
1437 
1438   setPrefLoopAlignment(Align(16));
1439   setMinFunctionAlignment(Align(4));
1440   setPrefFunctionAlignment(Align(16));
1441   setStackPointerRegisterToSaveRestore(HRI.getStackRegister());
1442   setBooleanContents(TargetLoweringBase::UndefinedBooleanContent);
1443   setBooleanVectorContents(TargetLoweringBase::UndefinedBooleanContent);
1444 
1445   setMaxAtomicSizeInBitsSupported(64);
1446   setMinCmpXchgSizeInBits(32);
1447 
1448   if (EnableHexSDNodeSched)
1449     setSchedulingPreference(Sched::VLIW);
1450   else
1451     setSchedulingPreference(Sched::Source);
1452 
1453   // Limits for inline expansion of memcpy/memmove
1454   MaxStoresPerMemcpy = MaxStoresPerMemcpyCL;
1455   MaxStoresPerMemcpyOptSize = MaxStoresPerMemcpyOptSizeCL;
1456   MaxStoresPerMemmove = MaxStoresPerMemmoveCL;
1457   MaxStoresPerMemmoveOptSize = MaxStoresPerMemmoveOptSizeCL;
1458   MaxStoresPerMemset = MaxStoresPerMemsetCL;
1459   MaxStoresPerMemsetOptSize = MaxStoresPerMemsetOptSizeCL;
1460 
1461   //
1462   // Set up register classes.
1463   //
1464 
1465   addRegisterClass(MVT::i1,    &Hexagon::PredRegsRegClass);
1466   addRegisterClass(MVT::v2i1,  &Hexagon::PredRegsRegClass);  // bbbbaaaa
1467   addRegisterClass(MVT::v4i1,  &Hexagon::PredRegsRegClass);  // ddccbbaa
1468   addRegisterClass(MVT::v8i1,  &Hexagon::PredRegsRegClass);  // hgfedcba
1469   addRegisterClass(MVT::i32,   &Hexagon::IntRegsRegClass);
1470   addRegisterClass(MVT::v2i16, &Hexagon::IntRegsRegClass);
1471   addRegisterClass(MVT::v4i8,  &Hexagon::IntRegsRegClass);
1472   addRegisterClass(MVT::i64,   &Hexagon::DoubleRegsRegClass);
1473   addRegisterClass(MVT::v8i8,  &Hexagon::DoubleRegsRegClass);
1474   addRegisterClass(MVT::v4i16, &Hexagon::DoubleRegsRegClass);
1475   addRegisterClass(MVT::v2i32, &Hexagon::DoubleRegsRegClass);
1476 
1477   addRegisterClass(MVT::f32, &Hexagon::IntRegsRegClass);
1478   addRegisterClass(MVT::f64, &Hexagon::DoubleRegsRegClass);
1479 
1480   //
1481   // Handling of scalar operations.
1482   //
1483   // All operations default to "legal", except:
1484   // - indexed loads and stores (pre-/post-incremented),
1485   // - ANY_EXTEND_VECTOR_INREG, ATOMIC_CMP_SWAP_WITH_SUCCESS, CONCAT_VECTORS,
1486   //   ConstantFP, DEBUGTRAP, FCEIL, FCOPYSIGN, FEXP, FEXP2, FFLOOR, FGETSIGN,
1487   //   FLOG, FLOG2, FLOG10, FMAXNUM, FMINNUM, FNEARBYINT, FRINT, FROUND, TRAP,
1488   //   FTRUNC, PREFETCH, SIGN_EXTEND_VECTOR_INREG, ZERO_EXTEND_VECTOR_INREG,
1489   // which default to "expand" for at least one type.
1490 
1491   // Misc operations.
1492   setOperationAction(ISD::ConstantFP,           MVT::f32,   Legal);
1493   setOperationAction(ISD::ConstantFP,           MVT::f64,   Legal);
1494   setOperationAction(ISD::TRAP,                 MVT::Other, Legal);
1495   setOperationAction(ISD::ConstantPool,         MVT::i32,   Custom);
1496   setOperationAction(ISD::JumpTable,            MVT::i32,   Custom);
1497   setOperationAction(ISD::BUILD_PAIR,           MVT::i64,   Expand);
1498   setOperationAction(ISD::SIGN_EXTEND_INREG,    MVT::i1,    Expand);
1499   setOperationAction(ISD::INLINEASM,            MVT::Other, Custom);
1500   setOperationAction(ISD::INLINEASM_BR,         MVT::Other, Custom);
1501   setOperationAction(ISD::PREFETCH,             MVT::Other, Custom);
1502   setOperationAction(ISD::READCYCLECOUNTER,     MVT::i64,   Custom);
1503   setOperationAction(ISD::INTRINSIC_VOID,       MVT::Other, Custom);
1504   setOperationAction(ISD::EH_RETURN,            MVT::Other, Custom);
1505   setOperationAction(ISD::GLOBAL_OFFSET_TABLE,  MVT::i32,   Custom);
1506   setOperationAction(ISD::GlobalTLSAddress,     MVT::i32,   Custom);
1507   setOperationAction(ISD::ATOMIC_FENCE,         MVT::Other, Custom);
1508 
1509   // Custom legalize GlobalAddress nodes into CONST32.
1510   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
1511   setOperationAction(ISD::GlobalAddress, MVT::i8,  Custom);
1512   setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
1513 
1514   // Hexagon needs to optimize cases with negative constants.
1515   setOperationAction(ISD::SETCC, MVT::i8,    Custom);
1516   setOperationAction(ISD::SETCC, MVT::i16,   Custom);
1517   setOperationAction(ISD::SETCC, MVT::v4i8,  Custom);
1518   setOperationAction(ISD::SETCC, MVT::v2i16, Custom);
1519 
1520   // VASTART needs to be custom lowered to use the VarArgsFrameIndex.
1521   setOperationAction(ISD::VASTART, MVT::Other, Custom);
1522   setOperationAction(ISD::VAEND,   MVT::Other, Expand);
1523   setOperationAction(ISD::VAARG,   MVT::Other, Expand);
1524   if (Subtarget.isEnvironmentMusl())
1525     setOperationAction(ISD::VACOPY, MVT::Other, Custom);
1526   else
1527     setOperationAction(ISD::VACOPY,  MVT::Other, Expand);
1528 
1529   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
1530   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
1531   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
1532 
1533   if (EmitJumpTables)
1534     setMinimumJumpTableEntries(MinimumJumpTables);
1535   else
1536     setMinimumJumpTableEntries(std::numeric_limits<unsigned>::max());
1537   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
1538 
1539   for (unsigned LegalIntOp :
1540        {ISD::ABS, ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}) {
1541     setOperationAction(LegalIntOp, MVT::i32, Legal);
1542     setOperationAction(LegalIntOp, MVT::i64, Legal);
1543   }
1544 
1545   // Hexagon has A4_addp_c and A4_subp_c that take and generate a carry bit,
1546   // but they only operate on i64.
1547   for (MVT VT : MVT::integer_valuetypes()) {
1548     setOperationAction(ISD::UADDO,    VT, Custom);
1549     setOperationAction(ISD::USUBO,    VT, Custom);
1550     setOperationAction(ISD::SADDO,    VT, Expand);
1551     setOperationAction(ISD::SSUBO,    VT, Expand);
1552     setOperationAction(ISD::ADDCARRY, VT, Expand);
1553     setOperationAction(ISD::SUBCARRY, VT, Expand);
1554   }
1555   setOperationAction(ISD::ADDCARRY, MVT::i64, Custom);
1556   setOperationAction(ISD::SUBCARRY, MVT::i64, Custom);
1557 
1558   setOperationAction(ISD::CTLZ, MVT::i8,  Promote);
1559   setOperationAction(ISD::CTLZ, MVT::i16, Promote);
1560   setOperationAction(ISD::CTTZ, MVT::i8,  Promote);
1561   setOperationAction(ISD::CTTZ, MVT::i16, Promote);
1562 
1563   // Popcount can count # of 1s in i64 but returns i32.
1564   setOperationAction(ISD::CTPOP, MVT::i8,  Promote);
1565   setOperationAction(ISD::CTPOP, MVT::i16, Promote);
1566   setOperationAction(ISD::CTPOP, MVT::i32, Promote);
1567   setOperationAction(ISD::CTPOP, MVT::i64, Legal);
1568 
1569   setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
1570   setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
1571   setOperationAction(ISD::BSWAP, MVT::i32, Legal);
1572   setOperationAction(ISD::BSWAP, MVT::i64, Legal);
1573 
1574   setOperationAction(ISD::FSHL, MVT::i32, Legal);
1575   setOperationAction(ISD::FSHL, MVT::i64, Legal);
1576   setOperationAction(ISD::FSHR, MVT::i32, Legal);
1577   setOperationAction(ISD::FSHR, MVT::i64, Legal);
1578 
1579   for (unsigned IntExpOp :
1580        {ISD::SDIV,      ISD::UDIV,      ISD::SREM,      ISD::UREM,
1581         ISD::SDIVREM,   ISD::UDIVREM,   ISD::ROTL,      ISD::ROTR,
1582         ISD::SHL_PARTS, ISD::SRA_PARTS, ISD::SRL_PARTS,
1583         ISD::SMUL_LOHI, ISD::UMUL_LOHI}) {
1584     for (MVT VT : MVT::integer_valuetypes())
1585       setOperationAction(IntExpOp, VT, Expand);
1586   }
1587 
1588   for (unsigned FPExpOp :
1589        {ISD::FDIV, ISD::FREM, ISD::FSQRT, ISD::FSIN, ISD::FCOS, ISD::FSINCOS,
1590         ISD::FPOW, ISD::FCOPYSIGN}) {
1591     for (MVT VT : MVT::fp_valuetypes())
1592       setOperationAction(FPExpOp, VT, Expand);
1593   }
1594 
1595   // No extending loads from i32.
1596   for (MVT VT : MVT::integer_valuetypes()) {
1597     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand);
1598     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand);
1599     setLoadExtAction(ISD::EXTLOAD,  VT, MVT::i32, Expand);
1600   }
1601   // Turn FP truncstore into trunc + store.
1602   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
1603   // Turn FP extload into load/fpextend.
1604   for (MVT VT : MVT::fp_valuetypes())
1605     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
1606 
1607   // Expand BR_CC and SELECT_CC for all integer and fp types.
1608   for (MVT VT : MVT::integer_valuetypes()) {
1609     setOperationAction(ISD::BR_CC,     VT, Expand);
1610     setOperationAction(ISD::SELECT_CC, VT, Expand);
1611   }
1612   for (MVT VT : MVT::fp_valuetypes()) {
1613     setOperationAction(ISD::BR_CC,     VT, Expand);
1614     setOperationAction(ISD::SELECT_CC, VT, Expand);
1615   }
1616   setOperationAction(ISD::BR_CC, MVT::Other, Expand);
1617 
1618   //
1619   // Handling of vector operations.
1620   //
1621 
1622   // Set the action for vector operations to "expand", then override it with
1623   // either "custom" or "legal" for specific cases.
1624   static const unsigned VectExpOps[] = {
1625     // Integer arithmetic:
1626     ISD::ADD,     ISD::SUB,     ISD::MUL,     ISD::SDIV,      ISD::UDIV,
1627     ISD::SREM,    ISD::UREM,    ISD::SDIVREM, ISD::UDIVREM,   ISD::SADDO,
1628     ISD::UADDO,   ISD::SSUBO,   ISD::USUBO,   ISD::SMUL_LOHI, ISD::UMUL_LOHI,
1629     // Logical/bit:
1630     ISD::AND,     ISD::OR,      ISD::XOR,     ISD::ROTL,    ISD::ROTR,
1631     ISD::CTPOP,   ISD::CTLZ,    ISD::CTTZ,    ISD::BSWAP,   ISD::BITREVERSE,
1632     // Floating point arithmetic/math functions:
1633     ISD::FADD,    ISD::FSUB,    ISD::FMUL,    ISD::FMA,     ISD::FDIV,
1634     ISD::FREM,    ISD::FNEG,    ISD::FABS,    ISD::FSQRT,   ISD::FSIN,
1635     ISD::FCOS,    ISD::FPOW,    ISD::FLOG,    ISD::FLOG2,
1636     ISD::FLOG10,  ISD::FEXP,    ISD::FEXP2,   ISD::FCEIL,   ISD::FTRUNC,
1637     ISD::FRINT,   ISD::FNEARBYINT,            ISD::FROUND,  ISD::FFLOOR,
1638     ISD::FMINNUM, ISD::FMAXNUM, ISD::FSINCOS,
1639     // Misc:
1640     ISD::BR_CC,   ISD::SELECT_CC,             ISD::ConstantPool,
1641     // Vector:
1642     ISD::BUILD_VECTOR,          ISD::SCALAR_TO_VECTOR,
1643     ISD::EXTRACT_VECTOR_ELT,    ISD::INSERT_VECTOR_ELT,
1644     ISD::EXTRACT_SUBVECTOR,     ISD::INSERT_SUBVECTOR,
1645     ISD::CONCAT_VECTORS,        ISD::VECTOR_SHUFFLE,
1646     ISD::SPLAT_VECTOR,
1647   };
1648 
1649   for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
1650     for (unsigned VectExpOp : VectExpOps)
1651       setOperationAction(VectExpOp, VT, Expand);
1652 
1653     // Expand all extending loads and truncating stores:
1654     for (MVT TargetVT : MVT::fixedlen_vector_valuetypes()) {
1655       if (TargetVT == VT)
1656         continue;
1657       setLoadExtAction(ISD::EXTLOAD, TargetVT, VT, Expand);
1658       setLoadExtAction(ISD::ZEXTLOAD, TargetVT, VT, Expand);
1659       setLoadExtAction(ISD::SEXTLOAD, TargetVT, VT, Expand);
1660       setTruncStoreAction(VT, TargetVT, Expand);
1661     }
1662 
1663     // Normalize all inputs to SELECT to be vectors of i32.
1664     if (VT.getVectorElementType() != MVT::i32) {
1665       MVT VT32 = MVT::getVectorVT(MVT::i32, VT.getSizeInBits()/32);
1666       setOperationAction(ISD::SELECT, VT, Promote);
1667       AddPromotedToType(ISD::SELECT, VT, VT32);
1668     }
1669     setOperationAction(ISD::SRA, VT, Custom);
1670     setOperationAction(ISD::SHL, VT, Custom);
1671     setOperationAction(ISD::SRL, VT, Custom);
1672   }
1673 
1674   // Extending loads from (native) vectors of i8 into (native) vectors of i16
1675   // are legal.
1676   setLoadExtAction(ISD::EXTLOAD,  MVT::v2i16, MVT::v2i8, Legal);
1677   setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i16, MVT::v2i8, Legal);
1678   setLoadExtAction(ISD::SEXTLOAD, MVT::v2i16, MVT::v2i8, Legal);
1679   setLoadExtAction(ISD::EXTLOAD,  MVT::v4i16, MVT::v4i8, Legal);
1680   setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i16, MVT::v4i8, Legal);
1681   setLoadExtAction(ISD::SEXTLOAD, MVT::v4i16, MVT::v4i8, Legal);
1682 
1683   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8,  Legal);
1684   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal);
1685   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal);
1686 
1687   // Types natively supported:
1688   for (MVT NativeVT : {MVT::v8i1, MVT::v4i1, MVT::v2i1, MVT::v4i8,
1689                        MVT::v8i8, MVT::v2i16, MVT::v4i16, MVT::v2i32}) {
1690     setOperationAction(ISD::BUILD_VECTOR,       NativeVT, Custom);
1691     setOperationAction(ISD::EXTRACT_VECTOR_ELT, NativeVT, Custom);
1692     setOperationAction(ISD::INSERT_VECTOR_ELT,  NativeVT, Custom);
1693     setOperationAction(ISD::EXTRACT_SUBVECTOR,  NativeVT, Custom);
1694     setOperationAction(ISD::INSERT_SUBVECTOR,   NativeVT, Custom);
1695     setOperationAction(ISD::CONCAT_VECTORS,     NativeVT, Custom);
1696 
1697     setOperationAction(ISD::ADD, NativeVT, Legal);
1698     setOperationAction(ISD::SUB, NativeVT, Legal);
1699     setOperationAction(ISD::MUL, NativeVT, Legal);
1700     setOperationAction(ISD::AND, NativeVT, Legal);
1701     setOperationAction(ISD::OR,  NativeVT, Legal);
1702     setOperationAction(ISD::XOR, NativeVT, Legal);
1703 
1704     if (NativeVT.getVectorElementType() != MVT::i1) {
1705       setOperationAction(ISD::SPLAT_VECTOR, NativeVT, Legal);
1706       setOperationAction(ISD::BSWAP,        NativeVT, Legal);
1707       setOperationAction(ISD::BITREVERSE,   NativeVT, Legal);
1708     }
1709   }
1710 
1711   for (MVT VT : {MVT::v8i8, MVT::v4i16, MVT::v2i32}) {
1712     setOperationAction(ISD::SMIN, VT, Legal);
1713     setOperationAction(ISD::SMAX, VT, Legal);
1714     setOperationAction(ISD::UMIN, VT, Legal);
1715     setOperationAction(ISD::UMAX, VT, Legal);
1716   }
1717 
1718   // Custom lower unaligned loads.
