1 //===- HexagonInstrInfo.h - Hexagon Instruction Information -----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the Hexagon implementation of the TargetInstrInfo class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_LIB_TARGET_HEXAGON_HEXAGONINSTRINFO_H
14 #define LLVM_LIB_TARGET_HEXAGON_HEXAGONINSTRINFO_H
15 
16 #include "MCTargetDesc/HexagonBaseInfo.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/CodeGen/MachineBasicBlock.h"
20 #include "llvm/CodeGen/TargetInstrInfo.h"
21 #include "llvm/CodeGen/ValueTypes.h"
22 #include "llvm/Support/MachineValueType.h"
23 #include <cstdint>
24 #include <vector>
25 
26 #define GET_INSTRINFO_HEADER
27 #include "HexagonGenInstrInfo.inc"
28 
29 namespace llvm {
30 
31 class HexagonSubtarget;
32 class MachineBranchProbabilityInfo;
33 class MachineFunction;
34 class MachineInstr;
35 class MachineOperand;
36 class TargetRegisterInfo;
37 
38 class HexagonInstrInfo : public HexagonGenInstrInfo {
39   const HexagonSubtarget &Subtarget;
40 
41   enum BundleAttribute {
42     memShufDisabledMask = 0x4
43   };
44 
45   virtual void anchor();
46 
47 public:
48   explicit HexagonInstrInfo(HexagonSubtarget &ST);
49 
50   /// TargetInstrInfo overrides.
51 
52   /// If the specified machine instruction is a direct
53   /// load from a stack slot, return the virtual or physical register number of
54   /// the destination along with the FrameIndex of the loaded stack slot.  If
55   /// not, return 0.  This predicate must return 0 if the instruction has
56   /// any side effects other than loading from the stack slot.
57   unsigned isLoadFromStackSlot(const MachineInstr &MI,
58                                int &FrameIndex) const override;
59 
60   /// If the specified machine instruction is a direct
61   /// store to a stack slot, return the virtual or physical register number of
62   /// the source reg along with the FrameIndex of the loaded stack slot.  If
63   /// not, return 0.  This predicate must return 0 if the instruction has
64   /// any side effects other than storing to the stack slot.
65   unsigned isStoreToStackSlot(const MachineInstr &MI,
66                               int &FrameIndex) const override;
67 
68   /// Check if the instruction or the bundle of instructions has
69   /// load from stack slots. Return the frameindex and machine memory operand
70   /// if true.
71   bool hasLoadFromStackSlot(
72       const MachineInstr &MI,
73       SmallVectorImpl<const MachineMemOperand *> &Accesses) const override;
74 
75   /// Check if the instruction or the bundle of instructions has
76   /// store to stack slots. Return the frameindex and machine memory operand
77   /// if true.
78   bool hasStoreToStackSlot(
79       const MachineInstr &MI,
80       SmallVectorImpl<const MachineMemOperand *> &Accesses) const override;
81 
82   /// Analyze the branching code at the end of MBB, returning
83   /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
84   /// implemented for a target).  Upon success, this returns false and returns
85   /// with the following information in various cases:
86   ///
87   /// 1. If this block ends with no branches (it just falls through to its succ)
88   ///    just return false, leaving TBB/FBB null.
89   /// 2. If this block ends with only an unconditional branch, it sets TBB to be
90   ///    the destination block.
91   /// 3. If this block ends with a conditional branch and it falls through to a
92   ///    successor block, it sets TBB to be the branch destination block and a
93   ///    list of operands that evaluate the condition. These operands can be
94   ///    passed to other TargetInstrInfo methods to create new branches.
95   /// 4. If this block ends with a conditional branch followed by an
96   ///    unconditional branch, it returns the 'true' destination in TBB, the
97   ///    'false' destination in FBB, and a list of operands that evaluate the
98   ///    condition.  These operands can be passed to other TargetInstrInfo
99   ///    methods to create new branches.
100   ///
101   /// Note that removeBranch and insertBranch must be implemented to support
102   /// cases where this method returns success.
103   ///
104   /// If AllowModify is true, then this routine is allowed to modify the basic
105   /// block (e.g. delete instructions after the unconditional branch).
106   bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
107                      MachineBasicBlock *&FBB,
108                      SmallVectorImpl<MachineOperand> &Cond,
109                      bool AllowModify) const override;
110 
111   /// Remove the branching code at the end of the specific MBB.
112   /// This is only invoked in cases where analyzeBranch returns success. It
113   /// returns the number of instructions that were removed.
