1 //===-- HexagonISelLoweringHVX.cpp --- Lowering HVX operations ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "HexagonISelLowering.h"
10 #include "HexagonRegisterInfo.h"
11 #include "HexagonSubtarget.h"
12 #include "llvm/ADT/SetVector.h"
13 #include "llvm/ADT/SmallVector.h"
14 #include "llvm/Analysis/MemoryLocation.h"
15 #include "llvm/CodeGen/MachineBasicBlock.h"
16 #include "llvm/CodeGen/MachineFunction.h"
17 #include "llvm/CodeGen/MachineInstr.h"
18 #include "llvm/CodeGen/MachineOperand.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/TargetInstrInfo.h"
21 #include "llvm/IR/IntrinsicsHexagon.h"
22 #include "llvm/Support/CommandLine.h"
23 
24 #include <algorithm>
25 #include <string>
26 #include <utility>
27 
28 using namespace llvm;
29 
30 static cl::opt<unsigned> HvxWidenThreshold("hexagon-hvx-widen",
31   cl::Hidden, cl::init(16),
32   cl::desc("Lower threshold (in bytes) for widening to HVX vectors"));
33 
34 static const MVT LegalV64[] =  { MVT::v64i8,  MVT::v32i16,  MVT::v16i32 };
35 static const MVT LegalW64[] =  { MVT::v128i8, MVT::v64i16,  MVT::v32i32 };
36 static const MVT LegalV128[] = { MVT::v128i8, MVT::v64i16,  MVT::v32i32 };
37 static const MVT LegalW128[] = { MVT::v256i8, MVT::v128i16, MVT::v64i32 };
38 
39 static std::tuple<unsigned, unsigned, unsigned> getIEEEProperties(MVT Ty) {
40   // For a float scalar type, return (exp-bits, exp-bias, fraction-bits)
41   MVT ElemTy = Ty.getScalarType();
42   switch (ElemTy.SimpleTy) {
43     case MVT::f16:
44       return std::make_tuple(5, 15, 10);
45     case MVT::f32:
46       return std::make_tuple(8, 127, 23);
47     case MVT::f64:
48       return std::make_tuple(11, 1023, 52);
49     default:
50       break;
51   }
52   llvm_unreachable(("Unexpected type: " + EVT(ElemTy).getEVTString()).c_str());
53 }
54 
55 void
56 HexagonTargetLowering::initializeHVXLowering() {
57   if (Subtarget.useHVX64BOps()) {
58     addRegisterClass(MVT::v64i8,  &Hexagon::HvxVRRegClass);
59     addRegisterClass(MVT::v32i16, &Hexagon::HvxVRRegClass);
60     addRegisterClass(MVT::v16i32, &Hexagon::HvxVRRegClass);
61     addRegisterClass(MVT::v128i8, &Hexagon::HvxWRRegClass);
62     addRegisterClass(MVT::v64i16, &Hexagon::HvxWRRegClass);
63     addRegisterClass(MVT::v32i32, &Hexagon::HvxWRRegClass);
64     // These "short" boolean vector types should be legal because
65     // they will appear as results of vector compares. If they were
66     // not legal, type legalization would try to make them legal
67     // and that would require using operations that do not use or
68     // produce such types. That, in turn, would imply using custom
69     // nodes, which would be unoptimizable by the DAG combiner.
70     // The idea is to rely on target-independent operations as much
71     // as possible.
72     addRegisterClass(MVT::v16i1, &Hexagon::HvxQRRegClass);
73     addRegisterClass(MVT::v32i1, &Hexagon::HvxQRRegClass);
74     addRegisterClass(MVT::v64i1, &Hexagon::HvxQRRegClass);
75   } else if (Subtarget.useHVX128BOps()) {
76     addRegisterClass(MVT::v128i8,  &Hexagon::HvxVRRegClass);
77     addRegisterClass(MVT::v64i16,  &Hexagon::HvxVRRegClass);
78     addRegisterClass(MVT::v32i32,  &Hexagon::HvxVRRegClass);
79     addRegisterClass(MVT::v256i8,  &Hexagon::HvxWRRegClass);
80     addRegisterClass(MVT::v128i16, &Hexagon::HvxWRRegClass);
81     addRegisterClass(MVT::v64i32,  &Hexagon::HvxWRRegClass);
82     addRegisterClass(MVT::v32i1, &Hexagon::HvxQRRegClass);
83     addRegisterClass(MVT::v64i1, &Hexagon::HvxQRRegClass);
84     addRegisterClass(MVT::v128i1, &Hexagon::HvxQRRegClass);
85     if (Subtarget.useHVXV68Ops() && Subtarget.useHVXFloatingPoint()) {
86       addRegisterClass(MVT::v32f32, &Hexagon::HvxVRRegClass);
87       addRegisterClass(MVT::v64f16, &Hexagon::HvxVRRegClass);
88       addRegisterClass(MVT::v64f32, &Hexagon::HvxWRRegClass);
89       addRegisterClass(MVT::v128f16, &Hexagon::HvxWRRegClass);
90     }
91   }
92 
93   // Set up operation actions.
94 
95   bool Use64b = Subtarget.useHVX64BOps();
96   ArrayRef<MVT> LegalV = Use64b ? LegalV64 : LegalV128;
97   ArrayRef<MVT> LegalW = Use64b ? LegalW64 : LegalW128;
98   MVT ByteV = Use64b ?  MVT::v64i8 : MVT::v128i8;
99   MVT WordV = Use64b ? MVT::v16i32 : MVT::v32i32;
100   MVT ByteW = Use64b ? MVT::v128i8 : MVT::v256i8;
101 
102   auto setPromoteTo = [this] (unsigned Opc, MVT FromTy, MVT ToTy) {
103     setOperationAction(Opc, FromTy, Promote);
104     AddPromotedToType(Opc, FromTy, ToTy);
105   };
106 
107   // Handle bitcasts of vector predicates to scalars (e.g. v32i1 to i32).
108   // Note: v16i1 -> i16 is handled in type legalization instead of op
109   // legalization.
110   setOperationAction(ISD::BITCAST,              MVT::i16, Custom);
111   setOperationAction(ISD::BITCAST,              MVT::i32, Custom);
112   setOperationAction(ISD::BITCAST,              MVT::i64, Custom);
113   setOperationAction(ISD::BITCAST,            MVT::v16i1, Custom);
114   setOperationAction(ISD::BITCAST,           MVT::v128i1, Custom);
115   setOperationAction(ISD::BITCAST,             MVT::i128, Custom);
116   setOperationAction(ISD::VECTOR_SHUFFLE,          ByteV, Legal);
117   setOperationAction(ISD::VECTOR_SHUFFLE,          ByteW, Legal);
118   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
119 
120   if (Subtarget.useHVX128BOps() && Subtarget.useHVXV68Ops() &&
121       Subtarget.useHVXFloatingPoint()) {
122 
123     static const MVT FloatV[] = { MVT::v64f16, MVT::v32f32 };
124     static const MVT FloatW[] = { MVT::v128f16, MVT::v64f32 };
125 
126     for (MVT T : FloatV) {
127       setOperationAction(ISD::FADD,              T, Legal);
128       setOperationAction(ISD::FSUB,              T, Legal);
129       setOperationAction(ISD::FMUL,              T, Legal);
130       setOperationAction(ISD::FMINNUM,           T, Legal);
131       setOperationAction(ISD::FMAXNUM,           T, Legal);
132 
133       setOperationAction(ISD::INSERT_SUBVECTOR,  T, Custom);
134       setOperationAction(ISD::EXTRACT_SUBVECTOR, T, Custom);
135 
136       setOperationAction(ISD::SPLAT_VECTOR,      T, Legal);
137       setOperationAction(ISD::SPLAT_VECTOR,      T, Legal);
138 
139       setOperationAction(ISD::MLOAD,             T, Custom);
140       setOperationAction(ISD::MSTORE,            T, Custom);
141       // Custom-lower BUILD_VECTOR. The standard (target-independent)
142       // handling of it would convert it to a load, which is not always
143       // the optimal choice.
144       setOperationAction(ISD::BUILD_VECTOR,      T, Custom);
145     }
146 
147 
148     // BUILD_VECTOR with f16 operands cannot be promoted without
149     // promoting the result, so lower the node to vsplat or constant pool
150     setOperationAction(ISD::BUILD_VECTOR,      MVT::f16, Custom);
151     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::f16, Custom);
152     setOperationAction(ISD::SPLAT_VECTOR,      MVT::f16, Custom);
153 
154     // Vector shuffle is always promoted to ByteV and a bitcast to f16 is
155     // generated.
156     setPromoteTo(ISD::VECTOR_SHUFFLE, MVT::v128f16, ByteW);
157     setPromoteTo(ISD::VECTOR_SHUFFLE,  MVT::v64f16, ByteV);
158     setPromoteTo(ISD::VECTOR_SHUFFLE,  MVT::v64f32, ByteW);
159     setPromoteTo(ISD::VECTOR_SHUFFLE,  MVT::v32f32, ByteV);
160 
161     for (MVT P : FloatW) {
162       setOperationAction(ISD::LOAD,           P, Custom);
163       setOperationAction(ISD::STORE,          P, Custom);
164       setOperationAction(ISD::FADD,           P, Custom);
165       setOperationAction(ISD::FSUB,           P, Custom);
166       setOperationAction(ISD::FMUL,           P, Custom);
167       setOperationAction(ISD::FMINNUM,        P, Custom);
168       setOperationAction(ISD::FMAXNUM,        P, Custom);
169       setOperationAction(ISD::VSELECT,        P, Custom);
170 
171       // Custom-lower BUILD_VECTOR. The standard (target-independent)
172       // handling of it would convert it to a load, which is not always
173       // the optimal choice.
174       setOperationAction(ISD::BUILD_VECTOR,   P, Custom);
175       // Make concat-vectors custom to handle concats of more than 2 vectors.
176       setOperationAction(ISD::CONCAT_VECTORS, P, Custom);
177 
178       setOperationAction(ISD::MLOAD,          P, Custom);
179       setOperationAction(ISD::MSTORE,         P, Custom);
180     }
181 
182     if (Subtarget.useHVXQFloatOps()) {
183       setOperationAction(ISD::FP_EXTEND, MVT::v64f32, Custom);
184       setOperationAction(ISD::FP_ROUND,  MVT::v64f16, Legal);
185     } else if (Subtarget.useHVXIEEEFPOps()) {
186       setOperationAction(ISD::FP_EXTEND, MVT::v64f32, Legal);
187       setOperationAction(ISD::FP_ROUND,  MVT::v64f16, Legal);
188     }
189   }
190 
191   for (MVT T : LegalV) {
192     setIndexedLoadAction(ISD::POST_INC,  T, Legal);
193     setIndexedStoreAction(ISD::POST_INC, T, Legal);
194 
195     setOperationAction(ISD::ABS,            T, Legal);
196     setOperationAction(ISD::AND,            T, Legal);
197     setOperationAction(ISD::OR,             T, Legal);
198     setOperationAction(ISD::XOR,            T, Legal);
199     setOperationAction(ISD::ADD,            T, Legal);
200     setOperationAction(ISD::SUB,            T, Legal);
201     setOperationAction(ISD::MUL,            T, Legal);
202     setOperationAction(ISD::CTPOP,          T, Legal);
203     setOperationAction(ISD::CTLZ,           T, Legal);
204     setOperationAction(ISD::SELECT,         T, Legal);
205     setOperationAction(ISD::SPLAT_VECTOR,   T, Legal);
206     if (T != ByteV) {
207       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, T, Legal);
208       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, T, Legal);
209       setOperationAction(ISD::BSWAP,                    T, Legal);
210     }
211 
212     setOperationAction(ISD::SMIN,           T, Legal);
213     setOperationAction(ISD::SMAX,           T, Legal);
214     if (T.getScalarType() != MVT::i32) {
215       setOperationAction(ISD::UMIN,         T, Legal);
216       setOperationAction(ISD::UMAX,         T, Legal);
217     }
218 
219     setOperationAction(ISD::CTTZ,               T, Custom);
220     setOperationAction(ISD::LOAD,               T, Custom);
221     setOperationAction(ISD::MLOAD,              T, Custom);
222     setOperationAction(ISD::MSTORE,             T, Custom);
223     if (T.getScalarType() != MVT::i32) {
224       setOperationAction(ISD::MULHS,              T, Legal);
225       setOperationAction(ISD::MULHU,              T, Legal);
226     }
227 
228     setOperationAction(ISD::BUILD_VECTOR,       T, Custom);
229     // Make concat-vectors custom to handle concats of more than 2 vectors.
230     setOperationAction(ISD::CONCAT_VECTORS,     T, Custom);
231     setOperationAction(ISD::INSERT_SUBVECTOR,   T, Custom);
232     setOperationAction(ISD::INSERT_VECTOR_ELT,  T, Custom);
233     setOperationAction(ISD::EXTRACT_SUBVECTOR,  T, Custom);
234     setOperationAction(ISD::EXTRACT_VECTOR_ELT, T, Custom);
235     setOperationAction(ISD::ANY_EXTEND,         T, Custom);
236     setOperationAction(ISD::SIGN_EXTEND,        T, Custom);
237     setOperationAction(ISD::ZERO_EXTEND,        T, Custom);
238     setOperationAction(ISD::FSHL,               T, Custom);
239     setOperationAction(ISD::FSHR,               T, Custom);
240     if (T != ByteV) {
241       setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG, T, Custom);
242       // HVX only has shifts of words and halfwords.
243       setOperationAction(ISD::SRA,                     T, Custom);
244       setOperationAction(ISD::SHL,                     T, Custom);
245       setOperationAction(ISD::SRL,                     T, Custom);
246 
247       // Promote all shuffles to operate on vectors of bytes.
248       setPromoteTo(ISD::VECTOR_SHUFFLE, T, ByteV);
249     }
250 
251     if (Subtarget.useHVXFloatingPoint()) {
252       // Same action for both QFloat and IEEE.
253       setOperationAction(ISD::SINT_TO_FP, T, Custom);
254       setOperationAction(ISD::UINT_TO_FP, T, Custom);
255       setOperationAction(ISD::FP_TO_SINT, T, Custom);
256       setOperationAction(ISD::FP_TO_UINT, T, Custom);
257     }
258 
259     setCondCodeAction(ISD::SETNE,  T, Expand);
260     setCondCodeAction(ISD::SETLE,  T, Expand);
261     setCondCodeAction(ISD::SETGE,  T, Expand);
262     setCondCodeAction(ISD::SETLT,  T, Expand);
263     setCondCodeAction(ISD::SETULE, T, Expand);
264     setCondCodeAction(ISD::SETUGE, T, Expand);
265     setCondCodeAction(ISD::SETULT, T, Expand);
266   }
267 
268   for (MVT T : LegalW) {
269     // Custom-lower BUILD_VECTOR for vector pairs. The standard (target-
270     // independent) handling of it would convert it to a load, which is
271     // not always the optimal choice.
272     setOperationAction(ISD::BUILD_VECTOR,   T, Custom);
273     // Make concat-vectors custom to handle concats of more than 2 vectors.
274     setOperationAction(ISD::CONCAT_VECTORS, T, Custom);
275 
276     // Custom-lower these operations for pairs. Expand them into a concat
277     // of the corresponding operations on individual vectors.
278     setOperationAction(ISD::ANY_EXTEND,               T, Custom);
279     setOperationAction(ISD::SIGN_EXTEND,              T, Custom);
280     setOperationAction(ISD::ZERO_EXTEND,              T, Custom);
281     setOperationAction(ISD::SIGN_EXTEND_INREG,        T, Custom);
282     setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG,  T, Custom);
283     setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, T, Legal);
284     setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, T, Legal);
285     setOperationAction(ISD::SPLAT_VECTOR,             T, Custom);
286 
287     setOperationAction(ISD::LOAD,     T, Custom);
288     setOperationAction(ISD::STORE,    T, Custom);
289     setOperationAction(ISD::MLOAD,    T, Custom);
290     setOperationAction(ISD::MSTORE,   T, Custom);
291     setOperationAction(ISD::ABS,      T, Custom);
292     setOperationAction(ISD::CTLZ,     T, Custom);
293     setOperationAction(ISD::CTTZ,     T, Custom);
294     setOperationAction(ISD::CTPOP,    T, Custom);
295 
296     setOperationAction(ISD::ADD,      T, Legal);
297     setOperationAction(ISD::SUB,      T, Legal);
298     setOperationAction(ISD::MUL,      T, Custom);
299     setOperationAction(ISD::MULHS,    T, Custom);
300     setOperationAction(ISD::MULHU,    T, Custom);
301     setOperationAction(ISD::AND,      T, Custom);
302     setOperationAction(ISD::OR,       T, Custom);
303     setOperationAction(ISD::XOR,      T, Custom);
304     setOperationAction(ISD::SETCC,    T, Custom);
305     setOperationAction(ISD::VSELECT,  T, Custom);
306     if (T != ByteW) {
307       setOperationAction(ISD::SRA,      T, Custom);
308       setOperationAction(ISD::SHL,      T, Custom);
309       setOperationAction(ISD::SRL,      T, Custom);
310 
311       // Promote all shuffles to operate on vectors of bytes.
312       setPromoteTo(ISD::VECTOR_SHUFFLE, T, ByteW);
313     }
314     setOperationAction(ISD::FSHL,     T, Custom);
315     setOperationAction(ISD::FSHR,     T, Custom);
316 
317     setOperationAction(ISD::SMIN,     T, Custom);
318     setOperationAction(ISD::SMAX,     T, Custom);
319     if (T.getScalarType() != MVT::i32) {
320       setOperationAction(ISD::UMIN,     T, Custom);
321       setOperationAction(ISD::UMAX,     T, Custom);
322     }
323 
324     if (Subtarget.useHVXFloatingPoint()) {
325       // Same action for both QFloat and IEEE.
326       setOperationAction(ISD::SINT_TO_FP, T, Custom);
327       setOperationAction(ISD::UINT_TO_FP, T, Custom);
328       setOperationAction(ISD::FP_TO_SINT, T, Custom);
329       setOperationAction(ISD::FP_TO_UINT, T, Custom);
330     }
331   }
332 
333   // Legalize all of these to HexagonISD::[SU]MUL_LOHI.
334   setOperationAction(ISD::MULHS,      WordV, Custom); // -> _LOHI
335   setOperationAction(ISD::MULHU,      WordV, Custom); // -> _LOHI
336   setOperationAction(ISD::SMUL_LOHI,  WordV, Custom);
337   setOperationAction(ISD::UMUL_LOHI,  WordV, Custom);
338 
339   setCondCodeAction(ISD::SETNE,  MVT::v64f16, Expand);
340   setCondCodeAction(ISD::SETLE,  MVT::v64f16, Expand);
341   setCondCodeAction(ISD::SETGE,  MVT::v64f16, Expand);
342   setCondCodeAction(ISD::SETLT,  MVT::v64f16, Expand);
343   setCondCodeAction(ISD::SETONE, MVT::v64f16, Expand);
344   setCondCodeAction(ISD::SETOLE, MVT::v64f16, Expand);
345   setCondCodeAction(ISD::SETOGE, MVT::v64f16, Expand);
346   setCondCodeAction(ISD::SETOLT, MVT::v64f16, Expand);
347   setCondCodeAction(ISD::SETUNE, MVT::v64f16, Expand);
348   setCondCodeAction(ISD::SETULE, MVT::v64f16, Expand);
349   setCondCodeAction(ISD::SETUGE, MVT::v64f16, Expand);
350   setCondCodeAction(ISD::SETULT, MVT::v64f16, Expand);
351 
352   setCondCodeAction(ISD::SETNE,  MVT::v32f32, Expand);
353   setCondCodeAction(ISD::SETLE,  MVT::v32f32, Expand);
354   setCondCodeAction(ISD::SETGE,  MVT::v32f32, Expand);
355   setCondCodeAction(ISD::SETLT,  MVT::v32f32, Expand);
356   setCondCodeAction(ISD::SETONE, MVT::v32f32, Expand);
357   setCondCodeAction(ISD::SETOLE, MVT::v32f32, Expand);
358   setCondCodeAction(ISD::SETOGE, MVT::v32f32, Expand);
359   setCondCodeAction(ISD::SETOLT, MVT::v32f32, Expand);
360   setCondCodeAction(ISD::SETUNE, MVT::v32f32, Expand);
361   setCondCodeAction(ISD::SETULE, MVT::v32f32, Expand);
362   setCondCodeAction(ISD::SETUGE, MVT::v32f32, Expand);
363   setCondCodeAction(ISD::SETULT, MVT::v32f32, Expand);
364 
365   // Boolean vectors.
366 
367   for (MVT T : LegalW) {
368     // Boolean types for vector pairs will overlap with the boolean
369     // types for single vectors, e.g.
370     //   v64i8  -> v64i1 (single)
371     //   v64i16 -> v64i1 (pair)
372     // Set these actions first, and allow the single actions to overwrite
373     // any duplicates.
374     MVT BoolW = MVT::getVectorVT(MVT::i1, T.getVectorNumElements());
375     setOperationAction(ISD::SETCC,              BoolW, Custom);
376     setOperationAction(ISD::AND,                BoolW, Custom);
377     setOperationAction(ISD::OR,                 BoolW, Custom);
378     setOperationAction(ISD::XOR,                BoolW, Custom);
379     // Masked load/store takes a mask that may need splitting.
380     setOperationAction(ISD::MLOAD,              BoolW, Custom);
381     setOperationAction(ISD::MSTORE,             BoolW, Custom);
382   }
383 
384   for (MVT T : LegalV) {
385     MVT BoolV = MVT::getVectorVT(MVT::i1, T.getVectorNumElements());
386     setOperationAction(ISD::BUILD_VECTOR,       BoolV, Custom);
387     setOperationAction(ISD::CONCAT_VECTORS,     BoolV, Custom);
388     setOperationAction(ISD::INSERT_SUBVECTOR,   BoolV, Custom);
389     setOperationAction(ISD::INSERT_VECTOR_ELT,  BoolV, Custom);
390     setOperationAction(ISD::EXTRACT_SUBVECTOR,  BoolV, Custom);
391     setOperationAction(ISD::EXTRACT_VECTOR_ELT, BoolV, Custom);
392     setOperationAction(ISD::SELECT,             BoolV, Custom);
393     setOperationAction(ISD::AND,                BoolV, Legal);
394     setOperationAction(ISD::OR,                 BoolV, Legal);
395     setOperationAction(ISD::XOR,                BoolV, Legal);
396   }
397 
398   if (Use64b) {
399     for (MVT T: {MVT::v32i8, MVT::v32i16, MVT::v16i8, MVT::v16i16, MVT::v16i32})
400       setOperationAction(ISD::SIGN_EXTEND_INREG, T, Legal);
401   } else {
402     for (MVT T: {MVT::v64i8, MVT::v64i16, MVT::v32i8, MVT::v32i16, MVT::v32i32})
403       setOperationAction(ISD::SIGN_EXTEND_INREG, T, Legal);
404   }
405 
406   // Handle store widening for short vectors.
407   unsigned HwLen = Subtarget.getVectorLength();
408   for (MVT ElemTy : Subtarget.getHVXElementTypes()) {
409     if (ElemTy == MVT::i1)
410       continue;
411     int ElemWidth = ElemTy.getFixedSizeInBits();
412     int MaxElems = (8*HwLen) / ElemWidth;
413     for (int N = 2; N < MaxElems; N *= 2) {
414       MVT VecTy = MVT::getVectorVT(ElemTy, N);
415       auto Action = getPreferredVectorAction(VecTy);
416       if (Action == TargetLoweringBase::TypeWidenVector) {
417         setOperationAction(ISD::LOAD,         VecTy, Custom);
418         setOperationAction(ISD::STORE,        VecTy, Custom);
419         setOperationAction(ISD::SETCC,        VecTy, Custom);
420         setOperationAction(ISD::TRUNCATE,     VecTy, Custom);
421         setOperationAction(ISD::ANY_EXTEND,   VecTy, Custom);
422         setOperationAction(ISD::SIGN_EXTEND,  VecTy, Custom);
423         setOperationAction(ISD::ZERO_EXTEND,  VecTy, Custom);
424         if (Subtarget.useHVXFloatingPoint()) {
425           setOperationAction(ISD::FP_TO_SINT,   VecTy, Custom);
426           setOperationAction(ISD::FP_TO_UINT,   VecTy, Custom);
427           setOperationAction(ISD::SINT_TO_FP,   VecTy, Custom);
428           setOperationAction(ISD::UINT_TO_FP,   VecTy, Custom);
429         }
430 
431         MVT BoolTy = MVT::getVectorVT(MVT::i1, N);
432         if (!isTypeLegal(BoolTy))
433           setOperationAction(ISD::SETCC, BoolTy, Custom);
434       }
435     }
436   }
437 
438   setTargetDAGCombine({ISD::CONCAT_VECTORS, ISD::TRUNCATE, ISD::VSELECT});
439 }
440 
441 unsigned
442 HexagonTargetLowering::getPreferredHvxVectorAction(MVT VecTy) const {
443   MVT ElemTy = VecTy.getVectorElementType();
444   unsigned VecLen = VecTy.getVectorNumElements();
445   unsigned HwLen = Subtarget.getVectorLength();
446 
447   // Split vectors of i1 that exceed byte vector length.