1719   // Also, for both loads and stores, verify the alignment of the address
1720   // in case it is a compile-time constant. This is a usability feature to
1721   // provide a meaningful error message to users.
1722   for (MVT VT : {MVT::i16, MVT::i32, MVT::v4i8, MVT::i64, MVT::v8i8,
1723                  MVT::v2i16, MVT::v4i16, MVT::v2i32}) {
1724     setOperationAction(ISD::LOAD,  VT, Custom);
1725     setOperationAction(ISD::STORE, VT, Custom);
1726   }
1727 
1728   // Custom-lower load/stores of boolean vectors.
1729   for (MVT VT : {MVT::v2i1, MVT::v4i1, MVT::v8i1}) {
1730     setOperationAction(ISD::LOAD,  VT, Custom);
1731     setOperationAction(ISD::STORE, VT, Custom);
1732   }
1733 
1734   for (MVT VT : {MVT::v2i16, MVT::v4i8, MVT::v8i8, MVT::v2i32, MVT::v4i16,
1735                  MVT::v2i32}) {
1736     setCondCodeAction(ISD::SETNE,  VT, Expand);
1737     setCondCodeAction(ISD::SETLE,  VT, Expand);
1738     setCondCodeAction(ISD::SETGE,  VT, Expand);
1739     setCondCodeAction(ISD::SETLT,  VT, Expand);
1740     setCondCodeAction(ISD::SETULE, VT, Expand);
1741     setCondCodeAction(ISD::SETUGE, VT, Expand);
1742     setCondCodeAction(ISD::SETULT, VT, Expand);
1743   }
1744 
1745   // Custom-lower bitcasts from i8 to v8i1.
1746   setOperationAction(ISD::BITCAST,        MVT::i8,    Custom);
1747   setOperationAction(ISD::SETCC,          MVT::v2i16, Custom);
1748   setOperationAction(ISD::VSELECT,        MVT::v4i8,  Custom);
1749   setOperationAction(ISD::VSELECT,        MVT::v2i16, Custom);
1750   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i8,  Custom);
1751   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom);
1752   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i8,  Custom);
1753 
1754   // V5+.
1755   setOperationAction(ISD::FMA,  MVT::f64, Expand);
1756   setOperationAction(ISD::FADD, MVT::f64, Expand);
1757   setOperationAction(ISD::FSUB, MVT::f64, Expand);
1758   setOperationAction(ISD::FMUL, MVT::f64, Expand);
1759 
1760   setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
1761   setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
1762 
1763   setOperationAction(ISD::FP_TO_UINT, MVT::i1,  Promote);
1764   setOperationAction(ISD::FP_TO_UINT, MVT::i8,  Promote);
1765   setOperationAction(ISD::FP_TO_UINT, MVT::i16, Promote);
1766   setOperationAction(ISD::FP_TO_SINT, MVT::i1,  Promote);
1767   setOperationAction(ISD::FP_TO_SINT, MVT::i8,  Promote);
1768   setOperationAction(ISD::FP_TO_SINT, MVT::i16, Promote);
1769   setOperationAction(ISD::UINT_TO_FP, MVT::i1,  Promote);
1770   setOperationAction(ISD::UINT_TO_FP, MVT::i8,  Promote);
1771   setOperationAction(ISD::UINT_TO_FP, MVT::i16, Promote);
1772   setOperationAction(ISD::SINT_TO_FP, MVT::i1,  Promote);
1773   setOperationAction(ISD::SINT_TO_FP, MVT::i8,  Promote);
1774   setOperationAction(ISD::SINT_TO_FP, MVT::i16, Promote);
1775 
1776   // Special handling for half-precision floating point conversions.
1777   // Lower half float conversions into library calls.
1778   setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
1779   setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
1780   setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
1781   setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
1782 
1783   setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
1784   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
1785   setTruncStoreAction(MVT::f32, MVT::f16, Expand);
1786   setTruncStoreAction(MVT::f64, MVT::f16, Expand);
1787 
1788   // Handling of indexed loads/stores: default is "expand".
1789   //
1790   for (MVT VT : {MVT::i8, MVT::i16, MVT::i32, MVT::i64, MVT::f32, MVT::f64,
1791                  MVT::v2i16, MVT::v2i32, MVT::v4i8, MVT::v4i16, MVT::v8i8}) {
1792     setIndexedLoadAction(ISD::POST_INC, VT, Legal);
1793     setIndexedStoreAction(ISD::POST_INC, VT, Legal);
1794   }
1795 
1796   // Subtarget-specific operation actions.
1797   //
1798   if (Subtarget.hasV60Ops()) {
1799     setOperationAction(ISD::ROTL, MVT::i32, Legal);
1800     setOperationAction(ISD::ROTL, MVT::i64, Legal);
1801     setOperationAction(ISD::ROTR, MVT::i32, Legal);
1802     setOperationAction(ISD::ROTR, MVT::i64, Legal);
1803   }
1804   if (Subtarget.hasV66Ops()) {
1805     setOperationAction(ISD::FADD, MVT::f64, Legal);
1806     setOperationAction(ISD::FSUB, MVT::f64, Legal);
1807   }
1808   if (Subtarget.hasV67Ops()) {
1809     setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
1810     setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
1811     setOperationAction(ISD::FMUL,    MVT::f64, Legal);
1812   }
1813 
1814   setTargetDAGCombine(ISD::OR);
1815   setTargetDAGCombine(ISD::TRUNCATE);
1816   setTargetDAGCombine(ISD::VSELECT);
1817 
1818   if (Subtarget.useHVXOps())
1819     initializeHVXLowering();
1820 
1821   computeRegisterProperties(&HRI);
1822 
1823   //
1824   // Library calls for unsupported operations
1825   //
1826   bool FastMath  = EnableFastMath;
1827 
1828   setLibcallName(RTLIB::SDIV_I32, "__hexagon_divsi3");
1829   setLibcallName(RTLIB::SDIV_I64, "__hexagon_divdi3");
1830   setLibcallName(RTLIB::UDIV_I32, "__hexagon_udivsi3");
1831   setLibcallName(RTLIB::UDIV_I64, "__hexagon_udivdi3");
1832   setLibcallName(RTLIB::SREM_I32, "__hexagon_modsi3");
1833   setLibcallName(RTLIB::SREM_I64, "__hexagon_moddi3");
1834   setLibcallName(RTLIB::UREM_I32, "__hexagon_umodsi3");
1835   setLibcallName(RTLIB::UREM_I64, "__hexagon_umoddi3");
1836 
1837   setLibcallName(RTLIB::SINTTOFP_I128_F64, "__hexagon_floattidf");
1838   setLibcallName(RTLIB::SINTTOFP_I128_F32, "__hexagon_floattisf");
1839   setLibcallName(RTLIB::FPTOUINT_F32_I128, "__hexagon_fixunssfti");
1840   setLibcallName(RTLIB::FPTOUINT_F64_I128, "__hexagon_fixunsdfti");
1841   setLibcallName(RTLIB::FPTOSINT_F32_I128, "__hexagon_fixsfti");
1842   setLibcallName(RTLIB::FPTOSINT_F64_I128, "__hexagon_fixdfti");
1843 
1844   // This is the only fast library function for sqrtd.
1845   if (FastMath)
1846     setLibcallName(RTLIB::SQRT_F64, "__hexagon_fast2_sqrtdf2");
1847 
1848   // Prefix is: nothing  for "slow-math",
1849   //            "fast2_" for V5+ fast-math double-precision
1850   // (actually, keep fast-math and fast-math2 separate for now)
1851   if (FastMath) {
1852     setLibcallName(RTLIB::ADD_F64, "__hexagon_fast_adddf3");
1853     setLibcallName(RTLIB::SUB_F64, "__hexagon_fast_subdf3");
1854     setLibcallName(RTLIB::MUL_F64, "__hexagon_fast_muldf3");
1855     setLibcallName(RTLIB::DIV_F64, "__hexagon_fast_divdf3");
1856     setLibcallName(RTLIB::DIV_F32, "__hexagon_fast_divsf3");
1857   } else {
1858     setLibcallName(RTLIB::ADD_F64, "__hexagon_adddf3");
1859     setLibcallName(RTLIB::SUB_F64, "__hexagon_subdf3");
1860     setLibcallName(RTLIB::MUL_F64, "__hexagon_muldf3");
1861     setLibcallName(RTLIB::DIV_F64, "__hexagon_divdf3");
1862     setLibcallName(RTLIB::DIV_F32, "__hexagon_divsf3");
1863   }
1864 
1865   if (FastMath)
1866     setLibcallName(RTLIB::SQRT_F32, "__hexagon_fast2_sqrtf");
1867   else
1868     setLibcallName(RTLIB::SQRT_F32, "__hexagon_sqrtf");
1869 
1870   // Routines to handle fp16 storage type.
1871   setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
1872   setLibcallName(RTLIB::FPROUND_F64_F16, "__truncdfhf2");
1873   setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
1874 
1875   // These cause problems when the shift amount is non-constant.
1876   setLibcallName(RTLIB::SHL_I128, nullptr);
1877   setLibcallName(RTLIB::SRL_I128, nullptr);
1878   setLibcallName(RTLIB::SRA_I128, nullptr);
1879 }
1880 
1881 const char* HexagonTargetLowering::getTargetNodeName(unsigned Opcode) const {
1882   switch ((HexagonISD::NodeType)Opcode) {
1883   case HexagonISD::ADDC:          return "HexagonISD::ADDC";
1884   case HexagonISD::SUBC:          return "HexagonISD::SUBC";
1885   case HexagonISD::ALLOCA:        return "HexagonISD::ALLOCA";
1886   case HexagonISD::AT_GOT:        return "HexagonISD::AT_GOT";
1887   case HexagonISD::AT_PCREL:      return "HexagonISD::AT_PCREL";
1888   case HexagonISD::BARRIER:       return "HexagonISD::BARRIER";
1889   case HexagonISD::CALL:          return "HexagonISD::CALL";
1890   case HexagonISD::CALLnr:        return "HexagonISD::CALLnr";
1891   case HexagonISD::CALLR:         return "HexagonISD::CALLR";
1892   case HexagonISD::COMBINE:       return "HexagonISD::COMBINE";
1893   case HexagonISD::CONST32_GP:    return "HexagonISD::CONST32_GP";
1894   case HexagonISD::CONST32:       return "HexagonISD::CONST32";
1895   case HexagonISD::CP:            return "HexagonISD::CP";
1896   case HexagonISD::DCFETCH:       return "HexagonISD::DCFETCH";
1897   case HexagonISD::EH_RETURN:     return "HexagonISD::EH_RETURN";
1898   case HexagonISD::TSTBIT:        return "HexagonISD::TSTBIT";
1899   case HexagonISD::EXTRACTU:      return "HexagonISD::EXTRACTU";
1900   case HexagonISD::INSERT:        return "HexagonISD::INSERT";
1901   case HexagonISD::JT:            return "HexagonISD::JT";
1902   case HexagonISD::RET_FLAG:      return "HexagonISD::RET_FLAG";
1903   case HexagonISD::TC_RETURN:     return "HexagonISD::TC_RETURN";
1904   case HexagonISD::VASL:          return "HexagonISD::VASL";
1905   case HexagonISD::VASR:          return "HexagonISD::VASR";
1906   case HexagonISD::VLSR:          return "HexagonISD::VLSR";
1907   case HexagonISD::MFSHL:         return "HexagonISD::MFSHL";
1908   case HexagonISD::MFSHR:         return "HexagonISD::MFSHR";
1909   case HexagonISD::SSAT:          return "HexagonISD::SSAT";
1910   case HexagonISD::USAT:          return "HexagonISD::USAT";
1911   case HexagonISD::SMUL_LOHI:     return "HexagonISD::SMUL_LOHI";
1912   case HexagonISD::UMUL_LOHI:     return "HexagonISD::UMUL_LOHI";
1913   case HexagonISD::USMUL_LOHI:    return "HexagonISD::USMUL_LOHI";
1914   case HexagonISD::VEXTRACTW:     return "HexagonISD::VEXTRACTW";
1915   case HexagonISD::VINSERTW0:     return "HexagonISD::VINSERTW0";
1916   case HexagonISD::VROR:          return "HexagonISD::VROR";
1917   case HexagonISD::READCYCLE:     return "HexagonISD::READCYCLE";
1918   case HexagonISD::PTRUE:         return "HexagonISD::PTRUE";
1919   case HexagonISD::PFALSE:        return "HexagonISD::PFALSE";
1920   case HexagonISD::D2P:           return "HexagonISD::D2P";
1921   case HexagonISD::P2D:           return "HexagonISD::P2D";
1922   case HexagonISD::V2Q:           return "HexagonISD::V2Q";
1923   case HexagonISD::Q2V:           return "HexagonISD::Q2V";
1924   case HexagonISD::QCAT:          return "HexagonISD::QCAT";
1925   case HexagonISD::QTRUE:         return "HexagonISD::QTRUE";
1926   case HexagonISD::QFALSE:        return "HexagonISD::QFALSE";
1927   case HexagonISD::TL_EXTEND:     return "HexagonISD::TL_EXTEND";
1928   case HexagonISD::TL_TRUNCATE:   return "HexagonISD::TL_TRUNCATE";
1929   case HexagonISD::TYPECAST:      return "HexagonISD::TYPECAST";
1930   case HexagonISD::VALIGN:        return "HexagonISD::VALIGN";
1931   case HexagonISD::VALIGNADDR:    return "HexagonISD::VALIGNADDR";
1932   case HexagonISD::ISEL:          return "HexagonISD::ISEL";
1933   case HexagonISD::OP_END:        break;
1934   }
1935   return nullptr;
1936 }
1937 
1938 bool
1939 HexagonTargetLowering::validateConstPtrAlignment(SDValue Ptr, Align NeedAlign,
1940       const SDLoc &dl, SelectionDAG &DAG) const {
1941   auto *CA = dyn_cast<ConstantSDNode>(Ptr);
1942   if (!CA)
1943     return true;
1944   unsigned Addr = CA->getZExtValue();
1945   Align HaveAlign =
1946       Addr != 0 ? Align(1ull << countTrailingZeros(Addr)) : NeedAlign;
1947   if (HaveAlign >= NeedAlign)
1948     return true;
1949 
1950   static int DK_MisalignedTrap = llvm::getNextAvailablePluginDiagnosticKind();
1951 
1952   struct DiagnosticInfoMisalignedTrap : public DiagnosticInfo {
1953     DiagnosticInfoMisalignedTrap(StringRef M)
1954       : DiagnosticInfo(DK_MisalignedTrap, DS_Remark), Msg(M) {}
1955     void print(DiagnosticPrinter &DP) const override {
1956       DP << Msg;
1957     }
1958     static bool classof(const DiagnosticInfo *DI) {
1959       return DI->getKind() == DK_MisalignedTrap;
1960     }
1961     StringRef Msg;
1962   };
1963 
1964   std::string ErrMsg;
1965   raw_string_ostream O(ErrMsg);
1966   O << "Misaligned constant address: " << format_hex(Addr, 10)
1967     << " has alignment " << HaveAlign.value()
1968     << ", but the memory access requires " << NeedAlign.value();
1969   if (DebugLoc DL = dl.getDebugLoc())
1970     DL.print(O << ", at ");
1971   O << ". The instruction has been replaced with a trap.";
1972 
1973   DAG.getContext()->diagnose(DiagnosticInfoMisalignedTrap(O.str()));
1974   return false;
1975 }
1976 
1977 SDValue
1978 HexagonTargetLowering::replaceMemWithUndef(SDValue Op, SelectionDAG &DAG)
1979       const {
1980   const SDLoc &dl(Op);
1981   auto *LS = cast<LSBaseSDNode>(Op.getNode());
1982   assert(!LS->isIndexed() && "Not expecting indexed ops on constant address");
1983 
1984   SDValue Chain = LS->getChain();
1985   SDValue Trap = DAG.getNode(ISD::TRAP, dl, MVT::Other, Chain);
1986   if (LS->getOpcode() == ISD::LOAD)
1987     return DAG.getMergeValues({DAG.getUNDEF(ty(Op)), Trap}, dl);
1988   return Trap;
1989 }
1990 
1991 // Bit-reverse Load Intrinsic: Check if the instruction is a bit reverse load
1992 // intrinsic.