114   unsigned removeBranch(MachineBasicBlock &MBB,
115                         int *BytesRemoved = nullptr) const override;
116 
117   /// Insert branch code into the end of the specified MachineBasicBlock.
118   /// The operands to this method are the same as those
119   /// returned by analyzeBranch.  This is only invoked in cases where
120   /// analyzeBranch returns success. It returns the number of instructions
121   /// inserted.
122   ///
123   /// It is also invoked by tail merging to add unconditional branches in
124   /// cases where analyzeBranch doesn't apply because there was no original
125   /// branch to analyze.  At least this much must be implemented, else tail
126   /// merging needs to be disabled.
127   unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
128                         MachineBasicBlock *FBB, ArrayRef<MachineOperand> Cond,
129                         const DebugLoc &DL,
130                         int *BytesAdded = nullptr) const override;
131 
132   /// Analyze loop L, which must be a single-basic-block loop, and if the
133   /// conditions can be understood enough produce a PipelinerLoopInfo object.
134   std::unique_ptr<PipelinerLoopInfo>
135   analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const override;
136 
137   /// Return true if it's profitable to predicate
138   /// instructions with accumulated instruction latency of "NumCycles"
139   /// of the specified basic block, where the probability of the instructions
140   /// being executed is given by Probability, and Confidence is a measure
141   /// of our confidence that it will be properly predicted.
142   bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
143                            unsigned ExtraPredCycles,
144                            BranchProbability Probability) const override;
145 
146   /// Second variant of isProfitableToIfCvt. This one
147   /// checks for the case where two basic blocks from true and false path
148   /// of a if-then-else (diamond) are predicated on mutally exclusive
149   /// predicates, where the probability of the true path being taken is given
150   /// by Probability, and Confidence is a measure of our confidence that it
151   /// will be properly predicted.
152   bool isProfitableToIfCvt(MachineBasicBlock &TMBB,
153                            unsigned NumTCycles, unsigned ExtraTCycles,
154                            MachineBasicBlock &FMBB,
155                            unsigned NumFCycles, unsigned ExtraFCycles,
156                            BranchProbability Probability) const override;
157 
158   /// Return true if it's profitable for if-converter to duplicate instructions
159   /// of specified accumulated instruction latencies in the specified MBB to
160   /// enable if-conversion.
161   /// The probability of the instructions being executed is given by
162   /// Probability, and Confidence is a measure of our confidence that it
163   /// will be properly predicted.
164   bool isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
165                                  BranchProbability Probability) const override;
166 
167   /// Emit instructions to copy a pair of physical registers.
168   ///
169   /// This function should support copies within any legal register class as
170   /// well as any cross-class copies created during instruction selection.
171   ///
172   /// The source and destination registers may overlap, which may require a
173   /// careful implementation when multiple copy instructions are required for
174   /// large registers. See for example the ARM target.
175   void copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
176                    const DebugLoc &DL, MCRegister DestReg, MCRegister SrcReg,
177                    bool KillSrc) const override;
178 
179   /// Store the specified register of the given register class to the specified
180   /// stack frame index. The store instruction is to be added to the given
181   /// machine basic block before the specified machine instruction. If isKill
182   /// is true, the register operand is the last use and must be marked kill.
183   void storeRegToStackSlot(MachineBasicBlock &MBB,
184                            MachineBasicBlock::iterator MBBI, Register SrcReg,
185                            bool isKill, int FrameIndex,
186                            const TargetRegisterClass *RC,
187                            const TargetRegisterInfo *TRI,
188                            Register VReg) const override;
189 
190   /// Load the specified register of the given register class from the specified
191   /// stack frame index. The load instruction is to be added to the given
192   /// machine basic block before the specified machine instruction.
193   void loadRegFromStackSlot(MachineBasicBlock &MBB,
194                             MachineBasicBlock::iterator MBBI, Register DestReg,
195                             int FrameIndex, const TargetRegisterClass *RC,
196                             const TargetRegisterInfo *TRI,
197                             Register VReg) const override;
198 
199   /// This function is called for all pseudo instructions
200   /// that remain after register allocation. Many pseudo instructions are
201   /// created to help register allocation. This is the place to convert them
202   /// into real instructions. The target can edit MI in place, or it can insert
203   /// new instructions and erase MI. The function should return true if
204   /// anything was changed.
205   bool expandPostRAPseudo(MachineInstr &MI) const override;
206 
207   /// Get the base register and byte offset of a load/store instr.