448   if (ElemTy == MVT::i1 && VecLen > HwLen)
449     return TargetLoweringBase::TypeSplitVector;
450 
451   ArrayRef<MVT> Tys = Subtarget.getHVXElementTypes();
452   // For shorter vectors of i1, widen them if any of the corresponding
453   // vectors of integers needs to be widened.
454   if (ElemTy == MVT::i1) {
455     for (MVT T : Tys) {
456       assert(T != MVT::i1);
457       auto A = getPreferredHvxVectorAction(MVT::getVectorVT(T, VecLen));
458       if (A != ~0u)
459         return A;
460     }
461     return ~0u;
462   }
463 
464   // If the size of VecTy is at least half of the vector length,
465   // widen the vector. Note: the threshold was not selected in
466   // any scientific way.
467   if (llvm::is_contained(Tys, ElemTy)) {
468     unsigned VecWidth = VecTy.getSizeInBits();
469     unsigned HwWidth = 8*HwLen;
470     if (VecWidth > 2*HwWidth)
471       return TargetLoweringBase::TypeSplitVector;
472 
473     bool HaveThreshold = HvxWidenThreshold.getNumOccurrences() > 0;
474     if (HaveThreshold && 8*HvxWidenThreshold <= VecWidth)
475       return TargetLoweringBase::TypeWidenVector;
476     if (VecWidth >= HwWidth/2 && VecWidth < HwWidth)
477       return TargetLoweringBase::TypeWidenVector;
478   }
479 
480   // Defer to default.
481   return ~0u;
482 }
483 
484 unsigned
485 HexagonTargetLowering::getCustomHvxOperationAction(SDNode &Op) const {
486   unsigned Opc = Op.getOpcode();
487   switch (Opc) {
488   case HexagonISD::SMUL_LOHI:
489   case HexagonISD::UMUL_LOHI:
490   case HexagonISD::USMUL_LOHI:
491     return TargetLoweringBase::Custom;
492   }
493   return TargetLoweringBase::Legal;
494 }
495 
496 SDValue
497 HexagonTargetLowering::getInt(unsigned IntId, MVT ResTy, ArrayRef<SDValue> Ops,
498                               const SDLoc &dl, SelectionDAG &DAG) const {
499   SmallVector<SDValue,4> IntOps;
500   IntOps.push_back(DAG.getConstant(IntId, dl, MVT::i32));
501   append_range(IntOps, Ops);
502   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, ResTy, IntOps);
503 }
504 
505 MVT
506 HexagonTargetLowering::typeJoin(const TypePair &Tys) const {
507   assert(Tys.first.getVectorElementType() == Tys.second.getVectorElementType());
508 
509   MVT ElemTy = Tys.first.getVectorElementType();
510   return MVT::getVectorVT(ElemTy, Tys.first.getVectorNumElements() +
511                                   Tys.second.getVectorNumElements());
512 }
513 
514 HexagonTargetLowering::TypePair
515 HexagonTargetLowering::typeSplit(MVT VecTy) const {
516   assert(VecTy.isVector());
517   unsigned NumElem = VecTy.getVectorNumElements();
518   assert((NumElem % 2) == 0 && "Expecting even-sized vector type");
519   MVT HalfTy = MVT::getVectorVT(VecTy.getVectorElementType(), NumElem/2);
520   return { HalfTy, HalfTy };
521 }
522 
523 MVT
524 HexagonTargetLowering::typeExtElem(MVT VecTy, unsigned Factor) const {
525   MVT ElemTy = VecTy.getVectorElementType();
526   MVT NewElemTy = MVT::getIntegerVT(ElemTy.getSizeInBits() * Factor);
527   return MVT::getVectorVT(NewElemTy, VecTy.getVectorNumElements());
528 }
529 
530 MVT
531 HexagonTargetLowering::typeTruncElem(MVT VecTy, unsigned Factor) const {
532   MVT ElemTy = VecTy.getVectorElementType();
533   MVT NewElemTy = MVT::getIntegerVT(ElemTy.getSizeInBits() / Factor);
534   return MVT::getVectorVT(NewElemTy, VecTy.getVectorNumElements());
535 }
536 
537 SDValue
538 HexagonTargetLowering::opCastElem(SDValue Vec, MVT ElemTy,
539                                   SelectionDAG &DAG) const {
540   if (ty(Vec).getVectorElementType() == ElemTy)
541     return Vec;
542   MVT CastTy = tyVector(Vec.getValueType().getSimpleVT(), ElemTy);
543   return DAG.getBitcast(CastTy, Vec);
544 }
545 
546 SDValue
547 HexagonTargetLowering::opJoin(const VectorPair &Ops, const SDLoc &dl,
548                               SelectionDAG &DAG) const {
549   return DAG.getNode(ISD::CONCAT_VECTORS, dl, typeJoin(ty(Ops)),
550                      Ops.first, Ops.second);
551 }
552 
553 HexagonTargetLowering::VectorPair
554 HexagonTargetLowering::opSplit(SDValue Vec, const SDLoc &dl,
555                                SelectionDAG &DAG) const {
556   TypePair Tys = typeSplit(ty(Vec));
557   if (Vec.getOpcode() == HexagonISD::QCAT)
558     return VectorPair(Vec.getOperand(0), Vec.getOperand(1));
559   return DAG.SplitVector(Vec, dl, Tys.first, Tys.second);
560 }
561 
562 bool
563 HexagonTargetLowering::isHvxSingleTy(MVT Ty) const {
564   return Subtarget.isHVXVectorType(Ty) &&
565          Ty.getSizeInBits() == 8 * Subtarget.getVectorLength();
566 }
567 
568 bool
569 HexagonTargetLowering::isHvxPairTy(MVT Ty) const {
570   return Subtarget.isHVXVectorType(Ty) &&
571          Ty.getSizeInBits() == 16 * Subtarget.getVectorLength();
572 }
573 
574 bool
575 HexagonTargetLowering::isHvxBoolTy(MVT Ty) const {
576   return Subtarget.isHVXVectorType(Ty, true) &&
577          Ty.getVectorElementType() == MVT::i1;
578 }
579 
580 bool HexagonTargetLowering::allowsHvxMemoryAccess(
581     MVT VecTy, MachineMemOperand::Flags Flags, unsigned *Fast) const {
582   // Bool vectors are excluded by default, but make it explicit to
583   // emphasize that bool vectors cannot be loaded or stored.
584   // Also, disallow double vector stores (to prevent unnecessary
585   // store widening in DAG combiner).
586   if (VecTy.getSizeInBits() > 8*Subtarget.getVectorLength())
587     return false;
588   if (!Subtarget.isHVXVectorType(VecTy, /*IncludeBool=*/false))
589     return false;
590   if (Fast)
591     *Fast = 1;
592   return true;
593 }
594 
595 bool HexagonTargetLowering::allowsHvxMisalignedMemoryAccesses(
596     MVT VecTy, MachineMemOperand::Flags Flags, unsigned *Fast) const {
597   if (!Subtarget.isHVXVectorType(VecTy))
598     return false;
599   // XXX Should this be false?  vmemu are a bit slower than vmem.
600   if (Fast)
601     *Fast = 1;
602   return true;
603 }
604 
605 void HexagonTargetLowering::AdjustHvxInstrPostInstrSelection(
606     MachineInstr &MI, SDNode *Node) const {
607   unsigned Opc = MI.getOpcode();
608   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
609   MachineBasicBlock &MB = *MI.getParent();
610   MachineFunction &MF = *MB.getParent();
611   MachineRegisterInfo &MRI = MF.getRegInfo();
612   DebugLoc DL = MI.getDebugLoc();
613   auto At = MI.getIterator();
614 
615   switch (Opc) {
616   case Hexagon::PS_vsplatib:
617     if (Subtarget.useHVXV62Ops()) {
618       // SplatV = A2_tfrsi #imm
619       // OutV = V6_lvsplatb SplatV
620       Register SplatV = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
621       BuildMI(MB, At, DL, TII.get(Hexagon::A2_tfrsi), SplatV)
622         .add(MI.getOperand(1));
623       Register OutV = MI.getOperand(0).getReg();
624       BuildMI(MB, At, DL, TII.get(Hexagon::V6_lvsplatb), OutV)
625         .addReg(SplatV);
626     } else {
627       // SplatV = A2_tfrsi #imm:#imm:#imm:#imm
628       // OutV = V6_lvsplatw SplatV
629       Register SplatV = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
630       const MachineOperand &InpOp = MI.getOperand(1);
631       assert(InpOp.isImm());
632       uint32_t V = InpOp.getImm() & 0xFF;
633       BuildMI(MB, At, DL, TII.get(Hexagon::A2_tfrsi), SplatV)
634           .addImm(V << 24 | V << 16 | V << 8 | V);
635       Register OutV = MI.getOperand(0).getReg();
636       BuildMI(MB, At, DL, TII.get(Hexagon::V6_lvsplatw), OutV).addReg(SplatV);
637     }
638     MB.erase(At);
639     break;
640   case Hexagon::PS_vsplatrb:
641     if (Subtarget.useHVXV62Ops()) {
642       // OutV = V6_lvsplatb Inp
643       Register OutV = MI.getOperand(0).getReg();
644       BuildMI(MB, At, DL, TII.get(Hexagon::V6_lvsplatb), OutV)
645         .add(MI.getOperand(1));
646     } else {
647       Register SplatV = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
648       const MachineOperand &InpOp = MI.getOperand(1);
649       BuildMI(MB, At, DL, TII.get(Hexagon::S2_vsplatrb), SplatV)
650           .addReg(InpOp.getReg(), 0, InpOp.getSubReg());
651       Register OutV = MI.getOperand(0).getReg();
652       BuildMI(MB, At, DL, TII.get(Hexagon::V6_lvsplatw), OutV)
653           .addReg(SplatV);
654     }
655     MB.erase(At);
656     break;
657   case Hexagon::PS_vsplatih:
658     if (Subtarget.useHVXV62Ops()) {
659       // SplatV = A2_tfrsi #imm
660       // OutV = V6_lvsplath SplatV
661       Register SplatV = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
662       BuildMI(MB, At, DL, TII.get(Hexagon::A2_tfrsi), SplatV)
663         .add(MI.getOperand(1));
664       Register OutV = MI.getOperand(0).getReg();
665       BuildMI(MB, At, DL, TII.get(Hexagon::V6_lvsplath), OutV)
666         .addReg(SplatV);
667     } else {
668       // SplatV = A2_tfrsi #imm:#imm
669       // OutV = V6_lvsplatw SplatV
670       Register SplatV = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
671       const MachineOperand &InpOp = MI.getOperand(1);
672       assert(InpOp.isImm());
673       uint32_t V = InpOp.getImm() & 0xFFFF;
674       BuildMI(MB, At, DL, TII.get(Hexagon::A2_tfrsi), SplatV)
675           .addImm(V << 16 | V);
676       Register OutV = MI.getOperand(0).getReg();
677       BuildMI(MB, At, DL, TII.get(Hexagon::V6_lvsplatw), OutV).addReg(SplatV);
678     }
679     MB.erase(At);
680     break;
681   case Hexagon::PS_vsplatrh:
682     if (Subtarget.useHVXV62Ops()) {
683       // OutV = V6_lvsplath Inp
684       Register OutV = MI.getOperand(0).getReg();
685       BuildMI(MB, At, DL, TII.get(Hexagon::V6_lvsplath), OutV)
686         .add(MI.getOperand(1));
687     } else {
688       // SplatV = A2_combine_ll Inp, Inp
689       // OutV = V6_lvsplatw SplatV
690       Register SplatV = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
691       const MachineOperand &InpOp = MI.getOperand(1);
692       BuildMI(MB, At, DL, TII.get(Hexagon::A2_combine_ll), SplatV)
693           .addReg(InpOp.getReg(), 0, InpOp.getSubReg())
694           .addReg(InpOp.getReg(), 0, InpOp.getSubReg());
695       Register OutV = MI.getOperand(0).getReg();
696       BuildMI(MB, At, DL, TII.get(Hexagon::V6_lvsplatw), OutV).addReg(SplatV);
697     }
698     MB.erase(At);
699     break;
700   case Hexagon::PS_vsplatiw:
701   case Hexagon::PS_vsplatrw:
702     if (Opc == Hexagon::PS_vsplatiw) {
703       // SplatV = A2_tfrsi #imm
704       Register SplatV = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
705       BuildMI(MB, At, DL, TII.get(Hexagon::A2_tfrsi), SplatV)
706         .add(MI.getOperand(1));
707       MI.getOperand(1).ChangeToRegister(SplatV, false);
708     }
709     // OutV = V6_lvsplatw SplatV/Inp
710     MI.setDesc(TII.get(Hexagon::V6_lvsplatw));
711     break;
712   }
713 }
714 
715 SDValue
716 HexagonTargetLowering::convertToByteIndex(SDValue ElemIdx, MVT ElemTy,
717                                           SelectionDAG &DAG) const {
718   if (ElemIdx.getValueType().getSimpleVT() != MVT::i32)
719     ElemIdx = DAG.getBitcast(MVT::i32, ElemIdx);
720 
721   unsigned ElemWidth = ElemTy.getSizeInBits();
722   if (ElemWidth == 8)
723     return ElemIdx;
724 
725   unsigned L = Log2_32(ElemWidth/8);
726   const SDLoc &dl(ElemIdx);
727   return DAG.getNode(ISD::SHL, dl, MVT::i32,
728                      {ElemIdx, DAG.getConstant(L, dl, MVT::i32)});
729 }
730 
731 SDValue
732 HexagonTargetLowering::getIndexInWord32(SDValue Idx, MVT ElemTy,
733                                         SelectionDAG &DAG) const {
734   unsigned ElemWidth = ElemTy.getSizeInBits();
735   assert(ElemWidth >= 8 && ElemWidth <= 32);
736   if (ElemWidth == 32)
737     return Idx;
738 
739   if (ty(Idx) != MVT::i32)
740     Idx = DAG.getBitcast(MVT::i32, Idx);
741   const SDLoc &dl(Idx);
742   SDValue Mask = DAG.getConstant(32/ElemWidth - 1, dl, MVT::i32);
743   SDValue SubIdx = DAG.getNode(ISD::AND, dl, MVT::i32, {Idx, Mask});
744   return SubIdx;
745 }
746 
747 SDValue
748 HexagonTargetLowering::getByteShuffle(const SDLoc &dl, SDValue Op0,
749                                       SDValue Op1, ArrayRef<int> Mask,
750                                       SelectionDAG &DAG) const {
751   MVT OpTy = ty(Op0);
752   assert(OpTy == ty(Op1));
753 
754   MVT ElemTy = OpTy.getVectorElementType();
755   if (ElemTy == MVT::i8)
756     return DAG.getVectorShuffle(OpTy, dl, Op0, Op1, Mask);
757   assert(ElemTy.getSizeInBits() >= 8);
758 
759   MVT ResTy = tyVector(OpTy, MVT::i8);
760   unsigned ElemSize = ElemTy.getSizeInBits() / 8;
761 
762   SmallVector<int,128> ByteMask;
763   for (int M : Mask) {
764     if (M < 0) {
765       for (unsigned I = 0; I != ElemSize; ++I)
766         ByteMask.push_back(-1);
767     } else {
768       int NewM = M*ElemSize;
769       for (unsigned I = 0; I != ElemSize; ++I)
770         ByteMask.push_back(NewM+I);
771     }
772   }
773   assert(ResTy.getVectorNumElements() == ByteMask.size());
774   return DAG.getVectorShuffle(ResTy, dl, opCastElem(Op0, MVT::i8, DAG),
775                               opCastElem(Op1, MVT::i8, DAG), ByteMask);
776 }
777 
778 SDValue
779 HexagonTargetLowering::buildHvxVectorReg(ArrayRef<SDValue> Values,
780                                          const SDLoc &dl, MVT VecTy,
781                                          SelectionDAG &DAG) const {
782   unsigned VecLen = Values.size();
783   MachineFunction &MF = DAG.getMachineFunction();
784   MVT ElemTy = VecTy.getVectorElementType();
785   unsigned ElemWidth = ElemTy.getSizeInBits();
786   unsigned HwLen = Subtarget.getVectorLength();
787 
788   unsigned ElemSize = ElemWidth / 8;
789   assert(ElemSize*VecLen == HwLen);
790   SmallVector<SDValue,32> Words;
791 
792   if (VecTy.getVectorElementType() != MVT::i32 &&
793       !(Subtarget.useHVXFloatingPoint() &&
794       VecTy.getVectorElementType() == MVT::f32)) {
795     assert((ElemSize == 1 || ElemSize == 2) && "Invalid element size");
796     unsigned OpsPerWord = (ElemSize == 1) ? 4 : 2;
797     MVT PartVT = MVT::getVectorVT(VecTy.getVectorElementType(), OpsPerWord);
798     for (unsigned i = 0; i != VecLen; i += OpsPerWord) {
799       SDValue W = buildVector32(Values.slice(i, OpsPerWord), dl, PartVT, DAG);
800       Words.push_back(DAG.getBitcast(MVT::i32, W));
801     }
802   } else {
803     for (SDValue V : Values)
804       Words.push_back(DAG.getBitcast(MVT::i32, V));
805   }
806   auto isSplat = [] (ArrayRef<SDValue> Values, SDValue &SplatV) {
807     unsigned NumValues = Values.size();
808     assert(NumValues > 0);
809     bool IsUndef = true;
810     for (unsigned i = 0; i != NumValues; ++i) {
811       if (Values[i].isUndef())
812         continue;
813       IsUndef = false;
814       if (!SplatV.getNode())
815         SplatV = Values[i];
816       else if (SplatV != Values[i])
817         return false;
818     }
819     if (IsUndef)
820       SplatV = Values[0];
821     return true;
822   };
823 
824   unsigned NumWords = Words.size();
825   SDValue SplatV;
826   bool IsSplat = isSplat(Words, SplatV);
827   if (IsSplat && isUndef(SplatV))
828     return DAG.getUNDEF(VecTy);
829   if (IsSplat) {
830     assert(SplatV.getNode());
831     auto *IdxN = dyn_cast<ConstantSDNode>(SplatV.getNode());
832     if (IdxN && IdxN->isZero())
833       return getZero(dl, VecTy, DAG);
834     MVT WordTy = MVT::getVectorVT(MVT::i32, HwLen/4);
835     SDValue S = DAG.getNode(ISD::SPLAT_VECTOR, dl, WordTy, SplatV);
836     return DAG.getBitcast(VecTy, S);
837   }
838 
839   // Delay recognizing constant vectors until here, so that we can generate
840   // a vsplat.
841   SmallVector<ConstantInt*, 128> Consts(VecLen);
842   bool AllConst = getBuildVectorConstInts(Values, VecTy, DAG, Consts);
843   if (AllConst) {
844     ArrayRef<Constant*> Tmp((Constant**)Consts.begin(),
845                             (Constant**)Consts.end());
846     Constant *CV = ConstantVector::get(Tmp);
847     Align Alignment(HwLen);
848     SDValue CP =
849         LowerConstantPool(DAG.getConstantPool(CV, VecTy, Alignment), DAG);
850     return DAG.getLoad(VecTy, dl, DAG.getEntryNode(), CP,
851                        MachinePointerInfo::getConstantPool(MF), Alignment);
852   }
853 
854   // A special case is a situation where the vector is built entirely from
855   // elements extracted from another vector. This could be done via a shuffle
856   // more efficiently, but typically, the size of the source vector will not
857   // match the size of the vector being built (which precludes the use of a
858   // shuffle directly).
859   // This only handles a single source vector, and the vector being built
860   // should be of a sub-vector type of the source vector type.
861   auto IsBuildFromExtracts = [this,&Values] (SDValue &SrcVec,
862                                              SmallVectorImpl<int> &SrcIdx) {
863     SDValue Vec;
864     for (SDValue V : Values) {
865       if (isUndef(V)) {
866         SrcIdx.push_back(-1);
867         continue;
868       }
869       if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
870         return false;
871       // All extracts should come from the same vector.
872       SDValue T = V.getOperand(0);
873       if (Vec.getNode() != nullptr && T.getNode() != Vec.getNode())
874         return false;
875       Vec = T;
876       ConstantSDNode *C = dyn_cast<ConstantSDNode>(V.getOperand(1));
877       if (C == nullptr)
878         return false;
879       int I = C->getSExtValue();
880       assert(I >= 0 && "Negative element index");
881       SrcIdx.push_back(I);
882     }
883     SrcVec = Vec;
884     return true;
885   };
886 
887   SmallVector<int,128> ExtIdx;
888   SDValue ExtVec;
889   if (IsBuildFromExtracts(ExtVec, ExtIdx)) {
890     MVT ExtTy = ty(ExtVec);
891     unsigned ExtLen = ExtTy.getVectorNumElements();
892     if (ExtLen == VecLen || ExtLen == 2*VecLen) {
893       // Construct a new shuffle mask that will produce a vector with the same
894       // number of elements as the input vector, and such that the vector we
895       // want will be the initial subvector of it.
896       SmallVector<int,128> Mask;
897       BitVector Used(ExtLen);
898 
899       for (int M : ExtIdx) {
900         Mask.push_back(M);
901         if (M >= 0)
902           Used.set(M);
903       }
904       // Fill the rest of the mask with the unused elements of ExtVec in hopes
905       // that it will result in a permutation of ExtVec's elements. It's still
906       // fine if it doesn't (e.g. if undefs are present, or elements are
907       // repeated), but permutations can always be done efficiently via vdelta
908       // and vrdelta.
909       for (unsigned I = 0; I != ExtLen; ++I) {
910         if (Mask.size() == ExtLen)
911           break;
912         if (!Used.test(I))
913           Mask.push_back(I);
914       }
915 
916       SDValue S = DAG.getVectorShuffle(ExtTy, dl, ExtVec,
917                                        DAG.getUNDEF(ExtTy), Mask);
918       return ExtLen == VecLen ? S : LoHalf(S, DAG);
919     }
920   }
921 
922   // Find most common element to initialize vector with. This is to avoid
923   // unnecessary vinsert/valign for cases where the same value is present
924   // many times. Creates a histogram of the vector's elements to find the
925   // most common element n.
926   assert(4*Words.size() == Subtarget.getVectorLength());
927   int VecHist[32];
928   int n = 0;
929   for (unsigned i = 0; i != NumWords; ++i) {
930     VecHist[i] = 0;
931     if (Words[i].isUndef())
932       continue;
933     for (unsigned j = i; j != NumWords; ++j)
934       if (Words[i] == Words[j])
935         VecHist[i]++;
936 
937     if (VecHist[i] > VecHist[n])
938       n = i;
939   }
940 
941   SDValue HalfV = getZero(dl, VecTy, DAG);
942   if (VecHist[n] > 1) {
943     SDValue SplatV = DAG.getNode(ISD::SPLAT_VECTOR, dl, VecTy, Words[n]);
944     HalfV = DAG.getNode(HexagonISD::VALIGN, dl, VecTy,
945                        {HalfV, SplatV, DAG.getConstant(HwLen/2, dl, MVT::i32)});
946   }
947   SDValue HalfV0 = HalfV;
948   SDValue HalfV1 = HalfV;
949 
950   // Construct two halves in parallel, then or them together. Rn and Rm count
951   // number of rotations needed before the next element. One last rotation is
952   // performed post-loop to position the last element.
953   int Rn = 0, Rm = 0;
954   SDValue Sn, Sm;
955   SDValue N = HalfV0;
956   SDValue M = HalfV1;
957   for (unsigned i = 0; i != NumWords/2; ++i) {
958     // Rotate by element count since last insertion.
959     if (Words[i] != Words[n] || VecHist[n] <= 1) {
960       Sn = DAG.getConstant(Rn, dl, MVT::i32);
961       HalfV0 = DAG.getNode(HexagonISD::VROR, dl, VecTy, {N, Sn});
962       N = DAG.getNode(HexagonISD::VINSERTW0, dl, VecTy,
963                       {HalfV0, Words[i]});
964       Rn = 0;
965     }
966     if (Words[i+NumWords/2] != Words[n] || VecHist[n] <= 1) {
967       Sm = DAG.getConstant(Rm, dl, MVT::i32);
968       HalfV1 = DAG.getNode(HexagonISD::VROR, dl, VecTy, {M, Sm});
969       M = DAG.getNode(HexagonISD::VINSERTW0, dl, VecTy,
970                       {HalfV1, Words[i+NumWords/2]});
971       Rm = 0;
972     }
973     Rn += 4;
974     Rm += 4;
975   }
976   // Perform last rotation.