1993 static bool isBrevLdIntrinsic(const Value *Inst) {
1994   unsigned ID = cast<IntrinsicInst>(Inst)->getIntrinsicID();
1995   return (ID == Intrinsic::hexagon_L2_loadrd_pbr ||
1996           ID == Intrinsic::hexagon_L2_loadri_pbr ||
1997           ID == Intrinsic::hexagon_L2_loadrh_pbr ||
1998           ID == Intrinsic::hexagon_L2_loadruh_pbr ||
1999           ID == Intrinsic::hexagon_L2_loadrb_pbr ||
2000           ID == Intrinsic::hexagon_L2_loadrub_pbr);
2001 }
2002 
2003 // Bit-reverse Load Intrinsic :Crawl up and figure out the object from previous
2004 // instruction. So far we only handle bitcast, extract value and bit reverse
2005 // load intrinsic instructions. Should we handle CGEP ?
2006 static Value *getBrevLdObject(Value *V) {
2007   if (Operator::getOpcode(V) == Instruction::ExtractValue ||
2008       Operator::getOpcode(V) == Instruction::BitCast)
2009     V = cast<Operator>(V)->getOperand(0);
2010   else if (isa<IntrinsicInst>(V) && isBrevLdIntrinsic(V))
2011     V = cast<Instruction>(V)->getOperand(0);
2012   return V;
2013 }
2014 
2015 // Bit-reverse Load Intrinsic: For a PHI Node return either an incoming edge or
2016 // a back edge. If the back edge comes from the intrinsic itself, the incoming
2017 // edge is returned.
2018 static Value *returnEdge(const PHINode *PN, Value *IntrBaseVal) {
2019   const BasicBlock *Parent = PN->getParent();
2020   int Idx = -1;
2021   for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i) {
2022     BasicBlock *Blk = PN->getIncomingBlock(i);
2023     // Determine if the back edge is originated from intrinsic.
2024     if (Blk == Parent) {
2025       Value *BackEdgeVal = PN->getIncomingValue(i);
2026       Value *BaseVal;
2027       // Loop over till we return the same Value or we hit the IntrBaseVal.
2028       do {
2029         BaseVal = BackEdgeVal;
2030         BackEdgeVal = getBrevLdObject(BackEdgeVal);
2031       } while ((BaseVal != BackEdgeVal) && (IntrBaseVal != BackEdgeVal));
2032       // If the getBrevLdObject returns IntrBaseVal, we should return the
2033       // incoming edge.
2034       if (IntrBaseVal == BackEdgeVal)
2035         continue;
2036       Idx = i;
2037       break;
2038     } else // Set the node to incoming edge.
2039       Idx = i;
2040   }
2041   assert(Idx >= 0 && "Unexpected index to incoming argument in PHI");
2042   return PN->getIncomingValue(Idx);
2043 }
2044 
2045 // Bit-reverse Load Intrinsic: Figure out the underlying object the base
2046 // pointer points to, for the bit-reverse load intrinsic. Setting this to
2047 // memoperand might help alias analysis to figure out the dependencies.
2048 static Value *getUnderLyingObjectForBrevLdIntr(Value *V) {
2049   Value *IntrBaseVal = V;
2050   Value *BaseVal;
2051   // Loop over till we return the same Value, implies we either figure out
2052   // the object or we hit a PHI
2053   do {
2054     BaseVal = V;
2055     V = getBrevLdObject(V);
2056   } while (BaseVal != V);
2057 
2058   // Identify the object from PHINode.
2059   if (const PHINode *PN = dyn_cast<PHINode>(V))
2060     return returnEdge(PN, IntrBaseVal);
2061   // For non PHI nodes, the object is the last value returned by getBrevLdObject
2062   else
2063     return V;
2064 }
2065 
2066 /// Given an intrinsic, checks if on the target the intrinsic will need to map
2067 /// to a MemIntrinsicNode (touches memory). If this is the case, it returns
2068 /// true and store the intrinsic information into the IntrinsicInfo that was
2069 /// passed to the function.
2070 bool HexagonTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
2071                                                const CallInst &I,
2072                                                MachineFunction &MF,
2073                                                unsigned Intrinsic) const {
2074   switch (Intrinsic) {
2075   case Intrinsic::hexagon_L2_loadrd_pbr:
2076   case Intrinsic::hexagon_L2_loadri_pbr:
2077   case Intrinsic::hexagon_L2_loadrh_pbr:
2078   case Intrinsic::hexagon_L2_loadruh_pbr:
2079   case Intrinsic::hexagon_L2_loadrb_pbr:
2080   case Intrinsic::hexagon_L2_loadrub_pbr: {
2081     Info.opc = ISD::INTRINSIC_W_CHAIN;
2082     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
2083     auto &Cont = I.getCalledFunction()->getParent()->getContext();
2084     // The intrinsic function call is of the form { ElTy, i8* }
2085     // @llvm.hexagon.L2.loadXX.pbr(i8*, i32). The pointer and memory access type
2086     // should be derived from ElTy.
2087     Type *ElTy = I.getCalledFunction()->getReturnType()->getStructElementType(0);
2088     Info.memVT = MVT::getVT(ElTy);
2089     llvm::Value *BasePtrVal = I.getOperand(0);
2090     Info.ptrVal = getUnderLyingObjectForBrevLdIntr(BasePtrVal);
2091     // The offset value comes through Modifier register. For now, assume the
2092     // offset is 0.
2093     Info.offset = 0;
2094     Info.align = DL.getABITypeAlign(Info.memVT.getTypeForEVT(Cont));
2095     Info.flags = MachineMemOperand::MOLoad;
2096     return true;
2097   }
2098   case Intrinsic::hexagon_V6_vgathermw:
2099   case Intrinsic::hexagon_V6_vgathermw_128B:
2100   case Intrinsic::hexagon_V6_vgathermh:
2101   case Intrinsic::hexagon_V6_vgathermh_128B:
2102   case Intrinsic::hexagon_V6_vgathermhw:
2103   case Intrinsic::hexagon_V6_vgathermhw_128B:
2104   case Intrinsic::hexagon_V6_vgathermwq:
2105   case Intrinsic::hexagon_V6_vgathermwq_128B:
2106   case Intrinsic::hexagon_V6_vgathermhq:
2107   case Intrinsic::hexagon_V6_vgathermhq_128B:
2108   case Intrinsic::hexagon_V6_vgathermhwq:
2109   case Intrinsic::hexagon_V6_vgathermhwq_128B: {
2110     const Module &M = *I.getParent()->getParent()->getParent();
2111     Info.opc = ISD::INTRINSIC_W_CHAIN;
2112     Type *VecTy = I.getArgOperand(1)->getType();
2113     Info.memVT = MVT::getVT(VecTy);
2114     Info.ptrVal = I.getArgOperand(0);
2115     Info.offset = 0;
2116     Info.align =
2117         MaybeAlign(M.getDataLayout().getTypeAllocSizeInBits(VecTy) / 8);
2118     Info.flags = MachineMemOperand::MOLoad |
2119                  MachineMemOperand::MOStore |
2120                  MachineMemOperand::MOVolatile;
2121     return true;
2122   }
2123   default:
2124     break;
2125   }
2126   return false;
2127 }
2128 
2129 bool HexagonTargetLowering::hasBitTest(SDValue X, SDValue Y) const {
2130   return X.getValueType().isScalarInteger(); // 'tstbit'
2131 }
2132 
2133 bool HexagonTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
2134   return isTruncateFree(EVT::getEVT(Ty1), EVT::getEVT(Ty2));
2135 }
2136 
2137 bool HexagonTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
2138   if (!VT1.isSimple() || !VT2.isSimple())
2139     return false;
2140   return VT1.getSimpleVT() == MVT::i64 && VT2.getSimpleVT() == MVT::i32;
2141 }
2142 
2143 bool HexagonTargetLowering::isFMAFasterThanFMulAndFAdd(
2144     const MachineFunction &MF, EVT VT) const {
2145   return isOperationLegalOrCustom(ISD::FMA, VT);
2146 }
2147 
2148 // Should we expand the build vector with shuffles?
2149 bool HexagonTargetLowering::shouldExpandBuildVectorWithShuffles(EVT VT,
2150       unsigned DefinedValues) const {
2151   return false;
2152 }
2153 
2154 bool HexagonTargetLowering::isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
2155       unsigned Index) const {
2156   assert(ResVT.getVectorElementType() == SrcVT.getVectorElementType());
2157   if (!ResVT.isSimple() || !SrcVT.isSimple())
2158     return false;
2159 
2160   MVT ResTy = ResVT.getSimpleVT(), SrcTy = SrcVT.getSimpleVT();
2161   if (ResTy.getVectorElementType() != MVT::i1)
2162     return true;
2163 
2164   // Non-HVX bool vectors are relatively cheap.
2165   return SrcTy.getVectorNumElements() <= 8;
2166 }
2167 
2168 bool HexagonTargetLowering::isTargetCanonicalConstantNode(SDValue Op) const {
2169   return Op.getOpcode() == ISD::CONCAT_VECTORS ||
2170          TargetLowering::isTargetCanonicalConstantNode(Op);
2171 }
2172 
2173 bool HexagonTargetLowering::isShuffleMaskLegal(ArrayRef<int> Mask,
2174                                                EVT VT) const {
2175   return true;
2176 }
2177 
2178 TargetLoweringBase::LegalizeTypeAction
2179 HexagonTargetLowering::getPreferredVectorAction(MVT VT) const {
2180   unsigned VecLen = VT.getVectorMinNumElements();
2181   MVT ElemTy = VT.getVectorElementType();
2182 
2183   if (VecLen == 1 || VT.isScalableVector())
2184     return TargetLoweringBase::TypeScalarizeVector;
2185 
2186   if (Subtarget.useHVXOps()) {
2187     unsigned Action = getPreferredHvxVectorAction(VT);
2188     if (Action != ~0u)
2189       return static_cast<TargetLoweringBase::LegalizeTypeAction>(Action);
2190   }
2191 
2192   // Always widen (remaining) vectors of i1.
2193   if (ElemTy == MVT::i1)
2194     return TargetLoweringBase::TypeWidenVector;
2195   // Widen non-power-of-2 vectors. Such types cannot be split right now,
2196   // and computeRegisterProperties will override "split" with "widen",
2197   // which can cause other issues.
2198   if (!isPowerOf2_32(VecLen))
2199     return TargetLoweringBase::TypeWidenVector;
2200 
2201   return TargetLoweringBase::TypeSplitVector;
2202 }
2203 
2204 TargetLoweringBase::LegalizeAction
2205 HexagonTargetLowering::getCustomOperationAction(SDNode &Op) const {
2206   if (Subtarget.useHVXOps()) {
2207     unsigned Action = getCustomHvxOperationAction(Op);
2208     if (Action != ~0u)
2209       return static_cast<TargetLoweringBase::LegalizeAction>(Action);
2210   }
2211   return TargetLoweringBase::Legal;
2212 }
2213 
2214 std::pair<SDValue, int>
2215 HexagonTargetLowering::getBaseAndOffset(SDValue Addr) const {
2216   if (Addr.getOpcode() == ISD::ADD) {
2217     SDValue Op1 = Addr.getOperand(1);
2218     if (auto *CN = dyn_cast<const ConstantSDNode>(Op1.getNode()))
2219       return { Addr.getOperand(0), CN->getSExtValue() };
2220   }
2221   return { Addr, 0 };
2222 }
2223 
2224 // Lower a vector shuffle (V1, V2, V3).  V1 and V2 are the two vectors
2225 // to select data from, V3 is the permutation.
2226 SDValue
2227 HexagonTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG)
2228       const {
2229   const auto *SVN = cast<ShuffleVectorSDNode>(Op);
2230   ArrayRef<int> AM = SVN->getMask();
2231   assert(AM.size() <= 8 && "Unexpected shuffle mask");
2232   unsigned VecLen = AM.size();
2233 
2234   MVT VecTy = ty(Op);
2235   assert(!Subtarget.isHVXVectorType(VecTy, true) &&
2236          "HVX shuffles should be legal");
2237   assert(VecTy.getSizeInBits() <= 64 && "Unexpected vector length");
2238 
2239   SDValue Op0 = Op.getOperand(0);
2240   SDValue Op1 = Op.getOperand(1);
2241   const SDLoc &dl(Op);
2242 
2243   // If the inputs are not the same as the output, bail. This is not an
2244   // error situation, but complicates the handling and the default expansion
2245   // (into BUILD_VECTOR) should be adequate.
2246   if (ty(Op0) != VecTy || ty(Op1) != VecTy)
2247     return SDValue();
2248 
2249   // Normalize the mask so that the first non-negative index comes from
2250   // the first operand.
2251   SmallVector<int,8> Mask(AM.begin(), AM.end());
2252   unsigned F = llvm::find_if(AM, [](int M) { return M >= 0; }) - AM.data();
2253   if (F == AM.size())
2254     return DAG.getUNDEF(VecTy);
2255   if (AM[F] >= int(VecLen)) {
2256     ShuffleVectorSDNode::commuteMask(Mask);
2257     std::swap(Op0, Op1);
2258   }
2259 
2260   // Express the shuffle mask in terms of bytes.
2261   SmallVector<int,8> ByteMask;
2262   unsigned ElemBytes = VecTy.getVectorElementType().getSizeInBits() / 8;
2263   for (int M : Mask) {
2264     if (M < 0) {
2265       for (unsigned j = 0; j != ElemBytes; ++j)
2266         ByteMask.push_back(-1);
2267     } else {
2268       for (unsigned j = 0; j != ElemBytes; ++j)
2269         ByteMask.push_back(M*ElemBytes + j);
2270     }
2271   }
2272   assert(ByteMask.size() <= 8);
2273 
2274   // All non-undef (non-negative) indexes are well within [0..127], so they
2275   // fit in a single byte. Build two 64-bit words:
2276   // - MaskIdx where each byte is the corresponding index (for non-negative
2277   //   indexes), and 0xFF for negative indexes, and
2278   // - MaskUnd that has 0xFF for each negative index.
2279   uint64_t MaskIdx = 0;
2280   uint64_t MaskUnd = 0;
2281   for (unsigned i = 0, e = ByteMask.size(); i != e; ++i) {
2282     unsigned S = 8*i;
2283     uint64_t M = ByteMask[i] & 0xFF;
2284     if (M == 0xFF)
2285       MaskUnd |= M << S;
2286     MaskIdx |= M << S;
2287   }
2288 
2289   if (ByteMask.size() == 4) {
2290     // Identity.