208   bool getMemOperandsWithOffsetWidth(
209       const MachineInstr &LdSt,
210       SmallVectorImpl<const MachineOperand *> &BaseOps, int64_t &Offset,
211       bool &OffsetIsScalable, unsigned &Width,
212       const TargetRegisterInfo *TRI) const override;
213 
214   /// Reverses the branch condition of the specified condition list,
215   /// returning false on success and true if it cannot be reversed.
216   bool reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond)
217         const override;
218 
219   /// Insert a noop into the instruction stream at the specified point.
220   void insertNoop(MachineBasicBlock &MBB,
221                   MachineBasicBlock::iterator MI) const override;
222 
223   /// Returns true if the instruction is already predicated.
224   bool isPredicated(const MachineInstr &MI) const override;
225 
226   /// Return true for post-incremented instructions.
227   bool isPostIncrement(const MachineInstr &MI) const override;
228 
229   /// Convert the instruction into a predicated instruction.
230   /// It returns true if the operation was successful.
231   bool PredicateInstruction(MachineInstr &MI,
232                             ArrayRef<MachineOperand> Cond) const override;
233 
234   /// Returns true if the first specified predicate
235   /// subsumes the second, e.g. GE subsumes GT.
236   bool SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
237                          ArrayRef<MachineOperand> Pred2) const override;
238 
239   /// If the specified instruction defines any predicate
240   /// or condition code register(s) used for predication, returns true as well
241   /// as the definition predicate(s) by reference.
242   bool ClobbersPredicate(MachineInstr &MI, std::vector<MachineOperand> &Pred,
243                          bool SkipDead) const override;
244 
245   /// Return true if the specified instruction can be predicated.
246   /// By default, this returns true for every instruction with a
247   /// PredicateOperand.
248   bool isPredicable(const MachineInstr &MI) const override;
249 
250   /// Test if the given instruction should be considered a scheduling boundary.
251   /// This primarily includes labels and terminators.
252   bool isSchedulingBoundary(const MachineInstr &MI,
253                             const MachineBasicBlock *MBB,
254                             const MachineFunction &MF) const override;
255 
256   /// Measure the specified inline asm to determine an approximation of its
257   /// length.
258   unsigned getInlineAsmLength(
259     const char *Str,
260     const MCAsmInfo &MAI,
261     const TargetSubtargetInfo *STI = nullptr) const override;
262 
263   /// Allocate and return a hazard recognizer to use for this target when
264   /// scheduling the machine instructions after register allocation.
265   ScheduleHazardRecognizer*
266   CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
267                                      const ScheduleDAG *DAG) const override;
268 
269   /// For a comparison instruction, return the source registers
270   /// in SrcReg and SrcReg2 if having two register operands, and the value it
271   /// compares against in CmpValue. Return true if the comparison instruction
272   /// can be analyzed.
273   bool analyzeCompare(const MachineInstr &MI, Register &SrcReg,
274                       Register &SrcReg2, int64_t &Mask,
275                       int64_t &Value) const override;
276 
277   /// Compute the instruction latency of a given instruction.
278   /// If the instruction has higher cost when predicated, it's returned via
279   /// PredCost.
280   unsigned getInstrLatency(const InstrItineraryData *ItinData,
281                            const MachineInstr &MI,
282                            unsigned *PredCost = nullptr) const override;
283 
284   /// Create machine specific model for scheduling.
285   DFAPacketizer *
286   CreateTargetScheduleState(const TargetSubtargetInfo &STI) const override;
287 
288   // Sometimes, it is possible for the target
289   // to tell, even without aliasing information, that two MIs access different
290   // memory addresses. This function returns true if two MIs access different
291   // memory addresses and false otherwise.
292   bool
293   areMemAccessesTriviallyDisjoint(const MachineInstr &MIa,
294                                   const MachineInstr &MIb) const override;
295 
296   /// For instructions with a base and offset, return the position of the
297   /// base register and offset operands.
298   bool getBaseAndOffsetPosition(const MachineInstr &MI, unsigned &BasePos,
299                                 unsigned &OffsetPos) const override;
300 
301   /// If the instruction is an increment of a constant value, return the amount.
302   bool getIncrementValue(const MachineInstr &MI, int &Value) const override;
303 
304   /// getOperandLatency - Compute and return the use operand latency of a given
305   /// pair of def and use.