977   Sn = DAG.getConstant(Rn+HwLen/2, dl, MVT::i32);
978   Sm = DAG.getConstant(Rm, dl, MVT::i32);
979   HalfV0 = DAG.getNode(HexagonISD::VROR, dl, VecTy, {N, Sn});
980   HalfV1 = DAG.getNode(HexagonISD::VROR, dl, VecTy, {M, Sm});
981 
982   SDValue T0 = DAG.getBitcast(tyVector(VecTy, MVT::i32), HalfV0);
983   SDValue T1 = DAG.getBitcast(tyVector(VecTy, MVT::i32), HalfV1);
984 
985   SDValue DstV = DAG.getNode(ISD::OR, dl, ty(T0), {T0, T1});
986 
987   SDValue OutV =
988       DAG.getBitcast(tyVector(ty(DstV), VecTy.getVectorElementType()), DstV);
989   return OutV;
990 }
991 
992 SDValue
993 HexagonTargetLowering::createHvxPrefixPred(SDValue PredV, const SDLoc &dl,
994       unsigned BitBytes, bool ZeroFill, SelectionDAG &DAG) const {
995   MVT PredTy = ty(PredV);
996   unsigned HwLen = Subtarget.getVectorLength();
997   MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
998 
999   if (Subtarget.isHVXVectorType(PredTy, true)) {
1000     // Move the vector predicate SubV to a vector register, and scale it
1001     // down to match the representation (bytes per type element) that VecV
1002     // uses. The scaling down will pick every 2nd or 4th (every Scale-th
1003     // in general) element and put them at the front of the resulting
1004     // vector. This subvector will then be inserted into the Q2V of VecV.
1005     // To avoid having an operation that generates an illegal type (short
1006     // vector), generate a full size vector.
1007     //
1008     SDValue T = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, PredV);
1009     SmallVector<int,128> Mask(HwLen);
1010     // Scale = BitBytes(PredV) / Given BitBytes.
1011     unsigned Scale = HwLen / (PredTy.getVectorNumElements() * BitBytes);
1012     unsigned BlockLen = PredTy.getVectorNumElements() * BitBytes;
1013 
1014     for (unsigned i = 0; i != HwLen; ++i) {
1015       unsigned Num = i % Scale;
1016       unsigned Off = i / Scale;
1017       Mask[BlockLen*Num + Off] = i;
1018     }
1019     SDValue S = DAG.getVectorShuffle(ByteTy, dl, T, DAG.getUNDEF(ByteTy), Mask);
1020     if (!ZeroFill)
1021       return S;
1022     // Fill the bytes beyond BlockLen with 0s.
1023     // V6_pred_scalar2 cannot fill the entire predicate, so it only works
1024     // when BlockLen < HwLen.
1025     assert(BlockLen < HwLen && "vsetq(v1) prerequisite");
1026     MVT BoolTy = MVT::getVectorVT(MVT::i1, HwLen);
1027     SDValue Q = getInstr(Hexagon::V6_pred_scalar2, dl, BoolTy,
1028                          {DAG.getConstant(BlockLen, dl, MVT::i32)}, DAG);
1029     SDValue M = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, Q);
1030     return DAG.getNode(ISD::AND, dl, ByteTy, S, M);
1031   }
1032 
1033   // Make sure that this is a valid scalar predicate.
1034   assert(PredTy == MVT::v2i1 || PredTy == MVT::v4i1 || PredTy == MVT::v8i1);
1035 
1036   unsigned Bytes = 8 / PredTy.getVectorNumElements();
1037   SmallVector<SDValue,4> Words[2];
1038   unsigned IdxW = 0;
1039 
1040   SDValue W0 = isUndef(PredV)
1041                   ? DAG.getUNDEF(MVT::i64)
1042                   : DAG.getNode(HexagonISD::P2D, dl, MVT::i64, PredV);
1043   Words[IdxW].push_back(HiHalf(W0, DAG));
1044   Words[IdxW].push_back(LoHalf(W0, DAG));
1045 
1046   while (Bytes < BitBytes) {
1047     IdxW ^= 1;
1048     Words[IdxW].clear();
1049 
1050     if (Bytes < 4) {
1051       for (const SDValue &W : Words[IdxW ^ 1]) {
1052         SDValue T = expandPredicate(W, dl, DAG);
1053         Words[IdxW].push_back(HiHalf(T, DAG));
1054         Words[IdxW].push_back(LoHalf(T, DAG));
1055       }
1056     } else {
1057       for (const SDValue &W : Words[IdxW ^ 1]) {
1058         Words[IdxW].push_back(W);
1059         Words[IdxW].push_back(W);
1060       }
1061     }
1062     Bytes *= 2;
1063   }
1064 
1065   assert(Bytes == BitBytes);
1066 
1067   SDValue Vec = ZeroFill ? getZero(dl, ByteTy, DAG) : DAG.getUNDEF(ByteTy);
1068   SDValue S4 = DAG.getConstant(HwLen-4, dl, MVT::i32);
1069   for (const SDValue &W : Words[IdxW]) {
1070     Vec = DAG.getNode(HexagonISD::VROR, dl, ByteTy, Vec, S4);
1071     Vec = DAG.getNode(HexagonISD::VINSERTW0, dl, ByteTy, Vec, W);
1072   }
1073 
1074   return Vec;
1075 }
1076 
1077 SDValue
1078 HexagonTargetLowering::buildHvxVectorPred(ArrayRef<SDValue> Values,
1079                                           const SDLoc &dl, MVT VecTy,
1080                                           SelectionDAG &DAG) const {
1081   // Construct a vector V of bytes, such that a comparison V >u 0 would
1082   // produce the required vector predicate.
1083   unsigned VecLen = Values.size();
1084   unsigned HwLen = Subtarget.getVectorLength();
1085   assert(VecLen <= HwLen || VecLen == 8*HwLen);
1086   SmallVector<SDValue,128> Bytes;
1087   bool AllT = true, AllF = true;
1088 
1089   auto IsTrue = [] (SDValue V) {
1090     if (const auto *N = dyn_cast<ConstantSDNode>(V.getNode()))
1091       return !N->isZero();
1092     return false;
1093   };
1094   auto IsFalse = [] (SDValue V) {
1095     if (const auto *N = dyn_cast<ConstantSDNode>(V.getNode()))
1096       return N->isZero();
1097     return false;
1098   };
1099 
1100   if (VecLen <= HwLen) {
1101     // In the hardware, each bit of a vector predicate corresponds to a byte
1102     // of a vector register. Calculate how many bytes does a bit of VecTy
1103     // correspond to.
1104     assert(HwLen % VecLen == 0);
1105     unsigned BitBytes = HwLen / VecLen;
1106     for (SDValue V : Values) {
1107       AllT &= IsTrue(V);
1108       AllF &= IsFalse(V);
1109 
1110       SDValue Ext = !V.isUndef() ? DAG.getZExtOrTrunc(V, dl, MVT::i8)
1111                                  : DAG.getUNDEF(MVT::i8);
1112       for (unsigned B = 0; B != BitBytes; ++B)
1113         Bytes.push_back(Ext);
1114     }
1115   } else {
1116     // There are as many i1 values, as there are bits in a vector register.
1117     // Divide the values into groups of 8 and check that each group consists
1118     // of the same value (ignoring undefs).
1119     for (unsigned I = 0; I != VecLen; I += 8) {
1120       unsigned B = 0;
1121       // Find the first non-undef value in this group.
1122       for (; B != 8; ++B) {
1123         if (!Values[I+B].isUndef())
1124           break;
1125       }
1126       SDValue F = Values[I+B];
1127       AllT &= IsTrue(F);
1128       AllF &= IsFalse(F);
1129 
1130       SDValue Ext = (B < 8) ? DAG.getZExtOrTrunc(F, dl, MVT::i8)
1131                             : DAG.getUNDEF(MVT::i8);
1132       Bytes.push_back(Ext);
1133       // Verify that the rest of values in the group are the same as the
1134       // first.
1135       for (; B != 8; ++B)
1136         assert(Values[I+B].isUndef() || Values[I+B] == F);
1137     }
1138   }
1139 
1140   if (AllT)
1141     return DAG.getNode(HexagonISD::QTRUE, dl, VecTy);
1142   if (AllF)
1143     return DAG.getNode(HexagonISD::QFALSE, dl, VecTy);
1144 
1145   MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
1146   SDValue ByteVec = buildHvxVectorReg(Bytes, dl, ByteTy, DAG);
1147   return DAG.getNode(HexagonISD::V2Q, dl, VecTy, ByteVec);
1148 }
1149 
1150 SDValue
1151 HexagonTargetLowering::extractHvxElementReg(SDValue VecV, SDValue IdxV,
1152       const SDLoc &dl, MVT ResTy, SelectionDAG &DAG) const {
1153   MVT ElemTy = ty(VecV).getVectorElementType();
1154 
1155   unsigned ElemWidth = ElemTy.getSizeInBits();
1156   assert(ElemWidth >= 8 && ElemWidth <= 32);
1157   (void)ElemWidth;
1158 
1159   SDValue ByteIdx = convertToByteIndex(IdxV, ElemTy, DAG);
1160   SDValue ExWord = DAG.getNode(HexagonISD::VEXTRACTW, dl, MVT::i32,
1161                                {VecV, ByteIdx});
1162   if (ElemTy == MVT::i32)
1163     return ExWord;
1164 
1165   // Have an extracted word, need to extract the smaller element out of it.
1166   // 1. Extract the bits of (the original) IdxV that correspond to the index
1167   //    of the desired element in the 32-bit word.
1168   SDValue SubIdx = getIndexInWord32(IdxV, ElemTy, DAG);
1169   // 2. Extract the element from the word.
1170   SDValue ExVec = DAG.getBitcast(tyVector(ty(ExWord), ElemTy), ExWord);
1171   return extractVector(ExVec, SubIdx, dl, ElemTy, MVT::i32, DAG);
1172 }
1173 
1174 SDValue
1175 HexagonTargetLowering::extractHvxElementPred(SDValue VecV, SDValue IdxV,
1176       const SDLoc &dl, MVT ResTy, SelectionDAG &DAG) const {
1177   // Implement other return types if necessary.
1178   assert(ResTy == MVT::i1);
1179 
1180   unsigned HwLen = Subtarget.getVectorLength();
1181   MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
1182   SDValue ByteVec = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, VecV);
1183 
1184   unsigned Scale = HwLen / ty(VecV).getVectorNumElements();
1185   SDValue ScV = DAG.getConstant(Scale, dl, MVT::i32);
1186   IdxV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, ScV);
1187 
1188   SDValue ExtB = extractHvxElementReg(ByteVec, IdxV, dl, MVT::i32, DAG);
1189   SDValue Zero = DAG.getTargetConstant(0, dl, MVT::i32);
1190   return getInstr(Hexagon::C2_cmpgtui, dl, MVT::i1, {ExtB, Zero}, DAG);
1191 }
1192 
1193 SDValue
1194 HexagonTargetLowering::insertHvxElementReg(SDValue VecV, SDValue IdxV,
1195       SDValue ValV, const SDLoc &dl, SelectionDAG &DAG) const {
1196   MVT ElemTy = ty(VecV).getVectorElementType();
1197 
1198   unsigned ElemWidth = ElemTy.getSizeInBits();
1199   assert(ElemWidth >= 8 && ElemWidth <= 32);
1200   (void)ElemWidth;
1201 
1202   auto InsertWord = [&DAG,&dl,this] (SDValue VecV, SDValue ValV,
1203                                      SDValue ByteIdxV) {
1204     MVT VecTy = ty(VecV);
1205     unsigned HwLen = Subtarget.getVectorLength();
1206     SDValue MaskV = DAG.getNode(ISD::AND, dl, MVT::i32,
1207                                 {ByteIdxV, DAG.getConstant(-4, dl, MVT::i32)});
1208     SDValue RotV = DAG.getNode(HexagonISD::VROR, dl, VecTy, {VecV, MaskV});
1209     SDValue InsV = DAG.getNode(HexagonISD::VINSERTW0, dl, VecTy, {RotV, ValV});
1210     SDValue SubV = DAG.getNode(ISD::SUB, dl, MVT::i32,
1211                                {DAG.getConstant(HwLen, dl, MVT::i32), MaskV});
1212     SDValue TorV = DAG.getNode(HexagonISD::VROR, dl, VecTy, {InsV, SubV});
1213     return TorV;
1214   };
1215 
1216   SDValue ByteIdx = convertToByteIndex(IdxV, ElemTy, DAG);
1217   if (ElemTy == MVT::i32)
1218     return InsertWord(VecV, ValV, ByteIdx);
1219 
1220   // If this is not inserting a 32-bit word, convert it into such a thing.
1221   // 1. Extract the existing word from the target vector.
1222   SDValue WordIdx = DAG.getNode(ISD::SRL, dl, MVT::i32,
1223                                 {ByteIdx, DAG.getConstant(2, dl, MVT::i32)});
1224   SDValue Ext = extractHvxElementReg(opCastElem(VecV, MVT::i32, DAG), WordIdx,
1225                                      dl, MVT::i32, DAG);
1226 
1227   // 2. Treating the extracted word as a 32-bit vector, insert the given
1228   //    value into it.
1229   SDValue SubIdx = getIndexInWord32(IdxV, ElemTy, DAG);
1230   MVT SubVecTy = tyVector(ty(Ext), ElemTy);
1231   SDValue Ins = insertVector(DAG.getBitcast(SubVecTy, Ext),
1232                              ValV, SubIdx, dl, ElemTy, DAG);
1233 
1234   // 3. Insert the 32-bit word back into the original vector.
1235   return InsertWord(VecV, Ins, ByteIdx);
1236 }
1237 
1238 SDValue
1239 HexagonTargetLowering::insertHvxElementPred(SDValue VecV, SDValue IdxV,
1240       SDValue ValV, const SDLoc &dl, SelectionDAG &DAG) const {
1241   unsigned HwLen = Subtarget.getVectorLength();
1242   MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
1243   SDValue ByteVec = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, VecV);
1244 
1245   unsigned Scale = HwLen / ty(VecV).getVectorNumElements();
1246   SDValue ScV = DAG.getConstant(Scale, dl, MVT::i32);
1247   IdxV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, ScV);
1248   ValV = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i32, ValV);
1249 
1250   SDValue InsV = insertHvxElementReg(ByteVec, IdxV, ValV, dl, DAG);
1251   return DAG.getNode(HexagonISD::V2Q, dl, ty(VecV), InsV);
1252 }
1253 
1254 SDValue
1255 HexagonTargetLowering::extractHvxSubvectorReg(SDValue OrigOp, SDValue VecV,
1256       SDValue IdxV, const SDLoc &dl, MVT ResTy, SelectionDAG &DAG) const {
1257   MVT VecTy = ty(VecV);
1258   unsigned HwLen = Subtarget.getVectorLength();
1259   unsigned Idx = cast<ConstantSDNode>(IdxV.getNode())->getZExtValue();
1260   MVT ElemTy = VecTy.getVectorElementType();
1261   unsigned ElemWidth = ElemTy.getSizeInBits();
1262 
1263   // If the source vector is a vector pair, get the single vector containing
1264   // the subvector of interest. The subvector will never overlap two single
1265   // vectors.
1266   if (isHvxPairTy(VecTy)) {
1267     if (Idx * ElemWidth >= 8*HwLen)
1268       Idx -= VecTy.getVectorNumElements() / 2;
1269 
1270     VecV = OrigOp;
1271     if (typeSplit(VecTy).first == ResTy)
1272       return VecV;
1273   }
1274 
1275   // The only meaningful subvectors of a single HVX vector are those that
1276   // fit in a scalar register.
1277   assert(ResTy.getSizeInBits() == 32 || ResTy.getSizeInBits() == 64);
1278 
1279   MVT WordTy = tyVector(VecTy, MVT::i32);
1280   SDValue WordVec = DAG.getBitcast(WordTy, VecV);
1281   unsigned WordIdx = (Idx*ElemWidth) / 32;
1282 
1283   SDValue W0Idx = DAG.getConstant(WordIdx, dl, MVT::i32);
1284   SDValue W0 = extractHvxElementReg(WordVec, W0Idx, dl, MVT::i32, DAG);
1285   if (ResTy.getSizeInBits() == 32)
1286     return DAG.getBitcast(ResTy, W0);
1287 
1288   SDValue W1Idx = DAG.getConstant(WordIdx+1, dl, MVT::i32);
1289   SDValue W1 = extractHvxElementReg(WordVec, W1Idx, dl, MVT::i32, DAG);
1290   SDValue WW = getCombine(W1, W0, dl, MVT::i64, DAG);
1291   return DAG.getBitcast(ResTy, WW);
1292 }
1293 
1294 SDValue
1295 HexagonTargetLowering::extractHvxSubvectorPred(SDValue VecV, SDValue IdxV,
1296       const SDLoc &dl, MVT ResTy, SelectionDAG &DAG) const {
1297   MVT VecTy = ty(VecV);
1298   unsigned HwLen = Subtarget.getVectorLength();
1299   MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
1300   SDValue ByteVec = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, VecV);
1301   // IdxV is required to be a constant.
1302   unsigned Idx = cast<ConstantSDNode>(IdxV.getNode())->getZExtValue();
1303 
1304   unsigned ResLen = ResTy.getVectorNumElements();
1305   unsigned BitBytes = HwLen / VecTy.getVectorNumElements();
1306   unsigned Offset = Idx * BitBytes;
1307   SDValue Undef = DAG.getUNDEF(ByteTy);
1308   SmallVector<int,128> Mask;
1309 
1310   if (Subtarget.isHVXVectorType(ResTy, true)) {
1311     // Converting between two vector predicates. Since the result is shorter
1312     // than the source, it will correspond to a vector predicate with the
1313     // relevant bits replicated. The replication count is the ratio of the
1314     // source and target vector lengths.
1315     unsigned Rep = VecTy.getVectorNumElements() / ResLen;
1316     assert(isPowerOf2_32(Rep) && HwLen % Rep == 0);
1317     for (unsigned i = 0; i != HwLen/Rep; ++i) {
1318       for (unsigned j = 0; j != Rep; ++j)
1319         Mask.push_back(i + Offset);
1320     }
1321     SDValue ShuffV = DAG.getVectorShuffle(ByteTy, dl, ByteVec, Undef, Mask);
1322     return DAG.getNode(HexagonISD::V2Q, dl, ResTy, ShuffV);
1323   }
1324 
1325   // Converting between a vector predicate and a scalar predicate. In the
1326   // vector predicate, a group of BitBytes bits will correspond to a single
1327   // i1 element of the source vector type. Those bits will all have the same
1328   // value. The same will be true for ByteVec, where each byte corresponds
1329   // to a bit in the vector predicate.
1330   // The algorithm is to traverse the ByteVec, going over the i1 values from
1331   // the source vector, and generate the corresponding representation in an
1332   // 8-byte vector. To avoid repeated extracts from ByteVec, shuffle the
1333   // elements so that the interesting 8 bytes will be in the low end of the
1334   // vector.
1335   unsigned Rep = 8 / ResLen;
1336   // Make sure the output fill the entire vector register, so repeat the
1337   // 8-byte groups as many times as necessary.
1338   for (unsigned r = 0; r != HwLen/ResLen; ++r) {
1339     // This will generate the indexes of the 8 interesting bytes.
1340     for (unsigned i = 0; i != ResLen; ++i) {
1341       for (unsigned j = 0; j != Rep; ++j)
1342         Mask.push_back(Offset + i*BitBytes);
1343     }
1344   }
1345 
1346   SDValue Zero = getZero(dl, MVT::i32, DAG);
1347   SDValue ShuffV = DAG.getVectorShuffle(ByteTy, dl, ByteVec, Undef, Mask);
1348   // Combine the two low words from ShuffV into a v8i8, and byte-compare
1349   // them against 0.
1350   SDValue W0 = DAG.getNode(HexagonISD::VEXTRACTW, dl, MVT::i32, {ShuffV, Zero});
1351   SDValue W1 = DAG.getNode(HexagonISD::VEXTRACTW, dl, MVT::i32,
1352                            {ShuffV, DAG.getConstant(4, dl, MVT::i32)});
1353   SDValue Vec64 = getCombine(W1, W0, dl, MVT::v8i8, DAG);
1354   return getInstr(Hexagon::A4_vcmpbgtui, dl, ResTy,
1355                   {Vec64, DAG.getTargetConstant(0, dl, MVT::i32)}, DAG);
1356 }
1357 
1358 SDValue
1359 HexagonTargetLowering::insertHvxSubvectorReg(SDValue VecV, SDValue SubV,
1360       SDValue IdxV, const SDLoc &dl, SelectionDAG &DAG) const {
1361   MVT VecTy = ty(VecV);
1362   MVT SubTy = ty(SubV);
1363   unsigned HwLen = Subtarget.getVectorLength();
1364   MVT ElemTy = VecTy.getVectorElementType();
1365   unsigned ElemWidth = ElemTy.getSizeInBits();
1366 
1367   bool IsPair = isHvxPairTy(VecTy);
1368   MVT SingleTy = MVT::getVectorVT(ElemTy, (8*HwLen)/ElemWidth);
1369   // The two single vectors that VecV consists of, if it's a pair.
1370   SDValue V0, V1;
1371   SDValue SingleV = VecV;
1372   SDValue PickHi;
1373 
1374   if (IsPair) {
1375     V0 = LoHalf(VecV, DAG);
1376     V1 = HiHalf(VecV, DAG);
1377 
1378     SDValue HalfV = DAG.getConstant(SingleTy.getVectorNumElements(),
1379                                     dl, MVT::i32);
1380     PickHi = DAG.getSetCC(dl, MVT::i1, IdxV, HalfV, ISD::SETUGT);
1381     if (isHvxSingleTy(SubTy)) {
1382       if (const auto *CN = dyn_cast<const ConstantSDNode>(IdxV.getNode())) {
1383         unsigned Idx = CN->getZExtValue();
1384         assert(Idx == 0 || Idx == VecTy.getVectorNumElements()/2);
1385         unsigned SubIdx = (Idx == 0) ? Hexagon::vsub_lo : Hexagon::vsub_hi;
1386         return DAG.getTargetInsertSubreg(SubIdx, dl, VecTy, VecV, SubV);
1387       }
1388       // If IdxV is not a constant, generate the two variants: with the
1389       // SubV as the high and as the low subregister, and select the right
1390       // pair based on the IdxV.
1391       SDValue InLo = DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, {SubV, V1});
1392       SDValue InHi = DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, {V0, SubV});
1393       return DAG.getNode(ISD::SELECT, dl, VecTy, PickHi, InHi, InLo);
1394     }
1395     // The subvector being inserted must be entirely contained in one of
1396     // the vectors V0 or V1. Set SingleV to the correct one, and update
1397     // IdxV to be the index relative to the beginning of that vector.
1398     SDValue S = DAG.getNode(ISD::SUB, dl, MVT::i32, IdxV, HalfV);
1399     IdxV = DAG.getNode(ISD::SELECT, dl, MVT::i32, PickHi, S, IdxV);
1400     SingleV = DAG.getNode(ISD::SELECT, dl, SingleTy, PickHi, V1, V0);
1401   }
1402 
1403   // The only meaningful subvectors of a single HVX vector are those that
1404   // fit in a scalar register.
1405   assert(SubTy.getSizeInBits() == 32 || SubTy.getSizeInBits() == 64);
1406   // Convert IdxV to be index in bytes.
1407   auto *IdxN = dyn_cast<ConstantSDNode>(IdxV.getNode());
1408   if (!IdxN || !IdxN->isZero()) {
1409     IdxV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV,
1410                        DAG.getConstant(ElemWidth/8, dl, MVT::i32));
1411     SingleV = DAG.getNode(HexagonISD::VROR, dl, SingleTy, SingleV, IdxV);
1412   }
1413   // When inserting a single word, the rotation back to the original position
1414   // would be by HwLen-Idx, but if two words are inserted, it will need to be
1415   // by (HwLen-4)-Idx.