2291     if (MaskIdx == (0x03020100 | MaskUnd))
2292       return Op0;
2293     // Byte swap.
2294     if (MaskIdx == (0x00010203 | MaskUnd)) {
2295       SDValue T0 = DAG.getBitcast(MVT::i32, Op0);
2296       SDValue T1 = DAG.getNode(ISD::BSWAP, dl, MVT::i32, T0);
2297       return DAG.getBitcast(VecTy, T1);
2298     }
2299 
2300     // Byte packs.
2301     SDValue Concat10 =
2302         getCombine(Op1, Op0, dl, typeJoin({ty(Op1), ty(Op0)}), DAG);
2303     if (MaskIdx == (0x06040200 | MaskUnd))
2304       return getInstr(Hexagon::S2_vtrunehb, dl, VecTy, {Concat10}, DAG);
2305     if (MaskIdx == (0x07050301 | MaskUnd))
2306       return getInstr(Hexagon::S2_vtrunohb, dl, VecTy, {Concat10}, DAG);
2307 
2308     SDValue Concat01 =
2309         getCombine(Op0, Op1, dl, typeJoin({ty(Op0), ty(Op1)}), DAG);
2310     if (MaskIdx == (0x02000604 | MaskUnd))
2311       return getInstr(Hexagon::S2_vtrunehb, dl, VecTy, {Concat01}, DAG);
2312     if (MaskIdx == (0x03010705 | MaskUnd))
2313       return getInstr(Hexagon::S2_vtrunohb, dl, VecTy, {Concat01}, DAG);
2314   }
2315 
2316   if (ByteMask.size() == 8) {
2317     // Identity.
2318     if (MaskIdx == (0x0706050403020100ull | MaskUnd))
2319       return Op0;
2320     // Byte swap.
2321     if (MaskIdx == (0x0001020304050607ull | MaskUnd)) {
2322       SDValue T0 = DAG.getBitcast(MVT::i64, Op0);
2323       SDValue T1 = DAG.getNode(ISD::BSWAP, dl, MVT::i64, T0);
2324       return DAG.getBitcast(VecTy, T1);
2325     }
2326 
2327     // Halfword picks.
2328     if (MaskIdx == (0x0d0c050409080100ull | MaskUnd))
2329       return getInstr(Hexagon::S2_shuffeh, dl, VecTy, {Op1, Op0}, DAG);
2330     if (MaskIdx == (0x0f0e07060b0a0302ull | MaskUnd))
2331       return getInstr(Hexagon::S2_shuffoh, dl, VecTy, {Op1, Op0}, DAG);
2332     if (MaskIdx == (0x0d0c090805040100ull | MaskUnd))
2333       return getInstr(Hexagon::S2_vtrunewh, dl, VecTy, {Op1, Op0}, DAG);
2334     if (MaskIdx == (0x0f0e0b0a07060302ull | MaskUnd))
2335       return getInstr(Hexagon::S2_vtrunowh, dl, VecTy, {Op1, Op0}, DAG);
2336     if (MaskIdx == (0x0706030205040100ull | MaskUnd)) {
2337       VectorPair P = opSplit(Op0, dl, DAG);
2338       return getInstr(Hexagon::S2_packhl, dl, VecTy, {P.second, P.first}, DAG);
2339     }
2340 
2341     // Byte packs.
2342     if (MaskIdx == (0x0e060c040a020800ull | MaskUnd))
2343       return getInstr(Hexagon::S2_shuffeb, dl, VecTy, {Op1, Op0}, DAG);
2344     if (MaskIdx == (0x0f070d050b030901ull | MaskUnd))
2345       return getInstr(Hexagon::S2_shuffob, dl, VecTy, {Op1, Op0}, DAG);
2346   }
2347 
2348   return SDValue();
2349 }
2350 
2351 SDValue
2352 HexagonTargetLowering::getSplatValue(SDValue Op, SelectionDAG &DAG) const {
2353   switch (Op.getOpcode()) {
2354     case ISD::BUILD_VECTOR:
2355       if (SDValue S = cast<BuildVectorSDNode>(Op)->getSplatValue())
2356         return S;
2357       break;
2358     case ISD::SPLAT_VECTOR:
2359       return Op.getOperand(0);
2360   }
2361   return SDValue();
2362 }
2363 
2364 // Create a Hexagon-specific node for shifting a vector by an integer.
2365 SDValue
2366 HexagonTargetLowering::getVectorShiftByInt(SDValue Op, SelectionDAG &DAG)
2367       const {
2368   unsigned NewOpc;
2369   switch (Op.getOpcode()) {
2370     case ISD::SHL:
2371       NewOpc = HexagonISD::VASL;
2372       break;
2373     case ISD::SRA:
2374       NewOpc = HexagonISD::VASR;
2375       break;
2376     case ISD::SRL:
2377       NewOpc = HexagonISD::VLSR;
2378       break;
2379     default:
2380       llvm_unreachable("Unexpected shift opcode");
2381   }
2382 
2383   if (SDValue Sp = getSplatValue(Op.getOperand(1), DAG))
2384     return DAG.getNode(NewOpc, SDLoc(Op), ty(Op), Op.getOperand(0), Sp);
2385   return SDValue();
2386 }
2387 
2388 SDValue
2389 HexagonTargetLowering::LowerVECTOR_SHIFT(SDValue Op, SelectionDAG &DAG) const {
2390   const SDLoc &dl(Op);
2391 
2392   // First try to convert the shift (by vector) to a shift by a scalar.
2393   // If we first split the shift, the shift amount will become 'extract
2394   // subvector', and will no longer be recognized as scalar.
2395   SDValue Res = Op;
2396   if (SDValue S = getVectorShiftByInt(Op, DAG))
2397     Res = S;
2398 
2399   unsigned Opc = Res.getOpcode();
2400   switch (Opc) {
2401   case HexagonISD::VASR:
2402   case HexagonISD::VLSR:
2403   case HexagonISD::VASL:
2404     break;
2405   default:
2406     // No instructions for shifts by non-scalars.
2407     return SDValue();
2408   }
2409 
2410   MVT ResTy = ty(Res);
2411   if (ResTy.getVectorElementType() != MVT::i8)
2412     return Res;
2413 
2414   // For shifts of i8, extend the inputs to i16, then truncate back to i8.
2415   assert(ResTy.getVectorElementType() == MVT::i8);
2416   SDValue Val = Res.getOperand(0), Amt = Res.getOperand(1);
2417 
2418   auto ShiftPartI8 = [&dl, &DAG, this](unsigned Opc, SDValue V, SDValue A) {
2419     MVT Ty = ty(V);
2420     MVT ExtTy = MVT::getVectorVT(MVT::i16, Ty.getVectorNumElements());
2421     SDValue ExtV = Opc == HexagonISD::VASR ? DAG.getSExtOrTrunc(V, dl, ExtTy)
2422                                            : DAG.getZExtOrTrunc(V, dl, ExtTy);
2423     SDValue ExtS = DAG.getNode(Opc, dl, ExtTy, {ExtV, A});
2424     return DAG.getZExtOrTrunc(ExtS, dl, Ty);
2425   };
2426 
2427   if (ResTy.getSizeInBits() == 32)
2428     return ShiftPartI8(Opc, Val, Amt);
2429 
2430   auto [LoV, HiV] = opSplit(Val, dl, DAG);
2431   return DAG.getNode(ISD::CONCAT_VECTORS, dl, ResTy,
2432                      {ShiftPartI8(Opc, LoV, Amt), ShiftPartI8(Opc, HiV, Amt)});
2433 }
2434 
2435 SDValue
2436 HexagonTargetLowering::LowerROTL(SDValue Op, SelectionDAG &DAG) const {
2437   if (isa<ConstantSDNode>(Op.getOperand(1).getNode()))
2438     return Op;
2439   return SDValue();
2440 }
2441 
2442 SDValue
2443 HexagonTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
2444   MVT ResTy = ty(Op);
2445   SDValue InpV = Op.getOperand(0);
2446   MVT InpTy = ty(InpV);
2447   assert(ResTy.getSizeInBits() == InpTy.getSizeInBits());
2448   const SDLoc &dl(Op);
2449 
2450   // Handle conversion from i8 to v8i1.
2451   if (InpTy == MVT::i8) {
2452     if (ResTy == MVT::v8i1) {
2453       SDValue Sc = DAG.getBitcast(tyScalar(InpTy), InpV);
2454       SDValue Ext = DAG.getZExtOrTrunc(Sc, dl, MVT::i32);
2455       return getInstr(Hexagon::C2_tfrrp, dl, ResTy, Ext, DAG);
2456     }
2457     return SDValue();
2458   }
2459 
2460   return Op;
2461 }
2462 
2463 bool
2464 HexagonTargetLowering::getBuildVectorConstInts(ArrayRef<SDValue> Values,
2465       MVT VecTy, SelectionDAG &DAG,
2466       MutableArrayRef<ConstantInt*> Consts) const {
2467   MVT ElemTy = VecTy.getVectorElementType();
2468   unsigned ElemWidth = ElemTy.getSizeInBits();
2469   IntegerType *IntTy = IntegerType::get(*DAG.getContext(), ElemWidth);
2470   bool AllConst = true;
2471 
2472   for (unsigned i = 0, e = Values.size(); i != e; ++i) {
2473     SDValue V = Values[i];
2474     if (V.isUndef()) {
2475       Consts[i] = ConstantInt::get(IntTy, 0);
2476       continue;
2477     }
2478     // Make sure to always cast to IntTy.
2479     if (auto *CN = dyn_cast<ConstantSDNode>(V.getNode())) {
2480       const ConstantInt *CI = CN->getConstantIntValue();
2481       Consts[i] = ConstantInt::get(IntTy, CI->getValue().getSExtValue());
2482     } else if (auto *CN = dyn_cast<ConstantFPSDNode>(V.getNode())) {
2483       const ConstantFP *CF = CN->getConstantFPValue();
2484       APInt A = CF->getValueAPF().bitcastToAPInt();
2485       Consts[i] = ConstantInt::get(IntTy, A.getZExtValue());
2486     } else {
2487       AllConst = false;
2488     }
2489   }
2490   return AllConst;
2491 }
2492 
2493 SDValue
2494 HexagonTargetLowering::buildVector32(ArrayRef<SDValue> Elem, const SDLoc &dl,
2495                                      MVT VecTy, SelectionDAG &DAG) const {
2496   MVT ElemTy = VecTy.getVectorElementType();
2497   assert(VecTy.getVectorNumElements() == Elem.size());
2498 
2499   SmallVector<ConstantInt*,4> Consts(Elem.size());
2500   bool AllConst = getBuildVectorConstInts(Elem, VecTy, DAG, Consts);
2501 
2502   unsigned First, Num = Elem.size();
2503   for (First = 0; First != Num; ++First) {
2504     if (!isUndef(Elem[First]))
2505       break;
2506   }
2507   if (First == Num)
2508     return DAG.getUNDEF(VecTy);
2509 
2510   if (AllConst &&
2511       llvm::all_of(Consts, [](ConstantInt *CI) { return CI->isZero(); }))
2512     return getZero(dl, VecTy, DAG);
2513 
2514   if (ElemTy == MVT::i16 || ElemTy == MVT::f16) {
2515     assert(Elem.size() == 2);
2516     if (AllConst) {
2517       // The 'Consts' array will have all values as integers regardless
2518       // of the vector element type.
2519       uint32_t V = (Consts[0]->getZExtValue() & 0xFFFF) |
2520                    Consts[1]->getZExtValue() << 16;
2521       return DAG.getBitcast(VecTy, DAG.getConstant(V, dl, MVT::i32));
2522     }
2523     SDValue E0, E1;
2524     if (ElemTy == MVT::f16) {
2525       E0 = DAG.getZExtOrTrunc(DAG.getBitcast(MVT::i16, Elem[0]), dl, MVT::i32);
2526       E1 = DAG.getZExtOrTrunc(DAG.getBitcast(MVT::i16, Elem[1]), dl, MVT::i32);
2527     } else {
2528       E0 = Elem[0];
2529       E1 = Elem[1];
2530     }
2531     SDValue N = getInstr(Hexagon::A2_combine_ll, dl, MVT::i32, {E1, E0}, DAG);
2532     return DAG.getBitcast(VecTy, N);
2533   }
2534 
2535   if (ElemTy == MVT::i8) {
2536     // First try generating a constant.
2537     if (AllConst) {
2538       int32_t V = (Consts[0]->getZExtValue() & 0xFF) |
2539                   (Consts[1]->getZExtValue() & 0xFF) << 8 |
2540                   (Consts[2]->getZExtValue() & 0xFF) << 16 |
2541                   Consts[3]->getZExtValue() << 24;
2542       return DAG.getBitcast(MVT::v4i8, DAG.getConstant(V, dl, MVT::i32));
2543     }
2544 
2545     // Then try splat.
2546     bool IsSplat = true;
2547     for (unsigned i = First+1; i != Num; ++i) {
2548       if (Elem[i] == Elem[First] || isUndef(Elem[i]))
2549         continue;
2550       IsSplat = false;
2551       break;
2552     }
2553     if (IsSplat) {
2554       // Legalize the operand of SPLAT_VECTOR.
2555       SDValue Ext = DAG.getZExtOrTrunc(Elem[First], dl, MVT::i32);
2556       return DAG.getNode(ISD::SPLAT_VECTOR, dl, VecTy, Ext);
2557     }
2558 
2559     // Generate
2560     //   (zxtb(Elem[0]) | (zxtb(Elem[1]) << 8)) |
2561     //   (zxtb(Elem[2]) | (zxtb(Elem[3]) << 8)) << 16
2562     assert(Elem.size() == 4);
2563     SDValue Vs[4];
2564     for (unsigned i = 0; i != 4; ++i) {
2565       Vs[i] = DAG.getZExtOrTrunc(Elem[i], dl, MVT::i32);
2566       Vs[i] = DAG.getZeroExtendInReg(Vs[i], dl, MVT::i8);
2567     }
2568     SDValue S8 = DAG.getConstant(8, dl, MVT::i32);
2569     SDValue T0 = DAG.getNode(ISD::SHL, dl, MVT::i32, {Vs[1], S8});
2570     SDValue T1 = DAG.getNode(ISD::SHL, dl, MVT::i32, {Vs[3], S8});
2571     SDValue B0 = DAG.getNode(ISD::OR, dl, MVT::i32, {Vs[0], T0});
2572     SDValue B1 = DAG.getNode(ISD::OR, dl, MVT::i32, {Vs[2], T1});
2573 
2574     SDValue R = getInstr(Hexagon::A2_combine_ll, dl, MVT::i32, {B1, B0}, DAG);
2575     return DAG.getBitcast(MVT::v4i8, R);
2576   }
2577 
2578 #ifndef NDEBUG
2579   dbgs() << "VecTy: " << EVT(VecTy).getEVTString() << '\n';
2580 #endif
2581   llvm_unreachable("Unexpected vector element type");
2582 }
2583 
2584 SDValue
2585 HexagonTargetLowering::buildVector64(ArrayRef<SDValue> Elem, const SDLoc &dl,
2586                                      MVT VecTy, SelectionDAG &DAG) const {
2587   MVT ElemTy = VecTy.getVectorElementType();
2588   assert(VecTy.getVectorNumElements() == Elem.size());
2589 
2590   SmallVector<ConstantInt*,8> Consts(Elem.size());
2591   bool AllConst = getBuildVectorConstInts(Elem, VecTy, DAG, Consts);
2592 
2593   unsigned First, Num = Elem.size();
2594   for (First = 0; First != Num; ++First) {
2595     if (!isUndef(Elem[First]))
2596       break;
2597   }
2598   if (First == Num)
2599     return DAG.getUNDEF(VecTy);
2600 
2601   if (AllConst &&
2602       llvm::all_of(Consts, [](ConstantInt *CI) { return CI->isZero(); }))
2603     return getZero(dl, VecTy, DAG);
2604 
2605   // First try splat if possible.