306   /// In most cases, the static scheduling itinerary was enough to determine the
307   /// operand latency. But it may not be possible for instructions with variable
308   /// number of defs / uses.
309   ///
310   /// This is a raw interface to the itinerary that may be directly overriden by
311   /// a target. Use computeOperandLatency to get the best estimate of latency.
312   int getOperandLatency(const InstrItineraryData *ItinData,
313                         const MachineInstr &DefMI, unsigned DefIdx,
314                         const MachineInstr &UseMI,
315                         unsigned UseIdx) const override;
316 
317   /// Decompose the machine operand's target flags into two values - the direct
318   /// target flag value and any of bit flags that are applied.
319   std::pair<unsigned, unsigned>
320   decomposeMachineOperandsTargetFlags(unsigned TF) const override;
321 
322   /// Return an array that contains the direct target flag values and their
323   /// names.
324   ///
325   /// MIR Serialization is able to serialize only the target flags that are
326   /// defined by this method.
327   ArrayRef<std::pair<unsigned, const char *>>
328   getSerializableDirectMachineOperandTargetFlags() const override;
329 
330   /// Return an array that contains the bitmask target flag values and their
331   /// names.
332   ///
333   /// MIR Serialization is able to serialize only the target flags that are
334   /// defined by this method.
335   ArrayRef<std::pair<unsigned, const char *>>
336   getSerializableBitmaskMachineOperandTargetFlags() const override;
337 
338   bool isTailCall(const MachineInstr &MI) const override;
339   bool isAsCheapAsAMove(const MachineInstr &MI) const override;
340 
341   // Return true if the instruction should be sunk by MachineSink.
342   // MachineSink determines on its own whether the instruction is safe to sink;
343   // this gives the target a hook to override the default behavior with regards
344   // to which instructions should be sunk.
345   bool shouldSink(const MachineInstr &MI) const override;
346 
347   /// HexagonInstrInfo specifics.
348 
349   Register createVR(MachineFunction *MF, MVT VT) const;
350   MachineInstr *findLoopInstr(MachineBasicBlock *BB, unsigned EndLoopOp,
351                               MachineBasicBlock *TargetBB,
352                               SmallPtrSet<MachineBasicBlock *, 8> &Visited) const;
353 
354   bool isAbsoluteSet(const MachineInstr &MI) const;
355   bool isAccumulator(const MachineInstr &MI) const;
356   bool isAddrModeWithOffset(const MachineInstr &MI) const;
357   bool isBaseImmOffset(const MachineInstr &MI) const;
358   bool isComplex(const MachineInstr &MI) const;
359   bool isCompoundBranchInstr(const MachineInstr &MI) const;
360   bool isConstExtended(const MachineInstr &MI) const;
361   bool isDeallocRet(const MachineInstr &MI) const;
362   bool isDependent(const MachineInstr &ProdMI,
363                    const MachineInstr &ConsMI) const;
364   bool isDotCurInst(const MachineInstr &MI) const;
365   bool isDotNewInst(const MachineInstr &MI) const;
366   bool isDuplexPair(const MachineInstr &MIa, const MachineInstr &MIb) const;
367   bool isEndLoopN(unsigned Opcode) const;
368   bool isExpr(unsigned OpType) const;
369   bool isExtendable(const MachineInstr &MI) const;
370   bool isExtended(const MachineInstr &MI) const;
371   bool isFloat(const MachineInstr &MI) const;
372   bool isHVXMemWithAIndirect(const MachineInstr &I,
373                              const MachineInstr &J) const;
374   bool isIndirectCall(const MachineInstr &MI) const;
375   bool isIndirectL4Return(const MachineInstr &MI) const;
376   bool isJumpR(const MachineInstr &MI) const;
377   bool isJumpWithinBranchRange(const MachineInstr &MI, unsigned offset) const;
378   bool isLateSourceInstr(const MachineInstr &MI) const;
379   bool isLoopN(const MachineInstr &MI) const;
380   bool isMemOp(const MachineInstr &MI) const;
381   bool isNewValue(const MachineInstr &MI) const;
382   bool isNewValue(unsigned Opcode) const;
383   bool isNewValueInst(const MachineInstr &MI) const;