1416   unsigned RolBase = HwLen;
1417   if (VecTy.getSizeInBits() == 32) {
1418     SDValue V = DAG.getBitcast(MVT::i32, SubV);
1419     SingleV = DAG.getNode(HexagonISD::VINSERTW0, dl, SingleTy, V);
1420   } else {
1421     SDValue V = DAG.getBitcast(MVT::i64, SubV);
1422     SDValue R0 = LoHalf(V, DAG);
1423     SDValue R1 = HiHalf(V, DAG);
1424     SingleV = DAG.getNode(HexagonISD::VINSERTW0, dl, SingleTy, SingleV, R0);
1425     SingleV = DAG.getNode(HexagonISD::VROR, dl, SingleTy, SingleV,
1426                           DAG.getConstant(4, dl, MVT::i32));
1427     SingleV = DAG.getNode(HexagonISD::VINSERTW0, dl, SingleTy, SingleV, R1);
1428     RolBase = HwLen-4;
1429   }
1430   // If the vector wasn't ror'ed, don't ror it back.
1431   if (RolBase != 4 || !IdxN || !IdxN->isZero()) {
1432     SDValue RolV = DAG.getNode(ISD::SUB, dl, MVT::i32,
1433                                DAG.getConstant(RolBase, dl, MVT::i32), IdxV);
1434     SingleV = DAG.getNode(HexagonISD::VROR, dl, SingleTy, SingleV, RolV);
1435   }
1436 
1437   if (IsPair) {
1438     SDValue InLo = DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, {SingleV, V1});
1439     SDValue InHi = DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, {V0, SingleV});
1440     return DAG.getNode(ISD::SELECT, dl, VecTy, PickHi, InHi, InLo);
1441   }
1442   return SingleV;
1443 }
1444 
1445 SDValue
1446 HexagonTargetLowering::insertHvxSubvectorPred(SDValue VecV, SDValue SubV,
1447       SDValue IdxV, const SDLoc &dl, SelectionDAG &DAG) const {
1448   MVT VecTy = ty(VecV);
1449   MVT SubTy = ty(SubV);
1450   assert(Subtarget.isHVXVectorType(VecTy, true));
1451   // VecV is an HVX vector predicate. SubV may be either an HVX vector
1452   // predicate as well, or it can be a scalar predicate.
1453 
1454   unsigned VecLen = VecTy.getVectorNumElements();
1455   unsigned HwLen = Subtarget.getVectorLength();
1456   assert(HwLen % VecLen == 0 && "Unexpected vector type");
1457 
1458   unsigned Scale = VecLen / SubTy.getVectorNumElements();
1459   unsigned BitBytes = HwLen / VecLen;
1460   unsigned BlockLen = HwLen / Scale;
1461 
1462   MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
1463   SDValue ByteVec = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, VecV);
1464   SDValue ByteSub = createHvxPrefixPred(SubV, dl, BitBytes, false, DAG);
1465   SDValue ByteIdx;
1466 
1467   auto *IdxN = dyn_cast<ConstantSDNode>(IdxV.getNode());
1468   if (!IdxN || !IdxN->isZero()) {
1469     ByteIdx = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV,
1470                           DAG.getConstant(BitBytes, dl, MVT::i32));
1471     ByteVec = DAG.getNode(HexagonISD::VROR, dl, ByteTy, ByteVec, ByteIdx);
1472   }
1473 
1474   // ByteVec is the target vector VecV rotated in such a way that the
1475   // subvector should be inserted at index 0. Generate a predicate mask
1476   // and use vmux to do the insertion.
1477   assert(BlockLen < HwLen && "vsetq(v1) prerequisite");
1478   MVT BoolTy = MVT::getVectorVT(MVT::i1, HwLen);
1479   SDValue Q = getInstr(Hexagon::V6_pred_scalar2, dl, BoolTy,
1480                        {DAG.getConstant(BlockLen, dl, MVT::i32)}, DAG);
1481   ByteVec = getInstr(Hexagon::V6_vmux, dl, ByteTy, {Q, ByteSub, ByteVec}, DAG);
1482   // Rotate ByteVec back, and convert to a vector predicate.
1483   if (!IdxN || !IdxN->isZero()) {
1484     SDValue HwLenV = DAG.getConstant(HwLen, dl, MVT::i32);
1485     SDValue ByteXdi = DAG.getNode(ISD::SUB, dl, MVT::i32, HwLenV, ByteIdx);
1486     ByteVec = DAG.getNode(HexagonISD::VROR, dl, ByteTy, ByteVec, ByteXdi);
1487   }
1488   return DAG.getNode(HexagonISD::V2Q, dl, VecTy, ByteVec);
1489 }
1490 
1491 SDValue
1492 HexagonTargetLowering::extendHvxVectorPred(SDValue VecV, const SDLoc &dl,
1493       MVT ResTy, bool ZeroExt, SelectionDAG &DAG) const {
1494   // Sign- and any-extending of a vector predicate to a vector register is
1495   // equivalent to Q2V. For zero-extensions, generate a vmux between 0 and
1496   // a vector of 1s (where the 1s are of type matching the vector type).
1497   assert(Subtarget.isHVXVectorType(ResTy));
1498   if (!ZeroExt)
1499     return DAG.getNode(HexagonISD::Q2V, dl, ResTy, VecV);
1500 
1501   assert(ty(VecV).getVectorNumElements() == ResTy.getVectorNumElements());
1502   SDValue True = DAG.getNode(ISD::SPLAT_VECTOR, dl, ResTy,
1503                              DAG.getConstant(1, dl, MVT::i32));
1504   SDValue False = getZero(dl, ResTy, DAG);
1505   return DAG.getSelect(dl, ResTy, VecV, True, False);
1506 }
1507 
1508 SDValue
1509 HexagonTargetLowering::compressHvxPred(SDValue VecQ, const SDLoc &dl,
1510       MVT ResTy, SelectionDAG &DAG) const {
1511   // Given a predicate register VecQ, transfer bits VecQ[0..HwLen-1]
1512   // (i.e. the entire predicate register) to bits [0..HwLen-1] of a
1513   // vector register. The remaining bits of the vector register are
1514   // unspecified.
1515 
1516   MachineFunction &MF = DAG.getMachineFunction();
1517   unsigned HwLen = Subtarget.getVectorLength();
1518   MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
1519   MVT PredTy = ty(VecQ);
1520   unsigned PredLen = PredTy.getVectorNumElements();
1521   assert(HwLen % PredLen == 0);
1522   MVT VecTy = MVT::getVectorVT(MVT::getIntegerVT(8*HwLen/PredLen), PredLen);
1523 
1524   Type *Int8Ty = Type::getInt8Ty(*DAG.getContext());
1525   SmallVector<Constant*, 128> Tmp;
1526   // Create an array of bytes (hex): 01,02,04,08,10,20,40,80, 01,02,04,08,...
1527   // These are bytes with the LSB rotated left with respect to their index.
1528   for (unsigned i = 0; i != HwLen/8; ++i) {
1529     for (unsigned j = 0; j != 8; ++j)
1530       Tmp.push_back(ConstantInt::get(Int8Ty, 1ull << j));
1531   }
1532   Constant *CV = ConstantVector::get(Tmp);
1533   Align Alignment(HwLen);
1534   SDValue CP =
1535       LowerConstantPool(DAG.getConstantPool(CV, ByteTy, Alignment), DAG);
1536   SDValue Bytes =
1537       DAG.getLoad(ByteTy, dl, DAG.getEntryNode(), CP,
1538                   MachinePointerInfo::getConstantPool(MF), Alignment);
1539 
1540   // Select the bytes that correspond to true bits in the vector predicate.
1541   SDValue Sel = DAG.getSelect(dl, VecTy, VecQ, DAG.getBitcast(VecTy, Bytes),
1542       getZero(dl, VecTy, DAG));
1543   // Calculate the OR of all bytes in each group of 8. That will compress
1544   // all the individual bits into a single byte.
1545   // First, OR groups of 4, via vrmpy with 0x01010101.
1546   SDValue All1 =
1547       DAG.getSplatBuildVector(MVT::v4i8, dl, DAG.getConstant(1, dl, MVT::i32));
1548   SDValue Vrmpy = getInstr(Hexagon::V6_vrmpyub, dl, ByteTy, {Sel, All1}, DAG);
1549   // Then rotate the accumulated vector by 4 bytes, and do the final OR.
1550   SDValue Rot = getInstr(Hexagon::V6_valignbi, dl, ByteTy,
1551       {Vrmpy, Vrmpy, DAG.getTargetConstant(4, dl, MVT::i32)}, DAG);
1552   SDValue Vor = DAG.getNode(ISD::OR, dl, ByteTy, {Vrmpy, Rot});
1553 
1554   // Pick every 8th byte and coalesce them at the beginning of the output.
1555   // For symmetry, coalesce every 1+8th byte after that, then every 2+8th
1556   // byte and so on.
1557   SmallVector<int,128> Mask;
1558   for (unsigned i = 0; i != HwLen; ++i)
1559     Mask.push_back((8*i) % HwLen + i/(HwLen/8));
1560   SDValue Collect =
1561       DAG.getVectorShuffle(ByteTy, dl, Vor, DAG.getUNDEF(ByteTy), Mask);
1562   return DAG.getBitcast(ResTy, Collect);
1563 }
1564 
1565 SDValue
1566 HexagonTargetLowering::resizeToWidth(SDValue VecV, MVT ResTy, bool Signed,
1567                                      const SDLoc &dl, SelectionDAG &DAG) const {
1568   // Take a vector and resize the element type to match the given type.
1569   MVT InpTy = ty(VecV);
1570   if (InpTy == ResTy)
1571     return VecV;
1572 
1573   unsigned InpWidth = InpTy.getSizeInBits();
1574   unsigned ResWidth = ResTy.getSizeInBits();
1575 
1576   if (InpTy.isFloatingPoint()) {
1577     return InpWidth < ResWidth ? DAG.getNode(ISD::FP_EXTEND, dl, ResTy, VecV)
1578                                : DAG.getNode(ISD::FP_ROUND, dl, ResTy, VecV,
1579                                              getZero(dl, MVT::i32, DAG));
1580   }
1581 
1582   assert(InpTy.isInteger());
1583 
1584   if (InpWidth < ResWidth) {
1585     unsigned ExtOpc = Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
1586     return DAG.getNode(ExtOpc, dl, ResTy, VecV);
1587   } else {
1588     unsigned NarOpc = Signed ? HexagonISD::SSAT : HexagonISD::USAT;
1589     return DAG.getNode(NarOpc, dl, ResTy, VecV, DAG.getValueType(ResTy));
1590   }
1591 }
1592 
1593 SDValue
1594 HexagonTargetLowering::extractSubvector(SDValue Vec, MVT SubTy, unsigned SubIdx,
1595       SelectionDAG &DAG) const {
1596   assert(ty(Vec).getSizeInBits() % SubTy.getSizeInBits() == 0);
1597 
1598   const SDLoc &dl(Vec);
1599   unsigned ElemIdx = SubIdx * SubTy.getVectorNumElements();
1600   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, SubTy,
1601                      {Vec, DAG.getConstant(ElemIdx, dl, MVT::i32)});
1602 }
1603 
1604 SDValue
1605 HexagonTargetLowering::LowerHvxBuildVector(SDValue Op, SelectionDAG &DAG)
1606       const {
1607   const SDLoc &dl(Op);
1608   MVT VecTy = ty(Op);
1609 
1610   unsigned Size = Op.getNumOperands();
1611   SmallVector<SDValue,128> Ops;
1612   for (unsigned i = 0; i != Size; ++i)
1613     Ops.push_back(Op.getOperand(i));
1614 
1615   // First, split the BUILD_VECTOR for vector pairs. We could generate
1616   // some pairs directly (via splat), but splats should be generated
1617   // by the combiner prior to getting here.
1618   if (VecTy.getSizeInBits() == 16*Subtarget.getVectorLength()) {
1619     ArrayRef<SDValue> A(Ops);
1620     MVT SingleTy = typeSplit(VecTy).first;
1621     SDValue V0 = buildHvxVectorReg(A.take_front(Size/2), dl, SingleTy, DAG);
1622     SDValue V1 = buildHvxVectorReg(A.drop_front(Size/2), dl, SingleTy, DAG);
1623     return DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, V0, V1);
1624   }
1625 
1626   if (VecTy.getVectorElementType() == MVT::i1)
1627     return buildHvxVectorPred(Ops, dl, VecTy, DAG);
1628 
1629   // In case of MVT::f16 BUILD_VECTOR, since MVT::f16 is
1630   // not a legal type, just bitcast the node to use i16
1631   // types and bitcast the result back to f16
1632   if (VecTy.getVectorElementType() == MVT::f16) {
1633     SmallVector<SDValue,64> NewOps;
1634     for (unsigned i = 0; i != Size; i++)
1635       NewOps.push_back(DAG.getBitcast(MVT::i16, Ops[i]));
1636 
1637     SDValue T0 = DAG.getNode(ISD::BUILD_VECTOR, dl,
1638         tyVector(VecTy, MVT::i16), NewOps);
1639     return DAG.getBitcast(tyVector(VecTy, MVT::f16), T0);
1640   }
1641 
1642   return buildHvxVectorReg(Ops, dl, VecTy, DAG);
1643 }
1644 
1645 SDValue
1646 HexagonTargetLowering::LowerHvxSplatVector(SDValue Op, SelectionDAG &DAG)
1647       const {
1648   const SDLoc &dl(Op);
1649   MVT VecTy = ty(Op);
1650   MVT ArgTy = ty(Op.getOperand(0));
1651 
1652   if (ArgTy == MVT::f16) {
1653     MVT SplatTy =  MVT::getVectorVT(MVT::i16, VecTy.getVectorNumElements());
1654     SDValue ToInt16 = DAG.getBitcast(MVT::i16, Op.getOperand(0));
1655     SDValue ToInt32 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, ToInt16);
1656     SDValue Splat = DAG.getNode(ISD::SPLAT_VECTOR, dl, SplatTy, ToInt32);
1657     return DAG.getBitcast(VecTy, Splat);
1658   }
1659 
1660   return SDValue();
1661 }
1662 
1663 SDValue
1664 HexagonTargetLowering::LowerHvxConcatVectors(SDValue Op, SelectionDAG &DAG)
1665       const {
1666   // Vector concatenation of two integer (non-bool) vectors does not need
1667   // special lowering. Custom-lower concats of bool vectors and expand
1668   // concats of more than 2 vectors.
1669   MVT VecTy = ty(Op);
1670   const SDLoc &dl(Op);
1671   unsigned NumOp = Op.getNumOperands();
1672   if (VecTy.getVectorElementType() != MVT::i1) {
1673     if (NumOp == 2)
1674       return Op;
1675     // Expand the other cases into a build-vector.
1676     SmallVector<SDValue,8> Elems;
1677     for (SDValue V : Op.getNode()->ops())
1678       DAG.ExtractVectorElements(V, Elems);
1679     // A vector of i16 will be broken up into a build_vector of i16's.
1680     // This is a problem, since at the time of operation legalization,
1681     // all operations are expected to be type-legalized, and i16 is not
1682     // a legal type. If any of the extracted elements is not of a valid
1683     // type, sign-extend it to a valid one.
1684     for (unsigned i = 0, e = Elems.size(); i != e; ++i) {
1685       SDValue V = Elems[i];
1686       MVT Ty = ty(V);
1687       if (!isTypeLegal(Ty)) {
1688         MVT NTy = typeLegalize(Ty, DAG);
1689         if (V.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
1690           Elems[i] = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NTy,
1691                                  DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, NTy,
1692                                              V.getOperand(0), V.getOperand(1)),
1693                                  DAG.getValueType(Ty));
1694           continue;
1695         }
1696         // A few less complicated cases.
1697         switch (V.getOpcode()) {
1698           case ISD::Constant:
1699             Elems[i] = DAG.getSExtOrTrunc(V, dl, NTy);
1700             break;
1701           case ISD::UNDEF:
1702             Elems[i] = DAG.getUNDEF(NTy);
1703             break;
1704           case ISD::TRUNCATE:
1705             Elems[i] = V.getOperand(0);
1706             break;
1707           default:
1708             llvm_unreachable("Unexpected vector element");
1709         }
1710       }
1711     }
1712     return DAG.getBuildVector(VecTy, dl, Elems);
1713   }
1714 
1715   assert(VecTy.getVectorElementType() == MVT::i1);
1716   unsigned HwLen = Subtarget.getVectorLength();
1717   assert(isPowerOf2_32(NumOp) && HwLen % NumOp == 0);
1718 
1719   SDValue Op0 = Op.getOperand(0);
1720 
1721   // If the operands are HVX types (i.e. not scalar predicates), then
1722   // defer the concatenation, and create QCAT instead.
1723   if (Subtarget.isHVXVectorType(ty(Op0), true)) {
1724     if (NumOp == 2)
1725       return DAG.getNode(HexagonISD::QCAT, dl, VecTy, Op0, Op.getOperand(1));
1726 
1727     ArrayRef<SDUse> U(Op.getNode()->ops());
1728     SmallVector<SDValue,4> SV(U.begin(), U.end());
1729     ArrayRef<SDValue> Ops(SV);
1730 
1731     MVT HalfTy = typeSplit(VecTy).first;
1732     SDValue V0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, HalfTy,
1733                              Ops.take_front(NumOp/2));
1734     SDValue V1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, HalfTy,
1735                              Ops.take_back(NumOp/2));
1736     return DAG.getNode(HexagonISD::QCAT, dl, VecTy, V0, V1);
1737   }
1738 
1739   // Count how many bytes (in a vector register) each bit in VecTy
1740   // corresponds to.
1741   unsigned BitBytes = HwLen / VecTy.getVectorNumElements();
1742 
1743   SmallVector<SDValue,8> Prefixes;
1744   for (SDValue V : Op.getNode()->op_values()) {
1745     SDValue P = createHvxPrefixPred(V, dl, BitBytes, true, DAG);
1746     Prefixes.push_back(P);
1747   }
1748 
1749   unsigned InpLen = ty(Op.getOperand(0)).getVectorNumElements();
1750   MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
1751   SDValue S = DAG.getConstant(InpLen*BitBytes, dl, MVT::i32);
1752   SDValue Res = getZero(dl, ByteTy, DAG);
1753   for (unsigned i = 0, e = Prefixes.size(); i != e; ++i) {
1754     Res = DAG.getNode(HexagonISD::VROR, dl, ByteTy, Res, S);
1755     Res = DAG.getNode(ISD::OR, dl, ByteTy, Res, Prefixes[e-i-1]);
1756   }
1757   return DAG.getNode(HexagonISD::V2Q, dl, VecTy, Res);
1758 }
1759 
1760 SDValue
1761 HexagonTargetLowering::LowerHvxExtractElement(SDValue Op, SelectionDAG &DAG)
1762       const {
1763   // Change the type of the extracted element to i32.
1764   SDValue VecV = Op.getOperand(0);
1765   MVT ElemTy = ty(VecV).getVectorElementType();
1766   const SDLoc &dl(Op);
1767   SDValue IdxV = Op.getOperand(1);
1768   if (ElemTy == MVT::i1)
1769     return extractHvxElementPred(VecV, IdxV, dl, ty(Op), DAG);
1770 
1771   return extractHvxElementReg(VecV, IdxV, dl, ty(Op), DAG);
1772 }
1773 
1774 SDValue
1775 HexagonTargetLowering::LowerHvxInsertElement(SDValue Op, SelectionDAG &DAG)
1776       const {
1777   const SDLoc &dl(Op);
1778   MVT VecTy = ty(Op);
1779   SDValue VecV = Op.getOperand(0);
1780   SDValue ValV = Op.getOperand(1);
1781   SDValue IdxV = Op.getOperand(2);
1782   MVT ElemTy = ty(VecV).getVectorElementType();
1783   if (ElemTy == MVT::i1)
1784     return insertHvxElementPred(VecV, IdxV, ValV, dl, DAG);
1785 
1786   if (ElemTy == MVT::f16) {
1787     SDValue T0 = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
1788         tyVector(VecTy, MVT::i16),
1789         DAG.getBitcast(tyVector(VecTy, MVT::i16), VecV),
1790         DAG.getBitcast(MVT::i16, ValV), IdxV);
1791     return DAG.getBitcast(tyVector(VecTy, MVT::f16), T0);
1792   }
1793 
1794   return insertHvxElementReg(VecV, IdxV, ValV, dl, DAG);
1795 }
1796 
1797 SDValue
1798 HexagonTargetLowering::LowerHvxExtractSubvector(SDValue Op, SelectionDAG &DAG)
1799       const {
1800   SDValue SrcV = Op.getOperand(0);
1801   MVT SrcTy = ty(SrcV);
1802   MVT DstTy = ty(Op);
1803   SDValue IdxV = Op.getOperand(1);
1804   unsigned Idx = cast<ConstantSDNode>(IdxV.getNode())->getZExtValue();
1805   assert(Idx % DstTy.getVectorNumElements() == 0);
1806   (void)Idx;
1807   const SDLoc &dl(Op);
1808 
1809   MVT ElemTy = SrcTy.getVectorElementType();
1810   if (ElemTy == MVT::i1)
1811     return extractHvxSubvectorPred(SrcV, IdxV, dl, DstTy, DAG);
1812 
1813   return extractHvxSubvectorReg(Op, SrcV, IdxV, dl, DstTy, DAG);
1814 }
1815 
1816 SDValue
1817 HexagonTargetLowering::LowerHvxInsertSubvector(SDValue Op, SelectionDAG &DAG)
1818       const {
1819   // Idx does not need to be a constant.
1820   SDValue VecV = Op.getOperand(0);
1821   SDValue ValV = Op.getOperand(1);
1822   SDValue IdxV = Op.getOperand(2);
1823 
1824   const SDLoc &dl(Op);
1825   MVT VecTy = ty(VecV);
1826   MVT ElemTy = VecTy.getVectorElementType();
1827   if (ElemTy == MVT::i1)
1828     return insertHvxSubvectorPred(VecV, ValV, IdxV, dl, DAG);
1829 
1830   return insertHvxSubvectorReg(VecV, ValV, IdxV, dl, DAG);
1831 }
1832 
1833 SDValue
1834 HexagonTargetLowering::LowerHvxAnyExt(SDValue Op, SelectionDAG &DAG) const {
1835   // Lower any-extends of boolean vectors to sign-extends, since they
1836   // translate directly to Q2V. Zero-extending could also be done equally
1837   // fast, but Q2V is used/recognized in more places.
1838   // For all other vectors, use zero-extend.
1839   MVT ResTy = ty(Op);
1840   SDValue InpV = Op.getOperand(0);
1841   MVT ElemTy = ty(InpV).getVectorElementType();
1842   if (ElemTy == MVT::i1 && Subtarget.isHVXVectorType(ResTy))
1843     return LowerHvxSignExt(Op, DAG);
1844   return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(Op), ResTy, InpV);
1845 }
1846 
1847 SDValue
1848 HexagonTargetLowering::LowerHvxSignExt(SDValue Op, SelectionDAG &DAG) const {
1849   MVT ResTy = ty(Op);
1850   SDValue InpV = Op.getOperand(0);
1851   MVT ElemTy = ty(InpV).getVectorElementType();
1852   if (ElemTy == MVT::i1 && Subtarget.isHVXVectorType(ResTy))
1853     return extendHvxVectorPred(InpV, SDLoc(Op), ty(Op), false, DAG);
1854   return Op;
1855 }
1856 
1857 SDValue
1858 HexagonTargetLowering::LowerHvxZeroExt(SDValue Op, SelectionDAG &DAG) const {
1859   MVT ResTy = ty(Op);
1860   SDValue InpV = Op.getOperand(0);
1861   MVT ElemTy = ty(InpV).getVectorElementType();
1862   if (ElemTy == MVT::i1 && Subtarget.isHVXVectorType(ResTy))
1863     return extendHvxVectorPred(InpV, SDLoc(Op), ty(Op), true, DAG);
1864   return Op;
1865 }
1866 
1867 SDValue
1868 HexagonTargetLowering::LowerHvxCttz(SDValue Op, SelectionDAG &DAG) const {
1869   // Lower vector CTTZ into a computation using CTLZ (Hacker's Delight):
1870   // cttz(x) = bitwidth(x) - ctlz(~x & (x-1))
1871   const SDLoc &dl(Op);
1872   MVT ResTy = ty(Op);
1873   SDValue InpV = Op.getOperand(0);
1874   assert(ResTy == ty(InpV));
1875 
1876   // Calculate the vectors of 1 and bitwidth(x).
1877   MVT ElemTy = ty(InpV).getVectorElementType();
1878   unsigned ElemWidth = ElemTy.getSizeInBits();
1879 
1880   SDValue Vec1 = DAG.getNode(ISD::SPLAT_VECTOR, dl, ResTy,
1881                              DAG.getConstant(1, dl, MVT::i32));
1882   SDValue VecW = DAG.getNode(ISD::SPLAT_VECTOR, dl, ResTy,
1883                              DAG.getConstant(ElemWidth, dl, MVT::i32));
1884   SDValue VecN1 = DAG.getNode(ISD::SPLAT_VECTOR, dl, ResTy,
1885                               DAG.getConstant(-1, dl, MVT::i32));
1886 
1887   // Do not use DAG.getNOT, because that would create BUILD_VECTOR with
1888   // a BITCAST. Here we can skip the BITCAST (so we don't have to handle
1889   // it separately in custom combine or selection).