2606   if (ElemTy == MVT::i16 || ElemTy == MVT::f16) {
2607     bool IsSplat = true;
2608     for (unsigned i = First+1; i != Num; ++i) {
2609       if (Elem[i] == Elem[First] || isUndef(Elem[i]))
2610         continue;
2611       IsSplat = false;
2612       break;
2613     }
2614     if (IsSplat) {
2615       // Legalize the operand of SPLAT_VECTOR
2616       SDValue S = ElemTy == MVT::f16 ? DAG.getBitcast(MVT::i16, Elem[First])
2617                                      : Elem[First];
2618       SDValue Ext = DAG.getZExtOrTrunc(S, dl, MVT::i32);
2619       return DAG.getNode(ISD::SPLAT_VECTOR, dl, VecTy, Ext);
2620     }
2621   }
2622 
2623   // Then try constant.
2624   if (AllConst) {
2625     uint64_t Val = 0;
2626     unsigned W = ElemTy.getSizeInBits();
2627     uint64_t Mask = (1ull << W) - 1;
2628     for (unsigned i = 0; i != Num; ++i)
2629       Val = (Val << W) | (Consts[Num-1-i]->getZExtValue() & Mask);
2630     SDValue V0 = DAG.getConstant(Val, dl, MVT::i64);
2631     return DAG.getBitcast(VecTy, V0);
2632   }
2633 
2634   // Build two 32-bit vectors and concatenate.
2635   MVT HalfTy = MVT::getVectorVT(ElemTy, Num/2);
2636   SDValue L = (ElemTy == MVT::i32)
2637                 ? Elem[0]
2638                 : buildVector32(Elem.take_front(Num/2), dl, HalfTy, DAG);
2639   SDValue H = (ElemTy == MVT::i32)
2640                 ? Elem[1]
2641                 : buildVector32(Elem.drop_front(Num/2), dl, HalfTy, DAG);
2642   return getCombine(H, L, dl, VecTy, DAG);
2643 }
2644 
2645 SDValue
2646 HexagonTargetLowering::extractVector(SDValue VecV, SDValue IdxV,
2647                                      const SDLoc &dl, MVT ValTy, MVT ResTy,
2648                                      SelectionDAG &DAG) const {
2649   MVT VecTy = ty(VecV);
2650   assert(!ValTy.isVector() ||
2651          VecTy.getVectorElementType() == ValTy.getVectorElementType());
2652   if (VecTy.getVectorElementType() == MVT::i1)
2653     return extractVectorPred(VecV, IdxV, dl, ValTy, ResTy, DAG);
2654 
2655   unsigned VecWidth = VecTy.getSizeInBits();
2656   unsigned ValWidth = ValTy.getSizeInBits();
2657   unsigned ElemWidth = VecTy.getVectorElementType().getSizeInBits();
2658   assert((VecWidth % ElemWidth) == 0);
2659   assert(VecWidth == 32 || VecWidth == 64);
2660 
2661   // Cast everything to scalar integer types.
2662   MVT ScalarTy = tyScalar(VecTy);
2663   VecV = DAG.getBitcast(ScalarTy, VecV);
2664 
2665   SDValue WidthV = DAG.getConstant(ValWidth, dl, MVT::i32);
2666   SDValue ExtV;
2667 
2668   if (auto *IdxN = dyn_cast<ConstantSDNode>(IdxV)) {
2669     unsigned Off = IdxN->getZExtValue() * ElemWidth;
2670     if (VecWidth == 64 && ValWidth == 32) {
2671       assert(Off == 0 || Off == 32);
2672       ExtV = Off == 0 ? LoHalf(VecV, DAG) : HiHalf(VecV, DAG);
2673     } else if (Off == 0 && (ValWidth % 8) == 0) {
2674       ExtV = DAG.getZeroExtendInReg(VecV, dl, tyScalar(ValTy));
2675     } else {
2676       SDValue OffV = DAG.getConstant(Off, dl, MVT::i32);
2677       // The return type of EXTRACTU must be the same as the type of the
2678       // input vector.
2679       ExtV = DAG.getNode(HexagonISD::EXTRACTU, dl, ScalarTy,
2680                          {VecV, WidthV, OffV});
2681     }
2682   } else {
2683     if (ty(IdxV) != MVT::i32)
2684       IdxV = DAG.getZExtOrTrunc(IdxV, dl, MVT::i32);
2685     SDValue OffV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV,
2686                                DAG.getConstant(ElemWidth, dl, MVT::i32));
2687     ExtV = DAG.getNode(HexagonISD::EXTRACTU, dl, ScalarTy,
2688                        {VecV, WidthV, OffV});
2689   }
2690 
2691   // Cast ExtV to the requested result type.
2692   ExtV = DAG.getZExtOrTrunc(ExtV, dl, tyScalar(ResTy));
2693   ExtV = DAG.getBitcast(ResTy, ExtV);
2694   return ExtV;
2695 }
2696 
2697 SDValue
2698 HexagonTargetLowering::extractVectorPred(SDValue VecV, SDValue IdxV,
2699                                          const SDLoc &dl, MVT ValTy, MVT ResTy,
2700                                          SelectionDAG &DAG) const {
2701   // Special case for v{8,4,2}i1 (the only boolean vectors legal in Hexagon
2702   // without any coprocessors).
2703   MVT VecTy = ty(VecV);
2704   unsigned VecWidth = VecTy.getSizeInBits();
2705   unsigned ValWidth = ValTy.getSizeInBits();
2706   assert(VecWidth == VecTy.getVectorNumElements() &&
2707          "Vector elements should equal vector width size");
2708   assert(VecWidth == 8 || VecWidth == 4 || VecWidth == 2);
2709 
2710   // Check if this is an extract of the lowest bit.
2711   if (auto *IdxN = dyn_cast<ConstantSDNode>(IdxV)) {
2712     // Extracting the lowest bit is a no-op, but it changes the type,
2713     // so it must be kept as an operation to avoid errors related to
2714     // type mismatches.
2715     if (IdxN->isZero() && ValTy.getSizeInBits() == 1)
2716       return DAG.getNode(HexagonISD::TYPECAST, dl, MVT::i1, VecV);
2717   }
2718 
2719   // If the value extracted is a single bit, use tstbit.
2720   if (ValWidth == 1) {
2721     SDValue A0 = getInstr(Hexagon::C2_tfrpr, dl, MVT::i32, {VecV}, DAG);
2722     SDValue M0 = DAG.getConstant(8 / VecWidth, dl, MVT::i32);
2723     SDValue I0 = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, M0);
2724     return DAG.getNode(HexagonISD::TSTBIT, dl, MVT::i1, A0, I0);
2725   }
2726 
2727   // Each bool vector (v2i1, v4i1, v8i1) always occupies 8 bits in
2728   // a predicate register. The elements of the vector are repeated
2729   // in the register (if necessary) so that the total number is 8.
2730   // The extracted subvector will need to be expanded in such a way.
2731   unsigned Scale = VecWidth / ValWidth;
2732 
2733   // Generate (p2d VecV) >> 8*Idx to move the interesting bytes to
2734   // position 0.
2735   assert(ty(IdxV) == MVT::i32);
2736   unsigned VecRep = 8 / VecWidth;
2737   SDValue S0 = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV,
2738                            DAG.getConstant(8*VecRep, dl, MVT::i32));
2739   SDValue T0 = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, VecV);
2740   SDValue T1 = DAG.getNode(ISD::SRL, dl, MVT::i64, T0, S0);
2741   while (Scale > 1) {
2742     // The longest possible subvector is at most 32 bits, so it is always
2743     // contained in the low subregister.
2744     T1 = LoHalf(T1, DAG);
2745     T1 = expandPredicate(T1, dl, DAG);
2746     Scale /= 2;
2747   }
2748 
2749   return DAG.getNode(HexagonISD::D2P, dl, ResTy, T1);
2750 }
2751 
2752 SDValue
2753 HexagonTargetLowering::insertVector(SDValue VecV, SDValue ValV, SDValue IdxV,
2754                                     const SDLoc &dl, MVT ValTy,
2755                                     SelectionDAG &DAG) const {
2756   MVT VecTy = ty(VecV);
2757   if (VecTy.getVectorElementType() == MVT::i1)
2758     return insertVectorPred(VecV, ValV, IdxV, dl, ValTy, DAG);
2759 
2760   unsigned VecWidth = VecTy.getSizeInBits();
2761   unsigned ValWidth = ValTy.getSizeInBits();
2762   assert(VecWidth == 32 || VecWidth == 64);
2763   assert((VecWidth % ValWidth) == 0);
2764 
2765   // Cast everything to scalar integer types.
2766   MVT ScalarTy = MVT::getIntegerVT(VecWidth);
2767   // The actual type of ValV may be different than ValTy (which is related
2768   // to the vector type).
2769   unsigned VW = ty(ValV).getSizeInBits();
2770   ValV = DAG.getBitcast(MVT::getIntegerVT(VW), ValV);
2771   VecV = DAG.getBitcast(ScalarTy, VecV);
2772   if (VW != VecWidth)
2773     ValV = DAG.getAnyExtOrTrunc(ValV, dl, ScalarTy);
2774 
2775   SDValue WidthV = DAG.getConstant(ValWidth, dl, MVT::i32);
2776   SDValue InsV;
2777 
2778   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(IdxV)) {
2779     unsigned W = C->getZExtValue() * ValWidth;
2780     SDValue OffV = DAG.getConstant(W, dl, MVT::i32);
2781     InsV = DAG.getNode(HexagonISD::INSERT, dl, ScalarTy,
2782                        {VecV, ValV, WidthV, OffV});
2783   } else {
2784     if (ty(IdxV) != MVT::i32)
2785       IdxV = DAG.getZExtOrTrunc(IdxV, dl, MVT::i32);
2786     SDValue OffV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, WidthV);
2787     InsV = DAG.getNode(HexagonISD::INSERT, dl, ScalarTy,
2788                        {VecV, ValV, WidthV, OffV});
2789   }
2790 
2791   return DAG.getNode(ISD::BITCAST, dl, VecTy, InsV);
2792 }
2793 
2794 SDValue
2795 HexagonTargetLowering::insertVectorPred(SDValue VecV, SDValue ValV,
2796                                         SDValue IdxV, const SDLoc &dl,
2797                                         MVT ValTy, SelectionDAG &DAG) const {
2798   MVT VecTy = ty(VecV);
2799   unsigned VecLen = VecTy.getVectorNumElements();
2800 
2801   if (ValTy == MVT::i1) {
2802     SDValue ToReg = getInstr(Hexagon::C2_tfrpr, dl, MVT::i32, {VecV}, DAG);
2803     SDValue Ext = DAG.getSExtOrTrunc(ValV, dl, MVT::i32);
2804     SDValue Width = DAG.getConstant(8 / VecLen, dl, MVT::i32);
2805     SDValue Idx = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, Width);
2806     SDValue Ins =
2807         DAG.getNode(HexagonISD::INSERT, dl, MVT::i32, {ToReg, Ext, Width, Idx});
2808     return getInstr(Hexagon::C2_tfrrp, dl, VecTy, {Ins}, DAG);
2809   }
2810 
2811   assert(ValTy.getVectorElementType() == MVT::i1);
2812   SDValue ValR = ValTy.isVector()
2813                      ? DAG.getNode(HexagonISD::P2D, dl, MVT::i64, ValV)
2814                      : DAG.getSExtOrTrunc(ValV, dl, MVT::i64);
2815 
2816   unsigned Scale = VecLen / ValTy.getVectorNumElements();
2817   assert(Scale > 1);
2818 
2819   for (unsigned R = Scale; R > 1; R /= 2) {
2820     ValR = contractPredicate(ValR, dl, DAG);
2821     ValR = getCombine(DAG.getUNDEF(MVT::i32), ValR, dl, MVT::i64, DAG);
2822   }
2823 
2824   SDValue Width = DAG.getConstant(64 / Scale, dl, MVT::i32);
2825   SDValue Idx = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, Width);
2826   SDValue VecR = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, VecV);
2827   SDValue Ins =
2828       DAG.getNode(HexagonISD::INSERT, dl, MVT::i64, {VecR, ValR, Width, Idx});
2829   return DAG.getNode(HexagonISD::D2P, dl, VecTy, Ins);
2830 }
2831 
2832 SDValue
2833 HexagonTargetLowering::expandPredicate(SDValue Vec32, const SDLoc &dl,
2834                                        SelectionDAG &DAG) const {
2835   assert(ty(Vec32).getSizeInBits() == 32);
2836   if (isUndef(Vec32))
2837     return DAG.getUNDEF(MVT::i64);
2838   SDValue P = DAG.getBitcast(MVT::v4i8, Vec32);
2839   SDValue X = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i16, P);
2840   return DAG.getBitcast(MVT::i64, X);
2841 }
2842 
2843 SDValue
2844 HexagonTargetLowering::contractPredicate(SDValue Vec64, const SDLoc &dl,
2845                                          SelectionDAG &DAG) const {
2846   assert(ty(Vec64).getSizeInBits() == 64);
2847   if (isUndef(Vec64))
2848     return DAG.getUNDEF(MVT::i32);
2849   // Collect even bytes:
2850   SDValue A = DAG.getBitcast(MVT::v8i8, Vec64);
2851   SDValue S = DAG.getVectorShuffle(MVT::v8i8, dl, A, DAG.getUNDEF(MVT::v8i8),
2852                                    {0, 2, 4, 6, 1, 3, 5, 7});
2853   return extractVector(S, DAG.getConstant(0, dl, MVT::i32), dl, MVT::v4i8,
2854                        MVT::i32, DAG);
2855 }
2856 
2857 SDValue
2858 HexagonTargetLowering::getZero(const SDLoc &dl, MVT Ty, SelectionDAG &DAG)
2859       const {
2860   if (Ty.isVector()) {
2861     unsigned W = Ty.getSizeInBits();
2862     if (W <= 64)
2863       return DAG.getBitcast(Ty, DAG.getConstant(0, dl, MVT::getIntegerVT(W)));
2864     return DAG.getNode(ISD::SPLAT_VECTOR, dl, Ty, getZero(dl, MVT::i32, DAG));
2865   }
2866 
2867   if (Ty.isInteger())
2868     return DAG.getConstant(0, dl, Ty);
2869   if (Ty.isFloatingPoint())
2870     return DAG.getConstantFP(0.0, dl, Ty);
2871   llvm_unreachable("Invalid type for zero");
2872 }
2873 
2874 SDValue
2875 HexagonTargetLowering::appendUndef(SDValue Val, MVT ResTy, SelectionDAG &DAG)
2876       const {
2877   MVT ValTy = ty(Val);
2878   assert(ValTy.getVectorElementType() == ResTy.getVectorElementType());
2879 
2880   unsigned ValLen = ValTy.getVectorNumElements();
2881   unsigned ResLen = ResTy.getVectorNumElements();
2882   if (ValLen == ResLen)
2883     return Val;
2884 
2885   const SDLoc &dl(Val);
2886   assert(ValLen < ResLen);
2887   assert(ResLen % ValLen == 0);
2888 
2889   SmallVector<SDValue, 4> Concats = {Val};
2890   for (unsigned i = 1, e = ResLen / ValLen; i < e; ++i)
2891     Concats.push_back(DAG.getUNDEF(ValTy));
2892 
2893   return DAG.getNode(ISD::CONCAT_VECTORS, dl, ResTy, Concats);
2894 }
2895 
2896 SDValue
2897 HexagonTargetLowering::getCombine(SDValue Hi, SDValue Lo, const SDLoc &dl,
2898                                   MVT ResTy, SelectionDAG &DAG) const {
2899   MVT ElemTy = ty(Hi);
2900   assert(ElemTy == ty(Lo));
2901 
2902   if (!ElemTy.isVector()) {
2903     assert(ElemTy.isScalarInteger());
2904     MVT PairTy = MVT::getIntegerVT(2 * ElemTy.getSizeInBits());
2905     SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, dl, PairTy, Lo, Hi);
2906     return DAG.getBitcast(ResTy, Pair);
2907   }
2908 
2909   unsigned Width = ElemTy.getSizeInBits();
2910   MVT IntTy = MVT::getIntegerVT(Width);
2911   MVT PairTy = MVT::getIntegerVT(2 * Width);
2912   SDValue Pair =
2913       DAG.getNode(ISD::BUILD_PAIR, dl, PairTy,
2914                   {DAG.getBitcast(IntTy, Lo), DAG.getBitcast(IntTy, Hi)});
2915   return DAG.getBitcast(ResTy, Pair);
2916 }
2917 
2918 SDValue
2919 HexagonTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
2920   MVT VecTy = ty(Op);
2921   unsigned BW = VecTy.getSizeInBits();
2922   const SDLoc &dl(Op);
2923   SmallVector<SDValue,8> Ops;
2924   for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i)
2925     Ops.push_back(Op.getOperand(i));
2926 
2927   if (BW == 32)
2928     return buildVector32(Ops, dl, VecTy, DAG);
2929   if (BW == 64)
2930     return buildVector64(Ops, dl, VecTy, DAG);
2931 
2932   if (VecTy == MVT::v8i1 || VecTy == MVT::v4i1 || VecTy == MVT::v2i1) {
2933     // Check if this is a special case or all-0 or all-1.