384   bool isNewValueJump(const MachineInstr &MI) const;
385   bool isNewValueJump(unsigned Opcode) const;
386   bool isNewValueStore(const MachineInstr &MI) const;
387   bool isNewValueStore(unsigned Opcode) const;
388   bool isOperandExtended(const MachineInstr &MI, unsigned OperandNum) const;
389   bool isPredicatedNew(const MachineInstr &MI) const;
390   bool isPredicatedNew(unsigned Opcode) const;
391   bool isPredicatedTrue(const MachineInstr &MI) const;
392   bool isPredicatedTrue(unsigned Opcode) const;
393   bool isPredicated(unsigned Opcode) const;
394   bool isPredicateLate(unsigned Opcode) const;
395   bool isPredictedTaken(unsigned Opcode) const;
396   bool isPureSlot0(const MachineInstr &MI) const;
397   bool isRestrictNoSlot1Store(const MachineInstr &MI) const;
398   bool isSaveCalleeSavedRegsCall(const MachineInstr &MI) const;
399   bool isSignExtendingLoad(const MachineInstr &MI) const;
400   bool isSolo(const MachineInstr &MI) const;
401   bool isSpillPredRegOp(const MachineInstr &MI) const;
402   bool isTC1(const MachineInstr &MI) const;
403   bool isTC2(const MachineInstr &MI) const;
404   bool isTC2Early(const MachineInstr &MI) const;
405   bool isTC4x(const MachineInstr &MI) const;
406   bool isToBeScheduledASAP(const MachineInstr &MI1,
407                            const MachineInstr &MI2) const;
408   bool isHVXVec(const MachineInstr &MI) const;
409   bool isValidAutoIncImm(const EVT VT, const int Offset) const;
410   bool isValidOffset(unsigned Opcode, int Offset,
411                      const TargetRegisterInfo *TRI, bool Extend = true) const;
412   bool isVecAcc(const MachineInstr &MI) const;
413   bool isVecALU(const MachineInstr &MI) const;
414   bool isVecUsableNextPacket(const MachineInstr &ProdMI,
415                              const MachineInstr &ConsMI) const;
416   bool isZeroExtendingLoad(const MachineInstr &MI) const;
417 
418   bool addLatencyToSchedule(const MachineInstr &MI1,
419                             const MachineInstr &MI2) const;
420   bool canExecuteInBundle(const MachineInstr &First,
421                           const MachineInstr &Second) const;
422   bool doesNotReturn(const MachineInstr &CallMI) const;
423   bool hasEHLabel(const MachineBasicBlock *B) const;
424   bool hasNonExtEquivalent(const MachineInstr &MI) const;
425   bool hasPseudoInstrPair(const MachineInstr &MI) const;
426   bool hasUncondBranch(const MachineBasicBlock *B) const;
427   bool mayBeCurLoad(const MachineInstr &MI) const;
428   bool mayBeNewStore(const MachineInstr &MI) const;
429   bool producesStall(const MachineInstr &ProdMI,
430                      const MachineInstr &ConsMI) const;
431   bool producesStall(const MachineInstr &MI,
432                      MachineBasicBlock::const_instr_iterator MII) const;
433   bool predCanBeUsedAsDotNew(const MachineInstr &MI, Register PredReg) const;
434   bool PredOpcodeHasJMP_c(unsigned Opcode) const;
435   bool predOpcodeHasNot(ArrayRef<MachineOperand> Cond) const;
436 
437   unsigned getAddrMode(const MachineInstr &MI) const;
438   MachineOperand *getBaseAndOffset(const MachineInstr &MI, int64_t &Offset,
439                                    unsigned &AccessSize) const;
440   SmallVector<MachineInstr*,2> getBranchingInstrs(MachineBasicBlock& MBB) const;
441   unsigned getCExtOpNum(const MachineInstr &MI) const;
442   HexagonII::CompoundGroup
443   getCompoundCandidateGroup(const MachineInstr &MI) const;
444   unsigned getCompoundOpcode(const MachineInstr &GA,
445                              const MachineInstr &GB) const;
446   int getDuplexOpcode(const MachineInstr &MI, bool ForBigCore = true) const;
447   int getCondOpcode(int Opc, bool sense) const;
448   int getDotCurOp(const MachineInstr &MI) const;
449   int getNonDotCurOp(const MachineInstr &MI) const;
450   int getDotNewOp(const MachineInstr &MI) const;
451   int getDotNewPredJumpOp(const MachineInstr &MI,
452                           const MachineBranchProbabilityInfo *MBPI) const;
453   int getDotNewPredOp(const MachineInstr &MI,
454                       const MachineBranchProbabilityInfo *MBPI) const;