1890   SDValue A = DAG.getNode(ISD::AND, dl, ResTy,
1891                           {DAG.getNode(ISD::XOR, dl, ResTy, {InpV, VecN1}),
1892                            DAG.getNode(ISD::SUB, dl, ResTy, {InpV, Vec1})});
1893   return DAG.getNode(ISD::SUB, dl, ResTy,
1894                      {VecW, DAG.getNode(ISD::CTLZ, dl, ResTy, A)});
1895 }
1896 
1897 SDValue
1898 HexagonTargetLowering::LowerHvxMulh(SDValue Op, SelectionDAG &DAG) const {
1899   const SDLoc &dl(Op);
1900   MVT ResTy = ty(Op);
1901   assert(ResTy.getVectorElementType() == MVT::i32);
1902 
1903   SDValue Vs = Op.getOperand(0);
1904   SDValue Vt = Op.getOperand(1);
1905 
1906   SDVTList ResTys = DAG.getVTList(ResTy, ResTy);
1907   unsigned Opc = Op.getOpcode();
1908 
1909   // On HVX v62+ producing the full product is cheap, so legalize MULH to LOHI.
1910   if (Opc == ISD::MULHU)
1911     return DAG.getNode(HexagonISD::UMUL_LOHI, dl, ResTys, {Vs, Vt}).getValue(1);
1912   if (Opc == ISD::MULHS)
1913     return DAG.getNode(HexagonISD::SMUL_LOHI, dl, ResTys, {Vs, Vt}).getValue(1);
1914 
1915 #ifndef NDEBUG
1916   Op.dump(&DAG);
1917 #endif
1918   llvm_unreachable("Unexpected mulh operation");
1919 }
1920 
1921 SDValue
1922 HexagonTargetLowering::LowerHvxMulLoHi(SDValue Op, SelectionDAG &DAG) const {
1923   const SDLoc &dl(Op);
1924   unsigned Opc = Op.getOpcode();
1925   SDValue Vu = Op.getOperand(0);
1926   SDValue Vv = Op.getOperand(1);
1927 
1928   // If the HI part is not used, convert it to a regular MUL.
1929   if (auto HiVal = Op.getValue(1); HiVal.use_empty()) {
1930     // Need to preserve the types and the number of values.
1931     SDValue Hi = DAG.getUNDEF(ty(HiVal));
1932     SDValue Lo = DAG.getNode(ISD::MUL, dl, ty(Op), {Vu, Vv});
1933     return DAG.getMergeValues({Lo, Hi}, dl);
1934   }
1935 
1936   bool SignedVu = Opc == HexagonISD::SMUL_LOHI;
1937   bool SignedVv = Opc == HexagonISD::SMUL_LOHI || Opc == HexagonISD::USMUL_LOHI;
1938 
1939   // Legal on HVX v62+, but lower it here because patterns can't handle multi-
1940   // valued nodes.
1941   if (Subtarget.useHVXV62Ops())
1942     return emitHvxMulLoHiV62(Vu, SignedVu, Vv, SignedVv, dl, DAG);
1943 
1944   if (Opc == HexagonISD::SMUL_LOHI) {
1945     // Direct MULHS expansion is cheaper than doing the whole SMUL_LOHI,
1946     // for other signedness LOHI is cheaper.
1947     if (auto LoVal = Op.getValue(0); LoVal.use_empty()) {
1948       SDValue Hi = emitHvxMulHsV60(Vu, Vv, dl, DAG);
1949       SDValue Lo = DAG.getUNDEF(ty(LoVal));
1950       return DAG.getMergeValues({Lo, Hi}, dl);
1951     }
1952   }
1953 
1954   return emitHvxMulLoHiV60(Vu, SignedVu, Vv, SignedVv, dl, DAG);
1955 }
1956 
1957 SDValue
1958 HexagonTargetLowering::LowerHvxBitcast(SDValue Op, SelectionDAG &DAG) const {
1959   SDValue Val = Op.getOperand(0);
1960   MVT ResTy = ty(Op);
1961   MVT ValTy = ty(Val);
1962   const SDLoc &dl(Op);
1963 
1964   if (isHvxBoolTy(ValTy) && ResTy.isScalarInteger()) {
1965     unsigned HwLen = Subtarget.getVectorLength();
1966     MVT WordTy = MVT::getVectorVT(MVT::i32, HwLen/4);
1967     SDValue VQ = compressHvxPred(Val, dl, WordTy, DAG);
1968     unsigned BitWidth = ResTy.getSizeInBits();
1969 
1970     if (BitWidth < 64) {
1971       SDValue W0 = extractHvxElementReg(VQ, DAG.getConstant(0, dl, MVT::i32),
1972           dl, MVT::i32, DAG);
1973       if (BitWidth == 32)
1974         return W0;
1975       assert(BitWidth < 32u);
1976       return DAG.getZExtOrTrunc(W0, dl, ResTy);
1977     }
1978 
1979     // The result is >= 64 bits. The only options are 64 or 128.
1980     assert(BitWidth == 64 || BitWidth == 128);
1981     SmallVector<SDValue,4> Words;
1982     for (unsigned i = 0; i != BitWidth/32; ++i) {
1983       SDValue W = extractHvxElementReg(
1984           VQ, DAG.getConstant(i, dl, MVT::i32), dl, MVT::i32, DAG);
1985       Words.push_back(W);
1986     }
1987     SmallVector<SDValue,2> Combines;
1988     assert(Words.size() % 2 == 0);
1989     for (unsigned i = 0, e = Words.size(); i < e; i += 2) {
1990       SDValue C = getCombine(Words[i+1], Words[i], dl, MVT::i64, DAG);
1991       Combines.push_back(C);
1992     }
1993 
1994     if (BitWidth == 64)
1995       return Combines[0];
1996 
1997     return DAG.getNode(ISD::BUILD_PAIR, dl, ResTy, Combines);
1998   }
1999   if (isHvxBoolTy(ResTy) && ValTy.isScalarInteger()) {
2000     // Handle bitcast from i128 -> v128i1 and i64 -> v64i1.
2001     unsigned BitWidth = ValTy.getSizeInBits();
2002     unsigned HwLen = Subtarget.getVectorLength();
2003     assert(BitWidth == HwLen);
2004 
2005     MVT ValAsVecTy = MVT::getVectorVT(MVT::i8, BitWidth / 8);
2006     SDValue ValAsVec = DAG.getBitcast(ValAsVecTy, Val);
2007     // Splat each byte of Val 8 times.
2008     // Bytes = [(b0)x8, (b1)x8, ...., (b15)x8]
2009     // where b0, b1,..., b15 are least to most significant bytes of I.
2010     SmallVector<SDValue, 128> Bytes;
2011     // Tmp: 0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80, 0x01,0x02,0x04,0x08,...
2012     // These are bytes with the LSB rotated left with respect to their index.
2013     SmallVector<SDValue, 128> Tmp;
2014     for (unsigned I = 0; I != HwLen / 8; ++I) {
2015       SDValue Idx = DAG.getConstant(I, dl, MVT::i32);
2016       SDValue Byte =
2017           DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i8, ValAsVec, Idx);
2018       for (unsigned J = 0; J != 8; ++J) {
2019         Bytes.push_back(Byte);
2020         Tmp.push_back(DAG.getConstant(1ull << J, dl, MVT::i8));
2021       }
2022     }
2023 
2024     MVT ConstantVecTy = MVT::getVectorVT(MVT::i8, HwLen);
2025     SDValue ConstantVec = DAG.getBuildVector(ConstantVecTy, dl, Tmp);
2026     SDValue I2V = buildHvxVectorReg(Bytes, dl, ConstantVecTy, DAG);
2027 
2028     // Each Byte in the I2V will be set iff corresponding bit is set in Val.
2029     I2V = DAG.getNode(ISD::AND, dl, ConstantVecTy, {I2V, ConstantVec});
2030     return DAG.getNode(HexagonISD::V2Q, dl, ResTy, I2V);
2031   }
2032 
2033   return Op;
2034 }
2035 
2036 SDValue
2037 HexagonTargetLowering::LowerHvxExtend(SDValue Op, SelectionDAG &DAG) const {
2038   // Sign- and zero-extends are legal.
2039   assert(Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG);
2040   return DAG.getNode(ISD::ZERO_EXTEND_VECTOR_INREG, SDLoc(Op), ty(Op),
2041                      Op.getOperand(0));
2042 }
2043 
2044 SDValue
2045 HexagonTargetLowering::LowerHvxSelect(SDValue Op, SelectionDAG &DAG) const {
2046   MVT ResTy = ty(Op);
2047   if (ResTy.getVectorElementType() != MVT::i1)
2048     return Op;
2049 
2050   const SDLoc &dl(Op);
2051   unsigned HwLen = Subtarget.getVectorLength();
2052   unsigned VecLen = ResTy.getVectorNumElements();
2053   assert(HwLen % VecLen == 0);
2054   unsigned ElemSize = HwLen / VecLen;
2055 
2056   MVT VecTy = MVT::getVectorVT(MVT::getIntegerVT(ElemSize * 8), VecLen);
2057   SDValue S =
2058       DAG.getNode(ISD::SELECT, dl, VecTy, Op.getOperand(0),
2059                   DAG.getNode(HexagonISD::Q2V, dl, VecTy, Op.getOperand(1)),
2060                   DAG.getNode(HexagonISD::Q2V, dl, VecTy, Op.getOperand(2)));
2061   return DAG.getNode(HexagonISD::V2Q, dl, ResTy, S);
2062 }
2063 
2064 SDValue
2065 HexagonTargetLowering::LowerHvxShift(SDValue Op, SelectionDAG &DAG) const {
2066   if (SDValue S = getVectorShiftByInt(Op, DAG))
2067     return S;
2068   return Op;
2069 }
2070 
2071 SDValue
2072 HexagonTargetLowering::LowerHvxFunnelShift(SDValue Op,
2073                                            SelectionDAG &DAG) const {
2074   unsigned Opc = Op.getOpcode();
2075   assert(Opc == ISD::FSHL || Opc == ISD::FSHR);
2076 
2077   // Make sure the shift amount is within the range of the bitwidth
2078   // of the element type.
2079   SDValue A = Op.getOperand(0);
2080   SDValue B = Op.getOperand(1);
2081   SDValue S = Op.getOperand(2);
2082 
2083   MVT InpTy = ty(A);
2084   MVT ElemTy = InpTy.getVectorElementType();
2085 
2086   const SDLoc &dl(Op);
2087   unsigned ElemWidth = ElemTy.getSizeInBits();
2088   bool IsLeft = Opc == ISD::FSHL;
2089 
2090   // The expansion into regular shifts produces worse code for i8 and for
2091   // right shift of i32 on v65+.
2092   bool UseShifts = ElemTy != MVT::i8;
2093   if (Subtarget.useHVXV65Ops() && ElemTy == MVT::i32)
2094     UseShifts = false;
2095 
2096   if (SDValue SplatV = getSplatValue(S, DAG); SplatV && UseShifts) {
2097     // If this is a funnel shift by a scalar, lower it into regular shifts.
2098     SDValue Mask = DAG.getConstant(ElemWidth - 1, dl, MVT::i32);
2099     SDValue ModS =
2100         DAG.getNode(ISD::AND, dl, MVT::i32,
2101                     {DAG.getZExtOrTrunc(SplatV, dl, MVT::i32), Mask});
2102     SDValue NegS =
2103         DAG.getNode(ISD::SUB, dl, MVT::i32,
2104                     {DAG.getConstant(ElemWidth, dl, MVT::i32), ModS});
2105     SDValue IsZero =
2106         DAG.getSetCC(dl, MVT::i1, ModS, getZero(dl, MVT::i32, DAG), ISD::SETEQ);
2107     // FSHL A, B  =>  A <<  | B >>n
2108     // FSHR A, B  =>  A <<n | B >>
2109     SDValue Part1 =
2110         DAG.getNode(HexagonISD::VASL, dl, InpTy, {A, IsLeft ? ModS : NegS});
2111     SDValue Part2 =
2112         DAG.getNode(HexagonISD::VLSR, dl, InpTy, {B, IsLeft ? NegS : ModS});
2113     SDValue Or = DAG.getNode(ISD::OR, dl, InpTy, {Part1, Part2});
2114     // If the shift amount was 0, pick A or B, depending on the direction.
2115     // The opposite shift will also be by 0, so the "Or" will be incorrect.
2116     return DAG.getNode(ISD::SELECT, dl, InpTy, {IsZero, (IsLeft ? A : B), Or});
2117   }
2118 
2119   SDValue Mask = DAG.getSplatBuildVector(
2120       InpTy, dl, DAG.getConstant(ElemWidth - 1, dl, ElemTy));
2121 
2122   unsigned MOpc = Opc == ISD::FSHL ? HexagonISD::MFSHL : HexagonISD::MFSHR;
2123   return DAG.getNode(MOpc, dl, ty(Op),
2124                      {A, B, DAG.getNode(ISD::AND, dl, InpTy, {S, Mask})});
2125 }
2126 
2127 SDValue
2128 HexagonTargetLowering::LowerHvxIntrinsic(SDValue Op, SelectionDAG &DAG) const {
2129   const SDLoc &dl(Op);
2130   unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2131   SmallVector<SDValue> Ops(Op->ops().begin(), Op->ops().end());
2132 
2133   auto Swap = [&](SDValue P) {
2134     return DAG.getMergeValues({P.getValue(1), P.getValue(0)}, dl);
2135   };
2136 
2137   switch (IntNo) {
2138   case Intrinsic::hexagon_V6_pred_typecast:
2139   case Intrinsic::hexagon_V6_pred_typecast_128B: {
2140     MVT ResTy = ty(Op), InpTy = ty(Ops[1]);
2141     if (isHvxBoolTy(ResTy) && isHvxBoolTy(InpTy)) {
2142       if (ResTy == InpTy)
2143         return Ops[1];
2144       return DAG.getNode(HexagonISD::TYPECAST, dl, ResTy, Ops[1]);
2145     }
2146     break;
2147   }
2148   case Intrinsic::hexagon_V6_vmpyss_parts:
2149   case Intrinsic::hexagon_V6_vmpyss_parts_128B:
2150     return Swap(DAG.getNode(HexagonISD::SMUL_LOHI, dl, Op->getVTList(),
2151                             {Ops[1], Ops[2]}));
2152   case Intrinsic::hexagon_V6_vmpyuu_parts:
2153   case Intrinsic::hexagon_V6_vmpyuu_parts_128B:
2154     return Swap(DAG.getNode(HexagonISD::UMUL_LOHI, dl, Op->getVTList(),
2155                             {Ops[1], Ops[2]}));
2156   case Intrinsic::hexagon_V6_vmpyus_parts:
2157   case Intrinsic::hexagon_V6_vmpyus_parts_128B: {
2158     return Swap(DAG.getNode(HexagonISD::USMUL_LOHI, dl, Op->getVTList(),
2159                             {Ops[1], Ops[2]}));
2160   }
2161   } // switch
2162 
2163   return Op;
2164 }
2165 
2166 SDValue
2167 HexagonTargetLowering::LowerHvxMaskedOp(SDValue Op, SelectionDAG &DAG) const {
2168   const SDLoc &dl(Op);
2169   unsigned HwLen = Subtarget.getVectorLength();
2170   MachineFunction &MF = DAG.getMachineFunction();
2171   auto *MaskN = cast<MaskedLoadStoreSDNode>(Op.getNode());
2172   SDValue Mask = MaskN->getMask();
2173   SDValue Chain = MaskN->getChain();
2174   SDValue Base = MaskN->getBasePtr();
2175   auto *MemOp = MF.getMachineMemOperand(MaskN->getMemOperand(), 0, HwLen);
2176 
2177   unsigned Opc = Op->getOpcode();
2178   assert(Opc == ISD::MLOAD || Opc == ISD::MSTORE);
2179 
2180   if (Opc == ISD::MLOAD) {
2181     MVT ValTy = ty(Op);
2182     SDValue Load = DAG.getLoad(ValTy, dl, Chain, Base, MemOp);
2183     SDValue Thru = cast<MaskedLoadSDNode>(MaskN)->getPassThru();
2184     if (isUndef(Thru))
2185       return Load;
2186     SDValue VSel = DAG.getNode(ISD::VSELECT, dl, ValTy, Mask, Load, Thru);
2187     return DAG.getMergeValues({VSel, Load.getValue(1)}, dl);
2188   }
2189 
2190   // MSTORE
2191   // HVX only has aligned masked stores.
2192 
2193   // TODO: Fold negations of the mask into the store.
2194   unsigned StoreOpc = Hexagon::V6_vS32b_qpred_ai;
2195   SDValue Value = cast<MaskedStoreSDNode>(MaskN)->getValue();
2196   SDValue Offset0 = DAG.getTargetConstant(0, dl, ty(Base));
2197 
2198   if (MaskN->getAlign().value() % HwLen == 0) {
2199     SDValue Store = getInstr(StoreOpc, dl, MVT::Other,
2200                              {Mask, Base, Offset0, Value, Chain}, DAG);
2201     DAG.setNodeMemRefs(cast<MachineSDNode>(Store.getNode()), {MemOp});
2202     return Store;
2203   }
2204 
2205   // Unaligned case.
2206   auto StoreAlign = [&](SDValue V, SDValue A) {
2207     SDValue Z = getZero(dl, ty(V), DAG);
2208     // TODO: use funnel shifts?
2209     // vlalign(Vu,Vv,Rt) rotates the pair Vu:Vv left by Rt and takes the
2210     // upper half.
2211     SDValue LoV = getInstr(Hexagon::V6_vlalignb, dl, ty(V), {V, Z, A}, DAG);
2212     SDValue HiV = getInstr(Hexagon::V6_vlalignb, dl, ty(V), {Z, V, A}, DAG);
2213     return std::make_pair(LoV, HiV);
2214   };
2215 
2216   MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
2217   MVT BoolTy = MVT::getVectorVT(MVT::i1, HwLen);
2218   SDValue MaskV = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, Mask);
2219   VectorPair Tmp = StoreAlign(MaskV, Base);
2220   VectorPair MaskU = {DAG.getNode(HexagonISD::V2Q, dl, BoolTy, Tmp.first),
2221                       DAG.getNode(HexagonISD::V2Q, dl, BoolTy, Tmp.second)};
2222   VectorPair ValueU = StoreAlign(Value, Base);
2223 
2224   SDValue Offset1 = DAG.getTargetConstant(HwLen, dl, MVT::i32);
2225   SDValue StoreLo =
2226       getInstr(StoreOpc, dl, MVT::Other,
2227                {MaskU.first, Base, Offset0, ValueU.first, Chain}, DAG);
2228   SDValue StoreHi =
2229       getInstr(StoreOpc, dl, MVT::Other,
2230                {MaskU.second, Base, Offset1, ValueU.second, Chain}, DAG);
2231   DAG.setNodeMemRefs(cast<MachineSDNode>(StoreLo.getNode()), {MemOp});
2232   DAG.setNodeMemRefs(cast<MachineSDNode>(StoreHi.getNode()), {MemOp});
2233   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, {StoreLo, StoreHi});
2234 }
2235 
2236 SDValue HexagonTargetLowering::LowerHvxFpExtend(SDValue Op,
2237                                                 SelectionDAG &DAG) const {
2238   // This conversion only applies to QFloat. IEEE extension from f16 to f32
2239   // is legal (done via a pattern).
2240   assert(Subtarget.useHVXQFloatOps());
2241 
2242   assert(Op->getOpcode() == ISD::FP_EXTEND);
2243 
2244   MVT VecTy = ty(Op);
2245   MVT ArgTy = ty(Op.getOperand(0));
2246   const SDLoc &dl(Op);
2247   assert(VecTy == MVT::v64f32 && ArgTy == MVT::v64f16);
2248 
2249   SDValue F16Vec = Op.getOperand(0);
2250 
2251   APFloat FloatVal = APFloat(1.0f);
2252   bool Ignored;
2253   FloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &Ignored);
2254   SDValue Fp16Ones = DAG.getConstantFP(FloatVal, dl, ArgTy);
2255   SDValue VmpyVec =
2256       getInstr(Hexagon::V6_vmpy_qf32_hf, dl, VecTy, {F16Vec, Fp16Ones}, DAG);
2257 
2258   MVT HalfTy = typeSplit(VecTy).first;
2259   VectorPair Pair = opSplit(VmpyVec, dl, DAG);
2260   SDValue LoVec =
2261       getInstr(Hexagon::V6_vconv_sf_qf32, dl, HalfTy, {Pair.first}, DAG);
2262   SDValue HiVec =
2263       getInstr(Hexagon::V6_vconv_sf_qf32, dl, HalfTy, {Pair.second}, DAG);
2264 
2265   SDValue ShuffVec =
2266       getInstr(Hexagon::V6_vshuffvdd, dl, VecTy,
2267                {HiVec, LoVec, DAG.getConstant(-4, dl, MVT::i32)}, DAG);
2268 
2269   return ShuffVec;
2270 }
2271 
2272 SDValue
2273 HexagonTargetLowering::LowerHvxFpToInt(SDValue Op, SelectionDAG &DAG) const {
2274   // Catch invalid conversion ops (just in case).
2275   assert(Op.getOpcode() == ISD::FP_TO_SINT ||
2276          Op.getOpcode() == ISD::FP_TO_UINT);
2277 
2278   MVT ResTy = ty(Op);
2279   MVT FpTy = ty(Op.getOperand(0)).getVectorElementType();
2280   MVT IntTy = ResTy.getVectorElementType();
2281 
2282   if (Subtarget.useHVXIEEEFPOps()) {
2283     // There are only conversions from f16.
2284     if (FpTy == MVT::f16) {
2285       // Other int types aren't legal in HVX, so we shouldn't see them here.
2286       assert(IntTy == MVT::i8 || IntTy == MVT::i16 || IntTy == MVT::i32);
2287       // Conversions to i8 and i16 are legal.
2288       if (IntTy == MVT::i8 || IntTy == MVT::i16)
2289         return Op;
2290     }
2291   }
2292 
2293   if (IntTy.getSizeInBits() != FpTy.getSizeInBits())
2294     return EqualizeFpIntConversion(Op, DAG);
2295 
2296   return ExpandHvxFpToInt(Op, DAG);
2297 }
2298 
2299 SDValue
2300 HexagonTargetLowering::LowerHvxIntToFp(SDValue Op, SelectionDAG &DAG) const {
2301   // Catch invalid conversion ops (just in case).
2302   assert(Op.getOpcode() == ISD::SINT_TO_FP ||
2303          Op.getOpcode() == ISD::UINT_TO_FP);
2304 
2305   MVT ResTy = ty(Op);
2306   MVT IntTy = ty(Op.getOperand(0)).getVectorElementType();
2307   MVT FpTy = ResTy.getVectorElementType();
2308 
2309   if (Subtarget.useHVXIEEEFPOps()) {
2310     // There are only conversions to f16.
2311     if (FpTy == MVT::f16) {
2312       // Other int types aren't legal in HVX, so we shouldn't see them here.
2313       assert(IntTy == MVT::i8 || IntTy == MVT::i16 || IntTy == MVT::i32);
2314       // i8, i16 -> f16 is legal.
2315       if (IntTy == MVT::i8 || IntTy == MVT::i16)
2316         return Op;
2317     }
2318   }
2319 
2320   if (IntTy.getSizeInBits() != FpTy.getSizeInBits())
2321     return EqualizeFpIntConversion(Op, DAG);
2322 
2323   return ExpandHvxIntToFp(Op, DAG);
2324 }
2325 
2326 HexagonTargetLowering::TypePair
2327 HexagonTargetLowering::typeExtendToWider(MVT Ty0, MVT Ty1) const {
2328   // Compare the widths of elements of the two types, and extend the narrower
2329   // type to match the with of the wider type. For vector types, apply this
2330   // to the element type.
2331   assert(Ty0.isVector() == Ty1.isVector());
2332 
2333   MVT ElemTy0 = Ty0.getScalarType();
2334   MVT ElemTy1 = Ty1.getScalarType();
2335 
2336   unsigned Width0 = ElemTy0.getSizeInBits();
2337   unsigned Width1 = ElemTy1.getSizeInBits();
2338   unsigned MaxWidth = std::max(Width0, Width1);
2339 
2340   auto getScalarWithWidth = [](MVT ScalarTy, unsigned Width) {
2341     if (ScalarTy.isInteger())
2342       return MVT::getIntegerVT(Width);
2343     assert(ScalarTy.isFloatingPoint());
2344     return MVT::getFloatingPointVT(Width);
2345   };
2346 
2347   MVT WideETy0 = getScalarWithWidth(ElemTy0, MaxWidth);
2348   MVT WideETy1 = getScalarWithWidth(ElemTy1, MaxWidth);
2349 
2350   if (!Ty0.isVector()) {
2351     // Both types are scalars.