2934     bool All0 = true, All1 = true;
2935     for (SDValue P : Ops) {
2936       auto *CN = dyn_cast<ConstantSDNode>(P.getNode());
2937       if (CN == nullptr) {
2938         All0 = All1 = false;
2939         break;
2940       }
2941       uint32_t C = CN->getZExtValue();
2942       All0 &= (C == 0);
2943       All1 &= (C == 1);
2944     }
2945     if (All0)
2946       return DAG.getNode(HexagonISD::PFALSE, dl, VecTy);
2947     if (All1)
2948       return DAG.getNode(HexagonISD::PTRUE, dl, VecTy);
2949 
2950     // For each i1 element in the resulting predicate register, put 1
2951     // shifted by the index of the element into a general-purpose register,
2952     // then or them together and transfer it back into a predicate register.
2953     SDValue Rs[8];
2954     SDValue Z = getZero(dl, MVT::i32, DAG);
2955     // Always produce 8 bits, repeat inputs if necessary.
2956     unsigned Rep = 8 / VecTy.getVectorNumElements();
2957     for (unsigned i = 0; i != 8; ++i) {
2958       SDValue S = DAG.getConstant(1ull << i, dl, MVT::i32);
2959       Rs[i] = DAG.getSelect(dl, MVT::i32, Ops[i/Rep], S, Z);
2960     }
2961     for (ArrayRef<SDValue> A(Rs); A.size() != 1; A = A.drop_back(A.size()/2)) {
2962       for (unsigned i = 0, e = A.size()/2; i != e; ++i)
2963         Rs[i] = DAG.getNode(ISD::OR, dl, MVT::i32, Rs[2*i], Rs[2*i+1]);
2964     }
2965     // Move the value directly to a predicate register.
2966     return getInstr(Hexagon::C2_tfrrp, dl, VecTy, {Rs[0]}, DAG);
2967   }
2968 
2969   return SDValue();
2970 }
2971 
2972 SDValue
2973 HexagonTargetLowering::LowerCONCAT_VECTORS(SDValue Op,
2974                                            SelectionDAG &DAG) const {
2975   MVT VecTy = ty(Op);
2976   const SDLoc &dl(Op);
2977   if (VecTy.getSizeInBits() == 64) {
2978     assert(Op.getNumOperands() == 2);
2979     return getCombine(Op.getOperand(1), Op.getOperand(0), dl, VecTy, DAG);
2980   }
2981 
2982   MVT ElemTy = VecTy.getVectorElementType();
2983   if (ElemTy == MVT::i1) {
2984     assert(VecTy == MVT::v2i1 || VecTy == MVT::v4i1 || VecTy == MVT::v8i1);
2985     MVT OpTy = ty(Op.getOperand(0));
2986     // Scale is how many times the operands need to be contracted to match
2987     // the representation in the target register.
2988     unsigned Scale = VecTy.getVectorNumElements() / OpTy.getVectorNumElements();
2989     assert(Scale == Op.getNumOperands() && Scale > 1);
2990 
2991     // First, convert all bool vectors to integers, then generate pairwise
2992     // inserts to form values of doubled length. Up until there are only
2993     // two values left to concatenate, all of these values will fit in a
2994     // 32-bit integer, so keep them as i32 to use 32-bit inserts.
2995     SmallVector<SDValue,4> Words[2];
2996     unsigned IdxW = 0;
2997 
2998     for (SDValue P : Op.getNode()->op_values()) {
2999       SDValue W = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, P);
3000       for (unsigned R = Scale; R > 1; R /= 2) {
3001         W = contractPredicate(W, dl, DAG);
3002         W = getCombine(DAG.getUNDEF(MVT::i32), W, dl, MVT::i64, DAG);
3003       }
3004       W = LoHalf(W, DAG);
3005       Words[IdxW].push_back(W);
3006     }
3007 
3008     while (Scale > 2) {
3009       SDValue WidthV = DAG.getConstant(64 / Scale, dl, MVT::i32);
3010       Words[IdxW ^ 1].clear();
3011 
3012       for (unsigned i = 0, e = Words[IdxW].size(); i != e; i += 2) {
3013         SDValue W0 = Words[IdxW][i], W1 = Words[IdxW][i+1];
3014         // Insert W1 into W0 right next to the significant bits of W0.
3015         SDValue T = DAG.getNode(HexagonISD::INSERT, dl, MVT::i32,
3016                                 {W0, W1, WidthV, WidthV});
3017         Words[IdxW ^ 1].push_back(T);
3018       }
3019       IdxW ^= 1;
3020       Scale /= 2;
3021     }
3022 
3023     // At this point there should only be two words left, and Scale should be 2.
3024     assert(Scale == 2 && Words[IdxW].size() == 2);
3025 
3026     SDValue WW = getCombine(Words[IdxW][1], Words[IdxW][0], dl, MVT::i64, DAG);
3027     return DAG.getNode(HexagonISD::D2P, dl, VecTy, WW);
3028   }
3029 
3030   return SDValue();
3031 }
3032 
3033 SDValue
3034 HexagonTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
3035                                                SelectionDAG &DAG) const {
3036   SDValue Vec = Op.getOperand(0);
3037   MVT ElemTy = ty(Vec).getVectorElementType();
3038   return extractVector(Vec, Op.getOperand(1), SDLoc(Op), ElemTy, ty(Op), DAG);
3039 }
3040 
3041 SDValue
3042 HexagonTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
3043                                               SelectionDAG &DAG) const {
3044   return extractVector(Op.getOperand(0), Op.getOperand(1), SDLoc(Op),
3045                        ty(Op), ty(Op), DAG);
3046 }
3047 
3048 SDValue
3049 HexagonTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
3050                                               SelectionDAG &DAG) const {
3051   return insertVector(Op.getOperand(0), Op.getOperand(1), Op.getOperand(2),
3052                       SDLoc(Op), ty(Op).getVectorElementType(), DAG);
3053 }
3054 
3055 SDValue
3056 HexagonTargetLowering::LowerINSERT_SUBVECTOR(SDValue Op,
3057                                              SelectionDAG &DAG) const {
3058   SDValue ValV = Op.getOperand(1);
3059   return insertVector(Op.getOperand(0), ValV, Op.getOperand(2),
3060                       SDLoc(Op), ty(ValV), DAG);
3061 }
3062 
3063 bool
3064 HexagonTargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const {
3065   // Assuming the caller does not have either a signext or zeroext modifier, and
3066   // only one value is accepted, any reasonable truncation is allowed.
3067   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
3068     return false;
3069 
3070   // FIXME: in principle up to 64-bit could be made safe, but it would be very
3071   // fragile at the moment: any support for multiple value returns would be
3072   // liable to disallow tail calls involving i64 -> iN truncation in many cases.
3073   return Ty1->getPrimitiveSizeInBits() <= 32;
3074 }
3075 
3076 SDValue
3077 HexagonTargetLowering::LowerLoad(SDValue Op, SelectionDAG &DAG) const {
3078   MVT Ty = ty(Op);
3079   const SDLoc &dl(Op);
3080   LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
3081   MVT MemTy = LN->getMemoryVT().getSimpleVT();
3082   ISD::LoadExtType ET = LN->getExtensionType();
3083 
3084   bool LoadPred = MemTy == MVT::v2i1 || MemTy == MVT::v4i1 || MemTy == MVT::v8i1;
3085   if (LoadPred) {
3086     SDValue NL = DAG.getLoad(
3087         LN->getAddressingMode(), ISD::ZEXTLOAD, MVT::i32, dl, LN->getChain(),
3088         LN->getBasePtr(), LN->getOffset(), LN->getPointerInfo(),
3089         /*MemoryVT*/ MVT::i8, LN->getAlign(), LN->getMemOperand()->getFlags(),
3090         LN->getAAInfo(), LN->getRanges());
3091     LN = cast<LoadSDNode>(NL.getNode());
3092   }
3093 
3094   Align ClaimAlign = LN->getAlign();
3095   if (!validateConstPtrAlignment(LN->getBasePtr(), ClaimAlign, dl, DAG))
3096     return replaceMemWithUndef(Op, DAG);
3097 
3098   // Call LowerUnalignedLoad for all loads, it recognizes loads that
3099   // don't need extra aligning.
3100   SDValue LU = LowerUnalignedLoad(SDValue(LN, 0), DAG);
3101   if (LoadPred) {
3102     SDValue TP = getInstr(Hexagon::C2_tfrrp, dl, MemTy, {LU}, DAG);
3103     if (ET == ISD::SEXTLOAD) {
3104       TP = DAG.getSExtOrTrunc(TP, dl, Ty);
3105     } else if (ET != ISD::NON_EXTLOAD) {
3106       TP = DAG.getZExtOrTrunc(TP, dl, Ty);
3107     }
3108     SDValue Ch = cast<LoadSDNode>(LU.getNode())->getChain();
3109     return DAG.getMergeValues({TP, Ch}, dl);
3110   }
3111   return LU;
3112 }
3113 
3114 SDValue
3115 HexagonTargetLowering::LowerStore(SDValue Op, SelectionDAG &DAG) const {
3116   const SDLoc &dl(Op);
3117   StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
3118   SDValue Val = SN->getValue();
3119   MVT Ty = ty(Val);
3120 
3121   if (Ty == MVT::v2i1 || Ty == MVT::v4i1 || Ty == MVT::v8i1) {
3122     // Store the exact predicate (all bits).
3123     SDValue TR = getInstr(Hexagon::C2_tfrpr, dl, MVT::i32, {Val}, DAG);
3124     SDValue NS = DAG.getTruncStore(SN->getChain(), dl, TR, SN->getBasePtr(),
3125                                    MVT::i8, SN->getMemOperand());
3126     if (SN->isIndexed()) {
3127       NS = DAG.getIndexedStore(NS, dl, SN->getBasePtr(), SN->getOffset(),
3128                                SN->getAddressingMode());
3129     }
3130     SN = cast<StoreSDNode>(NS.getNode());
3131   }
3132 
3133   Align ClaimAlign = SN->getAlign();
3134   if (!validateConstPtrAlignment(SN->getBasePtr(), ClaimAlign, dl, DAG))
3135     return replaceMemWithUndef(Op, DAG);
3136 
3137   MVT StoreTy = SN->getMemoryVT().getSimpleVT();
3138   Align NeedAlign = Subtarget.getTypeAlignment(StoreTy);
3139   if (ClaimAlign < NeedAlign)
3140     return expandUnalignedStore(SN, DAG);
3141   return SDValue(SN, 0);
3142 }
3143 
3144 SDValue
3145 HexagonTargetLowering::LowerUnalignedLoad(SDValue Op, SelectionDAG &DAG)
3146       const {
3147   LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
3148   MVT LoadTy = ty(Op);
3149   unsigned NeedAlign = Subtarget.getTypeAlignment(LoadTy).value();
3150   unsigned HaveAlign = LN->getAlign().value();
3151   if (HaveAlign >= NeedAlign)
3152     return Op;
3153 
3154   const SDLoc &dl(Op);
3155   const DataLayout &DL = DAG.getDataLayout();
3156   LLVMContext &Ctx = *DAG.getContext();
3157 
3158   // If the load aligning is disabled or the load can be broken up into two
3159   // smaller legal loads, do the default (target-independent) expansion.
3160   bool DoDefault = false;
3161   // Handle it in the default way if this is an indexed load.
3162   if (!LN->isUnindexed())
3163     DoDefault = true;
3164 
3165   if (!AlignLoads) {
3166     if (allowsMemoryAccessForAlignment(Ctx, DL, LN->getMemoryVT(),
3167                                        *LN->getMemOperand()))
3168       return Op;
3169     DoDefault = true;
3170   }
3171   if (!DoDefault && (2 * HaveAlign) == NeedAlign) {
3172     // The PartTy is the equivalent of "getLoadableTypeOfSize(HaveAlign)".
3173     MVT PartTy = HaveAlign <= 8 ? MVT::getIntegerVT(8 * HaveAlign)
3174                                 : MVT::getVectorVT(MVT::i8, HaveAlign);
3175     DoDefault =
3176         allowsMemoryAccessForAlignment(Ctx, DL, PartTy, *LN->getMemOperand());
3177   }
3178   if (DoDefault) {
3179     std::pair<SDValue, SDValue> P = expandUnalignedLoad(LN, DAG);
3180     return DAG.getMergeValues({P.first, P.second}, dl);
3181   }
3182 
3183   // The code below generates two loads, both aligned as NeedAlign, and
3184   // with the distance of NeedAlign between them. For that to cover the
3185   // bits that need to be loaded (and without overlapping), the size of
3186   // the loads should be equal to NeedAlign. This is true for all loadable
3187   // types, but add an assertion in case something changes in the future.