455   int getDotOldOp(const MachineInstr &MI) const;
456   HexagonII::SubInstructionGroup getDuplexCandidateGroup(const MachineInstr &MI)
457                                                          const;
458   short getEquivalentHWInstr(const MachineInstr &MI) const;
459   unsigned getInstrTimingClassLatency(const InstrItineraryData *ItinData,
460                                       const MachineInstr &MI) const;
461   bool getInvertedPredSense(SmallVectorImpl<MachineOperand> &Cond) const;
462   unsigned getInvertedPredicatedOpcode(const int Opc) const;
463   int getMaxValue(const MachineInstr &MI) const;
464   unsigned getMemAccessSize(const MachineInstr &MI) const;
465   int getMinValue(const MachineInstr &MI) const;
466   short getNonExtOpcode(const MachineInstr &MI) const;
467   bool getPredReg(ArrayRef<MachineOperand> Cond, Register &PredReg,
468                   unsigned &PredRegPos, unsigned &PredRegFlags) const;
469   short getPseudoInstrPair(const MachineInstr &MI) const;
470   short getRegForm(const MachineInstr &MI) const;
471   unsigned getSize(const MachineInstr &MI) const;
472   uint64_t getType(const MachineInstr &MI) const;
473   InstrStage::FuncUnits getUnits(const MachineInstr &MI) const;
474 
475   MachineBasicBlock::instr_iterator expandVGatherPseudo(MachineInstr &MI) const;
476 
477   /// getInstrTimingClassLatency - Compute the instruction latency of a given
478   /// instruction using Timing Class information, if available.
479   unsigned nonDbgBBSize(const MachineBasicBlock *BB) const;
480   unsigned nonDbgBundleSize(MachineBasicBlock::const_iterator BundleHead) const;
481 
482   void immediateExtend(MachineInstr &MI) const;
483   bool invertAndChangeJumpTarget(MachineInstr &MI,
484                                  MachineBasicBlock *NewTarget) const;
485   void genAllInsnTimingClasses(MachineFunction &MF) const;
486   bool reversePredSense(MachineInstr &MI) const;
487   unsigned reversePrediction(unsigned Opcode) const;
488   bool validateBranchCond(const ArrayRef<MachineOperand> &Cond) const;
489 
490   void setBundleNoShuf(MachineBasicBlock::instr_iterator MIB) const;
491   bool getBundleNoShuf(const MachineInstr &MIB) const;
492 
493   // When TinyCore with Duplexes is enabled, this function is used to translate
494   // tiny-instructions to big-instructions and vice versa to get the slot
495   // consumption.
496   void changeDuplexOpcode(MachineBasicBlock::instr_iterator MII,
497                           bool ToBigInstrs) const;
498   void translateInstrsForDup(MachineFunction &MF,
499                              bool ToBigInstrs = true) const;
500   void translateInstrsForDup(MachineBasicBlock::instr_iterator MII,
501                              bool ToBigInstrs) const;
502 
503   // Addressing mode relations.
504   short changeAddrMode_abs_io(short Opc) const;
505   short changeAddrMode_io_abs(short Opc) const;
506   short changeAddrMode_io_pi(short Opc) const;
507   short changeAddrMode_io_rr(short Opc) const;
508   short changeAddrMode_pi_io(short Opc) const;
509   short changeAddrMode_rr_io(short Opc) const;
510   short changeAddrMode_rr_ur(short Opc) const;
511   short changeAddrMode_ur_rr(short Opc) const;
512 
513   short changeAddrMode_abs_io(const MachineInstr &MI) const {
514     return changeAddrMode_abs_io(MI.getOpcode());
515   }
516   short changeAddrMode_io_abs(const MachineInstr &MI) const {
517     return changeAddrMode_io_abs(MI.getOpcode());
518   }
519   short changeAddrMode_io_rr(const MachineInstr &MI) const {
520     return changeAddrMode_io_rr(MI.getOpcode());
521   }
522   short changeAddrMode_rr_io(const MachineInstr &MI) const {
523     return changeAddrMode_rr_io(MI.getOpcode());
524   }
525   short changeAddrMode_rr_ur(const MachineInstr &MI) const {
526     return changeAddrMode_rr_ur(MI.getOpcode());
527   }
528   short changeAddrMode_ur_rr(const MachineInstr &MI) const {
529     return changeAddrMode_ur_rr(MI.getOpcode());
530   }
531 
532   MCInst getNop() const override;
533 };
534 
535 } // end namespace llvm
536 
537 #endif // LLVM_LIB_TARGET_HEXAGON_HEXAGONINSTRINFO_H
538