2352     return {WideETy0, WideETy1};
2353   }
2354 
2355   // Vector types.
2356   unsigned NumElem = Ty0.getVectorNumElements();
2357   assert(NumElem == Ty1.getVectorNumElements());
2358 
2359   return {MVT::getVectorVT(WideETy0, NumElem),
2360           MVT::getVectorVT(WideETy1, NumElem)};
2361 }
2362 
2363 HexagonTargetLowering::TypePair
2364 HexagonTargetLowering::typeWidenToWider(MVT Ty0, MVT Ty1) const {
2365   // Compare the numbers of elements of two vector types, and widen the
2366   // narrower one to match the number of elements in the wider one.
2367   assert(Ty0.isVector() && Ty1.isVector());
2368 
2369   unsigned Len0 = Ty0.getVectorNumElements();
2370   unsigned Len1 = Ty1.getVectorNumElements();
2371   if (Len0 == Len1)
2372     return {Ty0, Ty1};
2373 
2374   unsigned MaxLen = std::max(Len0, Len1);
2375   return {MVT::getVectorVT(Ty0.getVectorElementType(), MaxLen),
2376           MVT::getVectorVT(Ty1.getVectorElementType(), MaxLen)};
2377 }
2378 
2379 MVT
2380 HexagonTargetLowering::typeLegalize(MVT Ty, SelectionDAG &DAG) const {
2381   EVT LegalTy = getTypeToTransformTo(*DAG.getContext(), Ty);
2382   assert(LegalTy.isSimple());
2383   return LegalTy.getSimpleVT();
2384 }
2385 
2386 MVT
2387 HexagonTargetLowering::typeWidenToHvx(MVT Ty) const {
2388   unsigned HwWidth = 8 * Subtarget.getVectorLength();
2389   assert(Ty.getSizeInBits() <= HwWidth);
2390   if (Ty.getSizeInBits() == HwWidth)
2391     return Ty;
2392 
2393   MVT ElemTy = Ty.getScalarType();
2394   return MVT::getVectorVT(ElemTy, HwWidth / ElemTy.getSizeInBits());
2395 }
2396 
2397 HexagonTargetLowering::VectorPair
2398 HexagonTargetLowering::emitHvxAddWithOverflow(SDValue A, SDValue B,
2399       const SDLoc &dl, bool Signed, SelectionDAG &DAG) const {
2400   // Compute A+B, return {A+B, O}, where O = vector predicate indicating
2401   // whether an overflow has occured.
2402   MVT ResTy = ty(A);
2403   assert(ResTy == ty(B));
2404   MVT PredTy = MVT::getVectorVT(MVT::i1, ResTy.getVectorNumElements());
2405 
2406   if (!Signed) {
2407     // V62+ has V6_vaddcarry, but it requires input predicate, so it doesn't
2408     // save any instructions.
2409     SDValue Add = DAG.getNode(ISD::ADD, dl, ResTy, {A, B});
2410     SDValue Ovf = DAG.getSetCC(dl, PredTy, Add, A, ISD::SETULT);
2411     return {Add, Ovf};
2412   }
2413 
2414   // Signed overflow has happened, if:
2415   // (A, B have the same sign) and (A+B has a different sign from either)
2416   // i.e. (~A xor B) & ((A+B) xor B), then check the sign bit
2417   SDValue Add = DAG.getNode(ISD::ADD, dl, ResTy, {A, B});
2418   SDValue NotA =
2419       DAG.getNode(ISD::XOR, dl, ResTy, {A, DAG.getConstant(-1, dl, ResTy)});
2420   SDValue Xor0 = DAG.getNode(ISD::XOR, dl, ResTy, {NotA, B});
2421   SDValue Xor1 = DAG.getNode(ISD::XOR, dl, ResTy, {Add, B});
2422   SDValue And = DAG.getNode(ISD::AND, dl, ResTy, {Xor0, Xor1});
2423   SDValue MSB =
2424       DAG.getSetCC(dl, PredTy, And, getZero(dl, ResTy, DAG), ISD::SETLT);
2425   return {Add, MSB};
2426 }
2427 
2428 HexagonTargetLowering::VectorPair
2429 HexagonTargetLowering::emitHvxShiftRightRnd(SDValue Val, unsigned Amt,
2430       bool Signed, SelectionDAG &DAG) const {
2431   // Shift Val right by Amt bits, round the result to the nearest integer,
2432   // tie-break by rounding halves to even integer.
2433 
2434   const SDLoc &dl(Val);
2435   MVT ValTy = ty(Val);
2436 
2437   // This should also work for signed integers.
2438   //
2439   //   uint tmp0 = inp + ((1 << (Amt-1)) - 1);
2440   //   bool ovf = (inp > tmp0);
2441   //   uint rup = inp & (1 << (Amt+1));
2442   //
2443   //   uint tmp1 = inp >> (Amt-1);    // tmp1 == tmp2 iff
2444   //   uint tmp2 = tmp0 >> (Amt-1);   // the Amt-1 lower bits were all 0
2445   //   uint tmp3 = tmp2 + rup;
2446   //   uint frac = (tmp1 != tmp2) ? tmp2 >> 1 : tmp3 >> 1;
2447   unsigned ElemWidth = ValTy.getVectorElementType().getSizeInBits();
2448   MVT ElemTy = MVT::getIntegerVT(ElemWidth);
2449   MVT IntTy = tyVector(ValTy, ElemTy);
2450   MVT PredTy = MVT::getVectorVT(MVT::i1, IntTy.getVectorNumElements());
2451   unsigned ShRight = Signed ? ISD::SRA : ISD::SRL;
2452 
2453   SDValue Inp = DAG.getBitcast(IntTy, Val);
2454   SDValue LowBits = DAG.getConstant((1ull << (Amt - 1)) - 1, dl, IntTy);
2455 
2456   SDValue AmtP1 = DAG.getConstant(1ull << Amt, dl, IntTy);
2457   SDValue And = DAG.getNode(ISD::AND, dl, IntTy, {Inp, AmtP1});
2458   SDValue Zero = getZero(dl, IntTy, DAG);
2459   SDValue Bit = DAG.getSetCC(dl, PredTy, And, Zero, ISD::SETNE);
2460   SDValue Rup = DAG.getZExtOrTrunc(Bit, dl, IntTy);
2461   auto [Tmp0, Ovf] = emitHvxAddWithOverflow(Inp, LowBits, dl, Signed, DAG);
2462 
2463   SDValue AmtM1 = DAG.getConstant(Amt - 1, dl, IntTy);
2464   SDValue Tmp1 = DAG.getNode(ShRight, dl, IntTy, Inp, AmtM1);
2465   SDValue Tmp2 = DAG.getNode(ShRight, dl, IntTy, Tmp0, AmtM1);
2466   SDValue Tmp3 = DAG.getNode(ISD::ADD, dl, IntTy, Tmp2, Rup);
2467 
2468   SDValue Eq = DAG.getSetCC(dl, PredTy, Tmp1, Tmp2, ISD::SETEQ);
2469   SDValue One = DAG.getConstant(1, dl, IntTy);
2470   SDValue Tmp4 = DAG.getNode(ShRight, dl, IntTy, {Tmp2, One});
2471   SDValue Tmp5 = DAG.getNode(ShRight, dl, IntTy, {Tmp3, One});
2472   SDValue Mux = DAG.getNode(ISD::VSELECT, dl, IntTy, {Eq, Tmp5, Tmp4});
2473   return {Mux, Ovf};
2474 }
2475 
2476 SDValue
2477 HexagonTargetLowering::emitHvxMulHsV60(SDValue A, SDValue B, const SDLoc &dl,
2478                                        SelectionDAG &DAG) const {
2479   MVT VecTy = ty(A);
2480   MVT PairTy = typeJoin({VecTy, VecTy});
2481   assert(VecTy.getVectorElementType() == MVT::i32);
2482 
2483   SDValue S16 = DAG.getConstant(16, dl, MVT::i32);
2484 
2485   // mulhs(A,B) =
2486   //   = [(Hi(A)*2^16 + Lo(A)) *s (Hi(B)*2^16 + Lo(B))] >> 32
2487   //   = [Hi(A)*2^16 *s Hi(B)*2^16 + Hi(A) *su Lo(B)*2^16
2488   //      + Lo(A) *us (Hi(B)*2^16 + Lo(B))] >> 32
2489   //   = [Hi(A) *s Hi(B)*2^32 + Hi(A) *su Lo(B)*2^16 + Lo(A) *us B] >> 32
2490   // The low half of Lo(A)*Lo(B) will be discarded (it's not added to
2491   // anything, so it cannot produce any carry over to higher bits),
2492   // so everything in [] can be shifted by 16 without loss of precision.
2493   //   = [Hi(A) *s Hi(B)*2^16 + Hi(A)*su Lo(B) + Lo(A)*B >> 16] >> 16
2494   //   = [Hi(A) *s Hi(B)*2^16 + Hi(A)*su Lo(B) + V6_vmpyewuh(A,B)] >> 16
2495   // The final additions need to make sure to properly maintain any carry-
2496   // out bits.
2497   //
2498   //                Hi(B) Lo(B)
2499   //                Hi(A) Lo(A)
2500   //               --------------
2501   //                Lo(B)*Lo(A)  | T0 = V6_vmpyewuh(B,A) does this,
2502   //         Hi(B)*Lo(A)         |      + dropping the low 16 bits
2503   //         Hi(A)*Lo(B)   | T2
2504   //  Hi(B)*Hi(A)
2505 
2506   SDValue T0 = getInstr(Hexagon::V6_vmpyewuh, dl, VecTy, {B, A}, DAG);
2507   // T1 = get Hi(A) into low halves.
2508   SDValue T1 = getInstr(Hexagon::V6_vasrw, dl, VecTy, {A, S16}, DAG);
2509   // P0 = interleaved T1.h*B.uh (full precision product)
2510   SDValue P0 = getInstr(Hexagon::V6_vmpyhus, dl, PairTy, {T1, B}, DAG);
2511   // T2 = T1.even(h) * B.even(uh), i.e. Hi(A)*Lo(B)
2512   SDValue T2 = LoHalf(P0, DAG);
2513   // We need to add T0+T2, recording the carry-out, which will be 1<<16
2514   // added to the final sum.
2515   // P1 = interleaved even/odd 32-bit (unsigned) sums of 16-bit halves
2516   SDValue P1 = getInstr(Hexagon::V6_vadduhw, dl, PairTy, {T0, T2}, DAG);
2517   // P2 = interleaved even/odd 32-bit (signed) sums of 16-bit halves
2518   SDValue P2 = getInstr(Hexagon::V6_vaddhw, dl, PairTy, {T0, T2}, DAG);
2519   // T3 = full-precision(T0+T2) >> 16
2520   // The low halves are added-unsigned, the high ones are added-signed.
2521   SDValue T3 = getInstr(Hexagon::V6_vasrw_acc, dl, VecTy,
2522                         {HiHalf(P2, DAG), LoHalf(P1, DAG), S16}, DAG);
2523   SDValue T4 = getInstr(Hexagon::V6_vasrw, dl, VecTy, {B, S16}, DAG);
2524   // P3 = interleaved Hi(B)*Hi(A) (full precision),
2525   // which is now Lo(T1)*Lo(T4), so we want to keep the even product.
2526   SDValue P3 = getInstr(Hexagon::V6_vmpyhv, dl, PairTy, {T1, T4}, DAG);
2527   SDValue T5 = LoHalf(P3, DAG);
2528   // Add:
2529   SDValue T6 = DAG.getNode(ISD::ADD, dl, VecTy, {T3, T5});
2530   return T6;
2531 }
2532 
2533 SDValue
2534 HexagonTargetLowering::emitHvxMulLoHiV60(SDValue A, bool SignedA, SDValue B,
2535                                          bool SignedB, const SDLoc &dl,
2536                                          SelectionDAG &DAG) const {
2537   MVT VecTy = ty(A);
2538   MVT PairTy = typeJoin({VecTy, VecTy});
2539   assert(VecTy.getVectorElementType() == MVT::i32);
2540 
2541   SDValue S16 = DAG.getConstant(16, dl, MVT::i32);
2542 
2543   if (SignedA && !SignedB) {
2544     // Make A:unsigned, B:signed.
2545     std::swap(A, B);
2546     std::swap(SignedA, SignedB);
2547   }
2548 
2549   // Do halfword-wise multiplications for unsigned*unsigned product, then
2550   // add corrections for signed and unsigned*signed.
2551 
2552   SDValue Lo, Hi;
2553 
2554   // P0:lo = (uu) products of low halves of A and B,
2555   // P0:hi = (uu) products of high halves.
2556   SDValue P0 = getInstr(Hexagon::V6_vmpyuhv, dl, PairTy, {A, B}, DAG);
2557 
2558   // Swap low/high halves in B
2559   SDValue T0 = getInstr(Hexagon::V6_lvsplatw, dl, VecTy,
2560                         {DAG.getConstant(0x02020202, dl, MVT::i32)}, DAG);
2561   SDValue T1 = getInstr(Hexagon::V6_vdelta, dl, VecTy, {B, T0}, DAG);
2562   // P1 = products of even/odd halfwords.
2563   // P1:lo = (uu) products of even(A.uh) * odd(B.uh)
2564   // P1:hi = (uu) products of odd(A.uh) * even(B.uh)
2565   SDValue P1 = getInstr(Hexagon::V6_vmpyuhv, dl, PairTy, {A, T1}, DAG);
2566 
2567   // P2:lo = low halves of P1:lo + P1:hi,
2568   // P2:hi = high halves of P1:lo + P1:hi.
2569   SDValue P2 = getInstr(Hexagon::V6_vadduhw, dl, PairTy,
2570                         {HiHalf(P1, DAG), LoHalf(P1, DAG)}, DAG);
2571   // Still need to add the high halves of P0:lo to P2:lo
2572   SDValue T2 =
2573       getInstr(Hexagon::V6_vlsrw, dl, VecTy, {LoHalf(P0, DAG), S16}, DAG);
2574   SDValue T3 = DAG.getNode(ISD::ADD, dl, VecTy, {LoHalf(P2, DAG), T2});
2575 
2576   // The high halves of T3 will contribute to the HI part of LOHI.
2577   SDValue T4 = getInstr(Hexagon::V6_vasrw_acc, dl, VecTy,
2578                         {HiHalf(P2, DAG), T3, S16}, DAG);
2579 
2580   // The low halves of P2 need to be added to high halves of the LO part.
2581   Lo = getInstr(Hexagon::V6_vaslw_acc, dl, VecTy,
2582                 {LoHalf(P0, DAG), LoHalf(P2, DAG), S16}, DAG);
2583   Hi = DAG.getNode(ISD::ADD, dl, VecTy, {HiHalf(P0, DAG), T4});
2584 
2585   if (SignedA) {
2586     assert(SignedB && "Signed A and unsigned B should have been inverted");
2587 
2588     MVT PredTy = MVT::getVectorVT(MVT::i1, VecTy.getVectorNumElements());
2589     SDValue Zero = getZero(dl, VecTy, DAG);
2590     SDValue Q0 = DAG.getSetCC(dl, PredTy, A, Zero, ISD::SETLT);
2591     SDValue Q1 = DAG.getSetCC(dl, PredTy, B, Zero, ISD::SETLT);
2592     SDValue X0 = DAG.getNode(ISD::VSELECT, dl, VecTy, {Q0, B, Zero});
2593     SDValue X1 = getInstr(Hexagon::V6_vaddwq, dl, VecTy, {Q1, X0, A}, DAG);
2594     Hi = getInstr(Hexagon::V6_vsubw, dl, VecTy, {Hi, X1}, DAG);
2595   } else if (SignedB) {
2596     // Same correction as for mulhus:
2597     // mulhus(A.uw,B.w) = mulhu(A.uw,B.uw) - (A.w if B < 0)
2598     MVT PredTy = MVT::getVectorVT(MVT::i1, VecTy.getVectorNumElements());
2599     SDValue Zero = getZero(dl, VecTy, DAG);
2600     SDValue Q1 = DAG.getSetCC(dl, PredTy, B, Zero, ISD::SETLT);
2601     Hi = getInstr(Hexagon::V6_vsubwq, dl, VecTy, {Q1, Hi, A}, DAG);
2602   } else {
2603     assert(!SignedA && !SignedB);
2604   }
2605 
2606   return DAG.getMergeValues({Lo, Hi}, dl);
2607 }
2608 
2609 SDValue
2610 HexagonTargetLowering::emitHvxMulLoHiV62(SDValue A, bool SignedA,
2611                                          SDValue B, bool SignedB,
2612                                          const SDLoc &dl,
2613                                          SelectionDAG &DAG) const {
2614   MVT VecTy = ty(A);
2615   MVT PairTy = typeJoin({VecTy, VecTy});
2616   assert(VecTy.getVectorElementType() == MVT::i32);
2617 
2618   if (SignedA && !SignedB) {
2619     // Make A:unsigned, B:signed.
2620     std::swap(A, B);
2621     std::swap(SignedA, SignedB);
2622   }
2623 
2624   // Do S*S first, then make corrections for U*S or U*U if needed.
2625   SDValue P0 = getInstr(Hexagon::V6_vmpyewuh_64, dl, PairTy, {A, B}, DAG);
2626   SDValue P1 =
2627       getInstr(Hexagon::V6_vmpyowh_64_acc, dl, PairTy, {P0, A, B}, DAG);
2628   SDValue Lo = LoHalf(P1, DAG);
2629   SDValue Hi = HiHalf(P1, DAG);
2630 
2631   if (!SignedB) {
2632     assert(!SignedA && "Signed A and unsigned B should have been inverted");
2633     SDValue Zero = getZero(dl, VecTy, DAG);
2634     MVT PredTy = MVT::getVectorVT(MVT::i1, VecTy.getVectorNumElements());
2635 
2636     // Mulhu(X, Y) = Mulhs(X, Y) + (X, if Y < 0) + (Y, if X < 0).
2637     // def: Pat<(VecI32 (mulhu HVI32:$A, HVI32:$B)),
2638     //          (V6_vaddw (HiHalf (Muls64O $A, $B)),
2639     //                    (V6_vaddwq (V6_vgtw (V6_vd0), $B),
2640     //                               (V6_vandvqv (V6_vgtw (V6_vd0), $A), $B),
2641     //                               $A))>;
2642     SDValue Q0 = DAG.getSetCC(dl, PredTy, A, Zero, ISD::SETLT);
2643     SDValue Q1 = DAG.getSetCC(dl, PredTy, B, Zero, ISD::SETLT);
2644     SDValue T0 = getInstr(Hexagon::V6_vandvqv, dl, VecTy, {Q0, B}, DAG);
2645     SDValue T1 = getInstr(Hexagon::V6_vaddwq, dl, VecTy, {Q1, T0, A}, DAG);
2646     Hi = getInstr(Hexagon::V6_vaddw, dl, VecTy, {Hi, T1}, DAG);
2647   } else if (!SignedA) {
2648     SDValue Zero = getZero(dl, VecTy, DAG);
2649     MVT PredTy = MVT::getVectorVT(MVT::i1, VecTy.getVectorNumElements());
2650 
2651     // Mulhus(unsigned X, signed Y) = Mulhs(X, Y) + (Y, if X < 0).
2652     // def: Pat<(VecI32 (HexagonMULHUS HVI32:$A, HVI32:$B)),
2653     //          (V6_vaddwq (V6_vgtw (V6_vd0), $A),
2654     //                     (HiHalf (Muls64O $A, $B)),
2655     //                     $B)>;
2656     SDValue Q0 = DAG.getSetCC(dl, PredTy, A, Zero, ISD::SETLT);
2657     Hi = getInstr(Hexagon::V6_vaddwq, dl, VecTy, {Q0, Hi, B}, DAG);
2658   }
2659 
2660   return DAG.getMergeValues({Lo, Hi}, dl);
2661 }
2662 
2663 SDValue
2664 HexagonTargetLowering::EqualizeFpIntConversion(SDValue Op, SelectionDAG &DAG)
2665       const {
2666   // Rewrite conversion between integer and floating-point in such a way that
2667   // the integer type is extended/narrowed to match the bitwidth of the
2668   // floating-point type, combined with additional integer-integer extensions
2669   // or narrowings to match the original input/result types.
2670   // E.g.  f32 -> i8  ==>  f32 -> i32 -> i8
2671   //
2672   // The input/result types are not required to be legal, but if they are
2673   // legal, this function should not introduce illegal types.
2674 
2675   unsigned Opc = Op.getOpcode();
2676   assert(Opc == ISD::FP_TO_SINT || Opc == ISD::FP_TO_UINT ||
2677          Opc == ISD::SINT_TO_FP || Opc == ISD::UINT_TO_FP);
2678 
2679   SDValue Inp = Op.getOperand(0);
2680   MVT InpTy = ty(Inp);
2681   MVT ResTy = ty(Op);
2682 
2683   if (InpTy == ResTy)
2684     return Op;
2685 
2686   const SDLoc &dl(Op);
2687   bool Signed = Opc == ISD::FP_TO_SINT || Opc == ISD::SINT_TO_FP;
2688 
2689   auto [WInpTy, WResTy] = typeExtendToWider(InpTy, ResTy);
2690   SDValue WInp = resizeToWidth(Inp, WInpTy, Signed, dl, DAG);
2691   SDValue Conv = DAG.getNode(Opc, dl, WResTy, WInp);
2692   SDValue Res = resizeToWidth(Conv, ResTy, Signed, dl, DAG);
2693   return Res;
2694 }
2695 
2696 SDValue
2697 HexagonTargetLowering::ExpandHvxFpToInt(SDValue Op, SelectionDAG &DAG) const {
2698   unsigned Opc = Op.getOpcode();
2699   assert(Opc == ISD::FP_TO_SINT || Opc == ISD::FP_TO_UINT);
2700 
2701   const SDLoc &dl(Op);
2702   SDValue Op0 = Op.getOperand(0);
2703   MVT InpTy = ty(Op0);
2704   MVT ResTy = ty(Op);
2705   assert(InpTy.changeTypeToInteger() == ResTy);
2706 
2707   // int32_t conv_f32_to_i32(uint32_t inp) {
2708   //   // s | exp8 | frac23
2709   //
2710   //   int neg = (int32_t)inp < 0;
2711   //
2712   //   // "expm1" is the actual exponent minus 1: instead of "bias", subtract
2713   //   // "bias+1". When the encoded exp is "all-1" (i.e. inf/nan), this will
2714   //   // produce a large positive "expm1", which will result in max u/int.
2715   //   // In all IEEE formats, bias is the largest positive number that can be
2716   //   // represented in bias-width bits (i.e. 011..1).
2717   //   int32_t expm1 = (inp << 1) - 0x80000000;
2718   //   expm1 >>= 24;
2719   //
2720   //   // Always insert the "implicit 1". Subnormal numbers will become 0
2721   //   // regardless.
2722   //   uint32_t frac = (inp << 8) | 0x80000000;
2723   //
2724   //   // "frac" is the fraction part represented as Q1.31. If it was
2725   //   // interpreted as uint32_t, it would be the fraction part multiplied
2726   //   // by 2^31.
2727   //
2728   //   // Calculate the amount of right shift, since shifting further to the
2729   //   // left would lose significant bits. Limit it to 32, because we want
2730   //   // shifts by 32+ to produce 0, whereas V6_vlsrwv treats the shift
2731   //   // amount as a 6-bit signed value (so 33 is same as -31, i.e. shift
2732   //   // left by 31). "rsh" can be negative.
2733   //   int32_t rsh = min(31 - (expm1 + 1), 32);
2734   //
2735   //   frac >>= rsh;   // rsh == 32 will produce 0
2736   //
2737   //   // Everything up to this point is the same for conversion to signed
2738   //   // unsigned integer.