3188   assert(LoadTy.getSizeInBits() == 8*NeedAlign);
3189 
3190   unsigned LoadLen = NeedAlign;
3191   SDValue Base = LN->getBasePtr();
3192   SDValue Chain = LN->getChain();
3193   auto BO = getBaseAndOffset(Base);
3194   unsigned BaseOpc = BO.first.getOpcode();
3195   if (BaseOpc == HexagonISD::VALIGNADDR && BO.second % LoadLen == 0)
3196     return Op;
3197 
3198   if (BO.second % LoadLen != 0) {
3199     BO.first = DAG.getNode(ISD::ADD, dl, MVT::i32, BO.first,
3200                            DAG.getConstant(BO.second % LoadLen, dl, MVT::i32));
3201     BO.second -= BO.second % LoadLen;
3202   }
3203   SDValue BaseNoOff = (BaseOpc != HexagonISD::VALIGNADDR)
3204       ? DAG.getNode(HexagonISD::VALIGNADDR, dl, MVT::i32, BO.first,
3205                     DAG.getConstant(NeedAlign, dl, MVT::i32))
3206       : BO.first;
3207   SDValue Base0 =
3208       DAG.getMemBasePlusOffset(BaseNoOff, TypeSize::Fixed(BO.second), dl);
3209   SDValue Base1 = DAG.getMemBasePlusOffset(
3210       BaseNoOff, TypeSize::Fixed(BO.second + LoadLen), dl);
3211 
3212   MachineMemOperand *WideMMO = nullptr;
3213   if (MachineMemOperand *MMO = LN->getMemOperand()) {
3214     MachineFunction &MF = DAG.getMachineFunction();
3215     WideMMO = MF.getMachineMemOperand(
3216         MMO->getPointerInfo(), MMO->getFlags(), 2 * LoadLen, Align(LoadLen),
3217         MMO->getAAInfo(), MMO->getRanges(), MMO->getSyncScopeID(),
3218         MMO->getSuccessOrdering(), MMO->getFailureOrdering());
3219   }
3220 
3221   SDValue Load0 = DAG.getLoad(LoadTy, dl, Chain, Base0, WideMMO);
3222   SDValue Load1 = DAG.getLoad(LoadTy, dl, Chain, Base1, WideMMO);
3223 
3224   SDValue Aligned = DAG.getNode(HexagonISD::VALIGN, dl, LoadTy,
3225                                 {Load1, Load0, BaseNoOff.getOperand(0)});
3226   SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3227                                  Load0.getValue(1), Load1.getValue(1));
3228   SDValue M = DAG.getMergeValues({Aligned, NewChain}, dl);
3229   return M;
3230 }
3231 
3232 SDValue
3233 HexagonTargetLowering::LowerUAddSubO(SDValue Op, SelectionDAG &DAG) const {
3234   SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
3235   auto *CY = dyn_cast<ConstantSDNode>(Y);
3236   if (!CY)
3237     return SDValue();
3238 
3239   const SDLoc &dl(Op);
3240   SDVTList VTs = Op.getNode()->getVTList();
3241   assert(VTs.NumVTs == 2);
3242   assert(VTs.VTs[1] == MVT::i1);
3243   unsigned Opc = Op.getOpcode();
3244 
3245   if (CY) {
3246     uint32_t VY = CY->getZExtValue();
3247     assert(VY != 0 && "This should have been folded");
3248     // X +/- 1
3249     if (VY != 1)
3250       return SDValue();
3251 
3252     if (Opc == ISD::UADDO) {
3253       SDValue Op = DAG.getNode(ISD::ADD, dl, VTs.VTs[0], {X, Y});
3254       SDValue Ov = DAG.getSetCC(dl, MVT::i1, Op, getZero(dl, ty(Op), DAG),
3255                                 ISD::SETEQ);
3256       return DAG.getMergeValues({Op, Ov}, dl);
3257     }
3258     if (Opc == ISD::USUBO) {
3259       SDValue Op = DAG.getNode(ISD::SUB, dl, VTs.VTs[0], {X, Y});
3260       SDValue Ov = DAG.getSetCC(dl, MVT::i1, Op,
3261                                 DAG.getConstant(-1, dl, ty(Op)), ISD::SETEQ);
3262       return DAG.getMergeValues({Op, Ov}, dl);
3263     }
3264   }
3265 
3266   return SDValue();
3267 }
3268 
3269 SDValue
3270 HexagonTargetLowering::LowerAddSubCarry(SDValue Op, SelectionDAG &DAG) const {
3271   const SDLoc &dl(Op);
3272   unsigned Opc = Op.getOpcode();
3273   SDValue X = Op.getOperand(0), Y = Op.getOperand(1), C = Op.getOperand(2);
3274 
3275   if (Opc == ISD::ADDCARRY)
3276     return DAG.getNode(HexagonISD::ADDC, dl, Op.getNode()->getVTList(),
3277                        { X, Y, C });
3278 
3279   EVT CarryTy = C.getValueType();
3280   SDValue SubC = DAG.getNode(HexagonISD::SUBC, dl, Op.getNode()->getVTList(),
3281                              { X, Y, DAG.getLogicalNOT(dl, C, CarryTy) });
3282   SDValue Out[] = { SubC.getValue(0),
3283                     DAG.getLogicalNOT(dl, SubC.getValue(1), CarryTy) };
3284   return DAG.getMergeValues(Out, dl);
3285 }
3286 
3287 SDValue
3288 HexagonTargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
3289   SDValue Chain     = Op.getOperand(0);
3290   SDValue Offset    = Op.getOperand(1);
3291   SDValue Handler   = Op.getOperand(2);
3292   SDLoc dl(Op);
3293   auto PtrVT = getPointerTy(DAG.getDataLayout());
3294 
3295   // Mark function as containing a call to EH_RETURN.
3296   HexagonMachineFunctionInfo *FuncInfo =
3297     DAG.getMachineFunction().getInfo<HexagonMachineFunctionInfo>();
3298   FuncInfo->setHasEHReturn();
3299 
3300   unsigned OffsetReg = Hexagon::R28;
3301 
3302   SDValue StoreAddr =
3303       DAG.getNode(ISD::ADD, dl, PtrVT, DAG.getRegister(Hexagon::R30, PtrVT),
3304                   DAG.getIntPtrConstant(4, dl));
3305   Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo());
3306   Chain = DAG.getCopyToReg(Chain, dl, OffsetReg, Offset);
3307 
3308   // Not needed we already use it as explict input to EH_RETURN.
3309   // MF.getRegInfo().addLiveOut(OffsetReg);
3310 
3311   return DAG.getNode(HexagonISD::EH_RETURN, dl, MVT::Other, Chain);
3312 }
3313 
3314 SDValue
3315 HexagonTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
3316   unsigned Opc = Op.getOpcode();
3317 
3318   // Handle INLINEASM first.
3319   if (Opc == ISD::INLINEASM || Opc == ISD::INLINEASM_BR)
3320     return LowerINLINEASM(Op, DAG);
3321 
3322   if (isHvxOperation(Op.getNode(), DAG)) {
3323     // If HVX lowering returns nothing, try the default lowering.
3324     if (SDValue V = LowerHvxOperation(Op, DAG))
3325       return V;
3326   }
3327 
3328   switch (Opc) {
3329     default:
3330 #ifndef NDEBUG
3331       Op.getNode()->dumpr(&DAG);
3332       if (Opc > HexagonISD::OP_BEGIN && Opc < HexagonISD::OP_END)
3333         errs() << "Error: check for a non-legal type in this operation\n";
3334 #endif
3335       llvm_unreachable("Should not custom lower this!");
3336     case ISD::CONCAT_VECTORS:       return LowerCONCAT_VECTORS(Op, DAG);
3337     case ISD::INSERT_SUBVECTOR:     return LowerINSERT_SUBVECTOR(Op, DAG);
3338     case ISD::INSERT_VECTOR_ELT:    return LowerINSERT_VECTOR_ELT(Op, DAG);
3339     case ISD::EXTRACT_SUBVECTOR:    return LowerEXTRACT_SUBVECTOR(Op, DAG);
3340     case ISD::EXTRACT_VECTOR_ELT:   return LowerEXTRACT_VECTOR_ELT(Op, DAG);
3341     case ISD::BUILD_VECTOR:         return LowerBUILD_VECTOR(Op, DAG);
3342     case ISD::VECTOR_SHUFFLE:       return LowerVECTOR_SHUFFLE(Op, DAG);
3343     case ISD::BITCAST:              return LowerBITCAST(Op, DAG);
3344     case ISD::LOAD:                 return LowerLoad(Op, DAG);
3345     case ISD::STORE:                return LowerStore(Op, DAG);
3346     case ISD::UADDO:
3347     case ISD::USUBO:                return LowerUAddSubO(Op, DAG);
3348     case ISD::ADDCARRY:
3349     case ISD::SUBCARRY:             return LowerAddSubCarry(Op, DAG);
3350     case ISD::SRA:
3351     case ISD::SHL:
3352     case ISD::SRL:                  return LowerVECTOR_SHIFT(Op, DAG);
3353     case ISD::ROTL:                 return LowerROTL(Op, DAG);
3354     case ISD::ConstantPool:         return LowerConstantPool(Op, DAG);
3355     case ISD::JumpTable:            return LowerJumpTable(Op, DAG);
3356     case ISD::EH_RETURN:            return LowerEH_RETURN(Op, DAG);
3357     case ISD::RETURNADDR:           return LowerRETURNADDR(Op, DAG);
3358     case ISD::FRAMEADDR:            return LowerFRAMEADDR(Op, DAG);
3359     case ISD::GlobalTLSAddress:     return LowerGlobalTLSAddress(Op, DAG);
3360     case ISD::ATOMIC_FENCE:         return LowerATOMIC_FENCE(Op, DAG);
3361     case ISD::GlobalAddress:        return LowerGLOBALADDRESS(Op, DAG);
3362     case ISD::BlockAddress:         return LowerBlockAddress(Op, DAG);
3363     case ISD::GLOBAL_OFFSET_TABLE:  return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
3364     case ISD::VACOPY:               return LowerVACOPY(Op, DAG);
3365     case ISD::VASTART:              return LowerVASTART(Op, DAG);
3366     case ISD::DYNAMIC_STACKALLOC:   return LowerDYNAMIC_STACKALLOC(Op, DAG);
3367     case ISD::SETCC:                return LowerSETCC(Op, DAG);
3368     case ISD::VSELECT:              return LowerVSELECT(Op, DAG);
3369     case ISD::INTRINSIC_WO_CHAIN:   return LowerINTRINSIC_WO_CHAIN(Op, DAG);
3370     case ISD::INTRINSIC_VOID:       return LowerINTRINSIC_VOID(Op, DAG);
3371     case ISD::PREFETCH:             return LowerPREFETCH(Op, DAG);
3372     case ISD::READCYCLECOUNTER:     return LowerREADCYCLECOUNTER(Op, DAG);
3373       break;
3374   }
3375 
3376   return SDValue();
3377 }
3378 
3379 void
3380 HexagonTargetLowering::LowerOperationWrapper(SDNode *N,
3381                                              SmallVectorImpl<SDValue> &Results,
3382                                              SelectionDAG &DAG) const {
3383   if (isHvxOperation(N, DAG)) {
3384     LowerHvxOperationWrapper(N, Results, DAG);
3385     if (!Results.empty())
3386       return;
3387   }
3388 
3389   SDValue Op(N, 0);
3390   unsigned Opc = N->getOpcode();
3391 
3392   switch (Opc) {
3393     case HexagonISD::SSAT:
3394     case HexagonISD::USAT:
3395       Results.push_back(opJoin(SplitVectorOp(Op, DAG), SDLoc(Op), DAG));
3396       break;
3397     case ISD::STORE:
3398       // We are only custom-lowering stores to verify the alignment of the
3399       // address if it is a compile-time constant. Since a store can be
3400       // modified during type-legalization (the value being stored may need
3401       // legalization), return empty Results here to indicate that we don't
3402       // really make any changes in the custom lowering.
3403       return;
3404     default:
3405       TargetLowering::LowerOperationWrapper(N, Results, DAG);
3406       break;
3407   }
3408 }
3409 
3410 void
3411 HexagonTargetLowering::ReplaceNodeResults(SDNode *N,
3412                                           SmallVectorImpl<SDValue> &Results,
3413                                           SelectionDAG &DAG) const {
3414   if (isHvxOperation(N, DAG)) {
3415     ReplaceHvxNodeResults(N, Results, DAG);
3416     if (!Results.empty())
3417       return;
3418   }
3419 
3420   const SDLoc &dl(N);
3421   switch (N->getOpcode()) {
3422     case ISD::SRL:
3423     case ISD::SRA:
3424     case ISD::SHL:
3425       return;
3426     case ISD::BITCAST:
3427       // Handle a bitcast from v8i1 to i8.
3428       if (N->getValueType(0) == MVT::i8) {
3429         if (N->getOperand(0).getValueType() == MVT::v8i1) {
3430           SDValue P = getInstr(Hexagon::C2_tfrpr, dl, MVT::i32,
3431                                N->getOperand(0), DAG);
3432           SDValue T = DAG.getAnyExtOrTrunc(P, dl, MVT::i8);
3433           Results.push_back(T);
3434         }
3435       }
3436       break;
3437   }
3438 }
3439 
3440 SDValue
3441 HexagonTargetLowering::PerformDAGCombine(SDNode *N,
3442                                          DAGCombinerInfo &DCI) const {
3443   if (isHvxOperation(N, DCI.DAG)) {
3444     if (SDValue V = PerformHvxDAGCombine(N, DCI))
3445       return V;
3446     return SDValue();
3447   }
3448 
3449   SDValue Op(N, 0);
3450   const SDLoc &dl(Op);
3451   unsigned Opc = Op.getOpcode();
3452 
3453   if (Opc == ISD::TRUNCATE) {
3454     SDValue Op0 = Op.getOperand(0);
3455     // fold (truncate (build pair x, y)) -> (truncate x) or x
3456     if (Op0.getOpcode() == ISD::BUILD_PAIR) {
3457       EVT TruncTy = Op.getValueType();
3458       SDValue Elem0 = Op0.getOperand(0);
3459       // if we match the low element of the pair, just return it.
3460       if (Elem0.getValueType() == TruncTy)
3461         return Elem0;
3462       // otherwise, if the low part is still too large, apply the truncate.
3463       if (Elem0.getValueType().bitsGT(TruncTy))
3464         return DCI.DAG.getNode(ISD::TRUNCATE, dl, TruncTy, Elem0);
3465     }
3466   }
3467 
3468   if (DCI.isBeforeLegalizeOps())
3469     return SDValue();
3470 
3471   if (Opc == HexagonISD::P2D) {
3472     SDValue P = Op.getOperand(0);
3473     switch (P.getOpcode()) {
3474     case HexagonISD::PTRUE:
3475       return DCI.DAG.getConstant(-1, dl, ty(Op));
3476     case HexagonISD::PFALSE:
3477       return getZero(dl, ty(Op), DCI.DAG);
3478     default:
3479       break;
3480     }
3481   } else if (Opc == ISD::VSELECT) {
3482     // This is pretty much duplicated in HexagonISelLoweringHVX...
3483     //
3484     // (vselect (xor x, ptrue), v0, v1) -> (vselect x, v1, v0)
3485     SDValue Cond = Op.getOperand(0);
3486     if (Cond->getOpcode() == ISD::XOR) {
3487       SDValue C0 = Cond.getOperand(0), C1 = Cond.getOperand(1);
3488       if (C1->getOpcode() == HexagonISD::PTRUE) {
3489         SDValue VSel = DCI.DAG.getNode(ISD::VSELECT, dl, ty(Op), C0,
3490                                        Op.getOperand(2), Op.getOperand(1));
3491         return VSel;
3492       }
3493     }
3494   } else if (Opc == ISD::TRUNCATE) {
3495     SDValue Op0 = Op.getOperand(0);
3496     // fold (truncate (build pair x, y)) -> (truncate x) or x
3497     if (Op0.getOpcode() == ISD::BUILD_PAIR) {
3498       MVT TruncTy = ty(Op);
3499       SDValue Elem0 = Op0.getOperand(0);
3500       // if we match the low element of the pair, just return it.
3501       if (ty(Elem0) == TruncTy)
3502         return Elem0;
3503       // otherwise, if the low part is still too large, apply the truncate.
3504       if (ty(Elem0).bitsGT(TruncTy))
3505         return DCI.DAG.getNode(ISD::TRUNCATE, dl, TruncTy, Elem0);
3506     }
3507   } else if (Opc == ISD::OR) {
3508     // fold (or (shl xx, s), (zext y)) -> (COMBINE (shl xx, s-32), y)
3509     // if s >= 32
3510     auto fold0 = [&, this](SDValue Op) {
3511       if (ty(Op) != MVT::i64)
3512         return SDValue();
3513       SDValue Shl = Op.getOperand(0);
3514       SDValue Zxt = Op.getOperand(1);
3515       if (Shl.getOpcode() != ISD::SHL)
3516         std::swap(Shl, Zxt);
3517 
3518       if (Shl.getOpcode() != ISD::SHL || Zxt.getOpcode() != ISD::ZERO_EXTEND)
3519         return SDValue();
3520 
3521       SDValue Z = Zxt.getOperand(0);
3522       auto *Amt = dyn_cast<ConstantSDNode>(Shl.getOperand(1));
3523       if (Amt && Amt->getZExtValue() >= 32 && ty(Z).getSizeInBits() <= 32) {
3524         unsigned A = Amt->getZExtValue();
3525         SDValue S = Shl.getOperand(0);
3526         SDValue T0 = DCI.DAG.getNode(ISD::SHL, dl, ty(S), S,
3527                                      DCI.DAG.getConstant(32 - A, dl, MVT::i32));
3528         SDValue T1 = DCI.DAG.getZExtOrTrunc(T0, dl, MVT::i32);
3529         SDValue T2 = DCI.DAG.getZExtOrTrunc(Z, dl, MVT::i32);
3530         return DCI.DAG.getNode(HexagonISD::COMBINE, dl, MVT::i64, {T1, T2});
3531       }
3532       return SDValue();
3533     };
3534 
3535     if (SDValue R = fold0(Op))
3536       return R;
3537   }
3538 
3539   return SDValue();
3540 }
3541 
3542 /// Returns relocation base for the given PIC jumptable.
3543 SDValue
3544 HexagonTargetLowering::getPICJumpTableRelocBase(SDValue Table,
3545                                                 SelectionDAG &DAG) const {
3546   int Idx = cast<JumpTableSDNode>(Table)->getIndex();
3547   EVT VT = Table.getValueType();
3548   SDValue T = DAG.getTargetJumpTable(Idx, VT, HexagonII::MO_PCREL);
3549   return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Table), VT, T);
3550 }
3551 
3552 //===----------------------------------------------------------------------===//
3553 // Inline Assembly Support
3554 //===----------------------------------------------------------------------===//
3555 
3556 TargetLowering::ConstraintType
3557 HexagonTargetLowering::getConstraintType(StringRef Constraint) const {
3558   if (Constraint.size() == 1) {
3559     switch (Constraint[0]) {
3560       case 'q':
3561       case 'v':
3562         if (Subtarget.useHVXOps())
3563           return C_RegisterClass;
3564         break;
3565       case 'a':
3566         return C_RegisterClass;
3567       default:
3568         break;
3569     }
3570   }
3571   return TargetLowering::getConstraintType(Constraint);
3572 }
3573 
3574 std::pair<unsigned, const TargetRegisterClass*>
3575 HexagonTargetLowering::getRegForInlineAsmConstraint(
3576     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
3577 
3578   if (Constraint.size() == 1) {
3579     switch (Constraint[0]) {
3580     case 'r':   // R0-R31
3581       switch (VT.SimpleTy) {
3582       default:
3583         return {0u, nullptr};
3584       case MVT::i1:
3585       case MVT::i8:
3586       case MVT::i16:
3587       case MVT::i32:
3588       case MVT::f32:
3589         return {0u, &Hexagon::IntRegsRegClass};
3590       case MVT::i64:
3591       case MVT::f64:
3592         return {0u, &Hexagon::DoubleRegsRegClass};
3593       }
3594       break;
3595     case 'a': // M0-M1
3596       if (VT != MVT::i32)
3597         return {0u, nullptr};
3598       return {0u, &Hexagon::ModRegsRegClass};
3599     case 'q': // q0-q3
3600       switch (VT.getSizeInBits()) {
3601       default:
3602         return {0u, nullptr};
3603       case 64:
3604       case 128:
3605         return {0u, &Hexagon::HvxQRRegClass};
3606       }
3607       break;
3608     case 'v': // V0-V31
3609       switch (VT.getSizeInBits()) {
3610       default:
3611         return {0u, nullptr};
3612       case 512:
3613         return {0u, &Hexagon::HvxVRRegClass};
3614       case 1024:
3615         if (Subtarget.hasV60Ops() && Subtarget.useHVX128BOps())
3616           return {0u, &Hexagon::HvxVRRegClass};
3617         return {0u, &Hexagon::HvxWRRegClass};
3618       case 2048:
3619         return {0u, &Hexagon::HvxWRRegClass};
3620       }
3621       break;
3622     default:
3623       return {0u, nullptr};
3624     }
3625   }
3626 
3627   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
3628 }
3629 
3630 /// isFPImmLegal - Returns true if the target can instruction select the
3631 /// specified FP immediate natively. If false, the legalizer will
3632 /// materialize the FP immediate as a load from a constant pool.
3633 bool HexagonTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
3634                                          bool ForCodeSize) const {
3635   return true;
3636 }
3637 
3638 /// isLegalAddressingMode - Return true if the addressing mode represented by
3639 /// AM is legal for this target, for a load/store of the specified type.
3640 bool HexagonTargetLowering::isLegalAddressingMode(const DataLayout &DL,
3641                                                   const AddrMode &AM, Type *Ty,
3642                                                   unsigned AS, Instruction *I) const {
3643   if (Ty->isSized()) {
3644     // When LSR detects uses of the same base address to access different
3645     // types (e.g. unions), it will assume a conservative type for these
3646     // uses:
3647     //   LSR Use: Kind=Address of void in addrspace(4294967295), ...
3648     // The type Ty passed here would then be "void". Skip the alignment
3649     // checks, but do not return false right away, since that confuses
3650     // LSR into crashing.
3651     Align A = DL.getABITypeAlign(Ty);
3652     // The base offset must be a multiple of the alignment.
3653     if (!isAligned(A, AM.BaseOffs))
3654       return false;
3655     // The shifted offset must fit in 11 bits.
3656     if (!isInt<11>(AM.BaseOffs >> Log2(A)))
3657       return false;
3658   }
3659 
3660   // No global is ever allowed as a base.
3661   if (AM.BaseGV)
3662     return false;
3663 
3664   int Scale = AM.Scale;
3665   if (Scale < 0)
3666     Scale = -Scale;
3667   switch (Scale) {
3668   case 0:  // No scale reg, "r+i", "r", or just "i".
3669     break;
3670   default: // No scaled addressing mode.
3671     return false;
3672   }
3673   return true;
3674 }
3675 
3676 /// Return true if folding a constant offset with the given GlobalAddress is
3677 /// legal.  It is frequently not legal in PIC relocation models.
3678 bool HexagonTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA)
3679       const {
3680   return HTM.getRelocationModel() == Reloc::Static;
3681 }
3682 
3683 /// isLegalICmpImmediate - Return true if the specified immediate is legal
3684 /// icmp immediate, that is the target has icmp instructions which can compare
3685 /// a register against the immediate without having to materialize the
3686 /// immediate into a register.
3687 bool HexagonTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
3688   return Imm >= -512 && Imm <= 511;
3689 }
3690 
3691 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
3692 /// for tail call optimization. Targets which want to do tail call
3693 /// optimization should implement this function.
3694 bool HexagonTargetLowering::IsEligibleForTailCallOptimization(
3695                                  SDValue Callee,
3696                                  CallingConv::ID CalleeCC,
3697                                  bool IsVarArg,
3698                                  bool IsCalleeStructRet,
3699                                  bool IsCallerStructRet,
3700                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
3701                                  const SmallVectorImpl<SDValue> &OutVals,
3702                                  const SmallVectorImpl<ISD::InputArg> &Ins,
3703                                  SelectionDAG& DAG) const {
3704   const Function &CallerF = DAG.getMachineFunction().getFunction();
3705   CallingConv::ID CallerCC = CallerF.getCallingConv();
3706   bool CCMatch = CallerCC == CalleeCC;
3707 
3708   // ***************************************************************************
3709   //  Look for obvious safe cases to perform tail call optimization that do not
3710   //  require ABI changes.
3711   // ***************************************************************************
3712 
3713   // If this is a tail call via a function pointer, then don't do it!
3714   if (!isa<GlobalAddressSDNode>(Callee) &&
3715       !isa<ExternalSymbolSDNode>(Callee)) {
3716     return false;
3717   }
3718 
3719   // Do not optimize if the calling conventions do not match and the conventions
3720   // used are not C or Fast.
3721   if (!CCMatch) {
3722     bool R = (CallerCC == CallingConv::C || CallerCC == CallingConv::Fast);
3723     bool E = (CalleeCC == CallingConv::C || CalleeCC == CallingConv::Fast);
3724     // If R & E, then ok.
3725     if (!R || !E)
3726       return false;
3727   }
3728 
3729   // Do not tail call optimize vararg calls.
3730   if (IsVarArg)
3731     return false;
3732 
3733   // Also avoid tail call optimization if either caller or callee uses struct
3734   // return semantics.
3735   if (IsCalleeStructRet || IsCallerStructRet)
3736     return false;
3737 
3738   // In addition to the cases above, we also disable Tail Call Optimization if
3739   // the calling convention code that at least one outgoing argument needs to
3740   // go on the stack. We cannot check that here because at this point that
3741   // information is not available.
3742   return true;
3743 }
3744 
3745 /// Returns the target specific optimal type for load and store operations as
3746 /// a result of memset, memcpy, and memmove lowering.
3747 ///
3748 /// If DstAlign is zero that means it's safe to destination alignment can
3749 /// satisfy any constraint. Similarly if SrcAlign is zero it means there isn't
3750 /// a need to check it against alignment requirement, probably because the
3751 /// source does not need to be loaded. If 'IsMemset' is true, that means it's
3752 /// expanding a memset. If 'ZeroMemset' is true, that means it's a memset of
3753 /// zero. 'MemcpyStrSrc' indicates whether the memcpy source is constant so it
3754 /// does not need to be loaded.  It returns EVT::Other if the type should be
3755 /// determined using generic target-independent logic.
3756 EVT HexagonTargetLowering::getOptimalMemOpType(
3757     const MemOp &Op, const AttributeList &FuncAttributes) const {
3758   if (Op.size() >= 8 && Op.isAligned(Align(8)))
3759     return MVT::i64;
3760   if (Op.size() >= 4 && Op.isAligned(Align(4)))
3761     return MVT::i32;
3762   if (Op.size() >= 2 && Op.isAligned(Align(2)))
3763     return MVT::i16;
3764   return MVT::Other;
3765 }
3766 
3767 bool HexagonTargetLowering::allowsMemoryAccess(
3768     LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace,
3769     Align Alignment, MachineMemOperand::Flags Flags, unsigned *Fast) const {
3770   MVT SVT = VT.getSimpleVT();
3771   if (Subtarget.isHVXVectorType(SVT, true))
3772     return allowsHvxMemoryAccess(SVT, Flags, Fast);
3773   return TargetLoweringBase::allowsMemoryAccess(
3774               Context, DL, VT, AddrSpace, Alignment, Flags, Fast);
3775 }
3776 
3777 bool HexagonTargetLowering::allowsMisalignedMemoryAccesses(
3778     EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
3779     unsigned *Fast) const {
3780   MVT SVT = VT.getSimpleVT();
3781   if (Subtarget.isHVXVectorType(SVT, true))
3782     return allowsHvxMisalignedMemoryAccesses(SVT, Flags, Fast);
3783   if (Fast)
3784     *Fast = 0;
3785   return false;
3786 }
3787 
3788 std::pair<const TargetRegisterClass*, uint8_t>
3789 HexagonTargetLowering::findRepresentativeClass(const TargetRegisterInfo *TRI,
3790       MVT VT) const {
3791   if (Subtarget.isHVXVectorType(VT, true)) {
3792     unsigned BitWidth = VT.getSizeInBits();
3793     unsigned VecWidth = Subtarget.getVectorLength() * 8;
3794 
3795     if (VT.getVectorElementType() == MVT::i1)
3796       return std::make_pair(&Hexagon::HvxQRRegClass, 1);
3797     if (BitWidth == VecWidth)
3798       return std::make_pair(&Hexagon::HvxVRRegClass, 1);
3799     assert(BitWidth == 2 * VecWidth);
3800     return std::make_pair(&Hexagon::HvxWRRegClass, 1);
3801   }
3802 
3803   return TargetLowering::findRepresentativeClass(TRI, VT);
3804 }
3805 
3806 bool HexagonTargetLowering::shouldReduceLoadWidth(SDNode *Load,
3807       ISD::LoadExtType ExtTy, EVT NewVT) const {
3808   // TODO: This may be worth removing. Check regression tests for diffs.
3809   if (!TargetLoweringBase::shouldReduceLoadWidth(Load, ExtTy, NewVT))
3810     return false;
3811 
3812   auto *L = cast<LoadSDNode>(Load);
3813   std::pair<SDValue,int> BO = getBaseAndOffset(L->getBasePtr());
3814   // Small-data object, do not shrink.
3815   if (BO.first.getOpcode() == HexagonISD::CONST32_GP)
3816     return false;
3817   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(BO.first)) {
3818     auto &HTM = static_cast<const HexagonTargetMachine&>(getTargetMachine());
3819     const auto *GO = dyn_cast_or_null<const GlobalObject>(GA->getGlobal());
3820     return !GO || !HTM.getObjFileLowering()->isGlobalInSmallSection(GO, HTM);
3821   }
3822   return true;
3823 }
3824 
3825 void HexagonTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
3826       SDNode *Node) const {
3827   AdjustHvxInstrPostInstrSelection(MI, Node);
3828 }
3829 
3830 Value *HexagonTargetLowering::emitLoadLinked(IRBuilderBase &Builder,
3831                                              Type *ValueTy, Value *Addr,
3832                                              AtomicOrdering Ord) const {
3833   BasicBlock *BB = Builder.GetInsertBlock();
3834   Module *M = BB->getParent()->getParent();
3835   unsigned SZ = ValueTy->getPrimitiveSizeInBits();
3836   assert((SZ == 32 || SZ == 64) && "Only 32/64-bit atomic loads supported");
3837   Intrinsic::ID IntID = (SZ == 32) ? Intrinsic::hexagon_L2_loadw_locked
3838                                    : Intrinsic::hexagon_L4_loadd_locked;
3839   Function *Fn = Intrinsic::getDeclaration(M, IntID);
3840 
3841   auto PtrTy = cast<PointerType>(Addr->getType());
3842   PointerType *NewPtrTy =
3843       Builder.getIntNTy(SZ)->getPointerTo(PtrTy->getAddressSpace());
3844   Addr = Builder.CreateBitCast(Addr, NewPtrTy);
3845 
3846   Value *Call = Builder.CreateCall(Fn, Addr, "larx");
3847 
3848   return Builder.CreateBitCast(Call, ValueTy);
3849 }
3850 
3851 /// Perform a store-conditional operation to Addr. Return the status of the
3852 /// store. This should be 0 if the store succeeded, non-zero otherwise.
3853 Value *HexagonTargetLowering::emitStoreConditional(IRBuilderBase &Builder,
3854                                                    Value *Val, Value *Addr,
3855                                                    AtomicOrdering Ord) const {
3856   BasicBlock *BB = Builder.GetInsertBlock();
3857   Module *M = BB->getParent()->getParent();
3858   Type *Ty = Val->getType();
3859   unsigned SZ = Ty->getPrimitiveSizeInBits();
3860 
3861   Type *CastTy = Builder.getIntNTy(SZ);
3862   assert((SZ == 32 || SZ == 64) && "Only 32/64-bit atomic stores supported");
3863   Intrinsic::ID IntID = (SZ == 32) ? Intrinsic::hexagon_S2_storew_locked
3864                                    : Intrinsic::hexagon_S4_stored_locked;
3865   Function *Fn = Intrinsic::getDeclaration(M, IntID);
3866 
3867   unsigned AS = Addr->getType()->getPointerAddressSpace();
3868   Addr = Builder.CreateBitCast(Addr, CastTy->getPointerTo(AS));
3869   Val = Builder.CreateBitCast(Val, CastTy);
3870 
3871   Value *Call = Builder.CreateCall(Fn, {Addr, Val}, "stcx");
3872   Value *Cmp = Builder.CreateICmpEQ(Call, Builder.getInt32(0), "");
3873   Value *Ext = Builder.CreateZExt(Cmp, Type::getInt32Ty(M->getContext()));
3874   return Ext;
3875 }
3876 
3877 TargetLowering::AtomicExpansionKind
3878 HexagonTargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
3879   // Do not expand loads and stores that don't exceed 64 bits.
3880   return LI->getType()->getPrimitiveSizeInBits() > 64
3881              ? AtomicExpansionKind::LLOnly
3882              : AtomicExpansionKind::None;
3883 }
3884 
3885 TargetLowering::AtomicExpansionKind
3886 HexagonTargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
3887   // Do not expand loads and stores that don't exceed 64 bits.
3888   return SI->getValueOperand()->getType()->getPrimitiveSizeInBits() > 64
3889              ? AtomicExpansionKind::Expand
3890              : AtomicExpansionKind::None;
3891 }
3892 
3893 TargetLowering::AtomicExpansionKind
3894 HexagonTargetLowering::shouldExpandAtomicCmpXchgInIR(
3895     AtomicCmpXchgInst *AI) const {
3896   return AtomicExpansionKind::LLSC;
3897 }
3898