2739   //
2740   //   if (neg)                 // Only for signed int
2741   //     frac = -frac;          //
2742   //   if (rsh <= 0 && neg)     //   bound = neg ? 0x80000000 : 0x7fffffff
2743   //     frac = 0x80000000;     //   frac = rsh <= 0 ? bound : frac
2744   //   if (rsh <= 0 && !neg)    //
2745   //     frac = 0x7fffffff;     //
2746   //
2747   //   if (neg)                 // Only for unsigned int
2748   //     frac = 0;              //
2749   //   if (rsh < 0 && !neg)     //   frac = rsh < 0 ? 0x7fffffff : frac;
2750   //     frac = 0x7fffffff;     //   frac = neg ? 0 : frac;
2751   //
2752   //   return frac;
2753   // }
2754 
2755   MVT PredTy = MVT::getVectorVT(MVT::i1, ResTy.getVectorElementCount());
2756 
2757   // Zero = V6_vd0();
2758   // Neg = V6_vgtw(Zero, Inp);
2759   // One = V6_lvsplatw(1);
2760   // M80 = V6_lvsplatw(0x80000000);
2761   // Exp00 = V6_vaslwv(Inp, One);
2762   // Exp01 = V6_vsubw(Exp00, M80);
2763   // ExpM1 = V6_vasrw(Exp01, 24);
2764   // Frc00 = V6_vaslw(Inp, 8);
2765   // Frc01 = V6_vor(Frc00, M80);
2766   // Rsh00 = V6_vsubw(V6_lvsplatw(30), ExpM1);
2767   // Rsh01 = V6_vminw(Rsh00, V6_lvsplatw(32));
2768   // Frc02 = V6_vlsrwv(Frc01, Rsh01);
2769 
2770   // if signed int:
2771   // Bnd = V6_vmux(Neg, M80, V6_lvsplatw(0x7fffffff))
2772   // Pos = V6_vgtw(Rsh01, Zero);
2773   // Frc13 = V6_vsubw(Zero, Frc02);
2774   // Frc14 = V6_vmux(Neg, Frc13, Frc02);
2775   // Int = V6_vmux(Pos, Frc14, Bnd);
2776   //
2777   // if unsigned int:
2778   // Rsn = V6_vgtw(Zero, Rsh01)
2779   // Frc23 = V6_vmux(Rsn, V6_lvsplatw(0x7fffffff), Frc02)
2780   // Int = V6_vmux(Neg, Zero, Frc23)
2781 
2782   auto [ExpWidth, ExpBias, FracWidth] = getIEEEProperties(InpTy);
2783   unsigned ElemWidth = 1 + ExpWidth + FracWidth;
2784   assert((1ull << (ExpWidth - 1)) == (1 + ExpBias));
2785 
2786   SDValue Inp = DAG.getBitcast(ResTy, Op0);
2787   SDValue Zero = getZero(dl, ResTy, DAG);
2788   SDValue Neg = DAG.getSetCC(dl, PredTy, Inp, Zero, ISD::SETLT);
2789   SDValue M80 = DAG.getConstant(1ull << (ElemWidth - 1), dl, ResTy);
2790   SDValue M7F = DAG.getConstant((1ull << (ElemWidth - 1)) - 1, dl, ResTy);
2791   SDValue One = DAG.getConstant(1, dl, ResTy);
2792   SDValue Exp00 = DAG.getNode(ISD::SHL, dl, ResTy, {Inp, One});
2793   SDValue Exp01 = DAG.getNode(ISD::SUB, dl, ResTy, {Exp00, M80});
2794   SDValue MNE = DAG.getConstant(ElemWidth - ExpWidth, dl, ResTy);
2795   SDValue ExpM1 = DAG.getNode(ISD::SRA, dl, ResTy, {Exp01, MNE});
2796 
2797   SDValue ExpW = DAG.getConstant(ExpWidth, dl, ResTy);
2798   SDValue Frc00 = DAG.getNode(ISD::SHL, dl, ResTy, {Inp, ExpW});
2799   SDValue Frc01 = DAG.getNode(ISD::OR, dl, ResTy, {Frc00, M80});
2800 
2801   SDValue MN2 = DAG.getConstant(ElemWidth - 2, dl, ResTy);
2802   SDValue Rsh00 = DAG.getNode(ISD::SUB, dl, ResTy, {MN2, ExpM1});
2803   SDValue MW = DAG.getConstant(ElemWidth, dl, ResTy);
2804   SDValue Rsh01 = DAG.getNode(ISD::SMIN, dl, ResTy, {Rsh00, MW});
2805   SDValue Frc02 = DAG.getNode(ISD::SRL, dl, ResTy, {Frc01, Rsh01});
2806 
2807   SDValue Int;
2808 
2809   if (Opc == ISD::FP_TO_SINT) {
2810     SDValue Bnd = DAG.getNode(ISD::VSELECT, dl, ResTy, {Neg, M80, M7F});
2811     SDValue Pos = DAG.getSetCC(dl, PredTy, Rsh01, Zero, ISD::SETGT);
2812     SDValue Frc13 = DAG.getNode(ISD::SUB, dl, ResTy, {Zero, Frc02});
2813     SDValue Frc14 = DAG.getNode(ISD::VSELECT, dl, ResTy, {Neg, Frc13, Frc02});
2814     Int = DAG.getNode(ISD::VSELECT, dl, ResTy, {Pos, Frc14, Bnd});
2815   } else {
2816     assert(Opc == ISD::FP_TO_UINT);
2817     SDValue Rsn = DAG.getSetCC(dl, PredTy, Rsh01, Zero, ISD::SETLT);
2818     SDValue Frc23 = DAG.getNode(ISD::VSELECT, dl, ResTy, Rsn, M7F, Frc02);
2819     Int = DAG.getNode(ISD::VSELECT, dl, ResTy, Neg, Zero, Frc23);
2820   }
2821 
2822   return Int;
2823 }
2824 
2825 SDValue
2826 HexagonTargetLowering::ExpandHvxIntToFp(SDValue Op, SelectionDAG &DAG) const {
2827   unsigned Opc = Op.getOpcode();
2828   assert(Opc == ISD::SINT_TO_FP || Opc == ISD::UINT_TO_FP);
2829 
2830   const SDLoc &dl(Op);
2831   SDValue Op0 = Op.getOperand(0);
2832   MVT InpTy = ty(Op0);
2833   MVT ResTy = ty(Op);
2834   assert(ResTy.changeTypeToInteger() == InpTy);
2835 
2836   // uint32_t vnoc1_rnd(int32_t w) {
2837   //   int32_t iszero = w == 0;
2838   //   int32_t isneg = w < 0;
2839   //   uint32_t u = __builtin_HEXAGON_A2_abs(w);
2840   //
2841   //   uint32_t norm_left = __builtin_HEXAGON_S2_cl0(u) + 1;
2842   //   uint32_t frac0 = (uint64_t)u << norm_left;
2843   //
2844   //   // Rounding:
2845   //   uint32_t frac1 = frac0 + ((1 << 8) - 1);
2846   //   uint32_t renorm = (frac0 > frac1);
2847   //   uint32_t rup = (int)(frac0 << 22) < 0;
2848   //
2849   //   uint32_t frac2 = frac0 >> 8;
2850   //   uint32_t frac3 = frac1 >> 8;
2851   //   uint32_t frac = (frac2 != frac3) ? frac3 >> 1 : (frac3 + rup) >> 1;
2852   //
2853   //   int32_t exp = 32 - norm_left + renorm + 127;
2854   //   exp <<= 23;
2855   //
2856   //   uint32_t sign = 0x80000000 * isneg;
2857   //   uint32_t f = sign | exp | frac;
2858   //   return iszero ? 0 : f;
2859   // }
2860 
2861   MVT PredTy = MVT::getVectorVT(MVT::i1, InpTy.getVectorElementCount());
2862   bool Signed = Opc == ISD::SINT_TO_FP;
2863 
2864   auto [ExpWidth, ExpBias, FracWidth] = getIEEEProperties(ResTy);
2865   unsigned ElemWidth = 1 + ExpWidth + FracWidth;
2866 
2867   SDValue Zero = getZero(dl, InpTy, DAG);
2868   SDValue One = DAG.getConstant(1, dl, InpTy);
2869   SDValue IsZero = DAG.getSetCC(dl, PredTy, Op0, Zero, ISD::SETEQ);
2870   SDValue Abs = Signed ? DAG.getNode(ISD::ABS, dl, InpTy, Op0) : Op0;
2871   SDValue Clz = DAG.getNode(ISD::CTLZ, dl, InpTy, Abs);
2872   SDValue NLeft = DAG.getNode(ISD::ADD, dl, InpTy, {Clz, One});
2873   SDValue Frac0 = DAG.getNode(ISD::SHL, dl, InpTy, {Abs, NLeft});
2874 
2875   auto [Frac, Ovf] = emitHvxShiftRightRnd(Frac0, ExpWidth + 1, false, DAG);
2876   if (Signed) {
2877     SDValue IsNeg = DAG.getSetCC(dl, PredTy, Op0, Zero, ISD::SETLT);
2878     SDValue M80 = DAG.getConstant(1ull << (ElemWidth - 1), dl, InpTy);
2879     SDValue Sign = DAG.getNode(ISD::VSELECT, dl, InpTy, {IsNeg, M80, Zero});
2880     Frac = DAG.getNode(ISD::OR, dl, InpTy, {Sign, Frac});
2881   }
2882 
2883   SDValue Rnrm = DAG.getZExtOrTrunc(Ovf, dl, InpTy);
2884   SDValue Exp0 = DAG.getConstant(ElemWidth + ExpBias, dl, InpTy);
2885   SDValue Exp1 = DAG.getNode(ISD::ADD, dl, InpTy, {Rnrm, Exp0});
2886   SDValue Exp2 = DAG.getNode(ISD::SUB, dl, InpTy, {Exp1, NLeft});
2887   SDValue Exp3 = DAG.getNode(ISD::SHL, dl, InpTy,
2888                              {Exp2, DAG.getConstant(FracWidth, dl, InpTy)});
2889   SDValue Flt0 = DAG.getNode(ISD::OR, dl, InpTy, {Frac, Exp3});
2890   SDValue Flt1 = DAG.getNode(ISD::VSELECT, dl, InpTy, {IsZero, Zero, Flt0});
2891   SDValue Flt = DAG.getBitcast(ResTy, Flt1);
2892 
2893   return Flt;
2894 }
2895 
2896 SDValue
2897 HexagonTargetLowering::CreateTLWrapper(SDValue Op, SelectionDAG &DAG) const {
2898   unsigned Opc = Op.getOpcode();
2899   unsigned TLOpc;
2900   switch (Opc) {
2901   case ISD::ANY_EXTEND:
2902   case ISD::SIGN_EXTEND:
2903   case ISD::ZERO_EXTEND:
2904     TLOpc = HexagonISD::TL_EXTEND;
2905     break;
2906   case ISD::TRUNCATE:
2907     TLOpc = HexagonISD::TL_TRUNCATE;
2908     break;
2909 #ifndef NDEBUG
2910     Op.dump(&DAG);
2911 #endif
2912     llvm_unreachable("Unepected operator");
2913   }
2914 
2915   const SDLoc &dl(Op);
2916   return DAG.getNode(TLOpc, dl, ty(Op), Op.getOperand(0),
2917                      DAG.getUNDEF(MVT::i128), // illegal type
2918                      DAG.getConstant(Opc, dl, MVT::i32));
2919 }
2920 
2921 SDValue
2922 HexagonTargetLowering::RemoveTLWrapper(SDValue Op, SelectionDAG &DAG) const {
2923   assert(Op.getOpcode() == HexagonISD::TL_EXTEND ||
2924          Op.getOpcode() == HexagonISD::TL_TRUNCATE);
2925   unsigned Opc = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
2926   return DAG.getNode(Opc, SDLoc(Op), ty(Op), Op.getOperand(0));
2927 }
2928 
2929 HexagonTargetLowering::VectorPair
2930 HexagonTargetLowering::SplitVectorOp(SDValue Op, SelectionDAG &DAG) const {
2931   assert(!Op.isMachineOpcode());
2932   SmallVector<SDValue, 2> OpsL, OpsH;
2933   const SDLoc &dl(Op);
2934 
2935   auto SplitVTNode = [&DAG, this](const VTSDNode *N) {
2936     MVT Ty = typeSplit(N->getVT().getSimpleVT()).first;
2937     SDValue TV = DAG.getValueType(Ty);
2938     return std::make_pair(TV, TV);
2939   };
2940 
2941   for (SDValue A : Op.getNode()->ops()) {
2942     auto [Lo, Hi] =
2943         ty(A).isVector() ? opSplit(A, dl, DAG) : std::make_pair(A, A);
2944     // Special case for type operand.
2945     switch (Op.getOpcode()) {
2946       case ISD::SIGN_EXTEND_INREG:
2947       case HexagonISD::SSAT:
2948       case HexagonISD::USAT:
2949         if (const auto *N = dyn_cast<const VTSDNode>(A.getNode()))
2950           std::tie(Lo, Hi) = SplitVTNode(N);
2951       break;
2952     }
2953     OpsL.push_back(Lo);
2954     OpsH.push_back(Hi);
2955   }
2956 
2957   MVT ResTy = ty(Op);
2958   MVT HalfTy = typeSplit(ResTy).first;
2959   SDValue L = DAG.getNode(Op.getOpcode(), dl, HalfTy, OpsL);
2960   SDValue H = DAG.getNode(Op.getOpcode(), dl, HalfTy, OpsH);
2961   return {L, H};
2962 }
2963 
2964 SDValue
2965 HexagonTargetLowering::SplitHvxMemOp(SDValue Op, SelectionDAG &DAG) const {
2966   auto *MemN = cast<MemSDNode>(Op.getNode());
2967 
2968   MVT MemTy = MemN->getMemoryVT().getSimpleVT();
2969   if (!isHvxPairTy(MemTy))
2970     return Op;
2971 
2972   const SDLoc &dl(Op);
2973   unsigned HwLen = Subtarget.getVectorLength();
2974   MVT SingleTy = typeSplit(MemTy).first;
2975   SDValue Chain = MemN->getChain();
2976   SDValue Base0 = MemN->getBasePtr();
2977   SDValue Base1 = DAG.getMemBasePlusOffset(Base0, TypeSize::Fixed(HwLen), dl);
2978   unsigned MemOpc = MemN->getOpcode();
2979 
2980   MachineMemOperand *MOp0 = nullptr, *MOp1 = nullptr;
2981   if (MachineMemOperand *MMO = MemN->getMemOperand()) {
2982     MachineFunction &MF = DAG.getMachineFunction();
2983     uint64_t MemSize = (MemOpc == ISD::MLOAD || MemOpc == ISD::MSTORE)
2984                            ? (uint64_t)MemoryLocation::UnknownSize
2985                            : HwLen;
2986     MOp0 = MF.getMachineMemOperand(MMO, 0, MemSize);
2987     MOp1 = MF.getMachineMemOperand(MMO, HwLen, MemSize);
2988   }
2989 
2990   if (MemOpc == ISD::LOAD) {
2991     assert(cast<LoadSDNode>(Op)->isUnindexed());
2992     SDValue Load0 = DAG.getLoad(SingleTy, dl, Chain, Base0, MOp0);
2993     SDValue Load1 = DAG.getLoad(SingleTy, dl, Chain, Base1, MOp1);
2994     return DAG.getMergeValues(
2995         { DAG.getNode(ISD::CONCAT_VECTORS, dl, MemTy, Load0, Load1),
2996           DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2997                       Load0.getValue(1), Load1.getValue(1)) }, dl);
2998   }
2999   if (MemOpc == ISD::STORE) {
3000     assert(cast<StoreSDNode>(Op)->isUnindexed());
3001     VectorPair Vals = opSplit(cast<StoreSDNode>(Op)->getValue(), dl, DAG);
3002     SDValue Store0 = DAG.getStore(Chain, dl, Vals.first, Base0, MOp0);
3003     SDValue Store1 = DAG.getStore(Chain, dl, Vals.second, Base1, MOp1);
3004     return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store0, Store1);
3005   }
3006 
3007   assert(MemOpc == ISD::MLOAD || MemOpc == ISD::MSTORE);
3008 
3009   auto MaskN = cast<MaskedLoadStoreSDNode>(Op);
3010   assert(MaskN->isUnindexed());
3011   VectorPair Masks = opSplit(MaskN->getMask(), dl, DAG);
3012   SDValue Offset = DAG.getUNDEF(MVT::i32);
3013 
3014   if (MemOpc == ISD::MLOAD) {
3015     VectorPair Thru =
3016         opSplit(cast<MaskedLoadSDNode>(Op)->getPassThru(), dl, DAG);
3017     SDValue MLoad0 =
3018         DAG.getMaskedLoad(SingleTy, dl, Chain, Base0, Offset, Masks.first,
3019                           Thru.first, SingleTy, MOp0, ISD::UNINDEXED,
3020                           ISD::NON_EXTLOAD, false);
3021     SDValue MLoad1 =
3022         DAG.getMaskedLoad(SingleTy, dl, Chain, Base1, Offset, Masks.second,
3023                           Thru.second, SingleTy, MOp1, ISD::UNINDEXED,
3024                           ISD::NON_EXTLOAD, false);
3025     return DAG.getMergeValues(
3026         { DAG.getNode(ISD::CONCAT_VECTORS, dl, MemTy, MLoad0, MLoad1),
3027           DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3028                       MLoad0.getValue(1), MLoad1.getValue(1)) }, dl);
3029   }
3030   if (MemOpc == ISD::MSTORE) {
3031     VectorPair Vals = opSplit(cast<MaskedStoreSDNode>(Op)->getValue(), dl, DAG);
3032     SDValue MStore0 = DAG.getMaskedStore(Chain, dl, Vals.first, Base0, Offset,
3033                                          Masks.first, SingleTy, MOp0,
3034                                          ISD::UNINDEXED, false, false);
3035     SDValue MStore1 = DAG.getMaskedStore(Chain, dl, Vals.second, Base1, Offset,
3036                                          Masks.second, SingleTy, MOp1,
3037                                          ISD::UNINDEXED, false, false);
3038     return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MStore0, MStore1);
3039   }
3040 
3041   std::string Name = "Unexpected operation: " + Op->getOperationName(&DAG);
3042   llvm_unreachable(Name.c_str());
3043 }
3044 
3045 SDValue
3046 HexagonTargetLowering::WidenHvxLoad(SDValue Op, SelectionDAG &DAG) const {
3047   const SDLoc &dl(Op);
3048   auto *LoadN = cast<LoadSDNode>(Op.getNode());
3049   assert(LoadN->isUnindexed() && "Not widening indexed loads yet");
3050   assert(LoadN->getMemoryVT().getVectorElementType() != MVT::i1 &&
3051          "Not widening loads of i1 yet");
3052 
3053   SDValue Chain = LoadN->getChain();
3054   SDValue Base = LoadN->getBasePtr();
3055   SDValue Offset = DAG.getUNDEF(MVT::i32);
3056 
3057   MVT ResTy = ty(Op);
3058   unsigned HwLen = Subtarget.getVectorLength();
3059   unsigned ResLen = ResTy.getStoreSize();
3060   assert(ResLen < HwLen && "vsetq(v1) prerequisite");
3061 
3062   MVT BoolTy = MVT::getVectorVT(MVT::i1, HwLen);
3063   SDValue Mask = getInstr(Hexagon::V6_pred_scalar2, dl, BoolTy,
3064                           {DAG.getConstant(ResLen, dl, MVT::i32)}, DAG);
3065 
3066   MVT LoadTy = MVT::getVectorVT(MVT::i8, HwLen);
3067   MachineFunction &MF = DAG.getMachineFunction();
3068   auto *MemOp = MF.getMachineMemOperand(LoadN->getMemOperand(), 0, HwLen);
3069 
3070   SDValue Load = DAG.getMaskedLoad(LoadTy, dl, Chain, Base, Offset, Mask,
3071                                    DAG.getUNDEF(LoadTy), LoadTy, MemOp,
3072                                    ISD::UNINDEXED, ISD::NON_EXTLOAD, false);
3073   SDValue Value = opCastElem(Load, ResTy.getVectorElementType(), DAG);
3074   return DAG.getMergeValues({Value, Load.getValue(1)}, dl);
3075 }
3076 
3077 SDValue
3078 HexagonTargetLowering::WidenHvxStore(SDValue Op, SelectionDAG &DAG) const {
3079   const SDLoc &dl(Op);
3080   auto *StoreN = cast<StoreSDNode>(Op.getNode());
3081   assert(StoreN->isUnindexed() && "Not widening indexed stores yet");
3082   assert(StoreN->getMemoryVT().getVectorElementType() != MVT::i1 &&
3083          "Not widening stores of i1 yet");
3084 
3085   SDValue Chain = StoreN->getChain();
3086   SDValue Base = StoreN->getBasePtr();
3087   SDValue Offset = DAG.getUNDEF(MVT::i32);
3088 
3089   SDValue Value = opCastElem(StoreN->getValue(), MVT::i8, DAG);
3090   MVT ValueTy = ty(Value);
3091   unsigned ValueLen = ValueTy.getVectorNumElements();
3092   unsigned HwLen = Subtarget.getVectorLength();
3093   assert(isPowerOf2_32(ValueLen));
3094 
3095   for (unsigned Len = ValueLen; Len < HwLen; ) {
3096     Value = opJoin({Value, DAG.getUNDEF(ty(Value))}, dl, DAG);
3097     Len = ty(Value).getVectorNumElements(); // This is Len *= 2
3098   }
3099   assert(ty(Value).getVectorNumElements() == HwLen);  // Paranoia
3100 
3101   assert(ValueLen < HwLen && "vsetq(v1) prerequisite");
3102   MVT BoolTy = MVT::getVectorVT(MVT::i1, HwLen);
3103   SDValue Mask = getInstr(Hexagon::V6_pred_scalar2, dl, BoolTy,
3104                           {DAG.getConstant(ValueLen, dl, MVT::i32)}, DAG);
3105   MachineFunction &MF = DAG.getMachineFunction();
3106   auto *MemOp = MF.getMachineMemOperand(StoreN->getMemOperand(), 0, HwLen);
3107   return DAG.getMaskedStore(Chain, dl, Value, Base, Offset, Mask, ty(Value),
3108                             MemOp, ISD::UNINDEXED, false, false);
3109 }
3110 
3111 SDValue
3112 HexagonTargetLowering::WidenHvxSetCC(SDValue Op, SelectionDAG &DAG) const {
3113   const SDLoc &dl(Op);
3114   SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
3115   MVT ElemTy = ty(Op0).getVectorElementType();
3116   unsigned HwLen = Subtarget.getVectorLength();
3117 
3118   unsigned WideOpLen = (8 * HwLen) / ElemTy.getSizeInBits();
3119   assert(WideOpLen * ElemTy.getSizeInBits() == 8 * HwLen);
3120   MVT WideOpTy = MVT::getVectorVT(ElemTy, WideOpLen);
3121   if (!Subtarget.isHVXVectorType(WideOpTy, true))
3122     return SDValue();
3123 
3124   SDValue WideOp0 = appendUndef(Op0, WideOpTy, DAG);
3125   SDValue WideOp1 = appendUndef(Op1, WideOpTy, DAG);
3126   EVT ResTy =
3127       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), WideOpTy);
3128   SDValue SetCC = DAG.getNode(ISD::SETCC, dl, ResTy,
3129                               {WideOp0, WideOp1, Op.getOperand(2)});
3130 
3131   EVT RetTy = typeLegalize(ty(Op), DAG);
3132   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, RetTy,
3133                      {SetCC, getZero(dl, MVT::i32, DAG)});
3134 }
3135 
3136 SDValue
3137 HexagonTargetLowering::LowerHvxOperation(SDValue Op, SelectionDAG &DAG) const {
3138   unsigned Opc = Op.getOpcode();
3139   bool IsPairOp = isHvxPairTy(ty(Op)) ||
3140                   llvm::any_of(Op.getNode()->ops(), [this] (SDValue V) {
3141                     return isHvxPairTy(ty(V));
3142                   });
3143 
3144   if (IsPairOp) {
3145     switch (Opc) {
3146       default:
3147         break;
3148       case ISD::LOAD:
3149       case ISD::STORE:
3150       case ISD::MLOAD:
3151       case ISD::MSTORE:
3152         return SplitHvxMemOp(Op, DAG);
3153       case ISD::SINT_TO_FP:
3154       case ISD::UINT_TO_FP:
3155       case ISD::FP_TO_SINT:
3156       case ISD::FP_TO_UINT:
3157         if (ty(Op).getSizeInBits() == ty(Op.getOperand(0)).getSizeInBits())
3158           return opJoin(SplitVectorOp(Op, DAG), SDLoc(Op), DAG);
3159         break;
3160       case ISD::ABS:
3161       case ISD::CTPOP:
3162       case ISD::CTLZ:
3163       case ISD::CTTZ:
3164       case ISD::MUL:
3165       case ISD::FADD:
3166       case ISD::FSUB:
3167       case ISD::FMUL:
3168       case ISD::FMINNUM:
3169       case ISD::FMAXNUM:
3170       case ISD::MULHS:
3171       case ISD::MULHU:
3172       case ISD::AND:
3173       case ISD::OR:
3174       case ISD::XOR:
3175       case ISD::SRA:
3176       case ISD::SHL:
3177       case ISD::SRL:
3178       case ISD::FSHL:
3179       case ISD::FSHR:
3180       case ISD::SMIN:
3181       case ISD::SMAX:
3182       case ISD::UMIN:
3183       case ISD::UMAX:
3184       case ISD::SETCC:
3185       case ISD::VSELECT:
3186       case ISD::SIGN_EXTEND_INREG:
3187       case ISD::SPLAT_VECTOR:
3188         return opJoin(SplitVectorOp(Op, DAG), SDLoc(Op), DAG);
3189       case ISD::SIGN_EXTEND:
3190       case ISD::ZERO_EXTEND:
3191         // In general, sign- and zero-extends can't be split and still
3192         // be legal. The only exception is extending bool vectors.
3193         if (ty(Op.getOperand(0)).getVectorElementType() == MVT::i1)
3194           return opJoin(SplitVectorOp(Op, DAG), SDLoc(Op), DAG);
3195         break;
3196     }
3197   }
3198 
3199   switch (Opc) {
3200     default:
3201       break;
3202     case ISD::BUILD_VECTOR:            return LowerHvxBuildVector(Op, DAG);
3203     case ISD::SPLAT_VECTOR:            return LowerHvxSplatVector(Op, DAG);
3204     case ISD::CONCAT_VECTORS:          return LowerHvxConcatVectors(Op, DAG);
3205     case ISD::INSERT_SUBVECTOR:        return LowerHvxInsertSubvector(Op, DAG);
3206     case ISD::INSERT_VECTOR_ELT:       return LowerHvxInsertElement(Op, DAG);
3207     case ISD::EXTRACT_SUBVECTOR:       return LowerHvxExtractSubvector(Op, DAG);
3208     case ISD::EXTRACT_VECTOR_ELT:      return LowerHvxExtractElement(Op, DAG);
3209     case ISD::BITCAST:                 return LowerHvxBitcast(Op, DAG);
3210     case ISD::ANY_EXTEND:              return LowerHvxAnyExt(Op, DAG);
3211     case ISD::SIGN_EXTEND:             return LowerHvxSignExt(Op, DAG);
3212     case ISD::ZERO_EXTEND:             return LowerHvxZeroExt(Op, DAG);
3213     case ISD::CTTZ:                    return LowerHvxCttz(Op, DAG);
3214     case ISD::SELECT:                  return LowerHvxSelect(Op, DAG);
3215     case ISD::SRA:
3216     case ISD::SHL:
3217     case ISD::SRL:                     return LowerHvxShift(Op, DAG);
3218     case ISD::FSHL:
3219     case ISD::FSHR:                    return LowerHvxFunnelShift(Op, DAG);
3220     case ISD::MULHS:
3221     case ISD::MULHU:                   return LowerHvxMulh(Op, DAG);
3222     case ISD::SMUL_LOHI:
3223     case ISD::UMUL_LOHI:               return LowerHvxMulLoHi(Op, DAG);
3224     case ISD::ANY_EXTEND_VECTOR_INREG: return LowerHvxExtend(Op, DAG);
3225     case ISD::SETCC:
3226     case ISD::INTRINSIC_VOID:          return Op;
3227     case ISD::INTRINSIC_WO_CHAIN:      return LowerHvxIntrinsic(Op, DAG);
3228     case ISD::MLOAD:
3229     case ISD::MSTORE:                  return LowerHvxMaskedOp(Op, DAG);
3230     // Unaligned loads will be handled by the default lowering.
3231     case ISD::LOAD:                    return SDValue();
3232     case ISD::FP_EXTEND:               return LowerHvxFpExtend(Op, DAG);
3233     case ISD::FP_TO_SINT:
3234     case ISD::FP_TO_UINT:              return LowerHvxFpToInt(Op, DAG);
3235     case ISD::SINT_TO_FP:
3236     case ISD::UINT_TO_FP:              return LowerHvxIntToFp(Op, DAG);
3237 
3238     // Special nodes:
3239     case HexagonISD::SMUL_LOHI:
3240     case HexagonISD::UMUL_LOHI:
3241     case HexagonISD::USMUL_LOHI:       return LowerHvxMulLoHi(Op, DAG);
3242   }
3243 #ifndef NDEBUG
3244   Op.dumpr(&DAG);
3245 #endif
3246   llvm_unreachable("Unhandled HVX operation");
3247 }
3248 
3249 SDValue
3250 HexagonTargetLowering::ExpandHvxResizeIntoSteps(SDValue Op, SelectionDAG &DAG)
3251       const {
3252   // Rewrite the extension/truncation/saturation op into steps where each
3253   // step changes the type widths by a factor of 2.
3254   // E.g.  i8 -> i16 remains unchanged, but i8 -> i32  ==>  i8 -> i16 -> i32.
3255   //
3256   // Some of the vector types in Op may not be legal.
3257 
3258   unsigned Opc = Op.getOpcode();
3259   switch (Opc) {
3260     case HexagonISD::SSAT:
3261     case HexagonISD::USAT:
3262     case HexagonISD::TL_EXTEND:
3263     case HexagonISD::TL_TRUNCATE:
3264       break;
3265     case ISD::ANY_EXTEND:
3266     case ISD::ZERO_EXTEND:
3267     case ISD::SIGN_EXTEND:
3268     case ISD::TRUNCATE:
3269       llvm_unreachable("ISD:: ops will be auto-folded");
3270       break;
3271 #ifndef NDEBUG
3272     Op.dump(&DAG);
3273 #endif
3274     llvm_unreachable("Unexpected operation");
3275   }
3276 
3277   SDValue Inp = Op.getOperand(0);
3278   MVT InpTy = ty(Inp);
3279   MVT ResTy = ty(Op);
3280 
3281   unsigned InpWidth = InpTy.getVectorElementType().getSizeInBits();
3282   unsigned ResWidth = ResTy.getVectorElementType().getSizeInBits();
3283   assert(InpWidth != ResWidth);
3284 
3285   if (InpWidth == 2 * ResWidth || ResWidth == 2 * InpWidth)
3286     return Op;
3287 
3288   const SDLoc &dl(Op);
3289   unsigned NumElems = InpTy.getVectorNumElements();
3290   assert(NumElems == ResTy.getVectorNumElements());
3291 
3292   auto repeatOp = [&](unsigned NewWidth, SDValue Arg) {
3293     MVT Ty = MVT::getVectorVT(MVT::getIntegerVT(NewWidth), NumElems);
3294     switch (Opc) {
3295       case HexagonISD::SSAT:
3296       case HexagonISD::USAT:
3297         return DAG.getNode(Opc, dl, Ty, {Arg, DAG.getValueType(Ty)});
3298       case HexagonISD::TL_EXTEND:
3299       case HexagonISD::TL_TRUNCATE:
3300         return DAG.getNode(Opc, dl, Ty, {Arg, Op.getOperand(1), Op.getOperand(2)});
3301       default:
3302         llvm_unreachable("Unexpected opcode");
3303     }
3304   };
3305 
3306   SDValue S = Inp;
3307   if (InpWidth < ResWidth) {
3308     assert(ResWidth % InpWidth == 0 && isPowerOf2_32(ResWidth / InpWidth));
3309     while (InpWidth * 2 <= ResWidth)
3310       S = repeatOp(InpWidth *= 2, S);
3311   } else {
3312     // InpWidth > ResWidth
3313     assert(InpWidth % ResWidth == 0 && isPowerOf2_32(InpWidth / ResWidth));
3314     while (InpWidth / 2 >= ResWidth)
3315       S = repeatOp(InpWidth /= 2, S);
3316   }
3317   return S;
3318 }
3319 
3320 SDValue
3321 HexagonTargetLowering::LegalizeHvxResize(SDValue Op, SelectionDAG &DAG) const {
3322   SDValue Inp0 = Op.getOperand(0);
3323   MVT InpTy = ty(Inp0);
3324   MVT ResTy = ty(Op);
3325   unsigned InpWidth = InpTy.getSizeInBits();
3326   unsigned ResWidth = ResTy.getSizeInBits();
3327   unsigned Opc = Op.getOpcode();
3328 
3329   if (shouldWidenToHvx(InpTy, DAG) || shouldWidenToHvx(ResTy, DAG)) {
3330     // First, make sure that the narrower type is widened to HVX.
3331     // This may cause the result to be wider than what the legalizer
3332     // expects, so insert EXTRACT_SUBVECTOR to bring it back to the
3333     // desired type.
3334     auto [WInpTy, WResTy] =
3335         InpWidth < ResWidth ? typeWidenToWider(typeWidenToHvx(InpTy), ResTy)
3336                             : typeWidenToWider(InpTy, typeWidenToHvx(ResTy));
3337     SDValue W = appendUndef(Inp0, WInpTy, DAG);
3338     SDValue S;
3339     if (Opc == HexagonISD::TL_EXTEND || Opc == HexagonISD::TL_TRUNCATE) {
3340       S = DAG.getNode(Opc, SDLoc(Op), WResTy, W, Op.getOperand(1),
3341                       Op.getOperand(2));
3342     } else {
3343       S = DAG.getNode(Opc, SDLoc(Op), WResTy, W, DAG.getValueType(WResTy));
3344     }
3345     SDValue T = ExpandHvxResizeIntoSteps(S, DAG);
3346     return extractSubvector(T, typeLegalize(ResTy, DAG), 0, DAG);
3347   } else if (shouldSplitToHvx(InpWidth < ResWidth ? ResTy : InpTy, DAG)) {
3348     return opJoin(SplitVectorOp(Op, DAG), SDLoc(Op), DAG);
3349   } else {
3350     assert(isTypeLegal(InpTy) && isTypeLegal(ResTy));
3351     return RemoveTLWrapper(Op, DAG);
3352   }
3353   llvm_unreachable("Unexpected situation");
3354 }
3355 
3356 void
3357 HexagonTargetLowering::LowerHvxOperationWrapper(SDNode *N,
3358       SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
3359   unsigned Opc = N->getOpcode();
3360   SDValue Op(N, 0);
3361   SDValue Inp0;   // Optional first argument.
3362   if (N->getNumOperands() > 0)
3363     Inp0 = Op.getOperand(0);
3364 
3365   switch (Opc) {
3366     case ISD::ANY_EXTEND:
3367     case ISD::SIGN_EXTEND:
3368     case ISD::ZERO_EXTEND:
3369     case ISD::TRUNCATE:
3370       if (Subtarget.isHVXElementType(ty(Op)) &&
3371           Subtarget.isHVXElementType(ty(Inp0))) {
3372         Results.push_back(CreateTLWrapper(Op, DAG));
3373       }
3374       break;
3375     case ISD::SETCC:
3376       if (shouldWidenToHvx(ty(Inp0), DAG)) {
3377         if (SDValue T = WidenHvxSetCC(Op, DAG))
3378           Results.push_back(T);
3379       }
3380       break;
3381     case ISD::STORE: {
3382       if (shouldWidenToHvx(ty(cast<StoreSDNode>(N)->getValue()), DAG)) {
3383         SDValue Store = WidenHvxStore(Op, DAG);
3384         Results.push_back(Store);
3385       }
3386       break;
3387     }
3388     case ISD::MLOAD:
3389       if (isHvxPairTy(ty(Op))) {
3390         SDValue S = SplitHvxMemOp(Op, DAG);
3391         assert(S->getOpcode() == ISD::MERGE_VALUES);
3392         Results.push_back(S.getOperand(0));
3393         Results.push_back(S.getOperand(1));
3394       }
3395       break;
3396     case ISD::MSTORE:
3397       if (isHvxPairTy(ty(Op->getOperand(1)))) {    // Stored value
3398         SDValue S = SplitHvxMemOp(Op, DAG);
3399         Results.push_back(S);
3400       }
3401       break;
3402     case ISD::SINT_TO_FP:
3403     case ISD::UINT_TO_FP:
3404     case ISD::FP_TO_SINT:
3405     case ISD::FP_TO_UINT:
3406       if (ty(Op).getSizeInBits() != ty(Inp0).getSizeInBits()) {
3407         SDValue T = EqualizeFpIntConversion(Op, DAG);
3408         Results.push_back(T);
3409       }
3410       break;
3411     case HexagonISD::SSAT:
3412     case HexagonISD::USAT:
3413     case HexagonISD::TL_EXTEND:
3414     case HexagonISD::TL_TRUNCATE:
3415       Results.push_back(LegalizeHvxResize(Op, DAG));
3416       break;
3417     default:
3418       break;
3419   }
3420 }
3421 
3422 void
3423 HexagonTargetLowering::ReplaceHvxNodeResults(SDNode *N,
3424       SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
3425   unsigned Opc = N->getOpcode();
3426   SDValue Op(N, 0);
3427   SDValue Inp0;   // Optional first argument.
3428   if (N->getNumOperands() > 0)
3429     Inp0 = Op.getOperand(0);
3430 
3431   switch (Opc) {
3432     case ISD::ANY_EXTEND:
3433     case ISD::SIGN_EXTEND:
3434     case ISD::ZERO_EXTEND:
3435     case ISD::TRUNCATE:
3436       if (Subtarget.isHVXElementType(ty(Op)) &&
3437           Subtarget.isHVXElementType(ty(Inp0))) {
3438         Results.push_back(CreateTLWrapper(Op, DAG));
3439       }
3440       break;
3441     case ISD::SETCC:
3442       if (shouldWidenToHvx(ty(Op), DAG)) {
3443         if (SDValue T = WidenHvxSetCC(Op, DAG))
3444           Results.push_back(T);
3445       }
3446       break;
3447     case ISD::LOAD: {
3448       if (shouldWidenToHvx(ty(Op), DAG)) {
3449         SDValue Load = WidenHvxLoad(Op, DAG);
3450         assert(Load->getOpcode() == ISD::MERGE_VALUES);
3451         Results.push_back(Load.getOperand(0));
3452         Results.push_back(Load.getOperand(1));
3453       }
3454       break;
3455     }
3456     case ISD::BITCAST:
3457       if (isHvxBoolTy(ty(Inp0))) {
3458         SDValue C = LowerHvxBitcast(Op, DAG);
3459         Results.push_back(C);
3460       }
3461       break;
3462     case ISD::FP_TO_SINT:
3463     case ISD::FP_TO_UINT:
3464       if (ty(Op).getSizeInBits() != ty(Inp0).getSizeInBits()) {
3465         SDValue T = EqualizeFpIntConversion(Op, DAG);
3466         Results.push_back(T);
3467       }
3468       break;
3469     case HexagonISD::SSAT:
3470     case HexagonISD::USAT:
3471     case HexagonISD::TL_EXTEND:
3472     case HexagonISD::TL_TRUNCATE:
3473       Results.push_back(LegalizeHvxResize(Op, DAG));
3474       break;
3475     default:
3476       break;
3477   }
3478 }
3479 
3480 SDValue
3481 HexagonTargetLowering::combineTruncateBeforeLegal(SDValue Op,
3482                                                   DAGCombinerInfo &DCI) const {
3483   // Simplify V:v2NiB --(bitcast)--> vNi2B --(truncate)--> vNiB
3484   // to extract-subvector (shuffle V, pick even, pick odd)
3485 
3486   assert(Op.getOpcode() == ISD::TRUNCATE);
3487   SelectionDAG &DAG = DCI.DAG;
3488   const SDLoc &dl(Op);
3489 
3490   if (Op.getOperand(0).getOpcode() == ISD::BITCAST)
3491     return SDValue();
3492   SDValue Cast = Op.getOperand(0);
3493   SDValue Src = Cast.getOperand(0);
3494 
3495   EVT TruncTy = Op.getValueType();
3496   EVT CastTy = Cast.getValueType();
3497   EVT SrcTy = Src.getValueType();
3498   if (SrcTy.isSimple())
3499     return SDValue();
3500   if (SrcTy.getVectorElementType() != TruncTy.getVectorElementType())
3501     return SDValue();
3502   unsigned SrcLen = SrcTy.getVectorNumElements();
3503   unsigned CastLen = CastTy.getVectorNumElements();
3504   if (2 * CastLen != SrcLen)
3505     return SDValue();
3506 
3507   SmallVector<int, 128> Mask(SrcLen);
3508   for (int i = 0; i != static_cast<int>(CastLen); ++i) {
3509     Mask[i] = 2 * i;
3510     Mask[i + CastLen] = 2 * i + 1;
3511   }
3512   SDValue Deal =
3513       DAG.getVectorShuffle(SrcTy, dl, Src, DAG.getUNDEF(SrcTy), Mask);
3514   return opSplit(Deal, dl, DAG).first;
3515 }
3516 
3517 SDValue
3518 HexagonTargetLowering::combineConcatVectorsBeforeLegal(
3519     SDValue Op, DAGCombinerInfo &DCI) const {
3520   // Fold
3521   //   concat (shuffle x, y, m1), (shuffle x, y, m2)
3522   // into
3523   //   shuffle (concat x, y), undef, m3
3524   if (Op.getNumOperands() != 2)
3525     return SDValue();
3526 
3527   SelectionDAG &DAG = DCI.DAG;
3528   const SDLoc &dl(Op);
3529   SDValue V0 = Op.getOperand(0);
3530   SDValue V1 = Op.getOperand(1);
3531 
3532   if (V0.getOpcode() != ISD::VECTOR_SHUFFLE)
3533     return SDValue();
3534   if (V1.getOpcode() != ISD::VECTOR_SHUFFLE)
3535     return SDValue();
3536 
3537   SetVector<SDValue> Order;
3538   Order.insert(V0.getOperand(0));
3539   Order.insert(V0.getOperand(1));
3540   Order.insert(V1.getOperand(0));
3541   Order.insert(V1.getOperand(1));
3542 
3543   if (Order.size() > 2)
3544     return SDValue();
3545 
3546   // In ISD::VECTOR_SHUFFLE, the types of each input and the type of the
3547   // result must be the same.
3548   EVT InpTy = V0.getValueType();
3549   assert(InpTy.isVector());
3550   unsigned InpLen = InpTy.getVectorNumElements();
3551 
3552   SmallVector<int, 128> LongMask;
3553   auto AppendToMask = [&](SDValue Shuffle) {
3554     auto *SV = cast<ShuffleVectorSDNode>(Shuffle.getNode());
3555     ArrayRef<int> Mask = SV->getMask();
3556     SDValue X = Shuffle.getOperand(0);
3557     SDValue Y = Shuffle.getOperand(1);
3558     for (int M : Mask) {
3559       if (M == -1) {
3560         LongMask.push_back(M);
3561         continue;
3562       }
3563       SDValue Src = static_cast<unsigned>(M) < InpLen ? X : Y;
3564       if (static_cast<unsigned>(M) >= InpLen)
3565         M -= InpLen;
3566 
3567       int OutOffset = Order[0] == Src ? 0 : InpLen;
3568       LongMask.push_back(M + OutOffset);
3569     }
3570   };
3571 
3572   AppendToMask(V0);
3573   AppendToMask(V1);
3574 
3575   SDValue C0 = Order.front();
3576   SDValue C1 = Order.back();  // Can be same as front
3577   EVT LongTy = InpTy.getDoubleNumVectorElementsVT(*DAG.getContext());
3578 
3579   SDValue Cat = DAG.getNode(ISD::CONCAT_VECTORS, dl, LongTy, {C0, C1});
3580   return DAG.getVectorShuffle(LongTy, dl, Cat, DAG.getUNDEF(LongTy), LongMask);
3581 }
3582 
3583 SDValue
3584 HexagonTargetLowering::PerformHvxDAGCombine(SDNode *N, DAGCombinerInfo &DCI)
3585       const {
3586   const SDLoc &dl(N);
3587   SelectionDAG &DAG = DCI.DAG;
3588   SDValue Op(N, 0);
3589   unsigned Opc = Op.getOpcode();
3590 
3591   SmallVector<SDValue, 4> Ops(N->ops().begin(), N->ops().end());
3592 
3593   if (Opc == ISD::TRUNCATE)
3594     return combineTruncateBeforeLegal(Op, DCI);
3595   if (Opc == ISD::CONCAT_VECTORS)
3596     return combineConcatVectorsBeforeLegal(Op, DCI);
3597 
3598   if (DCI.isBeforeLegalizeOps())
3599     return SDValue();
3600 
3601   switch (Opc) {
3602     case ISD::VSELECT: {
3603       // (vselect (xor x, qtrue), v0, v1) -> (vselect x, v1, v0)
3604       SDValue Cond = Ops[0];
3605       if (Cond->getOpcode() == ISD::XOR) {
3606         SDValue C0 = Cond.getOperand(0), C1 = Cond.getOperand(1);
3607         if (C1->getOpcode() == HexagonISD::QTRUE)
3608           return DAG.getNode(ISD::VSELECT, dl, ty(Op), C0, Ops[2], Ops[1]);
3609       }
3610       break;
3611     }
3612     case HexagonISD::V2Q:
3613       if (Ops[0].getOpcode() == ISD::SPLAT_VECTOR) {
3614         if (const auto *C = dyn_cast<ConstantSDNode>(Ops[0].getOperand(0)))
3615           return C->isZero() ? DAG.getNode(HexagonISD::QFALSE, dl, ty(Op))
3616                              : DAG.getNode(HexagonISD::QTRUE, dl, ty(Op));
3617       }
3618       break;
3619     case HexagonISD::Q2V:
3620       if (Ops[0].getOpcode() == HexagonISD::QTRUE)
3621         return DAG.getNode(ISD::SPLAT_VECTOR, dl, ty(Op),
3622                            DAG.getConstant(-1, dl, MVT::i32));
3623       if (Ops[0].getOpcode() == HexagonISD::QFALSE)
3624         return getZero(dl, ty(Op), DAG);
3625       break;
3626     case HexagonISD::VINSERTW0:
3627       if (isUndef(Ops[1]))
3628         return Ops[0];;
3629       break;
3630     case HexagonISD::VROR: {
3631       if (Ops[0].getOpcode() == HexagonISD::VROR) {
3632         SDValue Vec = Ops[0].getOperand(0);
3633         SDValue Rot0 = Ops[1], Rot1 = Ops[0].getOperand(1);
3634         SDValue Rot = DAG.getNode(ISD::ADD, dl, ty(Rot0), {Rot0, Rot1});
3635         return DAG.getNode(HexagonISD::VROR, dl, ty(Op), {Vec, Rot});
3636       }
3637       break;
3638     }
3639   }
3640 
3641   return SDValue();
3642 }
3643 
3644 bool
3645 HexagonTargetLowering::shouldSplitToHvx(MVT Ty, SelectionDAG &DAG) const {
3646   if (Subtarget.isHVXVectorType(Ty, true))
3647     return false;
3648   auto Action = getPreferredHvxVectorAction(Ty);
3649   if (Action == TargetLoweringBase::TypeSplitVector)
3650     return Subtarget.isHVXVectorType(typeLegalize(Ty, DAG), true);
3651   return false;
3652 }
3653 
3654 bool
3655 HexagonTargetLowering::shouldWidenToHvx(MVT Ty, SelectionDAG &DAG) const {
3656   if (Subtarget.isHVXVectorType(Ty, true))
3657     return false;
3658   auto Action = getPreferredHvxVectorAction(Ty);
3659   if (Action == TargetLoweringBase::TypeWidenVector)
3660     return Subtarget.isHVXVectorType(typeLegalize(Ty, DAG), true);
3661   return false;
3662 }
3663 
3664 bool
3665 HexagonTargetLowering::isHvxOperation(SDNode *N, SelectionDAG &DAG) const {
3666   if (!Subtarget.useHVXOps())
3667     return false;
3668   // If the type of any result, or any operand type are HVX vector types,
3669   // this is an HVX operation.
3670   auto IsHvxTy = [this](EVT Ty) {
3671     return Ty.isSimple() && Subtarget.isHVXVectorType(Ty.getSimpleVT(), true);
3672   };
3673   auto IsHvxOp = [this](SDValue Op) {
3674     return Op.getValueType().isSimple() &&
3675            Subtarget.isHVXVectorType(ty(Op), true);
3676   };
3677   if (llvm::any_of(N->values(), IsHvxTy) || llvm::any_of(N->ops(), IsHvxOp))
3678     return true;
3679 
3680   // Check if this could be an HVX operation after type widening.
3681   auto IsWidenedToHvx = [this, &DAG](SDValue Op) {
3682     if (!Op.getValueType().isSimple())
3683       return false;
3684     MVT ValTy = ty(Op);
3685     return ValTy.isVector() && shouldWidenToHvx(ValTy, DAG);
3686   };
3687 
3688   for (int i = 0, e = N->getNumValues(); i != e; ++i) {
3689     if (IsWidenedToHvx(SDValue(N, i)))
3690       return true;
3691   }
3692   return llvm::any_of(N->ops(), IsWidenedToHvx);
3693 }
3694